Dépôt institutionnel de l'universite Freres Mentouri Constantine 1

Addressing the challenge of few-shot learning in CNN-based fingerprint recognition systems

Afficher la notice abrégée

dc.contributor.author Belguechi, Rima
dc.date.accessioned 2025-03-17T09:43:53Z
dc.date.available 2025-03-17T09:43:53Z
dc.date.issued 2024
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/14524
dc.description.abstract Over the past decade, deep learning has transformed mul- timedia processing and, consequently, biometrics, due to its ability to learn meaningful features directly from raw data. The effectiveness of this learning depends largely on the availability of sufficient data. In this study, we explore fingerprint recognition as a deep learning classification task, constrained by the availability of only a few examples per class for prediction fr_FR
dc.title Addressing the challenge of few-shot learning in CNN-based fingerprint recognition systems fr_FR
dc.type Article fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte