DSpace Repository

Inférence statistique dans les modèles linéaires

Show simple item record

dc.contributor.author Kharoua, Amina
dc.contributor.author Mohdeb, Zaher
dc.date.accessioned 2022-05-25T08:49:45Z
dc.date.available 2022-05-25T08:49:45Z
dc.date.issued 2010-01-01
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/9127
dc.description 106 f.
dc.description.abstract We study methods for forecasting long-memory processes. We assume that the processes are weakly stationary, linear, causal and invertible, but only a Önitesubset of the past observations is available. We Örst present two approaches when the stochastic structure of the process is known : one is the truncation of the Wiener-Kolmogorov predictor, and the other is the projection of the forecast value on the observations,i.e. the leastsquares predictor. We show that both predictors converge to the WienerKolmogorov predictor. When the stochastic structure is not known, we have to estimate the coe¢ cients of the predictors deÖned in the Örst part. For the truncated Wiener-Kolomogorov, we use a arametric approach and we plug in the forecast coe¢ cients from the Whittle estimator, which is computed on an independent realisation of the series. For the least-squares predictor, we plug the empirical autocovariances (computed on the same realisation or on an independent realisation) into the Yule-Walker equations. For the two predictors, we estimate the mean-squared error and prove the asymptotic normality.
dc.language.iso fre
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Mathématiques
dc.subject Normalité asymptotique
dc.subject Processus à longue mémoire
dc.subject modèle linéaire
dc.subject Erreur quadratique de prévision
dc.subject normalité asymptotique
dc.subject Long-memory process
dc.subject linear model
dc.subject mean-squared forecast error
dc.subject asymptotic normality
dc.subject سلاسل المتغيرات العشوائية ذات الذاكرة الطويلة
dc.subject نموذج خطي
dc.subject الخطأ المربع للتنبؤ
dc.subject التقارب العادي
dc.title Inférence statistique dans les modèles linéaires
dc.type Thesis
dc.coverage 01 Disponible à la salle de recherche 01 Disponible au magazin de la B.U.C. 01 CD


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account