dc.contributor.author |
Djafri, Nabila |
|
dc.contributor.author |
Hamaizia, Tayeb |
|
dc.date.accessioned |
2022-05-25T08:46:09Z |
|
dc.date.available |
2022-05-25T08:46:09Z |
|
dc.date.issued |
2021-04-05 |
|
dc.identifier.uri |
http://depot.umc.edu.dz/handle/123456789/8894 |
|
dc.description.abstract |
A new modified 2-D discrete chaotic system with rational fraction is introduced in this thesis ; it has more complicated dynamical structures than HÈnon map and Lozi map. Some dynamical behaviors, Öxed points, period-doubling bifurcation, the way to chaos, and Lyapunov exponents spectrum, are further investigated using both theoretical analysis and numerical simulation. In particular, the map under consideration is a simple rational discrete bounded map capable of generating ìmulti- foldîstrange attractors via period-doubling bifurcation ways to chaos. This new discrete chaotic system has extensive application in many Öelds, such as optimization and secure communication |
|
dc.language.iso |
fr |
|
dc.publisher |
Université Frères Mentouri - Constantine 1 |
|
dc.subject |
Mathematiques: Mathématiques Appliquée |
|
dc.subject |
Système 2D-chaotique rationnelle |
|
dc.subject |
Nouveau Attracteurs chaotique |
|
dc.subject |
Nouveau Attracteurs chaotique |
|
dc.subject |
Coexistence attracteurs |
|
dc.subject |
2-D rational chaotic map |
|
dc.subject |
New-chaotic attractor |
|
dc.subject |
Coexisting attractors |
|
dc.subject |
خريطة فوضوية كسرية ثنائية الابعاد |
|
dc.subject |
جاذب فوضوي جديد |
|
dc.subject |
جواذب متعايشة |
|
dc.title |
Aspects chaotiques dans les systèmes dynamiques discrets. |
|
dc.type |
Thesis |
|