Afficher la notice abrégée

dc.contributor.author Boudjedaa Badredine
dc.contributor.author Chetouani, L.
dc.date.accessioned 2022-05-25T08:44:13Z
dc.date.available 2022-05-25T08:44:13Z
dc.date.issued 2010-02-03
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/8793
dc.description 65 f.
dc.description.abstract In this thesis we are interest in the formalism of the Feynman path integral and we present it in its theoretical aspect. We have introduced it in three approaches, which are essential in the most applications, Feynman path integral diagram, Trotter formula and Perturbation series. We have tried to avoid its initial aspect, the physics, and to use it with the mathematical arguments. We applied this formalism for a non relativistic problem, Schrodinger equation for the Morse potential, as well as relativistic problems, free Feschbach-Villars equation and Klein-Gordon equation.
dc.language.iso fre
dc.publisher Université Frères Mentouri - Constantine 1
dc.subject Mathématiques
dc.subject Intégrale de chemin
dc.subject Série de perturbation
dc.subject Formule de Trotter
dc.subject Equation de Schrodinger
dc.subject Potentiel de Morse
dc.subject équation Feschbach-Villars
dc.subject équation de Klein-Gordon
dc.subject Feynman Path Integral
dc.subject perturbation series
dc.subject Trotter formula
dc.subject Schrodinger equation
dc.subject potential Morse potential
dc.subject Feschbach —Villars equation
dc.subject Klein-Gordon equation
dc.subject التكامل الدالي
dc.subject مخطط Feynman
dc.subject علاقةTrotte
dc.subject سلسلة الاضطرابات
dc.subject معادلة Schrodinger
dc.subject كمون Morse
dc.subject معادلة Feschbach-Villars
dc.subject معادلة Klein-Gordon
dc.title Fondements mathématiques des intégrales de chemin Feynman path integrals
dc.type Thesis
dc.coverage 01 Disponible à la salle de recherche 01 Disponible au magazin de la B.U.C. 01 CD


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte