المستودع الرقمي في جامعة الإخوة منتوري قسنطينة 1

Bridging NLP Gaps: Methodology to Create A Novel Dataset for Named Entity Recognition in Algerian Dialectal Arabic

عرض سجل المادة البسيط

dc.contributor.author BELBEKRI, Adel Bouarroudj, Wissem Fouzia, Benchikha
dc.date.accessioned 2025-03-17T10:20:49Z
dc.date.available 2025-03-17T10:20:49Z
dc.date.issued 2024
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/14532
dc.description.abstract This paper introduces a methodology to create a dataset designed to address the challenges of Named Entity Recognition (NER) in Algerian Dialectal Arabic (ADA). While significant advancements have been made in NER for Modern Standard Arabic (MSA), dialectal varieties like ADA remain largely underrepresented in natural language processing (NLP) resources. To bridge this gap, we propose a systematic method for collecting and annotating ADA texts. The dataset will be curated from informal sources, including social media platforms, where ADA is predominantly used fr_FR
dc.title Bridging NLP Gaps: Methodology to Create A Novel Dataset for Named Entity Recognition in Algerian Dialectal Arabic fr_FR
dc.type Article fr_FR


الملفات في هذه المادة

هذه المادة تظهر في الحاويات التالية

عرض سجل المادة البسيط

بحث دي سبيس


استعرض

حسابي