| dc.contributor.author | Djafri, Houria | |
| dc.contributor.author | Kharfouchi, S. | |
| dc.date.accessioned | 2022-05-25T08:46:19Z | |
| dc.date.available | 2022-05-25T08:46:19Z | |
| dc.date.issued | 2021-04-05 | |
| dc.identifier.uri | http://depot.umc.edu.dz/handle/123456789/8901 | |
| dc.description.abstract | This thesis deals with the problem of loss of important information and features in spatial data modeling by building a causal spatial model that can capture the various main characteristics of these data. After a through discussion, a two-step strategy has been proposed : Örst, a 2D Markov Random Field (MRF) is generated where imposed causation allows to establish an analogy between this 2D MRF and a Markov chain representation ; secondly, based on the proposed 2D MRF, 2D MS-AR is deÖned according to some essential assumptions and useful symbols. Finally, estimation of model parameters is discussed, which opens the way for broad perspectives to exploit the proposed 2D MS-AR processes to e¢ ciently model several phenomena that present a structural discontinuity in the spatial dependence of the data. | |
| dc.language.iso | fr | |
| dc.publisher | Université Frères Mentouri - Constantine 1 | |
| dc.subject | Mathematiques: Probabilités et Statistique | |
| dc.subject | 2D-AR | |
| dc.subject | Traitement d'image | |
| dc.subject | Modèles spatiaux | |
| dc.subject | Processus autorégressifs unilatéraux spatiaux | |
| dc.subject | MRF causal | |
| dc.subject | 2D MS-AR | |
| dc.subject | AR-2D Models | |
| dc.subject | Image Processing | |
| dc.subject | Spacial Models | |
| dc.subject | Spatial unilateral autoregressive processes | |
| dc.subject | نموذج الانحدار الذاتي | |
| dc.subject | عمليات الانحدار الذاتي المكان من جانب واحد | |
| dc.subject | النماذج المكانية | |
| dc.subject | الانحدار التلقائي المكانی | |
| dc.subject | حقل ماركوف العشوائي السببیي | |
| dc.subject | معالجة الصور | |
| dc.title | Modélisation spatiale à changements de régimes Markoviens. | |
| dc.type | Thesis |