REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINESTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE 1 FACULTE DES SCIENCES EXACTES DEPARTEMENT DE PHYSIQUE

N⁰ d'ordre:..... Série:.....

THESE

Présentée pour obtenir Le diplôme de magister en physique Option : Cristallographie

$\pmb{\alpha}\text{-methyle-}\pmb{\beta}\text{-dicyanostyrene}$

STRUCTURE, DYNAMIQUE MOLÉCULAIRE.

Par

GUEFFEF ADEL

<u>Devant le jury</u> :

Président [:]	A. BOULTIF	Prof. Univ. Constantine1
Rapporteur :	L. HAMDELLOU	M.C.Univ. Constantine 1
Examinateur :	A. BOUDJADA	Prof. Univ. Constantine 1
Examinateur :	A. BOUBERTAKH	Prof.Univ. Constantine 1

Soutenue le : 21/12/2014

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINESTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE CONSTANTINE 1 FACULTE DES SCIENCES EXACTES DEPARTEMENT DE PHYSIQUE

N⁰ d'ordre:..... Série:.....

THESE

Présentée pour obtenir Le diplôme de magister en physique Option : Cristallographie

$\pmb{\alpha}\text{-methyle-}\pmb{\beta}\text{-dicyanostyrene}$

STRUCTURE, DYNAMIQUE MOLÉCULAIRE.

Par

GUEFFEF ADEL

<u>Devant le jury</u> :

Président [±]	A. BOULTIF	Prof. Univ. Constantine1
Rapporteur :	L. HAMDELLOU	M.C.Univ. Constantine 1
Examinateur :	A. BOUDJADA	Prof. Univ. Constantine 1
Examinateur :	A. BOUBERTAKH	Prof. Univ. Constantine 1

Soutenue le : 21/12/2014

REMERCIEMENTS

Ce travail a été réalisé au sein du Laboratoire de Cristallographie à l'Université Constantine 1 en collaboration avec l'Université de Rennes 1 sous la direction de Monsieur Lamine. Hamdellou. En premier lieu, je tiens à remercier particulièrement Monsieur L.Hamdellou qui a su guider ce travail par ses conseils avisés et qui a bien voulu m'aider dans la préparation de ce mémoire. Je le remercie également pour ses encouragements.

Je remercie aussi le Professeur J. MEINNEL de l'Université de Rennes 1 de sa contribution dans la réalisation de ce travail de réalisation de ce mémoire de Magister.

Je remercie vivement Monsieur A. BOULTIF. Professeur à l'université de Constantine 1 pour m'avoir fait l'honneur d'accepter de présider le jury de thèse. Je remercie très vivement Monsieur A. BOUDJADA Professeur à l'université de Constantine 1 et chef de département. A. BOUBERTAKH Professeur à l'université de Constantine 1, d'avoir accepté de participer au jury de ce mémoire.

Enfin, un grand merci à mes parents, ma femme, ma petite Malek, mes deux sœurs à tous mes professeurs, à tous mes collègues et amis. Surtout Fayçal, Noudjoud et Younes Brahimi

Sommaire

INTRODUCTION GENERALE	01
CHAPITRE I : Rappels sur la détermination de structure par diffraction des ray	ons X
Introduction	03
I.I. Diffraction des rayons X.	04
I.I.1.Intensités diffractées par un cristal périodique	
I.I.1.a. Facteur de diffusion atomique	04
I.I.1.b. Le facteur de structure	06
I.I.1.c.Le facteur de température	07
I.I.1.d. Le facteur de forme	07
I.I.1.e. Expression de l'intensité diffractée	09
I.I.2. Conditions de diffraction, sphère d'Ewald	09
I.II. Détermination de structure « classique »	10
I.II.1. Problème de la phase	10
I.II.2. Structure par la méthode des moindres carrés	11
I.II.3. Méthodes " mathématiques " de détermination de structure	11
I.II.3.a. La fonction de Patterson et la méthode de l'atome lourd	12
I.II.3.b. Les méthodes directes	13
I.III. Dispositif expérimental utilisé	15
I.III.1 .Le goniomètre	15
I.III.2. La source de rayons X	16
I.III.3. Le détecteur	16
I.IV.Conclusion	17

Chapitre II : Théorie de la Fonctionnelle de la Densité(DFT)

II.1 Introduction	
II.2 Méthodes	19
II.2.1 Modèles de Hartree et Hartree-Fock	20
II.2.2 Théorie de la Fonctionnelle de la densité (DFT)	22
II.3.1.Codes de DFT	27
II.3.2. Présentation de quelques fonctionnelles de la DFT	27
II.3.3. Conclusion	29

CHAPITRE III : Détermination de la structure du α-méthyle-β-dicyanostyrène à 293°k	E III : Détermination de la structure du α-méthyle-β-dicyanostyrène à 293°K	
III.1 - Introduction	30	
III.2 - Partie expérimentale	32	
III.2 -1 - Synthèse et cristallisation	32	
III.2 - 2 –Collecte des intensités	33	
III.3- Résultats et discussion	36	
III.3 -1 Description et discussion de la structure moléculaire	36	
III.3-2 Schéma d'empilement des molécules dans le cristal	45	
III.4 - Conclusion	48	

CHAPITRE IV : Conformation moléculaire du α méthyle- β -dicyanostyréne par la théorie de la fonctionnelle de la densité (DFT).

IV.1. INTRODUCTION
IV.2.Conformation moléculaire du α méthyle- β dicyanostyréne
a Calcul de la conformation sans contrainte
b- Calcul de la conformation avec contraintes
IV.3.Comparaison des resultats calculés à partir de la DFT avec les résultats expérimentaux du
(α méthyle – β –dicyanostyréne)
IV.4.Spectroscopie RAMAN et IR
IV.4.1.Généralités sur la spectroscopie Raman et IR68
a- LA spectroscopie RAMAN
a-1- Analyse spectrale71
a-2- Appareillage
a-3Avantages de la technique71
b- LA spectroscopie INFRAROUGE72
b-1 - Méthode73
b-2 - Usages et applications74
b-3- Modes de vibrations moléculaires74

IV.4.2. Spectroscopie expérimentale Raman et IR du α méthyle- β -dicyanostyréne à
293K
IV.4.3 Calcul et attribution des modes normaux à partir de la DFT du α méthyle- β -
dicyanostyréne et comparaison avec les résultats expérimentaux77
IV.4.4. Attributions et Illustration de quelques modes normaux du α méthyle- β -dicyanostyréne
obtenus à partir du spectre expérimental IR et Raman80
IV.5. Conclusion
CONCLUSION GENERALE
Bibliographies

INTRODUCTION GENERALE

Ce travail s'inscrit dans le cadre de plusieurs études fondamentales, structurales et spectrales, faites sur le styrène et ses dérivés durant les dernières décennies. Bien que certains de ces composés moléculaires possèdent des propriétés biologiques intéressantes, ils ont attiré beaucoup plus d'attention sur leurs propriétés chimio-physiques qui dépendent spécialement de la distribution du système des électrons π dans le styrène[01][02]. Cette attention est remarquable par l'intérêt apporté, dans plusieurs études théoriques et expérimentales, à leurs structures moléculaires, leurs mouvements internes à l'état fondamental ou excité par différentes méthodes spectroscopiques, l'influence de la substitution par des groupes donneurs et accepteurs sur l'effet d'optique non linéaire, les corrélations entre les déplacements chimiques de la RMN ¹H et ¹³C et l'électronégativité des substituants.

Pour la molécule du styrène, un nombre d'approches obtenues à partir des résultats observés par des méthodes de spectroscopie (Raman, fluorescence, micro-onde) ont conclu qu'elle est plane dans son état électronique fondamental. Les structures des dérivés halogénés (3- et 4-fluorostyrène, 3- et 4-chlorostyrène) et du 4-méthylstyrène ont été aussi trouvées planes. Toutes ces molécules avec le styrène inclus ont aussi en commun une faible barrière de torsion du groupe vinyle par rapport au plan du cycle aromatique et les fréquences de torsion observées en Raman pour la phase vapeur se trouvent dans la région 100 - 130 cm⁻¹. Plusieurs études théoriques utilisant les calculs de chimie quantique, concernant ces composés, ont été faites et alors que les méthodes HF (Hartree-Fock) et MP2 (Moller-Plesset) trouvent des molécules non planes, les méthodes de la DFT (Density Fonctionnel Theory) prédisent par contre des molécules planes en accord avec les résultats expérimentaux[03].

Les structures moléculaires de styrènes poly-substitués, avec des groupements donneurs sur la position 4 et accepteurs sur le carbone $C(\beta)$ favorisant la conjugaison moléculaire et avec les groupements méthyle ou éthyle sur l'autre position $C(\beta)$ du styrène provoquant de l'interaction stérique, ont été aussi étudiées par la diffraction des rayons X et par les méthodes de prédiction théorique. Ce travail étudie le cas du α -métyle- β -dicyano-styrène où la substitution est faite par deux groupements cyano (CN–) sur le carbone $C(\beta)$ et par le groupement méthyle sur le carbone $C(\alpha)$ dans but de faire une comparaison entre les deux interactions stériques différentes et leurs effets.

Ce travail s'articule autour de quatre chapitres. Dans le premier chapitre nous présentons des rappels sur la détermination de structure par diffraction des rayons X.

Dans le deuxième chapitre, nous présentons un aperçu général théorique sur les méthodes de mécanique quantique (MQ) et mécanique moléculaire (MM) à savoir, les Méthodes *semi empirique, ab initio* et la *DFT* en se servant des programmes Gaussian 03.

Dans le troisième chapitre nous discuterons les structures cristalline et moléculaire du α métyle- β -dicyano-styrène observées par les rayons X et affinées avec le programme de calcul "Crystals".

Enfin, le quatrième chapitre est consacré successivement, à la comparaison entre la conformation moléculaire du α - méthyle – β - dicyanostyrène telle qu'elle est trouvée par la théorie de la fonctionnelle de la densité (D.F.T) et celle déjà déterminée par les R.X, et à la dynamique de vibration de la molécule. L'attribution de tous les modes de vibrations internes est faite en comparant les spectres expérimentaux obtenus par les spectroscopies raman et infrarouge et les fréquences théoriques calculées. Nous terminons notre manuscrit avec une conclusion générale.

CHAPITRE I

Rappels sur la détermination de structure par diffraction des rayons X

Introduction

Lors d'une expérience de diffraction des rayons X, c'est l'interaction entre photons incidents et électrons du matériau qui créent la diffusion des rayons X et, via des interférences destructives et constructives, le phénomène de diffraction. Dans ce chapitre, nous rappellerons les bases de ces interactions, tout d'abord avec un atome isolé puis avec un cristal périodique. Cette présentation sera limitée au cadre de la théorie cinématique de la diffraction.

Ces rappels sur la théorie de la diffraction des rayons X permettront d'introduire les méthodes de détermination de structure les plus couramment utilisées. Nous rappellerons tout d'abord le problème fondamental de la phase du facteur de structure en diffraction, et ensuite nous présenterons les différentes méthodes utilisées pour remédier à ce défaut d'information. Hormis la possibilité d'affiner directement les intensités observées par la méthode des moindres carrés, nous rappellerons le principe des méthodes de Patterson et des méthodes directes qui permettent dans une certaine mesure de s'affranchir de l'information sur la phase des réflexions.

Nous introduirons ensuite les méthodes expérimentales de détermination de la phase : en tout premier lieu nous décrirons les principes de la diffusion anomale des rayons X, qui intervient lorsque l'énergie des photons incidents est voisine de celle d'un seuil d'absorption d'un atome du matériau. Après un bref aperçu des applications en absorption des rayons X, nous verrons quels sont les développements expérimentaux qui contribuent à la détermination de structure en utilisant la diffraction anomale : les méthodes DAFS et MAD, cette dernière étant la principale méthode de détermination expérimentale de la phase.

Enfin, nous présenterons les matériaux pour lesquels la détermination expérimentale de la phase permet d'apporter des informations substantielles pour la résolution de la structure. Tout d'abord nous présenterons le cas des structures modulées displacives, qui sont un des types de matériaux étudiés dans cette thèse, puis le cas des matériaux biologiques sera brièvement présenté [10] [11].

I.I.Diffraction des rayons X

I.I.1.Intensités diffractées par un cristal périodique

I.I.1.a.Facteur de diffusion atomique

L'interaction des photons avec la matière se fait essentiellement avec les électrons : ainsi, pour une intensité incidente I_i , l'intensité diffusée I_{diff} par un électron par unité d'angle solide peut s'écrire (figure 1) :

$$I_{diff} = I_i r_0^2 P \tag{I.I}$$

Où $r_{o} = \frac{e}{4\pi\varepsilon_{o}mc^{2}}$ est le rayon classique de l'électron², m et e étant la masse et la charge de l'électron, et c la vitesse de la lumière. P est un facteur de polarisation dépendant de la polarisation de l'onde incidente et de la direction de diffusion, relativement à la polarisation

Figure I.2 : interférence entre deux ondes diffusées en O et en O'. Les vecteurs \vec{S} et $\vec{S_0}$ sont respectivement les vecteurs unitaires définissant les ondes incidentes et diffusées. λ Est la longueur d'onde des rayons X.

Pour calculer la diffusion en provenance d'un atome, il faut tenir compte des interférences entre les ondes diffusées par tous les électrons. Lorsque deux diffuseurs interfèrent, la différence de phase entre les deux intensités diffusées s'écrit (figure 2)

$$\delta = \frac{2\pi}{\lambda} (O B - OA) = \frac{2\pi}{\lambda} (\vec{s} - \vec{s}_0) \cdot \vec{r}$$
(I.2)

Le vecteur de diffusion qui indique dans l'espace réciproque la direction de diffusion est alors défini par $\vec{S} = \frac{1}{\lambda} (\vec{s} - \vec{s}_0)$ et nous pouvons donc écrire :

$$\delta = 2\pi \vec{S}.\vec{r} \tag{I.3}$$

L'intensité totale diffusée dans la direction r peut donc s'écrire sous la forme d'une intégrale sur l'ensemble des électrons, i.e. sur la densité électronique :

$$I_{diff} = I_{i} r_{0}^{2} P \int \rho(\vec{r}) e^{i\delta} d\vec{r} = I_{i} r_{0}^{2} P \int \rho(\vec{r}) e^{2i\pi \vec{S}.\vec{r}} d^{3} \vec{r}$$
(I.4)

Cette expression est générale, donc valable aussi bien pour un solide macroscopique que pour un simple atome. Mathématiquement parlant, elle exprime que l'intensité diffusée est proportionnelle à la transformée de Fourier de la densité électronique, en fonction du vecteur de l'espace réciproque considérée.

Dans le cas d'un atome, la densité électronique possède en première approximation une symétrie sphérique, et l'intensité diffusée par un atome est appelée facteur de diffusion

atomique f, et ne dépend que de
$$\frac{sin\theta}{\lambda}$$

La figure I .3 donne exemples de facteurs de diffusion atomique.

Les atomes les plus lourds ont une décroissance du facteur de diffusion moins rapide, à cause de la plus grande densité électronique (relative) au centre de l'atome [05][11].

Figure I.3 : facteurs de diffusion atomique pour quelques atomes (normalisés par rapport au nombre total d'électrons)

I.I.1.b.Le facteur de structure

Soit un cristal : celui-ci est décrit comme étant la répétition d'une maille, dans laquelle se trouvent des atomes i aux positions $\overrightarrow{r_i}$ La contribution à l'amplitude diffusée par cette maille est donc proportionnelle à la somme $F(\overrightarrow{S})$ des contributions de chacun des atomes .

cette maille est donc proportionnelle à la somme $\overrightarrow{F(S)}$ des contributions de chacun des atomes

$$F(\vec{S}) = \sum_{\text{atomes } i} f_i\left(\frac{\sin\theta}{\lambda}\right) e^{2i\pi\vec{S}.\vec{r}_i}$$
(I.5)

Cette somme des contributions de chaque atome peut se représenter dans le plan complexe par des vecteurs, comme le montre la figure I.4.

Figure 1. 4 : représentation du facteur de structure dans le plan complexe, somme des contributions de chacun des atomes.

Le module de la contribution de chaque atome est directement proportionnel à son facteur de diffusion atomique. Par contre, la phase de cette contribution est a priori quelconque, et dépend de la position des atomes II est néanmoins possible, et même fréquent d'avoir des restrictions sur cette phase en tenant compte des symétries de la maille. Ainsi pour une maille Centro symétrique.

Nous n'avons jusqu'ici envisagé que des atomes immobiles : en fait, si l'on tient compte de leurs vibrations, il faut tenir compte d'un facteur de température. Ce facteur permet également de tenir compte du désordre statique pouvant exister dans le matériau.

I.I.1.c.Le facteur de température :

Ce facteur de température est un terme d'amortissement de l'intensité diffusée modélisant une distribution gaussienne de la position de l'atome autour de sa position r_i Le facteur de structure du cristal est alors défini par:

$$F(\vec{S}) = \sum_{\text{atomes } i} f_i\left(\frac{\sin\theta}{\lambda}\right) e^{2i\pi\vec{S}.\vec{r}_i} e^{-B_i \frac{\sin^2\theta}{\lambda^2}}$$
(I.6)

Où Bi est le facteur de température isotrope de l'atome i.

I.I.1.d. Le facteur de forme :

Pour tenir compte de l'ensemble du cristal, il faut rajouter une somme sur l'ensemble des mailles du cristal, et l'amplitude diffusée dans la direction S devient proportionnelle à :

$$A(\vec{S}) = \sum_{mailles \ j \ atomes \ i} \sum_{j \ atomes \ i} f_i\left(\frac{\sin\theta}{\lambda}\right) e^{2i\pi\vec{S}.(\vec{r}_i + \vec{R}_j)} e^{-B_i \frac{\sin^2\theta}{\lambda^2}}$$
(I.7)

$$A(\vec{S}) = \left(\sum_{\text{mailles } j} e^{2i\pi \vec{S}.\vec{R}_j}\right) \left(\sum_{\text{atomes } i} f_i\left(\frac{\sin\theta}{\lambda}\right) e^{2i\pi \vec{S}.\vec{r}_i} e^{-B_i \frac{\sin^2\theta}{\lambda^2}}\right) = F(\vec{S}) \sum_{\text{mailles } j} e^{2i\pi \vec{S}.\vec{R}_j}$$
(I.8)

L'amplitude diffusée est donc le produit du facteur de structure F(S) et du *facteur de forme* Ce dernier facteur tend, pour un cristal "infini", vers une fonction peigne de Dirac, i.e. une fonction qui est non nulle uniquement pour tous les points où *k* est tel que :

$$\vec{S}.\vec{a} = h$$
 et $\vec{S}.\vec{b} = k$ et $\vec{S}.\vec{c} = l$

Où a, b et, c sont les vecteurs définissant le réseau du cristal et h, k et l des nombres entiers. Le vecteur de diffusion S est alors noté h, vecteur de diffraction du cristal. Les indices h, k et l représentent les coordonnées de h dans le réseau réciproque :

$$\vec{h} = h\vec{a}^{*} + k\vec{b}^{*} + l\vec{c}^{*} \tag{I.9}$$

Le facteur de forme est alors égal au nombre total de mailles du cristal N_{mailles}, pour tous les points de diffraction.

En fait cette expression (I.9) pour laquelle il y a diffraction, correspond à une condition de réflexion du faisceau incident sur un plan dense du cristal, le vecteur h étant perpendiculaire à ce plan dense. Un exemple est présenté pour un réseau orthorhombique dans la figure 5.

Figure I.5 : la diffraction d'un faisceau de rayons X correspond à une réflexion de l'onde incidente sur des plans atomiques denses. Ici le plan présenté correspond à la réflexion [hkl] = [2 -1 0]. Les réflexions du faisceau sur les atomes d'un des plans dense sont indiquées ici.

Ce schéma, ainsi que la norme du vecteur de diffraction décrite dans la figure 2, mène à la loi de Bragg, qui s'écrit : $2d \sin\theta = \lambda$ (I.10)

Où θ est l'angle de la réflexion, λ la longueur d'onde du rayonnement incident, et d la distance inter réticulaire.

I.I.1.e. Expression de l'intensité diffractée

Finalement, en tenant compte de l'ensemble des facteurs intervenant en diffraction, L'intensité diffractée est, en un noeud (hkl) donné du réseau réciproque, égale à :

$$I = \frac{\lambda^3 e^4}{m^2 c^4} N_{mailles} L P T E F(\vec{h})$$
(I.11)

Où :

- L est le facteur de Lorentz [07]

- P le facteur de polarisation [08]
- T est le facteur de transmission qui reflète la faculté qu'a le cristal à absorber les rayons
 X.

- E est le facteur d'extinction, qui dépend de la qualité du cristal et de l'intensité de la réflexion considérée. Ce facteur exprime l'écart de la diffraction à une interaction purement cinématique.

I.I.2. Conditions de diffraction, sphère d'Ewald :

Nous avons vu (figure I.2) que la diffraction était caractérisée par un vecteur *S*, faisant un angle $\frac{\pi}{2}$ + θ avec le faisceau incident, afin de décrire l'ensemble de la diffraction par un cristal, on construit donc l'ensemble des points $h\vec{a} * +k\vec{b} * +l\vec{c} *$ Avec *h*, *k* et *l* entiers : ces points constituent le *réseau réciproque du cristal*. Chaque point

sera en condition de diffraction lorsqu'il fera un angle $\frac{\pi}{2} + \theta$ avec le faisceau incident,

L'angle θ étant définit par la loi de Bragg. Cette condition de diffraction peut s'exprimer graphiquement grâce à la sphère d'Ewald

Figure I.6 : la sphère d'Ewald permet une représentation simple dela condition de diffraction. Le cristal est situé en O, et l'origine du réseau réciproque est en E. Chaque noeud du réseau réciproque ne diffracte que lorsqu'il est situé sur la sphère d'Ewald.

I.II. Détermination de structure " classique " :

I.II.1. Problème de la phase :

Nous avons vu que l'amplitude diffractée était la transformée de Fourier de la densité électronique du matériau considéré. Par conséquent, le moyen le plus simple de déterminer la structure serait de calculer la transformée de Fourier inverse sur les amplitudes diffusées, i.e. la transformée de Fourier inverse sur l'ensemble des F (h, k, l). La densité électronique obtenue permettrait de localiser directement les positions atomiques du cristal. Malheureusement, seules les intensités, i.e. des scalaires, sont collectées et donc la phase du nombre complexe qu'est le facteur de structure n'est pas mesurée lors d'une simple expérience de diffraction. C'est l'un des problèmes les plus anciens de la cristallographie, et différentes méthodes sont utilisées pour compenser la non mesure de cette phase.

Une illustration classique de cette indétermination sur la phase est donnée dans la figureI. 7.

Les deux réflexions symétriques ont des phases opposées, mais des modules égaux. Par conséquent ces deux réflexions seront équivalentes du point de vue de la diffraction : c'est la loi de Friedel, que l'on peut exprimer en disant que la diffraction rajoute un centre de symétrie. Cette loi est brisée en prenant en compte de la diffraction anomale.

Figure I.7 : facteurs de structure dans le plan complexe de deux paires de Friedel (Réflexions symétriques)

I.II.2. Structure par la méthode des moindres carrés :

Bien qu'il ne soit pas possible de mesurer directement F (*hkl*), la connaissance de l'intensité $|F(hkl)|^2$ peut permettre la détermination de la structure. Ainsi, si l'on connaît un modèle de la structure, il est possible de calculer le facteur de structure correspondant, et de le comparer à celui observé. La fonction suivante peut être utilisée :

$$Q = \sum_{hkl} w_{hkl} \left(\left| F_{obs} \right| - \left| F_{calc} \right| \right)^2$$
(I.12)

Où F_{obs} et F_{calc} sont les facteurs de structure observé et calculé (à partir du modèle), et w_{hkl} le poids affecté à la réflexion hkl. La minimisation de cette fonction₆ Q est effectuée par la méthode des moindres carrés non-linéaires, et le minimum est atteint lorsque le modèle est aussi proche de la réalité que possible₇. Le poids affecté à chacune des réflexions permet que des réflexions plus faibles contribuent aussi à l'affinement. Un poids souvent utilisé est par exemple

 $w = \sigma^{-1}$, où σ est l'incertitude sur la réflexion mesurée. La convergence du modèle est testée à l'aide du résidu Rw:

$$R_{w} = \frac{\sum_{h,k,l} w_{hkl} (|F_{obs}| - |F_{calc}|)^{2}}{\sum_{h,k,l} w_{hkl} F_{obs}^{2}}$$
(I.13)

Cette méthode très largement utilisée, notamment pour les structures de matériaux inorganiques ou de petites molécules organiques. Les structures plus complexes font appel à des méthodes plus sophistiquées que nous allons maintenant présenter brièvement.

I.II.3. Méthodes " mathématiques » de détermination de structure :

Bien que les modules des facteurs de structure mesurés ne soient pas une image directe de la densité électronique du matériau, ils leur sont étroitement liés et il est possible de faire apparaître des relations à l'aide d'outils mathématiques.

I.II.3.a. La fonction de Patterson et la méthode de l'atome lourd :

La fonction de Patterson, ou fonction d'autocorrélation de la densité électronique, est définie de la manière suivante :

$$P(\vec{u}) = \int \rho(\vec{r})\rho(\vec{r} + \vec{u})d\vec{r}$$
(I.14)

Où ρ est la densité électronique en un point du matériau. Le facteur de structure étant la transformée de Fourier de la densité électronique, on peut montrer que :

$$P(\vec{u}) = \int \left| F(\vec{h}) \right|^2 e^{-2i\pi \vec{h}.\vec{u}} d^3 \vec{h}$$
(I.15)

En fait, si l'on tient compte du caractère discret de la distribution des intensités dans l'espaceréciproque, cela s'écrit :

$$P(\vec{u}) = \frac{1}{V} \sum \left| F(\vec{h}) \right|^2 e^{-2i\pi \vec{h}.\vec{u}}$$
(I.16)

Comme en outre $|F(\vec{h})| = |F(-\vec{h})|$ la fonction de Patterson peut être simplement calculée à partir des intensités $|F(\vec{h})|^2$ observées par la relation :

$$P(\vec{u}) = \frac{1}{V} \sum \left| F(\vec{h}) \right|^2 \cos(2\pi \vec{h}.\vec{u})$$
(I.17)

Où V est le volume d'une maille élémentaire.

De même la fonction de Patterson peut être calculée de manière discrète, en assimilant les atomes à des points, et cela mène à la relation :

$$P(\vec{u}) = \sum_{\text{atomes } i} \rho(\vec{r}_i) \rho(\vec{r}_i + \vec{u})$$
(I.18)

Cette dernière expression de la fonction de Patterson est très intéressante car elle permet de bien comprendre son rôle : la valeur de la fonction de Patterson ne sera importante que lorsque le vecteur u correspondra à une distance interatomique \overrightarrow{r} En un tel point, sa valeur sera alors le produit des nombres d'électrons des deux atomes. Sur une carte de Patterson, seuls les pics correspondants aux positions relatives des atomes les plus lourds seront

nettement visibles, les atomes les plus légers ne générant que de faibles pics. Comme la fonction de Patterson peut être calculée directement à partir des intensités mesurées, il est possible d'obtenir une carte expérimentale, et sur la base de cette carte, il est possible de créer un modèle⁸ de la structure, puis de l'affiner par la méthode des moindres carrés [09]. Un exemple de carte est présenté en figure (I. 8) pour (TaSe₄)₂I à température ambiante. Seuls pics visibles correspondent aux vecteurs Ta-Ta et, beaucoup plus faiblement, aux vecteurs Ta-I

figure I.8 : carte de Patterson pour $(TaSe_4)_{2I}$ Les intensités visibles correspondent aux vecteurs liants entre eux les atomes les plus lourds : atomes Ta-Ta en x=0, z= (0;.25, etc...), et Ta-I en x=0.5 et z=(.0946; .1554, etc...)

I.II.3.b. Les méthodes directes :

Contrairement à la méthode de Patterson qui vise à déterminer un modèle structural sans passer par l'information de phase, les méthodes directes cherchent à retrouver la phase, ou plus exactement des restrictions sur les valeurs possibles de la phase, à partir des intensités mesurées.

Nous ne ferons qu'aborder ici les principes généraux de ces méthodes. Elles reposent sur deux propriétés importantes de la densité électronique :

• La densité électronique est positive en tous points (positivité)

• La structure est composée d'atomes discrets (atomicité).

Pour donner un exemple simple d'information dérivée de l'atomicité, étudions les deux fonctions suivantes dans le cas d'un réseau monoatomique: F (transformée de Fourier de la

densité électronique ρ), et G (transformée de Fourier de ρ 2). La distribution des atomes étant discrète, la transformée de Fourier l'est aussi :

$$F(\vec{h}) = \sum_{atomes\,j} e^{2i\pi\vec{h}\cdot\vec{x}_j} \rho = f\left(\vec{h}\right) \sum_{atomes\,j} e^{2i\pi\vec{h}\cdot\vec{x}_j} \tag{I.19}$$

Et

$$G(\vec{h}) = \sum_{atomes \, j} e^{2i\pi\vec{h}.\vec{r}_j} \rho^2 = g(\vec{h}) \sum_{atomes \, j} e^{2i\pi\vec{h}.\vec{r}_j}$$
(I.20)

Où f(h) représente le facteur de structure de l'atome constituant le matériau, et g(h)Le facteur de structure de l'atome "au carré". Le cristal étant supposée monoatomique, ces deux facteurs de diffusion peuvent être sortis de la somme. On peut obtenir la fonction suivante :

$$F(\vec{h}) = \Theta(\vec{h})G(\vec{h}) = \frac{\Theta(\vec{h})}{V} \sum_{\vec{k}} F(\vec{k})F(\vec{h} - \vec{k})$$
(I.20)

Cette dernière expression est appelée équation de Sayre, et si nous la multiplions par F(h) hous obtenons :

$$\left|F(\vec{h})\right|^{2} = \frac{\Theta(\vec{h})}{V} \sum_{\vec{k}} F(-\vec{h})F(\vec{k})F(\vec{h}-\vec{k})$$
(I.21)

Pour de grandes valeurs de F(h) le membre de gauche de l'équation est grand, réel et positif. Par conséquent, si nous supposons qu'un des termes de la somme du membre de droite est répondérant, alors il en résulte que ce terme est lui aussi réel et positif. Cela mène à une relation entre les phases des 3 réflexions correspondant à ce terme majoritaire :

$$\varphi(-\vec{h}) + \varphi(\vec{k}) + \varphi(\vec{h} - \vec{k}) \approx 0$$
(I.22)

Nous pouvons donc déduire de ces équations que la somme des phases des trois termes Principaux est "probablement" nulle. Ce résultat est exemplaire, car nous pouvons y retrouver quelques-uns des fondements des méthodes directes : l'utilisation de *triplets de réflexions* $F(\vec{h})F(\vec{k})F(\vec{h},\vec{k})$ et la nature *probabiliste* des informations obtenues sur la phase. Aujourd'hui la détermination de structure pour des cristaux organiques utilise très souvent une méthode directe qui est dans la plupart des cas suffisante pour obtenir la structure. Dans le cas des matériaux inorganiques, la méthode des moindres carrés est en général la méthode préférée, les symétries existant à l'échelle de la maille permettant de s'affranchir de l'information de phase pour bâtir un modèle structural. Quant aux cristaux biologiques, ils présentent en général trop d'atomes par maille pour l'utilisation des méthodes directes [12].

I.III. Dispositif expérimental utilisé :

Figure I. 9 : Equipement du diffractomètre quatre cercles utilisé pour la collecte des Intensités [10].

Un diffractomètre à quatre cercles est dédié à l'étude de matériaux monocristallins ; il permet de mesurer l'intensité diffractée par les différents plans réticulaires d'un cristal. Il est constitué d'un goniomètre, dont la fonction est d'amener chaque plan en position de diffraction, d'une source de rayons X fixe et d'un détecteur (ponctuel ou bidimensionnel) pouvant se déplacer dans le plan horizontal autour de l'axe vertical afin de recueillir l'intensité diffractée (figureI.9).

I.III.1 .Le goniomètre :

Le cristal se trouve au centre optique de trois axes de rotation, φ , ω et χ . La position respective de ces trois axes est indiquée sur la (figure 1-7). Grâce à la combinaison des rotations autour de ces axes, il est possible de donner n'importe quelle orientation au cristal.

I.III.2. La source de rayons X :

Un tube de rayons X équipé d'une anticathode du Mo génère un faisceau de RX rendu monochromatique au moyen d'une lame de graphite. Le faisceau a une détection de l'ordre du mm². Cette section est un facteur limitant la maille des échantillons étudiés; Le cristal doit être intégralement irradié par le faisceau des rayons X.

I.III.3. Le détecteur :

Les détecteurs ponctuels ont peu à peu laissé la place aux détecteurs bidimensionnels qui permettent d'enregistrer des portions entières de l'espace réciproque (figure I-9). Notons que sur le Kappa CCD [32], le détecteur CCD est motorisé: Il est possible de le rapprocher ou de l'éloigner du cristal en fonction notamment de la résolution souhaitée (25mm < Dx <165mm).

Figure I.10 : Diffractomètre NONIUS Kappa CCD

I.IV. Conclusion :

Le but d'une pareille étude théorique est la compréhension des méthodes de résolution de structure. Dans notre cas l'étude expérimental a été faite sur des cristaux moléculaires organiques de petite taille, Ceci en traitant les données expérimentales de diffractions des rayons X, tout en utilisant les logiciels les plus récents dans ce domaine.

CHAPITRE II

Théorie de la Fonctionnelle de la Densité (DFT)

II.1.Introduction :

L'état d'un système quantique est complètement déterminé par sa fonction d'onde Ψ , à valeurs dans C. Le carré du module de cette fonction définit la distribution des probabilités des valeurs des coordonnées à un instant donné; par définition, la fonction d'onde doit dès lors vérifier la *condition de normalisation* pour tous les instants:

$$\int |\psi|^2 dq = 1 \tag{II.1}$$

Par définition, la donnée de cette fonction, à un instant donné, non seulement décrit toutes les propriétés du système à cet instant, mais encore détermine son comportement dans tous les états ultérieurs. Mathématiquement, cela se traduit par le fait que la valeur de la dérivée de la fonction d'onde par rapport au temps doit, à chaque instant, être déterminée par la valeur de la fonction d'onde elle-même à cet instant . Sous la forme la plus générale, on a l'équation d'onde:

$$i\hbar\frac{\partial}{\partial t}\psi = \mathcal{H}\psi$$
 . (II.2)

L'hamiltonien \mathcal{H} est un opérateur **linéaire hermitien**, indépendant du temps. On associe à une fonction d'onde son énergie ε selon le produit hermitien défini par \mathcal{H} :

$$\boldsymbol{\varepsilon}[\,\overline{\boldsymbol{\Psi}}\,] = \frac{\langle \overline{\boldsymbol{\Psi}}\,, \mathcal{H}\,\,\overline{\boldsymbol{\Psi}}\,\rangle}{\langle \,\overline{\boldsymbol{\Psi}}\,, \overline{\boldsymbol{\Psi}}\,\rangle} \,. \tag{II.3}$$

On recherche pour un système ses *états stationnaires*, c'est à dire ceux pour lesquels l'énergie est **constante au cours du temps**. En utilisant le fait que les fonctions d'onde vérifient (1), et que l'opérateur est hermitien, on trouve que les états stationnaires correspondent à des états propres de l'hamiltonien:

$$i\hbar\frac{\partial}{\partial t}\bar{\Psi}_n = \mathcal{H}\bar{\Psi}_n = \varepsilon_n\bar{\Psi}_n, \qquad (II.4)$$

 ε_n étant la valeur propre ou énergie associée à l'état stationnaire ψ . La dépendance en temps de la fonction d'onde stationnaire étant en $e^{-\frac{i}{\hbar}} \varepsilon_n t$ On aboutit alors à l'équation

indépendante du temps:

$$\mathcal{H} \Psi_n = \varepsilon_n \Psi_n. \tag{II.5}$$

Nous verrons dans la suite de ce chapitre différentes méthodes permettant de simplifier et réduire ce problème, qui sous cette forme est compliqué à résoudre, dans la mesure où la fonction d'onde Ψ_n contient l'information de toutes les particules [10].

II.2. Méthods:

Un des objectifs majeurs de la mécanique quantique appliquée aux calculs moléculaires est la résolution de l'équation de Schrödinger non-relativiste et indépendante du temps . Les méthodes que nous présentons ici sont basées sur l'approximation de Born-Oppenheimer La vitesse des noyaux est très inférieure à celle des électrons, donc on peut considérer que les noyau x sont fixés au cours du calcul des observables électroniques et de l'optimisation de la fonction d'onde. Les coordonnées nucléaires **R** apparaissent comme des paramètres et les coordonnées électroniques sont les variables de l'équation de Schrödinger électronique. En se ramenant à l'étude d'un système à noyaux fixes, la recherche de l'état fondamental s'écrit sous la forme:

Trouver ε_0 , *l'énergie de l'état fondamental telle que* :

$$\mathbf{\varepsilon}_{\mathsf{D}} = \inf\left\{ \langle \Psi, \mathcal{H}_{el}\Psi \rangle, \ \Psi \in \mathcal{A}_{N} \right\}. \tag{II.6}$$

 $A_{\rm N}$ est l'ensemble des fonctions antisymétriques associés aux N électrons du système de carré intégrable en trois dimensions et $\mathcal{H}_{\rm el}$ l'hamiltonien associé aux N électrons pour une géométrie nucléaire fixée.

Les autres états du système possèdent des énergies plus élevées, et correspondent aux états excités du système.

L'énergie de l'état fondamental ε_0 est la somme des énergies de chaque électron. Ces états d'énergie possèdent une certaine symétrie, et l'on remplit les différentes couches d'énergie en suivant le principe de Pauli. Cependant, nous ne pouvons découpler ce problème selon chaque électron, du fait de leur interaction. Le problème de minimisation de l'énergie (6) ne peut être résolu efficacement sous cette forme, la fonction inconnue dépendant de N particules; nous présentons différentes approximations qui expriment le problème non plus selon la fonction d'onde électronique $\psi(\{r_I\})$ à N électrons, mais plutôt avec des fonctions à un corps $\Psi(r_i)$ que nous appellerons des *orbitales*, la dénomination de fonction d'onde étant réservée à la fonction physique. Dans le cas général, ces différentes approximations conduisent à une expression non linéaire de l'hamiltonien, avec les difficultés numériques que cela engendre.

II.2.1 Modèles de Hartree et Hartree-Fock

Dans ces modèles, nous considérons l'opérateur \mathcal{H}_{el} composé des trois opérateurs suivants: $-\sum_{l=1}^{N} \frac{1}{2}\Delta_{l}$

L'opérateur **cinétique** pour les électrons , avec Δ_i étant le laplacien appliqué à la coordonnée Γ_i . L'énergie cinétique s'écrit:

$$\boldsymbol{\pounds}_{\boldsymbol{\varepsilon}}[\boldsymbol{\Psi}] = -\sum_{i=1}^{N} \frac{1}{2} < \boldsymbol{\Psi}, \boldsymbol{\Delta}_{i} \boldsymbol{\Psi} > \tag{II.7}$$

L'interaction d'un électron i avec les K noyaux est de la forme:

$$V(\mathbf{r}_i) = -\sum_{\alpha=1}^{K} \frac{Z_{\alpha}}{|\mathbf{R}_{\alpha} - \mathbf{r}_i|}.$$
 (II.8)

L'interaction entre tous les électrons est de la forme:

$$V(\mathbf{r}_{i}) = -\sum_{\alpha=1}^{K} \frac{Z_{\alpha}}{|\mathbf{R}_{\alpha} - \mathbf{r}_{i}|}.$$
 (II.9)

L'interaction entre tous les électrons est de la forme:

$$\frac{1}{2} \sum_{i \neq j, i, j=1}^{N} \frac{1}{|\mathbf{r}_j - \mathbf{r}_i|}.$$
(II.10)

On fait interagir un électron avec un autre \mathbf{J} deux fois dans cette double somme, on divise donc le total par deux.

Dès lors, on veut trouver une fonction d'onde qui minimise l'énergie $\langle \Psi, \mathcal{H}_{el}, \Psi \rangle$, avec l'hamiltonien \mathcal{H}_{el} de la forme:

$$\mathcal{H}_{el} = -\sum_{i=1}^{N} \frac{1}{2} \Delta_i + \sum_{i=1}^{N} V(\mathbf{r}_i) + \frac{1}{2} \sum_{i \neq j, i, j=1}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}.$$
(II.11)

Le modèle de Hartree-Fock se base sur une expression particulière des solutions; en effet, on va décomposer la fonction d'onde Ψ à l'aide de N fonctions orthonormées $\psi_i(\mathbf{r}_i)$. Dans l'expression de l'énergie totale va figurer le terme potentiel suivant:

On définit le potentiel de Hartree ou potentiel coulombien V_C par:

$$V_{\mathcal{C}}(\mathbf{r}) = \int_{\mathbb{R}^3} \rho(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}', \qquad (II.12)$$

qui décrit l'interaction d'un électron de coordonnée \mathbf{r} avec le nuage électronique \mathbf{P} . L'équation à résoudre dans cette approximation cherche une classe de solutions qui vérifient le principe de Pauli, sous forme de déterminants de Slater:

$$\Psi(\mathbf{r}_{1},\ldots,\mathbf{r}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{1}(\mathbf{r}_{1}) & \ldots & \psi_{N}(\mathbf{r}_{1}) \\ \vdots & \ddots & \\ \psi_{1}(\mathbf{r}_{N}) & \psi_{N}(\mathbf{r}_{N}) \end{vmatrix}, \qquad (II.13)$$

avec des fonctions $\psi_i \in \mathcal{H}^1(\mathbb{R}^3)$ orthonormées. Dans l'expression de l'énergie à minimiser vont alors apparaître la **densité** et la **matrice densité**:

$$\rho(\mathbf{r},\mathbf{r}') = \sum_{i=1}^{N} \psi_i(\mathbf{r}) \psi_i^*(\mathbf{r}'),$$

$$\rho(\mathbf{r}) - \rho(\mathbf{r},\mathbf{r}).$$
(II.14)

Et l'on a:

$$\mathscr{Z}^{HF}(\boldsymbol{\psi}_{1},...,\boldsymbol{\psi}_{N}) = \frac{1}{2} \sum_{i=1}^{N} \int_{\mathbf{E}^{3}} |\nabla \boldsymbol{\psi}_{i}(\mathbf{r})|^{2} d\mathbf{r} + \int_{\mathbf{E}^{3}} \boldsymbol{\Psi}(\mathbf{r}) \boldsymbol{\rho}(\mathbf{r}) d\mathbf{r}$$

$$- \frac{1}{2} \int_{\mathbf{E}^{3}} \nabla_{C}(\mathbf{r}) \, \boldsymbol{\rho}(\mathbf{r}) d\mathbf{r}$$

$$- \frac{1}{2} \int \int_{\mathbf{E}^{3} \times \mathbf{E}^{3}} \frac{1}{|\mathbf{r} - \mathbf{r}'|} |\boldsymbol{\rho}(\mathbf{r}, \mathbf{r}')|^{2} d\mathbf{r} d\mathbf{r}'.$$
(II.15)

L'hypothèse d'antisymétrie de la fonction d'onde Ψ permet donc de faire apparaître un terme d'échange entre l'électron situé en **r** et celui situé en **r**'.

On obtient le système d'équations d'Euler-Lagrange associé:

Trouver N fonctions (ψ_1 ,..., ψ_N) chacune dans $H^1(\mathbb{R}^3)$, orthonormées, telles que

$$-\frac{1}{2}\Delta\psi_i + V(\mathbf{r})\psi_i + V_C(\mathbf{r})\psi_i - \int_{\mathbb{R}^3} \frac{\rho(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}\psi_i(\mathbf{r}')d\mathbf{r}' = \varepsilon_i\psi_i \qquad (\text{II.16})$$

II.2.2 Théorie de la Fonctionnelle de la densité (DFT) :

L'idée directrice de la théorie de la fonctionnelle de la densité (DFT) est que l'énergie d'un système d'électrons peut être écrite en terme de la densité de probabilité électronique à un électron, ρ Pour un système de n électrons, $\rho(\mathbf{r})$ correspond à la densité électronique au point de l'espace r[13]. L'énergie électronique, $E|\rho|$, est une *fonctionnelle* de la densité électronique car à chaque fonction $\rho(\mathbf{r})$ est associée une seule énergie. Le théorème d'Hohenberg-Kohn [14] ne donne pas la forme de la fonctionnelle, mais confirme l'existence de celle-ci. C'est le formalisme de Kohn-Sham qui est utilisé dans ce but en utilisant des équations mono électroniques. L'énergie d'un système peut être écrite de la façon suivante :

$$\begin{split} E[\rho] &= \frac{1}{2} \sum_{i=1}^{noce} \int \Psi_i^*(\mathbf{r}) \nabla^2 \Psi_i(\mathbf{r}) \, \dot{\mathbf{c}} \mathbf{r} - \sum_{I=1}^N \int \frac{Z_I}{|\mathbf{r} - \mathbf{R}_I|} \rho(\mathbf{r}) \, d\mathbf{r} \\ &+ \frac{1}{2} \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r} \, d\mathbf{r}' + E_{\rm XO}[\rho] \end{split}$$
(II.17)

Où les fonctions d'espace ψ_i sont les orbitales Kohn-Sham (KS), solutions des équations données par la suite. La densité de charge exacte de l'état fondamental est donnée par :

$$\rho(\mathbf{r}) = \sum_{i=1}^{n_{orc}} |\Psi_i(\mathbf{r})|^2 \qquad (II.18)$$

Le premier terme de l'équation (16) est l'énergie cinétique des électrons. Le second terme est l'attraction électron-noyau et le troisième terme représente l'interaction coulombienne entre la distribution totale des charges en \mathbf{r} et \mathbf{r}' . Le dernier terme est un terme d'échange-corrélation qui est aussi une fonctionnelle de la densité, et qui prend en compte les interactions électron- électron non-classiques. La forme analytique de cette fonctionnelle n'est pas connue et nous devons donc utiliser des approximations.

Les orbitales KS sont obtenues par la résolution des équations de Kohn-Sham en appliquant un principe variationnel à l'énergie $E[\rho]$. Ces équations se présentent sous la forme suivante :

$$\left[-\frac{1}{2}\nabla^2 - \sum_{I=1}^N \frac{Z_I}{|\mathbf{r} - \mathbf{R}_I|} + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, \mathrm{d}\mathbf{r}' + V_{\mathrm{NS}}(\mathbf{r})\right] \Psi_t(\mathbf{r}) = \epsilon_t \Psi_t(\mathbf{r}) \tag{II.19}$$

Où les ε_{θ} sont les énergies des orbitales KS, et v_{xC} est le potentiel d'échange-corrélation qui est la dérivée fonctionnelle de l'énergie d'échange-corrélation :

$$V_{\rm XC}[\rho] = \frac{\delta E_{\rm XC}[\rho]}{\delta \rho} \tag{II.20}$$

Les équations KS sont résolues par la méthode du champ auto cohérent (SCF). On donne une densité d'essai, comme la somme des densités atomiques par exemple, afin d'obtenir des orbitales KS de départ. Puis ces orbitales sont utilisées pour calculer une meilleure densité, jusqu'à ce que l'énergie totale ait convergé.

Si l'on connaissait laforme exacte de $V_{\rm XC}$, alors la DFT nous permettrait de calculer exactement l'état fondamental d'un système. Malheureusement, ce n'est pas le cas, et plusieurs approches existent pour construire un potentiel d'échange-corrélation $V_{\rm XC}$ possédant une vraisemblance physique. De plus, on utilise dans les codes de calcul de structures électroniques, encore appelés codes *ab initio*, une forme lissée du potentiel d'interaction entre un électron et un noyau V, appelée *pseudo-potentiel*. Le pseudo-potentiel doit vérifier certaines propriétés physiques, et conserver le comportement asymptotique de V.

Les méthodes de calcul exige un nombre de fonctions de base « basis sets » pour

décrire les phénomènes qui s'y déroulent. Dans des approximations basées sur la fonction d'onde (de type Hartree-Fock) comme dans la DFT, on utilise des fonctions centrées sur les atomes possédant une certaine vraisemblance physique. Les critères que l'on cherche pour ces fonctions de base sont les suivants: la complétude, un nombre minimum D de fonctions de base pour une erreur minimale, l'orthogonalité, et la compacité.

Pour D fixé, on recherche les orbitales Ψ_i dans un espace engendré par la famille

 $\{\chi_{\nu}\}\nu = 1....D$; pas nécessairement libre ni orthogonale. Si on discrétise le problème selon uneformulation de Galerkin, alors apparaît la matrice de masse

 $O = [<\chi_{\nu} , \chi_{\mu} >]\chi_{\mu} = 1....D \text{ Soit } C^{(i)} = \{C_{\nu}^{(i)} \} \nu = 1....D \text{ .les coefficients de la projection } de \Psi_i \text{ dans cette base} : \Psi_i = \sum_{\nu=1}^{\infty} C_{\nu}^{(i)} \chi_{\nu} \text{ , alors chaque équation}$

 $H\Psi_i = \varepsilon_i \Psi_i$ se transforme en un système linéaire, pour i = 1,occ (occ=nombre de couches occupées): $HC^{(i)} = \varepsilon_i 0 C^{(i)}$. (II.21)

$$\forall v, \mu \in [1,...,D]^2$$
, $Hv, \mu = \langle \chi_{v,H} \chi_{\mu} \rangle$. (II.22)

Deux types de bases sont généralement présentés. Davidson et Feller [15] donnent une description détaillée de la construction des bases *STO*, et Shavitt [16] celle des *GTO*, et de leur implémentation dans le programme GAUSSIAN.

Orbitales de type gaussienne (GTO)

Sur un maillage cartésien, on exprime chaque fonction d'onde dans une base de fonctions de type:

$$\chi^{G}_{L,\alpha}(\mathbf{r}) = C \mathbf{x}^{\ell} \mathbf{y}^{m} \mathbf{z}^{n} \mathbf{e} \cdot \alpha |\mathbf{r}|^{2}$$

Le réel C est le coefficient de normalisation de la fonction \mathcal{K} , α est le diamètre du support de la fonction de base (c'est-à-dire la largeur de la diffusion), et il prend un ensemble de valeurs discret. Pour α fixé, le paramètre $L = \ell + m + n$ permet de classer ces fonctions de base en différentes symétries:

- L = 0: une fonction de symétrie sphérique \rightarrow elle décrit bien les orbitales de type S
- L = 1 : trois fonctions, antisymétriques selon les trois axes—elles correspondent aux fonctions de symétrie *P*.
- L = 2:6 fonctions en tout, soit 5 fonctions de type d et une fonction de type S

En fait, parmi les $(\underline{l+1})(\underline{l+2})$ fonc tions de la famille L >1 apparaissent des symétries déjà représentées dans les fonctions $L \leq 1$ on obtient alors une redondance de l'information physique.

Orbitales de type Slater (STO)

Les STO semblent elles être du point de vue physique un choix naturel de fonctions de base: elles possèdent un point de rebroussement à l'origine, et une décroissance exponentielle à l'infini:

$$\chi_{n,\ell,m}^{s}\zeta^{(r,\theta,\phi)} = C r^{n-1} e^{\zeta_{r}Y}{}_{\ell,m}(\theta,\phi)$$

Où n est le nombre quantique principal, ζ paramétrise la décroissance radiale de $X_{n,l,m}^{s}$, et $Y_{l,m}$ est l'harmonique sphérique définie par:

$$Y_{I,\mathfrak{m}} (\theta, \Phi) = \sqrt{\frac{2\mathcal{H}+1(l-m)!}{4\pi (l+m)!}} P_m^l (\cos\theta) e^{im\Phi}$$

Avec

$$P_m^l(x) = \frac{(-1)^l}{2^l l!} (1-x)^{m/2} \frac{\partial^{l+m}}{\partial x^{l+m}} \left[(x^2-1)^l \right].$$

Ces fonctions engendrent des calculs plus compliqués, notamment pour évaluer les termes potentiels et pour lesquelles on ne dispose pas de formules analytiques. Une méthode consiste à approcher une STO par combinaisons linéaires de GTO[17], pour lesquelles ces intégrales sont faciles à évaluer: on définit alors une fonction de base du type:

$$\chi^{c}_{\tau} = \sum_{L=1}^{A} dL$$
, $\tau \chi^{G}_{L,\alpha}$

les coefficients d $_{L,\tau}\,$, étant choisis pour s'approcher le plus possible d'une fonction χ S De

telles fonctions de base sont appelées fonctions gaussiennes contractées (CGF)

[16].Un algorithme itératif de résolution des équations de Kohn-Sham peut se présenter de la manière suivante :

1. À l'itération , K on connaît $\tilde{\mathbf{P}}^k$, discrétisé sur la base $\{\chi_v\} v = 1 \dots \dots D$ On peut alors construire les potentiels suivants:

- le potentiel de Hartree V_C^K ,
- \circ le potentiel d'échange-corrélation V_{xc}^k ,

Qui permettent de former l'hamiltonien \mathcal{H}^k à l'itération k

2. Construire la discrétisation de l'hamiltonien H^k composée des éléments :

$$\forall v, \mu \in [1, \dots, D]^2, H_{v,\mu} = \langle X_v, \mathcal{H}X_\mu \rangle.$$
(II.23)
3. Déterminer les *occ* des plus petites valeurs propres ε_i^{k+1} et les vecteurs

 Ψ_i^{k+1} associés du problème aux valeurs propres généralisé .

- 4. Former la nouvelle densité P^{k+1} .
- 5. L'algorithme a convergé lorsque pour une certaine norme |||.||], la différence
 || |p^k p^{k+1}||| est inférieure à τ fixé. Dans ce cas, on peut déterminer
 l'énergie totale E^k du système.

Le cas échéant, former une nouvelle densité pk + 1 et retourner en <u>1</u>.

. Schématiquement, l'algorithme se présente sous la forme:

I.3.1.Codes de DFT :

Un code de DFT est caractérisé par :

- Des conditions aux limites (périodiques ou non).
- ♦ le traitement des électrons de coeur (pseudo-potentiel ou tous électrons).
- ♦ les bases des fonctions d'onde.
- ♦ L'expression du terme d'échange- corrélation utilisé

II.3.2. Présentation de quelques fonctionnelles de la DFT

Les notations pour diverses modèles DFT sont données en combinant les noms pour la fonctionnelle d'échange - corrélation. Dans le (tableau2.1) sont données quelques fonctionnelles disponibles dans la chaîne de programme Gaussian 2003[18]. **Tableau II.1 :** Quelques fonctionnelles d'échanges disponibles et utilisées dans la chaîne de Programme Gaussian 2003[18].

Nom	Description	Mots clés
VWN	La fonctionnelle de correlation Vosko, Wilk, et Nusaire 1980 est bien appropriée pour traiter des gaz d'électron uniforme souvent connu sous le nom de densité de spin local (LSD).	VWN5
LYP	La fonctionnelle de corrélation Lee Yang et Parr associe à la fois des termes locaux et nonlocaux.	LYP
Becke 1988	La fonctionnelle Becke 1988 associe le terme d'échange avec des corrections portant sur le gradient de densité.	HFB
Un paramètre de fonctionnelle hybride avec une fonctionnelle modifié Echange - corrélation de Perdew-Wang modifié	Fonctionnelles basées sur des gaz uniformes utilisant les fonctionnelles d'échanges -corrélations de Perdew- Wang91 modifiées	MPW1PW91

 Tableau II.2 : Quelques jeux de bases utilisés dans Gaussian 2003[18].

Basis set
STO-3G
3-21G
6-21G
4-31G
6-31G
6-311G
D95
D95V
SHC
CEP –4G
CEP-31G
CEP-121G
LanL2MB
LanL2DZ
II.3.3. Conclusion

Toutes les méthodes de chimie quantique demandent des temps de calcul très variables et leur choix dépendra du niveau de précision souhaité ainsi que la taille des systèmes.

Les ordinateurs ont fait d'énormes progrès ces dernières années mais certains calculs sont à l'heure actuelle encore prohibitifs pour des système contenant un très grands nombre d'atomes comme les polystyrènes a titre d'exemple.

CHAPITRE III

Détermination de la structure du

α-méthyle-β-dicyanostyrène à 293°K.

III-1-Introduction:

Bien que le styrène et ses dérivés sont connus pour divers activités biologique, ces composés ont attiré plus d'attention sur leurs propriétés liées à la conjugaison des électrons π délocalisés du styrène.

Le styrène est le plus petit système d'électrons π conjugué contenant un groupe vinyle lié à un cycle aromatique (figure III-1)

Figure III-1 : molécule du styrène

Le styrène et ses dérivés constituent aussi un ensemble important de produits à cause de leurs réactions de polymérisation ou photochimiques, ils sont effectivement très connus pour leur intervention dans l'industrie des polymères (voir par exemple : www.styrène.org).

Malgré les efforts dévoués pour trouver une conformation avec des caractéristiques énergétique précises, le styrène reste un sujet de controverse. Et même si pour les calculs théoriques ce sujet pose encore un problème de discussion, il apparait bien que la conjugaison des électrons π entre le benzène et le groupe vinyle stabilise la planéité alors que la répulsion stérique, en particulier avec les hydrogènes ortho du cycle aromatique, favorise la torsion des isomères autour de la liaison simple C 4–C7 entre le groupe vinyle et le benzène [03] [20] [21].

Avec l'intention de localiser notre travail, nous allons se servir de types de substitution possibles pouvant modifier l'interaction ortho. Les structures cristallines avec des substitutions en 4 sur le cycle aromatique avec des groupes donneurs ou accepteurs et avec des substitutions par le groupe accepteur NO₂ et le groupe méthyle CH₃ sur les positions $1(\beta)$ et $2(\beta)$ respectivement, ont été déjà étudié. Dans le cas de 4-diméthylamino- β méthyle- β -nitrostyréne (figure III- 2), la molécule est plane et présente sur forte conjugaison qui s'interprète bien par un transfert de charge entre les groupes donneurs et accepteurs à travers le système conjugué π .

Figure III-2 : molécule de 4-diméthylamino-β-méthyle-β-nitrostyrène (DAMNS).
Dans les cas de 4-méthyle-β-méthyle-β-nitrostyrène et 4-cyano-β-méthyle-β-nitrostyrène (figure III-3), les interactions stériques entre le groupe β-méthyle [position 2(β)] et l'hydrogène ortho de la position 5 sur le cycle favorisent des conformations non planes avec des torsions un peu différentes entre le cycle et le groupe vinyle.

Figure III-3 : Molécules de 4-méthyle-β-méthyle-β-nitrostyrène (MMNS) (a) et de 4-cyano-β-méthyle-β-nitrostyrène (CMNS) (b).

Dans le travail que nous présentons ici, nous étudions le cas où l'interaction stérique se fait principalement entre le groupe méthyle quand il est attaché au carbone C (α) et l'hydrogène ortho de la position 3 sur le cycle benzénique. Nous donnerons alors la structure cristalline du **\alpha-méthyle-\beta-dicyanostyréne**, nous comparons ces types d'interaction en examinant les différences entre les conformations moléculaires déjà connus et celle obtenue par cette étude [22][03].

III-2 - Partie expérimentale :

III-2-1-Synthèse et cristallisation

Le α -méthyle- β -dicyanostyréne a été préparé au laboratoire de physique cristalline de l'université de rennes1 en utilisant la méthode de R.L Brandon et P. D Gardner (rapport interne CENT -1983, laboratoire de physique cristalline, université Renes1).

Le procédé de synthèse proposé est le suivant .un mélange de 0.1mole de malonitrile [31] $CH_2(CN)_2$ et 0.1 mole du p – tolualdéhyde[33] dans 50 cm ³ de dioxanne [32] et refroidît dans la glace .on ajoute goute à goute 0.35cm³ de pipéridine .

p-tolualdéhyde

malonitrile

Quand l'addition est terminée, on verse le mélange réactionnel dans 200 cm³ d'eau, La dinitrile éthylénique précipite alors.

Dinitrile éthylénique

Il est essoré, lavé avec une solution d'acide chlorhydrique diluée, puis avec l'eau, séché et recristallisé avec de l'alcool à 95°. F = 136°, Rd = 60% par les RX.

La détermination de la structure cristalline révèle que le produit obtenu est le α -méthyle- β -dicyanostyrene de formule :

qui est différente du composé recherché.

Des monocristaux du α méthyle- β - dicyanostyréne sont obtenus à partir d'une solution sursaturée d'acétone qu'on évapore très lentement à température ambiante.

La recristallisation donne des monocristaux de couleur jaune pâle avec des formes prismatiques aplaties pouvant atteindre des dimensions de 3mm.

Les dimensions du cristal utilisé par la diffraction des R.X sont 0.20 x 0.25 x 0.30 mm.

III-2-2-COLLECTE DES INTENSITES :

L'enregistrement des intensités des raies diffractées à partir des rayons X à la température ambiante par un monocristal de dimensions 0.20 x 0.25 x 0.3 mm a été effectué avec le diffractomètre Nonius Kappa CCD[29] du centre de diffractométrie de l'université de Rennes1 (France) en utilisant un détecteur bidimensionnelle CCD '' charge coupled device". Le tableau III.1 résume les données expérimentales qui se rapportent au cristal, la collecte des intensités relatives aux facteurs de structure observés et les paramètres utilisés sont résumé dans (Tableau III-1). Tous les calculs de détermination de la structure cristalline ont été menés en utilisant CRYSTALS [27]; un logiciel qui permet l'affinement et l'analyse des structures obtenues par la diffraction des rayons X sur monocristal. Son téléchargement contient les logiciels CAMERON[28] pour la représentation graphique et les versions recompilées de SIR92[28] et SHELXS[26] pour la résolution de la structure. La structure de départ a été trouvée par les méthodes directes avec SHELXS. Les affinements de la structure ont été faits par les méthodes des moindres carrés à matrice complète. Pour les derniers cycles d'affinement, tous les paramètres (positions et déplacements anisotropes) des atomes de carbone et des azotes de la molécule ont été affinés. Les atomes d'hydrogènes sont introduits dans leurs positions idéales et sont entraînés en « riding » au cours de l'affinement par les atomes de carbone avec lesquels ils sont liés. Pour obtenir une meilleure orientation du groupe α -méthyle, les paramètres x's de ses atomes H ont été affinés en utilisant des contraintes molles sur les distances et les angles. Les paramètres de déplacement isotrope Uiso de tous les hydrogènes ne sont pas affinés et ont été pris égaux à 1.2 fois le paramètre de déplacement équivalent de l'atome de carbone auquel sont liés. L'affinement final sur F en utilisant 1126 réflexions ayant des intensités $I > 3\sigma(I)$ et portant sur 129 paramètres à affiner converge avec des facteurs de mérite R=3.2 % et R ω = 3.5 % très satisfaisants. Les valeurs des autres facteurs sont : S=1.108, $(\Delta/\sigma)_{max}$ =0.0001, $\Delta\rho_{max}$ =0.09 eÅ⁻³ et $\Delta\rho_{min}$ =-0.10 eÅ⁻³.

Données du cristal T=293K	
Formule chimique	C ₁₁ H ₈ N ₂
Masse molaire	168.198 g / mol
Système cristallin	Orthorhombic
Groupe d'espace	P 21 21 21
a(Å)	7.2612 (7)
$b(\text{\AA})$	7.8944 (13)
$c(\text{\AA})$	16.3184 (25)
$\alpha(^{\circ})$	90.0000
β(°)	90.0000
γ(°)	90.0000
Z	4
V (Å ³)	935.417(228)
Taille du cristal (mm)	0.20 x 0.25 x 0.30
Densité calculée	1.19
Nombre de réflexions pour la détermination de la	11201
maille	
Forme du cristal	prisme
Couleur du cristal	jaune
F(000)	352.000
$\mu \text{ mm}^{-1}$	0.073

Tableau III-1 : Données expérimentales de détermination de structure :

Collecte des données	
Radiation utilisée	МоК
Longueur d'onde (Å)	0.71073
Monochromateur	Cristal de graphite horizontal
Diffractomètre	Nonius Kappa CCD
Méthode de collection de données	CCD
Correction d'absorption	Multi-scan SADABS (Sheldrick, 2002)
Nombre de réflexions mesurées	9190
Nombre de réflexions indépendantes	2624
Rint %	0.0000
$\Theta_{min}(^{\circ})$	3.591
$\Theta_{max}(^{\circ})$	29.9956
h	$-10 \rightarrow h \rightarrow 9$
k	$-11 \rightarrow k \rightarrow 11$
l	$-19 \rightarrow l \rightarrow 22$
Données de l'affinement	
Méthode de résolution de la structure	Méthodes directes
Affinement sur	F
Nombre de réflexions utilisées	1156
Nombre de paramètres affinés	129
Critère sur les réflexions utilisées	$I > 3\sigma(I)$
Traitement des hydrogènes	Positions idéales en « riding »
Facteur d'affinement R	0.032
Facteur d'affinement pondéré R ω	0.0347
S	1.11
(Δ/σ) max	0.0001
Schéma de pondération utilisé	Polynôme de Chebychev modifié par
	Prince avec 5 paramètres [23]
$\Delta \rho max(eÅ-3)$	0.09
Δ <i>ρmin</i> (eÅ-3)	-0.10
Collecte des données	COLLECT (Nonius BV, 1997-2001)
Affinement de la maille	DIRAX (Duisenberg et al., 2000)

Réduction des données	EVALCCD (Duisenberg et al., 2003)
Programmes utilisés pour :	SHELXS 86 (Altomore et al., 1994) [26]
Résolution de la structure	CRYSTALS (Betteridgeet al., 2001) [24]
Affinement de la structure	CAMERON (Watkinet al., 1996) [25]
Représentation graphique	CAMERON

III-3- RESULTATS ET DISCUSSION :

III-3 -1 DESCRIPTION ET DISCUSSION DE LA STRUCTURE MOLECULAIRE :

Une vue en perspective de la molécule α -méthyle- β -dicyanostyrène avec le schéma de numérotation de tous les atomes est donnée par la figure (III -4), les paramètres géométriques (longueurs de liaison, angle de valence et angles de torsion) obtenus par l'analyse des données de diffraction des rayons X à T = 293 °K sont résumés dans les tableaux (III- 5) et(III- 6). Comme il est prévu et le montre bien la figure III-5, la molécule du α -méthyle- β -dicyanostyrène n'est pas plane. Elle est divisée en deux fragments : un fragment formé par le cycle benzénique et l'autre par le reste de la molécule contenant le groupe vinyle du styrène. Les déviations par rapport aux plans moyens des deux parties constituées par les groupes d'atome (C1, C2, C3, C4, C5, C6) et (C7, C8, C9, C10, C11, N1, N2) indiquent bien quelles sont toutes les deux planes. Ces déviations sont données dans le tableau III-2 suivant (les déviations Zp sont en Å). L'angle dièdre entre les deux plans moyens est égal à 45.4°. Cette valeur exprime la torsion de la molécule autour de la liaison simple C1– C7 à cause de l'interaction stérique entre le groupe α -méthyle et l'hydrogène H61 appartenant à l'atome C6 du cycle. A savoir que la valeur de l'angle de torsion C2 – C1– C7– C8 est égale à 43.5°.

Figure III- 4 : Vue d'une molécule de α -méthyle- β -dicyanostyrène isolée montre le non planéité de ce dernier.

Plan mo	Plan moyen du cycle benzénique		Pl	an moye	n du fragi	ment con	tenant le	
						groupe	vinyle	
Туре	XP	YP	ZP		Туре	XP	YP	ZP
C 4.	-1.307	-0.505	0.010		N1.	0.839	2.176	-0.012
C 3.	-0.218	-1.363	-0.014		С9.	0.452	1.122	0.013
C 2.	1.083	-0.872	0.009		C8	-0.070	-0.227	0.048
C 1.	1.300	0.489	0.001		С7.	0.724	-1.321	0.041
C 6	0.221	1.370	-0.005		C10.	-1.511	-0.287	0.006
C 5.	-1.080	0.881	-0.001		N2	-2.647	-0.290	-0.041
					C11.	2.213	-1.173	-0.056

Tableau III-2 : Déviations par rapport aux plans des deux fragments de la molécule.

En conséquence de la torsion de la molécule au niveau de la liaison C1– C7, la conjugaison entre le cycle benzénique et le groupe vinyle a fortement diminué. Cette diminution est traduite par une géométrie du cycle presque régulière et une élongation de la simple liaison C1– C7 par rapport à d'autres molécules similaires. Dans le cas de la molécule du 4-diméthylamino- β méthyle- β -nitrostyrène plane et fortement conjuguée, le cycle présente un caractère quinoîdal très apparent et une longueur de la liaison C1– C7 courte avec une valeur égale à 1.442 (3) Å alors que pour le α -méthyle- β -dicyanostyrène toutes des les distances Car– Car du cycle sont entre 1.38 et 1.39 Å et la longueur de la liaison C1– C7 = 1.478 (2) Å. Les distances C1– C2 = 1.394 (2) Å et C1– C6 = 1.393 (2) Å légèrement supérieures aux autres distances du cycle benzénique sont dues à un étirement de ce dernier par le deuxième fragment de la molécule attaché sur l'atome C1. Cet étirement explique aussi la valeur de l'angle C2– C1– C6 = 118.86 (16)° plus petite que celles des autres angles du cycle qui restent toutes presque égales à 120°.

Les molécules de 4-méthyle-\beta-méthyle-\beta-nitrostyrène [03] et 4-cyano-\beta-méthyle-\betanitrostyrène sont aussi non planes mais avec des écarts à la planéité inférieurs à celui du améthyle-β-dicyanostyrène. Les angles de torsions autour de la liaison C1– C7 sont égaux à 19.3 (2) ° ou 27.0 (2)° pour le 4-méthyle-β-méthyle-β-nitrostyrène (l'unité assymétrique contient deux molécules non équivalentes) et -25.5 (2)° pour le 4-cyano-β-méthyle-βnitrostyrène. Pour cette raison, ces trois molécules non planes, et donc faiblement conjuguées, ont des géométries très proches dans leur partie commune qui est le styrène. En particulier la distance C1-C7 égale à 1.468 (3) Å ou 1.469 (3) Å dans le cas du 4méthyle-β-méthyle-β-nitrostyrène et 1.4708 (16) Å dans le cas du 4-cyano-β-méthyle-βnitrostyrène. Cependant, l'écart à la planéité est bien distinct entre le styrène substitué par un méthyle sur le carbone C(α) appelé C7 dans le α -méthyle- β -dicyanostyrène et le styrène substitué par un méthyle en C(β) nommé C8 dans les deux autres molécules β -méthyles non planes. La valeur de torsion égale à 43.5° dans le cas du α-méthyle est presque le double de celle trouvée dans les β-méthyles. Ceci prouve bien que l'interaction stérique entre le α-méthyle et l'hydrogène ortho [30] H61 lié au carbone C6 est beaucoup plus importante que l'interaction entre le β -méthyle est l'hydrogène ortho H21 de l'atome C2.

Une autre différence géométrique remarquable entre le α -méthyle et les β -méthyles concerne les angles de valences situés au voisinage de C(α) et C(β). On peut facilement constater que les atomes C7 et C8 dans le α -méthyle ne sont plus gênés par l'interaction stérique avec l'hydrogène H21 à cause de la torsion élevée autour de la liaison C1– C7 qui

conduit à un éloignement des deux fragments plans de la molécule. Cette constatation se traduit par des valeurs ordinaires des angles C2– C1– C7= 120.68(15) ° et C1– C7– C8= 121.65(13) °. Pour les β -méthyles qui présentent des molécules moins tordues que le α -méthyle- β -dicyanostyrène ou encore plane et avec le groupe méthyle responsable de l'interaction stérique situé sur l'autre côté du styrène par rapport au groupe vinyle ; les angles C2– C1– C7 et C1– C7– C8 sont plus obtus et leurs valeurs, données dans le tableau III-6, sont plus élevées pour les torsions plus faibles des molécules.

Nous notons aussi que la molécule du α -méthyle- β -dicyanostyrène se caractérise particulièrement par une double liaison C7= C8 = 1.344 (2) Å qui est plus longue qu'une double liaison normale (1.33 Å) ainsi que par des liaisons simples C8– C9 = 1.439 (3) Å et C8– C10 = 1.439 (2) Å beaucoup plus courtes que leurs valeurs habituelles égales à 1.54 Å. Cette situation peut être interprétée par un déplacement de charge des électrons π vers les groupes cyano CN très accepteurs. Ce transfert de charge est rompu par la torsion de la molécule et reste limité à la partie plane contenant les groupes CN et le groupe vinyle.

Molécule	Angle de torsion	Valeur de l'angle	Valeur de l'angle
	C2 - C1 - C7 - C8	C2-C1-C7	C1–C7–C8
α-méthyle-β-dicyanostyrène	43.5°	120.68 (15)°	121.65 (13)°
4-diméthylamino-β-	2.1 °	127.1 (2)°	130.3 (2)°
méthyle-β-nitrostyrène			
4-méthyle-β-méthyle-β-	19.1 °	124.97 (18)°	129.61 (19)°
nitrostyrène	26 .9°	124.68 (19)°	127.37 (19)°
4-cyano-β-méthyle-β-	25.5°	124.27 (11)°	127.65 (11)°
nitrostyrène			

Tableau III-3 : Angles de valence en fonction de la torsion des molécules à base de styrène.

Figure (III-5): Conformation moléculaire à 293K avec des ellipsoïdes de déplacement à 50% de probabilité donnant les longueurs de la liaison intramoléculaire (Å)

Figure (III – 6) : Conformation moléculaire à 293K avec des ellipsoïdes de déplacement à 50% de probabilité représentant les angles de liaison (°).

Longueurs de liaison (Å)		Rayons X A 293°C
N1	C9	1.140(2)
N2	C10	1.141(2)
C1	C2	1.394(2)
C1	C6	1.393(2)
C1	C7	1.478(2)
C2	C3	1.381(2)
С3	C4	1.383(3)
C4	C5	1.379(3)
C5	C6	1.388(3)
C7	C8	1.344(2)
C7	C11	1.500(2)
C8	C9	1.439(3)
C8	C10	1.439(2)

Tableau III-5 : Distances intramoléculaires (Å) à 293K

Tableau : III- 6 : Angles de valence (°) à 293K

	Angles de liaison (°)				
C2	C1	C6	118.86(16)		
C2	C1	C7	120.68(15)		
C6	C1	C7	120.45(15)		
C1	C2	C3	120.42(17)		
C2	C3	C4	120.13(18)		
C3	C4	C5	120.25(18)		
C4	C5	C6	119.82(18)		
C1	C6	C5	120.48(17)		
C1	C7	C8	121.65(13)		
C1	C7	C11	118.04(18)		
C8	C7	C11	120.31(17)		
C7	C8	C9	122.76(15)		
C7	C8	C10	123.68(14)		
C9	C8	C10	113.48(15)		
C8	C9	N1	178.8(2)		
C8	C10	N2	177.04(17)		

Atome	x	y	Z	U _{iso}	Occ
N1	-0.1613(3)	0.0883(3)	0.53791(11)	0.0864	1.0000
N2	0.3325(3)	-0.0333(3)	0.40867(10)	0.0723	1.0000
C1	0.0397(2)	0.17792(18)	0.25365(10)	0.0440	1.0000
C2	0.2211(2)	0.2360(2)	0.25355(10)	0.0497	1.0000
C3	0.3182(3)	0.2481(3)	0.18106(10)	0.0607	1.0000
C4	0.2368(3)	0.2008(3)	0.10795(11)	0.0663	1.0000
C5	0.0576(3)	0.1432(2)	0.10687(11)	0.0640	1.0000
C6	-0.0420(3)	0.1343(2)	0.17936(11)	0.0540	1.0000
C7	-0.0655(2)	0.1659(2)	0.33099(11)	0.0452	1.0000
C8	0.0102(2)	0.1029(2)	0.39970(10)	0.0458	1.0000
С9	-0.0870(3)	0.0953(3)	0.47648(12)	0.0583	1.0000
C10	0.1911(2)	0.0288(2)	0.40297(10)	0.0503	1.0000
C11	-0.2617(2)	0.2251(3)	0.33089(15)	0.0652	1.0000
H21	0.2811(2)	0.2698(2)	0.30621(10)	0.0472	1.0000
H31	0.4474(3)	0.2921(3)	0.18155(10)	0.0560	1.0000
H41	0.3098(3)	0.2072(3)	0.05608(11)	0.0612	1.0000
H51	0.0004(3)	0.1095(2)	0.05353(11)	0.0644	1.0000
H61	-0.1726(3)	0.0941(2)	0.17836(11)	0.0523	1.0000
H111	-0.317(2)	0.218(2)	0.3859(7)	0.0671	1.0000
H112	-0.271(2)	0.3430(14)	0.3098(10)	0.0671	1.0000
H113	-0.333(2)	0.1499(19)	0.2930(8)	0.0671	1.0000

Tableau : III-7: Positions atomiques en fraction des paramètres de maille et facteur d'agitation thermique isotrope ($A^{\circ 2}$)

Le Tableau : III-7 donne les coordonnées relatives des atomes et leurs facteurs d'agitation thermique de température équivalents , il montre que l'agitation thermique est très faible .

Atome	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N1	0.0902(13)	0.1047(16)	0.0644(11)	-0.0078(11)	0.0293(10)	-0.0075(12)
N2	0.0621(10)	0.0924(12)	0.0623(10)	0.0102(9)	0.0047(8)	0.0200(9)
C1	0.0426(8)	0.0420(8)	0.0474(9)	0.0026(7)	-0.0007(8)	0.0018(7)
C2	0.0456(9)	0.0526(10)	0.0509(9)	0.0020(9)	-0.0013(8)	-0.0035(7)
C3	0.0524(9)	0.0679(11)	0.0616(11)	0.0128(9)	0.0086(9)	-0.0020(8)
C4	0.0793(13)	0.0693(13)	0.0503(11)	0.0105(10)	0.0139(9)	0.0044(10)
C5	0.0861(14)	0.0627(11)	0.0432(12)	0.0020(8)	-0.0077(10)	0.0056(10)
C6	0.0544(10)	0.0539(11)	0.0538(10)	0.0049(8)	-0.0086(8)	0.0013(8)
C7	0.0393(7)	0.0425(9)	0.0538(11)	-0.0052(7)	0.0043(7)	-0.0017(6)
C8	0.0404(9)	0.0496(9)	0.0473(10)	-0.0090(8)	0.0082(7)	-0.0014(7)
С9	0.0539(10)	0.0664(11)	0.0547(11)	-0.0063(9)	0.0104(9)	-0.0017(9)
C10	0.0521(10)	0.0603(9)	0.0385(8)	0.0016(7)	0.0043(8)	0.0031(8)
C11	0.0433(9)	0.0707(13)	0.0816(13)	-0.0012(11)	0.0059(9)	0.0073(9)

Tableau : III-8 : Facteur d'agitation thermique anisotrope (A²).

Angles de torsion (°)					
0.70					
0.73					
0.70					
2.16					
2.17					
0.75					
41.8					
137.72					
136.98					
43.5					
5.65					
2.76					
174.46					
161.60					

Tableau : III-9 : Angles de torsion expérimentale (°)

III-3-2 Schéma d'empilement des molécules dans le cristal :

L'arrangement tridimensionnel périodique des molécules du composé α -méthyle- β dicyanostyrène dans le cristal est réalisé par des rotations hélicoïdales successives de 180° autour de chacun des trois axes hélicoïdaux 2_1 . L'énergie de cohésion qui assure l'empilement des molécules résulte des interactions de Vander-walls du type C–H...N entre les atomes d'azote des groupes cyano et les hydrogènes du cycle benzénique. (voir la table III-4 et les figures III-6). Les interactions avec les hydrogènes du groupe méthyle forment des contacts relativement longs et ne doivent intervenir que faiblement dans la cristallisation.

Table III-4 : Géométries (Å, °) des contacts du type C—H...N dans le cristal de α-méthyle-β-dicyanostyrène.

С—НN	С—Н (Å)	HN (Å)	CN (Å)	С—НN (°)
C5 ⁱ —H51 ⁱ N1 ⁱⁱ	1.00	2.927 (3)	3.590 (3)	124.50
$C5^{iii}$ – $H51^{iii}$ $N2^{ii}$	1.00	2.724 (3)	3.442 (3)	128.98
C3—H31N2 ⁱⁱⁱ	1.00	2.574 (2)	3. 399 (3)	139.82

Codes de symétrie : (i) -*x*, $\frac{1}{2}$ +*y*, $\frac{1}{2}$ -*z*; (ii) $\frac{1}{2}$ +*x*, $\frac{1}{2}$ -*y*,-*z*; (iii) -*x*, $\frac{1}{2}$ +*y*, $\frac{1}{2}$ -*z*

Figure III- 6 : Diagramme d'empilement des molécules α -méthyle- β -dicyanostyrène suivant les axes *a*.b et c. Les traits en pointillés représentent les contacts C—H...N.

4 - Conclusion :

La molécule du composé α -méthyle- β -dicyanostyrène n'est pas plane, La propriété de planéité entre le benzène et le groupe du cyano est brisée au niveau de la liaison C1–C7 par une rotation de 43.5° conduisant à une diminution de la conjugaison de la molécule contrebalancée par l'effet du substituant CH3 placé sur le radical vinyle du styrène. Cependant, la molécule du α -méthyle- β -dicyanostyréne conserve une certaine conjugaison en gardant des liaisons presque les mêmes pour le CMNS et le MMNS.

Conformation moléculaire du α méthyle-β-dicyanostyréne par la théorie de la fonctionnelle de la densité (DFT).

IV.1. INTRODUCTION

Au cours des dernières décennies, beaucoup d'effets ont été consacrés pour déterminer de maniéré précise, la conformation moléculaire et les propriétés physiques de molécules du styrène. En effet, la planéité de ces systèmes moléculaires et l'amplitude de la barrière interne à la rotation du fragment vinyle ont été un sujet de controverse permanent, il s'agit d'un problème crucial car la forme de la fonction du potentiel de torsion reflète simultanément.

L'interaction des systèmes des électrons π qui favorise une conformation plane et l'encombrement stérique entre les atomes d'hydrogène du groupe vinyle et du groupe phényle qui favorise une conformation tordue des molécules. Pour situer les calculs théoriques faits dans ce chapitre, nous commençons par rappeler comment historiquement, a été étudié le problème de la planéité du styrène et l'influence des différents types de substitution.

Très tôt , Pitzer et al (1946) [34] , analysant leurs mesures concernant les propriétés thermodynamique du styrène , dans les états liquide et solide , ont fait l'hypothèse que la conjugaison des groupes vinyle et phényle nécessite une coplanarité de ces groupes , ils ont estimé à 9.2 kJ / mole le potentiel de barrière à la rotation d'un groupe par rapport à l'autre en disant que cette valeur étant une mesure de l'énergie de conjugaison , ils ont aussi ajouté << il y a sans doute une certaine interférence entre les atomes d'hydrogène dans les positions ortho et cis – béta >> .

Puis, et durant une longue période, presque tous les modes de vibrations internes des styrènes ont été détectés et attribués à partir de spectre Raman et Infrarouge, mais sans succès pour le mode de torsion du groupe vinyle par rapport au phényle. il y a une trentaine d'années que carriera et Towns[35] en étudiant les basses fréquences des spectre Raman du styrène gazeux , ont observé une large forme de bande dans la région 100 - 130 cm⁻¹. Ils l'ont attribuée à une superposition de la liaison C₁ - C_a. En conséquence , ils ont proposé une fonction du potentiel de torsion v (Θ) = $\frac{1}{2}$ [V₁ (1 - cos 2 Θ) + V₂ (1 - cos 4 Θ)] avec V₁ = 7.5 KJ / mole et V₂ = -0.3 KJ / mole (623 cm⁻¹ et -27 cm⁻¹). Rolowski et al. (1976)[36], en étudiant les spectres micro – ondes du p – fluoro et p – chlorostyréne ont identifié plusieurs transitions de rotation entre l'état fondamental et l'état excité. ils ont estimé les fréquences des premières transitions de torsion à 30 ± 15 cm⁻¹ et 35 ± 15 cm⁻¹ et les potentiels de barrière presque à 8 KJ / mole ⁻¹, en admettant une configuration plane pour ces molécules . Carriera et Towns (1977)[35] ont élargi leur étude de spectroscopie Raman aux p-fluro , p-chloro et p-méthyle styrènes à l'état vapeur à 50° C . Dans chaque cas, ils observent aussi une large bande

dans la région 110 cm⁻¹ due à l'harmonique $\Delta V = 2$ et ils ont proposé un potentiel de barrière dans l'intervalle 6.2 - 7.2 KJ / mole.

En 1978, Hollas[37] a donné différentes valeurs due à la séparation des harmoniques du styrène, du styrène β -dentérie et du p-fluor styrène dans l'état fondamental : les niveaux de séparation 1 - 0, 2 - 1, 3 - 2 du mode de torsion v_{42}

Pour ces molécules sont respectivement : 43 , 53 et 58 cm⁻¹ ; 37 , 46 et 51 cm⁻¹ ; 44 , 52 et 57 cm⁻¹ . La fonction du potentiel de torsion été calculé avec une formule de Fately et al .en utilisant la première séparation de v_{42} . Les valeurs respectives de V_2 trouvées sont faibles : 3.9, 3.4 et 4.1 KJ /mole et les auteurs ont signalé que " les valeurs de V_2 doivent être prise avec prudence ".

Effectivement, quelques années plus tard, en analysant de nombreux niveaux d'énergie de vibration obtenus à partir du spectre de fluorescence du niveau vibronique seul (SVL : single vibronic level) du styrène, Hollas et Ridley[37] (1980) ont observé directement les transitions des niveaux 42 $_2^0$, 42 $_4^0$ et 42 $_6^0$ par excitation de la bande 0 $_0^0$ à 34760.7 cm⁻¹.Et ainsi, ils sont arrivés à déterminer la séquence des harmoniques de 42 $_n^0$ à l'état fondamental.

Cette séquence est : 38.0 , 86.1 , 139.2 , 195.9 , 255.1 , $306.9 \pm 2 \text{cm}^{-1}$.et elle a permis de proposer une modification importante dans la fonction du potentiel de torsion en donnant :

V2 = 13.7 KJ/mole et V4 =-3.3 KJ/mole .(1145 cm-1 et -278 cm-1) .L'effet de la valeur large de V4 et de rendre le minimum de la fonction du potentiel très plat et explique la non rigidité extrême de la molécule du styrène à l'égard de v 42 .Elle permet de comprendre pourquoi la bande Raman à 128 cm-1 est si large .Cette valeur de la fonction du potentiel de torsion a été confirmée par l'étude de la fluorescence de la vapeur du styrène β -D2 en proposant des valeurs de V2 = 12.7 et V4 = -3.3 KJ/mole . Ces expériences ont été faites sur les molécules en fermées dans une ampoule et présentaient certaines difficultés à cause de la réabsorption et des collisions moléculaires. Les résultats de ces expériences ont été aussi conformés par les observations faites par Syage et al (1983) sur des spectres de fluorescence dispersée après excitation du styrène refroidi dans un jet supersoniques 4220 , 4240 , 4260 , 4280 du mode de torsion v42 ont été détectés à 90 , 199 , 310 et 398 cm-1 , des valeurs qui appuient la configuration plane de la molécule du styrène . En 1988, Caminati et al [38], en utilisant de la spectroscopie micro – onde pulsée par la transformée de Fourier, on réussi à détecter les satellites De torsion dues à la torsion du groupe vinyle et ont obtenu des mesures jusqu'au 7^{éme} état excité à la température -38° C avec un accord remarquable avec les données précédentes de fluorescence. Ils ont confirmé avec une grande certitude la planéité de la molécule du styrène et ont données des valeurs de la fonction du potentiel de la rotation interne du groupe vinyle $V_2 = 1151(20)$ cm⁻¹ et $V_4 = -276$ (7) cm⁻¹ presque égales à celles proposées par l'expérience SVL.

Parallèlement à ces expériences , plusieurs modèles théoriques ont été développés .En 1972[39] , Hnre et al en utilisant la théorie de l'orbitale moléculaire a.i. avec le jeu de base minimale STO-3G ont étudié le styrène parmi 35 benzènes monosubstitués et il ont montré que même si la conformation moléculaire reste largement dominée par les effets de conjugaison les interactions stériques causent aussi des perturbations signifiantes pour le cas particulier du styrène , les résultats des calcules sont encore trop loin des ceux trouvés par l'expérience .

Entre 1979 et 1982, d'autre calcules théoriques appliquant les méthodes semiempirique dans les niveaux d'approximation CNDO^(a)et INDO^(b) ont été réalisés, les meilleurs résultats obtenus prédictent une conformation du styrène à l'&état gazeux tordue avec 30° C .En 1985, Bock et al . ont remarqué que tout les calcules précédente sont basés sur une procédure de corrélation empirique, et ont donc refait des calculs HF (Hartrée – Fock) ab initio dans la base 6-31G pour 5 angles et allant de 0° à 90°C en contraignant les groupes vinyle et phényle de rester plane , mais en optimisant tout les autres paramètres . Ils ont trouvés que l'énergie totale minimale possède un minimum plat être 0° et 30° et la barrière de torsion à 90° égale à 13.1 KJ/mole .Depuis 1990, plusieurs autres calcules HF , MP2 , MP3 , et MP4 (SQD) se sont succédés.

Ces calculs ont été menés dans différentes base allant de la plus étroite 6-31G à la plus large $6-311G++G^{**}$.

Tous ces calculs trouvent une énergie minimale qui correspond à une conformation tordue du styrène. Les valeurs de la torsion varient entre 15° et 30° .

En1997, Choi et al. [40]. Ont refait une optimisation complète de la géométrie du styrène avec MP2 et les méthodes de la théorie de la fonctionnelle de densité DFT. Les calculs MP2 donnent toujours une conformation non plane du styrène, mais ils ont été surpris que toutes les méthodes de DFT préfèrent une conformation plane. Cependant, ils ont noté que les résultats des calculs dans la théorie B3LYP/6-31++ G^{**} sont meilleurs pour la détermination des modes de vibration interne (en particulier les modes à 436et 759cm⁻¹). Ils ont conclus que la molécule du styrène est plane ou presque plane en solution. Dans la même année (1997) Kasper et al confirment que les méthodes théoriques HF et MP2 rendent la structure plane du styrène as " a saddle point " alors que les méthodes de DFT predictent un vrai minimum pour la structure plane. Ils ont remarque qu'on ajoutant des fonctions diffuse, les calculs de la DFT donnent des valeurs du potentiel de torsion autour de la configuration orthogonales proches des valeurs expérimentales : MP2 trouve V₂ = 13.7 et V₄= -3.3 KJ/mole. Sancho-Garcia et Perez – Jiménez ont performé en 2002 de nouveaux calculs.

Ils ont réexaminé l'influence du jeu de base et offrent différents traitements des effets de la corrélation .Finalement, ils n'ont pas trouvé des changements significatifs relativement aux résultats antérieurs.

Jusqu'à présent, il parait que la situation pour le styrène reste même. Et comme nous l'avons indiqué au début, il sort que la conjugaison des électrons π entre les groupes phényle et vinyle stabilise la coplanarité alors que les répulsions stériques favorisent la possibilité d'avoir des isomères tordus. L'importance de ces deux types d'interaction peuvent être modulé par différentes sur la molécule, pour cette raison, plusieurs autres molécules poly substituées du styrène ont été étudiées .Parmi elles, nous citrons le travail réalisé par L.Hamdellou dans sa thèse de doctorat ou il a étudié spécialement l'effet de la substitution sur la conformation du styrène. Dans le cas ou la conjugaison est renforcée par substitution sur les extrémités du styrène par groupe très donneur [(CH₃)₂N-]sur le phényle d'un coté et par un groupe très accepteur [-NO₂]sur le vinyle de l'autre coté, il trouve que la structure moléculaire du p-dimethylamino-β-nitrostyrène déterminée par RX dans le cristal est plane .les calculs théoriques avec différentes fonctionnelles de la DFT (spécialement B3LYP et MPW1PW) donnent toujours une conformation quasi plane précédente. Quand il ajoute à l'interaction de conjugaison une interaction en substituant l'atome d'Hydrogène du carbone C-β par un groupe méthyle ou un groupe éthyle de taille plus importante. Les détermination des structures cristallines de ces deux composés aux RX montrent que dans le cas ou l'interaction stérique est encore modérée [créée par CH₃], la molécule reste plane ; Alors que dans le cas ou elle est créée par un groupe éthyle qui a une taille plus importante , la molécule devient tordue avec un angle de 26°. Pour ces deux cas, les calculs de la DFT prévoient des molécules non planes avec des torsions de 25° et 26°.

Une diminution de la conjugaison en remplaçant le substituant très donneur par le groupe méthyle moins donneur ou carrément très donneur par le groupe cyano. (CN-) très accepteur tout en gardant l'interaction stérique provoquée par le groupe méthyle, montre qu'il y a un accord acceptable entre les structures moléculaires observées par R.X et optimisées par les méthodes de D.F.T. On obtient toujours des molécules tordues avec des angles qui variaient entre 20° et 30°.

Une comparaison entre la structure moléculaire donnée par l'expérience et optimisée par les calculs théoriques est devenue d'une grande importance dans la recherche d'une meilleure description de la structure géométrique et des propriétés conformationnelle. La molécule du α méthyle – β – dicyanostyréne appartient a une famille ou les résultats expérimentaux et les calculs théoriques ne coïncident pas toujours , et pour cette raison nous présentons ici des calculs théoriques en utilisant des méthodes de la D.F.T. concernant cette molécule .

IV.2. CONFORMATION MOLECULAIRE DU α méthyle-β- dicyanostyréne :

Méthode de calculs :

Le programme GAUSSIAN a été utilisé pour tous les calculs réalisés dans ce travail. la méthode choisie est la DFT au niveau B3LYP en allant de la petite base 3-21G jusqu'aux bases 6-311G et LanL2DZ. Tous les calculs démarrent de la structure trouvée par les RX et sont faits dans la symétrie C1.

Résultats et discussion :

a- Calcul de la conformation sans contrainte:

La conformation du minimum d'énergie a été d'abord optimisée sans imposer aucune contrainte sur la géométrie recherchée. Les calculs dans les bases de niveau élevé refusent de converger et aboutissent certainement sur des minimums très plats. La convergence est obtenue seulement en arrivant dans nos calculs à la petite base 3-21G. Lorsqu'on n'applique aucune contrainte, les calculs de la DFT conduisent à une molécule qui ne correspond pas à celle recherchée mais donnent un autre isomère qui déplace la double liaison C7=C8 sur la liaison simple C1–C7. Le plus absurde est que le carbone C8 devient non saturé avec seulement 3 liaisons quasi-simples. Les valeurs de toutes les longueurs des liaisons sont présentées dans le tableau (IV-2). Le cycle du benzène est complètement perpendiculaire au groupe vinyle de la molécule et la torsion de la molécule ne se fait plus au niveau de la liaison C1–C7 mais autour de la liaison C7–C8. L'angle de torsion **C1-C7-C8-C10** est égal à 91°.

figure (IV -1) : la même molécule on différentes perspectives

Tableau IV-1 : Energie minimales de formations obtenue .

Fonctionnelles	B3LYP
Bases	3-21G
Energie de formation minimale [u.a.]	-530.4414

Tableau IV-2 : Longueurs de liaison obtenues à partir de la DFT (B3LYP, 3-21G).

Longueurs	B3LYP	
		3-21G
N1	С9	1.175
N2	C10	1.175
C1	C2	1.425
C1	C6	1.425
C2	C3	1.386
C3	C4	1.401
C4	C5	1.401
C1	C7	1.424
C5	C6	1.387
C7	C8	1.492
C7	C11	1.514
C8	С9	1.396
C8	C10	1.396

Tableau IV-3 : Angles de Valence (°) obtenue à partir de la DFT (B3LYP, 3-21G)

Angles de liaison (°)				
C2	C1	C6	117.523	
C1	C2	C3	121.010	
C2	C3	C4	120.463	
C3	C4	C5	119.572	
C6	C1	C7	121.130	
C2	C1	C7	121.345	
C4	C5	C6	121.010	
C1	C6	C5	120.463	
C1	C7	C8	120.005	

Angles de torsion	B3LYP
U	
C6-C1-C7-C11	-0.0393
C2-C1-C7-C11	179.940
C5-C4-C7-C8	0.736
C1-C7-C8-C10	91.045
С11-С7-С8-С9	-91.634
C7-C8-C9-N1	-1.899
C7-C8-C10-N2	0.779
C9-C8-C10-N2	-179.180
C10-C8-C9-N1	178.060
C4-C5-C6-C1	-0.008
C5-C6-C1-C2	0.044
C6-C1-C2-C3	-0.052
C4-C5-C6-C1	0.024
C2-C3-C4-C5	0.013
C3-C4-C5-C6	-0.021

Tableau IV-4: Angles de torsion à partir de la DFT (B3LYP, 3-21G)

Figure IV -2: Conformation moléculaire de la molécule obtenue à partir de la DFT illustrant les longueurs de liaisons (B3LYP, 3-21G).

Figure IV -3: Conformation moléculaire de la molécule obtenue à partir de la DFT donnant les angles de liaisons (B3LYP, 3-21 G).

En résumé, Nous pouvons dire que les calculs dans le niveau (B3LYP, 3-21 G), dans le cas où la molécule est totalement libérée, donnent des résultats qui ne peuvent s'accorder avec ceux obtenus par l'expérience.

b- Calcul de la conformation avec contraintes:

Vu-que les calculs précédant modifient complètement la géométrie de la molécule et spécialement au niveau du groupe vinyle, nous avons refait d'autres calculs en imposant à la liaison double C7=C8 de garder la valeur 1.344 Å déjà obtenue par les R.X. Les résultats des calculs avec la fonctionnelle B3LYP et les bases 6- 311G et LanL2DZ conduisent à une conformation de la molécule proche de trouvée par les R.X. Le plus mauvais accord avec l'expérience correspond toujours à la double liaison C7=C8 qui devient égale à 1.370 Å pour la base 6- 311G et 1.380 Å pour la base LanL2DZ. Une comparaison complète entre les géométries calculées et observée est donnée dans le tableau VI- 11 pour les angles de valence et le tableau VI-12 pour les longueurs des liaisons. Les énergies minimales de formation correspondantes aux conformations optimisées les plus stables du α -méthyle- β -dicyanostyréne sont rassemblées dans le tableau (IV-1).

Tableau IV-5 : Energies	minimales de formations	obtenues à partir	des différentes
fonctionnelles et jeux de	base utilisés.		

Fonctionnelles	B3LYP			
Bases	6- 311G	LANL2DZ		
Energie de formation minimale [u.a]	-533.4223	-533.3447		

Les calculs de la chimie quantique réalisés par la méthode de la théorie de la fonctionnelle de la densité (DFT) avec la fonctionnelle **B3LYP** et les bases 6-311 et Lanl2DZ en s'aidant de la chaîne de programme GAUSSIAN03, ont conduit à des résultats similaires dans les angles de liaison par rapport à l'expérience mais avec de légers écarts pour les longueurs de liaison, La polarité de la molécule du (α méthyle- β -dicyanostyréne *)* trouvée à partir de la fonctionnelle **B3LYP** et la base **LANL2DZ est 6.9110 Debye** avec une énergie minimale **Em = -533.3447u.a.** La même fonctionnelle avec la base **Lanln2DZ** propose une énergie **Em = -533.4223u.a.** et une polarité de **6.5146 Debye.** La conformation moléculaire calculée à partir de la fonctionnelle **B3LYP** et les bases **Lanl2DZ**, **6-311G** a une symétrie **C1**.

Dans les (FiguresIV.1 et IV.3) sont illustrées les deux conformations moléculaires du (ch3-dicyano-styrene) obtenues à partir des calculs de la fonctionnelle B3LYP et les bases 6-311G et LANL2DZ illustrant les longueurs de liaison. Les (Figures IV.2 et IV.4) donnent les angles de valence.

Figure IV -4: Conformation moléculaire de la molécule obtenue à partir de la DFT Illustrant les longueurs de liaisons (B3LYP, 6-311G).

Figure IV -5: Conformation moléculaire de la molécule obtenue à partir de la DFT donnant les angles de liaisons (B3LYP, 6-311 G).

Figure IV -6: Conformation moléculaire de la molécule obtenue à partir de la DFT illustrant les longueurs de liaisons (B3LYP, Lanl2DZ).

Figure IV -7: Conformation moléculaire de la molécule obtenue à partir de la DFT présente les angles de valence (B3LYP, Lanl2DZ).

Tableau	IV-6:	Angles	de Valence	(°)	obtenue à	partir	de la	a DFT (B3LYP	. 6-311G)
Iabicau		1 mgres	ue valence	v	obtenue a	partin	uc n			, • • • • • •	1

Angles de liaison (°)				
C2	C1	C6	119.584	
C1	C2	C3	120.179	
C2	C3	C4	120.851	
C3	C4	C5	118.315	
C6	C1	C7	120.137	
C2	C1	C7	121.338	
C4	C5	C6	120.729	
C1	C6	C5	120.321	
C1	C7	C8	123.208	
C1	C7	C11	117.115	
C8	C7	C11	119.672	
C7	C8	C9	121.502	
C7	C8	C10	124.560	
C9	C8	C10	113.892	
C8	С9	N1	179.138	
-----------	-----	----	---------	
C8	C10	N2	177.282	

Tableau IV-7: Angles de Valence (°) obtenue à partir de la DFT (B3LYP , Lanl2DZ)

Angles de liaison (°)					
C2	C1	C6	119.701		
C1	C2	C3	120.623		
C2	C3	C4	120.283		
C3	C4	C5	119.701		
C6	C1	C7	120.137		
C2	C1	C7	121.338		
C4	C5	C6	120.198		
C1	C6	C5	120.684		
C1	C7	C8	122.459		
C1	C7	C11	116.946		
C8	C7	C11	120.593		
C7	C8	С9	121.533		
C7	C8	C10	123.647		
С9	C8	C10	114.791		
C8	С9	N1	179.862		
C8	C10	N2	177.792		

Tableau IV-8 : Longueurs de liaison obtenues à partir de la DFT (B3LYP, 6311G)

Longu	ieurș de	B3LYP	
liaison (Å)		6311G	
N1	С9	1.167	
N2	C10	1.167	
C 1	C2	1.407	
C1	C6	1.409	
C2	C3	1.394	
C3	C4	1.396	
C4	C5	1.397	

C1	C7	1.482
C5	C6	1.393
C7	C8	1.370
C7	C11	1.507
C8	С9	1.433
C8	C10	1.432

Tableau IV-9: Longueurs de liaison obtenues à partir de la DFT (B3LYP, LanD2DZ).

Longu	ieurș de	B3LYP
liaison (Å)		Lanl2DZ
N1	С9	1.183
N2	C10	1.182
C1	C2	1.418
C1	C6	1.419
C2	C3	1.403
C3	C4	1.407
C4	C5	1.408
C1	C7	1.485
C5	C6	1.403
C7	C8	1.381
C7	C11	1.515
C8	C9	1.441
C8	C10	1.440

Tableau IV-10 : Angles de torsion à partir de la DFT (B3LYP, Lanl2DZ-6-311G) .

Angles de torsion	B3LYP		
0	Lanl2DZ	6.311G	
C6-C1-C7-C11	-34.425	-43.191	
C2-C1-C7-C11	143.288	134.767	
C2-C1-C7-C8	-37.341	-45.021	
C1-C7-C8-C10	-5.150	-4.675	
С11-С7-С8-С9	-3.230	-2.471	
C7-C8-C9-N1	-170.447	-165.940	
C7-C8-C10-N2	-163.328	-160.899	
C9-C8-C10-N2	14.279	17.236	
C10-C8-C9-N1	11.863	15.879	
C4-C5-C6-C1	-1.190	-1.193	
C5-C6-C1-C2	1.596	1.361	

C6-C1-C2-C3	-0.846	-0.587
C1-C2-C3-C4	-0.310	-0.357
C2-C3-C4-C5	0.742	0.545
C3-C4-C5-C6	0.003	0.226

Bien que les résultats de calcul théorique en utilisant la fonctionnelle **B3LYP** avec des jeux de base bien adaptés 6-311G et Lanl2DZ aient trouvé des valeurs acceptables dans les longueurs et angles de liaison comparées à l'expérience.

IV.3. COMPARAISON DES RESULTATS CALCULES A PARTIR DE LA DFT AVEC LES RESULTATS EXPERIMENTAUX DU (α méthyle-β-dicyanostyréne) :

Nous rassemblons dans ce paragraphe l'essentiel des résultats trouvés avec la fonctionnelle B3LYP et les deux meilleures bases que nous avons utilisé lors de nos différents calculs pour trouver la meilleure conformation correspondant à la plus basse énergie de formation du (α méthyle – β – dicyanostyréne) que nous comparons aux résultats expérimentaux.

Nous avons utilisé les méthodes de chimie quantique basée sur la théorie de la fonctionnelle de la densité pour la molécule pour estimer l'importance relative aux Interactions intra moléculaires et la diffraction des rayons X dans la partie expérimentale pour les interactions inter moléculaires et intra moléculaires. Le calcul théorique de la DFT confirme la non planéité trouvée à partir de la diffraction des rayons X de la molécule.

Il y a un bon accord dans le calcul des angles de liaison à partir de la mécanique quantique en utilisant la fonctionnelle B3LYP et les bases 6-311G et LANL2DZ par rapport à l'expérience. Ces écarts sont respectivement de **0.60%** [6-311G] et **0.47%**

[LANL2DZ].

L'accord avec l'expérience des longueurs de liaison en utilisant la fonctionnelle B3LYP est de **1.68**% [LANL2DZ] et de **1.06**% [6-311G].

Dans la suite de cette comparaison nous prenons en considérations les résultats de calcul de la fonctionnelle B3LYP et la base LANL2DZ avec l'expérience au vu de la plus faible énergie minimale de formation et des résultats de calcul très voisins dans les longueurs et angles de liaison pour les différentes fonctionnelles et bases utilisées.

Les différences significative entre les résultats calculés et expérimentaux pour les angles de valences est celle trouvée dans les angles C1-C7-C11. C7-C8-C9 et C8-C9-N1 De part et d'autre de la liaison N1-C9, N2-C10

Les tableaux (IV-11 et IV-12) résument de manière générale les accords entre les valeurs obtenues expérimentalement (angles et longueurs de liaisons) et celles calculées par la DFT.

Tableau IV-11 : Angles de liaison calculés à partir de la DFT (B3LYP, 6-311G) et (B3LYP, Lanl2DZ) et expérimentaux obtenus par la diffraction des rayons X à 293K.

	B3LYP						
Angle (°)	Expérience	6- 311G	Accord %	Lanl2DZ	Accord %		
C2-C1-C6	118.86(16)	119.584	0.60	119.701	0.70		
C1-C2-C3	120.42(17)	120.179	0.20	120.623	0.16		
C2-C3-C4	120.13(18)	120.851	0.60	120.283	0.12		
C3-C4-C5	120.25(18)	118.315	1.69	119.701	0.45		
C6-C1-C7	120.45(15)	120.137	0.25	120.137	0.25		
C2-C1-C7	120.68(15	121.338	0.54	121.338	0.54		
C4-C5-C6	119.82(18)	120.729	0.75	120.198	0.31		
C1-C6-C5	120.48(17	120.321	0.13	120.684	0.16		
C1-C7-C8	121.65(13)	123.208	1.28	122.459	0.66		
C1-C7-C11	118.04(18)	117.115	0.78	116.946	0.92		
C8-C7-C11	120.31(17	119.672	0.53	120.593	0.23		
С7-С8-С9	122.76(15)	121.502	1.02	121.533	0.99		
C7-C8-C10	123.68(14	124.560	0.71	123.647	0.02		
C9-C8-C10	113.48(15)	113.892	0.36	114.791	1.15		
C8-C9-N1	178.8(2)	179.138	0.18	179.862	0.59		
C8-C10-N2	177.04(17)	177.282	0.13	177.792	0.42		
Moyen			0.60		0.47		

DISTANCES	B3LYP						
(Å)	Experience	6- 311G	Accord %	Lanl2DZ	Accord %		
N1-C9	1.140(2)	1.167	2.36	1.183	3.77		
N2-C10	1.141(2)	1.167	2.27	1.182	3.59		
C1-C2	1.394(2)	1.407	0.93	1.418	1.72		
C1-C6	1.393(2)	1.409	1.14	1.419	1.86		
C2-C3	1.381(2)	1.394	0.94	1.403	1.59		
C3-C4	1.383(3)	1.396	0.93	1.407	1.73		
C4-C5	1.379(3)	1.397	1.30	1.408	2.10		
C1-C7	1.478(2)	1.482	0.27	1.485	0.47		
C5-C6	1.388(3)	1.393	0.36	1.403	1.08		
C7-C8	1.344(2)	1.370	1.93	1.381	2.75		
C7-C11	1.500(2)	1.507	0.46	1.515	1.00		
C8-C9	1.439(3)	1.433	0.41	1.441	0.13		
C8-C10	1.439(2)	1.432	0.48	1.440	0.06		
moyen			1.06		1.68		

Tableau IV-12 : Longueurs de liaison calculés à partir de la DFT (B3LYP, 6-311G) et (B3LYP, Lanl2DZ) et expérimentaux obtenus par la diffraction des rayons X à 293K.

NOTE :
$$ACC = \frac{Val_{exp} - val_{th\dot{e}}}{val_{exp}} \times 100$$

IV.4. SPECTROSCOPIE RAMAN ET INFRAROUGE :

L'objectif recherché dans notre travail de la spectroscopie Raman et IR est de mettre en évidence et séparer les divers types de mouvement de la molécule. A chacun des mouvements de la molécule correspond une fréquence de vibration. Les calculs théoriques de ces modes de vibration ont été faits après optimisation de la molécule à partir de la mécanique quantique par l'intermédiaire du programme Gaussian 03. Le but essentiel de cette partie du travail est d'assigner l'ensemble des modes de vibration du α méthyle- β -dicyanostyréne obtenus par la diffraction inélastique des neutrons entre 50 cm-1 et 3100 cm-1, en se servant des spectres l'absorption infrarouge (IR) et de la diffusion Raman obtenus en général à température ambiante, et nous nous sommes servis des calculs théorique des fréquences des modes internes basées à la fois sur les méthodes de la théorie de la fonctionnelle de la densité électronique DFT. Chaque type de mouvement est en effet caractérisé par une fréquence propre . C'est donc dans le but de collecter les fréquences relatives aux mouvements moléculaires et d'attribuer les différents modes normaux de la molécule que nous avons réalisé des mesures Raman et d'absorption IR sur le α méthyle- β -dicyanostyréne.

IV.4.1.Généralités sur la spectroscopie Raman et IR :

a- LA SPECTROMETRIE RAMAN :

Toute molécule possède un certain nombre de propriétés telles que la masse moléculaire et le volume moléculaire. Il existe toutefois d'autres propriétés qui sont caractérisées à la fois par leur amplitude et par plusieurs directions. Il s'agit alors de grandeurs tensorielles de rang n où n est le nombre de directions qu'il convient de spécifier [44].

Le cas le plus simple est bien entendu celui des propriétés tensorielles de rang un. On les appelle plus simplement des propriétés vectorielles. C'est le cas par exemple de la vitesse instantanée du centre de gravité d'une molécule dans un gaz, vitesse qui est caractérisée par une amplitude et une direction. C'est aussi le cas du moment dipolaire d'une molécule. Si l'on considère la molécule diatomique H-Cl dans son état fondamental électronique, les noyaux étant dans leur configuration d'équilibre, les centres de gravité des charges négatives (électrons) et des charges positives (noyaux) ne coïncident pas ; il en résulte un moment dipolaire porté par l'axe moléculaire avec une direction allant du chlore vers l'hydrogène. On représente habituellement une grandeur vectorielle par une lettre surmontée d'une flèche ;

aussi, on notera un moment dipolaire μ r. C'est un vecteur qui détermine les probabilités d'absorption ou d'émission lors de l'interaction entre une molécule et le champ électromagnétique.

Lorsqu'on soumet un milieu (gaz, liquide, solide) à une onde électromagnétique monochromatique, la majeure partie du faisceau incident est transmise, mais une petite partie de la lumière est DIFFUSEE (changement de direction de propagation n'obéissant pas aux lois de l'optique géométrique).

LUMIERE DIFFUSEE (vd)

En spectroscopie Raman, l'analyse se fait par excitation du matériau. Porté à un niveau énergétique virtuel par une puissante source lumineuse monochromatique de type laser, il réémet ensuite une radiation qui est collectée puis analysée par un détecteur adéquat. Cette radiation comporte deux types de signaux. Le premier très majoritaire correspond à la diffusion Rayleigh : la radiation incidente est diffusée élastiquement sans changement d'énergie donc de longueur d'onde. Toutefois, pour une fraction beaucoup moins importante du faisceau incident, la diffusion est inélastique et correspond à un échange d'énergie entre le rayonnement et la matière. Celle-ci absorbe (ou cède) de l'énergie aux photons incidents produisant ainsi les radiations Stokes (ou anti-Stokes). La variation d'énergie observée sur le photon nous renseigne alors sur les niveaux énergétiques de rotation et de vibration de la molécule concernée. L'ensemble des radiations diffusées, analysées par un spectromètre, forme le spectre Raman de l'échantillon. Bien que celui-ci paraisse symétrique sur l'échelle des fréquences de part et d'autre de la radiation Rayleigh, on constate que les intensités décroissent rapidement du côté anti-Stokes, si bien que l'on n'utilise habituellement que la partie Stokes du spectre.

Nous allons maintenant situer cet effet dans le diagramme énergétique (schéma ci-dessous) issu de la théorie quantique qui fait un appel à un niveau virtuel pour rappeler que le phénomène de diffusion est le résultat d'une interaction photon molécule hors des conditions de résonance. Il importe en effet de bien différentier le mécanisme d'excitation moléculaire tel qu'il apparaît ici de celui mis en jeu lors de l'absorption d'un photon car les deux phénomènes n'obéissent pas aux mêmes lois.

Si la fréquence de la lumière incidente est proche d'une fréquence de vibration de la molécule, on observe un phénomène d'absorption, c'est le cas de la spectroscopie infra-rouge. Si cette fois comme en spectroscopie Raman, la fréquence de la lumière incidente est très grande par rapport aux fréquences de vibrations de la molécule ($v_0 \gg v_{vib}$), le phénomène le plus probable est une diffusion dont on peut décrire le mécanisme de manière très schématique de la façon suivante:

Lors de l'excitation par le photon incident d'énergie hv, la molécule transite dans un état virtuel car l'énergie du photon est très importante. Puis redescend sur un niveau réel. On peut montrer que seuls les niveaux v-1, v et v+1 sont possibles. On retrouve ainsi les 3 types de diffusions rencontrées dans la description classique de la spectroscopie Raman. On remarque que la diffusion Rayleigh est la plus probable alors que les diffusions Stockes et Anti-Stockes sont très peu favorisées.

a-1- Analyse spectrale :

Dans la plupart des cas, la spectroscopie Raman permet d'obtenir à peu près les mêmes informations que la spectroscopie infrarouge, bien que le principe de la méthode soit différent. Moins utilisée en raison de son coût, elle présente toutefois un certain nombre d'avantages.

a-2- Appareillage:

a-3- .Avantages de la technique :

- Utilisable quel que soit l'état physique du matériau : solide amorphe ou cristallisé, liquide ou gazeux.
- Observable entre 50 à 4000 cm-1 sans changement de l'instrumentation (analyse aisée des fréquences < 400 cm⁻¹).
- Particulièrement bien adaptée aux études en milieu aqueux.

Dans la plupart des cas, la spectroscopie Raman permet d'obtenir à peu près les mêmes Informations que la spectroscopie infrarouge, bien que le principe de la méthode soit différent.

b- LA SPECTROSCOPIE INFRAROUGE :

La spectroscopie infrarouge (parfois désignée comme spectroscopie IR) est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle recouvre une large gamme de techniques, la plus commune étant un type de spectroscopie d'absorption. Comme pour toutes les techniques de spectroscopie, elle peut être employée pour l'identification de composés ou pour déterminer la composition d'un échantillon. Les tables de corrélation de spectroscopie infrarouge sont largement présentes dans la littérature scientifique [43].

La partie infrarouge du spectre électromagnétique est divisée en trois régions : le proche, le moyen et le lointain infrarouges, nommés en relation avec le spectre visible. L'infrarouge lointain, allant approximativement de 400 à 10 cm-1 (1000–25 μ m, en pratique gamme 1000–30 μ m), mitoyen de la région micro-onde, a une énergie faible et peut être utilisé pour la spectroscopie rotationnelle. Le rayonnement infrarouge moyen, allant approximativement de 4000 à 400 cm-1 (25–2,5 μ m, en pratique gamme 30–1,4 μ m) peut être utilisé pour étudier les vibrations fondamentales et la structure rovibrationnelle associée. Le proche infrarouge, plus énergétique, allant approximativement de 14000 à 4 000 cm-1 (2,5–0,7 μ m, en pratique gamme 1,4–0,8 μ m) peut exciter les vibrations harmoniques. Les dénominations et classifications de ces sous-régions sont essentiellement des conventions. Elles ne sont pas basées sur des divisions strictes ou sur des propriétés moléculaires ou électromagnétiques exactes.

La spectroscopie infrarouge exploite le fait que les molécules possèdent des fréquences spécifiques pour lesquelles elles tournent ou vibrent en correspondance avec des niveaux d'énergie discrets (modes vibratoires). Ces fréquences de résonance sont déterminées par la forme des surfaces d'énergie potentielle, les masses atomiques et par le couplage vibronique associé. Afin qu'un mode vibrationnel dans une molécule soit actif dans l'infrarouge, il doit être associé à des modifications du dipôle permanent. En particulier, dans les approximations de Born-Oppenheimer et harmonique, lorsque le hamiltonien moléculaire correspondant à l'état fondamental électronique peut être approximé par un oscillateur harmonique au

voisinage de la géométrie moléculaire d'équilibre, les fréquences de résonance sont déterminées par les modes normaux correspondant à la surface d'énergie potentielle de l'état fondamental électronique moléculaire. Néanmoins, les fréquences de résonance peuvent être dans une première approche liées à la force de la liaison, et aux masses atomiques de terminaison. Donc, la fréquence des vibrations peut être associée à une liaison particulière.

Le spectre infrarouge d'un échantillon est établi en faisant passer un faisceau de lumière infrarouge au travers de cet échantillon. L'examen de la lumière transmise indique la quantité d'énergie absorbée à chaque longueur d'onde. On peut le faire avec un faisceau , avec une modification de la longueur d'onde dans le temps, ou en utilisant un instrument à transformée de Fourier afin de mesurer toutes les mesures d'onde simultanément. On peut alors produire les spectres en absorbance ou en transmittance, et indiquer les longueurs d'onde d'absorption. L'analyse de ces caractéristiques indique des détails de la structure moléculaire de l'échantillon.

Cette technique fonctionne quasiment exclusivement sur les échantillons présentant des liaisons covalentes. Des spectres simples sont obtenus à partir d'échantillons avec peu de liaisons actives dans l'infrarouge et avec de hauts degrés de pureté. Les structures moléculaires plus complexes conduisent à plus de bandes d'absorption et donc à des spectres plus complexes. Cette technique a cependant été utilisée pour la caractérisation de mélanges très complexes.

b-1-Méthode

b-2-Usages et applications

Cette technique est l'application à la spectroscopie infrarouge de l'analyse de corrélation bidimensionnelle. En étendant l'information spectrale obtenue sur un échantillon perturbé, l'analyse spectrale est simplifiée et sa résolution améliorée. Les spectres bidimensionnels synchrone et asynchrone représentent un survol graphique des modifications spectrales induites par une perturbation (comme un changement de concentration ou de température) ainsi qu'une relation entre modifications spectrales pour deux nombres d'onde (fréquences) différents.

Spectre IR d'un composé en solution

b-3-Modes de vibrations moléculaires :

Lorsqu'une molécule absorbe de l'énergie sous la forme d'un rayonnement IR, l'amplitude des vibrations des liaisons moléculaires augmente, le retour à l'état normal libère de la chaleur.Plusieurs modes de vibrations sont possibles pour un groupe d'atomes donné. A chacun correspond une fréquence caractéristique.Ces modes fondamentaux sont responsables des principales bandes d'absorption.

L'absorption du rayonnement IR par les composés organiques correspond à deux types principaux de vibrations

- vibration de valence ou d'élongation.
- vibration de déformation angulaire.

Une vibration de valence (d'allongement ou d'élongation) est un mouvement des atomes le long de l'axe de la liaison.

Ce mouvement implique une variation de la distance interatomique.

Les vibrations de valence sont représentés par « v ».

Ces vibrations se situent dans la région du spectre allant de 4000 à 1000 cm⁻¹

Une vibration de déformation est un mouvement des atomes en dehors de l'axe de la liaison. Lors de ce mouvement, la distance interatomique reste constante.Elles peuvent se réaliser dans le plan ou perpendiculairement au plan.Les vibrations de déformation sont représentés par « δ » Les vibrations de déformations sont d'intensité plus faible que celle des vibrations de valence Elles sont nombreuses et beaucoup plus sensibles à l'environnement car elles ont besoin pour se produire d'un volume plus important et risquent donc d'être entravées par la présence d'atomes voisins.

Ces vibrations constituent la région du spectre dite «empreinte digitale» (1000 à 600 cm⁻¹). Elles sont souvent difficiles à attribuer.

IV.4.2. Spectroscopie expérimentale Raman et IR du α méthyle-β-dicyanostyréne à 293K :

Les spectres Raman et infrarouge ont été réalisé au sein du laboratoire de physique du cristallographie (université Mentouri Constantine) à la température ambiante. L'analyse et le traitement des données brutes collectées à partir du spectroscope sont traités à partir de la chaîne de programmes ORIGIN [41].

Figure IV.8: Spectre expérimental IR du α méthyle $-\beta$ - dicyanostyréne à 293 K.

Figure IV.9 : Spectre expérimental Raman du α méthyle-β-dicyanostyréne à 293 K

IV.4.3 Calcul et attribution des modes normaux à partir de la DFT du α méthyle-βdicyanostyréne et comparaison avec les résultats expérimentaux :

Dans la description de ces mouvements, nous avons pris en considération en premier lieu les fréquences trouvées à partir de l'expérience et retrouvées en partie par les calculs en second lieu on s'est occupé du reste des modes de vibration retrouvés par la DFT (infrarouge et RAMAN).

A partir du spectre expérimental nous avons retrouvé de manière générale les fréquences calculées avec des écarts de quelques cm-1 à partir des calculs théoriques en utilisant la fonctionnelle B3LYP (6-311G). Ces écarts sont dus à l'agitation thermique dont sont animés les atomes à la température ambiante qui sont les conditions dans lesquelles se sont déroulés notre manipulation.

Les écarts trouvés à partir de l'expérience de quelques cm⁻¹ sont acceptables comparés à ce qui est généralement admis dans la littérature. Ces écarts peuvent être améliorés si des enregistrements sont faits à la basse température[42].

Figure IV-10: Spectre IR théorique du α méthyle- β -dicyanostyréne à 293 K

Fréquences (cm⁻¹)

Tableau IV-13: Fréquences calculées à partir de la mécanique quantique en utilisant la DFT et la

Fonctionnelle B3LYP (6	6-311G) et expérimental à la	a température ambiante
------------------------	------------------------------	------------------------

	B3lyp , 6-311G			EXPERIMEN -TALES	
Modes	Fréquences (cm-1)	IR	RAMAN	Fréquences (cm-1)	bref description
1	41.1953	1.2064	12.4536		Cycle/CH3
2	67.1864	1.1431	1.8664	62	Cycle/CH3
3	98.6662	1.0254	3.2553		Cycle/CH3
4	110.314	0.7126	1.6493		CH3/vinyle torsion
5	148.291	5.7469	6.3999		CN
6	175.011	1.8694	2.0324		CH3+CNtorsion
7	204.999	2.4997	8.5564		CH3+ vinyle
8	248.368	5.1675	1.377		Rot cycle + CN
9	316.83	1.4774	2.8849		Vib Cycle +CH3
10	356.458	1.1025	1.0502		Vib Cycle +CH3
11	421.61	1.495	6.3372	407.5	cycle
12	457.556	0.3582	3.8237		Vib Cycle +CH3+CN
13	460.969	0.3329	3.9539		C de CN + H de CH3
14	486.876	4.2627	0.9104		CycleC de CN + H de CH3
15	558.454	0.7214	2.406		Les atomes C et le H de CH3
16	587.804	6.4332	1.5271		_

	li de la companya de				
17	629.187	0.3312	0.9085		C de CN
18	650.8	0.1607	6.767157		Déformation du cycle
19	686.25	4.3526	9.5792		CH3+ Cycle
20	721.823	35.404	1.9022	729.925	Les H de Cycle
21	736.842	16.3616	12.8899	754.5	H de Cycle et CH3 + C de C==C
22	801.831	34.9817	1.7706	848.525	Les H de Cycle
23	857.632	0.5528	3.6414	832.5	Vinyle/ CH3
24	876.036	2.1365	12.0792		Cycle +Vinyle/ CH3
25	963.535	2.6258	0.3022	935	Les H de Cycle
26	1010.76	1.1798	4.114		-
27	1027.61	1.0047	73.8357		-
28	1037.47	0.0959	0.2387		Cde Cycle +Rot CH3
29	1055.04	5.5393	5.1992		Les H de Cycle
30	1066.21	9.2512	17.9459		-
31	1087.46	1.9126	2.8094	1096.33	C=C/ bande CH de CH3
32	1106.86	3.7927	31.0448		H de Cycle +H de CH3
33	1130.69	1.8824	10.5919	1181.5	H de cycle/ CH DE CH3
34	1205.32	11.1177	15.1894	1210.11	H de cycle+ Vinyle
35	1217.28	0.0363	5.8425		Les H de Cycle
36	1236.85	2.8828	11.9652		-
37	1317.49	11.0304	54.6543	1315.5	Cycle+ Vinyle
38	1340.44	11.0108	96.0158		C-C de cycle /Cα/CH de CH3
39	1389.56	2.2358	12.8068	1402	Les H de Cycle+Rot CN
40	1457.04	17.0464	37.4525		H de CH3
41	1490.84	12.2582	15.2759		Les H de Cycle+Rot CN
42	1513.42	40.9846	75.1718	1510.95	H de CH3+Rot CN
43	1522.79	12.5159	16.2679		H de CH3+ H de Cycle
44	1542.72	3.2534	12.2938		H de CH3+cycle +C=C
45	1600.41	52.5653	390.793		CH de cycle
46	1620.39	16.7631	131.216		H de CH3+cycle +C=C
47	1640.08	4.6536	225.636	1649.8	CH de Cycle
48	2257.57	15.3305	337.104	2229.31	CN
49	2267.26	33.8608	421.354		-
50	3027.32	5.0287	169.863	2990.09	H de CH3
51	3080.47	8.7549	77.1704		-
52	3135.7	9.68	49.6092		-
53	3171.26	0.4882	36.2212		H de Cycle
54	3180.88	3.2438	116.685		-
55	3190.89	23.2732	75.2851		-
56	3199.87	26.9447	75.9633		-
57	3208.51	9.5642	236.002		-

IV.4.4. Attributions et Illustration de quelques modes normaux du α méthyle- β -dicyanostyréne obtenus à partir du spectre expérimental IR et Raman :

L'attribution des différents mouvements moléculaires est faite en s'aidant des résultats obtenus à partir des calculs obtenus par la DFT (infrarouge, RAMAN).

Mode-01, Fréquence 41.1953 cm⁻¹

Mode-11, Fréquence 421.61cm⁻¹

Mode-31, Fréquence 1087.46 cm⁻¹

Mode-38, Fréquence 1340.44cm⁻¹

Mode-45, Fréquence 1600.41cm⁻¹

Mode-47, Fréquence 1640.08cm⁻¹

Mode-48, Fréquence 2257.57cm⁻¹

IV.5. Conclusion :

A partir des méthodes de calcul basées sur la théorie de la fonctionnelle de la densité DFT, nous avons fait un calcul d'optimisation géométrique de la conformation de la molécule du α méthyle- β - dicyanostyréne en utilisant la fonctionnelle B3LYP et deux bases Lanl2DZ, 6-311G pour aboutir à des résultats très proches de ceux obtenus expérimentalement à partir de la diffraction de rayon X. nous constatons :

- Un accord entre les longueurs de liaison calculées par la fonctionnelle B3LYP et celles obtenues par l'expérience,

- Un accord entre les valeurs des angles de liaisons calculées par la B3LYP et celles fournies par l'expérience..

- l'optimisation de la conformation du α méthyle-β-dicyanostyréne obtenue à partir

de la fonctionnelle B3LYP et la base LANL2DZ correspond à la plus basse énergie de formation. Les résultats d'optimisation de cette fonctionnelle ont servi de base dans notre comparaison avec les résultats expérimentaux cristallographiques et spectroscopiques.

-La non planéité trouvée de la molécule isolée par les calculs théoriques est confirmée par les résultats de la cristallographie avec quand même un léger écart.

- Les calculs théoriques de spectroscopie IR et RAMAN ont permis de trouver et d'identifier les différents modes de vibration relatifs aux mouvements de la molécule.

- La théorie de la fonctionnelle de la densité est une technique bien adaptée pour le calcul des modes de vibration et donne des résultats très proches à ceux de l'expérience.

- Il y a un bon accord entre les valeurs expérimentales IR, Raman et les résultats calculés pour les fréquences correspondantes aux modes.

Les écarts trouvés à partir de l'expérience de quelques cm-1 sont acceptables comparés à ce qui est généralement admis dans la littérature.

CONCLUSION GENERALE

L'objectif de ce travail est l'étude structurale et dynamique de la molécule du α - méthyle- β dicyanostyréne appartenant à la famille du styrène. La structure du composé à l'état solide a été déterminée grâce aux méthodes de diffraction des rayons X sur monocristaux. En parallèle, nous avons fait aussi une optimisation de la conformation de la molécule en utilisant des calculs de mécanique quantique par les méthodes de la DFT. L'intérêt de ces calculs étaient alors de s'assurer de la précision des résultats trouvés théoriquement en les comparant à ceux obtenus par la cristallographie. La détermination de la conformation moléculaire du α - méthyle- β dicyanostyréne a été complétée par une étude des différents mouvements de la molécule. Les fréquences de tous les modes de vibrations possibles ont été relevés des spectres Raman ou infrarouge réalisées sur poudre. L'attribution des différents modes a été faite sur la base des spectres obtenus par les calculs théoriques de la DFT.

Détermination structurale du α - méthyle- β -dicyanostyréne à température ambiante à partir de la diffraction des rayons X.

La détermination de la structure cristalline par diffraction des R.X du α - méthyle- β dicyanostyrène a montré qu'il cristallise dans le groupe d'espace P2₁2₁2₁ du système orthorhombique avec Z=4.

L'interaction stérique du groupe CH₃ placé sur le carbone C(α) du styrène est plus importante que celle provoquée par le même groupe lorsqu'il est substitué au carbone C(β). Ce résultat est traduit par la structure non plane de la molécule présentant une forte torsion autour de la liaison simple C_{ar}-C(α) égale à 43.5°. Cette valeur est environ deux fois la torsion trouvée dans les composés homologues β -méthylés.

Bien que la conjugaison des électrons π entre le cycle aromatique et la partie éthylénique a fortement diminuée, il apparait une interaction très claire entre la double liaison et les groupements voisions –CN très accepteurs. Cette interaction $C(\alpha)=C(\beta)$ induit un déplacement de charge qui s'explique bien par la double liaison $C(\alpha)=C(\beta)$, égale à 1.344 (2) Å, plus longue que d'habitude et les liaisons simples voisines $C(\beta)$ –C, égales à1.439 (3) Å, et qui sont très courtes.

Calcul de la conformation moléculaire du α méthyle – β – dicyanostyréne à partir de la théorie de la fonctionnelle de la densité.

Des calculs de prédiction de la conformation théorique de la molécule α -méthyle- β dicyanostyréne basés sur la théorie de la fonctionnelle de la densité (DFT) ont été réalisés en utilisant la fonctionnelle B3LYP et deux bases Lanl2DZ et 6-311G. Tous ces calculs démarrent de la structure observée déjà par les R.X.

Un premier calcul en relâchant complètement la molécule converge en donnant la conformation de l'isomère qui correspond à une liaison $C_{ar}-C(\alpha)$ qui a une longueur plus proche de celle d'une liaison double (**1.424** Å) et à une double liaison $C(\alpha)=C(\beta)$ quasi simple avec une distance égale à 1.492 Å. Les plans moyens du cycle benzénique et de la partie dicyanoéthyle sont perpendiculaires.

Dans le cas où les calculs sont faits avec une contrainte qui impose à la double liaison $C(\alpha)=C(\beta)$ de rester égale à la valeur trouvée par les R.X, on obtient une conformation proche de celle observée dans le cristal mais avec une double liaison égale cette fois-ci à 1.370 Å. la longueur calculée de cette liaison présente l'accord le moins bon avec l'expérience vis à vis des autres distances. Ces calculs de prédiction théorique concernant la conformation de la molécule du composé α -méthyle– β – dicyanostyréne montrent bien la possibilité d'aboutir à plusieurs solutions différentes de sorte que la solution qui possède l'énergie de formation minimale, c'est à dire la plus favorable, ne correspondent pas toujours à la conformation recherchée.

Spectroscopie IR expérimentale et modes normaux calculés à partir de la DFT.

La théorie de la fonctionnelle de la densité est une technique bien adaptée pour le calcul des modes de vibration et donne des résultats très proches de l'expérience. La conjugaison des résultats obtenus à partir de la chimie quantique (DFT) et les spectres expérimentaux (température ambiante) a permis l'attribution des différents modes de vibration de la molécule et leurs effets sur le reste de la molécule.

Les calculs théoriques de spectroscopie IR ont permis l'identification des différents modes de vibration des mouvements de la molécule.

Il y a un bon accord entre les valeurs expérimentales IR et les résultats calculés pour les fréquences correspondantes aux modes normaux.

Bibliographies

- [01]- J. M. Granadino-Roldan, M. Fernandez-Gomez, A. Navarroa and U. A. Jayasooriya, The molecular force field of 4-fluorostyrene: an insight into its vibrational analysis using inelastic neutron scattering, optical spectroscopies (IR/Raman) and theoretical calculationsy, University of Jaén, 23071-J, Spain (2003).
- [02]- Seiji .Tsuzuki, Kazutoshi Tanabe, The Journal of Physical Chemistry, Vol. 94, No. 16, 1990.

[03]- LAMINE .HAMDELLOU, Thèse Doctorat d'Etat, Université de Mentouri- constantine (2007)

- [04]- M.E. Tuttolomondo, A. Navarro, T. Pera, M.P. Fernandez-Liencres, J.M. Granadino-Roldan, S.F. Parker, M. Fernandez-Gomez, Chem. Phys. 361 (2009).
- [05]- Brown, P. J., Fox, A. G., Maslen, E. N., O'Keefe, M. A., Sabine, T. M. et Willis, B. T. M., in International Tables for Crystallography; Vol. B, édité par A.J.C. Wilson (Kluver Academic Publishers, 1992).
- [06]- B.T. M. Willis, A.W. Pryor, Thermal Vibrations in Crystallography, Cambridge University Press (1975).
- [07]- G. J. McIntyre, R. F. D. Stansfield, Acta Cryst., A44, 257-262 (1988).
- [08]- R. Kahn, R. Fourme, A. Gadet, J. Janin, C. Dumas et D. André, J. Appl. Cryst., 15, 330 (1982).
- [09]- R.Ouahes, 'Eléments de Radiocristallographie', Office des publications universitaires, (1995).
- [10]- MEDJROUBI. MOHAMED. LARBI, Thèse de magister, Université de .Mentouri-Constantine, (2008),
- [11]- HAMDOUNI .NOUDJOUD, Thèse de magister, Université de.Mentouri Constantine (2007).
- [12]- James, R. J, The Optical Principles of the Diffraction of X-rays., Cornell University Press. (1965)
- [13]- R.G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford Science Publications, 1989.
- [14]- P. Hohenberg and W. Kohn. Inhomogeneous electron gas. *Phys. Rev. A*, 136(3):B864-B871, 1964.

- [15]- E.R. Davidson and D. Feller. Basis set selection for molecular calculations. Chem. Rev., 86(4):681-696, 1986.
- [16]- Shavitt. The history and evolution of Gaussian basis sets. Israël J. Chem., 33:357, 1993
- [17]- Sheldric, G. M. (2002). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin,USA.
- [18]- Gaussian 98 (Revision A.5), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Menucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Pikorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzales, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, and J.A. Pople, Gaussian, Inc., Pittsburgh PA (1998).
- [19]- P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe, T. M. Sabine et B. T. M. Willis, 'International Tables for Crystallography', Vol. B, Kluver Academic Publishers (1992).
- [20]- V. H. Grassian, E. R. Bernstein, Conformational Study of Jet-Cooled Styrene Derivatives. Demonstration of the Planarity of Nonsterically Hindered Styrenes, J. Phys. Chem. 1989, 93, 3470-3474
- [21]- Seiji .Tsuzuki, Kazutoshi. tanabe, J. Phys. Chem. 1990, 94,6175-6179, Ab Initio Molecular Orbital Calculations of the Internal Rotation of Styrene with Electron Correlation Using the Polarized 6-316" Basis Set.
- [22]- Vicent .Molina, Manuela .Merch,Bjorn. O, Roos and Per-Ake Malmqvist, On the lowlying singlet excited states of styrene : a theoretical contribution, Phys. Chem. Chem. Phys., 2000, 2, 2211È2217
- [23]- Prince, E. (1982). Mathematical Techniques in Crystallogaphy and Material Science. New York: Springer-Verlag.
- [24]- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. 2003.J. Appl. Cryst. 36, 1487.
- [25]- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical

Crystallography. Laboratory, University of Oxford, England.

- [26]- SHELX, Suite of Programs for Crystal Structure Analysis (release 97-2). G.M. Sheldrick, University of G.ttingn, Germany (1997).
- [27]- D. J. Watkin, C.K. Prout, J.R. Carruthers, P. W. Betteridge, (CRYSTALS) Issuel1. Chemical Crystallography Laboratory, Oxford, UK (1996).
- [28]- G. Cascarano, A. Altomare, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, D. Siliqi, M.C. Burla, G. Polidori et M. Camalli, Acta Cryst. A52, C-79 (1996).
- [29]- http://www.lcc-toulouse.fr/lcc.
- [30]- Introduction à la chimie générale Vol. 2 Chimie minérale Edition 2001 Inalci de Aguirre, Marie-Anne Van de Wiel.
- [31]- http://www.chemspider.com/Chemical-Structure.13884495.html.
- [32]- http://en.wikipedia.org/wiki/1,4-Dioxane.
- [33]- http://french.alibaba.com/goods/p-tolualdehyde.html.
- [34]- KENNETH.S. PITZER, LESTER G UTTMAN and EDGAR .F, WESTRUM. JR. The Heat Capacity, Heats of Fusion and Vaporization, Vapor Pressure, Entropy Vibration Frequencies and Barrier to Internal Rotation of Styrene, Univ of California, Vol. 68, (1946).
- [35]- L. A.CARREIRA and T. G. TOWNS, TORSION IN-CONJUGATED AROMATICS SURSTITUTED STYRENES, Journal of Molecular Structure. 31 (1977) 85-92.
- [36] -WIKTOR MICHAL RALOWSKI, PER JOHAN MJOBERG and STIG OLOF L JUNGGREN, MICROWAVE SPECTRUM AND PLANARITY OF p-FLUOROSTYRENE, Journal of Molecular Structure, 30 (1976) 1-11.
- [37]-. J. Michael, Hollas, Hamdan Musa, Trevor Ridley, Paul H. Turner, and Klaus. H. Wiesenberger. SVL and Raman spectra of styrene-β-D₂, Journal of molecular spectroscopy 94, 431-455 (1982).
- [38]- W. CAMINATI,' B. VOGELSANGER, **AND** A. BAUDER. Rotational Spectrum of Styrene Observed by Microwave Fourier Transform Spectroscopy. 128,384-398 (1988)

- [39]-. Radom and J. A. Pople, Molecular Orbital Theory of the Electronic Structure of Organic Compounds. IV. Internal Rotation in Hydrocarbons Using a Minimal Slater-Type Basis, *Journal of the American Chemical Society* / 92:16 / August 12, 1970
- [40]- Cheol Ho. Choi and Miklos Kertesz. Conformational Information from Vibrational Spectra of Styrene, *Trans*-Stilbene, and *cis*-Stilbene. J. Phys. Chem. A 1997, 101, 3823-3831.
- [41]- Origin, Microsoft Software, INS One Rounthouse Palse Nothempton 1110160 USA.
- [43]- http://fr.wikipedia.org/wiki/Spectroscopie_infrarouge.

[44]- A. EL HAJJI, Université Mohammed V , Faculté des sciences , Master chimie, M2, Cours de Spectroscopie Vibrationnelle .

Résumé

Ce travail présente une continuation d'étude de l'influence de la substitution sur la conformation de molécules aromatiques.

La structure cristalline du α méthyle- β -dicyanostyréne (C₁₁H₈N₂) a été déterminée à la température ambiante par la diffraction des R. X. Le cristal est Orthorhombique avec un groupe d'espace P 2₁ 2₁ 2₁ et Z=4. Les affinements de la molécule menés à partir du programme CRYSTALS. Nous avons montré pour un styrène substitués en position α sur le groupe vinyle que leur structure n'est pas plane et que les prévisions des calculs théoriques par DFT sont en accord avec les résultats expérimental, Nous avons utilisé la chaîne de programmes GAUSSIAN03.

Le premier calcul concernant la molécule complètement relâchée conduit a un autre isomère.

Dans le cas où les calculs sont faits avec une contrainte qui impose à la double liaison $C(\alpha)=C(\beta)$ on obtient une conformation proche de celle observée dans le cristal mais avec une double liaison égale cette fois-ci à 1.370 Å. la longueur calculée de cette liaison présente l'accord le moins bon avec l'expérience vis à vis des autres distances. Ces calculs de prédiction théorique concernant la conformation de la molécule du composé α -méthyle– β –dicyanostyréne montrent bien la possibilité d'aboutir à plusieurs solutions différentes de sorte que la solution qui possède l'énergie de formation minimale, c'est à dire la plus favorable, ne correspondent pas toujours à la conformation recherchée.

Les calculs théoriques de spectroscopie IR ont permis l'attribution des différents modes de vibration des mouvements de la molécule.

Mots Clés : Styrènes, Substitution, Donneur, Accepteur, Méthyle, Conjugaison moléculaire, Effet stérique, Diffraction des rayons X et des neutrons, Théorie de la fonctionnelle de la densité

ملخص

يعرض هذا العمل استمر ارا لدر اسة تأثير الاستبدال على الجزيئات العطرية.

تم تحديد البنية البلورية لـ (C11H8N2) α méthyle-β-dicyanostyréne و (C11H8N2) في درجة حرارة الغرفة بواسطة حيود الأشعة السينية فكانت معين متعامد المحاور ، المجموعة الفضائية 2 2 1 2 1 2 و 4 = Z . لقد أظهرنا ان الستايرين عند استبداله في الموضع α في مجموعة الفينيل ليس \و بنية مسطحة والتوقعات من الحسابات النظرية بواسطة T هي في اتفاق مع النتائج التجريبية، استخدمنا برنامج GAUSSIAN03 في حساباتنا النظرية

الحساب الأول على الجزيء ادى إلى مماكب آخر.

في حالة إجراء العمليات الحسابية مع تقييد الرابطة المزدوجة (α) - C (β) - C (α) تحصلنا على نتائج مماثلة لتلك التي لوحظت تجريبيا ولكن مع الرابطة المزدوجة هذه المرة يمساوية الى Å 1.370 . هذه الحسابات النظرية تتنبأ بشكل جزيء - α méthyle- β - هذه الحسابات النظرية تتنبأ بشكل جزيء مالال الكثر a méthyle- β - هذه المرابطة المزدوجة هذه المرة يمساوية الى معاوية الى معاون من الحسابات النظرية تتنبأ بشكل جزيء مالاعمة، لا تتوافق دائما مع الاشكال المرجوة.

الحسابات النظرية لأطياف الأشعة تحت الحمراء سمحت باستنتاج أنماط حركات الاهتزاز للجزيء.

كلمات مفتاحية: الستايرين، استبدال، مجموعة اخذة، مجموعة مانحة، الميثيل، الإقتران الجزيئي،

تأثير الفراغية، حيود الأشعة السينية ، نظرية وظيفية الكثافة .

Abstract

This work presents a continuation of study of the influence of substitution on the conformation of aromatic molecules.

The crystal structure of β -methyl- α dicyanostyréne (C11H8N2) was determined at room temperature by X-ray diffraction The crystal is Orthorhombic with a space group P 21 21 21 and Z = 4. The refinements of the molecule led from the CRYSTALS program. We have shown for a styrene substituted in α position to the vinyl group that their structure is not flat and the predictions of the theoretical calculations by DFT are in agreement with the experimental results, we used the chain GAUSSIAN03 programs.

The first calculation on the fully released molecule leads to another isomer. In the case where the calculations are made with a constraint that requires the double bond C (α) -C (β) obtaining a conformation similar to that observed in the crystal but with a double bond this time equal to 1.370 Å. the calculated length of this bond present in the worse agreement with experiment against other distances. These theoretical calculations predict the conformation of the molecule of α -methyl- β -dicyanostyréne made clearly show the possibility of achieving several different solutions so that the solution that has the minimum training energy, ie most favorable, do not always correspond to the desired conformation.

IR spectroscopy theoretical calculations allowed the assignment of different modes of vibration movements of the molecule.

Keywords: styrenes, Substitution, Donor,, Acceptor, Methyl molecular Conjugation.

Steric effect, X-ray diffraction, Density Functional Theory