DSpace Repository

Viscous modified chaplygin in classical and loop quantum cosmology

Show simple item record

dc.contributor.author Aberkane, Dalel
dc.contributor.author Mebarki, Norreddin
dc.date.accessioned 2022-05-25T09:03:04Z
dc.date.available 2022-05-25T09:03:04Z
dc.date.issued 2018-05-14
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/9538
dc.description.abstract In this thesis, we chose VMCG with a specific bulk viscosity pressure as a toy model for our universe to explore its behavior at present time, when fitted to recent observational data, and at late time to check whether it suffers from singularities or not. The Eos parameters are constrained for a suitable model that describes the current universe. We also evaluate the evolution of the state and deceleration parameters at present and early universe and determine their present values to deduce if the model is consistent or not with observation data and theoretical predictions. The values are compared to those of other well accepted models. Then, we probe the dynamical behavior of our toy model at early and late time in the LQC framework especially as the model suffers from the Big Bang singularity. The model is found suitable to describe the current universe with consistent present values of both state and deceleration parameters ∈ (−0.76, −0.74) , ∈ (−0.60, −0.57). At large scale, the VMCG has no future singularities and its equation of state is nearly equivalent to cosmological constant ( = -1). The sound speed takes a constant value different from zero as a difference between a dynamical fluid model and an inert cosmological constant model. The VMCG discussed here reproduces the main results of the standard model without assuming a priori the existence of cosmological constant, the problems related to fine-tuning and coincidence problems are solved and the value of the redshift where ( ≈ ) for both = 0.01and = 0.0001 is z = 0.75. At LQC background and at large scale the results found are the same as those of classical background and at small scale the Big Bang singularity problem is solved and replaced by a bounce, at large scale the stability of the model does not depend on the EoS parameter and VMCG universe solutions depend only on .
dc.language.iso en
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Cosmologie Quantique des Boucles
dc.subject Energie Noir
dc.subject Gaz De Chaplygin
dc.subject Matière Noir
dc.subject Seconde Viscosité
dc.subject Loop Quantum Cosmology
dc.subject Dark Energy
dc.subject Chaplygin Gas
dc.subject Dark Matter
dc.subject Bulk Viscosity
dc.subject غاز شابلیجین
dc.subject اللزوجة السائبة
dc.subject المادة المظلمة
dc.subject الكوزمولوجیا الكونتیة الحلقیة
dc.subject الطاقة المظلمة
dc.title Viscous modified chaplygin in classical and loop quantum cosmology
dc.type Thesis


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account