REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE MENTOURI - CONSTANTINE FACULTE DES SCIENCES DEPARTEMENT DE PHYSIQUE

N° d'ordre: Série:

MEMOIRE

Présenté pour obtenir le diplôme de Magister

EN PHYSIQUE

Option : Cristallographie

Intitulé

STRUCTURE, CONFORMATION MOLECULAIRE ET SPECTROSCOPIE DE LA THEOPHYLLINE MONOHYDRATEE (C7H8N4O2.H2O)

PAR BOUKAOUD ABDELALI

Soutenu le : 25 / juin / 2005

Devant le jury :

Président :	M. SEBAIS	Prof.	Université Mentouri – Constantine
Rapporteur :	A. BOUDJADA	М. С.	Université Mentouri – Constantine
Examinateurs :	A. BOUBERTAKH	М. С.	Université Mentouri – Constantine
	C. BOUDAREN	M. C .	Université Mentouri – Constantine

Remerciements

Ce travail de thèse est le résultat d'une collaboration entre l'Université de Mentouri - constantine et l'université de Rennes-1.

Je remercie très sincèrement le Docteur Ali Boudjada pour avoir diriger cette thèse et pour son investissement dans ce travail et la qualité de son encadrement.

Je remercie M. Sebais, A. Boubertakh et C. Boudaren d'avoir participer au jury de la soutenance.

Je remercie tous les membres du groupe du Docteur Ali Boudjada qui sont intéressés par les études des groupes méthyles pour les informations qui m'ont fournis.

J'adresse mes sentiments affectueux à mes parents et mes frères qui ont toujours su m'épauler et me guider avec leurs conseils durant les moments difficiles.

Un grand merci à mes amis qui résident à EL-Milia et mes collègues de l'institut de physique de constantine.

Merci à Nwiwla qui m'a supporté.

<u>sommaire</u>

Introduction	Générale	4
--------------	----------	---

1. Quelques notions théoriques sur la détermination de structure cristalline par les rayons X

1.1. Introduction	7
1.2. Diffraction des rayons X par les monocristaux7	,
1.2.1. Diffusion cohérente par un électron (diffusion Ragleigh)	8
1.2.2. Diffusion par un atome10	0
1.2.3. Diffraction par un cristal	2
1.2.3. 1. Loi de Bragg	2
1.3. Intensités diffractées 12	3
1.3.1. Densité électronique et Facteur de structure 1	3
1.3.2. Correction des intensités	5
1.3.2.1. Facteur de température1	5
1.3.2.2. Facteur de Lorentz	6
1.3.2.3. Facteur d'absorption1	7
1.3.2.4. Facteur de polarisation1	7
1.4. Quelques notions théoriques sur la Résolution structurale13	8
1.4.1 Détermination du modèle structural 1	8
1.4.2. Affinement de la structure1	9
1.4.3. Synthèse de Fourier	0
1.4.4. conclusion	21

2. Etude de la conformation moléculaire par les méthodes de chimie quantique

2.1. Introduction	23
2.2. Equation de Schrödinger	23
2.2.1. Approximation d'orbitale	24
2.2.2. Approximation de Born-appenheimer	25
2.3. Les méthodes de chimie quantique	26
2.3.1. La méthode de Hartree Fock	26
2.3.1.1. Signification de quelques bases gaussiennes	27

2.3.2. La méthode de la fonctionnelle de la densité	28
2.3.2.1. Les équations de Kohn-Sham	29
2.3.2.2. codes de la DFT	33
2.3.2.3. Présentation de quelques fonctionnelles de la DFT	33
2.3.2.4. Présentation de quelques jeux de bases utilisés par le code de	
Gaussian98	35
2.3.2.5. Conclusion	36

3. Rappels bibliographiques sur des structures de quelques cristaux moléculaires aromatiques et quelques notions théoriques sur la spectroscopie infrarouge

3.1. Introduction	
3.2. Rappel sur quelques molécules monocycliques benzéniques.	
3.2.1. Effet de la substitution d'un ou plusieurs hydrogènes sur la c	conformation du
noyau benzénique :	
3.2.2. Effet de la substitution d'un atome d'hydrogène	
3.2.3. Dérivés polysubstitués	40
3.3. Rappel sur quelques molécules polycycliques	41
3.4. Spectroscopie infrarouge	44
3.4.1. Spectres des radiations électromagnétiques	45
3.4.2. Relation entre les fréquences vibrationnelles et les	caractéristiques de
liaisons	
3.4.3. Vibration dans les molécules poly-atomiques	47
3.4.3.1. Cas d'une molécule linéaire : le dioxyde de carbone	48
3.4.3.2. Cas d'une molécule non linéaire : la molécule d'eau et le g	groupement
méthylène	49
3.4.4. Les différentes zones du spectre infrarouge	
3.5.Conclusion	

4. Détermination de la structure de la 1,3-diméthylexanthine monohydratée (C₇H₈N₄O₂.H₂O) ou la théophylline monohydratée à 293 K

4.1.	Introduction	.53
4.2.	Détermination de la structure de la théophylline monohydratée à 293 K	.53

4.2.1. Etude expérimentale	53
4.2.2. Croissance des cristaux	53
4.2.3.Dispositif expérimental utilisé	53
4.2.4. Collecte des intensités	54
4.2.5. Affinement de la structure	55
4.2.6. Description et discussion de la structure	57
4.3. Spectroscopie infrarouge	73
4.3.1. Dispositif expérimental utilisé	73
4.3.2. Spectroscopie infrarouge de la théophylline monohydratée à 293 K	74
4.4. Conclusions	80

5. Conformation moléculaire calculée par la théorie de la fonctionnelle de la densité (DFT)

5.1. Introduction	81
5.2. Conformation moléculaire calculée par la DFT	82
5.2.1. Conformation moléculaire de la théophylline	82
5.2.1.1. Fonctionnelle B3LYP	82
5.2.1.2. Fonctionnelle MPW1PW91	
5.2.1.3. Comparaison des résultats calculés (fonctionnelles B3LYP et MW	V1PW91)
avec les résultats expérimentaux de la molécule de la théophylline	91
5.3. Modes internes calculés à partir de la DFT	93
5.3.1. Modes internes de molécule de théophylline	93
5.3.2. Modes internes de la molécule d'eau	96
5.4. Conclusion	102
Conclusion Générale	104
Bibliographies	106

INTRODUCTION GENERALE

Au dix-neuvième siècle un grand nombre de composés à étudier était constitué par la classe des composés moléculaires aromatiques. Les molécules sont formées d'atomes liés de façon covalente alors qu'elles mêmes s'assemblent par des interactions faibles, la principale différence entre ces deux types d'assemblages réside en une énergie de l'ordre de 3eV. Alors qu'une liaison de van der waal's a une énergie de l'ordre de 10meV, les interactions coulombiennes 100 meV, et l'énergie d'une liaison hydrogène varie de 100 à 500 meV. Enfin à la température ambiante, l'agitation thermique représente une énergie de 25 meV. Cette différence d'énergie explique par exemple le fait qu'une molécule garde son intégrité lors de la fusion d'un cristal moléculaire. Le nom aromatique s'applique maintenant à des molécules qui possèdent un ensemble de propriétés ('Grande stabilité'' et réaction chimique particulière) qui n'est pas spécifique au benzène ou à ces dérives d'une manière plus générale, il est présent dans toutes structures cycliques, non saturée et dans laquelle les doubles liaisons sont conjuguées, à condition que le nombre totale des électrons délocalisés soit égal à 4n+2 (n=0,1,2,...), et d'une autre façon tous les électrons π soient dans un même plan.

En chimie minérale une fois la formule d'une substance connue, la formule structurale de la molécule en découle souvent immédiatement, il n'y a qu'un seul composé de formule Na₂SO₄ par exemple. Il n'est pas toujours de même en chimie organique, par exemple, il existe deux composé dont la formule est C_2H_6O mais le premier composé se présente sous la forme d'un liquide à 78°C tandis que le deuxième est un gaz.

Dans l'état cristallin et à partir des données sur l'assemblage des atomes entre eux, la partie cristallographique permet de fournir des informations plus importantes sur les positions atomiques dans la maille, les distances inter-atomiques, les angles, les angles de torsion, et les facteurs d'agitation thermiques.

On appelle conformation d'une molécule les différentes structures spatiales qu'elle peut prendre par suite de rotations autour d'une ou plusieurs liaisons simples C-C et/ ou C-N, etc.

Dans ce travail nous avons centré nos études sur la détermination de structure cristalline et la conformation moléculaire d'un composé aromatique « la théophylline monohydratée » par la diffraction des rayons X à la température ambiante, la structure chimique de la molécule de théophylline est similaire de la structure chimique de la molécule de théophylline molécule supplémentaire dans la molécule de la caféine (Figure).

Comparaison entre la structure chimique de théophylline et de caféine

Ce travail a été réalisé au laboratoire de cristallographie de l'université de Constantine en collaboration avec l'université de Rennes 1. Le thème général est l'étude de la structure cristalline du composé 3,7-dihydro-1,3-diméthyle-1Hpurine-2,6-dionomonohydraté (C₇H₈N₄O₂.H₂O) appelé communément la théophylline monohydratée. Cette structure a été déterminée à partir de la diffraction des rayons X en utilisant des logicielles différentes (CRYSTALS, WINGX, SHELLX, SIR97...).

La conformation moléculaire de la théophylline obtenue à partir des calculs théoriques basés sur La méthode de la fonctionnelle de la densité (DFT) en utilisant la chaîne de programmes GAUSSIAN a fait l'objet d'une comparaison avec celle déterminée à partir de l'expérience.

Il y a un intérêt considérable de la part de la communauté scientifique quant à la connaissance des structures cristallographiques des molécules de la théophylline et leurs dérivés pour leurs utilisations dans le monde médicale et pharmacologique. La théophylline se révèle être un composé thérapeutique dans des activités vasculaires et un potentiel antihypertensif dans des traitements médicaux.

Parmi les composés dérivés de la théophylline déjà étudiés, ce composé a été acheté dans le commerce et cristallisé dans le laboratoire en utilisant la méthode de solution.

Ce travail sera concentré sur l'étude d'un côté de la conformation expérimentale utilisant les techniques les plus récentes de la cristallographie et de l'autre côté des calculs élaborés de chimie théorique.

Ce travail s'articule autour de cinq chapitres :

Dans la première partie de ce mémoire nous présenterons des notions théoriques relatives à la détermination de structures à partir des rayons X indispensables à la compréhension de ce travail.

Le deuxième chapitre portera essentiellement sur les études de la conformation moléculaire à partir des méthodes de chimie quantique (DFT).

Dans le troisième chapitre nous présenterons des rappels bibliographiques sur des produits isomorphes de la théophyllines et quelques notions théoriques sur la spectroscopie IR.

Enfin dans le quatrième et dernier chapitre nous présenterons successivement les résultats expérimentaux , le calcul de la chimie théorique de la structure de la théophylline et une comparaison entre les résultats expérimentaux et calculés.

Chapitre 1

Quelques notions théoriques sur la détermination de structure cristalline par les rayons X

1.1. Introduction

Les principales méthodes qui permettent de déterminer la géométrie d'une molécule sont les méthodes de diffraction et les méthodes spectroscopiques. Les informations que ces méthodes peuvent apporter concernant la structure moléculaire sont de deux sortes : *qualitatives* (forme générale et symétrie d'une molécule) et/ou *quantitatives* (positions relatives de tous les atomes dans une molécule, angles et longueurs de liaison et angles de torsion). Les méthodes de diffraction sont basées sur le phénomène de diffraction dans lequel une partie des radiations change de direction sans transfert d'énergie. Ces radiations peuvent être de nature électromagnétique rayons X ou corpusculaire (des petites particules rapides comme les électrons ou les neutrons).

Le carbone est l'élément central autour duquel s'est organisée la chimie de la vie, l'oxygène, l'azote et l'hydrogène sont des éléments qui peuvent se lier au carbone pour former une molécule. La difficulté principale de l'utilisation des méthodes de diffraction des RX pour la détermination de structure des composés organiques est la localisation des atomes d'hydrogènes en raison de leur faible diffusions des intensités, et parce que la densité électronique correspondante à un électron est asymétrique, et n'est pas centré à la position du noyau [1].

1.2. Diffraction des rayons X par les monocristaux

On peut distinguer deux types d'interaction des rayons X avec la matière (monocristaux) :

► Interaction inélastique : au cours de l'interaction, la longueur d'onde du photon X est modifiée par transfert de tout ou partie de son énergie à la matière (absorption, effet Compton). Dans l'absorption, les photons incidents cèdent la totalité de leur énergie aux atomes. Dans l'effet Compton les photons incidents sont dévies de leur trajectoire initiale avec perte d'une partie de leur énergie.

► Interaction élastique : les photons sont déviés de leur trajectoire initiale sans modification de leur énergie. La conservation de la longueur d'onde dans le phénomène de diffusion (diffusion Thomson) est à l'origine de l'existence de phénomène de diffraction. Les ondes diffusées peuvent interférer entre elles. Thomson a montré que le champ électrique produit par l'excitation d'une particule de charge e se propage comme une onde sphérique dans la quelle intervient la polarisation de l'onde incidente par l'angle α entre la direction d'accélération des particules et la direction d'observation. La section efficace différentielle de diffusion s'écrit :

$$\frac{d\sigma}{d\Omega} = \pi^2 (\sin\alpha)^2$$
(1.1)

avec:
$$r_e = \frac{e^2}{4\pi \mathcal{E}_0 m C^2}$$
 (1.2)

m est la masse de la particule et *e* sa charge, si celle-ci est un électron. r_e est son rayon classique $r_e = 0.284 \times 10^{-12}$ cm.

Cette section efficace est inversement proportionnelle à la masse de la particule diffusante. Le système diffusant comporte des électrons et des protons. L'intensité diffusée par un proton est 1837^2 fois pus faible que celle diffusée par un électron. Elle est totalement négligeable devant l'intensité diffusée par un électron. Donc il n'y à que les électrons qui diffusent les rayons X[2].

1.2.1. Diffusion cohérente par un électron (diffusion Rayleigh)

Les rayons X sont des ondes électromagnétiques qui se propagent donc suivant un vecteur champ électrique **E**.

$$\vec{E} = \vec{E}_0 \exp(i\omega t - kr) \tag{1.3}$$

Où \vec{E}_0 est le vecteur amplitude du camp électrique (constant pour une onde plane, varie en 1/r pour une onde sphérique), ω est la pulsation, k le vecteur d'onde et r le vecteur de position.

L'onde cohérente diffusée par un électron (diffusion de Rayleigh) est :

$$\vec{E} = \vec{E}_0 \frac{\vec{e}^2}{m_c^2 R} \sin(\sqrt{\exp((\alpha t - \vec{k}\vec{R}))})$$
(1.4)

où \vec{R} est la distance au point d'observation et ψ est l'angle entre le faisceau diffusé et la direction du champ électrique (Figure 1.1).

Figure 1.1 : Onde de diffusion de Rayleigh.

Pour une radiation incidente non polarisée l'intensité diffusée est alors :

$$\mathbf{I} = \mathbf{I}_{0} \quad \left\{ \frac{\boldsymbol{e}^{2}}{\boldsymbol{m}\boldsymbol{c}^{2}} \right\}^{2} \frac{1}{R} \left(\frac{\left(1 + \boldsymbol{C} \stackrel{2}{\boldsymbol{O}} \boldsymbol{S} \boldsymbol{\phi}\right)}{2} \right)$$
(1.5)

Le dernier terme entre parenthèse est le facteur de polarisation. ϕ :étant l'angle de diffusion.

Le terme en $\frac{1}{m^2}$ démontre que la diffusion par les protons peut être négligée, les m^2

rayons X interagissent avec les électrons et permettent alors de caractériser les électrons dans la structure.

1.2.2. Diffusion par un atome

Les vitesses de déplacement des électrons à l'intérieur de l'atome sont tellement grandes vis-à-vis de la vitesse d'alternance du champ électrique des rayons X que le rayonnement ne voit qu'un nuage électronique moyen immuable caractérisé en chaque point de l'espace autour du noyau par une certaine « densité électronique » l'amplitude diffusée par le nuage est proportionnelle au nombre d'électrons Z (nombre atomique) de l'atome [3].

Ce facteur de proportionnalité est appelé le facteur de forme atomique $f(\theta)$ est dépend de la forme de l'atome et la direction de diffusion 2θ .

La section efficace différentielle de diffusion cohérente de l'atome est égale à :

$$\frac{d\sigma}{d\Omega} = r e^2 p(\theta) \| f(\theta) \|^2$$
(1.6)

Dans son expression apparaissent deux termes : La polarisation et le module de facteur de diffusion atomique [2].

L'amplitude diffusée par un atome a_k ne pourrait toujours être égale à $Za_e(a_e$ est l'amplitude diffusée par un électron) que dans le cas où on considèrerait tous les électrons de l'atome comme rassemblés en un même point (Figure 1.2).

Figure 1.2 : Diffusion par un atome.

La réponse globale de l'atome dépend de l'angle de diffusion.

$$a_k = a_e f(\theta) \tag{1.7}$$

Le déphasage entre les ondes diffusées par le contenu électronique de différents éléments de volume de l'atome est responsable de la variation du facteur de forme atomique f avec l'angle de diffusion.

$$f(\theta) = \frac{\lambda}{\sin\theta} \int_0^\infty \rho(r) \sin \frac{4\pi r \sin \theta}{\lambda} dr$$
(1.8)

 λ est la longueur d'onde des rayons X diffusés.

 $\rho(r)$ la densité électronique d'un atome de rayon r.

$$f(0) = \int_{0}^{\infty} 4\pi r \rho(r) dr \tag{1.9}$$

Dans la direction du faisceau diffusent $\theta=0$: f(0)=Z (Figure 1.3).

Figure 1.3 : Variation du facteur de forme atomique avec l'angle de diffusion.

- Aux petites valeurs de $\frac{\sin\theta}{\lambda}$, les électrons effectifs dans la contribution à la diffusion sont majoritairement des électrons de valences, (r est grand).

- Aux grandes valeurs de $\frac{\sin\theta}{\lambda}$ ce sont principalement des électrons des couches internes(r est petit).

1.2.3. Diffraction par un cristal

1.2.3.1. Loi de Bragg

A l'échelle atomique, le cristal est formé d'un ensemble d'atomes arrangés suivant un accord strict. On peut considérer cet ensemble comme étant engendré par la répétition, dans les trois dimensions de l'espace d'un motif. Le phénomène de diffraction dans un cristal apparaît lorsque la longueur d'onde de rayons X est de l'ordre de la distance inter-atomique.

Bragg montre que, la diffraction des rayons X par un réseau à trois dimensions peut se conserver pour une réflexion sélective sur une famille de plans (hkl) tel que l'angle d'incidence et de réflexion satisfaisant la relation de Bragg s'écrit :

$$2d_{hkl}\sin\theta_n = n\lambda$$
 (1.10)

n : ordre de diffraction. d_{hkl} : distance inter-réticulaire. $2\theta n$: L'angle de diffraction.

La relation de Bragg s'établit fréquemment en considérant deux plans réticulaires consécutifs et en supposant que la diffraction est une simple réflexion sélective (Figure1.4)

Figure 1.4 : Loi de Bragg, réfléxion par les plans réticulaires.

1.3. Intensité diffractée

1.3.1. Densité électronique et Facteur de structure

L'ensemble des atomes d'un cristal peut être divisé en K familles, correspondant aux k atomes de la maille élémentaire. Tous les atomes occupant les sites homologues de toutes les mailles de cristal se trouvent aux extrémités du vecteur :

$$\vec{R_j} = \vec{n_k} + \vec{na} + \vec{nb} + \vec{pc}$$
(1.11)

 $\vec{r_k}$: Vecteur position de l'atome k par rapport à l'origine de la maille.

a, b et c sont les paramètres de réseau directe et m, n et p sont des entiers (Figure 1.5).

Figure 1.5 : Structure cristalline avec modulation des positions atomiques.

L'amplitude diffusée par tout le cristal s'écrit :

$$A = \sum_{J} a_{J} \exp(2\pi \vec{H} R_{J})$$
(1.12)

 \vec{H} :est un vecteur du réseau réciproque.

$$\vec{H} = \frac{\vec{s} - \vec{s_0}}{\lambda}$$

s et $\overline{s_0}$ sont les vecteurs unitaires des rayons incidents et diffractés. Cette

amplitude est nulle sauf si les conditions de diffraction sont vérifiées.

$$\vec{aH} = n_1$$
 $\vec{bH} = n_2$ $\vec{cH} = n_3$

donc l'amplitude s'écrit alors :

$$A = Na_{e} \sum_{k} f(\theta)_{k} \exp i2\pi (hx_{k} + ky_{k} + lz_{k})$$
(1.14)

N est le nombre de mailles dans le cristal.

Le terme $\sum_{k} f(\theta)_k \exp i2\pi (hx_k + ky_k + lz_k)$ est appelé le facteur de structure il représente le nombre fictif d'électrons que contiendrait la maille pour reproduire l'amplitude diffractée dans la direction $\vec{s} = \vec{s_0} + \lambda \vec{H}$.

Le facteur de structure F_{hkl} dépend de la nature chimique des atomes et de leur position spatiale.

$$F_{hkl} = \sum_{k} f(\theta)_k \exp(2\pi (hx_k + ky_k + lz_k))$$
(1.15)

Dans le cas où \vec{s} et $\vec{s_0}$ sont parallèles : F_{000} = le nombre des électrons dans la maille.

Une structure est résolue si les cordonnées et les paramètre d'agitation thermique des atomes constituants la maille cristalline sont connus. Pour déterminer les caractéristiques pour une structure cristalline donnée nous disposons des mesures expérimentales qui sont les intensités diffractées par un échantillon. La répartition tri périodiques des atomes dans la maille cristalline peut être considérée comme une distribution de charge définie en un point (x,y,z) par sa densité électronique $\rho(x,y,z)$ [4] :

$$\rho(x,y,z) = \frac{1}{V} \sum F_{hkl} \exp(-i2\pi(hx + ky + lz))$$
(1.16)

V : Volume de la maille cristalline

 F_{hkl} : Facteur de structure.

Pour accéder aux pics de la densité électronique représentés par les centres atomiques, il est impératif de déterminer complètement en module et en phase la grandeur complexe F_{hkl} . La seule information que nous pouvons déduire des données expérimentales est le module du facteur de structure ; en effet l'intensité diffractée est proportionnelle au carré de son module.

$$I_{hkl} = K_{\alpha}^{2} C(h,k,l) |F_{hkl}|^{2}$$
(1.17)

 K_{α} est un facteur d'échelle associé à l'amplitude, dans le cas des rayons X :

$$K\alpha = I_0 r_e^2 \left[\frac{\lambda^3}{\omega V^2} \right] V_{cr} A(\Phi)$$
(1.18)

où I_0 est l'intensité du faisceau incident . r_e le rayon de l'électron , λ la longueur d'onde, ω la vitesse de rotation angulaire, V le volume de la maille, V_{cr} le volume de cristal et $A(\Phi)$ le coefficient d'absorption.

C(h,k,l) est un facteur correctif englobant divers phénomènes géométriques et physiques.

1.3.2. Correction des intensités

Il est très emportant d'avoir des valeurs des intensités très correctes pour déterminer la position des atomes dans la maille cristalline. L'ensemble des intensités enregistrées à partir d'un diffractomètre constitue les données de base à l'état brut pour la résolution de la structure. Des corrections sur les intensités mesurées sont prises en considération avant le traitement des données.

1.3.2.1. Facteur de température

L'amplitude de diffusion par un atome est affectée par la vibration d'origine thermique de l'atome dans le cristal; chaque atome d'une structure vibre en générale d'une façon anisotrope. Et une description exacte du phénomène nécessite plusieurs paramètres qui dépendent de la direction.

La correction apportée au facteur de diffusion atomique appelé le facteur de température, s'écrit.

$$T_{j,\theta} = \exp \frac{\left\{-B_{j} \sin^{2} \theta\right\}}{\lambda^{2}}$$
(1.19)

où B_j est le paramètre de déplacement atomique de l'atome j qui s'exprime en fonction du déplacement quadratique moyen $\overline{U_j}^2$ de l'atome.

$$B_j = 8\pi^2 \overline{U_j}^2 \tag{1.20}$$

En général le facteur de température est incorporé directement dans l'expression du facteur de structure tel que :

$$F_{hkl} = \sum_{k} f_{j} \exp\left\{-B_{j} \frac{\sin \theta^{2}}{\lambda}\right\} \exp\left[2\pi (hx_{j} + ky_{j} + lz_{j})\right]$$
(1.21)

1.3.2.2. Facteur de Lorentz

Le facteur L de Lorentz ou facteur cinématique est lié au temps de diffraction c'est-à-dire au temps que met un nœud (hkl) selon sa position par rapport à la sphère d'Ewald pour la traverser.

L'expression de L dépend de la méthode de diffraction utilisée. La correction de Lorentz intervient dans l'uniformité de la durée de diffraction des taches. Pour la méthode équatoriale qu'on appelle aussi méthode cône plate adoptée par le diffractomètre utilisé, l'expression de L est la suivante :

$$L = \frac{1}{\sin 2\theta} \tag{1.22}$$

Le calcul de la vitesse normale de passage du nœud de la sphère d'Ewald conduira à une estimation du facteur de Lorentz dans le montage utilisé [5].

1.3.2.3. Facteur d'absorption

L'absorption est un facteur très emportant à inclure dans le calcul de l'intensité d'un faisceau diffracté. L'absorption est due aux effets additifs de la diffusion et de l'effet photoélectrique, dans le cas général :

$$\sigma_a(\lambda) = \sigma_d(\lambda) + T(\lambda)$$
^(1.23)

 $\sigma_d(\lambda)$ correspond à la diffusion, une partie des photons X qui ne sont ni transmis, ni absorbés est renvoyée dans toutes les directions.

 $T(\lambda)$ correspond à l'effet photoélectrique est de loin l'effet principal. Il correspond à la disparition complète des rayons X, son énergie quantique ayant été absorbée par un électron ; soit pour l'expulser complètement de l'atome et lui fournir de l'énergie cinétique s'il y a excès d'énergie (Photoélectrons), soit pour l'éjecter de sa couche et l'envoyer dans une place vacante située dans une couche supérieure. On observe des discontinuités dans les variations de $T(\lambda)$ pour les longueurs d'onde d'absorption. Entre ces discontinuités.

$$T(\lambda) = KZ^4 \lambda^3 \tag{1.24}$$

Où k est une constante, on remarque que $T(\lambda)$ varie régulièrement d'un élément à l'autre.

1.3.2.4. Facteur de polarisation

Un faisceau X usuel n'est pas polarisé. La polarisation provient des réflexions successives sur le monochromateur et sur l'échantillon. Cette polarisation dépend de l'arrangement du dispositif de diffraction mis en cours et de l'angle avec le quel le faisceau est diffracté [4].

- Sans monochromateur le facteur de polarisation dû à la diffraction sur les plans réticulaires est.

$$p = \frac{1 + \cos^2 2\theta}{2} \tag{1.25}$$

où 2θ est l'angle de diffraction .

Cette polarisation est la même que celle décrite au la relation (1,5).

- Avec un monochromateur placé avant l'échantillon le facteur devient.

$$p = \frac{1 + \cos^2 2\theta_m \cos^2 2\theta}{1 + \cos^2 2\theta_m}$$
(1.26)

où $2\theta_m$ est l'angle de diffraction du monochromateur.

Et pour un monochromateur placé après l'échantillon il se réduit à :

$$p = \frac{1 + \cos^2 2\theta_m \cos^2 2\theta}{2} \tag{1.27}$$

1.4. Quelques notions théoriques sur la Résolution structurale

1.4.1. Détermination du modèle structural

La difficulté fondamentale dans la détermination d'une structure par diffraction est le fait que les données cristallographiques disponibles se composent seulement des modules de facteur de structure et non de leur phase.

$$Fhkl = |F_{hkl}| \exp i\Phi_c \tag{1.28}$$

 $\Phi_{\rm c}$: est la phase non observée.

Le problème de la phase provient du fait que cette information manquante est nécessaire et doit être obtenue par un moyen ou un autre. Les méthodes de calcul maintenant de phase sont largement employées et sont automatisées à un point tel que la plupart des programmes fonctionnent en "technique de boite noire". Les données brutes entrent d'un coté et la structure en partie résolue apparaît de l'autre Généralement dans le cas des monocristaux organique les méthodes principales pour déterminer le modèle structurale sont les méthodes directes [6].

Les méthodes directes sont basées sur des hypothèses très simples : - La densité électronique est positive partout dans l'espace. les atomes sont des objets séparés. La densité électronique est fortement « piquée » à leur position.

- les amplitudes des facteurs de structures contiennent des informations sur leurs phases.

1.4.2. Affinement de la structure

L'affinement consiste à améliorer de proche en proche par la méthode de moindre carré, les positions atomiques données grossièrement par l'hypothèse de départ. Nous avons utilisé le programme CRYSTALS [7]. La quantité qui doit être minimisée au cours de l'affinement est :

$$\sum w(|F_0| - |F_c|)^2 \tag{1.29}$$

où l'indice $_0$ ou c indique que le facteur de structure est observé ou calculé et w désigne le poids statistique que l'on attribue à l'observation $|F_0|$.

- Pondération : Nous avons utilisé une pondération polynomiale de Chebyshev [8]. La pondération attribuée à la réflexion mesurée dépend de la précision de la mesure et fournit un schéma fiable pour l'attribution directe des poids empiriques lors de l'affinement par moindres carrés quand les erreurs sont fonction de $|F_0|$.
- Facteurs d'accord : Les quantités minimisées au cours de l'affinement sont le résidu R_w (pondéré) et R (non pondéré)

$$R_{w} = \left\{ \frac{\sum w(|F_{0}| - |F_{C}|)^{2}}{\sum w|F_{0}|^{2}} \right\}^{\frac{1}{2}}$$
(1.30)

et
$$R = \frac{\sum (|F_0| - |F_c|)}{\sum |F_0|}$$
 (1.31)

- Facteur de qualité S: L'accord entre le modèle choisi et la structure réelle est évalué par le facteur S (Goodness ou qualité) :

$$S = \left\{ \frac{\sum w(|F_0| - |F_C|)^2}{n - m} \right\}^{\frac{1}{2}}$$
(1.32)

n : nombre de réflexions dans l'affinement

m : nombre de paramètres dans l'affinement

Quand S tend vers 1 nous avons un bon affinement.

L'analyse des paramètres de déplacements atomique a été faite en utilisant les programmes CRYSTALS [7] en minimisant l'expression du facteur de confiance :

$$Rw = \left\{ \frac{\sum w |U_{obs} - U_{cal}|^2}{\sum w U_{obs}^2} \right\}^{\frac{1}{2}}$$
(1.33)

Où w est la pondération affectée et U_{obs} et U_{cal} sont les coefficients d'agitation thermique d'affinement [9].

1.4.3. Synthèse de Fourier

Les cordonnées des atomes d'hydrogène est déterminée théoriquement dans le cas des rayons X ou par une synthèse de Fourier, (dans le cas de diffraction de neutrons il est possible de bien localisés ces atomes). L'avantage spécifique de cette synthèse différence de Fourier provient du fait que, même lorsque les phases sont légèrement erronées, une carte de différence de Fourier est capable de montrer les écarts entre le modèle structural proposé et la réalité comme les atomes moquant par exemple[4].

Les coefficients de Fourier sont définis comme :

$$\Delta F = F_0 - F_C \tag{1.34}$$

Où \mathbf{E} et F_c sont les facteurs de structure observé et calculé.

Le calcul de synthèse différence nécessite l'utilisation des phases des F_C obtenues à partir des affinements et appliqué à la fois à F_0 et F_C , les coefficients de Fourier sont alors définis comme :

$$\Delta F = (|F_0| - |F_c|) \exp(\Phi_c$$
(1.35)

 Φ_c est la phase de facteur de structure calculé.

L'expression de la fonction de synthèse différence est :

$$\Delta \rho = \rho_o - \rho_c = \frac{1}{v} \sum_{hkl} \Delta F_{hkl} \exp_{-i2\pi(hx+ky+lz)}$$
(1.36)

les unités sont proportionnelles aux différences en densité d'électrons pour les rayons X ou en valeurs de nucléons pour les neutrons.

1.4.4. Conclusion

L'objectif d'une telle étude théorique est la compréhension des méthodes de résolution d'une structure. Dans notre cas nous avons centré nos études expérimentale (Chapitre 4) sur des cristaux moléculaires organiques de petite taille (environ 20 atomes) par l' applications des donné expérimentale de diffraction des rayons X et des logicielles les plus récentes dans cette domaine. Du une point du vu général On peut résumer les étapes suivant :

• Obtention de la maille élémentaire à partir des positions des pics de BRAGG mesurés par l'utilisation d'un modèle d'indexation automatique.

• Détermination des symétries possibles pour le groupe spatial, par l'extinction des réflexions systématiques. Dans notre cas nous utilisons le programme WINGX [10].

• Recherche du modèle structurale à optimiser en utilisant les méthodes directes à partir des modules des facteurs de structures observés nous avons utilisé le programme SHELX [1] ou SIR 97[11].

• Affinement par moindre carrés des intensités *I*_{HKL} et donc des modules de facteurs de structures dans notre cas nous avons utilisé le programme d'affinement CRYSTALS [7].

• Synthèse différence de Fourier pour vérifier l'écart entre le modèle structural proposé et la réalité.

CHAPITRE 2

Etude de la conformation moléculaire par les méthodes de chimie quantique (DFT)

2.1. Introduction

Il y a différentes techniques numériques de modélisation moléculaires dont les codes sont disponibles dans le monde académique ou commercial. Un exemple de ces méthodes, les méthodes de la chimie quantique, ces méthodes permettent le calcul de la structure électronique de systèmes tels que les atomes, les molécules neutres, les espèces radicalaires, les ions, les clusters d'atomes, les surfaces de solides, etc. Des algorithmes de calculs très précis sont utilisés pour minimiser l'énergie totale en fonction des paramètres structuraux et pour prédire la structure la plus stable des composés étudiés. Les fonctions d'onde ainsi obtenues permettent de calculer des propriétés électriques et magnétiques, de même qu'elles conduisent à l'obtention d'indices de réactivité et d'autres caractéristiques encore. Ces méthodes permettent donc aussi bien l'interprétation de résultats expérimentaux, que la prédiction de propriétés pour lesquelles aucune expérience n'a pu encore fournir d'informations.

Les propriétés moléculaires qui peuvent être calculées par la chimie quantique sont la géométrie moléculaire, et donc les stabilités relatives, les spectres de vibrations, les moments dipolaires et quadripolaires, les spectres électroniques et aussi des fonctions descriptives de la réactivité, telles que les charges atomiques et les fonctions de Fukui.

2.2. Equation de Schrödinger

La chimie quantique consiste en l'utilisation des méthodes basées sur la résolution de l'équation de Schrödinger indépendante du temps. En résolvant l'équation aux valeurs propres et vecteurs propres $H\Psi = E\Psi$, où H est l'hamiltonien non relativiste, E l'énergie totale et Ψ la fonction d'onde du système, il sera alors possible de déterminer toutes les informations du système étudié. Pour un système d'atomes à *n* électrons l'hamiltonien dans le repère de centre de masse du système s'écrit [12] :

$$H = Tn + Te + V(\vec{r}, \vec{R})$$
(2.1)

Tn : est l'énergie cinétique des noyaux

Te : l'énergie cinétique des électrons

 $V(\vec{r},\vec{R})$: le potentiel d'interactions électrostatiques où \vec{r} représente la position des électrons et \vec{R} la position des noyaux.

Le potentiel s'écrit comme la somme de trois termes :

$$V = V_{ee} + V_{en} + V_{nn}$$

Vee, *Ven* et *Vnn* sont les interactions électron-électron, électron-noyau, et noyaunoyau.

Les méthodes de calcul de la chimie quantique permettent de calculer l'énergie totale de ce système mais la résolution exacte de cet Hamiltonien est un possible, mis à part pour des systèmes mono-électronique donc il faut ajouter des approximations nécessaires telles que l'approximation orbitale et l'approximation de Born-Oppenheimer [13].

2.2.1. Approximation d'orbitale

Cette approximation suggère d'écrire la fonction d'onde à n électrons comme un produit de n orbital spatial à un électron. Cette approximation est valable pour un modèle de particules indépendantes dans lequel la répulsion inter-électronique est omise dans l'hamiltonien. De cette manière l'équation de Schrödinger à n électrons peut se séparer en n équations mono-électroniques. Cependant, la fonction d'onde ainsi obtenue ne satisfait plus le principe de Pauli. Ce problème est alors résolu en écrivant la fonction d'onde comme un *déterminant de Slater* construit sur la base de nspin-orbitales (où n/2 orbitales spatiales sont combinées à deux fonctions de spin possibles). Le problème réside alors dans l'obtention des meilleures spin-orbitales pour obtenir la fonction d'onde du système à n électrons.

2.2.2. Approximation de Born-Appenheimer

L'approximation la plus couramment utilisée est celle de Born-Appenheimer, elle permet de séparer le mouvement des électrons de celui des noyaux en se basant sur le fait que les électrons sont beaucoup plus légers et qu'ils bougent donc beaucoup plus rapidement que les noyaux. Les électrons sont ainsi considérés comme se déplaçant dans un champ moyen créé par des noyaux immobiles, et sont donc sujets à un potentiel nucléaire statique. L'équation de Schrödinger à *n* électrons et à K noyaux peut ainsi être séparée en une partie nucléaire et une partie électronique. Puisque la fonction d'onde nucléaire dépend uniquement des coordonnées des noyaux, la fonction d'onde électronique sera alors calculée pour une position donnée des noyaux et dépendra de paramètres liés aux coordonnées nucléaires, dont l'état électronique *i* peut s'écrire comme le produit d'une fonction d'onde électronique Ψ_i et d'une fonction d'onde nucléaire Ψ_n .

$$\Psi(\vec{R},\vec{r}) = \Psi_i(\vec{R},\vec{r}) * \Psi_n(\vec{R})$$
(2.3)

$$(T_e+V)\Psi_i(R,r)=E_i\Psi_i(R,r)$$
^(2.4)

$$\begin{bmatrix} T_N + E_i(\vec{R}, \vec{r}) \end{bmatrix} \Psi_n(\vec{R}) = E_{tot} \Psi_n(\vec{R})$$
(2.5)

L'hamiltonien électronique H_i équation (2,4) fournit l'enneigé E_i pour des positions fixes des noyaux, et l'équation (2.5) permet de calculer l'énergie totale du système [13].

2.3. Les méthodes de chimie quantique

Les méthodes de calcul de chimie quantique peuvent actuellement déterminer avec un grande précision (Mieux que 0.002Å pour les longueurs de liaison et que 0.1° pour les angles) la conformation d'une molécule isolée [9].

La théorie de ces méthodes est basée sur les considérations suivantes : - les interactions électroniques sont traitées de manière explicite et quantique - les interactions des noyaux sont calculées de manière classique (énergie d'interaction coulombienne)

l'Hamiltonien d'un système de k noyaux et n électrons est donné par l'équation :

$$H = -\sum_{A=1}^{R} \frac{\hbar^{2}}{2m_{A}} \Delta_{A} - \sum_{i=1}^{n} \frac{\hbar^{2}}{2m_{e}} \Delta_{i} - \sum_{A=1}^{k} \sum_{i=1}^{n} \frac{1}{4\pi\epsilon_{0}} \frac{Z_{A}e^{2}}{r_{Ai}} + \sum_{i=1}^{n} \sum_{j=1,j \ge 1}^{n} \frac{1}{4\pi\epsilon_{0}} \frac{e^{2}}{r_{j}} + \sum_{A=1}^{k} \sum_{B=1,B \ge A}^{K} \frac{1}{4\pi\epsilon_{0}} \frac{Z_{A}Z_{B}}{r_{AB}}e^{2}$$

$$(2.6)$$

où :

e et m_e sont la charge et la masse de l'électron et Z_A et m_A la charge et la masse du noyau A.

 r_{ij} , r_{Ai} et r_{AB} sont les distances entre l'électron i et j, la distance entre l'électron i et le noyaux A , et la distance entre les noyaux A et B respectivement.

La résolution exacte d'un tel hamiltonien est hors de portée de toutes les méthodes numériques. Il faut donc ajouter des approximations supplémentaires à celle de Born-Appenheimer et les méthodes se scindent en deux catégories Hartree- fock ou la théorie de fonctionnelle de la densité (DFT).

2.3.1. La méthode de Hartree-Fock

La méthode de Hartree-Fock (HF) consiste à négliger les corrélations électroniques. Les équations de HF[12] peuvent donc être considérées comme étant

des équations de Schrödinger décrivant un électron se déplaçant dans un potentiel moyen créé par les noyaux et les autre électrons restant. Les valeurs propres seront les énergie mono-électronique associées aux fonctions d'ondes qui correspondent dans ce cas à des orbitales. Cependant, ces équations ne sont pas réellement de type valeurs propres /vecteurs propres car les fonctions sont développées sur une base de dimension finie.

La fonction d'onde totale est le produit de fonctions mono-électronique et chaque fonction mono-électronique est elle même le produit d'une fonction de spinorbital. Une solution numérique des équations de HF conduisant à l'obtention d'orbitales atomiques est possible pour les atomes à cause de leur symétrie sphérique (le champ de potentiel étant considéré comme sphérique) ; cependant sa résolution pour des systèmes polyatomiques requiert des développements supplémentaires.

2.3.1.1. Signification de quelques bases gaussiennes

Il existe un grand nombre de bases de gaussiennes possibles. Les plus communément utilisées sont celles qui ont été développées par Pople & al. [14]. La plus simple est la base STO-3G, aussi appelée « base minimale ». Le sigle « 3G » signifie que les orbitales de type Slater (STO) sont représentées par trois fonctions gaussiennes. Le niveau suivant développé par Pople comprend les bases split-valence telles que 3-21G, 4-31G et 6-31G, où le premier chiffre représente le nombre de gaussiennes utilisées pour représenter les orbitales de cœur. Les orbitales de valence y sont représentées par deux fonctions qui sont composées du nombre de gaussiennes indiqué dans la seconde partie de la dénomination de la base. Ainsi la base 6-31G du carbone, par exemple, utilisera six gaussiennes pour représenter l'orbitale 1s, trois gaussiennes pour l'orbitale 2s et 1 gaussienne pour représenter les orbitales 2p.

Pour une plus grande flexibilité on peut encore rajouter des fonctions de polarisation. La dénomination la plus ancienne est l'ajout d'un astérisque sur la base en question (par exemple 6-31G*), et dans une désignation plus récente, le caractère de la fonction ajoutée est explicitement donné : 6-31G(d). La base $6-31G^*$ ou 6-31G(d) signifie ainsi qu'un jeu de fonctions **d** a été ajouté à tous les atomes (Sauf H) dans la molécule, alors que $6-31G^{**}$ ou 6-31G(p,d) signifie qu'un jeu de fonctions **p** a été ajouté aux hydrogènes et que des fonctions **d** ont été ajoutées aux autres atomes[12].

2.3.2. La méthode de la fonctionnelle de la densité

La *théorie de la fonctionnelle de la densité (DFT)* est actuellement la seule permettant l'étude de systèmes chimiques de grande taille avec la prise en compte des effets de la corrélation électronique de manière satisfaisante.

L'idée directrice de la théorie de la fonctionnelle de la densité (DFT) est basée sur le théorème de Hohenberg et Kohn [15]. L'énergie d'un système d'électrons peut être écrite en terme de la densité de probabilité électronique à un électron, ρ Pour un système de *n* électrons, $\rho(r)$ correspond à la densité électronique au point de l'espace *r*. L'énergie électronique $E(\rho)$ est une *fonctionnelle* de la densité électronique car à chaque fonction $\rho(r)$ est associée une seule énergie.

$$E[\rho(r)] = F[\rho(r)] + \int \rho(r) V_{ion} d^3r \qquad (2.7)$$

Où : $\rho(r)$: est la densité électroniques

*V*_{ion} : est le potentielle statique électron-ion

 $F[\rho(r)]$: est appelée fonctionnelle et est l'inconnue que il faut déterminer.

La fonctionnelle est une application qui associe un nombre, dans notre cas correspond c'est l'énergie E à une fonction, ici la densité électronique $\rho(r)$. Toutes les propriétés de l'état fondamental peuvent être obtenues, du moins en principe à partir de la densité de cet état fondamental, même si sa fonction d'onde est dégénérée [16]. Des applications pratiques de ces méthodes ont ensuite été possibles grâce aux travaux de Kohn et Sham [17] qui ont proposé, en 1965, un jeu d'équations monoélectroniques analogues aux équations de Hartree-Fock[12] à partir desquelles il est en principe possible d'obtenir la densité électronique d'un système et donc son énergie totale.

2.3.2.1. Les équations de Kohn-Sham

Kohn et Sham[17] ont montré que le problème pour un gaz d'électrons en présence de noyaux incluant les corrélations entre les électrons est équivalent au problème d'un seul électron évaluant dans un potentiel effectif non-local. Cette méthode, plus indirecte, est donc basée sur l'utilisation d'orbitales qui permettent d'évaluer avec une bonne précision l'énergie cinétique.

La base des équations de Kohn-Sham consiste à relier la densité électronique $\rho(r)$ avec l'orbitale comme :

$$\rho(r) = \sum n_i \psi_i^* \psi_i \tag{2.8}$$

Où *ni* est le nombre d'occupation.

Kohn-Sham ont proposé que l'énergie électronique totale se décompose de la manière suivante :

$$E_{DFT}[\rho(r)] = Ts[\rho(r)] + E_{ne}[\rho(r)] + J[\rho(r)] + E_{xc}[\rho(r)]$$
(2.9)

Où $T_{s}[\rho(r)] = \sum_{i} -\frac{\hbar^{2}}{2m} \int \psi_{i} \Delta \psi_{i} dr^{3}$: est l'énergie cinétique des électrons n'interagissant pas entre eux et ayant la densité électronique totale représentée à l'aide des orbitales mono-électronique { $\psi_{i}(r)$ }.

 $E_{ne}[\rho(r)] = \int \rho(r) V_{ion} dr^3 : \text{terme d'attraction entre le nucléon et l'électron.}$ $\rho(r) = \sum_{i}^{N} |\psi_i(r)|^2 \text{ où N est le nombre d'électrons dans le système.}$ $E_{ne}[\rho(r)] = \sum_{i}^{N} |\psi_i(r)|^2 : \text{terme d'attraction entre le nucléon et les électrons.}$ $J[\rho(r)] = \frac{1}{2} \iint \frac{\rho(r)\rho(r')}{|r-r'|} dr^3 dr'^3 : \text{représente le terme d'interaction coulombienne des}$ électrons entre eux. E_{xc} est le terme d'échange-corrèlation et s'écrit

$$Exc = (T - Tnc) + (E - Ec)$$
(2.10)

où T : est l'énergie cinétique exacte

Tnc : l'énergie du système d'électron non-corrélés.

E-Ec: est l'énergie électronique d'échange. Finalement le calcule numérique. de *Tnc* demande l'explication de la fonction d'onde et il faut résoudre l'équation self-consistant de Kohn-Sham.

$$\left[-\frac{\hbar}{2m}\nabla + V_{ion}(r) + V_H(r) + V_{xc}(r)\right]\psi_i(r) = \in_i \psi_i(r)$$
(2.11)

On définit Veff le potentiel effectif.

$$V_{eff} = V_{ion}(r) + V_{H}(r) + V_{xc}(r)$$
(2.12)

Avec:
$$V_H = e^2 \int \frac{\rho(r)}{|r-r'|} d^3r$$
 (2.13)

La potentiel d'échange - corrélation est donné formellement par la différenciation :

$$V_{xc}[\rho(r)] = \frac{\delta E_{xc}[\rho(r)]}{\delta \rho(r)}$$
(2.14)

La forme explicité de la dépendance fonctionnelle de l'énergie avec la densité électronique du système reste cependant de nature inconnue, et le théorème de Hohenberg et Kohn [15] ne dit rien quant à la manière de calculer l'énergie fondamentale E_0 à partir de ρ ou comment obtenir ρ sans préalablement trouver la fonction Ψ . A l'heure actuelle encore, il n'existe aucune procédure rigoureuse permettant de dériver exactement E_0 de la densité ρ et des approximations sont donc nécessaires. La quantité la plus importante est le terme d'échange- corrélation V_{xc} et la difficulté vient de son estimation en fonction de la densité électronique $\rho(r)$. Parmi les méthodes d'approximation qui permettent de déterminer ce terme :

- LDA (Local densité approximation) La difficulté principale dans le développement du formalisme de Kohn-Sham réside dans la construction des fonctionnelles d'échange - corrélation. L'approximation locale dite « LDA » stipule qu'en première approximation la densité peut être considérée comme étant localement constante. On peut dés lors définir l'énergie d'échange - corrélation de la manière suivante :

$$E_{xc}^{LDA} = \int e_{xc}(\rho) dr \qquad (2.15)$$

où $\rho_{rr}(\rho)$ est la densité d'énergie d'échange-corrélation.

Cette approximation découle directement du modèle du gaz homogène d'électrons. Par ailleurs, si l'on décompose l'énergie d'échange - corrélation en deux termes (Densité d'énergie d'échange e_x et densité d'énergie de corrélation e_c) tel que :

$$\boldsymbol{e}_{xc}(\boldsymbol{\rho}) = \boldsymbol{e}_x + \boldsymbol{e}_c \tag{2.16}$$

- LSDA (Local spin densité approximation) : l'approximation de la densité de spin local permet de prendre en compte des densités de spin α et β non identiques.

- GGA (Généralised gradient approximation ou gradient correct) La densité électronique d'un système est non seulement pas uniforme, mais peut même varier très rapidement dans l'espace (lorsqu'on passe d'une couche électronique à l'autre dans un atome, ou lorsqu'on passe d'un atome à l'autre dans une molécule). La première amélioration que l'on puisse apporter à la méthode LDA consiste donc à exprimer la fonctionnelle d'énergie d'échange - corrélation en fonction de la densité électronique et de son gradient.

Cette technique est appelée « approximation de l'expansion du gradient » (GEA). Elle se révèle efficace pour les systèmes dont la densité électronique ne varie que lentement. Pour les systèmes chimiques, il s'avère qu'elle donne des résultats moins bons que la LDA. La solution consiste alors à réécrire l'expression d'échange corrélation sous une forme similaire à LDA :

$$E_{XC}^{GGA} = \int \mathbf{e}_{XC}^{GGA}(\rho, \nabla \rho) dr \qquad (2.17)$$

où e_{xc}^{GGA} est la densité d'énergie d'échange - corrélation. La difficulté réside dés lors dans la recherche d'expressions analytiques de e_{xc}^{GGA} .

 Hybride : les méthodes hybrides utilise l'énergie d'échange calculé exactement par la méthode de Hartree-Foock. Elles évaluent sa contribution dans le terme d'échange corrélation. La détermination de la fonctionnelle hybride de corrélation d'échange B3LYP est :

$$E_{xc} = (1 - a)E_x^{LSDA} + aE_x^{exact} + b\Delta E_x^{B88} + E_c^{LSDA} + cE_c^{GGA}$$
(2.22)

les paramètre a, b, et c sont déterminés par « fitting » à partir des données expérimentales.
2.3.2.2. Codes de DFT

Un code de DFT est caractérisé par :

- ♦ Ses condition aux limites (périodiques ou non).
- ◆ Le traitement des électrons de coeur (pseudo-potentiel ou tous électrons).
- ◆ Les bases des fonctions d'onde.
- ♦ L'expression du terme d'échange- corrélation utilisé

2.3.2.3. Présentation de quelques fonctionnelles de la DFT

Les notations pour diverses modèles DFT sont données en combinant les noms pour la fonctionnelle d'échange - corrélation. Dans le tableau2.1 sont données quelques fonctionnelles disponibles dans la chaîne de programme Gaussian 98 [18].

Tableau 2.1 : Quelques fonctionnelles d'échanges disponibles et utilisées da	ns la
chaîne de programme Gaussian 98.	

Nom	Description	Mots clés		
	La fonctionnelle de correlation Vosko, Wilk, et			
	Nusaire 1980 est bien appropriée pour traiter des			
VWN	gaz d'électron uniforme souvent connu sous le	VWN5		
	nom de densité de spin local (LSD) .			
	La fonctionnelle de corrélation Lee Yang et Parr			
IVD	associe à la fois des termes locaux et non-	LYP		
	locaux.			
	La fonctionnelle Becke 1988 associe le terme			
Poeko 1088	d'échange avec des corrections portant sur le	LIED		
DECKE 1900	gradient de densité.	111'D		

	L'expression de la fonctionnelle Becke a la	
	forme :	
Les trois paramètres hybrides de la fonctionnelles Becke utilisant la fonctionnelle de corrélation LYP.	TOTME : $A*E_x^{slater} + (1-A)*Ex^{HF} + B*\Delta E_x^{Becke} + E_c^{VWN} + C*\Delta E_c^{non-local}$ ou le terme de corrélation non locale est fourni par l'expression de LYP, et VWN est une autre fonctionnelle. Les constantes A, B et C sont déterminées par Becke. LYP associe à la fois les terme local et non local. La fonctionnelle de corrélation utilisée est: $C*E_c^{LYP} + (1-C)*E_c^{VWN}$ En d'autres termes, VWN est utilisé pour fournir le terme de corrélation local excessif, de corrélation, alors que LYP contient un terme local essentiellement équivalent	
Un paramètre de		
fonctionnelle hybride		
avec une fonctionnelle	Fonctionnelles basées sur des gaz uniformes	
modifié	utilisant les fonctionnelles d'échanges -	MPW1PW91
Echange - corrélation	corrélations de Perdew-Wang91 modifiées	
de Perdew-Wang		
modifié		

2.3.2.4. Présentation de quelques jeux de bases utilisés par le code de Gaussian98

La plupart des méthodes requièrent un choix de base bien spécifié ; si aucune base n'est donnée dans le programme alors la base STO-3G est automatiquement prise en compte.

Nous citons quelques jeux de bases utilisés dans la chaîne de programme Gaussian 98[18] (Tableau 2.3) :

		Fonctions de	Fonctions de
Basis set	Appliqué sur	Polarisation	Diffusion
STO-3G	H-Xe	*	+
3-21G	H-Xe	* or * *	
6-21G	H-CI	(d)	
4-31G	H-Ne	(d) or (d ,p)	
6-31G	H-Kr	(3df, 3pd)	+ +
6-311G	H-Kr	(3df, 3pd)	+ +
D95	H-CI ^⁰	(3df, 3pd)	+ +
D95V	H-Ne	(d) or (d,p)	+ +
SHC	H-Cl	*	
CEP –4G	H-Rn	*	
CEP-31G	H-Rn	*	
CEP-121G	H-Rn	*	
LanL2MB	H-Ba,La-Bi		
LanL2DZ	H ,Li-Ba,La-Bi		
SDD	All but Fr and Ra		

Tableau 2.3 : Quelques jeux de bases utilisés dans Gaussian 98.

2.3.2.4. Conclusion

Toutes les méthodes de chimie quantiques demandent des temps de calculs très variables, et leur choix dépendra du niveau de précision souhaité, ainsi que de la taille du système. Les ordinateurs ont fait, il est vrai, d'énormes progrès ces dernières années, mais certains calculs sont, à l'heure actuelle encore, prohibitifs pour des systèmes contenant un très grand nombre d'atomes comme les protéines, par exemple.

Au coure de ce travail (Chpitre5). Nous avons employé la méthode de DFT par l'utilisation des possibilité de programme Gaussian98 [18] pour le calcule de la conformation géométrique calculé de molécule de théophylline (la molécule isolé) et encore le calcule des modes de vibrations interne. Les calcules ont été faits avec des bases Gaussiennes 6-31G(d), 6-31G(d,p) et avec des fonctionnelles différentes B3LYP et MPW1PW91 respectivement .

Chapitre 3

Rappels bibliographiques sur des structures de quelques cristaux moléculaires aromatiques et quelques notions théoriques sur la spectroscopie infrarouge

3.1. Introduction

La détermination des structures cristallines aux rayons X, aux neutrons (sinon par diffraction électroniques) permet de proposer des modèles moléculaires tout en fixant la marge d'incertitude probable pour les longueurs de liaison et les angles.

Nous avons choisi dans ce chapitre d'étudier quelques structures moléculaires des produits aromatiques substitués par des halogènes et /ou des méthyles. Et d'une autre façon nous présenterons un cadre théorique sur la spectroscopie infrarouge.

Pour les produits aromatiques monocycliques ou benzéniques, la connaissance de structure cristalline du benzène et sa conformation moléculaire aux rayons X à été relativement tardive. En 1928, Cox [19] avait établi que la molécule du benzène avait un noyau centro - symétrique et de largeur égale à 2.49A°. Mais il a fallu attendre 1958, pour préciser la structure aux rayons X à 270 K (Soit 7 degrés seulement audessous de la température de fusion). La conformation était compatible avec la symétrie 6/mmm pour noyau carboné.

À la température ambiante, presque tous les benzènes hexasubstitués par des halogènes et des méthyles ($C_6X_n(CH_3)_{6-n}$) appartiennent également au groupe d'espace monoclinique P2₁/c ou P-1 en particulier les composés 2,4,5,6-Tetrabromo-1,3-Dimetylbenzene [20], 1,2,4-tricloro-3,5,6-trimethylebenzene [21], Pentabromotoluene [22], 1,2,4,5-Tetracloro-3,6-Dimethylebenzene [23], 1,4-Dicloro-2,3,5,6-Tetramethylebenzene[24], 1,3,5- Tricloro-2,4,6-Trimethylebenzene [25], 1,3,5- Triiodo-2,4,6-Trimethylebenzene[9]. Pour la famille des produits aromatiques à deux cycles (notre cas) nous présentons quelques structures similaires de la structure de la théophylline.

3.2. Rappel sur quelques molécules monocycliques benzéniques

Les molécules monocycliques benzéniques sont approximativement hexagonaux avec un moyen des distances de liaison de cycle benzéniques est C-C=1.39 \pm 0.02Å. Les noyaux benzéniques sont rigoureusement plans avec une amplement suivant b. 3.2.1. Effet de la substitution d'un ou de plusieurs hydrogènes sur la conformation du noyau benzénique

3.2.2. Effet de la substitution d'un atome d'hydrogène

La résolution de nombreux composés substitués du benzène solide à la température ambiante a montré que la substitution par un groupement donneur ou accepteur semblait provoquer une modification de la géométrie parfaitement hexagonale des noyaux benzéniques en agissant tout particulièrement sur les angles. Domenicano et Coll [26] ont montré que si le substituant est un groupe fonctionnel qui attire des électrons la déformation globale a pour effet d'abaisser la symétrie de 6/mmm à 2m et peut se décrire comme :

- un accroissement de quelques degrés au-dessus de 120° pour l'angle α du cycle en face du substituant X.

- une décroissance mineure des deux angles adjacents endocycliques β .

- un raccourcissement de 10^{-2} à 2.10^{-2} Å des liaisons géminales autour du point de substitution (Figure 3.1).

Figure 3.1 : Notion utilisée pour un benzène monosubstitué.

Nous citerons un exemple significatif qui montre l'effet d'ouverture dû à la substitution d'un hydrogène par un élément fortement accepteur (Chlore). L. André et

al [27] ont montré l'influence significative du chlore qui augmente de 2.4° l'angle de 120° du cycle (Figure 3.2).

Figure 3.2 : Modèle moléculaire de la molécule de chlorobenzéne Distances et angles.

Domenicano & al. (1975)[26], rappellent les bases de l'interprétation des déformations du noyau benzénique dans le cas de la théorie de l'hybridation.

Le caractère p d'un atome tend à se concentrer dans les orbitales hybrides dirigés vers les substituant électronégatifs. Ces électrons p sont en effet moins fortement liés à l'atome que les électrons s et subissent une charge nucléaire effective moindre.

Dans le cas du benzène ceci s'exprime par le déplacement de la densité électronique vers le groupement fonctionnelle attracteur grâce à un accroissement du caractère p de l'orbitale liante σ du carbone pointant vers le groupe, ceci implique une diminution du caractère p de deux autre orbitales hybrides du carbone et provoque :

- un accroissement de l'angle endocyclique α .

- des valeurs légèrement plus faibles pour les longueurs de liaisons adjacentes C-C.

Dans le cas de substituant donneurs c'est l'effet inverse qui est observé.

3.2.3. Dérivés polysubstitués

Un exemple de dérivés benzéniques polysubstitués le Triclorotriméthylebenzene ou TCM où la structure à été résolue par M.Tazi (1990)[25].

A la température ambiante le TCM cristallise dans le groupe d'espace

P-1 avec
$$a=7.738(6)$$
 Å $b=8.842(4)$ Å $c=8.880(3)$ Å
 $\alpha=59.74(3)^{\circ}$ $\beta=66.51(5)^{\circ}$ $\gamma=73.04(4)^{\circ}$
 $V=478.1$ Å ³ Z=2

La molécule de TCM est représentée dans la fgure3.3 Ainsi, les valeurs moyennes des liaisons sont C_{ar} - C_{ar} =1.389(4) Å, C_{ar} -Cl=1.75 A°et C_{ar} - C_{me} =1.53 Å Une vue de la molécule est donnée dans la figure 3.3.

Figure 3.3 : Vue de la molécule du TCM.

Figure 3.4 : Représentation du motif de la maille du TCM.

3.3. Rappel sur quelques molécules polycycliques

► Théophylline anhydre (1,3-Demithylexanthine) C₇H₈N₄O₂

Yukiko Ebisuzaki & al [28] ont obtenu des cristaux purs de la théophylline en utilisant la méthode de sublimation. Ce produit cristallise dans le groupe d'espace orthorhombique $Pna2_1$ avec quatre molécules par maille

a=24.612 (2)Å	b=3.8302(4)Å	c=8.5010(5)Å
$Pna2_1$ Z=4	V=801.38(12) Å	3

La figure 3.5 représente la molécule de théophylline et la figure 3.6 représente la maille cristalline.

Figure 3.5 : Géométrie moléculaire du Théophylline anhydre.

Figure 3.6 : La maille cristalline de Théophylline anhydre Z=4 et group d'espace Pna2_{1.}

▶ 1,7,9-trimethyle-2,6-purinedione monohydraté C₈H₁₀N₄O₉.H₂O

L'étude de George Ferguson [29] a montré que le 1,7,9-trimethyle-2,6purinedione monohydratée cristallise dans le système monoclinique avec quatre molécules par maille : $C_8H_{10}N_4O_9.H_2O$

a=5.357 Å b=17.759 Å c=10.251 Å
$$\beta$$
=101.34°

P21/c Z=4 V=956.2(6) Å³

La figure 3.7 représente la conformation moléculaire de C₈H₁₀N₄O₉.H₂O

Figure 3.7 : Géométrie moléculaire du 1,7,9-trimethyle-2,6-purinedione monohydratée.

▶ 1,3,7-triméthylexanthine (Caféine)

La structure chimique de la molécule de caféine est similaire de la structure chimique de la molécule de théophylline il y a que un group méthyle supplémentaire dans la molécule de caféine. La structure à été résolue par J.M. Leger (1977) [30]. La figure 3.8 représente la géométrie moléculaire.

Figure 3.8 : Modèle moléculaire du Caféine par J.M. Legere (1977).

► Rappels bibliographiques sur la théophylline monohydratée (1,3diméthylexanthine monohydratée) C₇H₈N₄O₂.H₂O

La structure précédemment rapportée par Sutor 1958[31] cristallisant dans le groupe d'espace P2₁, avec Z = 4, semble être incorrecte. Cette étude reprise par Changquan Sun et al [32] a montré que le groupe d'espace est P2₁/n mais avec un manque d'interprétation sur les atomes d'hydrogène (Présence de désordre sur un atome d' hydrogène de la molécule d'eau et les trois hydrogènes de méthyle C_{m13} (Figure 3.8). Nous avons repris ce travail à partir des rayons X et nous présenterons un calcul théorique basé sur la chimie quantique faisant appel à des techniques très récentes. Ce travail fera l'objet d'une grande partie de ce mémoire et sera présenté dans le chapitre 4 et 5.

Figure 3.8 : Géométrie moléculaire du Théophylline monohydratée (Sun (2002)).

3.4. Spectroscopie infrarouge

La spectrométrie infrarouge est la mesure de la longueur d'onde et de l'intensité de la lumière infrarouge moyenne pour un échantillon. L'infrarouge moyen dispense suffisamment d'énergie pour stimuler les vibrations moléculaires à des niveaux d'énergie supérieurs. La longueur d'ondes des bandes d'absorption infrarouges est caractéristique des types particuliers de liaisons chimiques, et la spectroscopie infrarouge trouve sa plus grande utilité dans l'identification des molécules organiques et organométalliques. La haute sélectivité de la méthode rend possible l'estimation de la substance à analyser dans une matrice complexe. Cette méthode implique l'examen des mouvements de torsion, de courbure, de rotation et de vibration des atomes dans une molécule.

3.4.1. Spectres des radiations électromagnétiques

Une molécule qui absorbe l'énergie fournie par une radiation électromagnétique, peut subir plusieurs types d'excitations. Peut être électronique, rationnelles, peut conduire à un changement d'orientation de spins nucléaires, à déformations de liaisons.

Le tableau 2.1 [33] montre les domaines d'absorption correspondant à des régions différentes du spectre électromagnétique.

Rayonnement	Longueur d'onde	Energie d'excitation	Type d'excitation
Rayons X, rayons Ultraviolet	< 100 nm	> 286 Kcal	
Lointain	100-200nm	286-143 Kcal	électronique
Proche	200-350nm	143-82 Kcal	électronique
Visible	350-800nm	82-36 Kcal	électronique
Infrarouge Infra proche	0,8-2,0 μm	36-14,3 Kcal	déformation des
			bandes, et déformation des liaisons
Infra rouge	2- 16 μm	14.3-1,8 Kcal	déformation des liaisons
Infra lointain	16-300µm	1,8-0,1kcal	déformation des
Micro-ondes	1 cm	10 ⁻⁴ Kcal	rotation
Radiofréquences	metres	10 ⁻⁴ Kcal	transition énergétiques de spin électronique et nucléaires

 Tableau 3.1 : Domaines de radiation correspondant à des régions différentes du rayonnement électromagnétique.

Lorsqu' une molécule est excitée et passe d'un état d'énergie inférieure à un état d'énergie supérieure par absorption d'une radiation électromagnétique les fréquences v de cette radiation est donnée par la relation.

$$E=h\nu \tag{3.1}$$

Dans la quelle E est l'énergie absorbée et *h* la constante de planck.

On peut exprimer cette relation en fonction de la longueur d'onde, en tenant compte de l'égalité.

$$v = \frac{c}{h} \tag{3.2}$$

nous avons alors:

$$E = \frac{hc}{\lambda}$$
(3.3)

Où λ est la longueur d'onde, et *c* la vitesse de la lumière, le nombre d'onde σ est défini comme l'inverse de la longueur d'onde elle-même, en raison de ses valeurs numérique plus pratiques.

$$\sigma = \frac{1}{\lambda} \tag{3.4}$$

 σ est en cm^{-1} si λ est exprimée en cm

Les domaines de l'infrarouge et ultraviolet sont subdivisés en sous régions. La relation (3.3) montre que l'énergie d'excitation est inversement proportionnelle à la longueur d'onde.

3.4.2. Relation entre les fréquences vibrationnelles et les caractéristiques de liaisons

En première approximation, toues les longueurs de liaison simples possèdent des constantes des forces similaires et l'énergie nécessaire pour allonger ou raccourcir une telle liaison d'une quantité δl est donnée par la relation :

$$E = k \frac{\delta l^2}{2} \tag{3.5}$$

Le paramètre k est appelé constante de force, et mesure la raideur de la liaison qui peut être considérée comme un ressort. En effet, la quantité δl représentant l'allongement (ou le raccourcissement) de la liaison, traduit la loi classique d'allongement d'un ressort (lois de Hooke). Les constantes de force pour les liaisons doubles X=Y et pour les liaisons triples X=Y, valent respectivement environ deux fois et trois fois la valeur d'une liaison simple.

Si dans une liaison X–Y la masse de l'atome Y est très supérieure à celle de X, la fréquence en cm^{-1} de vibration de la liaison est donnée par la relation :

$$\nu = \frac{1}{2\pi c} \sqrt{\frac{k}{m_x}} \tag{3.6}$$

Dans la quelle k est la constante de force de la liaison, m_x la masse de l'atome X, et c la vitesse de la lumière. Pour le même atome X les fréquences de vibration des liaisons X-Y, X=Y, X=Y, sont approximativement dans le rapport $1, \sqrt{2}, \sqrt{3}$. La fréquence ν de la vibration de valence étant proportionnelle à $\frac{1}{\sqrt{m_x}}$, on notera que lorsque m_x augmente cette fréquence diminue. Ainsi, en raison de la petitesse de la masse d'hydrogène les fréquences des liaisons sont exceptionnelles élevées.

3.4.3. Vibration dans les molécules poly-atomiques

Considérons une molécule composée de N atomes. 3N coordonnées sont alors nécessaires pour repérer les différentes positions des atomes. Le mouvement global de cette molécule est repéré par 6 coordonnées (3 pour la translation du centre de gravité, et 3 pour les rotations du système autour de celui-ci) ou seulement 5 dans le cas des molécules linéaires (la rotation autour de l'axe de la molécule n'a pas de signification physique), il reste par conséquent 3N-6 (ou 3N-5 pour les molécules linéaires) variables attribués aux mouvements de vibration.

3.4.3.1. Cas d'une molécule linéaire : le dioxyde de carbone

Composée de trois atomes, la molécule de dioxyde de carbone (CO_2) possède quatre mouvements de vibration indépendants sur lesquels tout mouvement de vibration peut se décomposer. Ces mouvements sont appelés modes propres de vibration. Ces différents mouvements sont dans la figure 3.9 :

Figure 3.9 : Les quatre modes propres de vibration du dioxyde de carbone.

D'un point de vue général, les différents modes sont classés en fonction de deux paramètres :

- un mode de vibration qui modifie les longueurs des liaisons est dit d'élongation, sinon, c'est une vibration de déformation angulaire (plane ou non),

- un mode de vibration qui conserve la symétrie moléculaire est dit symétrique, il est asymétrique s'il conduit à la perte d'un ou plusieurs éléments de symétrie de la molécule.

Parmi les différents modes de vibration du dioxyde de carbone, seuls trois modifient le moment dipolaire électrique de la molécule (dont deux sont dégénérés) et seront donc actifs en infrarouge. En pratique le dioxyde de carbone présente une absorption à 2349 cm⁻¹, souvent observée sur les spectres utilisant l'air comme milieu de référence du fait d'une mauvaise compensation.

3.4.3.2. Cas d'une molécule non linéaire : la molécule d'eau et le group méthylène

La molécule d'eau (H₂O) est composée de trois atomes et est de géométrie coudée, elle possède par conséquent trois modes propres de vibration (Figure 3.10)

Figure 3.10 : Les modes propres de vibration de la molécule d'eau.

Les différents modes de vibration du groupe méthylène (CH_2) ou plus généralement d'un carbone tétraédrique sont similaires, mais du fait de la présence d'autres substituant, il possède six modes (Figure 3.11).

Figure 3.11 : Les modes propres de vibration du groupe méthylène.

3.4.4. Différentes zones du spectre en infrarouge

D'une manière générale, les masses des atomes étudiés en chimie organique (C, N, O...) sont quasiment identiques, de même, les énergies des liaisons sont relativement semblables, ce qui conduit à dégager différentes zones du spectre en fonction de l'absorption observée. La figure.3.12 représente les différentes zones du spectre infrarouge :

Figure 3.12 : Les différentes zones du spectre infrarouge.

✤ Les vibrations d'élongation des liaisons O-H et N-H

En phase gazeuse, les vibrations d'élongation des liaisons O-H et N-H se présentent sous la forme d'une bande fine, respectivement entre 3590 et 3650 cm⁻¹ et entre 3300 et 3500 cm⁻¹. En solution ou en liquide pur, les hydrogènes sont engagés dans des liaisons H, ce qui a pour effet, d'une part d'affaiblir la liaison (baisse du nombre d'onde) et d'autre part de provoquer un élargissement des raies par effet de solvatation.

✤ Les vibrations d'élongation des liaisons C-H

Les bandes de vibration d'élongation des liaisons C-H s'étendent sur une plage allant de 2850 à 3100 cm⁻¹. Un des intérêts principaux est que les vibrations des liaisons C-H dépendent largement de l'atome de carbone portant l'hydrogène : les hydrogènes liés à un carbone saturé présentent leurs bandes de vibration en deçà de 3000 cm⁻¹, alors que dans le cas d'un carbone insaturé, ces bandes sont au-delà de 3000 cm⁻¹.

♣ Les vibrations d'élongation des liaisons C=O

La vibration d'élongation de la liaison C=O absorbe entre 1650 et 1800 cm⁻¹, région peu sollicitée par d'autres absorptions, et est donc facilement reconnaissable. De nombreuses informations peuvent être obtenues à partir de la position de la bande d'absorption.

♣ Les vibrations d'élongation des liaisons de vibration de déformation dans les composés aromatiques

Les vibrations de déformation ont en général une fréquence d'absorption plus basse et une intensité plus faible que les vibrations d'élongation, ce qui amène les bandes dans la zone d'empreinte digitale et rend leur repérage et leur analyse délicate. Toutefois, dans le cas des composés aromatiques, les bandes de déformation hors du plan, situées entre 680 et 900 cm⁻¹, sont intenses et permettent de déterminer les différentes substitutions du cycle aromatique.

3.5. Conclusion

La nature de la substitution (atomes donneur ou accepteur) possède un grande importance sur la géométrie de cycle benzénique (dans notre cas le cycle xanthine) particulièrement sur les angles, ce qui explique les effet d'ouvertures et fermeture des angles endocycliques en fonction des atomes substitués. Et d'une autre façon le mouvement de la molécules est dépendant de chaque liaison (mode de vibration est caractéristiques d'une fréquence d'absorption IR) ce qui permet de séparer les différents mouvements de la molécule en fonction des fréquences d'absorption IR mais expérimentalement il y a des région du spectre de la molécule très compliquée, par suit de la couplage des nombreuse vibration de valence des liaisons C-C et des multiples vibrations de déformation des liaisons C-H, la ventage de calcule de DFT (Chapitre 5) permette de séparé touts les modes de vibration.

CHAITRE 4

Détermination de la structure et spectroscopie IR de la 1,3-Diméthylexanthine monohydratée (C₇H₈N₄O₂.H₂O) ou la Théophylline monohydratée à 293K

4.1. Introduction :

La structure cristalline de la 1,3-diméthylexanthine ($C_7H_8N_4O_2.H_2O$) appelée théophylline monohydratée a fait l'objet de plusieurs études cristallographiques. La structure a été résolue une première fois par les rayons X à 295 K en 1958[31] par Sutor qui a montré qu'elle cristallise dans le groupe d'espace P2₁ avec quatre molécules par maille. Cette étude reprise aux rayons X en 2002 à la température de 173K par Sun [32] a montré que cette structure cristallise dans le groupe d'espace P2₁/n. Dans notre travail, nous avons cependant repris l'étude cristallographique et spectroscopique de la théophylline monohydratée à partir de techniques expérimentales très récentes et de moyen de calcul nouveau qui sera présentée dans ce chapitre.

4.2. Détermination de structure de la théophylline monohydraté à 293 K

4.2.1. Etude expérimentale

4.2.2. Croissance des cristaux

Nous avons préparé de gros monocristaux par évaporation lente à partir d'une solution de théophylline saturée dans l'acétone .Les monocristaux obtenus sont des petites aiguilles de couleur blanche. La croissance de ces monocristaux se fait suivant l'axe **c**. Ces aiguilles font plusieurs mm de longueur et ont une section de quelques centièmes de mm^2 . L'examen des cristaux au microscope polarisant et aux rayons X a révélé que les cristaux obtenus à partir de solutions sont généralement maclés et il a fallu en conséquence examiner un grand nombre de cristaux pour trouver des monocristaux vraiment unique .

4.2.3. Dispositif expérimental utilisé

Le diffractomètre piloté par un ordinateur comporte « quatre cercles » c'est à dire les quatre mouvements appelés ϕ , ω , χ et 2θ . Les trois premiers concernent le mouvement du cristal et le dernier la position du détecteur.

Les trois rotations ϕ , α , χ amènent chaque nœud du réseau réciproque dans le plan du cercle équatorial de la sphère d'Ewald.

Le cercle 2θ centré sur le cristal, fait tourner le compteur dans un plan horizontal pour l'aligner avec la direction du rayon diffracté. Ainsi il recueille chaque tache sauf si le cercle 2θ s'interpose entre le cristal et le compteur, la figure 4.1 représente le diffractomètre quatre cercles utilisé dans notre expérience.

Figure 4.1 : Equipement du diffractomètre quatre cercles utilisé pour la collecte des intensités (Université de Constantine)

4.2.4. Collecte des intensités

Le cristal choisi est installé sur la tête goniométrique du diffractomètre. Il n'a pas besoin d'être orienté initialement. En effet un programme d'indexation détermine la maille et la matrice d'orientation à partir de 25 réflexions maximums repérées par recherche automatique de pics .

Selon le système cristallin, une partie de l'espace est exploré donnant l'intensité diffractée par les différents plans (hkl) du réseau. Au cour de la collecte des intensités, une tache de contrôle est mesurée périodiquement ; elle sert de contrôle d'orientation et de stabilité du cristal.

L'enregistrement des intensités diffractées à été effectué sur un monocristal de dimension $0.4 \times 0.3 \times 0.3$ mm avec $\lambda(MoK\alpha)$ et monochromateur de graphite. Le mode de balayage est $\frac{\omega}{2\theta}$ avec $\theta \le 24.0^{\circ}$. Les données cristallines sont les suivantes :

Nombre de réflexions mesurées : 1551 Nombre de réflexions indépendantes : 1418 Le domaine d'enregistrement est : $5 \le h \le -5$ $17 \le k \le 0$ $15 \le l \le 0$ Nombre de paramètres : 153 On obtient les données suivantes : Groupe d'espace : P $2_{1/n}$ a = 4.482(1) Å*b*= 15.32(9) Å c = 13.264(1) Å $\alpha = 90.0000^{\circ}$ $\beta = 98.546(6)^{\circ}$ $\gamma = 90.0000^{\circ}$ $V=904.9(11) \text{ Å}^3$ Z=4 $F_{000} = 416.000$ Densité calculée : 1.455g.cm⁻³ Coefficient d'absorption linéaire : 0.1211mm⁻¹ Nombre de réflexion avec I $\geq 3 \sigma_{(I)}$: 1400 θ max = 23.9806° R initial .16 88%

Coefficient d'extinction secondaire : 4.141

R=4.77% et $R_w = 3.70\%$

S= 1.2

Densité résiduelle maximale $\Delta \rho_{min} = -0.18e \text{ Å}^{-3}$

Densité résiduelle minimale $\Delta \rho_{max} = 0.20 e \text{\AA}^{-3}$

La résolution de la structure à été menée grâce au programme SHELX [1]. Les positions des 14 atomes de l'unité asymétrique à l'exception des atomes d'hydrogène ont été déduites du jeu de phase le plus probable à partir d'un ensemble de caractéristiques calculés par ce programme.

4.2.5. Affinement de la structure

Les affinements ultérieurs par moindres carrés ont été exécutés avec le programme CRYSTALS [7] et ont porté d'abord sur 127 paramètres, un facteur d'échelle et les atomes de carbones, d'azotes et d'oxygènes, chacun avec 3 coordonnées puis 6 termes de déplacement atomique, puis sur 153 paramètres. Les 26 autres paramètres correspondent aux 10 atomes d'hydrogènes, chacun avec trois

cordonnées plus un paramètre de déplacement atomique isotrope en tenant compte des contraintes imposées aux atomes d'hydrogène. Les 1400 réflexions observées dont les intensités satisfont à I \geq 3 σ (*i*) ont été conservées pour les affinements et affectées d'un poids unitaire *w*=1 au début de l'affinement et d'un poids *w* = 1/(1+*w*F₀) en fin d'affinement, nous avons utilisé une pondération polynomiale de Chebyshev avec cinq paramètres [34]. Les cinq paramètres polynomiaux de Chebyshev utilisés dans le dernier cycle d'affinement sont 0.495, -0.165, 0.410, -0.121, 0.114. Après affinement du facteur d'échelle, plusieurs cycles d'affinement des cordonnées atomiques et des paramètres d'agitations de déplacements atomiques isotropes des 14 atomes de l'unité asymétrique (exceptions des atomes d'hydrogènes), suivis d'autres cycles d'affinement des positions atomiques et des paramètres de déplacements atomiques d'affinement des positions atomiques et des paramètres de déplacements atomiques de l'affinement atomiques atomices atomiques atomiques atomiques atomiques atomiques atomiques atomices atomices atomiques atomices atomices atomiques atomices ato

Une fois tous les atomes non hydrogène connus et leurs positions améliorées, on introduit dans l'affinement les cordonnées des atomes d'hydrogène. Celles ci sont générées géométriquement et leurs positions affinées avec les autres atomes en utilisant les contraintes (sur les angles, les distances et la planéité). Les conditions imposées sur les distances et les angles sont portées sur la liste 16.

=#LIST 16 DIST 0.95, 0.01=O(22)TO H(23) DIST 0.95, 0.01=O(22) TO H(24) ANGLES 105.0, 1.0=H(23) TO O(22) TO H(24) DIST 1.00, 0.01=C(12) TO H(16) DIST 1.00, 0.01=C(12) TO H(17) DIST 1.00, 0.01=C(12) TO H(18) ANGLE 109.0, 1.0=H(16) TO C(12) TO H(17) ANGLE 109.0, 1.0=H(17) TO C(12) TO H(18) ANGLE 109.0, 1.0=H(18) TO C(12) TO H(16) DIST 1.00, 0.01=C(10) TO H(19) DIST 1.00, 0.01=C(10) TO H(20) DIST 1.00, 0.01=C(10) TO H(21) ANGLE 109.0, 1.0=H(19) TO C(10) TO H(20) ANGLE 109.0, 1.0=H(20) TO C(10) TO H(21) ANGLE 109.0, 1.0=H(21) TO C(10) TO H(19) DIST 1.01, 0.01=H(15) TO C(8) ANGLES 125.0, 1.0=H(15) TO C(8) TO N(7) DIST 1.01, 0.01=H(14) TO N(7) ANGLES 125.0, 1.0=H(14) TO N(7) TO C(5) **END**

Un dernier cycle d'affinement des cordonnées des 24 atomes de l'unité asymétrique, les paramètres de déplacements anisotropes des atomes de carbone, azote et oxygène et des paramètres des déplacements isotropes des atomes d'hydrogènes en tenant compte l'extinction secondaire Larson (1970) [35] dans le calcul du facteur de structure a conduit aux facteurs d'accord finaux suivants :

$$R=4.7 \%$$

 $R_w=3.7 \%$
 $S=1.20$

Ainsi l'accord entre le modèle proposé et les données de diffraction est satisfaisant, et l'analyse d'une dernière synthèse de Fourier différence n'a pas révélé de résidus significatifs ($\Delta \rho_{max} = 0.20$ e Å⁻³ et $\Delta \rho_{min} = -0.18$ e Å⁻³).

4.2.6. Description et discussion de la structure

Nous reportons ici les résultats de la détermination structurale aux rayons X comme contribution à une partie d'un grand nombre d'étude structurale et pharmacologique portée sur la théophylline et ses dérivés. La conformation moléculaire du 1,3-diméthylexanthine ($C_7H_8N_4O_2.H_2O$) peut être décrite de la façon suivante : l'empilement des molécules se fait parallèlement entre elles suivant l'axe *c* donc suivant la direction [001] (Figure4.2). L'angle entre le plan moyen de la molécule et la direction [010] est 99.94° et il est de 41.73° et 138.33° respectivement avec les directions [001] et [100]. L'empilement antiferroélectrique des molécules se fait en ''zig zag'' générées par un centre situé entre les deux molécules.

Figure 4.2 : Empilement moléculaire et maille cristalline Vue perpendiculaire au plan (010).

Dans la figure.4.3 est représentée une molécule de la théophylline entourée par les six plus proches voisines, la distance minimale de contact est C-O avec une valeur de 3.3122 Å.

Figure 4.3 : Vue d'une couche moléculaire suivant le plan (100).

Les longueurs et les angles de liaison dans le squelette de la molécule différent légèrement de celles reportées par Sun en 2002 [32]. Dans le cycle composé de six liaisons, tous les atomes sont coplanaires avec de légères déviations de 0.016 Å et 0.014 Å pour les atomes de carbone C5 et C2 par rapport au plan moyen de la molécule. Les atomes composant le cycle aromatique à cinq liaisons appartiennent tous au plan moyen de la molécule avec des écarts de ± 0.003 Å par rapport à ce dernier.

L'atome N9 de l'imidazole fonctionne comme donneur dans ce groupe amino. Alors que l'atome d'oxygène O13 fonctionne comme accepteur. Les angles endocycliques en face de N9 et O13 sont respectivement 103.53° et 112.85°.

La description du $C_7H_8N_4O_2.H_2O$ est principalement caractérisée par la présence d'une molécule d'eau au voisinage du l'atome N9. Il est à noter deux observations principales sur les longueurs de liaison :

La première observation est la différence des distances entre les longueurs de liaison C8-N9 = 1.3326Å et N9-C4= 1.3756Å, N7-C5= 1.3835Å ce qui confirme que la double liaison est C8 = N9.

La deuxième observation concerne les longueurs de liaison carbone-carbone : C4-C5= 1.355(6)Å est la plus courte longueur de liaison comparée à la plus longue longueur de liaison C5-C6= 1.402(6)Å dans le cycle à six liaisons ce qui confirme que la double liaison est C4=C5.

Les deux molécules formant l'unité asymétrique sont liées par une liaison hydrogène de type O22—HN9. Le cristal contient trois types de liaisons hydrogène :

O22—HN9, N7—H....O13 et O22—H...O22 Avec O22—HN9 = 2.912 Å (Tableau 4.1).

Tableau 4.1 : Liaisons hydrogènes dans le cristal de la théophylline

monohydratée(Å,°).

D-HH	D-H	HA	DH	D-HA
N7-H14013	1.008(4)	1.778(6)	2.765(6)	165.2(2)
O22-H23N9	0.950(9)	2.013(2)	2.912(0)	156.9(4)
O22—H23O22	0.948(8)	2.151(9)	2.714(9)	116.2(6)

Le plus grand angle endocyclique du cycle à six liaisons est C2-N1-C6 = $126.3(4)^{\circ}$. Aussi le plus important angle exocyclique est C5-C6-O13= $127.1(4)^{\circ}$ dû probablement à l'interaction de l'atome ''d'hydrogène'' lié à N7 et situé dans le plan du cycle à cinq liaisons. Le même atome d'oxygène entouré par les deux méthyles a les deux angles exocycliques N-C-O identiques à $\pm 0.5^{\circ}$. Des changements sont attendus sur tout le reste des molécules par la substitution de l'atome d'hydrogène lié à N7 par un méthyle pour donner la caféine.

La Géométrie de la théophylline monohydrate à 293 K est portée dans la figure 4.4.

Figure 4.4 : Géométrie moléculaire de la molécule de théophylline monohydratée à 293 K.

Les cordonnées atomiques fractionnaires avec les facteurs de déplacement atomiques équivalents moyens et l'occupation sont données dans le tableaux 4.2. Le résultat montre que la structure est ordonnée à la température ambiante, avec des facteurs de déplacement atomique équivalents moyens des atomes du cycle xanthine $U_{eq} \approx 0.0387(3)$ Å² qui sont significativement plus faibles que ceux des atomes substituant $U_{eq} \approx 0.055(3)$ Å² et encore plus faible que l'atome libre O(22) $U_{eq} =$ 0.0694 Å²

La plus grande agitation thermique est observée sur les carbone méthyle $C_m 10$ (0.0558 Å²) et $C_m 12$ (0.0557 Å²). Ces deux atomes $C_m 10$ et $C_m 12$ '' fortement agités'' liés respectivement aux atomes d'azote N1 (0.0344 Å²) et N3 (0.0344 Å²) ont des paramètres de déplacement équivalents.

Tableau 4.2 : Coc	ordonnees atomiques	s fractionnaires et	parametres de	deplacement

Atomes	x	у	Z	$U_{iso/equiv}$	occupation
N1	0.9992(8)	0.3656(2)	0.7070(3)	0.0344	1.0000
C2	0.9988(11)	0.2765(3)	0.7281(4)	0.0369	1.0000
N3	0.7820(8)	0.2273(2)	0.6688(3)	0.0344	1.0000
C4	0.594(1)	0.2664(3)	0.5939(4)	0.0376	1.0000
C5	0.604(1)	0.3525(3)	0.5730(3)	0.0352	1.0000
C6	0.808(1)	0.4085(3)	0.6311(3)	0.0350	1.0000
N7	0.3759(9)	0.3675(2)	0.4927(3)	0.0419	1.0000
C8	0.2415(11)	0.2906(3)	0.4710(4)	0.0420	1.0000
N9	0.3664(9)	0.2261(2)	0.5297(3)	0.0399	1.0000
C10	1.2181(12)	0.4197(3)	0.7755(4)	0.0558	1.0000
O11	1.1805(8)	0.2443(2)	0.7950(3)	0.0573	1.0000
C12	0.7736(14)	0.1343(3)	0.6874(4)	0.0557	1.0000
O13	0.8351(7)	0.4877(2)	0.6192(3)	0.0524	1.0000
H14	0.326(8)	0.426(1)	0.459(3)	0.0864	1.0000
H15	0.079(7)	0.2796(13)	0.4110(19)	0.0484	1.0000
H16	0.566(7)	0.120(4)	0.702(5)	0.1518	1.0000
H17	0.829(11)	0.093(3)	0.635(3)	0.1390	1.0000
H18	0.869(12)	0.115(3)	0.7567(17)	0.1142	1.0000
H19	1.255(14)	0.478(2)	0.746(5)	0.2221	1.0000
H20	1.129(11)	0.428(4)	0.839(2)	0.1328	1.0000
H21	1.415(7)	0.389(3)	0.792(4)	0.1376	1.0000

O22	0.2395(9)	0.0453(2)	0.4748(3)	0.0694	1.0000
H23	0.232(19)	0.1068(8)	0.480(6)	0.2051	1.0000
H24	0.354(16)	0.027(5)	0.537(3)	0.2001	1.0000

La moyenne des longueurs de liaison C-N, C=O, C-C,C=C et N=C trouvée dans notre travail est en bon accord avec celles répertoriées dans la littérature (Tableau 4.3).

Tableau 4.3 : Longueurs de liaison de la théophylline monohydrateé à 293 K en (Å).

N1	C2	1.400(5)Å
N1	C6	1.388(5)Å
N1	C10	1.489(5)Å
C2	N3	1.382(6)Å
C2	011	1.217(5)Å
N3	C4	1.346(5)Å
N3	C12	1.454(6)Å
C4	C5	1.355(6)Å
C4	N9	1.375(6)Å
C5	C6	1.402(6)Å
C5	N7	1.383(5)Å
C6	013	1.237(5)Å
N7	C8	1.340(6)Å
N7	H14	1.01(1)Å
C8	N9	1.332(6)Å
C8	H15	1.01(1)Å
C10	H19	1.00(1)Å
C10	H20	1.00(1)Å
C10	H21	1.00(1)Å
C12	H16	1.00(1)Å
C12	H17	1.00(1)Å
C12	H18	1.00(1)Å
022	H23	0.95(1)Å
022	H24	0.95(1)Å

Le plus grand angle exocyclique C6-C5-N7 =131.9 (4)° est l'angle entre le cycle à cinq liaisons et le cycle à six liaisons donc on a une grand ouverture de la molécule suivant la fonctionnelle C6=O13 que la liaison N3-C12 (Tableau 4.4).

C2	N1	C6	126.3(4)°
C2	N1	C10	116.6(4)°
C6	N1	C10	117.1(4)°
N1	C2	N3	116.4(4)°
N1	C2	011	121.5(4)°
N3	C2	011	122.0(4)°
C2	N3	C4	119.0(4)°
C2	N3	C12	118.5(4)°
C4	N3	C12	122.5(4)°
N3	C4	C5	123.5(4)°
N3	C4	N9	125.5(4)°
C5	C4	N9	111.1(4)°
C4	C5	C6	121.9(4)°
C4	C5	N7	106.1(4)°
C6	C5	N7	131.9(4)°
N1	C6	C5	112.8(4)°
N1	C6	013	120.0(4)°
C5	C6	013	127.1(4)°
C5	N7	C8	106.0(4)°
C5	N7	H14	125.2(9)°
C8	N7	H14	128.8(10)°
N7	C8	N9	113.3(4)°
N7	C8	H15	124.5(9)°
N9	C8	H15	121.8(10)°
C4	N9	C8	103.5(4)°
N1	C10	H19	113.4(41)°
N1	C10	H20	106.3(36)°
H19	C10	H20	109.0(10)°
N1	C10	H21	110.2(36)°
H19	C10	H21	108.9(10)°

Tableau 4.4 : Angles de liaison de la théophylline monohydratée à 293 K en (°).

H20	C10	H21	108.9(10)°
N3	C12	H16	107.1(41)°
N3	C12	H17	119.9(34)°
H16	C12	H17	109.0(10)°
N3	C12	H18	115.4(34)°
H16	C12	H18	92.6(51)°
H17	C12	H18	109.1(7)°
H23	O22	H24	104.9(10)°

L'analyse des paramètres de déplacement anisotropes (Tableau 4.5) montre une agitation thermique plus importante selon l'axe *a* pour les atomes de carbone des groupes méthyles et les atomes d'azote.

Toujours suivant la direction a, les atomes d'oxygène présentent des paramètres de déplacement atomique qui sont plus grands que ceux des autre atomes.

Label	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N1	0.029(2)	0.036(2)	0.035(2)	-0.0027(18)	-0.0042(18)	0.0018(17)
C2	0.036(3)	0.044(3)	0.030(3)	0.004(2)	0.004(3)	0.005(3)
N3	0.038(2)	0.037(2)	0.039(2)	0.0032(19)	0.002(2)	0.0021(19)
C4	0.035(3)	0.038(3)	0.037(3)	-0.005(2)	-0.003(3)	-0.000(2)
C5	0.034(3)	0.035(3)	0.035(3)	0.001(2)	-0.000(2)	0.004(2)
C6	0.035(3)	0.033(3)	0.038(3)	-0.005(2)	0.008(2)	0.002(2)
N7	0.043(2)	0.037(2)	0.042(3)	-0.001(2)	-0.007(2)	-0.002(2)
C8	0.036(3)	0.047(3)	0.041(3)	0.001(3)	0.001(2)	0.000(3)
N9	0.042(2)	0.033(2)	0.044(2)	-0.0007(18)	0.004(2)	0.0003(19)
C10	0.048(3)	0.050(3)	0.062(4)	-0.023(3)	-0.017(3)	-0.002(3)
011	0.058(3)	0.060(2)	0.048(2)	0.0089(19)	-0.012(2)	0.0097(19)
C12	0.072(4)	0.033(3)	0.057(4)	0.008(3)	-0.008(3)	-0.001(3)
013	0.061(3)	0.0339(19)	0.057(2)	0.0019(18)	-0.0111(18)	-0.0052(17)

Tableau 4.5 : Paramètres de déplacements anisotropes en $(Å^2)$.

Les paramètres de déplacements isotropes des atomes d'hydrogène (Tableau 4.6) sont affinés avec des contraintes (liste 12 CRYSTALS) :

```
#LIST 12
FULL N(1, X'S, U'S) UNTIL O(13)
CONT H(14, X'S, U[ISO] ) UNTIL H(21)
CONT H(23, X'S, U[ISO] ) UNTIL H(24)
EQUIV H(23, U[ISO] ) UNTIL H(24)
EQUIV H(19, U[ISO] ) UNTIL H(21)
EQUIV H(16, U[ISO] ) UNTIL H(18)
END
```

Tableau 4.6 : Paramètres de déplacement isotropes des atomes d'hydrogènes en $Å^2$

Atomes	U ₁₁
H14	0.08637
H15	0.04842
H16	0.15182
H17	0.13895
H18	0.11421
H19	0.22206
H20	0.13276
H21	0.137641
H23	0.205084
H24	0.200060

Les atomes d'hydrogène H23, H24 liés à l'atome d'oxygène O22 ont des facteurs d'agitation thermique isotropes plus grands comparés aux autres atomes d'hydrogène du reste de la molécule qui est 0.20 Å^2

L'analyse de la planéité de la molécule de la théophylline est faite en utilisant le programme CAMERON [36]. Les résultats sur les angles de torsions montre que les atomes de la molécule de théophylline sont approximativement dans un même plan.

A partir du sous programme MOLAX de CRYSTALS nous avons fait une étude pour chercher la position du meilleur plan moyen de la molécule H_2O par rapport au meilleur plan moyen de la molécule de la théophylline (le plan moyen passant à travers tous les atomes formant le cycle xanthine pour la précision). Les équations du meilleur plan moyen de la molécule H_2O et de la théophylline respectivement sont :

-4.07626 X - 1.07943 Y + 7.16814 Z = 2.378

3.34788 X - 2.63604 Y - 9.89910 Z = -4.602

Où X, Y et Z sont exprimés en Å par rapport à un système d'axes orthogonaux.

L'angle entre ces deux plans est 158.53 (1)°, ce qui signifie que les deux plans ne sont pas parallèles, le plan de la molécule H_2O est dévié dans le sens négatif par apport au plan contenant la molécule de la théophylline.

Pour définir la position exacte de l'atome d'oxygène de la molécule H_2O par rapport à la molécule de la théophylline nous avons rassemblé toutes les valeurs des distances interatomique de l'oxygène O22 avec le reste des atomes de la molécule de la théophylline (exceptés les atomes d'hydrogène) dans le (Tableau 4.7).

Tableau 4.7 : quelques distances concernant l'atome O22 par rapport aux autresatomes du reste de la molécule.

N1	O22	6.5021(6)Å
C2	O22	5.6688(6) Å
N3	O22	4.3037(5)Å
C4	O22	3.9826(6)Å
C5	O22	5.1083(5)Å
C6	O22	6.3628(5)Å
N7	O22	4.9987(6)Å
C8	O22	3.7769(6)Å
N9	022	2.9120(5)Å
C10	O22	7.9478(5)Å
011	O22	6.3161(5)Å
		-
C12	022	3.6811(5)Å
La plus courte distance de contact correspond à N(9)-O(22) = 2.9120(5)Å (2.88 Å(V.D.W.) ce qui montre l'existence d'une liaison hydrogène entre la molécule d'eau et la molécule de théophylline.

Nous avons ensuite étudié l'effet de la variation des facteurs de réhabilité lorsqu' on fait varier les facteurs d'agitation thermique des atomes d'hydrogène dans l'intervalle 0.07 Å² jusqu a 0.14 Å². L'affinement utilisé s'est fait avec la fixation de toutes les distances des atomes d'hydrogènes du premier résultat. Dans ce cas le nombre de paramètres utilisé dans l'affinement est 128.

Les résultats de cette étude sont regroupés dans le tableau 4.9.

:

$\overline{\mathrm{U}}^{2}$ (Å ²)	R	R _w	S
0.07	5.060	4.271	1.273
0.08	4.978	4.327	1.286
0.09	4.920	4.256	1.265
0.10	4.876	4.208	1.251
0.11	4.852	4.177	1.242
0.12	4.780	3.568	1.175
0.13	4.845	4.161	1.237
0.14	4.850	3.170	1.240

Tableau 4.9 : variation de R avec \overline{U}^2

Dans ce travail la valeur minimale de R est obtenue pour $\overline{U}^2 = 0.12$ Å ² les tableaux (4.10, 4.11 et 4.12) donnent les nouvelles positions des atomes ainsi que les distances et les angles de liaison intramoléculaires et La figure 4.5 représente les Projections de la structure dans les plans a.(100) b.(001) c.(010) et d.(011).

Atomes	x	У	Z	$U_{iso/equiv}$	Occupancy
N1	0.9992(9)	0.3656(3)	0.7071(3)	0.0348	1.0000
C2	0.9988(12)	0.2762(3)	0.7282(4)	0.0365	1.0000
N3	0.783(1)	0.2273(3)	0.6686(3)	0.0381	1.0000
C4	0.5931(11)	0.2664(3)	0.5937(4)	0.0367	1.0000
C5	0.6041(11)	0.3527(3)	0.5731(4)	0.0350	1.0000
C6	0.8099(11)	0.4090(3)	0.6307(4)	0.0361	1.0000
N7	0.3746(9)	0.3678(3)	0.4926(3)	0.0408	1.0000
C8	0.2425(12)	0.2906(3)	0.4706(4)	0.0416	1.0000
N9	0.367(1)	0.2261(3)	0.5300(3)	0.0388	1.0000
C10	1.2178(13)	0.4194(4)	0.7762(5)	0.0555	1.0000
011	1.1804(8)	0.2446(3)	0.7949(3)	0.0556	1.0000
C12	0.7738(15)	0.1340(3)	0.6876(5)	0.0549	1.0000
013	0.8343(8)	0.4877(2)	0.6190(3)	0.0524	1.0000
H14	0.33(1)	0.4254(13)	0.457(4)	0.1200	1.0000
H15	0.075(11)	0.2798(15)	0.412(3)	0.1200	1.0000
H16	0.564(6)	0.119(4)	0.698(5)	0.1200	1.0000
H17	0.838(11)	0.093(3)	0.636(3)	0.1200	1.0000
H18	0.872(13)	0.116(4)	0.7573(18)	0.1200	1.0000
H19	1.274(11)	0.474(2)	0.743(4)	0.1200	1.0000
H20	1.127(11)	0.435(3)	0.838(2)	0.1200	1.0000
H21	1.404(7)	0.384(3)	0.797(4)	0.1200	1.0000
O22	0.2387(9)	0.0455(2)	0.4742(4)	0.0695	1.0000
H23	0.257(15)	0.106(1)	0.488(5)	0.1200	1.0000
H24	0.358(13)	0.018(3)	0.530(3)	0.1200	1.0000

Tableau 4.10 : Coordonnées atomiques et fractionnaires et paramètres de déplacement atomiques.

N1	C2	1.404(6)Å
N1	C6	1.392(6)Å
N1	C10	1.490(6)Å
C2	N3	1.378(6)Å
C2	011	1.212(6)Å
N3	C4	1.351(6)Å
N3	C12	1.459(6)Å
C4	C5	1.358(7)Å
C4	N9	1.369(6)Å
C5	C6	1.406(7)Å
C5	N7	1.388(6)Å
C6	013	1.229(6)Å
N7	C8	1.340(6)Å
N7	H14	1.01(1)Å
C8	N9	1.336(6)Å
C8	H15	1.01(1)Å
C10	H19	1.00(1)Å
C10	H20	1.00(1)Å
C10	H21	1.00(1)Å
C12	H16	1.00(1)Å
C12	H17	1.00(1)Å
C12	H18	1.00(1)Å
022	H23	0.95(1)Å
O22	H24	0.95(1)Å

Tableau 4.11. Longueurs de liaison de la théophylline monohydratée à 293 K en (Å)

C2	N1	C6	126.7(4)°
C2	N1	C10	116.3(4)°
C6	N1	C10	117.0(4)°
N1	C2	N3	116.3(4)°
N1	C2	011	121.3(5)°
N3	C2	011	122.5(5)°
C2	N3	C4	119.3(4)°
C2	N3	C12	118.3(5)°
C4	N3	C12	122.3(4)°
N3	C4	C5	123.1(4)°
N3	C4	N9	125.5(4)°
C5	C4	N9	111.4(4)°
C4	C5	C6	122.3(5)°
C4	C5	N7	105.8(4)°
C6	C5	N7	131.8(5)°
N1	C6	C5	112.3(4)°
N1	C6	O13	120.6(5)°
C5	C6	013	127.1(5)°
C5	N7	C8	105.8(4)°
C5	N7	H14	125.3(10)°
C8	N7	H14	128.8(11)°
N7	C8	N9	113.4(5)°
N7	C8	H15	124.6(10)°
N9	C8	H15	121.8(11)°
C4	N9	C8	103.5(4)°
N1	C10	H19	112.3(34)°
N1	C10	H20	109.2(34)°
H19	C10	H20	109.1(10)°
N1	C10	H21	108.3(35)°
H19	C10	H21	108.9(10)°
H20	C10	H21	109.0(10)°
N3	C12	H16	107.6(38)°

Tableau 4.12. Angles de liaison de la théophylline monohydratée à 293 K en (°)

b

La figure 4.5 : Projections de la structure dans les plans a.(100) b.(001) c.(010) et d.(01 $\overline{1}$).

4.3. Spectroscopie infrarouge

La spectroscopie IR doit permettre de mettre en évidence et de séparer les divers types de mouvement de la molécule dans la maille. Chaque type de mouvement est en effet caractère par une fréquence propre et des propriétés de symétrie. C'est donc dans le but de préciser la modification des mouvements moléculaires que nous avons réalisé des mesures d'absorption IR sur la théophylline monohydratée.

4.3.1. Dispositif expérimental utilisé

Pour l'étude infrarouge nous avons utilisé un échantillon solide sous forme de poudre, la méthode de préparation d'échantillon consiste à moudre un milligramme ou moins de l'échantillon avec environ 100 milligrammes de bromure de potassium. Le mélange est ensuite pressé dans une matrice sous vide pour produire un disque transparent.

L'analyse s'effectue à l'aide d'un spectromètre à transformée de Fourier qui envoie sur l'échantillon un rayonnement infrarouge et mesure les longueurs d'onde auxquelles le matériau absorbe les intensités de l'absorption. La figure 4.6 présente le schéma d'un spectromètre à transformée de Fourier.

Le faisceau infrarouge provenant de la source est dirigé vers l'interféromètre de mesure (Interféromètre Michelson). Lorsque la radiation atteint la séparatrice, 50% de la radiation est réfléchie sur le miroir fixe (1) et 50% est transmise (1'). Les deux faisceaux sont ensuite réfléchis par les miroirs et repartent (2 et 2') vers la séparatrice où ils se recombinent et interfèrent .On a un phénomène d'interférence car on a une différence de chemin optique, donc une différence de phase entre les deux faisceaux. Le faisceau résultant (50% de 2+2') traverse l'échantillon et atteint enfin le détecteur. L'interféromètre de référence permet de déterminer avec une grande précision la position du miroir mobile.

Figure 4.6 : schéma d'un spectromètre à transformée de Fourier

Le signal du détecteur apparaît comme un interférogramme, c'est à dire une signature de l'intensité en fonction de la position du miroir. Cet interférogramme est ensuite converti en un spectre infrarouge par une opération mathématique appelée transformée de Fourier.

4.3.2. Spectroscopie infrarouge de la théophylline monohydratée à 293 K

Les spectres d'absorption infrarouge ont été réalisés au laboratoire de physique de solide université de Mentouri Constantine à la température ambiante (Figure 4.7).

L'analyse et le traitement des données brutes collectées à partir du spectromètre sont traités à partir de la chaîne de programmes ORIGIN [37].

Figure 4.7 : Spectre IR de théophylline monohydratée à 293 K

L'attribution des différents mouvements moléculaires est faite en s'aidant des résultats obtenus à partir des calculs obtenus à partir de la DFT (Chapitre 5). Dans la gamme de fréquence (600 cm-1, 3112 cm - 1) nous avons séparé deux types de mouvement. La première catégorie correspond aux mouvements des atomes dans le plan moyen de la molécule qui peuvent être des étirements et des mouvements radiaux ou tangentielles des différentes liaisons, la deuxième catégorie correspond aux modes de vibration hors du plan (Bending, Rocking, Puckering) des liaisons C=O C-H et des méthyles comme des liaisons O-H, N-H.

A partir du spectre expérimental nous avons retrouvé de manière générale les fréquences calculées avec des écarts de quelques cm⁻¹ qui seront détaillées dans le chapitre 5 avec les deux fonctionnelles B3LYP et MPW1PW91. Ces écarts sont dus à l'agitation thermique dont sont animés les atomes à la température ambiante qui sont les conditions dans lesquelles s'est déroulé notre manipulation.

Les figures de la molécule avec quelques meilleures vues de certains modes de vibration sont obtenues à partir du programme d'illustration MOLEKEL[38] sont données :

Modes hors du plan :

► 609.4 cm⁻¹: Mouvement hors du plan des liaisons C-H du cycle. Ce mouvement important de C8-H15 donne une déformation importante de toute la molécule du cycle xanthine.

► 744.39 cm⁻¹: Mouvement hors du plan du cycle (balancement faible du cycle) avec forte agitation de l'atome C5

Figure 4.9 : Mode à 744.39 cm⁻¹

► 1024.02 : Mouvement de respiration de la molécule avec un mouvement parapluie des méthyles.

Figure 4.10 : Mode à 1024.02cm⁻¹

Mouvements dans le plan de la molécule :

► 1238.08 cm⁻¹ : Mouvement tangentiel des hydrogènes du cycle correspondant à la respiration de la molécule. Mouvement très prononcé des liaisons C-N qui a conduit à la déformation dans le plan de la molécule.

Figure 4.11 : Mode à 1238.08 cm⁻¹

► 1484.93cm⁻¹ : mouvement tangentiel du cycle, avec déformation du squelette de la molécule et forte déformation de la liaison N-H.

Figure 4.12 : Mode à 1484.93 cm⁻¹

► 1697.06 cm⁻¹ : Déformation très importante du plan moyen de la molécule suivant la liaison double C=C commune aux deux cycles.

Figure 4.13 : Mode à 1697.06 cm⁻¹

► 2954.4393 cm⁻¹ : mouvement d'étirement de la liaison N7-H14 du cycle à cirques liaisons. Tout le reste de la molécule reste inerte.

Figure 4.14 : Mode à 2954.4393cm⁻¹

Mouvement hors du plan des méthyles :

► 3112.57 cm⁻¹ Mouvement d'étirement des C-H du méthyle avec balancement de N-C_{méthyle} non contenu entre les deux oxygènes.

Figure 4.15 : Mode à 3112.57cm⁻¹

4.4. Conclusions

- La structure cristalline de la théophylline monohydratée déterminée à partir des rayons X à la température ambiante 297 K cristallisant dans le groupe d'espace P21/n avec 4 molécules par maille confirme les résultats déjà trouvés dans la littérature.

- L'existence d'un centre d'inversion situé entre les deux molécules formant un dimère.

- La position des atomes d'hydrogène n'a pu être faite et nécessite pour leur localisation de faire une collecte de données à basse température à partir de la diffraction des neutrons.
- L'étude de la caféine est un de nos objectifs futurs et cela afin de mieux comprendre l'effet de la substitution d'un atome d'hydrogène par un méthyle sur le cycle xantine de la théophylline sur le reste de la molécule.
- L'attribution des différents modes de vibration de la molécule a montré à partir des fréquences obtenues expérimentalement et des calculs théoriques des écarts importants d'où l'importance de faire des manipulations à basses températures.
- La conjugaison des résultats obtenus à partir de la chimie quantique (DFT) et les spectres expérimentaux (température ambiante) a permis l'attribution des différents modes de vibration des différentes parties du squelette de la molécule et leurs effets sur le reste de la molécule.

CHAPITRE 5

Conformation moléculaire calculée par la théorie de la fonctionnelle de la densité (DFT)

5.1. Introduction

Cette partie du travail préliminaire consiste à faire un calcul théorique basé sur la théorie de la fonctionnelle de densité DFT pour déterminer les conformations moléculaires de la molécule de théophylline (La molécule est isolée). Les calculs sont faits à la température ambiante en utilisant deux fonctionnelles d'échange corrélation B3LYP et MPW1PW91 et des bases suffisamment étendues pouvant conduire à des prédictions très précises pour l'optimisation géométrique des angles et des longueurs des liaisons [39,40]. Nous effectuons nos calculs au moyen du code Goussien98 [18]. Les étapes d'approche de la structure moléculaire par les méthodes expérimentales et les méthodes de chimie quantiques sont résumées dans le tableau 5.1.

En suite nous exploitons par l'utilisation de fonctionnelles différentes et des bases différentes les calculs des modes vibrationnels obtenus pour la théophylline monhydratée.

5.2. Conformation moléculaire calculée à partir de la DFT

5.2.1. Conformation moléculaire de la théophylline

5.2.1.1. Fonctionnelle B3LYP

La géométrie la plus stable pour la molécule de la théophylline correspond à une énergie minimale E = -641.062490307 Ua. Dans la figure5.1 sont représentées les longueurs et angle de liaisons de la conformation moléculaire de la théophylline. Dans le tableau 5.2 sont données les cordonnées calculées des 21 atomes de cette molécule exprimées dans un repère orthogonale.

Figure 5.1 : Conformation moléculaire de la théophylline obtenue à partir de la DFT (B3LYP ; 6-31G(d)).

Atomes	x	Y	Z
N1	0.148364	-1.530364	0.000000
C2	1.348462	-0.791410	0.000000
N3	1.243505	0.598566	0.000000
C4	0.000000	1.186741	0.000000
C5	-1.148748	0.423859	0.000000
C6	-1.170134	-1.008535	0.000000
N7	0.6240(8)	0.1323(2)	0.000000
C8	0.760(1)	0.2093(3)	0.000000
N9	0.6328(9)	0.2739(2)	0.000000
C10	0.313443	-2.986956	0.000000
011	2.437353	-1.346462	0.000000
C12	0.2273(13)	0.3657(3)	0.000000
013	-2.171784	-1.716214	0.000000
H14	-3.165904	1.112939	0.000000
H15	-2.185264	3.483991	0.000000
H16	2.201122	2.436702	0.000000
H17	3.071689	1.146620	0.886966
H18	3.071689	1.146620	-0.886966
H19	-0.683443	-3.424858	0.000000
H20	0.871175	-3.299813	-0.886276
H21	0.871175	-3.299813	0.886276

Tableau 5.2 : Coordonnées atomiques en Å de la théophylline (B3LYP; 6-31G(d)).

L'exploitation des coordonnées cartésiennes avec Z=0 de tous les atomes de la molécule de théophylline trouvées à partir des calculs de la DFT confirme la planéité obtenue à partir de la diffraction des rayons X (Chapitre 4). Les deux atomes d'hydrogène H16 et H19 respectivement des méthyles C_m10 et C_m12 sont contenus dans le plan moyen du squelette de la molécule. Ces deux atomes d'hydrogène H16 et H19 ne sont pas orientés vers l'atome d'oxygène contenu entre les méthyles C_m10 et C_m12 . L'écartement de la liaison C6-O13 vers l'atome d'hydrogène H19 contenu dans le plan moyen de la molécule trouvé à partir de l'expérience (angle exocyclique C-C6-O13= 127.14(4)°) est retrouvé à partir des calculs (126.4°). Ceci justifie la forte

attraction de l'atome d'oxygène et l'hydrogène H19. Cette forte interaction entre l'atome d'hydrogène H19 contenu dans le plan de la molécule et pointant vers l'oxygène O13 explique la distorsion du cycle à six liaisons avec les angles endocycliques C2-N1-C6 et N1-C6-C5 égaux respectivement à 126.8° et 116.6° pour le calcul théorique et 126.3(4)° et 112.8 (4)° trouvés à partir de la diffraction des rayons X. L'interaction de l'atome d'hydrogène H16 du méthyle C_m12 contenu dans le plan de la molécule et orienté vers l'atome N9 du cycle à cinq liaisons est en partie à l'origine de la différence trouvées entre les valeurs des angles exocycliques C6-C5-N7 (131.0°) et N3-C4-N9 (125.4°) calculées à partir de la mécanique quantique DFT.

Les longueurs et angles de liaison ainsi que les angles de torsion sont portés dans les tableaux 5.3, 5.4 et 5.5. L'accord obtenu avec la fonctionnelle B3LYP avec la base 6-31G(d) est meilleur que 1.0% pour les longueurs de liaison (Tableau5.3) exceptée pour la longueur de liaison C5-C6 où il est 2.2% par rapport aux valeurs expérimentales. Concernant les écarts obtenus pour les valeurs des angles de liaison (Tableau5.4) l'accord global est de 1.3% comparé à celles obtenues à partir de la diffraction des rayons X. Les légers écarts qui existent entre les valeurs expérimentales moyennes et celles obtenues à partir de la mécanique quantique (MQ) peuvent être attribués aux interactions intermoléculaires. La conformation moléculaire de la théophylline calculée est plane avec un hydrogène de chacun des deux méthyles contenu dans le plan moléculaire.

		•
N1	C2	1.40935Å
N1	C6	1.41800Å
N1	C10	1.46591 Å
C2	N3	1.39393 Å
C2	011	1.22219 Å
N3	C4	1.3755 Å
N3	C12	1.46221 Å
C4	C5	1.37898 Å
C4	N9	1.36378 Å
C5	C6	1.4325 Å
C5	N7	1.3824 Å
C6	013	1.2264 Å
N7	C8	1.35732Å
N7	H14	1.01094Å
C8	N9	1.32781Å
C8	H15	1.08132Å
C10	H19	1.08132Å
C10	H20	1.09289Å
C10	H21	1.09289Å
C12	H16	1.08981Å
C12	H17	1.09322Å
C12	H18	1.09322Å

Tableau 5.3 : Longueurs de liaison obtenues à partir de la DFT (B3LYP 6-31G(d)).

C4	C5	C6	124.4434
N3	C4	C5	121.0978
C2	N3	C4	119.6322
N1	C2	N3	117.3042
N7	C5	C4	104.7443
C8	N7	C5	106.5262
N9	C8	N7	112.9933
011	C2	N3	121.3280
013	C6	C5	126.0971
C12	N3	C4	122.2618
C10	N1	C6	118.0582
H14	N7	C5	125.1822
H15	C8	N7	122.3923
H16	C12	N3	107.7189
H17	C12	N3	110.0506
H18	C12	N3	110.0506
H19	C10	N1	107.2405°
H20	C10	N1	109.9932
H21	C10	N1	109.9932

Tableau 5.4 : Angles de liaison calculés à partir de la fonctionnelle B3LYP et la base 6-31G(d).

Le tableau 5.5 donne les angles de torsion relatifs aux atomes d'hydrogène. Les hydrogènes H16 et H19 sont dans le plan de la molécule.

Tableau 5.5 : Angles de torsion calculés par la fonctionnelle B3LYP

H14-N7-C5-C6=0.0 H15-C8-N7-C2=180.0 H16-C12-N4-C3=0.0 H17-C12-N4-C3=120.2675 H18-C12-N4-C3=-120.267 H19-C10-N6-C1=0.0 H20-C10-N6-C1=120.3508 H21-C10-N6-C1=-120.350 Dans la suite de ce travail nous reprenons ce calcul de la conformation moléculaire de la théophylline avec la fonctionnelle MPW1PW91 et la base 6-31G(d,p), pour évaluer le modèle de calcul précédent et faire un comparaison entre les résultats obtenus à partir des deux fonctionnelles. Enfin ces résultats seront comparés avec ceux obtenus à partir de l'expérience.

5.2.1.2. Fonctionnelle MPW1PW91

Pour la fonctionnelle MPW1PW91 on obtient une conformation avec une géométrie calculée correspondant à l'énergie minimale de formation E=-640.926361062 Ua. La molécule de la théophylline avec les distances interatomique et les angles est illustrée dans la figure 5.2.

Figure 5.2 : Conformation moléculaire de la théophylline calculée par la DFT (MPW1PW91; 6-31G(d,p)).

Les résultats sur les positions atomiques et la géométrie de la molécule sont regroupés dans les tableaux 5.6, 5.7 et 5.8.

Atomes	X	<i>y</i>	Z
N1	0.147144	-1.520221	0.000000
C2	1.340613	0.595402	0.000000
N3	1.236907	0.595402	0.000000
C4	0.000000	1.181364	0.000000
C5	-1.146352	0.422377	0.000000
C6	-1.164130	-1.006829	0.000000
N7	0.6240(8)	0.1323(2)	0.000000
C8	0.760(1)	0.2093(3)	0.000000
N9	0.6328(9)	0.2739(2)	0.000000
C10	0.313457	-2.967013	0.000000
O11	2.424820	-1.340241	0.000000
C12	0.2273(13)	0.3657(3)	0.000000
O13	-2.158638	-1.716072	0.000000
H14	-3.152234	1.111705	0.000000
H15	-2.174698	3.471050	0.000000
H16	2.187465	2.426220	0.000000
H17	3.056377	1.138520	0.885140
H18	3.056377	1.138520	-0.885140
H19	-0.682128	-3.404524	0.000000
H20	0.870285	-3.278981	-0.884378
H21	0.870285	-3.278981	0.884378

Tableau 5.6 : Coordonnées atomiques en Å par la fonctionnelle MPW1PW916-31G(d,p).

Le résultats concernant les longueurs et angles de liaison sont très proches de ceux calculés à partir de la fonctionnelle B3LYP en utilisant la base 6-31G(d)

Dans le tableau 5.7 sont portés les résultats des longueurs de liaison obtenus par la fonctionnelle MPW1PW91. Les principales différences de la conformation moléculaire obtenues à partir de la fonctionnelle MPW1PW91 sur les longueurs de liaisons par rapport au résultat de la fonctionnelle B3LYP concernent la liaison N-H (0.3%). Des résultats très proches sont obtenus par les deux fonctionnelle. Pour Les liaisons C-N, C-O, C-C et C-H on a l'écarte est de l'ordre 0.2%. L'accord pour ces liaisons (C-N, C-O, C-C et C-H) avec les résultats expérimentaux est respectivement de 0.9%, 0.32%, 1.65% et 6.03%

Tableau 5.7 : Longueurs de liaison obtenues par la DFT avec la fonctionnelleMPW1PW91 pour la conformation moléculaire de la théophylline.

N1	C2	1.40123Å
N1	C6	1.40819Å
N1	C10	1.45631Å
C2	N3	1.38527Å
C2	011	1.21766Å
N3	C4	1.36868Å
N3	C12	1.45275Å
C4	C5	1.37483Å
C4	N9	1.35667Å
C5	C6	1.42931Å
C5	N7	1.37448Å
C6	013	1.22150Å
N7	C8	1.35032Å
N7	H14	1.00661Å
C8	N9	1.32310Å
C8	H15	1.07958Å
C10	H19	1.08747Å
C10	H20	1.09064Å
C10	H21	1.09064Å
C12	H16	1.08816Å
C12	H17	1.09094Å
C12	H18	1.09094Å

Pour les angles de liaison l'accord global entre les résultats obtenus à partir de cette fonctionnelle et l'expérience est de 1.3%

Le plus grand écart concerne l'angle H17-C12-N6=110.0801° (6.5%).

C4	C5	C6	124.2208
N3	C4	C5	121.1434
C2	N3	C4	119.6471
N1	C2	N3	117.3069
N7	C5	C4	104.7171
C8	N7	C5	106.5536
N9	C8	N7	113.0750
011	C2	N3	121.3699
013	C6	C5	126.2076
C12	N3	C4	122.2587
C10	N1	C6	117.9386
H14	N7	C5	125.2299
H15	C8	N7	122.3654
H16	C12	N3	107.6924
H17	C12	N3	110.0801
H18	C12	N3	110.0801
H19	C10	N1	107.1653
H20	C10	N1	110.0277
H21	C10	N1	110.0277

Tableau 5.8 : Angles de liaison calculés par la fonctionnelle MPW1PW91.

Les résultats concernant les angles de torsion sont rassemblés dans le tableau 5.9.

Tableau 5.9 : Angles de torsion calculés par la fonctionnelle MPW1PW91.

H14-N7-C5-C6=0.0 H15-C8-N7-C5=180.0 H16-C12-N4-C3=0.0 H17-C12-N4-C3=120.2463 H18-C12-N4-C3=-120.246 H19-C10-N6-C1=0.0 H20-C10-N6-C1=120.3371 H21-C10-N6-C1=-120.330

5.2.1.3 Comparaison des résultats calculés (fonctionnelles B3LYP et MW1PW91) avec les résultats expérimentaux de la molécule de la théophylline

Toutes les valeurs concernant l'optimisation géométrique de la conformation moléculaire obtenues par les calculs de la DFT et les résultats de la diffraction des rayons X sont rassemblées dans le tableau 5.10.

distance	expérimentale	B3LYP	Accord	MPW1PW91	accord
N1-C2	1.400(5)Å	1.40935Å	0.6%	1.40123Å	0.07%
N1-C6	1.388(5)Å	1.41800Å	2.1%	1.40819Å	1.4%
N1-C10	1.489(5)Å	1.46591 Å	1.5%	1.45631Å	2.0%
C2-N3	1.382(6)Å	1.39393 Å	0.8%	1.38527Å	0.2%
C2-O11	1.217(5)Å	1.22219 Å	0.4%	1.21766Å	0.05%
N3-C4	1.346(5)Å	1.3755 Å	2.1%	1.36868Å	1.6%
N3-C12	1.454(6)Å	1.46221 Å	0.5%	1.45275Å	0.08%
C4-C5	1.355(6)Å	1.37898 Å	1.6%	1.37483Å	1.4%
C4-N9	1.375(6)Å	1.36378 Å	0.08%	1.35667Å	1.3%
C5-C6	1.402(6)Å	1.4325 Å	2.2%	1.42931Å	1.9%
C5-N7	1.383(5)Å	1.3824 Å	0.04%	1.37448Å	0.6%
C6-O13	1.237(5)Å	1.2264 Å	0.8%	1.22150Å	1.2%
N7-C8	1.340(6)Å	1.35732Å	1.2%	1.35032Å	0.7%
N7-H14	1.01(1)Å	1.01094Å	0.0%	1.00661Å	0.3%
C8-N9	1.332(6)Å	1.32781Å	0.3%	1.32310Å	0.6%
C8-H15	1.01(1)Å	1.08132Å	6.5%	1.07958Å	6.5%
C10-H19	1.00(1)Å	1.08132Å	7.4%	1.08747Å	0.8%
C10-H20	1.00(1)Å	1.09289Å	8.4%	1.09064Å	8.2%
C10-H21	1.00(1)Å	1.09289Å	8.4%	1.09064Å	8.2%
C12-H16	1.00(1)Å	1.08981Å	8.0%	1.08816Å	7.9%
C12-H17	1.00(1)Å	1.09322Å	8.5%	1.09094Å	8.2%
C12-H18	1.00(1)Å	1.09322Å	8.5%	1.09094Å	8.2%

Tableau 5.10 : Longueurs de liaison calculées par la DFT (B3LYP et MPW1PW91)et celles obtenues par la diffraction des rayons X à 293 K .

Les résultats concernant les longueurs et angles de liaison par la fonctionnelle B3LYP et la fonctionnelle MPW1PW91 sont très proches. Dans le tableau 5.10 montre d'une manière générale que les longueurs de liaison autres que les liaisons C-H par les deux fonctionnelles B3LYP et MPW1PW91 sont très voisines des valeurs expérimentales des accords moyens de l'ordre de 0.80% par MPW1PW91 et de 0.85% par la B3LYP. On observe un bon accord avec l'expérience pour les liaisons C-O et N-H calculées par la fonctionnelle B3LYP et pour les liaisons C-H et C-C la fonctionnelle MPW1PW91 est meilleure.

Concernant les angles de liaison (sans les atomes d'hydrogènes) nous avons obtenu aussi des bon accords qui présente un écart de 1.00% et 0.92% entre les valeurs expérimentales et celles calculées à partir des deux fonctionnelles (B3LYP et MPW1PW91) respectivement. Alors que l'accord est moins bon pour les angles de liaison contenant la C-H trouvés par les calculs de la chimie quantique et comparés aux résultats expérimentaux qui est de l'ordre de 1.7% par les deux fonctionnelles (Tableau5.11).

Angles (°)	expérimentale	B3LYP	Accord	MPW1PW91	accord
C4-C5-C6	121.9(4)°	124.4434	2.0%	124.2208	1.8%
N3-C4-C5	123.5(4)°	121.0978	1.9%	121.1434	1.9%
C2-N3-C4	119.0(4)°	119.6322	0.5%	119.6417	0.5%
N1-C2-N3	116.4(4)°	117.3042	0.7%	117.3069	0.7%
N7-C5-C4	106.1(4)°	104.7443	1.2%	104.7171	1.3%
C8-N7-C5	106.0(4)°	106.5262	0.4%	106.5536	0.5%
N9-C8-N7	113.3(4)°	112.9933	0.2%	113.0750	0.2%
O11-C2-N3	122.0(4)°	121.3280	0.5%	121.3699	0.5%
O13-C6-C5	127.1(4)°	126.0971	0.7%	126.2076	0.7%
C12-N3-C4	122.5(4)°	122.2618	0.2%	122.2587	0.2%
C6-N1-C10	117.1(4)°	118.0582	0.8%	117.9389	0.7%
H14-N7-C5	125.2(9)°	125.1822	0.01%	125.2299	0.02%
H15-C8-N7	124.5(9)°	122.3923	1.6%	122.3654	1.7%
H16-C12-N3	107.1(41)°	107.7189	0.5%	107.6924	0.5%
H17-C12-N3	119.9(34)°	110.0506	8.2%	110.0801	8.1%
H18-C12-N3	115.4(34)°	110.0506	4.6%	110.0801	4.6%
H19-C10-N1	113.4(41)°	107.2485	5.4%	107.1653	5.5%
H20-C10-N1	106.3(36)°	109.9932	3.0%	110.0277	3.0%
H21-C10-N1	110.2(36)°	109.9932	0.2%	110.0277	0.1%

Tableau 5.11 : Angles de liaison calculés (B3LYP et MPW1PW91) et ceux obtenus par la diffraction des rayons X à 293 K.

5.3. Modes internes calculés à partir de la DFT

5.3.1. Modes internes de molécule de théophylline

Les calculs de la DFT sont faits en utilisant les fonctionnelles de corrélation et d'échange B3LYP et MPW1PW91 et des bases différents. Dans le tableau 5.12 sont résumées les fréquences des modes normaux des intensités IR et la nature de mouvement des 57 modes de la molécule de la théophylline. Une description détaillée est faite au chapitre précédent décrivant uniquement les modes de vibration observés dans le spectrogramme expérimental IR obtenu à la température ambiante. Pour observer toutes les fréquences obtenues à partir des calculs de la chimie quantique, des expériences à basses température sont nécessaires en spectroscopie IR et Raman (0-3200cm⁻¹) et aussi la diffusion inélastique des neutrons.

Les écarts entre les valeurs calculées des fréquences par les deux fonctionnelles et en utilisant les différents fonctionnelle sont assez grands. Ces écarts varient entre 1 cm⁻¹ et 26 cm⁻¹. Les valeurs calculées à partir de la fonctionnelle B3LYP sont proches de l'expérience. Pourtant cette fonctionnelle a donné des résultats d'optimisation (Longueurs et angles de liaison) moins bons que la MPW1PW91 par rapport à l'expérience. Les plus grands écarts avec les valeurs expérimentales est de 32 cm⁻¹ pour les mouvements hors du plan et est de 23cm⁻¹ pour les mouvements dans le plan.

Parmi les 57 fréquences vibrationnelles de la molécule de la théophylline 18 sont de symétrie A'' dont deux fréquences sont imaginaires (-618 cm⁻¹ et –613 cm⁻¹). Ces deux fréquences négatives ou imaginaires obtenues à partir des calculs des deux fonctionnelles correspondent à des mouvements des CH3 et ''peuvent traduire des états instables de la molécules de la théophylline''. Les 39 autres modes normaux de symétrie A' traduisent les différents mouvements tangentiels et radiaux de la molécule.

Tableau5.12 : Modes normaux expérimentaux et théoriques de la théophylline (Fréquences et intensité IR) avec la nature de mouvement correspondant à chaque mode.

modes	B3LYP Fréquences(cm ⁻¹)	B3LYP IR	MPW1PW91 Fréquences(cm ⁻¹)	MPW1PW91 IR	Fréquence Expérimentale 293 K	Nature
A''	-618.003	0.3409	-595.5272	0.2391		Ch3
A''	-613.483	0.6036	-592.2524	0.5613		Ch3
A''	79.403	0.9835	100.0437	0.9020		cycl
A''	113.1996	2.7192	136.6160	4.5602		Cycl
A''	126.6413	1.3016	152.3542	0.0389		Cycl
A''	187.2251	11.6694	207.7201	12.0204		Cycl
A''	270.6472	0.0037	292.2231	0.0049		Cycl
A'	291.7748	13.9255	295.1620	12.8604		Cycl
A'	308.4162	5.4853	314.3417	6.3787		Cycl
A''	345.0169	1.0144	358.3219	13.3750		Cycl
A'	357.6488	13.1925	362.3807	0.9833		Cycl
A'	399.0144	18.5501	402.2173	18.9864		Cycl
A'	449.2949	9.1398	450.1163	9.0903		Cycl
A'	499.6038	14.6020	500.5402	14.7514		Cycl
A'	569.6194	1.2191	570.2925	1.1954		Cycl
A''	616.9846	16.7982	631.2813	15.6426	609	Cycl
A'	684.5043	6.7153	687.8606	6.5049		Cycl
A''	688.6601	0.0077	704.5656	0.0572		Cycl
A''	727.3021	9.8546	742.3996	21.9668		Cy/Ch3
A''	735.0869	17.5300	754.9796	20.5429	744	Cy/Ch3
A'	773.3112	20.0083	778.0461	2.4270		Ch3
A''	814.1065	9.8546	840.7512	12.5552		Су
A'	890.6907	17.5300	894.4697	17.4293		Ch3
A'	946.1700	20.0083	947.3059	19.9060		Ch3/c-h
A''	962.8791	101.9906	978.2631	25.5461		Су/С-Н
A'	974.9912	25.1929	994.4682	104.3124		Cycl
A'	1010.4259	2.1814	1013.3462	2.4179		Ch3
A''	1029.3127	0.4620	1032.0990	0.7203	1024	Ch3

A''	1030.3536	0.1780	1032.7607	0.2229		Ch3
A'	1103.2702	43.6905	1105.8339	45.7644		Cy/ch3
A'	1150.7292	11.5101	1156.8381	12.6940		Cycl
A'	1188.0483	9.2806	1192.0777	10.0503		C-H
A'	1253.0085	24.0187	1257.6382	18.3161	1238	C-H/N- H
A'	1266.7741	29.0584	1270.6822	33.2888		Cy/CH3
A'	1329.7895	24.1568	1337.0938	22.3020		Су/С-Н
A'	1361.0987	44.4010	1367.3883	42.8714		Су/N-Н
A'	1430.1548	94.8819	1434.6223	95.5110		Су/С-Н
A'	1459.1346	107.7839	1459.9228	56.9960		Cy/ch3
A'	1503.8238	15.1463	1481.2520	30.6178	1484	Ch3
A'	1509.9820	90.7759	1491.0690	13.3149		Ch3/N- H
A'	1514.4201	52.4365	1493.2694	54.7292		Ch3
A''	1517.5263	12.8178	1500.4908	15.0573		Ch3
A''	1528.5815	14.3911	1510.9788	40.1360		Ch3
A'	1535.5868	9.7792	1519.5973	30.7719		Ch3
A'	1541.5355	15.5304	1533.5497	88.9456		Ch3
A'	1637.8116	182.6458	1645.6093	190.2611		Cy/ch3
A'	1674.7729	51.0011	1685.0363	47.3645	1697	Cycl
A'	1795.9161	630.3713	1803.2266	645.7843		Cycl
A'	1838.2588	410.9473	1846.0531	437.0176		Cycl
A'	2901.6535	95.2769	2923.8160	124.6217	2954	N-H
A''	3222.9612	22.6027	3237.2833	18.3260	3120	Ch3
A''	3226.2869	25.9894	3241.2234	20.2352		Ch3
A'	3233.3926	29.5378	3241.5643	30.1621		Ch3
A'	3234.4761	33.8052	3243.4276	24.5358		Ch3
A'	3250.4356	7.1598	3261.0509	3.4506		Ch3
A'	3252.2438	5.5959	3263.1016	2.3824		Ch3
A'	3295.6819	0.4138	3302.3888	0.8659		Ch3

5.3.2. Modes internes de la molécule d'eau

La molécule d'eau possède trois modes de vibrations. Les fréquences calculées et les intensités IR correspondant à chaque mode obtenues à partir de la fonctionnelle B3LYP et MPW1PW91 ainsi que la nature des différents mouvements sont regroupés dans le tableau 5.13.

Tableau 5.13 : Modes normaux de la molécule d'eau et la nature de mouvement correspondant à chaque mode (fonctionnelleB3LYP et MPW1PW91).

modes	B3LYP Fréquences(cm ⁻¹)	B3LYP IR	MPW1PW91 Fréquences(cm ⁻¹)	MPW1PW91 IR	nature
A1	1720.9475	75.8069	1691.2663	70.3027	déformation
A1	3575.4034	1.2395	3554.4776	6.8402	élongation
B2	3706.2747	19.8729	3673.4279	6.4151	élongation

Les modes calculés par la DFT avec la fonctionnelle B3LYP avec les mouvements correspondants à chaque mode sont représentés dans la figure 5.3.

modes des vibrations de la théophylline.

The state

A''-638 cm^{-1}

A'' 49.4 cm^{-1}

A" 113.19 cm⁻¹

 $A'' - 613 \text{ cm}^{-1}$

A'' 126.64 cm⁻¹

A'' 187.22 cm⁻¹

Fr.

A''270.64 cm⁻¹

Str.

A'291.77cm⁻¹

A'308.41 cm⁻¹

Pre-

₿¥÷

A''345.01 cm⁻¹

A'357.64 cm⁻¹

A'399.01 cm⁻¹

A'569.61cm⁻¹

A'449..29 cm⁻¹

A'499.60 cm⁻¹

 $A'' 616.98 \text{ cm}^{-1}$ $A' 684.66 \text{ cm}^{-1}$

A'3295.68 cm⁻¹

A'' 688.66 cm⁻¹

A''727.30 cm⁻¹

A''735.09 cm⁻¹

A'773.31 cm⁻¹

A''814.11 cm⁻¹ A' 890.69 cm⁻¹

A'946.17 cm⁻¹

A''962.88 cm⁻¹

A'974.99 cm⁻¹

A'1010.43 cm⁻¹

A''1029.31cm⁻¹

A''1030.35 cm⁻¹

A'1103.27 cm⁻¹

A'1150.73 cm⁻¹ A'1188.05 cm⁻¹

A'1253.01 cm⁻¹

A'1266.77 cm⁻¹

A'1329.79 cm⁻¹

A'1361.10 cm⁻¹

A'1430.15 cm⁻¹

A'1459.13 cm⁻¹

A'1503.82 cm⁻¹

A''1517.53 cm⁻¹ A''1528.58cm⁻¹

A'1509.98 cm⁻¹

A'1514.42 cm⁻¹

A'1535.59 cm⁻¹

A'1541.54 cm⁻¹

A'1637.81 cm⁻¹

A'1674.77 cm⁻¹

A'1795.92 cm⁻¹

A'1838.26 cm⁻¹

A'2901.65 cm⁻¹

A''3222.96 cm⁻¹

 $A''3226.29 \text{ cm}^{-1}$ $A'3233.39 \text{ cm}^{-1}$

 $A'3234.48 \text{ cm}^{-1}$ $A'3250.44 \text{ cm}^{-1}$ $A'3252.24 \text{ cm}^{-1}$

Modes de vibration de l'eau.

Figure 5.5. Modes des vibration calculé de théophylline monohydratée.
5.4. Conclusion

A partir des méthodes de calcul basées sur la fonctionnelle de la densité DFT, nous avons fait un calcul d'optimisation géométrique de la conformation moléculaire de la théophylline à partir de deux fonctionnelles différentes la B3LYP et la MPW1PW91 et des base différentes pour aboutir à des résultats très proches de ceux obtenus expérimentalement à partir de la diffraction des rayons X.

- Un bon accord de l'ordre de 0.8% est observé entre les longueurs de liaison calculées (MPW1PW91) et expérimentales.
- L' accord est moins bon pour celles déterminées par le calcul (B3LYP) et la diffraction des rayons X.
- Un accord de l'ordres de (0.92%) pour les angles de liaison entre le calcul (MPW1PW91) et l'expérience et de (1.00%) par la fonctionnelles B3LYP.
- Le calcul confirme la planéité du squelette de la conformation moléculaire par rapport au plan moyen de la molécule trouvé par la diffraction des rayons X.
- Chacun des deux méthyles a un hydrogène contenu dans le plan de la molécule. Dans la conformation moléculaire chacun des hydrogènes méthyle contenu dans le plan moléculaire est orienté de part et d'autre par rapport à l'oxygène O11 compris entre les deux méthyles du cycle aromatique à six liaisons.
- Dans la conformation moléculaire expérimentale un seul hydrogène méthyle contenu dans le moyen de la molécule est orienté vers cet oxygène O11.
- La théorie de la fonctionnelle de la densité est une technique qui est bien adapter pour le calcul des modes normaux et donne des résultats très proches avec l'expérience surtout pour des ''petites'' molécules ayant des volumes compris entre 500 et 600 Å³.

- Les calculs théoriques de spectroscopie IR ont permis l'identification des différents modes de vibration des différents mouvements de la molécule isolée.

CONCLUSION GENERALE

Notre objectif de départ était d'établir de la façon la plus claire possible les possibilités actuelle de détermination de la conformation moléculaire de molécules organique aromatique, d'une parte grâce aux méthodes de diffractions des rayons X sur les monocristaux et d'autre part à partir des méthodes actuelles de calcul de chimie quantique. Nous avons concentré notre travail sur l'examen de composé théophylline monohydratée. Ce composé possède deux molécules indépendantes la molécule d'eau et la molécule de théophylline ou 1,3-dimethylxanthine liées par une liaison hydrogène. L'intérêt était alors de voir avec quelle précision on pouvait comparer les conformations obtenues à partir des calculs avec celles obtenues par la cristallographie pour la molécule de théophylline.

La théophylline monohydrate cristallise de manière ordonnée dans un groupe spatial P 21/n à 293 K avec quatre molécules par maille, du point de vue conformation moléculaire, les molécules expérimentales sont très proches des molécules calculées en DFT.

- La structure cristalline de la théophylline monohydratée déterminée à partir des rayons X à la température ambiante 297 K confirme les résultats déjà trouvés dans la littérature.

- L'existence d'un centre d'inversion situé entre les deux molécules formant un dimère.

- La position des atomes d'hydrogène n'a pu être faite et nécessite pour leur localisation de faire une collecte de données à basse température à partir de la diffraction des neutrons.
- L'étude de la caféine est un de nos objectifs futurs et cela afin de mieux comprendre l'effet de la substitution d'un atome d'hydrogène par un méthyle sur le cycle xantine de la théophylline sur le reste de la molécule.
- L'attribution des différents modes de vibration de la molécule a montré à partir des fréquences obtenues expérimentalement et des calculs théoriques des écarts importants d'où l'importances de faire des manipulations à basses température.

La conjugaison des résultats obtenus à partir de la chimie quantique (DFT) et le spectre expérimental (température ambiante) a permis l'attribution des différents modes de vibration des différentes parties du squelette de la molécule et leurs effets sur le reste de la molécule.

A partir des méthodes de calcul basées sur la fonctionnelle de la densité DFT, nous avons fait un calcul d'optimisation géométrique de la conformation moléculaire de la théophylline à partir de deux fonctionnelles différentes la B3LYP et la MPW1PW91 et des base différentes 6-31G(d) et 6-31G(d,p), pour aboutir à des résultats très proches de ceux obtenus expérimentalement à partir de la diffraction des rayons X.

- Un bon accord de l'ordre de 0.8% est observé entre les longueurs de liaison calculées (MPW1PW91) et l'expérience.
- L'accord est moins bon pour celles déterminées par le calcul (B3LYP) et la diffraction des rayons X.
- Un accord de l'ordre de (0.92%) pour les angles de liaison entre le calcul (MPW1PW91) et l'expérience et de (1.00%) par la fonctionnelle B3LYP.
- Le calcul confirme la planéité du squelette de la conformation moléculaire par rapport au plan moyen de la molécule trouvé par la diffraction des rayons X.
- Chacun des deux méthyles a un hydrogène contenu dans le plan de la molécule. Dans la conformation moléculaire chacun des hydrogènes méthyle contenu dans le plan moléculaire est orienté de part et d'autre par rapport à l'oxygène O11 compris entre les deux méthyles du cycle à six liaisons.
- Dans la conformation moléculaire expérimentale un seul hydrogène méthyle contenu dans le plan moyen de la molécule est orienté vers cet oxygène (O11).
- Les calculs de spectroscopie IR ont permis l'identification des différents modes de vibration des différents mouvements de la molécule isolée.

Bibliographies

[1] G. M. Sheldrick, SHELX97, Programs for Crystal Structure Analysis, Institüt für Anorganische Chemie der Universite, Tammanstrasse 4, D-3400 Gttingen, Germany, 1998.

[2] W.Paulus, J.meinnel(2003), Neutrons et matériaux, Trégastel, France

[3] Maurice Van Meerssche, Janine Feneau Dupont(1984), Introduction à la cristallographie et à la chimie structurale, Université de Louvain

[4] Michel Evain(1999-2000), Diffraction par les poudres, Faculté des sciences et des techniques de Nantes

[5] Jean Protas (1999), Diffraction des rayonnements, introduction concepts et méthodes, Université Henri Poincaré-Nancy1

[6] C. Giacovazoo, 1980; Direct Methods in Crystallography, Academics London

[7] D. J. Watkin, C.K. Prout, J. R. Carruthers, P. W. Betteridge & R.I.Cooper

(CRYSTALS) Issuel1. Chemical Crystallography Laboratory, Oxford, UK (2002).

[8] I. N. Strelcova and J. T. Stuchkov, Isvest. Akaad. Nauk.SSSR 2,250(1961)

[9] A.Boudjada,(2002),thèse de l'université de Mentouri- constantine, Algérie

[10] Farrugia, L. J. (1999) J. Appl. Cryst., 32, 837-838.

[11] G. Cascarano, A. Altomare, C. Giacovazzo, A.Guagliari, A. G. G.Moliterni,

D.Siliqi, M.C.Burla, G.Polidori and M. Camalli ;Acta cryst. A52, C-79(1996)

[12] David Antonio DE VITO(2003). Thèse de l'université de Genéve

[13] M. Plazanet(2000), Thèse de l'université de Joseph Fourier

[14] Hehre, W.J; Stewart, R.F.; Pople, J.A. J. Chem. Phys. 1969, 2657. Binkley, J.S.;

Pople, J.A.; Hehre, W.J. J. Am. Chem. Soc. 1980, 102, 939.

[15] P. Hohenberg & W. Kohn, Phys. Rev., 136, B864 (1964)

[16] Florent Calvayrac(1998),thèse de l'université de l'université Paul Sabatier Toulouse III

[17] W. Kohn & L. J. Sham, Phys. Rev., 140, A1133 (1965)

[18] Gaussian 98 (Revision A.5), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Menucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz,

B.B. Stefanov, G. Liu, A. Liashenko, P. Pikorz, I. Komaromi, R. Gomperts, R.L. Martin,

D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzales, M.

Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M.

Head-Gordon, E. S. Replogle, and J.A. Pople, Gaussian, Inc., Pittsburgh PA (1998).

[19] E.G. Cox(1928), Nature, 122, 401

- [20] Strel Tsova, I.N.& struchcov, YU. T.(1961).J.chem.phys.jpn.58,1793-1800
- [21] G. P. Charbonneau, g. p. & trotter, j. (1967). J. chem. Soc. A, pp.2032-2035
- [22] W. R. Krigbaum, G.C. Wildman, g. c.(1971). Actacryst.b27.2353-2358

[23] T. L. Khotsyanova, T.A.Babushkinna, S.I.Kuznetsov& G.K. Semin, (1972). Kristallografiya, 17, 552-556.

[24] J. C. Messager, & J.Blot,(1971).C. R. acad. Sci. Paris, 272, 684-686

- [25] M. Tazi, (1990).doctorate. thesis. Univ of rennes
- [26] A. Domenicano, A. Vaciago et C. coulson(1975), Acta Cryst. B31,221
- [27] D. Andre, R. Forme et M. Renaud(1971), Acta Cryst. B27, 2371
- [28] Y. Ebisuzaki, Paul D.Boyle and Jennifer A.Smtt acta cryst. C53, 777-779 (1997)
- [29] G.Ferguson et M.Parvez Acta cryst. C50, 1303-1305(1994)
- [30] J. M. Leger, S. Alberola et A. carpy Acta Cryst. B33, 1455-1459 (1977)
- [31] D. J. Sutor Acta cryst.11,83-87(1958)

[32] C. Sun, Deliang zhou, D.J.W.Grant and victor G.Young acta cryst E58,368-370(2002)

[33] Allinger. Cava. Johnson. Dejogh. Lebel. Stivens(1983), Chimie Organique, Volume1, Centre Universitaire du Mans.

[34] Carruthers J.R., Watkin D. ; Acta Cryst. A35 (1979) 698-699.

[35] Larson, A.C. (1970). *Crystallographic Computing*, *Ed.* Ahmed, F.R., Munksgaard, Copenhagen, 291-294.

[36] CAMERON - A Molecular Graphics Package. D. M. Watkin, L. Pearce and C.

K. Prout, Chemical Crystallography Laboratory, University of Oxford, 1996.

[37] Origin, Microsoft Software, INS one Rounthouse Plase, Nothempton 1110160 USA.

[38] S.Portman, Copyright MOLEKEL-Version, 3, Win 32; 2002.

[39] M.J. Frisch, G.W. Trucks, and J.R. Cheeseman, in "*Recent developments and applications of modern density functional theory*", J.M. Seminario editor, Elsevier Science, p. 679 (1996).

[40] W. Koch and M.C. Holthausen, a '*Chemist's guide to density functional theory*'', Wiley-VCH, P. 119(2000).

Résumé

Ce travail s'inscrit dans le cadre de l'étude de la structure cristalline et des conformations moléculaire expérimental (méthode de diffraction des rayons X) et calculée (méthode de la fonctionnelle de la densité DFT) d'un composé organique et aromatique.

Le choix de la théophylline monohydrate $C_7H_8N_4O_2.H_2O$ est principalement dictée par les faits suivants :

• La planéité de la molécules qui permet de faire des calculs de DFT précis.

• Les résultats entrepris auparavant par d'autres auteurs ont montré que ce composé cristallise dans deux groupes d'espace différent $P2_1$ à la température 295 K et un autre $P2_1/n$ à la température 173 K.

• Les groupe méthyle y sont isolés les un des autres par des oxygènes, ce qui évite tout couplage entre méthyles d'une même molécule (pour des études concernant la dynamique des groupements méthyles).

La structure cristalline de théophylline monohydrate a été déterminée à 293K : elle est monoclinique (P2₁/n, Z=4).

L'agitation thermique est très importante pour les atomes des groupements méthyle par rapport au reste de la molécule.

La conformation moléculaire de la molécule de théophylline $C_7H_8N_4O_2$ à été calculé par les méthode de DFT avec les fonctionnelles B3LYP et MPW1PW91 et des bases différentes 6-31G(d), 6-31G(d,p) respectivement.

La spectroscopie infrarouge à la température ambiante a permis d'observer des modes de vibration interne vers 609, 744, 1024, 1238 cm⁻¹. Des calculs de la chimie quantique de spectroscopie IR ont permis d'attribuer des fréquences à différents modes de vibration de la molécule.

Mots clés : Diffraction des Rayons X , Chimie quantique , DFT Théophylline Monohydratée, Spectroscopie IR Abstract

This work is a part of a study of the crystal structure and experimental (X-rays diffraction method) and calculated molecular conformation (DFT density functionnal theory) of an organic and aromatic material.

the choice of the ophylline monohydrate $C_7H_8N_4O_2.H_2O$ is mainly dictated according to:

• The plenty of the molecule which allows in fact DFT precise calculates.

• Results preceding showing that this material crystallize into two different space groups namely P21 at the temperature 295 K and P21/n at the temperature 173 K.

• the group methyl are isolated from each other by oxygen, which avoids any coupling between methyl of the same molecule (for the studies concerning the dynamic methyl groups).

The crystalline structure of Theophylline monohydrate was determinated at 293K: it is monoclinic (P21/n, Z=4).

Thermal agitation is very significant for the methyl groups compared to the other atoms of the molecule.

The molecular conformation of the theophylline molecule $C_7H_8N_4O_2$ was calculated by the methods of DFT with the functional B3LYP and MPW1PW91 by the different bases 6-31G(d) and 6-31G(d,p) respectively.

The infra-red spectroscopy at the ambient temperature allowed the observation of internal vibration modes towards 609, 744, 1024, 1238 cm⁻¹. Calculations of IR spectroscopy held in quantum chemistry allowed the attribution of frequencies to the different vibration modes of the molecule.

Keys Words: X-Rays Diffraction, Quantum Chemistry, DFT, Theophylline Monohydrate, IR Spectroscopy.

ملخص

يدخل هدا العمل في إطار الدراسات الخاصة بالبنية البلورية و تشكيل الجزيئات بالطريقة التجريبية (انعراج الأشعة السينية) و بالطريقة النظرية (طريقة توابع الكثافة DFT) لمركب عضوي عطري. اختيار مادة الطيوفيلين المائي للدراسة، كان للأسباب التالية :

- جزيئة الطيوفيلين مستوية و دالك يسمح بإجراء حسابات نظرية دقيقة.
- النتائج السابقة بينت أن هذا المركب يتبلور إلى مجموعتين فضائيتين مختلفتين P2 عند درجة الحرارة 295K
 وآخر P2₁/n عند درجة الحرارة 173K
 - المجموعان الميتيلية معزولة عن بعضها البعض بواسطة الأكسجين و دالك يمنع الارتباط بينهما داخل نفس الجزيئة (لأجل الدر اسات المتعلقة بحركية المجموعات الميثيلية) .

البنية البلورية لجزيئه الطيوفيلين حددت عند درجة حرارة الغرفة، وهي وحيدة الميل مع عدد الجزيآت في الخلية هو أربعة (P21/n, Z=4). الاهتزازات الحرارية كبيرة جدا لذرات المجموعات الميثيلية بالنسبة لباقي الجزيئية. التشكيل الجزيئي لجزيئه الطيوفيلين C7H₈N4O2 قد حسب بطريقة الDFT مع التوابع B3LYP و MPW1PW91 وقواعد مختلفة (b)G6-6 و(d,p) قد حسب بطريقة الMPU مع التوابع 606، 744 ، المطيافية تحت الحمراء، عند درجة حرارة الغرفة، سمحت بملاحظة أنماط اهتزاز داخلية عند 609، 744 ، اهتزاز مختلفة للجريئة.

الكلمات المفتاحية

انعراج الأشعة السينية، الكيمياء الكوانتية،DFT ، الطيوفيلين المائي، المطيافية تحت الحمراء.

Ce travail a été réalisé au laboratoire de cristallographie de l'université de Constantine en collaboration avec l'université de Rennes 1. Le thème général est .

STRUCTURE, CONFORMATION MOLECULAIRE ET SPECTROSCOPIE DE LA THEOPHYLLINE MONOHYDRATEE $(C_7H_8N_4O_2.H_2O)$

Introduction

Dans l'introduction je présenté Mon plant de travail. Le travail s'articule autour de cènques chapitres. Dans le première chapitre de ce mémoire nos présenteront

1.Quelques notions théoriques sur la détermination de structure cristalline par les rayons X

Le deuxième chapitre portera essentiellement sur les

2. Etude de la conformation moléculaire par les méthodes de chimie quantique. Dans le troisième chapitre nous présenterons des

3. Rappels bibliographiques sur des structures de quelques cristaux moléculaires aromatiques et quelques notions théoriques sur la spectroscopie infrarouge Enfin dans le quatrième et dernier chapitre nous présenterons successivement

les résultats expérimentaux, le calcul de la chimie théorique de la structure de la

théophylline et une comparaison entre les résultats expérimentaux et calculés.

4. Détermination de la structure de la 1,3-diméthylexanthine monohydratée (C₇H₈N₄O₂.H₂O) ou la théophylline monohydratée à 293 K

5. Conformation moléculaire calculée par la théorie de la fonctionnelle de la densité (DFT)

Toutes les étapes de l'études de laboratoires son résumé dans le tableau.1

Les études de laboratoire sont séparé en deux catégorie :

L'un concerne les études éxprementale et l'outre les études de calcules de la théophylline . chaque catégorie est partagé en deus section :

Pour les études éxpérimentale on a fait la détermination de structures cristalline par les rayon X et une études spectroscopiques nos utilisons la spéctroscopie IR pour les études des modes de vibration de la théophylline monohydratée .

Pour les étude de calcules on a fait l'optimisation géométriques de la molécules de théophylline par deux fonctionnelle et deux base différent et un calcule des modes de vibrations C-A-R les intensités IR absorbée et les friquances caractéristiques de chaque modes par les deux fonctionnelle .

Et en fain nous un comparaisons entre les résultat expérimentale et calculé pour trouvé la fonctionnelle la plue addapté au problème.

Je commence par

1. Détermination de la structure de la 1,3-diméthylexanthine monohydratée (C₇H₈N₄O₂.H₂O) ou la théophylline monohydratée à 293 K

La structure cristalline de la 1,3-diméthylexanthine monohydraté ($C_7H_8N_4O_2.H_2O$) appelée théophylline monohydraté a fait l'objet de plusieurs études cristallographiques. La structure a été résolue une première fois par les rayons X à 295 K en 1958[31] par Sutor qui a montré qu'elle cristallise dans le groupe d'espace P2₁ avec quatre molécules par maille. Cette étude reprise aux rayons X en 2002 à la température de 173K par Sun [32] a montré que cette structure cristallise dans le groupe d'espace P2₁/n.

La figure 1 représenté la conformation moléculaire trouvé par sun

Figure 3.8 : Théophylline monohydratée (Sun (2002)).

Sun et al[32] a montré que il est existe un désordre dynamique sur un atome d' hydrogène de la molécule d'eau et les trois hydrogènes de méthyle C_{m13} .

Dans notre travail, nous avons cependant repris l'étude cristallographique de théophylline monohydratée à la température 293K :

1.1 Croissance des cristaux

Nous avons préparé de gros monocristaux par évaporation lente à partir d'une solution de théophylline saturée dans l'acétone. Les monocristaux obtenus sont des petites aiguilles de couleur blanche, on examiner un grand nombre de cristaux pour trouver des monocristaux vraiment unique.

1.2 Dispositif expérimental utilisé

On utilisant un diffractomètre piloté par un ordinateur comporte « quatre cercles » Figure2.

Figure4.1 : Equipement du diffractomètre quatre cercles utilisé pour la collecte des intensités (Université de Constantine).

3.Collecte des intensités

L'enregistrement des intensités diffractées à été effectué sur un monocristal de dimension $0.4 \times 0.3 \times 0.3$ mm avec $\lambda(MoK\alpha)$ et monochromateur de graphite. Le mode de balayage est $\frac{\omega}{2\theta}$ avec $\theta \leq 24.0^{\circ}$. Les données cristallines sont les suivantes :

Nombre de réflexions mesurées :1551Nombre de réflexions indépendantes :1418Le domaine d'enregistrement est : $5 \le h \le -5$ $17 \le k \le 0$ $15 \le l \le 0$ a = 4.482(1) Åb = 15.32(9) Åc = 13.264(1) Å $\alpha = 90.0000^{\circ}$ $\beta = 98.546(6)^{\circ}$ $\gamma = 90.0000^{\circ}$

Apprtire de fiché cad4.dat trouvé de diffamatoire. Et alade de programme WINGX on trouve que la structures est cristallise dans le groupes d'éspace P21/N avec Z=4 Ce qui conforme le résultat trouvé par sun en 2002.

La résolution de la structure à été menée grâce au programme SHELX

On obtient un modèle proposé avec un facture de confiance de l'o initiale rdre 16.88, Cette modèle à été affiné a laide de logicielle CRYSTAL avec 1400 réflexion pour affiné les 153 paramètre. l'analyse d'une dernière synthèse de Fourier différence n'a pas révélé de résidus significatifs ($\Delta \rho_{max} = 0.20$ e Å⁻³ et $\Delta \rho_{min} = -0.18$ e Å⁻³).

4. Description et discussion de la structure

► l'empilement des molécules se fait parallèlement entre elles suivant l'axe *b* donc suivant la direction [010] (Figure3)

► L'empilement antiferroélectrique des molécules se fait en ''zigzag'' générées par un centre situé entre les deux molécules

Figure 4.2 : Empilement moléculaire et maille cristalline Vue perpendiculaire au plan (010).

► Les équations du meilleur plan moyen de la théophylline Où X, Y et Z sont exprimés en Å par rapport à un système d'axes orthogonaux.

L'angle entre le plan moyen de la molécule et les axes

Dans la (Figure.4.3) est représentée une molécule de la théophylline entourée par les six plus proches voisines, la distance minimale de contact est C-O avec une valeur de 3.3122 Å.

Figure 4.3 : Vue d'une couche moléculaire suivant le plan (100).

► La description du $C_7H_8N_4O_2.H_2O$ est principalement caractérisée par la présence d'une molécule d'eau au voisinage du l'atome N9. Les deux molécules formant l'unité asymétrique sont liées par une liaison hydrogène de type O22—HN9. Le cristal contient trois types de liaisons hydrogène. de l'ordre O22—HN9 = 2.912Å figure :

Figure 4.4 : Conformation moléculaire de la molécule de théophylline

Les plus courte distances C-C et N-C dans la molécule de la théophylline sont les distances C5-C4 et N9-C8 ce qui conformes que elle sont des doubles .
 Pour les autre longueurs de liaisons elles sont généralement très proche de résultats trouvé par Sun dans la températures 173K avec un petit écarte peut être expliqué par l'effet de la température.

► Le cristal est réches par les liaisons hydrogène elle contient trois types de liaisons hydrogène :

Tableau 4.1 : Liaisons hydrogènes dans le cristal de la théophylline

monohydratée(Å,°).

D-HH D-H HA DH D-H					
	D-HH	D-H	HA	DH	D-HA

N7-H14O13	1.008(4)	1.778(4)	2.765(4)	165.2(1)
O22-H23N9	0.950(4)	2.013(4)	2.912(4)	156.9(1)
O22—H23O22	0.948(4)	2.151(4)	2.714(4)	116.2(1)
Codes :				

Les cordonnées atomiques fractionnaires avec les facteurs de déplacement atomiques équivalents moyens et l'occupation sont données dans le (tableaux 4.2)

 Tableau 4.2 : Coordonnées atomiques fractionnaires et paramètres de déplacement en

(Å).

Atomes	x	У	Z	U _{iso/equiv}	occupation
N1	0.9992(8)	0.3656(2)	0.7070(3)	0.0344	1.0000
C2	0.9988(11)	0.2765(3)	0.7281(4)	0.0369	1.0000
N3	0.7820(8)	0.2273(2)	0.6688(3)	0.0344	1.0000
C4	0.594(1)	0.2664(3)	0.5939(4)	0.0376	1.0000
C5	0.604(1)	0.3525(3)	0.5730(3)	0.0352	1.0000
C6	0.808(1)	0.4085(3)	0.6311(3)	0.0350	1.0000
N7	0.3759(9)	0.3675(2)	0.4927(3)	0.0419	1.0000
C8	0.2415(11)	0.2906(3)	0.4710(4)	0.0420	1.0000
N9	0.3664(9)	0.2261(2)	0.5297(3)	0.0399	1.0000
C10	1.2181(12)	0.4197(3)	0.7755(4)	0.0558	1.0000
011	1.1805(8)	0.2443(2)	0.7950(3)	0.0573	1.0000
C12	0.7736(14)	0.1343(3)	0.6874(4)	0.0557	1.0000
013	0.8351(7)	0.4877(2)	0.6192(3)	0.0524	1.0000
H14	0.326(8)	0.426(1)	0.459(3)	0.0864	1.0000
H15	0.079(7)	0.2796(13)	0.4110(19)	0.0484	1.0000
H16	0.566(7)	0.120(4)	0.702(5)	0.1518	1.0000
H17	0.829(11)	0.093(3)	0.635(3)	0.1390	1.0000
H18	0.869(12)	0.115(3)	0.7567(17)	0.1142	1.0000
H19	1.255(14)	0.478(2)	0.746(5)	0.2221	1.0000
H20	1.129(11)	0.428(4)	0.839(2)	0.1328	1.0000
H21	1.415(7)	0.389(3)	0.792(4)	0.1376	1.0000
O22	0.2395(9)	0.0453(2)	0.4748(3)	0.0694	1.0000
H23	0.232(19)	0.1068(8)	0.480(6)	0.2051	1.0000
H24	0.354(16)	0.027(5)	0.537(3)	0.2001	1.0000

► Le tableau montré que la structure est ordonnée à la température ambiante (contrairement a le résultats trouvé par sun pour le désordres dans les atomes d'hydrogène), avec des facteurs de déplacement atomique équivalents moyens des atomes du cycle xanthine $U_{eq} \approx 0.0387(3)$ Å² qui sont significativement plus faibles que ceux des atomes substituants $U_{eq} \approx 0.055(3)$ Å² et encore plus faible que l'atome libre O(22) $U_{eq} = 0.0694$ Å²

 \blacktriangleright L'analyse des paramètres de déplacement anisotropes montre une agitation thermique plus importante selon l'axe *a* pour les atomes de carbone des groupes méthyles et les atomes d'azote

Label	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N1	0.029(2)	0.036(2)	0.035(2)	-0.0027(18)	-0.0042(18)	0.0018(17)
C2	0.036(3)	0.044(3)	0.030(3)	0.004(2)	0.004(3)	0.005(3)
N3	0.038(2)	0.037(2)	0.039(2)	0.0032(19)	0.002(2)	0.0021(19)
C4	0.035(3)	0.038(3)	0.037(3)	-0.005(2)	-0.003(3)	-0.000(2)
C5	0.034(3)	0.035(3)	0.035(3)	0.001(2)	-0.000(2)	0.004(2)
C6	0.035(3)	0.033(3)	0.038(3)	-0.005(2)	0.008(2)	0.002(2)
N7	0.043(2)	0.037(2)	0.042(3)	-0.001(2)	-0.007(2)	-0.002(2)
C8	0.036(3)	0.047(3)	0.041(3)	0.001(3)	0.001(2)	0.000(3)
N9	0.042(2)	0.033(2)	0.044(2)	-0.0007(18)	0.004(2)	0.0003(19)
C10	0.048(3)	0.050(3)	0.062(4)	-0.023(3)	-0.017(3)	-0.002(3)
011	0.058(3)	0.060(2)	0.048(2)	0.0089(19)	-0.012(2)	0.0097(19)
C12	0.072(4)	0.033(3)	0.057(4)	0.008(3)	-0.008(3)	-0.001(3)
013	0.061(3)	0.0339(19)	0.057(2)	0.0019(18)	-0.0111(18)	-0.0052(17)

Tableau 4.5 : Paramètres de déplacements anisotropes en $(Å^2)$.

Les paramètre de déplacement isotropes des atomes d'hydrogène

Tableau 4.6 : Paramètres de déplacement isotropes des atomes d'hydrogènes en $Å^2$

Atomes	U ₁₁
H14	0.08637
H15	0.04842
H16	0.15182
H17	0.13895
H18	0.11421
H19	0.22206

H20	0.13276
H21	0.137641
H23	0.205084
H24	0.200060

Les atomes H23, H24 de la molécule d'eau et H19 de le méthyle C10 possédant des grandes paramètres d'agitations thermiques isotropes.

La figure4.5 donne des projections de la structure dans les plans a.(100) b.(001) c.(010) et d.(01 $\overline{1}$).

Figure 4.5 : Vues de la molécule suivant les plans : a.(100), b.(001), c.(010) et $d.(10\overline{1})$.

Je passe mentent à la partie spectroscopie

3.3. Spectroscopie infrarouge

Pour l'étude infrarouge nous avons utilisé un échantillon solide sous forme de poudre. L'analyse s'effectue à l'aide d'un spectromètre à transformée de Fourier.

L'analyse et le traitement des données brutes collectées à partir du spectroscope infrarouge sont traités à partir de la chaîne de programmes ORIGIN 60[37].

Figure 4.7 : Spectre IR de théophylline monohydratée à 293 K.

Pour l'interprétation de spectre on a utilisé les résultats obtenue par la DFT. certains modes de vibrations sont obtenues à partir du programme d'illustration MOLEKEL[38] sont données :

Figure 4.8 : Mode à 609.4 cm⁻¹

► 609.4 cm⁻¹: mouvement radial correspondant à la respiration de cycle xanthine avec une grande déformation de la liaison C8-H15.

Figure 4.9 : Mode à 744.39 cm⁻¹

► 744.39 cm⁻¹: Mouvement hors du plan du cycle (balancement faible du cycle) avec forte agitation de l'atome C5

Figure 4.10 : Mode à 1024.02cm⁻¹

► 1024.02 : Mouvement de déformation des liaisons C-H ayant conduit à la vibration des groupements méthyles hors du plan.

Figure 4.11 : Mode à 1238.08 cm⁻¹

► 1238.08cm⁻¹ : Le mouvement d'élongation très prononcé des liaisons C-N a conduit à la déformation dans le plan de la molécule.

Figure 4.13 : Mode à 1697.06 cm⁻¹

▶ 1697.06 cm⁻¹ :Vibration d'élongation concernant les liaisons C-O.

5. Conformation moléculaire calculée par la théorie de la fonctionnelle de la densité (DFT)

Cette partie du travail préliminaire consiste à faire un calcul théorique basé sur la théorie de la fonctionnelle de densité DFT pour déterminer les conformations moléculaires de la molécule de théophylline (la molécule est isolée). Les calculs sont faits à la température ambiante en utilisant deux fonctionnelles d'échange corrélation B3LYP et MPW1PW91 et des bases différents.

Pour la

5.2.1.1. Fonctionnelle B3LYP

La géométrie la plus stable pour la molécule de la théophylline correspond à une énergie minimale E = -641.062490307 Ua.

les figure5.1 sont représentées les longueurs et angles de liaisons de la conformation moléculaire de la théophylline.

Figure 5.1 : Conformation moléculaire de la théophylline obtenue à partir de la DFT (B3LYP ; 6-31G(d)).

les atomes de la molécule de théophylline trouvés à partir des calculs de la DFT confirme la planéité obtenue à partir de la diffraction des rayons X
 Les deux atomes d'hydrogène H16 et H19 respectivement des méthyles C_m10 et C_m12 sont contenus dans le plan moyen du squelette de la molécule

5.2.1.2. Fonctionnelle MPW1PW91

pour la fonctionnelle **MPW1PW91** la connformation moléculaire et plus proche de celle ptenue par la fonctionnelle b3lyp donc la molécule est plan Des résultats très proches sont obtenus par les deux fonctionnelle pour Les liaisons C-N, C-O, C-C et C-H on a l'écarte est de l'ordre 0.2%.

Figure 5.2 : Conformation moléculaire de la théophylline calculée par la DFT (MPW1PW91; 6-31G(d,p)).

5.2.1.3 Comparaison des résultats calculés (fonctionnelles B3LYP et MW1PW91) avec les résultats expérimentaux de la molécule de la théophylline

touts les résultats cocernent les longures de liaisons et les angles des liaisons trouvé par les deux fonctionnelles B3LYP, MPW1PW91 et les résultats éxpérémentalaux et les acorde entre les résultats calculé et les résultats éxpérementales sont regroupé dans les tableux

distance	expérimentale	B3LYP	Accord	MPW1PW91	accord
N1-C2	1.400(5)Å	1.40935Å	0.6%	1.40123Å	0.07%
N1-C6	1.388(5)Å	1.41800Å	2.1%	1.40819Å	1.4%
N1-C10	1.489(5)Å	1.46591 Å	1.5%	1.45631Å	2.0%
C2-N3	1.382(6)Å	1.39393 Å	0.8%	1.38527Å	0.2%
C2-O11	1.217(5)Å	1.22219 Å	0.4%	1.21766Å	0.05%
N3-C4	1.346(5)Å	1.3755 Å	2.1%	1.36868Å	1.6%
N3-C12	1.454(6)Å	1.46221 Å	0.5%	1.45275Å	0.08%
C4-C5	1.355(6)Å	1.37898 Å	1.6%	1.37483Å	1.4%
C4-N9	1.375(6)Å	1.36378 Å	0.08%	1.35667Å	1.3%
C5-C6	1.402(6)Å	1.4325 Å	2.2%	1.42931Å	1.9%
C5-N7	1.383(5)Å	1.3824 Å	0.04%	1.37448Å	0.6%
C6-O13	1.237(5)Å	1.2264 Å	0.8%	1.22150Å	1.2%
N7-C8	1.340(6)Å	1.35732Å	1.2%	1.35032Å	0.7%
N7-H14	1.01(1)Å	1.01094Å	0.0%	1.00661Å	0.3%
C8-N9	1.332(6)Å	1.32781Å	0.3%	1.32310Å	0.6%
C8-H15	1.01(1)Å	1.08132Å	6.5%	1.07958Å	6.5%
C10-H19	1.00(1)Å	1.08132Å	7.4%	1.08747Å	0.8%
C10-H20	1.00(1)Å	1.09289Å	8.4%	1.09064Å	8.2%
C10-H21	1.00(1)Å	1.09289Å	8.4%	1.09064Å	8.2%
C12-H16	1.00(1)Å	1.08981Å	8.0%	1.08816Å	7.9%
C12-H17	1.00(1)Å	1.09322Å	8.5%	1.09094Å	8.2%
C12-H18	1.00(1)Å	1.09322Å	8.5%	1.09094Å	8.2%

Tableau 5.10 : Longueurs de liaison calculées par la DFT (B3LYP et MPW1PW91) et celles obtenues par la diffraction des rayons X à 293 K.

Angles (°)	expérimentale	B3LYP	Accord	MPW1PW91	accord
C4-C5-C6	121.9(4)°	124.4434	2.0%	124.2208	1.8%
N3-C4-C5	123.5(4)°	121.0978	1.9%	121.1434	1.9%
C2-N3-C4	119.0(4)°	119.6322	0.5%	119.6417	0.5%
N1-C2-N3	116.4(4)°	117.3042	0.7%	117.3069	0.7%
N7-C5-C4	106.1(4)°	104.7443	1.2%	104.7171	1.3%
C8-N7-C5	106.0(4)°	106.5262	0.4%	106.5536	0.5%
N9-C8-N7	113.3(4)°	112.9933	0.2%	113.0750	0.2%
O11-C2-N3	122.0(4)°	121.3280	0.5%	121.3699	0.5%
O13-C6-C5	127.1(4)°	126.0971	0.7%	126.2076	0.7%
C12-N3-C4	122.5(4)°	122.2618	0.2%	122.2587	0.2%
C6-N1-C10	117.1(4)°	118.0582	0.8%	117.9389	0.7%
H14-N7-C5	125.2(9)°	125.1822	0.01%	125.2299	0.02%
H15-C8-N7	124.5(9)°	122.3923	1.6%	122.3654	1.7%
H16-C12-N3	107.1(41)°	107.7189	0.5%	107.6924	0.5%
H17-C12-N3	119.9(34)°	110.0506	8.2%	110.0801	8.1%
H18-C12-N3	115.4(34)°	110.0506	4.6%	110.0801	4.6%
H19-C10-N1	113.4(41)°	107.2485	5.4%	107.1653	5.5%
H20-C10-N1	106.3(36)°	109.9932	3.0%	110.0277	3.0%
H21-C10-N1	110.2(36)°	109.9932	0.2%	110.0277	0.1%

Tableau 5.11 : Angles de liaison calculés (B3LYP et MPW1PW91) et ceux obtenus par la diffraction des rayons X à 293 K.

5.3. Modes internes calculés à partir de la DFT

Les calculs de la DFT sont faits en utilisant les fonctionnelles de corrélation et d'échange B3LYP et MPW1PW91 et des bases différents. Dans le tableau 5.12 sont résumées les fréquences des modes normaux des intensités IR et la nature de mouvement des 57 modes de la molécule de la théophylline et les trois modes de vibration de la molécules d eaux

Tableau5.12 : Modes normaux expérimentaux et théoriques de la théophylline (fréquences et intensité IR) avec la nature de mouvement correspondant à chaque mode.

modes	B3LYP Fréquences(cm ⁻¹)	B3LYP IR	MPW1PW91 Fréquences(cm ⁻¹)	MPW1PW91 IR	Fréquence Expérimentale 293 K	Nature
A''	-618.003	0.3409	-595.5272	0.2391		Ch3
A''	-613.483	0.6036	-592.2524	0.5613		Ch3
A''	79.403	0.9835	100.0437	0.9020		cycl
A''	113.1996	2.7192	136.6160	4.5602		Cycl
A''	126.6413	1.3016	152.3542	0.0389		Cycl
A''	187.2251	11.6694	207.7201	12.0204		Cycl
A''	270.6472	0.0037	292.2231	0.0049		Cycl
A'	291.7748	13.9255	295.1620	12.8604		Cycl
A'	308.4162	5.4853	314.3417	6.3787		Cycl
A''	345.0169	1.0144	358.3219	13.3750		Cycl
A'	357.6488	13.1925	362.3807	0.9833		Cycl
A'	399.0144	18.5501	402.2173	18.9864		Cycl
A'	449.2949	9.1398	450.1163	9.0903		Cycl
A'	499.6038	14.6020	500.5402	14.7514		Cycl
A'	569.6194	1.2191	570.2925	1.1954		Cycl
A''	616.9846	16.7982	631.2813	15.6426	609	Cycl
A'	684.5043	6.7153	687.8606	6.5049		Cycl
A''	688.6601	0.0077	704.5656	0.0572		Cycl
A''	727.3021	9.8546	742.3996	21.9668		Cy/Ch3
A''	735.0869	17.5300	754.9796	20.5429	744	Cy/Ch3
A'	773.3112	20.0083	778.0461	2.4270		Ch3
A''	814.1065	9.8546	840.7512	12.5552		Су
A'	890.6907	17.5300	894.4697	17.4293		Ch3
A'	946.1700	20.0083	947.3059	19.9060		Ch3/c-h
A''	962.8791	101.9906	978.2631	25.5461		Су/С-Н
A'	974.9912	25.1929	994.4682	104.3124		Cycl
A'	1010.4259	2.1814	1013.3462	2.4179		Ch3

A''	1029.3127	0.4620	1032.0990	0.7203	1024	Ch3
A''	1030.3536	0.1780	1032.7607	0.2229		Ch3
A'	1103.2702	43.6905	1105.8339	45.7644		Cy/ch3
A'	1150.7292	11.5101	1156.8381	12.6940		Cycl
A'	1188.0483	9.2806	1192.0777	10.0503		С-Н
A'	1253.0085	24.0187	1257.6382	18.3161	1238	C-H/N- H
A'	1266.7741	29.0584	1270.6822	33.2888		Cy/CH3
A'	1329.7895	24.1568	1337.0938	22.3020		Су/С-Н
A'	1361.0987	44.4010	1367.3883	42.8714		Cy/N-H
A'	1430.1548	94.8819	1434.6223	95.5110		Су/С-Н
A'	1459.1346	107.7839	1459.9228	56.9960		Cy/ch3
A'	1503.8238	15.1463	1481.2520	30.6178	1484	Ch3
A'	1509.9820	90.7759	1491.0690	13.3149		Ch3/N- H
A'	1514.4201	52.4365	1493.2694	54.7292		Ch3
A''	1517.5263	12.8178	1500.4908	15.0573		Ch3
A''	1528.5815	14.3911	1510.9788	40.1360		Ch3
A'	1535.5868	9.7792	1519.5973	30.7719		Ch3
A'	1541.5355	15.5304	1533.5497	88.9456		Ch3
A'	1637.8116	182.6458	1645.6093	190.2611		Cy/ch3
A'	1674.7729	51.0011	1685.0363	47.3645	1697	Cycl
A'	1795.9161	630.3713	1803.2266	645.7843		Cycl
A'	1838.2588	410.9473	1846.0531	437.0176		Cycl
A'	2901.6535	95.2769	2923.8160	124.6217	2954	N-H
A''	3222.9612	22.6027	3237.2833	18.3260	3120	Ch3
A''	3226.2869	25.9894	3241.2234	20.2352		Ch3
A'	3233.3926	29.5378	3241.5643	30.1621		Ch3
A'	3234.4761	33.8052	3243.4276	24.5358		Ch3
A'	3250.4356	7.1598	3261.0509	3.4506		Ch3
A'	3252.2438	5.5959	3263.1016	2.3824		Ch3
A'	3295.6819	0.4138	3302.3888	0.8659		Ch3

modes	B3LYP Fréquences(cm ⁻¹)	B3LYP IR	MPW1PW91 Fréquences(cm ⁻¹)	MPW1PW91 IR	nature
A1	1720.9475	75.8069	1691.2663	70.3027	déformation
A1	3575.4034	1.2395	3554.4776	6.8402	élongation
B2	3706.2747	19.8729	3673.4279	6.4151	élongation

Tableau 5.13 : Modes normaux de la molécule d'eau et la nature de mouvement correspondant à chaque mode (fonctionnelleB3LYP et MPW1PW91).

CONCLUSION GENIRALE

Notre objectif de départ était d'établir de la façon la plus claire possible les possibilités actuelle de détermination de la conformation moléculaire de molécules organique aromatique, d'un parte grâce aux méthodes de diffractions des rayons X Sur les monocristaux et d'autre part à partir des méthodes actuelles de calcul de chimie quantique. Nous avons concentré notre travail sur l'examen de composé théophylline monohydratée. Ce composé possède deux molécules indépendantes la molécule d'eau et la molécule de théophylline ou 1,3-dimethylxanthine liée par une liaison hydrogène. L'intérêt était alors de voir avec quelle précision on pouvait comparer les conformations obtenues à partir des calculs avec celles obtenues par la cristallographie pour la molécule de théophylline.

La théophylline monohydrate cristallise de manière ordonnée dans un groupe spatial P 21/n à 293 K avec quatre molécules par maille, du point de vue conformation moléculaire, les molécules expérimentales sont très proches des molécules calculées en DFT.

-La structure cristalline de la théophylline monohydratée déterminée à partir des rayons X à la température ambiante 297 K cristallisant dans le groupe d'espace P21/n avec quatre molécules par maille confirme les résultats déjà trouvés dans la littérature.

- L'existence d'un centre d'inversion situé entre les deux molécules formant un dimer.

- La position des atomes d'hydrogène n'a pu être faite et nécessite pour leur localisation de faire une collecte de données à basse température à partir de la diffraction des neutrons.
- L'étude de la caféine est un de nos objectifs futurs et cela afin de mieux comprendre l'effet de la substitution d'un atome d'hydrogène par un méthyle sur le cycle xantine de la théophylline sur le reste de la molécule.
- L'attribution des différents modes de vibration de la molécule a montré à partir des fréquences obtenues expérimentalement et des calculs théoriques des écarts importants d'où l'importances de faire des manipulations à basses température.

La conjugaison des résultats obtenus à partir de la chimie quantique (DFT) et les spectres expérimentaux (Température ambiante) a permis l'attribution des différents modes de vibration des différentes parties du squelette de la molécule et leurs effets sur le reste de la molécule.

A partir des méthodes de calcul basées sur la fonctionnelle de la densité DFT, nous avons fait un calcul d'optimisation géométrique de la conformation moléculaire de la théophylline à partir de deux fonctionnelles différentes la B3LYP et la MPW1PW91 et des base différentes6-31G(d) et 6-31G(d,p), pour aboutir à des résultats très proches de ceux obtenus expérimentalement à partir de la diffraction des rayons X.

- Un bon accord de l'ordre de 0.8% est observé entre les longueurs de liaison calculées (MPW1PW91) et expérimentales. Cet accord est moins bon pour celles déterminées par le calcul (B3LYP) et la diffraction des rayons X.
- Un accord de l'ordres de (0.92%) pour les angles de liaison entre le calcul (MPW1PW91) et l'expérience et de (1.00%) par la fonctionnelle B3LYP.
- Le calcul confirme la planéité du squelette de la conformation moléculaire par rapport au plan moyen de la molécule trouvé par la diffraction des rayons X.
- Chacun des deux méthyles a un hydrogène contenu dans le plan de la molécule. Dans la conformation moléculaire chacun des hydrogènes méthyle contenu dans le plan moléculaire est orienté de part et d'autre par rapport à l'oxygène compris entre les deux méthyles du cycle à six liaisons.
- Dans la conformation moléculaire expérimentale un seul hydrogène méthyle contenu dans le moyen de la molécule est orienté vers cet oxygène.
- Les calculs de spectroscopie IR ont permis l'identification des différents modes de vibration des différents mouvements de la molécule isolée.

Cette étude a permis de déterminer relativement le niveau de calcul ainsi que les fonctionnelles avec les bases les plus adaptées à la résolution de la conformation de la molécule de la théophylline.

Plan de travail

► Introduction

► Détermination de la structure de la 1,3-diméthylexanthine monohydratée (C₇H₈N₄O₂.H₂O) ou la théophylline monohydratée à 293 K.

▶. Spectroscopie infrarouge de la théophylline monohydratée à 293 K.

► Conformation moléculaire de théophyllin calculée par la théorie de la fonctionnelle de la densité (DFT)

▶ Modes internes de la théophylline monohydratée calculés à partir de la DFT

► conclusion

1. Introduction

Détermination de la structure de la 1,3-diméthylexanthine monohydratée (C₇H₈N₄O₂.H₂O) ou la théophylline monohydratée à 293 K.

La structure cristalline de la 1,3-diméthylexanthine monohydraté ($C_7H_8N_4O_2.H_2O$) appelée théophylline monohydraté a fait l'objet de plusieurs études cristallographiques. La structure a été résolue une première fois par les rayons X à 295 K en 1958[31] par Sutor qui a montré qu'elle cristallise dans le groupe d'espace P2₁ avec quatre molécules par maille. Cette étude reprise aux rayons X en 2002 à la température de 173K par Sun [32] a montré que cette structure cristallise dans le groupe d'espace P2₁/n.

La figure 1 représenté la conformation moléculaire trouvé par sun

Figure 1 : Géométrie deuThéophylline monohydratée (Sun (2002)).

Sun et al[32] a montré que il est existe un désordre dynamique sur un atome d'hydrogène de la molécule d'eau et les trois hydrogènes de méthyle $C_{\rm m13}\,$.

2.1. Croissance des cristaux

Nous avons préparé de gros monocristaux par évaporation lente à partir d'une solution de théophylline saturée dans l'acétone. Les monocristaux obtenus sont des petites aiguilles de couleur blanche, on examiner un grand nombre de cristaux pour trouver des monocristaux vraiment unique.

2.3 Dispositif expérimental utilisé

Figure 2 : Equipement du diffractomètre quatre cercles utilisé pour la collecte des intensités (Université de Constantine).

2.3 Collecte des intensités

L'enregistrement des intensités diffractées à été effectué sur un monocristal de dimension $0.4 \times 0.3 \times 0.3$ mm avec $\lambda(MoK\alpha)$ et monochromateur de graphite . Le mode de balayage est $\frac{\omega}{2\theta}$ avec $\theta \le 24.0^{\circ}$. Les données cristallines sont les suivantes : Nombre de réflexions mesurées : 1551 Nombre de réflexions indépendantes : 1418

Le domaine d'enregistrement est : $5 \le h \le -5$ $17 \le k \le 0$ $15 \le l \le 0$ a = 4.482(1) Åb = 15.32(9) Åc = 13.264(1) Å $\alpha = 90.0000^{\circ}$ $\beta = 98.546(6)^{\circ}$ $\gamma = 90.0000^{\circ}$

Description et discussion de la structure

► L'empilement des molécules se fait parallèlement entre elles suivant l'axe *b* donc suivant la direction [010] (Figure 1)

► L'empilement antiferroélectrique des molécules se fait en ''zigzag'' générées par un centre situé entre les deux molécules

Figure 2 : Empilement moléculaire et maille cristalline Vue perpendiculaire au plan (010).

► Les équations du meilleur plan moyen de la théophylline

► la distance minimale de contact de la molécule de théophylline entourée par les six plus proches voisines est C-O avec une valeur de 3.3122 Å.

Figure 3 : Vue d'une couche moléculaire suivant le plan (100).

► La description du $C_7H_8N_4O_2.H_2O$ est principalement caractérisée par la présence d'une molécule d'eau au voisinage du l'atome N9. Les deux molécules formant l'unité asymétrique sont liées par une liaison hydrogène de type **O22**—**H****N9** = **2.912**.

Figure 4 : géométrie moléculaire de la molécule de théophylline monohydratée

▶ Pour les longueurs et les angles de liaisons elles sont généralement très proche de résultats trouvé par Sun dans la températures 173K par Sun avec un petit écarte peut être expliqué par l'effet de la température.

 Tableau 1 : Coordonnées atomiques fractionnaires et paramètres de déplacement en (Å).

Atomes	x	У	Z	U _{iso/equiv}	occupation
N1	0.9992(8)	0.3656(2)	0.7070(3)	0.0344	1.0000
C2	0.9988(11)	0.2765(3)	0.7281(4)	0.0369	1.0000
N3	0.7820(8)	0.2273(2)	0.6688(3)	0.0344	1.0000
C4	0.594(1)	0.2664(3)	0.5939(4)	0.0376	1.0000
C5	0.604(1)	0.3525(3)	0.5730(3)	0.0352	1.0000
C6	0.808(1)	0.4085(3)	0.6311(3)	0.0350	1.0000
N7	0.3759(9)	0.3675(2)	0.4927(3)	0.0419	1.0000
C8	0.2415(11)	0.2906(3)	0.4710(4)	0.0420	1.0000
N9	0.3664(9)	0.2261(2)	0.5297(3)	0.0399	1.0000
C10	1.2181(12)	0.4197(3)	0.7755(4)	0.0558	1.0000
O11	1.1805(8)	0.2443(2)	0.7950(3)	0.0573	1.0000
C12	0.7736(14)	0.1343(3)	0.6874(4)	0.0557	1.0000
O13	0.8351(7)	0.4877(2)	0.6192(3)	0.0524	1.0000
H14	0.326(8)	0.426(1)	0.459(3)	0.0864	1.0000
H15	0.079(7)	0.2796(13)	0.4110(19)	0.0484	1.0000
H16	0.566(7)	0.120(4)	0.702(5)	0.1518	1.0000
H17	0.829(11)	0.093(3)	0.635(3)	0.1390	1.0000
H18	0.869(12)	0.115(3)	0.7567(17)	0.1142	1.0000
H19	1.255(14)	0.478(2)	0.746(5)	0.2221	1.0000
H20	1.129(11)	0.428(4)	0.839(2)	0.1328	1.0000
H21	1.415(7)	0.389(3)	0.792(4)	0.1376	1.0000
O22	0.2395(9)	0.0453(2)	0.4748(3)	0.0694	1.0000
H23	0.232(19)	0.1068(8)	0.480(6)	0.2051	1.0000
H24	0.354(16)	0.027(5)	0.537(3)	0.2001	1.0000

► Le tableau montré que la structure est ordonnée à la température ambiante

► Les facteurs de déplacement atomique équivalents moyens des atomes du cycle xanthine $U_{eq} \approx 0.0387(3)$ Å² qui sont significativement plus faibles que ceux des

atomes substituants $U_{eq} \approx 0.055(3)$ Å² et encore plus faible que l'atome libre O(22) $U_{eq} = 0.0694$ Å

Label	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N1	0.029(2)	0.036(2)	0.035(2)	-0.0027(18)	-0.0042(18)	0.0018(17)
C2	0.036(3)	0.044(3)	0.030(3)	0.004(2)	0.004(3)	0.005(3)
N3	0.038(2)	0.037(2)	0.039(2)	0.0032(19)	0.002(2)	0.0021(19)
C4	0.035(3)	0.038(3)	0.037(3)	-0.005(2)	-0.003(3)	-0.000(2)
C5	0.034(3)	0.035(3)	0.035(3)	0.001(2)	-0.000(2)	0.004(2)
C6	0.035(3)	0.033(3)	0.038(3)	-0.005(2)	0.008(2)	0.002(2)
N7	0.043(2)	0.037(2)	0.042(3)	-0.001(2)	-0.007(2)	-0.002(2)
C8	0.036(3)	0.047(3)	0.041(3)	0.001(3)	0.001(2)	0.000(3)
N9	0.042(2)	0.033(2)	0.044(2)	-0.0007(18)	0.004(2)	0.0003(19)
C10	0.048(3)	0.050(3)	0.062(4)	-0.023(3)	-0.017(3)	-0.002(3)
011	0.058(3)	0.060(2)	0.048(2)	0.0089(19)	-0.012(2)	0.0097(19)
C12	0.072(4)	0.033(3)	0.057(4)	0.008(3)	-0.008(3)	-0.001(3)
013	0.061(3)	0.0339(19)	0.057(2)	0.0019(18)	-0.0111(18)	-0.0052(17)

Tableau 2 : Paramètres de déplacements anisotropes en (\AA^2) .

► L'analyse des paramètres de déplacement anisotropes montre une agitation thermique plus importante selon l'axe *a* pour les atomes de carbone des groupes méthyles et les atomes d'azote

Atomes	U ₁₁
H14	0.08637
H15	0.04842
H16	0.15182
H17	0.13895
H18	0.11421
H19	0.22206
H20	0.13276
H21	0.137641
H23	0.205084
H24	0.200060

Tableau 3 : Paramètres de déplacement isotropes des atomes d'hydrogènes en \AA^2

► Les atomes H23 , H24 de la molécule d'eau et H19 de le méthyle C10 possédant des grandes paramètres d'agitations thermiques isotropes .

La figure donne des projections de la structure dans les plans a.(100) b.(001) c.(010) et d.(01 $\overline{1}$).

Figure 5:Vues de la molécule suivant les plans : a.(100), b.(001), c.(010) et $d.(10\overline{1})$.

3. Spectroscopie infrarouge

Figures 06 : spectromètre à transformée de Fourier

Figure : Spectre IR de théophylline monohydratée à 293 K.

Figure : Mode à 609.4 cm^{-1}

► 609.4 cm⁻¹ : Mouvement hors du plan des liaisons C-H du cycle. Ce mouvement important de C8-H15 donne une déformation importante de toute la molécule du cycle xanthine.

Figure : Mode à 744.39 cm^{-1}

► 744.39 cm⁻¹: Mouvement hors du plan du cycle (balancement faible du cycle) avec forte agitation de l'atome C5

Figure : Mode à 1024.02cm⁻¹

► 1238.08 cm⁻¹ : Mouvement tangentiel des hydrogènes du cycle correspondant à la respiration de la molécule. Mouvement très prononcé des liaisons C-N qui a conduit à la déformation dans le plan de la molécule.

Figure : Mode à 1484.93 cm^{-1}

► 1484.93cm⁻¹ : mouvement tangentiel du cycle, avec déformation du squelette de la molécule et forte déformation de la liaison N-H.

Figure : Mode à 1697.06 cm⁻¹

► 1697.06 cm⁻¹ : Déformation très importante du plan moyen de la molécule suivant la liaison double C=C commune aux deux cycles.

4. Conformation moléculaire calculée par la théorie de la fonctionnelle de la densité (DFT)

4.1 Fonctionnelle B3LYP

La géométrie la plus stable pour la molécule de la théophylline correspond à une énergie minimale E = -641.062490307 Ua.

Figure 5.1 : Conformation moléculaire de la théophylline obtenue à partir de la DFT (B3LYP ; 6-31G(d)).

les atomes de la molécule de théophylline trouvés à partir des calculs de la DFT confirme la planéité obtenue à partir de la diffraction des rayons X

► Les deux atomes d'hydrogène H16 et H19 respectivement des méthyles $C_m 10$ et $C_m 12$ sont contenus dans le plan moyen du squelette de la molécule

4.2 Fonctionnelle MPW1PW91

Figure : Conformation moléculaire de la théophylline calculée par la DFT (MPW1PW91; 6-31G(d,p)).

pour la fonctionnelle **MPW1PW91** la conformation moléculaire et plus proche de celle ptenue par la fonctionnelle B3LYP donc la molécule est plan Des résultats très proches sont obtenus par les deux fonctionnelle pour Les liaisons C-N, C-O, C-C et C-H on a l'écarte est de l'ordre 0.2%.

5. Comparaison des résultats calculés (fonctionnelles B3LYP et MW1PW91) avec les résultats expérimentaux de la molécule de la théophylline

distance	expérimentale	B3LYP	Accord	MPW1PW91	accord
N1-C2	1.400(5)Å	1.40935Å	0.6%	1.40123Å	0.07%
N1-C6	1.388(5)Å	1.41800Å	2.1%	1.40819Å	1.4%
N1-C10	1.489(5)Å	1.46591 Å	1.5%	1.45631Å	2.0%
C2-N3	1.382(6)Å	1.39393 Å	0.8%	1.38527Å	0.2%
C2-O11	1.217(5)Å	1.22219 Å	0.4%	1.21766Å	0.05%
N3-C4	1.346(5)Å	1.3755 Å	2.1%	1.36868Å	1.6%
N3-C12	1.454(6)Å	1.46221 Å	0.5%	1.45275Å	0.08%
C4-C5	1.355(6)Å	1.37898 Å	1.6%	1.37483Å	1.4%
C4-N9	1.375(6)Å	1.36378 Å	0.08%	1.35667Å	1.3%
C5-C6	1.402(6)Å	1.4325 Å	2.2%	1.42931Å	1.9%
C5-N7	1.383(5)Å	1.3824 Å	0.04%	1.37448Å	0.6%
C6-O13	1.237(5)Å	1.2264 Å	0.8%	1.22150Å	1.2%
N7-C8	1.340(6)Å	1.35732Å	1.2%	1.35032Å	0.7%
N7-H14	1.01(1)Å	1.01094Å	0.0%	1.00661Å	0.3%
C8-N9	1.332(6)Å	1.32781Å	0.3%	1.32310Å	0.6%
C8-H15	1.01(1)Å	1.08132Å	6.5%	1.07958Å	6.5%
C10-H19	1.00(1)Å	1.08132Å	7.4%	1.08747Å	0.8%
C10-H20	1.00(1)Å	1.09289Å	8.4%	1.09064Å	8.2%
C10-H21	1.00(1)Å	1.09289Å	8.4%	1.09064Å	8.2%
C12-H16	1.00(1)Å	1.08981Å	8.0%	1.08816Å	7.9%
C12-H17	1.00(1)Å	1.09322Å	8.5%	1.09094Å	8.2%
C12-H18	1.00(1)Å	1.09322Å	8.5%	1.09094Å	8.2%

Tableau 5.10 : Longueurs de liaison calculées par la DFT (B3LYP et MPW1PW91) et celles obtenues par la diffraction des rayons X à 293 K.

Angles (°)	expérimentale	B3LYP	Accord	MPW1PW91	accord
C4-C5-C6	121.9(4)°	124.4434	2.0%	124.2208	1.8%
N3-C4-C5	123.5(4)°	121.0978	1.9%	121.1434	1.9%
C2-N3-C4	119.0(4)°	119.6322	0.5%	119.6417	0.5%
N1-C2-N3	116.4(4)°	117.3042	0.7%	117.3069	0.7%
N7-C5-C4	106.1(4)°	104.7443	1.2%	104.7171	1.3%
C8-N7-C5	106.0(4)°	106.5262	0.4%	106.5536	0.5%
N9-C8-N7	113.3(4)°	112.9933	0.2%	113.0750	0.2%
O11-C2-N3	122.0(4)°	121.3280	0.5%	121.3699	0.5%
O13-C6-C5	127.1(4)°	126.0971	0.7%	126.2076	0.7%
C12-N3-C4	122.5(4)°	122.2618	0.2%	122.2587	0.2%
C6-N1-C10	117.1(4)°	118.0582	0.8%	117.9389	0.7%
H14-N7-C5	125.2(9)°	125.1822	0.01%	125.2299	0.02%
H15-C8-N7	124.5(9)°	122.3923	1.6%	122.3654	1.7%
H16-C12-N3	107.1(41)°	107.7189	0.5%	107.6924	0.5%
H17-C12-N3	119.9(34)°	110.0506	8.2%	110.0801	8.1%
H18-C12-N3	115.4(34)°	110.0506	4.6%	110.0801	4.6%
H19-C10-N1	113.4(41)°	107.2485	5.4%	107.1653	5.5%
H20-C10-N1	106.3(36)°	109.9932	3.0%	110.0277	3.0%
H21-C10-N1	110.2(36)°	109.9932	0.2%	110.0277	0.1%

Tableau 5.11 : Angles de liaison calculés (B3LYP et MPW1PW91) et ceux obtenus par la diffraction des rayons X à 293 K.

Accorde moyen pour les angles de liaisons Sons les liaisons C-H et N-H

4.3 Modes internes calculés à partir de la DFT

Tableau5.12 : Modes normaux expérimentaux et théoriques de la théophylline (fréquences et intensité IR) avec la nature de mouvement correspondant à chaque mode.

symitrie	B3LYP Fréquences(cm ⁻	B3LYP IR	MPW1PW91 Fréquences(cm ⁻¹)	MPW1PW91 IR	Fréquence Expérimentale 293 K	Nature
A''	-618.003	0.3409	-595.5272	0.2391		Ch3
A''	-613.483	0.6036	-592.2524	0.5613		Ch3
A''	79.403	0.9835	100.0437	0.9020		cycl
A''	113.1996	2.7192	136.6160	4.5602		Cycl
A''	126.6413	1.3016	152.3542	0.0389		Cycl
A''	187.2251	11.6694	207.7201	12.0204		Cycl
A''	270.6472	0.0037	292.2231	0.0049		Cycl
A'	291.7748	13.9255	295.1620	12.8604		Cycl
A'	308.4162	5.4853	314.3417	6.3787		Cycl
A''	345.0169	1.0144	358.3219	13.3750		Cycl
A'	357.6488	13.1925	362.3807	0.9833		Cycl
A'	399.0144	18.5501	402.2173	18.9864		Cycl
A'	449.2949	9.1398	450.1163	9.0903		Cycl
A'	499.6038	14.6020	500.5402	14.7514		Cycl
A'	569.6194	1.2191	570.2925	1.1954		Cycl
A''	616.9846	16.7982	631.2813	15.6426	609	Cycl
A'	684.5043	6.7153	687.8606	6.5049		Cycl
A''	688.6601	0.0077	704.5656	0.0572		Cycl
A''	727.3021	9.8546	742.3996	21.9668		Cy/Ch3
A''	735.0869	17.5300	754.9796	20.5429	744	Cy/Ch3
A'	773.3112	20.0083	778.0461	2.4270		Ch3
A''	814.1065	9.8546	840.7512	12.5552		Су
A'	890.6907	17.5300	894.4697	17.4293		Ch3
A'	946.1700	20.0083	947.3059	19.9060		Ch3/c-h
A''	962.8791	101.9906	978.2631	25.5461		Су/С-Н

A'	974.9912	25.1929	994.4682	104.3124		Cycl
A'	1010.4259	2.1814	1013.3462	2.4179		Ch3
A''	1029.3127	0.4620	1032.0990	0.7203	1024	Ch3
A''	1030.3536	0.1780	1032.7607	0.2229		Ch3
A'	1103.2702	43.6905	1105.8339	45.7644		Cy/ch3
A'	1150.7292	11.5101	1156.8381	12.6940		Cycl
A'	1188.0483	9.2806	1192.0777	10.0503		C-H
A'	1253.0085	24.0187	1257.6382	18.3161	1238	C-H/N- H
A'	1266.7741	29.0584	1270.6822	33.2888		Cy/CH3
A'	1329.7895	24.1568	1337.0938	22.3020		Су/С-Н
A'	1361.0987	44.4010	1367.3883	42.8714		Су/N-Н
A'	1430.1548	94.8819	1434.6223	95.5110		Су/С-Н
A'	1459.1346	107.7839	1459.9228	56.9960		Cy/ch3
A'	1503.8238	15.1463	1481.2520	30.6178	1484	Ch3
A'	1509.9820	90.7759	1491.0690	13.3149		Ch3/N- H
A'	1514.4201	52.4365	1493.2694	54.7292		Ch3
A''	1517.5263	12.8178	1500.4908	15.0573		Ch3
A''	1528.5815	14.3911	1510.9788	40.1360		Ch3
A'	1535.5868	9.7792	1519.5973	30.7719		Ch3
A'	1541.5355	15.5304	1533.5497	88.9456		Ch3
A'	1637.8116	182.6458	1645.6093	190.2611		Cy/ch3
A'	1674.7729	51.0011	1685.0363	47.3645	1697	Cycl
A'	1795.9161	630.3713	1803.2266	645.7843		Cycl
A'	1838.2588	410.9473	1846.0531	437.0176		Cycl
A'	2901.6535	95.2769	2923.8160	124.6217	2954	N-H
A''	3222.9612	22.6027	3237.2833	18.3260	3120	Ch3
A''	3226.2869	25.9894	3241.2234	20.2352		Ch3
A'	3233.3926	29.5378	3241.5643	30.1621		Ch3
A'	3234.4761	33.8052	3243.4276	24.5358		Ch3
A'	3250.4356	7.1598	3261.0509	3.4506		Ch3
A'	3252.2438	5.5959	3263.1016	2.3824		Ch3
A'	3295.6819	0.4138	3302.3888	0.8659		Ch3
modes	B3LYP Fréquences(cm ⁻¹)	B3LYP IR	MPW1PW91 Fréquences(cm ⁻¹)	MPW1PW91 IR	nature	
-------	--	-------------	---	----------------	-------------	
A1	1720.9475	75.8069	1691.2663	70.3027	déformation	
A1	3575.4034	1.2395	3554.4776	6.8402	élongation	
B2	3706.2747	19.8729	3673.4279	6.4151	élongation	

Tableau 5.13 : Modes normaux de la molécule d'eau et la nature de mouvement correspondant à chaque mode (fonctionnelleB3LYP et MPW1PW91).

Conclusion