Afficher la notice abrégée
dc.contributor.author |
Mecheri Salah |
|
dc.contributor.author |
Toualbia Abdelatif |
|
dc.date.accessioned |
2022-05-25T08:45:16Z |
|
dc.date.available |
2022-05-25T08:45:16Z |
|
dc.date.issued |
2017-01-01 |
|
dc.identifier.uri |
http://depot.umc.edu.dz/handle/123456789/8855 |
|
dc.description |
54 f. |
|
dc.description.abstract |
The second chapter deals with the Jordan form of the generalized derivation operator’s (X)=AXXB and the elementary derivation operator (X)=AXB-CXD.
In the third chapter we consider the pairs of operators (A,B) such as AT=TB implies T=T for any
T∈C₁(H), i.e the pairs that satisfy Fugled –Putnam’s theorem in C₁(H) (C₁(H) is an ideal of ℒ(H)), that
we call generalized P-symmetric. We give some basic properties for this class, and we focus, as well,
in this chapter on the study of the pairs’ class of elementary P-symmetric operators ( (A,B) is
elementary P-symmetric if BTA=T⇒ T =T.
In the last chapter we present a global study on the orthogonality of the image to the kernel of the
intern derivation (X)=AX-XA and of the finite operators. |
|
dc.format |
30 cm. |
|
dc.language.iso |
fre |
|
dc.publisher |
Université Frères Mentouri - Constantine 1 |
|
dc.subject |
Mathématiques |
|
dc.title |
Propriétés des opérateurs de dérivation et théorème de fugled-putnam |
|
dc.coverage |
2 copies imprimées disponibles |
|
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée