Dépôt institutionnel de l'universite Freres Mentouri Constantine 1

Régression non paramétrique et sélection de modèles par le moyen des réseaux de neurones artificiels.

Afficher la notice abrégée

dc.contributor.author Saadi, Faiza
dc.contributor.author Kahfouchi, S.
dc.date.accessioned 2022-12-14T12:14:15Z
dc.date.available 2022-12-14T12:14:15Z
dc.date.issued 2022-06-21
dc.identifier.uri http://depot.umc.edu.dz/handle/123456789/13405
dc.description.abstract Artificial neural networks (ANN) are universal approximators that allow to express the correlation between input data and output data. Learning by ANN is based on the adaptation of the free parameters of the network by iteratively varying the values of the latter, from arbitrary initial values until reaching final values. The latter should, in principle, attribute to the network an optimal behavior, in accordance with certain pre-established criteria. With the advent of neural methods, the initialization of ANNs has become a central problem and has been studied by many researchers. The Nguyen-Widrow method (1990), although old, has established itself as a reference method. It is widely recognized and is the most used. Unfortunately, the benefits of the Nguyen-Widrow method are not always guaranteed. The repetition of certain experiments, with apparently identical conditions, gives satisfactory results but others are disappointing, in terms of learning time, but also in terms of precision of the estimates. For this reason, it has always been recommended to make several training attempts and choose the one that would have produced the best results. The purpose of this work is to reveal the insidious reasons that cause unsuccessful trials and prevent taking full advantage of the Nguyen-Widrow method. It reveals the existence of a defect, imperceptible during initialization, but which sets in at the very beginning of training, which will have a negative impact on the quality of training, in terms of training time. execution and performance. fr_FR
dc.language.iso fr fr_FR
dc.publisher Université Frères Mentouri - Constantine 1 fr_FR
dc.subject Mathématique Appliquée: Statistique Appliquée fr_FR
dc.subject Statistique non paramétrique fr_FR
dc.subject Sélection de variables fr_FR
dc.subject Réseau de neurones artificiels fr_FR
dc.subject Initialisation des paramètres fr_FR
dc.subject Non-parametric statistics fr_FR
dc.subject Selection of variables fr_FR
dc.subject Artificial neural network fr_FR
dc.subject Initialization of parameters fr_FR
dc.subject إحصائيات دون عوامل fr_FR
dc.subject اختيار المتغيرات fr_FR
dc.subject شبكة اعصاب صناعية fr_FR
dc.subject تييئة العوامل fr_FR
dc.title Régression non paramétrique et sélection de modèles par le moyen des réseaux de neurones artificiels. fr_FR
dc.type Thesis fr_FR


Fichier(s) constituant ce document

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Chercher dans le dépôt


Parcourir

Mon compte