Afficher la notice abrégée
dc.contributor.author |
Cheikh, Khaireddine |
|
dc.date.accessioned |
2025-03-18T11:11:22Z |
|
dc.date.available |
2025-03-18T11:11:22Z |
|
dc.date.issued |
2024 |
|
dc.identifier.uri |
http://depot.umc.edu.dz/handle/123456789/14543 |
|
dc.description.abstract |
This study addresses the forecasting of Key Performance Indicators (KPIs) in
LTE net-works through a comparative analysis of advanced machine learning
and statistical models, specifically the Gated Recurrent Unit (GRU) and Seasonal
Auto-Regressive Integrated Moving Average (SARIMA) models. Using hourly
data from a mobile network operator, the analysis identifies and leverages
temporal and statistical patterns, including seasonality and trends, within the
KPI dataset to enhance model training |
fr_FR |
dc.title |
Artificial Intelligence for KPI Prediction in LTE Networks: A Performance Analysis of GRU vs. SARIMA Models |
fr_FR |
dc.type |
Article |
fr_FR |
Fichier(s) constituant ce document
Ce document figure dans la(les) collection(s) suivante(s)
Afficher la notice abrégée