Dépôt institutionnel de l'universite Freres Mentouri Constantine 1

Artificial neural networks for optimizing liquid pharmaceutical dosage forms: Application of ibuprofen microemulsions stability

Afficher la notice abrégée

dc.contributor.author Agouillal, Farid
dc.date.accessioned 2025-03-18T10:55:44Z
dc.date.available 2025-03-18T10:55:44Z
dc.date.issued 2024
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/14539
dc.description.abstract Recent studies have focused on leveraging artificial neural networks (ANNs) to optimize the formulation of pharmaceutical drug micro-emulsions, specif-ically targeting the ideal composition of surfactants, co-surfactants, oil, wa-ter, and process factors that determine key characteristics like stability, drop-let size, and clarity of liquid dosage forms [1]. ANNs, a machine learning technique inspired by biological neural networks in animal brains, are capa-ble of identifying patterns and correlations within complex datasets, allowing them to forecast or optimize systems effectively. By training ANNs to rec-ognize these relationships, they can be used to enhance the formulation pro-cess, making predictions that guide optimization efforts [2] fr_FR
dc.title Artificial neural networks for optimizing liquid pharmaceutical dosage forms: Application of ibuprofen microemulsions stability fr_FR
dc.type Article fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte