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Chapter 1

Introduction

The path integral formulation of quantum mechanics is a technique that generalizes

the action principle of classical mechanics. It replaces the classical notion of a

unique trajectory by taking all the contributions over all possible paths connecting

two space-time points (x′, t′) and (x′′, t′′), it is a functional integral, over an infinity

of possible trajectories to compute the quantum amplitude.

The basic idea of the path integral formulation can be traced back to Norbert

Wiener in his attempt to solve the problems in diffusion and Brownian motion,

then in 1933 Dirac extended this idea to the use of the Lagrangian in quantum

mechanics. In 1948 Richard Feynman had completed and developed the method to

have a functional integration formula. Some preliminaries were worked out earlier,

in the course of his doctoral thesis work by John Archibald Wheeler.

The physical intuition came from the two-slit experiment. Each time an electron

hits the screen, and it is not possible to tell which slit the electron has gone

through. After repeating the same experiment several times, a fringe pattern

gradually appears on the screen, proving that there is an interference between

two waves, one from a slit, the other from the second slit. As a conclusion, it

should be a summation of amplitudes of such waves, wave for each path. The

generalization of this idea for all possible paths, which means more slits, each of

which contributing an amplitude, was the main idea of path integration.

1



Chapter 1. Introduction 2

This formulation has proven crucial to the subsequent development of theoretical

physics because it is manifestly symmetric between time and space. Unlike pre-

vious methods, the path-integral allows a physicist to easily change coordinates

between very different canonical descriptions of the same quantum system.

The path integral also relates quantum and stochastic processes, and this provided

the basis for the grand synthesis of the 1970s which unified quantum field theory

with the statistical field theory. The Schrödinger equation is a diffusion equation

with an imaginary diffusion constant, and the path integral is an analytic contin-

uation of a method for summing up all possible random walks. For this reason,

path integrals were used in the study of Brownian motion and diffusion then it

was great to introduce in quantum mechanics.

The aim of this thesis is to illustrate the path integral technique on concrete

problems of quantum mechanics; essentially quantum systems with position-time

dependent coefficient. In recent years, the treatment of these systems becomes

very intensive because of their important applications in various areas of the ma-

terial sciences and condensed matter physics. Special applications of these models

are achieved in the study of the physical potentials of semiconductors, quantum

well, quantum dots, metal clusters and quantum liquids ..etc. Many approaches

have been used for studying these systems, the main ones are the supersymmetric

quantum mechanics, potential algebras and path integral, and the goal is obtaining

the energy spectra and/or the wave functions.

In the second chapter, we present a description of non-relativistic quantum systems

according to Feynman’s path integral and we show how can this technique be

presented in phase space as a functional integral(The propagator) related to the

Hamiltonian (The Hamiltonian form), and in configuration space as a functional

integral related to the Lagrangian (The Lagrangian form). Then, the propagator

characterized by the quadratic action is fully expressed by the classical trajectory.

In the third chapter, we present a way toward obtaining the propagator in the

framework of path integrals of general time-dependent systems. The treatment

is mainly based on the use of explicitly time-dependent transformations which

permit to transform the propagator into a new propagator.

In the fourth chapter, we present a way toward obtaining the propagator in the

framework of path integrals of a time-dependent harmonic oscillator with both

mass and frequency being arbitrary functions of time. The treatment is mainly
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based on the use of explicitly time-dependent transformations which permit to

transform the propagator for the time-dependent system to a new propagator with

constant mass and frequency. We illustrate the general procedure by considering

some models of varying mass and frequency.

In the fifth chapter, we present the problem of a particle with time-dependent mass

in coulomb potential in the framework of path integrals. The treatment is mainly

based on the use of explicitly time-dependent transformations which permit to

transform the propagator a new propagator with constant mass which is easy to

be treated.

In this sixth chapter, we present the problem of a particle with a position-time

dependent mass via path integral in phase space, where we use a point canonical

and time transformations to absorb the time dependence of the Hamiltonian. Then

by translating the momentum and performing another time transformation, this

transforms the problem to that of constant mass. Then, we present some examples.

In the seventh chapter, the problem of a particle in an infinite square well potential

will be discussed in the presence of some chosen potentials, a canonical space-time

transformation will be performed to solve such problem, where they will be reduced

to solvable ones.

The purpose of the last chapter is to find the path integral solution for a non-

relativistic particle of electric charge (-e) and mass µ subjected to the influence

of a field created by a dyon whose electric and magnetic charges are Q and g,

respectively. The main objective is to solve this problem for a quite general vector

potential of magnetic monopole elegantly and simply.



Chapter 2

Path integral

The path integral is a technique that is equivalent to the Schroedinger equation and

the other standards formulations, which offers a new manner on treating quantum

mechanical problems.

In this chapter, we will introduce some basic notions of path integration, that are

given by Feynman. We will try to find an expression of this path integration in

quantum mechanics in configuration and phase spaces. For simplicity, we will try

to find its one-dimensional version and a generalization can be easily done.

2.1 Quantum action principle

In quantum mechanics, as in classical mechanics, the Hamiltonian is the generator

of time-translations. This means that the state at the current time and the state

at a slightly later time can be related by the Hamiltonian operator ˆH(t), for states

with definite energy.

The Hamiltonian is a function of the position and momentum at one time, where

the Lagrangian is a function, for infinitesimal time separations, is a function of the

position and velocity. The relation between the two (The Hamiltonian and The

Lagrangian) is given by a Legendre transform. To find the Legendre Transforma-

tion, we need to determine the classical equations of motion, which can be found

by looking for the conditions that make the action an extremum

4
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In quantum mechanics, we can not know which trajectory the particle will choose

since all the trajectories have the same probability, so there is no preferred tra-

jectory than the other one. For each trajectory, we have a corresponding action

S(path).

2.2 Feynman formulation

Feynman showed that quantum action was, for most cases of interest, simply equals

to the classical action. He proposed the following postulates to find an equivalent

version of quantum mechanics:

1− The probability for an event is given by the modulus length squared of a

complex number called the ”probability amplitude”.

2− The probability amplitude is given by adding together the contributions of all

paths in configuration space.

3− The contribution of a path is proportional to eiS/~, where S is the action given

by the time integral of the Lagrangian along the path.

To find the probability amplitude for a given process one adds up the amplitudes

eiS/~s for each possible path in between the initial and final states. In calculating

the probability amplitude for a single particle to go from one space-time point to

another, it is correct to include the set of all possible paths in which the particle can

take. The path integral assigns to all these paths amplitudes with equal weights

but varying phases. Contributions from paths wildly different from the classical

trajectory may be suppressed by interference since they vary quickly they cancel

each other.

Feynman showed that this formulation of quantum mechanics is equivalent to

the canonical approach to quantum mechanics when the Hamiltonian is at most

quadratic in the momentum. An amplitude according to Feynman’s principles

will also obey the Schrödinger equation for the Hamiltonian corresponding to the

given action.
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2.3 Foundation and concepts of path integral

2.4 Probability amplitude

The probability of reaching a space-time point form an initial space-time by two

possible paths is not the sum of probabilities over those paths but the sum of the

amplitudes related to those paths. It is convenience to present the amplitudes of

wave-functions by complexes numbers, and take P (q) is the absolute square of the

transition amplitude φ(q) form a space-time point to another. By definition the

total amplitude of φ(q) is the sum of amplitudes over the two paths, then we can

write

P = |φ(q)|

φ(q) = φ(q)1 + φ(q)2

Pi = |φ(q)i| (2.1)

2.5 Transition amplitude

We will see how total amplitude can be found for a particle translates from a space

time-point q(x, t) to another q′(x′, t′) by considering all possible paths. In classical

mechanics, the only possible path is that of a minimal action S, but in quantum

mechanics, since we have the Heisenberg rule the meaning of path is undefined

and it is meaningless, by another word we can not say that the particle will choose

this path or the other one under any condition. We can say that all paths have

the same probability but with different actions(phase). We call the sum of those

amplitudes over all possible paths the propagator K(q′, q) for a particle going from

q to q′ and we write

K(q′, q) =
∑

over all possible paths

φ(x(t)) (2.2)
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2.6 The propagator

Let us recall the from Schrödinger’s point of view that the operators do not depend

on time but the wave functions are so doing. In the configuration space (The

vector space spanned by the position eigenfunctions{|x〉}) and let |Ψ(t)〉 be the

wave function that can be represented as

Ψ(x, t) = 〈x|Ψ(t)〉 (2.3)

As it defined, that the evolution of the state |Ψ(t)〉 through time can be given

using the evolution operator U(tf , ti)

|Ψ(tf )〉 = U(tf , ti)|Ψ(ti)〉, (2.4)

where

U(tf , ti) = U(tf , t
′)U(t′, ti). (2.5)

Since the vector space {|x〉} is orthonormal, then with (2.4) one will find that

Ψ(xf , tf ) =

∫
dxi〈xf |U(tf , ti)|xi〉Ψ(xi, ti). (2.6)

By defining the kernel 〈xf |U(tf , ti)|xi〉 as the transition amplitude we can write

that

k(xf , tf ;xi, ti) = 〈xf |U(tf , ti)|xi〉, (2.7)

where k(xf , tf ;xi, ti) is the propagator.

The propagator (2.7) can be decomposed for small segments of time ε’s, ε =

(tf− ti)/(N+1), where N is a natural number. Using (2.7) and (2.5) we can write

k(xf , tf ;xi, ti) = 〈xf |U(tf , ti)|xi〉 = 〈xf |U(tf , tN)U(tN , tN−1)...

...U(t2, t1)U(t1, ti)|xi〉 (2.8)

with tf = tN+1 and ti = t0.
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Using the orthogonal properties of the vector space {|x〉} then

k(xf , tf ;xi, ti) =
N∏
n=1

∫
dxn

N+1∏
n=1

k(xn, tn;xn−1, tn−1), (2.9)

where the elementary propagator k(xn, tn;xn−1, tn−1) is expressed as a function of

the Hamiltonian H as

k(xn, tn;xn−1, tn−1) = 〈xn|e−
i
~ εH |xn−1〉. (2.10)

2.7 Path integral

Let us assume the system with the mass m subjected in the potential V (x). The

Hamiltonian that describes this system is

H =
1

2m
p2 + V (x) (2.11)

This is not the general case because m and V (x) can be time-dependent, but

for simplicity and for the calculation to go smoothly we will consider the time-

independent case.

The evolution operator, then, can be given by

U(t) = exp(− i
~
Ht). (2.12)

We are interested on the propagator (or the matrix element of the evolution op-

erator U(t) ) then

k(xf , tf ;xi, ti) =〈xf |exp(−
i

~
Ht)|xi〉

N∏
n=1

∫
dxn

N+1∏
n=1

k(xn, tn;xn−1, tn−1) (2.13)
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Let us find the expression of the propagator k(xn, tn;xn−1, tn−1) which is the prop-

agator of particle moving from the point xn−1 to the point xn through the in-

finitesimal time interval ε, we have

k(xn, tn;xn−1, tn−1) =〈xn|exp(−
i

~
Hε)|xn−1〉

〈xn|exp(−
i

~
(

1

2m
p2 + V (x))ε)|xn−1〉. (2.14)

Using Campbell-Baker-Hausdorff relation one would find that

k(xn, tn;xn−1, tn−1) =〈xn|exp(−
i

2m~
p2ε)exp(− i

~
V (x)ε)

xexp(− i

2m~
[p2, V (x)]ε2)|xn−1〉. (2.15)

We keep just those terms of order ε which means that

k(xn, tn;xn−1, tn−1) w〈xn|exp(−
i

2m~
p2ε)exp(− i

~
V (x)ε)|xn−1〉

=

∫
dpn〈xn|exp(−

i

~
V (x)ε)|pn〉〈pn|exp(−

i

2m~
p2ε)|xn−1〉

=

∫
dpnexp(−

i

2m~
p2ε)exp(− i

~
V (x)ε)〈xn||pn〉〈pn||xn−1〉

=

∫
dpn
2π~

exp(− i

2m~
p2
nε)exp(−

i

~
V (xn)ε)〉exp( i

~
pn(xn − xn−1)ε),

(2.16)

then after some arrangements

k(xn, tn;xn−1, tn−1) =

∫
dpn
2π~

exp(
i

~
(pn(xn − xn−1)−Hn)ε), (2.17)

where

Hn =
1

2m~
p2
n + V (xn). (2.18)

Inserting this in (2.13) we will find that

k(xf , tf ;xi, ti) =
N∏
n=1

∫
dxn

N+1∏
n=1

∫
dpn
2π~

exp(
i

~
(pn(xn − xn−1)−Hn)ε). (2.19)
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This is the discrete form of the path integral. In a compact form, it can be

expressed as as

k(xf , tf ;xi, ti) =

∫
D[x(t)]D[p(t)]exp(

i

~

∫
dt(pq̇ −H)). (2.20)

This expression is the expression of path integral in phase space and it is given as

a function of the Hamiltonian.

There is another expression of this in the configuration space which can be reached

by taking the expression (2.17) and completing the square and making the integral

over p

k(xn, tn;xn−1, tn−1) =

∫
dpn
2π~

exp(
i

~
(pn(xn − xn−1)−Hn)ε)

=

√
m

2πi~ε
exp(

i

~
m

2ε
(xn − xn−1)2 − εV (xn))

=

√
m

2πi~ε
exp(

i

~
Sn), (2.21)

then

k(xf , tf ;xi, ti) = lim
N→∞

N∏
n=1

√
m

2πi~ε

∫
dxnexp(

i

~
m

2ε
(xn − xn−1)2 − εV (xn)).

(2.22)

We defined the functional integral measure to be D[x(t)] to be

D[x(t)] = lim
N→∞

N∏
n=1

√
m

2πi~ε
dxn. (2.23)

Using this we can write our final expression of path integral in configuration space

as

k(xf , tf ;xi, ti) =

∫
D[x(t)]exp(

i

~
S) (2.24)

this expression explains the contribution of each possible path between the binging

point xi and the arrival point xf .
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2.8 The quadratic action

The quadratic system is the simples systems that can be exactly evaluated by path

integral(non-time-dependent system), it is a system given by a quadratic form in

coordinates and velocities. This system is used as a first approximation for study-

ing some no exactly evaluated systems, moreover, it provides a good example to

show mathematical tools used in the path integral.

Between tow points (xi, ti) and (xf , tf ) on a manifold there excites a classical

path say xcl(t). Then, a trajectory x(t) connecting these tow points can be given

as a fluctuation from the classical trajectory x(t) = xcl(t) + η(t), with η(ti) =

η(tf ) = 0. We can consider this as a functional variable transformation. The

Taylor development can be written as

S[x] = S[xcl] +

∫
dt

δS

δx(t)
η(t) +

1

2

∫
dtdt′

δ2S

δx(t)δx(t′)
η(t)η(t′) + .... (2.25)

The second term it vanished since our calculation at the classical path, which

means that

k(xf , tf ;xi, ti) =e
i
~S[xcl]

∫
D[x(t)]exp(

i

2~

∫
dtdt′

δ2S

δx(t)δx(t′)
η(t)η(t′)) (2.26)

The action is chosen to have the following form

S[x] =

∫
dt(

a

2
ẋ2 + bxẋ+ cx2 + dẋ+ exf), (2.27)

where a, b, c, d, e and f are constants. This will make the propagator to have the

following form

k(xf , tf ;xi, ti) =e
i
~S[xcl]F (tf − ti) (2.28)

where F (tf − ti) is a function of the interval T = tf − ti because η(tf ) = η(ti) = 0.

This result is very important and its explaining implies the dependence of the

quadratic path integration on the classical trajectory.
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2.9 Conclusion

We have presented a new description of non-relativistic quantum systems accord-

ing to the Feynman path integral technique. And we have shown that the path

integral can be put under two prescriptions. The first called the Hamiltonian

form (the integral path in the phase space), and the second is the Lagrangian

form. Moreover, we have been able to prove that the propagator characterized by

quadratic action can be completely expressed by the classical trajectory.

We conclude that the path integral technique has the following advantages:

- It is more intuitive, and its point of view is global; instead of considering ampli-

tudes of probabilities for a state at a given space-time point, we associate a proba-

bility amplitude with each possible path between tow space-time points(start-end).

- It allows certain formal manipulations, in particular the space-time transforma-

tions and the canonical quantifications.



Chapter 3

The time-dependent systems

3.1 Introduction

During the past decades so much interest has been paid to the subject of time-

dependent systems. This comes from the important of theses systems and their

applications in various areas of physics[1, 2, 3, 4] is the main reason for intensive

studies. There are various methods to solve such systems, like the time-dependent

canonical transformations method, the path integral approach, the evolution oper-

ator method, the direct integration of equations of motion, or dynamical invariant

method. In this chapter we will follow path integral technique and perform space

time transformations to the propagator, where will simplify the system under con-

sideration.

3.2 Explicitly Time-Dependent Transformation

In this section, we develop a method of calculating path integral for non-relativistic

quantum systems with time-dependent mass in general time-dependent potentials

by using explicitly time-dependent space-time transformations technique. For this

purpose, we start from the one-dimensional path integral formulation according

13
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to

K(x′′, t′′;x′, t′) =

∫
D[x(t)]e

i
~
∫ (m(t)

2
ẋ2−V (x,t)

)
dt
, (3.1)

= lim
N→∞

∫ N−1∏
j=1

dxj

N∏
j=1

(
m(tj)

2πi~ε

)1/2

exp
( i
~

N∑
j=1

S(j, j − 1)
)
, (3.2)

where S(j, j− 1) =
m(tj)

2ε
(xj −xj−1)2− εV (xj, tj) is the short-time classical action.

Now we consider an explicitly time-dependent coordinate transformation defined

by the function x = h(q, t).

With the mid-point consideration, the action depends not only on coordinate mid-

point q̄j = qj+∆qj/2 but also on time mid-point t̄j = tj+∆tj/2 due to the explicit

time-dependence of the potential.

Introducing this transformation and keeping all terms O(ε), the measure trans-

forms as follows

N∏
j=1

(
m(tj)

2πi~ε

)1/2 N−1∏
j=1

dxj =
(
h′(qf , tf )h

′(qi, ti)
)−1/2

N∏
j=1

(
m(tj)

2πi~ε

)1/2

×
N∏
j=1

(
h′(qj, tj)h

′(qj−1, tj−1)
)1/2

N−1∏
j=1

dqj. (3.3)

In the case of time-dependent transformation, the Taylor expansion around the

mid-point of functions m(tj) and h(qj, tj) is desirable because it gives a manageable

expression of the propagator:

m(tj) ' m(t̄j)− ṁ(tj)
∆tj
2
, (3.4)

and

h′(q̄j −
∆qj

2
, t̄j −

∆tj
2

) 'h′(q̄j, t̄j)−
∂h′(q̄j, t̄j)

∂q

∆qj
2
− ∂h′(q̄j, t̄j)

∂t

∆tj
2

+

+
1

2!

∂2h′(q̄j, t̄j)

∂q2

(∆qj)
2

4
. (3.5)
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After inserting them into Eq.(3.3) and taking into account all contributions up to

first order in ε, the measure changes as

N∏
j=1

(
m(tj)

2πi~ε

)1/2 N−1∏
j=1

dxj =
(
h′(qf , tf )h

′(qi, ti)
)−1/2

N∏
1

h′(q̄j, t̄j)
(

1−
∆q2

j

8
(
h′′2(q̄j, t̄j)

h′2(q̄j, t̄j)
− h′′′(q̄j, t̄j)

h′(q̄j, t̄j)
)
)

×
N∏
j=1

(
m(t̄j)

2iπ~ε

)1/2

exp
(
− ṁ(t̄j)

m(t̄j)

∆tj
4

)N−1∏
1

dqj, (3.6)

also in the new variable the kinetic energy term has the form

exp
(im(tj)

2~ε
(xj − xj−1)2

)
'exp

[im(tj)

2~ε

(
h′2(q̄j, t̄j)∆q

2
j + ḣ2(q̄j, t̄j)∆t

2
j+

2h′(q̄j, t̄j)ḣ(q̄j, t̄j)∆qj∆tj + h′(q̄j, t̄j)h
′′′(q̄j, t̄j)

∆q4
j

12

)]
' exp

[im(t̄j)

2~ε

(
h′2(q̄j, t̄j)∆q

2
j + ḣ2(q̄j, t̄j)∆t

2
j+

2h′(q̄j, t̄j)ḣ(q̄j, t̄j)∆qj∆tj + h′(q̄j, t̄j)h
′′′(q̄j, t̄j)

∆q4
j

12

)
−

i

4~
ṁ(t̄j)h

′2(q̄j, t̄j)∆q
2
j

]
. (3.7)

Here a dot and primes denote derivatives with respect to the time and to the

coordinate q, respectively.

Bringing together these two relations the transformed path integral can be written

as

K(x′′, t′′;x′, t′) =
(
h′(qf , tf )h

′(qi, ti)
)−1/2

∫ N−1∏
1

dqj

N∏
j=1

(
m(t̄j)

2iπ~ε

)1/2

exp
(
− ṁ(t̄j)

m(t̄j)

∆tj
4

)
×

N∏
1

h′(q̄j, t̄j)
(

1−
∆q2

j

4

(h′′2(q̄j, t̄j)

h′2(q̄j, t̄j)
− h′′′(q̄j, t̄j)

h′(q̄j, t̄j)

))
exp
[im(tj)

2~ε
h′2(q̄j, t̄j)∆q

2
j

+
im(t̄j)

2~ε
ḣ2(q̄j, t̄j)ε+

im(t̄j)

~ε
h′(q̄j, t̄j)ḣ(q̄j, t̄j)∆qj +

im(t̄j)

~ε
h′(q̄j, t̄j)h

′′′(q̄j, t̄j)
∆q4

j

24ε

− i

4~
ṁ(t̄j)h

′2(q̄j, t̄j)∆q
2
j −

i

~
V (q̄j, t̄j)ε

]
, (3.8)
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or else

K(x′′, t′′;x′, t′) =
(
h′(qf , tf )h

′(qi, ti)
)−1/2

∫ N∏
j=2

∆qj

N∏
j=1

(
m(t̄j)

2iπ~ε

)1/2

×
N∏
j=1

h′(q̄j, t̄j)exp
(im(t̄j)

2~ε
h′2(q̄j, t̄j)∆q

2
j +

im(t̄j)

2~ε
ḣ2(q̄j, t̄j)ε

+
im(t̄j)

~ε
h′(q̄j, t̄j)ḣ(q̄j, t̄j)∆qj +

im(t̄j)

~ε
h′(q̄j, t̄j)h

′′′(q̄j, t̄j)
∆q4

j

24ε

−
∆q2

j

4

(h′′(q̄j, t̄j)2

h′(q̄j, t̄j)2
+
h′′′(q̄j, t̄j)

h′(q̄j, t̄j)

)
− ṁ(t̄j)

m(t̄j)

ε

4

− i

4~
ṁ(t̄j)h

′2(q̄j, t̄j)∆q
2
j −

i

~
V (q̄j, t̄j)ε

)
, (3.9)

where it seemed useful to replace the integration over upper positions qj by the

integration over intervals ∆qj thanks to the identity

∫ N−1∏
j=1

dqj =

∫ N∏
j=2

d(∆qj). (3.10)

According to the McLaughlin-Shulman procedure [13] we replace the terms ∆q2
j

and ∆q4
j appearing in the action by making the substitutions:

∆q2
j → i~ε

m(t̄j)h′2(q̄j ,t̄j)
and ∆q4

j → −3 ~2ε2

m2(t̄j)h′4(q̄j ,t̄j)
.

Then the propagator admits the following continuous form

K(q′′, t′′; q′, t′) =
(
h′(q′′.t′′)h′(q′.t′)

)−1/2
∫
h′(q, t)D[q(t)]exp

[ i
~

∫ (m(t)

2
h′2(q.t)q̇2−

m(t)

2
ḣ2(q, t)−m(t)ḣ(q, t)h′(q, t)q̇ − ~2

8m(t)

h′′2(q, t)

h′4(q, t)
− V (q, t)

)
dt
]
.

(3.11)

We emphasize that the kinetic energy term in (3.11) has unconventional form.

This can be fixed up by appropriately chosen time-transformation, but instead if

the transformation x = h(q, t) is linear, other transformations will not be necessary

as in the case of the time-dependent harmonic oscillator which will be treated in

the following section. Also to reach a more convenient form of the path integral

(3.11), it is preferable to eliminate the term proportional to q̇. For this purpose,

let us define a function F (q, t) as

F (q, t) =

∫ q

m(t)ḣ(z, t)h′(z, t)dz. (3.12)
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By making use of the relation

dF (q, t)

dt
=
∂F (q, t)

∂q
q̇ +

∂F (q, t)

∂t
, (3.13)

we can perform the following replacement in the action

∫
m(t)ḣ(q, t)h′(q, t)q̇dt = F (q′′, t′′)− F (q′, t′)−

∫
∂F (q, t)

∂t
dt. (3.14)

Finally, the insertion of this result into (3.11) enables us to present the path

integral for a system with time-dependent mass and furthermore subjected to the

action of a time-dependent potential in a simpler form

K(q′′, t′′; q′, t′) =
(
h′(q′′.t′′)h′(q′.t′)

)−1/2 g(qf , tf )

g(qi, ti)

∫
h′(q, t)D[q(t)]exp

[ i
~

∫ (m(t)

2
h′2(q.t)q̇2−

m(t)

2
ḣ2(q, t)− ~

i

ġ(q, t)

g(q, t)
− ~2

8m(t)

h′′2(q, t)

h′4(q, t)
− V (q, t)

)
dt
]
, (3.15)

where

g(q, t) = exp
( i
~
F (q, t)

)
. (3.16)

Here we note that unlike time-dependent models studied by some authors, the

time-dependence of our system Eq. (3.1) is more general.

3.3 Point Canonical transformation

We consider the time dependent system defined by the following Hamiltonian

H(p, q, t) =
1

2m(t)
p2 + V (q, t). (3.17)

The propagator corresponding to this system can be written in the phase space as

Ref. [6]

K(q′′, p′′, t′′; , q′, p′, t′) =

∫
D[q(t)]D[p(t)]

2π~
e
i
~
∫ t′′
t′ dt(pq̇−H(p,q,t)) (3.18)
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or in the discrete form as

K(q′′, p′′, t′′; , q′, p′, t′) = lim
n→∞

n∏
i=1

∫ ∞
−∞

dqi

n+1∏
i=1

∫ ∞
−∞

dpi
2π~

n+1∏
i=1

e
i
~ (pi(qi−qi−1)− εp2i

2m(ti)
−εV (q,t)

(3.19)

where

ε = ti − ti−1 =
t′′ − t′

n+ 1
, q′ = q0, t

′ = t0, q′′ = qn+1, t
′′ = tn+1 (3.20)

Dealing with the problem (3.19) by a straight way and find its explicit expression is

not evident, since the mass and frequency are time-dependent. To be able to solve

this we need to make some coordinates transformations (p, q)→ (P,Q) which will

simplify the problem in order to be explicitly evaluated for many systems.

By taking the following time-dependent canonical transformations

q = f(t)Q

p =
P

f(t)
(3.21)

where the generating function is

F (q, P, t) =
qP

f(t)
(3.22)

The Hamiltonian (3.17) becomes

H(Q,P, t) =H(p, q, t) +
∂F (P, q, t)

∂t

=
1

2m(t)f(t)2
P 2 + V (Q, t)−

˙f(t)

f(t)
QP. (3.23)

Then the exponent in (3.18) is expressed in terms of the new phase-space coordi-

nates ∫ t′′

t′

(
pq̇ −H(q, p, t)

)
dt =

∫ t′′

t′

(
PQ̇− 1

2m(t)f(t)2
P 2 − V (Q, t)+

+
˙f(t)

f(t)
QP
)
dt. (3.24)
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Also the measure under this transformations as Ref. [17]

dpn+1

2π~

n∏
i=1

∫ ∞
−∞

dqidpi
2π~

=
dPn+1

2π~f(tn+1)

n∏
i=1

∫ ∞
−∞

dQidPi
2π~

=
dPn+1

2π~
√
f(tn+1)f(t0)

e
− 1

2
ln f(tn+1)

f(t0)

n∏
i=1

∫ ∞
−∞

dQidPi
2π~

. (3.25)

Using relations (3.24) and (3.25) and after some arrangements, the propagator

Eq.(3.18) takes the following expression

K(q′′, p′′, t′′; q′, p′, t′) =
1√

f(t′′)f(t′)

∫
D[Q(t)]D[P (t)]

2π~

e
i
~
∫ t′′
t′ dt(PQ̇−

1
2m(t)f(t)2

P 2−V (Q,t)+
˙f(t)

f(t)
QP )

(3.26)

At this point the system still time-dependent and more than that we have an extra

term
˙f(t)

f(t)
QP linear in P̄ . To remove it we make a shift in the momentum

P = P̄ + g(t)Q, (3.27)

where g(t) is a time dependent function. By inserting this in (3.26) we find the

following result

K(q′′, p′′, t′′; q′, p′, t′) =
1√

f(t′′)f(t′)
exp

i

2~
(g(t′′)Q′′2 − g(t′)Q′2)

K̄(P̄ ′′, Q′′, t′′; P̄ ′, Q′, t′), (3.28)

where the new propagator K̄(Q′′, P̄ ′′, t′′;Q′, P̄ ′, t′) has the form

K̄(P̄ ′′, Q′′, t′′; P̄ ′, Q′, t′) =

∫
D[Q(t)]D[P̄ (t)]

2π~
exp

i

~

∫ t′′

t′
dt
[
P̄ Q̇− 1

2m(t)f 2(t)
P̄ 2

−
( g2(t)

2m(t)f 2(t)
− ḟ(t)

f(t)
g(t) +

ġ(t)

2

)
Q2 − V (Q, t)

+
( ˙f(t)

f(t)
− g(t)

m(t)f 2(t)

)
QP̄
]
. (3.29)
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Since g(t) is an arbitrary function we will choose it such that

˙f(t)

f(t)
− g(t)

m(t)f 2(t)
= 0. (3.30)

Then the propagator Eq.(3.29) becomes

K̄(P̄ ′′, Q′′, t′′; P̄ ′, Q′, t′) =

∫
D[Q(t)]D[P̄ (t)]

2π~
exp

i

~

∫ t′′

t′
dt(P̄ Q̇− 1

2m(t)f(t)2
P̄ 2

−1

2
m(t)f(t)2(

ṁ(t)

m(t)

ḟ(t)

f(t)
+
f̈(t)

f(t)
)Q2 − V (Q, t))

(3.31)

At this level the function f(t) can be chosen to absorb the time varying mass m(t)

or to bring the problem to solvable one.

3.4 Conclusion

In this chapter we have performed an explicitly time-dependent quantum me-

chanical transformation at the midpoint for the Lagrangian propagator, and point

canonical time-dependent transformation for the Hamiltonian propagator. There-

fore we have shown that the technique of explicitly time-dependent space-time

transformations is a necessary tool in path integral to treat explicitly time-dependent

problems or to simplify them, that they can not be in the event exactly evalu-

ated. We have obtained a general formula for the propagator for any quantum

system with time-dependent mass and potential simultaneously in both configu-

ration and phase spaces. This will be so helpful in the next two chapters where

the time-dependent harmonic oscillator and time dependent coulomb system will

be investigated respectively.



Chapter 4

The time dependent harmonic

oscillator

4.1 Introduction

A great deal of attention has been paid to the subject of time- dependent Hamil-

tonians. The main reason for intensive studies of these quantum systems is due to

their important applications in various fields of physics, such as quantum optics

[1], cosmology [2], nano-technologies [3] and plasma physics [4]. The harmonic

oscillator with time-dependent frequency, or with explicitly time-dependent mass,

or both simultaneously is the most commonly mechanical system used in this area.

These problems have received considerable interest [5-11] and have been solved by

various methods, such as the time-dependent canonical transformation method,

the path integral approach, the evolution operator method, the direct integration

of equations of motion, and dynamical invariant method.

Looking through the literature one finds that an explicit expression for the propa-

gator could not be obtained for all time varying mass-functions because the proce-

dure involves the solutions of non-linear differential equations. This is the reason

why only few cases of varying mass has been solved. As mentioned above we can

cite the following cases: the strongly pulsating mass [7], the exponentially time-

dependent mass [6], the power-low mass [8] and some other examples are given in

Ref.[12].

In this paper we will present a way toward obtaining the propagator in the frame-

work of path integrals of time-dependent harmonic oscillator with both mass and

21
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frequency being arbitrary functions of time. The treatment is mainly based on the

use of explicitly time-dependent transformations which permit to transform the

propagator for the time-dependent system to a new propagator with constant mass

and frequency. We illustrate the general procedure by considering some models of

varying mass and frequency.

4.2 The harmonic oscillator with time-dependent

mass and frequency in configuration space

The general time-dependent Lagrangian for a harmonic oscillator is given by

L(x, ẋ, t) =
m(t)

2
ẋ2 − 1

2
m(t)ω2(t)x2, (4.1)

where m(t) = m0f(t) and ω(t) are well-behaved functions of time. By using ex-

plicitly space-time transformations such that x = c(t)q, we can write after follow-

ing the same steps given above, the propagator corresponding to the Lagrangian

Eq.(4.1) as:

K(q′, t′; q′′, t′′) =(c(t′′)c(t′))−1/2ξ(q′′, t′′)ξ∗(q′, t′)

∫
D[q(t)]

×exp
{ i
~

∫
(
m0

2
q̇2 − m0

2
Ω2(t)q2)dt

}
, (4.2)

where ξ(q, t) = exp im0

2~
ċ(t)
c(t)
q2 and Ω2(t) = c̈(t)

c(t)
− 2 ċ

2(t)
c2(t)

+ ω2(t). We have chosen

the function c(t) such that c2(t)f(t) = 1, which reduces the problem to that of

the well-known of the harmonic oscillator with constant mass and time dependent

frequency. The propagator of this system is given by(See Ref.[65])

K(q′, t′; q′′, t′′) =
Ξ(q′′, t′′)Ξ∗(q′, t′)

sin(γ(t′′)− γ(t′))
exp
{ im0

2~sin(γ(t′′)− γ(t′))

[
(γ̇2(t′′)q′′2+

+ γ̇2(t′)q′2)cos(γ(t′′)− γ(t′))− 2
√
γ̇(t′′)γ̇(t′)q′′q′

]}
, (4.3)
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where Ξ(q, t) =
(
m0i−1γ̇(t)

2π~c(t)

)1/2

exp im0

2~ ( ċ(t)
c(t)

+ µ̇(t)
µ(t)

)q2, and the functions γ(t) and µ(t)

satisfy the following coupled differential equations

µ̈− µγ̇2 + Ω2(t)µ = 0

µγ̈ + 2µ̇γ̇ = 0 (4.4)

4.3 Applications

4.3.1 Example 1

We consider the problem of the harmonic oscillator that has a mass of the form

m(t) = m0(αeλt + βe−λt)2, where m0 is a real number, α and β are complex

numbers and λ can be either pure real number or pure complex number, such that

m(t) has a physical meaning. The Lagrangian corresponding to this system is

L(x, ẋ, t) =
m0

2
(αeλt + βe−λt)2ẋ2 − m0

2
(αeλt + βe−λt)2ω2(t)x2. (4.5)

We choose the frequency ω(t) to be a constant function of time. The propagator

of this system is given by

K(x′′, t′′; , x′, t′) =

∫
D[x(t)]e

i
~
∫
L(x,ẋ,t)dt. (4.6)

By using the transformation x = c(t)q, where c(t) = (αeλt+βe−λt)−1 and following

the procedure detailed above one can write the propagator as

K(x′′, t′′; , x′, t′) = (c(t′′)c(t′))−1/2e
im0
2~ (

ċ(t′′)
c(t′′) q

′′2− ċ(t
′)

c(t′) q
′2)
k(q′′, t′′; , q′, t′), (4.7)

where k(q′′, t′′; q′, t′) is the propagator corresponding to the Lagrangian L(q, q̇, t) =
m0

2
q̇2 − m0

2
Ω2q2 which can be exactly expressed

k(q′′, t′′; q′, t′) =

√
m0Ω

2π~sin(Ω(t′′ − t′))
exp

im0Ω

2~sin(Ω(t′′ − t′))

(
(q′′2+

q′2)cos(Ω(t′′ − t′))− 2q′′q′
)
, (4.8)
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where Ω =
√
ω2 − λ2.

4.3.2 Particular cases

1. The exponentially changing mass m(t) = m0e
2λt

By putting β = 0 and α = 1 we can get this case and the propagator in this

case is

K(x′′, t′′;x′, t′) =

(
m0Ωeλ(t′′+t′)

2πi~sin(Ω(t′′ − t′))

)1/2

e
λm0
2i~ (e2λt

′′
x′′2−e2λt′x′2)

× exp
{ im0Ω

2~sin(Ω(t′′ − t′))

[
(e2λt′′x′′2 + e2λt′x′2)cos(Ω(t′′ − t′))+

− 2eλ(t′′+t′)x′′x′
]}
. (4.9)

This result coincides exactly with that given in [6].

2. The strongly pulsating mass m(t) = m0cos
2(σt+ δ)

To get this case we put α = 1
2
eiδ,β = 1

2
e−iδ and λ = iσ, where σ and δ are

real numbers. By replacing these quantities in Eqs.(4.7) and (4.8), we obtain

the following expression of the propagator

K(x′′, t′′;x′, t′) =

(
m0Ωcos(σt′′ + δ)cos(σt′ + δ)

2πi~sin(Ω(t′′ − t′))

)1/2

× e
σm0
2i~ (sin(2σt′′+2δ)x′′2−sin(2σt′+2δ)x′2)

× exp
{ im0Ω

2~sin(Ω(t′′ − t′))

[
(cos2(σt′′ + δ)x′′2+

cos2(σt′ + δ)x′2)cos(Ω(t′′ − t′))−

2cos(σt′′ + δ)cos2(σt′ + δ)x′′x′
]}
, (4.10)

which is the same result given in [7] if we choose δ = 0.

3. The mass m = m0cosh
2(λt+ ϑ)
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This case by putting α = 1
2
eϑ and β = 1

2
e−ϑ. The propagator is

K(x′′, t′′;x′, t′) =

(
m0Ωcosh(λt′′ + ϑ)cosh(λt′ + ϑ)

2πi~sinh(Ω(t′′ − t′))

)1/2

× e
λm0
2i~ (sinh(2λt′′+2ϑ)x′′2−sinh(2λt′+2ϑ)x′2)

× exp
{ im0Ω

2~sinh(Ω(t′′ − t′))

[
(cosh2(λt′′ + ϑ)x′′2+

+ cosh2(λt′ + ϑ)x′2)cosh(Ω(t′′ − t′))−

2cosh(λt′′ + ϑ)cosh2(λt′ + ϑ)x′′x′
]}

(4.11)

4.3.2.1 Example 2

The second example will be the harmonic oscillator with the massm(t) = m0t
2(αeλ/t+

βe−λ/t)2 and the time dependent frequency ω(t) =
ω0

t2
, where m0 and ω0 are real

numbers, α and β are complex numbers and λ can be either pure real number or

pure complex number, such that m(t) has a physical meaning. To find the prop-

agator corresponding to this system we will follow the same procedure as before

and tack the transformation

x =
1

t(αeλ/t + βe−λ/t)
q, (4.12)

which will lead to the problem of the harmonic oscillator with a constant mass m0

and a time-dependent frequency Ω0 =

√
ω2

0+λ2

t2
. The propagator in this case can

be expressed as

K(x′′, t′′; , x′, t′) =
(

(t′t′′(αeλ/t
′
+ βe−λ/t

′
)(αeλ/t

′′
+ βe−λ/t

′′
)
)1/2

× e

{
−im0

2~

[
( 1
t′′+

λ
t′′2
−αeλ/t

′′
+βe−λ/t

′′

αeλ/t
′′

+βe−λ/t′′
)q′′2−( 1

t′+
λ
t′2
−αeλ/t

′
+βe−λ/t

′

αeλ/t
′
+βe−λ/t′

)q′2

]}
× k(q′′, t′′; , q′, t′), (4.13)

where the propagator k(q′′, t′′; , q′, t′) has the following form

k(q′, t′; q′′, t′′) =

∫
D[q(t)]exp

{ i
~

∫
(
m0

2
q̇2 − m0

2

Ω2
0

t4
q2)dt

}
. (4.14)

To find the exact expression of the propagator (4.14) we will make another trans-

formation q = ty, then follow that by a time-transformation dτ = dt/t2, then
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putting everything together the propagator (4.13) will take the final form

K(x′′, t′′;x′, t′) = (mΩ0(αeλ/t
′
+βe−λ/t

′
)(αeλ/t

′′
+βe−λ/t

′′
)

2πisin(Ω0( 1
t′′−

1
t′ ))

)1/2

×e

{
−im0

2~

[
λ
t′′2
−αeλ/t

′′
+βe−λ/t

′′

αeλ/t
′′

+βe−λ/t′′
q′′2− λ

t′2
−αeλ/t

′
+βe−λ/t

′

αeλ/t
′
+βe−λ/t′

q′2

]}
×e

{
im0Ω0

2~sin(Ω0( 1
t′′ −

1
t′ ))

[
( q
′′2

t′′2
+ q′2

t′2
)cos(Ω0( 1

t′′−
1
t′ ))−2 q

′′
t′′

q′
t′

]}
. (4.15)

These tow examples presented here are more generalized than those given in the

literature,. The same problems with an inverse quadratic potential can be exactly

solved by the following the same steps and choosing the same transformations.
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4.4 The harmonic oscillator with time-dependent

mass and frequency in phase space

4.4.1 The propagator and the transformation

Consider a quantum problem of a harmonic oscillator in which the Hamiltonian

that explicitly depending on time

H(p, q, t) =
1

2m(t)
p2 +

1

2
m(t)ω2(t)q2. (4.16)

The propagator corresponds to this system can be written in the phase space as

Ref. [6]

K(q′′, p′′, t′′; q′, p′, , t′) =

∫
D[q(t)]D[p(t)]

2π~
e
i
~
∫ t′′
t′ dt(pq̇−H(p,q,t)). (4.17)

Dealing with the expression (4.17) by a straight way and find its explicit expres-

sion is not evident and it is a problem, since the mass and frequency are time-

dependent. To be able of solving this problem we need to make some coordinate

transformations (p, q) → (P,Q) which will simplify (4.17) to another form which

may be explicitly evaluated for some chosen systems.

4.4.2 The canonical transformations

To treat the problem given by the Hamiltonian Eq.(4.16) we need to do some

transformations and represent it in a new phase space coordinates.

By taking the following time-dependent canonical transformations

q = f(t)Q

p =
P

f(t)
, (4.18)

and following the same steps given in chapter 3 we can find that
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K(q′′, p′′, t′′; q′, p′, , t′) =
1√

f(t′′)f(t′)
exp

i

2~
(g(t′′)Q′′2 − g(t′)Q′2)

K̄(Q′′, P̄ ′′, t′′;Q′, P̄ ′, t′), (4.19)

where the new propagator K̄(Q′′, P̄ ′′, t′′;Q′, P̄ ′, t′) is

K̄(Q′′, P̄ ′′, t′′;Q′, P̄ ′, t′) =

∫
D[Q(t)]D[P̄ (t)]

2π~
exp

i

~

∫ t′′

t′
dt(P̄ Q̇− 1

2m(t)f(t)2
P̄ 2

−1

2
m(t)f(t)2(

ṁ(t)

m(t)

ḟ(t)

f(t)
+
f̈(t)

f(t)
+ ω2(t))Q2).

(4.20)

To simplify this problem f(t) will be chosen such that

ṁ(t)

m(t)

ḟ(t)

f(t)
+
f̈(t)

f(t)
+ ω2(t) =

$2

m(t)2f(t)4
, (4.21)

where $ is a constant.

Following by the time transformation dτ = dt/m(t)f(t)2 the propagator (4.20)

will be

K̄(Q′′, P̄ ′′, t′′;Q′, P̄ ′, t′) =

∫
D[Q(τ)]D[P̄ (τ)]

2π~
exp

i

~

∫ τ ′′

τ ′
dτ(P̄ Q̇− 1

2
P̄ 2

−$
2

2
Q2), (4.22)

which is the propagator of the simple harmonic oscillator and it is exactly evalu-

ated.

4.4.3 Applications

4.4.3.1 Example 1

As a first example we will treat the system described by the following time depen-

dent Hamiltonian

H(p, q, t) =
1

2m0(αeλt + βe−λt)2
p2 +

1

2
m0(αeλt + βe−λt)2ω2q2, (4.23)



Chapter 4. The time dependent harmonic oscillator 29

where α and β are complex numbers and λ can be a pure real or pure complex

number with m(t) has a physical meaning. As it seems that when α or β is zero the

system will be that of exponentially time dependent mass [1], or when α = β = 1/2

and λ is pure complex, the system will be that os the strong pulsating mass [7].

To deal with this system we will choose f(t) such that; f(t)2m(t) = m0 or

f(t) =
1

(αeλ + βe−λ)
, (4.24)

then the canonical transformations in this case will be

q =
Q

(αeλ + βe−λ)
(4.25)

p = (αeλ + βe−λ)P, (4.26)

with the generating function

F (q, P, t) = (αeλ + βe−λ)qP, (4.27)

and clearly g(t) is

g(t) = −m0λ
(αeλ − βe−λ)
(αeλ + βe−λ)

. (4.28)

Following the same steps detailed in the last chapter we can find that

K̄(Q′′, P̄ ′′, t′′;Q′, P̄ ′, t′) =

∫
D[Q(t)]D[P̄ (t)]

2π~
exp

i

~

∫ t′′

t′
dt(P̄ Q̇− 1

2m0

P̄ 2

− 1

2
m0(ω2 − λ2)Q2) (4.29)

=

√
m0Ω

2π~sin(Ω(t′′ − t′))
exp

im0Ω

2~sin(Ω(t′′ − t′))
((Q′′2+

+Q′2)cos(Ω(t′′ − t′))− 2Q′′Q′), (4.30)
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where Ω =
√
ω2 − λ2. Then the propagator of this system will be deduced easily

as

K(q′′, p′′, t′′; q′, p′, t′) =

√
m0Ω

2π~f(t′′)f(t′)sin(Ω(t′′ − t′))
exp

i

~
(ġ(t′′)Q′′2 − ġ(t′)Q′2)

× exp im0Ω

2~sin(Ω(t′′ − t′))
((Q′′2 +Q′2)cos(Ω(t′′ − t′))− 2Q′′Q′).

(4.31)

This will be identical to that result given in [7], when we choose α = β = 1
2

and λ

as pure imaginary constant, and to that given in [6] when α or β is zero and λ is

pure real.

4.4.3.2 Example 2

We present here a new system which will be exactly evaluated following the steps

presented above. This system is more general than those given in the litera-

ture,where the mass and frequency will be time-dependent as it shown in the

following Hamiltonian

H(p, q, t) =
1

2m0

(
t0
t

)2α

p2 +
1

2
m0ω

2
0

(
t

t0

)2(α+β)

q2, (4.32)

where α and β are constants. This example is more generalized than those given

in[ 14] . The propagator related to this problem is

K(q′′, p′′, t′′; q′, p′, t′) =

∫
D[q(t)]D[p(t)]

2π~
exp

i

~

∫ t′′

t′
dt(pq̇ − 1

2m0

(
t0
t

)2α

p2+

− 1

2
m0ω

2
0

(
t

t0

)2(α+β)

q2). (4.33)

To deal with this problem we need to take the following Canonical transformations

q =

(
t

t0

)−α
Q

p =

(
t

t0

)α
P. (4.34)
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The generating function related to this transformation is

F1(q, P, t) =

(
t

t0

)α
qP, (4.35)

and g1(t) is

g1(t) = −m0α

t
. (4.36)

Using all of this we can find that

K(q′′, p′′, t′′; q′, p′, t′) =

(
t′′t′

t20

)α/2
exp
−im0α

~
(
Q′′2

t′′
− Q′2

t′
)K̄(P ′′, Q′′, t′′;P ′, Q′, t′),

(4.37)

where K̄(P ′′, Q′′, t′′;P ′, Q′, t′) is the propagator given by

K̄(Q′′, P ′′, t′′;Q′, P ′, t′) =

∫
D[Q(t)]D[P (t)]

2π~
exp

i

~

∫ t′′

t′
dt(PQ̇− 1

2m0

P 2+

− 1

2
m0(
−α2 + α

t2
+ ω2

0

(
t

t0

)2β

)Q2). (4.38)

At this level the system transformed to that of a constant mass and varied fre-

quency, which is not easily evaluated. To be able of finding the exact expression

of the propagator Eq.(4.38) we need to take another canonical transformations

Q =
√
tJµ

(
tβ+1t−β0 ω0

(β + 1)

)
Q̄

P =
P̄

√
tJµ

(
tβ+1t−β0 ω0

(β+1)

) , (4.39)

where Jµ(x) is Bessel’s function of the first kind and µ =
(α− 1

2
)(−1+2α)

(β+1)(−1+2α)
).

The generating function for this transformation F2(Q, P̄ , t) is

F2(Q, P̄ , t) =
P̄Q

√
tJµ

(
tβ+1t−β0 ω0

(β+1)

) , (4.40)
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and

g2(t) = m0(
1

2
√
t
Jµ

(
tβ+1t−β0 ω0

(β + 1)

)
+

√
t
dJµ

(
tβ+1t−β0 ω0

(β+1)

)
dt

)
√
tJµ

(
tβ+1t−β0 ω0

(β + 1)

)
. (4.41)

Then easily we can find

K(q′′, p′′, t′′; q′, p′, t′) =

(t′′t′)−1/2

(
t′′t′

t20

)α/2
exp−im0α

~ (Q
′′2

t′′
− Q′2

t′
)exp i~(ġ2(t′′)Q̄′′2 − ġ2(t′)Q̄′2)√

Jµ

(
t′′β+1t−β0 ω0

(β+1)

)
J
(

(α− 1
2

)(−1+2α)

(β+1)(−1+2α)
),
t′β+1t−β0 ω0

(β+1)

)
×
∫
D[Q̄(t)]D[P̄ (t)]

2π~
e
i
~
∫ t′′
t′ dt(P̄

˙̄Q− 1
2M(t)

P̄ 2), (4.42)

where M(t) = m0tJµ

(
tβ+1t−β0 ω0

(β+1)

)2

. Following by the time transformation dτ =
m0dt
M(t)

, this will lead to an exact expression of the propagator (4.42), then

K(q′′, p′′, t′′; q′, p′, t′) =

(
2πi~t′′t′
m0

∫ t′′
t′

m0dt
M(t)

)−1/2
(
t′′t′

t20

)α/2
exp−im0α

~

((
t′′

t0

)2α
q′′2

t′′
−
(
t′

t0

)2α
q′2

t′

)
√
Jµ

(
t′′β+1t−β0 ω0

(β+1)

)
Jµ

(
t′β+1t−β0 ω0

(β+1)

)
× expim0

~
(
ġ2(t′′)

M(t′′)

(
t′′

t0

)2α

q′′2 − ġ2(t′)

M(t′)

(
t′

t0

)2α

q′2)

× exp im2
0

~
∫ t′′
t′

m0dt
M(t)

((
t′′

t0

)α
q′′√
M(t′′)

−
(
t′

t0

)α
q′√
M(t′)

)2

.

(4.43)
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4.5 The propagator for the harmonic oscillator

with time-dependent mass and frequency in

phase space using delta functional

4.5.1 The harmonic oscillator and the propagator

let suppose the following time dependent Hamiltonian

H(p, q, t) =
1

2m(t)
p2 +

1

2
m(t)ω2(t)q2. (4.44)

The propagator corresponds to this system can be written in the phase space as

K(q′′, p′′, t′′; q′, p′, t′) =

∫
D[q(t)]D[p(t)]

2π~
e
i
~
∫ t′′
t′ dt(pq̇−H(p,q,t)). (4.45)

This propagator is not exactly evaluated for any arbitrary time dependent mass or

frequency, because this will lead to non-linear differential equations. To deal with

this system firstly we will absorb the quadratic term of q, by taking the following

transformation

p = P + f(t)q, (4.46)

where f(t) is an arbitrary function. The propagator (4.45) under this transforma-

tion will have the following form

K(q′′, p′′, t′′; q′, p′, t′) = e
i

2~ (f(t′′)q′′2−f(t′)q′2)K̃(P ′′, q′′, t′′;P ′, q′, t′), (4.47)

where K̃(P ′′, q′′, t′′;P ′, q′, t′) is the propagator that has the following expression

K̃(q′′, P ′′, t′′; q′, P ′, t′)) =

∫
D[q(t)]D[P (t)]

2π~
e
i
~
∫ t′′
t′ dt(P q̇−H̃(P,q,t))dt, (4.48)

and the new Hamiltonian H̃(P, q, t) is

H̃(q, P, t) =
P 2

2m(t)
+
f(t)

m(t)
Pq +

1

2
(f(t)2/m(t) + ḟ(t) +m(t)ω2(t))q2. (4.49)
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Since f(t) is an arbitrary function we will chose it such that the quadratic term

in the new Hamiltonian disappears

f(t)2/m(t) + ḟ(t) +m(t)ω2(t) = 0. (4.50)

Then K̃(P ′′, q′′, t′′;P ′, q′, t′) will be

K̃(q′′, P ′′, t′′; q′, P ′, t′) =

∫
D[q(t)]D[P (t)]

2π~
e
i
~
∫ t′′
t′ dt(P q̇−

P2

2m(t)
− f(t)
m(t)

Pq)dt. (4.51)

To deal with this propagator we will take the following canonical transformations

q = g(t)Q̄

P =
P̄

g(t)
, (4.52)

with the generating function F (P̄ , q, t)

F (P̄ , q, t) =
qP̄

g(t)
. (4.53)

Then (4.51) will be

K̃(q′′, P ′′, t′′; q′, P ′, t′) =
1√

g(t′′)g(t′)

∫
D[Q̄(t)]D[P̄ (t)]

2π~
e
i
~
∫ t′′
t′ dt(P̄

˙̄Q− P̄2

2m(t)g(t)2
−(− ġ(t)

g(t)
+
f(t)
m(t)

)P̄ Q̄dt
.

(4.54)

Since g(t) is an arbitrary function it will be chosen such that the second term in

the Hamiltonian will be zero or

ġ(t)

g(t)
− f(t)

m(t)
= 0. (4.55)

In the exponent by integrating the first term by part and do the functional integral

over q we get the following condition

δ( ˙̄P ), (4.56)
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which implies that P̄ should be a constant. Then the propagator Eq.(4.54) will

take the form

K̃(q′′, P ′′, t′′; q′, P ′, t′) =
1√

g(t′′)g(t′)

∫
D[P̄ (t)]

2π~
δ( ˙̄P )e

i
~ (P̄ ′′Q̄′′−P̄ ′Q̄′+

∫ t′′
t′

−P̄2

2m(t)g(t)2
dt)

=
1√

g(t′′)g(t′)

∫
dP̄

2π~
e
i
~ (P̄ (Q̄′′−Q̄′)−P̄ 2

∫ t′′
t′

dt
2m(t)g(t)2

)
. (4.57)

Using the identity ∫ +∞

−∞
e−ax

2+bxdx =

√
π

a
e
b2

4a , (4.58)

one can find that

K̃(q′′, P ′′, t′′; q′, P ′, t′) =

√
1

2π~ig(t′′)g(t′)
∫ t′′
t′

dt
m(t)g(t)2

exp
i

2~
(Q̄′′ − Q̄′)2∫ t′′
t′

dt
m(t)g(t)2

. (4.59)

By plugging this into Eq.(4.47) we will find the expression of the system Eq.(8.4)

K̃(q′′, P ′′, t′′; q′, P ′, t′) =

√
1

2π~ig(t′′)g(t′)
∫ t′′
t′

dt
m(t)g(t)2

e
i

2~ (f(t′′)q′′2−f(t′)q′2)

× exp i
2~

(Q̄′′ − Q̄′)2∫ t′′
t′

dt
m(t)g(t)2

, (4.60)

which is the desired result

4.5.2 The Models

We would like to present a class to time dependent Harmonic oscillator with con-

stant mass and varied frequency, and we will follow the way that given above

to find the exact propagator of the related system. Let us present the following

Hamiltonian.

H(p, q, t) =
1

2
p2 +

1

2

(
ak̈(t)

b− ak(t)

)
q2 (4.61)

where k(t) is an arbitrary function, a and b are constants. We will deal with

those systems such that function (b− ak(t))−2 has a definite integration. Toward

finding the exact propagator related to this system we will chose the function f(t)
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Eq.(4.46) to be

f(t) =
−ak̇(t)

−ak(t) + b
. (4.62)

Then the propagator related to this system can has the following expression

K(q′′, p′′, t′′; q′, p′, t′) =e
i

2~ (
−ak̇(t′′)
−ak(t′′)+b q

′′2− −ak̇(t′)
−ak(t′)+b q

′2)∫
D[q(t)]D[P (t)]

2π~
e
i
~
∫ t′′
t′ dt(P q̇−

P2

2
− −ak̇(t)
−ak(t)+b

Pq)dt. (4.63)

Then we will present the following canonical transformations

q = (−ak(t) + b)Q̄

P =
P̄

−ak(t) + b
. (4.64)

This will lead to a new expression to the propagator Eq.(4.63)

K(q′′, p′′, t′′; q′, p′, t′) =
e
i

2~ (
−ak̇(t′′)
−ak(t′′)+b q

′′2− −ak̇(t′)
−ak(t′)+b q

′2)√
(−ak(t′′) + b)(−ak(t′) + b)∫
dP̄ ′

2π~
e
i
~ (P̄ ′( q′′

−ak(t′′)+b−
q′

−ak(t′)+b )−P̄ ′2
∫ t′′
t′

dt
(−ak(t)+b)2

)

=
e
i

2~ (
−ak̇(t′′)
−ak(t′′)+b q

′′2− −ak̇(t′)
−ak(t′)+b q

′2)√
2π~i(−ak(t′′) + b)(−ak(t′) + b)

∫ t′′
t′

dt
(−ak(t)+b)2

exp
i

2~
( q′′

−ak(t′′)+b
− q′

−ak(t′)+b
)2∫ t′′

t′
dt

(−ak(t)+b)2

. (4.65)

From here it is clear why we have toke the condition (b − ak(t))−2 has a definite

integration.

4.5.3 Examples

• ω = ω0√
2cosh(ω0t)

The related function for this frequency is k(t) = tanh(ω0t) + b
a
.

• ω = ω0

√
veω0t−1
veω0t+1

The related function for this frequency is k(t) = 1
e−ω0t+v

+ b
a
.
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• ω = ω0e
r t
t0

The related function for this frequency is k(t) = BesselJ(0, e
r tt0 t0ω0

r
).

• ω = ω0

(
t
t0

)r
. The related function for this frequency is k(t) =

√
tBesselJ( 1

2r+2
,
ω0t
−r
0 tr+1

r+1
)+

b
a
. This example (b−ak(t))−2does not has a definite integration for all values

of r.

Where r, v and t0 are constants with t0 has the dimension of time those are some

examples that can be exactly evaluated following the steps given above.

4.6 Conclusion

The study of harmonic oscillators with time-dependent mass has assumed because

it is very important in different areas of physics like plasma physics, cosmology,

quantum optics etc. Looking through the literature one can notice, in this context,

that the path integral method has been used to solve exactly some problems with

specific time-dependent mass like exponentially varying mass, strongly pulsating

mass, growing mass ...etc. In this work we have used a space-time transformations

in phase and configuration spaces to treat the problem and find the propagators

of new generalized examples. In this chapter, we have studied a general model of

explicitly time-dependent quantum problems by path integrals. The treatment is

based on the use of some time-dependent transformations. The problem treated

in both configuration and phase space, we used space-time transformations in

configuration space and point canonical transformations in phase space, that leads

to a considerable simplification in computation and gives unambiguous results in

comparison with already existing methods. We have derived the wave functions,

expressed in terms of the Hermite polynomials, by simply use of the Mehlers

formula. We also have considered interesting explicitly solvable cases where we

have presented some new examples of harmonic oscillators with time-dependent

mass and frequency for which exact propagators have could be evaluated providing

us normalized wave functions.



Chapter 5

Particle with time-dependent

mass in coulomb potential

5.1 Introduction

.

The exact expression of the propagator for the time-dependent systems of Har-

monic oscillator has been studied by many [5, 6], but looking through the litera-

ture, one would find that such problem, in fact, is evaluated just for few examples

[5–11]. The difficulty to find the exact propagator for the time-dependent systems

is that the calculation, in fact, involves solutions of non-linear differential equa-

tions.

Generally, time-dependent quantum problems, in fact, have been studied by

many; in Ref. [15] Sobhan and Hassanabadi investigate Bohr Hamiltonian in the

presence of time-dependent Manning–Rosen, harmonic oscillator and double-ring

shaped potentials using Lewis–Riesenfeld dynamical invariant method. Using the

same method, the authors could treat Davydov–Chaban Hamiltonian in the pres-

ence of time-dependent potential [16], which is one of the most important topics in

physics; Grosch in Ref. [17], by using path integral technique, could find the exact

solution of some systems; in Ref. [18], Lew is–Riesenfeld dynamical invariant and

time evolution operator methods (to evaluate the quantum many-body systems

in presence of time-dependent potential and electric fields) have been used. The

38
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time-dependent Coulomb problem has also been studied [17, 19, 20] Here, via path

integral [17], we find a generalization to class of time-dependent potentials where

a space-time transformations transforming the system to the stationary one is used.

In this work, we will focus on the problem of a particle with a time-dependent

mass subjected to the Coulomb and the inverse quadratic potentials in two dimen-

sions via path integral. We will use a linear space-time transformations to reduce

it to a stationary problem then treat it in polar coordinates, which finally leads

(as it will be clear later) to the corresponding wave and Green’s functions and the

related energies

5.2 The space-time transformations

The problem with a particle with an arbitrary time-dependent varying mass does

not has an exact solution via path integral yet, this come from the difficulties of

finding an exact propagator using the direct treatment or the way of the transfor-

mations. We will propose the problem with an exponential time-dependent mass

which is very important and can represents many physical systems. The related

Lagrangian is

L(x, ẋ, t) =
1

2
m(t)(ẋ2 + ẏ2)− k√

x2 + y2
− g

m(t)(x2 + y2)
+

− ~2

2m(t)

(
κ(κ− 1)

x2
+
λ(λ− 1)

y2

)
(5.1)

Where the mass m(t) = m0e
λt, with α and m0 are constants. With the conditions

κ, λ > 1

The propagator related to this system in configuration space is

k(x′′, x′;T ) =

∫
D[x(t)]e

i
~
∫
L(x,ẋ,t)dt (5.2)

As it mentioned that the exact expression of this propagator may not be evaluated

directly since it is time-dependent. To deal with such system and remove this

difficulties it would be better if we take a transformation to absorb the time from

the problem and make it stationary. The relevant transformation that may be



Chapter 5. path integral for time dependent systems 40

chosen is

x = e−λtξ

y = e−λtζ (5.3)

Then

exp(
ieλtj

~ε
(xj − xj−1)2) ' exp

i

~
(
m0

2
e−λt̄j∆ξ2

j +
m0

2
λ2e−λt̄j ξ̄2

j+

−m0
λ

ε
e−λt̄j ξ̄j∆ξj +m0

λ

4ε
e−λt̄j∆ξ2

j ) (5.4)

and the same for the variable ζ. for the measure we have

N∏
j=1

(
m(tj)

2πi~ε

)N−1∏
j=1

dxjdyj =(ξiζiξfζf )
−1/2eλ(ti+tf )

N∏
1

e−2λt̄j

×
N∏
j=1

(
m0e

λt̄j

2iπ~ε

)
exp(λ

∆tj
2

)
N−1∏

1

dξjdζj (5.5)

then using the correction ∆q2
j → i~ε

m0e
−λt̄j

. this will lead to following expression of

the propagator

k(x′′, x′;T ) =ξiζiξfζf )
−1/2eλ(ti+tf )

N∏
j=1

(
m0e

−λt̄j

2iπ~ε

)
exp(λ

∆tj
2

)
N−1∏

1

dξjdζj

× e
i
~
∑N
j=1(

m0
2
e−λt̄j

∆ξ2j
ε

+
m0
2
λ2e−λt̄j ξ̄2

j ε−m0λe
−λt̄j ξ̄j∆ξj− ~2(κ(κ−1))

2m0e
−λt̄j ξ̄2

j

ε)

× e
i
~
∑N
j=1(

m0
2
e−λt̄j

∆ζ2j
ε

+
m0
2
λ2e−λt̄j ζ̄2

j ε−m0λe
−λt̄j ζ̄j∆ζj− ~2(λ(λ−1))

2m0e
−λt̄j ζ̄2

j

ε)

× e
− i

~
∑N
j=1

k

e
−λt̄j
√

ξ̄2
j

+ζ̄2
j

ε+ g

m0e
−λt̄j (ξ̄2

j
+ζ̄2
j

)
ε

(5.6)

using the same trick given above in equation (3.15) we have, F (q, t) = λ/2e−λtq2,

and g(q, t) = exp( i~
λ
2
e−λtq2). Then the propagator (5.6) will have the following
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form

k(x′′, x′;T ) = (ξiζiξfζf )
−1/2eλ(ti+tf )exp(

i

~
λ

2
(e−λtf (ξ2

f + ζ2
f )− e−λti(ξ2

i + ζ2
i ))

×
N∏
j=1

(
m0e

−λt̄j

2iπ~ε

)N−1∏
1

dξjdζje

i
~
∑N
j=1(

m0
2
e−λt̄j

∆ξ2j
ε
− ~2(κ(κ−1))

2m0e
−λt̄j ξ̄2

j

ε)

e

i
~
∑N
j=1(

m0
2
e−λt̄j

∆ζ2j
ε
− ~2(λ(λ−1))

2m0e
−λt̄j ζ̄2

j

ε)

e
− i

~
∑N
j=1

k

e
−λt̄j
√

ξ̄2
j

+ζ̄2
j

ε+ g

m0e
−λt̄j (ξ̄2

j
+ζ̄2
j

)
ε

= (ξiζiξfζf )
−1/2eλ(ti+tf )exp(

i

~
λ

2
(e−λtf (ξ2

f + ζ2
f )− e−λti(ξ2

i + ζ2
i ))∫

D[ξ(t)]D[ζ(t)]exp
i

~

∫
(
m0

2
e−λt(ξ̇2 + ζ̇2)− k

e−λt
√
ξ2 + ζ2

+

− g

m0e−λt(ξ2 + ζ2)
− ~2(κ(κ− 1))

2m0e−λtξ2
− ~2(λ(λ− 1))

2m0e−λtζ2
)dt (5.7)

At this step the problem is still time dependent, and to deal with that we need to

make time transformation t→ s

eλtdt = ds (5.8)

where we have that eλt̄jε = τj, then under this transformations the propagator

(5.7) will be

k(x′′, x′;T ) = (ξiζiξfζf )
−1/2eλ(ti+tf )exp(

i

~
λ

2
(e−λtf (ξ2

f + ζ2
f )− e−λti(ξ2

i + ζ2
i )))

N∏
j=1

(
m0

2iπ~τj

)N−1∏
1

dξjdζjexp[
i

~

N∑
j=1

(
m0

2

∆ξ2
j + ∆ζ2

j

τj
− k√

ξ̄2
j + ζ̄2

j

τj+

− g

m0(ξ̄2
j + ζ̄2

j )
τj −

~2(κ(κ− 1))

2m0ξ̄2
j

τj −
~2(λ(λ− 1))

2m0ζ̄2
j

τj] (5.9)

Then the problem transformed to that of a particle with a constant mass m0

subjected in a Coulomb and inverse quadratic potentials.

5.3 Propagator in polar coordinates

The evaluation of the propagator (5.9) is not easy, the difficulties come from the

non-separation of the variables ξ and ζ in Coulomb and the inverse quadratic

potential terms, so thinking of treating the problem in polar coordinate (r, θ) it

may make it somehow simpler because the variables r and θ will be related by a
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multiplication in both of the mentioned potential terms.

The propagator in this coordinates where ξ = rcosθ and ζ = rsinθ reads as

k(~rf , ~ri;T ) = lim
N→∞

N∏
j=0

(
m

2πi~τj

)∫ N−1∏
j=1

rjdrjdθjexp(
i

~

N∑
j=1

S(j, j − 1)) (5.10)

the short time action in this case is

S(j, j − 1) =
m0

2τj
(∆r2

j + 2rjrj−1(1− cos(∆θj)))−
k

rj
τj −

g

m0r2
j

τj+

− ~2(κ(κ− 1))

2m0r2
j cos

2(θj)
τj −

~2(λ(λ− 1))

2m0r2
jsin

2(θj)
τj (5.11)

we may therefore write at the mid-point

S(j, j − 1) =
m0

2τj
(∆r2

j + r̃2
j∆θ

2
j −

1

4
∆r2

j∆θ
2
j −

1

12
r̃2
j∆θ

4
j )−

k

r̃j
τj −

g

m0r̃2
j

τj+

− ~2(κ(κ− 1))

2m0r̃2
j cos

2(θ̃j)
τj −

~2(λ(λ− 1))

2m0r̃2
jsin

2(θ̃j)
τj (5.12)

and the measure

N−1∏
j=1

rjdrjdθj =
1
√
rfri

N∏
j=1

(rjrj−1)1/2

N−1∏
j=1

drjdθj

=
1
√
rfri

N∏
j=1

r̃j

(
1−

∆r2
j

8r̃2
j

)N−1∏
j=1

drjdθj

=
1
√
rfri

N∏
j=1

r̃je
−

∆r2j

8r̃2
j

N−1∏
j=1

drjdθj (5.13)

We insert (5.12)and (5.13) in (5.10), to arrive at the correct time-sliced form of

the propagator in polar coordinates

k(~rf , ~ri;T ) = lim
N→∞

N∏
j=0

(
m

2πi~τj

)∫ N−1∏
j=1

rjdrjdθj(1−
1

8
r−2
j ∆r2

j+

− im0

8~τj
(∆r2

j∆θ
2
j +

1

3
r̃2
j∆θ

4
j ))exp(

i

~

N∑
j=1

(
m0

2τj
(∆r2

j + r̃2
j∆θ

2
j )+

− k

r̃j
τj −

g

m0r̃2
j

τj −
~2(κ(κ− 1))

2m0r̃2
j cos

2(θ̃j)
τj −

~2(λ(λ− 1))

2m0r̃2
jsin

2(θ̃j)
)τj (5.14)
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To make this propagator in a useful form we will follow McLaughlin Schulman

procedure which leads to the replacement

∆r2
j → i~/τj

∆θ2
j →→ (i~τj/m) r̃−2

j

∆θ4
j → 3 (i~τj/m)2 r̃−4

j (5.15)

then we get the polar form of the discretized propagator

k(~rf , ~ri;T ) =(r′r′′)−1/2 lim
N→∞

(
m0

2πi~τj

)N ∫ N−1∏
j=1

drjdθj

N∏
j=1

r̃j

exp
( i
~

N∑
j=1

m0

2τj
(∆r2

j + r̃2
j∆θ

2
j ) +

~2

8m0r̃2
j

τj −
k

r̃j
τj −

g

m0r̃2
j

τj

− ~2(κ(κ− 1))

2m0r̃2
j cos

2(θ̃j)
τj −

~2(λ(λ− 1))

2m0r̃2
jsin

2(θ̃j)
τj

)
(5.16)

5.4 Green’s function

The propagator (5.16) can not be evaluated directly since the radial and the angu-

lar part are not separated, to separate them we need to make time transformation,

for that we need to make the energy appear in our expression. To do so we need

to define the Green’s function which is the Fourier transform of the propagator

G(~rf , ~ri;E) =

∫ ∞
0

dSexp(
i

~
ES)k(~rf , ~ri;S) (5.17)

In order to be able to separate angular part from the radial we change the time

from s to s′

ds′ = r−2ds (5.18)

which is equivalent to

τj = rjrj−1τ
′
j with S ′ =

∫ S

0

r−2ds (5.19)
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Then

τj = τ ′j r̃
2
j

(
1−

∆r2
j

4r̃2
j

)
(5.20)

if we insert the condition rfri
∫∞

0
dS ′δ(S −

∫ S′
0
r2(s′)ds′) = 1, with the above

transformation in (5.17) one would find that the Green function would be written

as follow

G(~rf , ~ri;E) =

∫ ∞
0

dS ′δ(S −
∫ S′

0

r2(s′)ds′)p(~rf , ~ri;S)

=

∫ ∞
0

dS ′p(~rf , ~ri;

∫ S′

0

r2(s′)ds′) (5.21)

with p(~rf , ~ri;
∫ S′

0
r2(s′)ds′) is given by

p(~rf , ~ri;S
′) =(rirf )

1/2 lim
N→∞

N∏
j=1

(
m0

2πi~τ ′j

)∫ N−1∏
j=1

drjdθj

N∏
j=1

r̃−1
j

(
1 +

∆r2
j

4r̃2
j

)

× exp( i
~

N∑
j=1

m0

2τ ′j

(
1 +

∆r2
j

4r̃2
j

)
(
∆r2

j

r̃2
j

+ ∆θ2
j ) + Er̃2

j τ
′
j − kr̃jσj+

+
~2/8− g
m0

τ ′j −
~2(κ(κ− 1))

2m0cos2(θ̃j)
τ ′j −

~2(λ(λ− 1))

2m0sin2(θ̃j)
τ ′j) (5.22)

using the corrections

∆r2
j → r̃2

j

(
i~τ ′j
m0

)
∆r2

j∆θ
2
j → r̃2

j

(
i~τ ′j
m0

)2

∆r4
j → 3r̃4

j

(
i~τ ′j
m0

)2

(5.23)
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that will make (5.22) have the following form

p(~rf , ~ri;S
′) =(rirf )

1/2 lim
N→∞

N∏
j=1

(
m0

2πi~τ ′j

)∫ N−1∏
j=1

drjdθj

N∏
j=1

r̃−1
j

× exp( i
~

N∑
j=1

m0

2τ ′j
(
∆r2

j

r̃2
j

+ ∆θ2
j ) + Er̃2

j τ
′
j − kr̃jτ ′j −

~2/8 + g

m0

τ ′j

− ~2(κ(κ− 1))

2m0cos2(θ̃j)
τ ′j −

~2(λ(λ− 1))

2m0sin2(θ̃j)
τ ′j)

= pr(rf , ri, S
′)pθ(θf , θi, S

′) (5.24)

where

pr(rf , ri, S
′) =(rirf )

1/2 lim
N→∞

N∏
j=1

(
m0

2πi~τ ′j

)1/2 ∫ N−1∏
j=1

drj

N∏
j=1

r̃−1
j

× exp( i
~

N∑
j=1

m0

2τ ′j

∆r2
j

r̃2
j

+ Er̃2
j τ
′
j − kr̃jτ ′j −

~2/8 + g

m0

τ ′j (5.25)

and

pθ(θf , θi, S
′) = lim

N→∞

N∏
j=1

(
m0

2πi~τ ′j

)1/2 ∫ N−1∏
j=1

dθjexp(
i

~

N∑
j=1

m0

2τ ′j
∆θ2

j

− ~2(κ(κ− 1))

2m0cos2(θ̃j)
τ ′j −

~2(λ(λ− 1))

2m0sin2(θ̃j)
τ ′j) (5.26)

The last expression is just the propagator of a particle subjected in Pöschel-Teller

potential Refs. [22,23] which is exactly evaluated that has the form Ref. [22]

pθ(θf , θi, S
′) =

∞∑
l=0

exp(−i ~
2m0

(2l + κ+ λ)2S ′)(2l + κ+ λ)

× 2l!Γ(λ+ κ+ l)

Γ(κ+ l + 1/2)Γ(λ+ l + 1/2)
(sin(θi)sin(θf ))

λ(cos(θi)cos(θf ))
κ

× P λ−1/2,κ−1/2
l (1− 2sin2(θi))P

λ−1/2,κ−1/2
l (1− 2sin2(θf )) (5.27)

Using the same result that given in Ref. [22] where pθ(θf , θi, S
′) will be written

as a summation

pθ(θf , θi, S
′) =

∞∑
n=0

φn(θf )φn(θi)e
− i

~Eθ,nS (5.28)
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using this relation one would find that the energy spectrum of this system will be

given by

Eθ,n =
2~2

m0

(2l + κ+ λ)2 (5.29)

The normalized wave functions corresponding to this case can be directly deduced

φn(θ) =

(
2(λ+ κ+ 2l)

l!Γ(λ+ κ+ l)

Γ(λ+ l + 1/2)Γ(κ+ l + 1/2)

)1/2

× (sin(θ))λ(cos(θ))κ)P
λ−1/2,κ−1/2
l (1− 2sin2(θ)) (5.30)

To find the Green’s function (5.17) we still have to find the exact expression of the

radial propagator (5.25), and to do so we need to make the transformation s→ t

defined by

ds′ = r−2(s)ds (5.31)

which means

τ ′j =
τj

rjrj−1

=
τj
r̃2
j

(
1 +

∆r2
j

4r̃2
j

)
(5.32)

then

pr(rf , ri, S) =(rirf )
1/2e

i
~ES lim

N→∞

N∏
j=1

(
m0

2πi~τj

)1/2 ∫ N−1∏
j=1

drj

× exp( i
~

N∑
j=1

m0

2τj
∆r2

j −
k

r̃j
τj +

~2/8− g −m0Eθ,n
m0r̃2

j

τj) (5.33)

The last expression is the propagator of a particle subjected in Coulomb and an

inverse quadratic potential in one dimension, to find the exact expression of it we

will make a space-time transformation. The suitable space time transformation

that can be chosen in this case is

r = u2

ds
dt′

= 4u2(t′) (5.34)
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which will simplify the problem to that of an Harmonic oscillator with an inverse

quadratic potential.

The discrete version of this transformation can be given by

rj = u2
j , , rj−1 = u2

j−1

τj = 4ε′ujuj−1 = 4ε′ũ2
j

(
1−

∆u2
j

4ũ2
j

)
(5.35)

this will leads to a quantum effective potential Ṽ = 3~2ε′

8m0ũ2
j
. Then the Green’s

function will take the form

G(~rf , ~ri;E) =
2

(ufui)1/2

∞∑
l=0

2l!Γ(λ+ κ+ l)(2l + κ+ λ)

Γ(κ+ l + 1/2)Γ(λ+ l + 1/2)
(sin(θi)sin(θf ))

λ

× (cos(θi)cos(θf ))
κP

λ−1/2,κ−1/2
l (1− 2sin2(θi))

× P λ−1/2,κ−1/2
l (1− 2sin2(θf ))

∫ ∞
0

dT ′e−
i
~4kT ′

∫
D[u(t′)]

× exp( i
~

∫
(
m0

2
u̇2 +

~2

2m0u2
(1− 8g/~2 − 8m0Eθ,n/~2) + 4Eu2)dt′)

= 2
∞∑
l=0

2l!Γ(λ+ κ+ l)(2l + κ+ λ)

Γ(κ+ l + 1/2)Γ(λ+ l + 1/2)
(sin(θi)sin(θf ))

λ(cos(θi)cos(θf ))
κ

× P λ−1/2,κ−1/2
l (1− 2sin2(θi))P

λ−1/2,κ−1/2
l (1− 2sin2(θf ))

∫ ∞
0

dT ′e−
i
~4kT ′

×
(

m0ω

i~sin(ωT ′)

)
exp(

im0ω

2~
(u2

f + u2
i )cot(ωT

′))I2α

(
m0ωufui
i~sin(ωT ′)

)
(5.36)

with 4E = −1
2
m0ω

2, α = 2g
~2 +

2m0En,θ
~2 . In the next step we will make the following

change of variables

y =
m0ω

~
u2
f (5.37)

x =
m0ω

~
u2
i (5.38)

z = exp(−2iωT ′) (5.39)

with

sin(ωT ′) =
z−1/2(1− z)

2i
, cos(ωT ′) =

z−1/2(1 + z)

2
(5.40)
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taking this into account then

G(~rf , ~ri;E) = 2
∞∑
l=0

2l!Γ(λ+ κ+ l)(2l + κ+ λ)

Γ(κ+ l + 1/2)Γ(λ+ l + 1/2)
(sin(θi)sin(θf ))

λ(cos(θi)cos(θf ))
κ

× P λ−1/2,κ−1/2
l (1− 2sin2(θi))P

λ−1/2,κ−1/2
l (1− 2sin2(θf ))

∫ ∞
0

dT ′e−
i
~ (4k+~ω)T ′

×
(

2m0ω

~(1− z)

)
exp

(
−1

2

(1 + z)

(1− z)
(x+ y)

)
I2α

(
−2
√
xyz

1− z

)
(5.41)

Using Hille-Hardy [24]

1

1− z
exp

(
−1

2

(1+z)

(1− z)
(x+ y)

)
I2α

(
2

√
xyz

1− z

)
=
∞∑
n=0

zn
n!

Γ(2α + n+ 1)
exp(−1/2(x+ y))(xyz)αL2α

n (x)L2α
n (y) (5.42)

with |z| < 1, and L2α
n (x) are Laguerre polynomial functions. After replacing all of

this in the Green’s function we will have

G(~rf , ~ri;E) = 4
∑
n

∞∑
l=0

2l!Γ(λ+ κ+ l)(2l + κ+ λ)

Γ(κ+ l + 1/2)Γ(λ+ l + 1/2)

(m0ω

~

)2α+1

× (sin(θi)sin(θf ))
λ(cos(θi)cos(θf ))

κP
λ−1/2,κ−1/2
l (1− 2sin2(θi))

× P λ−1/2,κ−1/2
l (1− 2sin2(θf ))

∫ ∞
0

dT ′e−
i
~ (4k+(1+2α+2n)~ω)T ′

× exp(−m0ω

2~
(u2

i + u2
f ))L

2α
n (

m0ω

~
u2
i )L

2α
n (

m0ω

~
u2
f ) (5.43)

5.5 The energy spectrum and the wave functions

To find the energy spectrum and the related wave functions, we need to look for

the poles of our Green function and to do so we will perform the integration with

respect to the variable T ′∫ ∞
0

dT ′e−
i
~ (4k+(1+2α+2n)~ω)T ′ = i(4k + (1 + 2α + 2n)~ω)−1 (5.44)

after some arrangement it is clear that

En = − 2m0k
2

~2(1 + 2α + 2n)2
(5.45)
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The wave functions can be deduced for the residue of the Green function then

Ψn,l(uf , θf )Ψ
∗
n,l(ui, θi) = lim

E→En

E − En
i

G(~rf , ~ri;E) (5.46)

which means that

Ψn,l(u, θ) =23/2

(
l!Γ(λ+ κ+ l)(2l + κ+ λ)

Γ(κ+ l + 1/2)Γ(λ+ l + 1/2)

)1/2 (m0ω

~

)α+1/2

× sin(θ)λcos(θ)κP
λ−1/2,κ−1/2
l (1− 2sin2(θ))

× exp(−m0ω

2~
(u2

i + u2
f ))L

2α
n (

m0ω

~
u2) (5.47)

5.6 Conclusion

Then, using the path integral technique we were able to exactly solve the prob-

lem of a particle with the time dependent mass m = m0exp(αt), subjected to a

Coulomb potential in two dimensions, by preforming suitable transformations. We

have also obtained the corresponding eigenfunctions and energy spectrum. The

problem can be evaluated in three dimensions following the same way done here,

and an extra phase term will appear in the wave functions.

We remark that we can reach the stationary results by putting α = 0, which is

the same results found by authors. This is feel good about the way and the tech-

nique we have chosen which make us tray to generalize it to the problem with a

time-position dependent mass in other works.

Through the formulation and the results given above and the obtained wave func-

tions and energies we conclude that the path integral is a powerful technique to

study quantum dynamics of particles in non-relativistic theory.



Chapter 6

Position-time-dependent mass

6.1 Introduction

In recent years, the study of quantum mechanical systems with position-dependent

effective masses has received considerable attention[25-32]. They constitute inter-

esting and useful models for the description of several physical problems in different

areas of the material sciences and condensed matter physics, especially in the case

of many- body problems[33], electronic properties of semi-conductors[34], quan-

tum dots[35], quantum liquids[35] and metal clusters[37],...etc. This wide range

of applications has led to the development of methods and techniques for stud-

ding such systems. Among them, we can cite the point-canonical transformation

method[30,31,32], the algebraic methods[36,40] and the supersymmetric quantum

mechanics[41]. Note that in all of theses methods, the common procedure is to

convert the position-dependent mass problem into that of constant mass and the

main aim is to get energy spectra and/or the wave functions for theses systems

ones the position-dependent mass is given.

The problem of variable mass can also be formulated by the path integral ap-

proach. Some examples have been treated in configuration space [42,43,44] where

in [40] the Green’s function of position-dependent mass has been related to that

of constant mass according to a direct calculation.

50
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In this chapter we are interested in developing a systematic procedure to study

one-dimensional path integral in phase space for a class of position-time dependent

masses and time-dependent potentiates. This later can provide not only many ex-

act results known in the literatures but also a various new ones.

By using an explicitly time-dependent canonical transformation as well as a time

transformation, we were able to absorb the time dependence of the path integral.

Then by shifting the momentum and performing sn other judicious time trans-

formation, we reduced the problem with position-time dependent mass to that

relating to a constant mass and stationary potential.

As application, we have considered two different mass distributions each of which

being relative to a chosen potential so that the corresponding path integral be

exactly resolved.

6.2 Hamiltonian and path integral

There is an ambiguity in writing the quantum Hamiltonian for systems with

position-dependent mass. This ambiguity arising from the fact that x̂ and p̂ do not

commute. There are several forms for the hermitian Hamiltonian with a position

dependent mass, all of them have the same classical limit but they differ in the

quantum level. In general we can write

Ĥ =
1

4
(mαp̂mβ p̂mγ +mγ p̂mβ p̂mα + V̂ (x̂, t), with α + β + γ = −1 (6.1)

This formulas is the most general one that can save the hermiticity of Hamiltonian.

The parameters α, β and γ will be chosen such that the condition given in Eq.(6.1)

is holds. In our case we will choose the Hamiltonian with parameters α = −1,

and β = γ = 0, because it has many applications. Also we will be interesting with

the time dependent potentials of the form V̂ (x̂, t) = f 2(t)V̂ (f(t)x̂) and our chosen

time dependent mass has the form m(x, t) = m(f(t)x), where f(t) is an arbitrary

time-dependent function. By reordering the Hamiltonian this will produces an
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effective potential term (See Ref. [45])

Ĥ =
1

4
(

1

m
p̂2 + p̂2 1

m
)− f 2 m

′′

8m2
+

9f 2

32

m′2

m3
+ f 2V̂ (fx̂), (6.2)

here the primes denote the derivatives with respect to the coordinate x.

The propagator related to the system Eq.(6.1) can be given in phase space by the

following relation

K(x′′, t′′;x′, t′) =(m(f ′′x′′)m(f ′x′))−1/4

∫
D[x(t)]D[p(t)]

× exp(i
∫
dt(pẋ− 1

2

p2

m
+ f 2 m

′′

8m2
− 9f 2

32

m′2

m3
− f 2V (fx)). (6.3)

This is the propagator of a position-time dependent mass particle subjected to

the time-dependent potential f 2(t)V (f(t)x). Th problem is time-dependent and

it may not be easy to be evaluated directly unless we find procedure to transform

it to a time-independent problem which is more easier to be evaluated. To do so

we preform the following canonical transformation

x = g(t)Q

p =
P

g(t)
, (6.4)

with the generating function

F (x, P, t) =
xP

g(t)
, (6.5)

where g(t) is a real function.

The propagator (6.3) will be after this transformations

K(Q′′, P ′′, t′′;Q′, P ′, t′) =
(m(f ′′g′′Q′′)m(f ′g′Q′))−1/4√

g(t′′)g(t′)

∫
D[Q(t)]D[P (t)]

2π

× exp(i
∫ t′′

t′
dt(PQ̇− 1

2

P 2

mg2
+ f 2 m

′′

8m2
− 9f 2

32

m′2

m3
+

− f 2V (fgQ) +
ġ

g
PQ)). (6.6)

Since g(t) is an arbitrary function we will choose it such that g(t)f(t) = 1, to

make the potential V (x, t) and the mass functions m(x, t) time-independent.

At this level, we notice that the kinetic term does not have the standard form.

For this reason we carry out the time-transformation dt = g2(t)dτ in order to
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eliminate g−2(t) in the kinetic term and to absorb the explicit time-dependence of

the path integral. The time rescaled path integral is

K(Q′′, P ′′, τ ′′;Q′, P ′, τ ′) =
(m(f ′′g′′Q′′)m(f ′g′Q′))−1/4√

g(t′′)g(t′′)

∫
D[Q(τ)]D[P (τ)]

2π

× exp(i
∫ τ ′′

τ ′
dτ(PQ̇− 1

2

P 2

m
+

m′′

8m2
− 9

32

m′2

m3
− V (Q)− gġPQ)).

(6.7)

The propagator (6.7) is time independent except for the term gġPQ. Then the

function f(t) is chosen to satisfy the condition ḟf−3(t) = gġ = κ. Moreover,

shifting the momentum by mκQ, or P = P −mκQ, will cancel the PQ’s term

K(Q′′, P ′′, t′′;Q′, P ′, t′) =
(m(Q′′)m(Q′))−1/4√

g(t′′)g(t′)
e−κi(G(Q′′)−G(Q′))

∫
D[Q(τ)]D[P (τ)]

2π

× exp(i
∫ τ ′′

τ ′
dτ(PQ̇− 1

2

P 2

m
+

m′′

8m2
− 9

32

m′2

m3
− V (Q)+

− κ2

2
mQ2)), (6.8)

where the function G(z) obeys the relation

Gz(z) =
∂G(z)

∂z
= m(z)z. (6.9)

The term P 2

2m
is nasty since it’s related factor m(Q) is position-dependent function.

To achieve a more convenient form of the path integral (6.3) we will perform the

following time transformation defined as

ξ(Q(τ))dτ = ds, (6.10)
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This will lead to a new expression of the propagator (6.3)

K(Q′′, P ′′, s′′;Q′, P ′, s′) =
(m(Q′′)ξ(Q′′)2m(Q′)ξ(Q′)2)−1/4√

g(t′′)g(t′)
e−κi(G(Q′′)−G(Q′))

×
∫ ∞
−∞

dE

2π
e−iET

∫ ∞
0

dS

∫
D[Q(s)]D[P (s)]

× exp(i
∫
ds(PQ̇− 1

2

P 2

mξ
− κ2

2

m

ξ
Q2 − ξ′2

8mξ3
+

− m′ξ′

4m2ξ2
− 1

ξ
(− m′′

8m2
+

9

32

m′2

m3
+ V (Q)) +

E

ξ
). (6.11)

Since ξ is an arbitrary function we will choose it such that ξm = 1 to obtain the

following standard expression of the propagator

K(Q′′, P ′′, s′′;Q′, P ′, s′) =
(m(Q′′)m(Q′))1/4√

g(t′′)g(t′′)
e−κi(G(Q′′)−G(Q′))

∫ ∞
−∞

dE

2π
e−iET

×
∫ ∞

0

dS

∫
D[Q(s)]D[P (s)]exp(i

∫
ds(PQ̇− 1

2
P 2+

− κ2

2
m2Q2 − 5

32

m′2

m2
+

1

8

m′′

m
−mV (Q) +mE). (6.12)

Then the problem is transformed to that of constant mass but with different

potential.

There are other choices of ξ such that the problem can be evaluated, for example

ξm = α
Q

, ξm = α
Q2 , the choice depends on the system that we have.

6.3 Applications

6.3.1 Example 1

We will be interested into the system of the mass m(x) = xσ and the potential

V (x) = V0 + β
xσ

+ γ
x2σ , σ = ±2.

This system is stationary, it is the case where κ = 0. The function f(t) is chosen to

be 1. Then after the transformations given above one can find that the propagator
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related to this problem [23]

K(Q′′, P ′′, s′′;Q′, P ′, s′) =(x′σx′′σ)1/4

∫ ∞
−∞

dE

2π
e−iET

∫ ∞
0

dSeiβS
∫
D[x(s)]D[p(s)]

× exp(i
∫
ds(pẋ− 1

2
p2 − 1

32

σ(σ + 4)

x2
+ (E − V0)xσ − γ

xσ
)

=
ω

i
(x′σ+2x′′σ+2)1/4

∫ ∞
−∞

dE

2π
e−iET

∫ ∞
0

dS
eiβS

sin(ωS)

× ei
ω
2

(x′′2+x′2)cot(ωS)I2ν

(
ω

x′′x′

isin(ωS)

)
(6.13)

with ν =
√

1
8
σ(σ + 4) + γ

2
+ 1

16
and ω2 = −2(E − V0) for σ = 2, and ν =√

1
8
σ(σ + 4)− E−V0

2
+ 1

16
and ω2 = 2γ, for σ = −2. The integral over S in (6.13)

can be performed using the formula∫ ∞
0

dx exp(2px− βcoth(x))cosech(x)J2γ(αcosech(x))

= α−1 Γ(1/2− p+ γ)

Γ(2γ + 1)
M−p,γ(

√
α2 + β2 − β)Wp,γ(

√
α2 + β2 − β) (6.14)

Thus (6.13) will be

K(Q′′, P ′′, s′′;Q′, P ′, s′) =(−1)ν+1(x′σx′′σ)1/4

∫ ∞
−∞

dE

2π
e−iET

Γ(1/2− p+ ν)

Γ(2ν + 1)ω

×M−p,ν(
ω

2
x′2)Wp,ν(

ω

2
x′′2), (6.15)

with p = β
2ω

. The Energies related to the bound state of this system are given by

the relation

1/2− p+ ν = −n, n ∈ N. (6.16)

By inserting the value of p in (6.16) we will find that the energies are

• For σ = 2

En = − β2/8

(1/2 + n+ ν)2
+ V0, (6.17)

• For σ = −2

En = −2(−n+
β

4γ
− 1/2)2 − 7/8 + V0. (6.18)
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6.3.2 Example 2

We will be interested to the system of The mass m(x) = eλx and the potential

V (x) = V0 + βe−λx + γeλx.

For this system the mass grows exponentially m = eλx, where λ is a real constant.

Following the steps given above one can find that

K(Q′′, P ′′, s′′;Q′, P ′, s′) =e
λ
4

(x′′+x′)

∫ ∞
−∞

dE

2π
e−iET

∫ ∞
0

dSe−i
λ2+32β

32
S

×
∫
D[x(s)]D[p(s)]exp(i

∫
ds(pẋ− 1

2
p2

+ (E − V0)eλx − γe2λx). (6.19)

Thus we see the solution reduced to the path integral of Morse potential[23].

Following [46,47] one can find

K(Q′′, P ′′, s′′;Q′, P ′, s′) =e
λ
4

(x′′+x′)

∫ ∞
−∞

dE

2π
e−iET

∫ ∞
0

dSe−i
λ2+32β

32
S

×
∫
dEM
2π

e−iEMS
(−1)λ

′+1

iλωexp(λ
2
(x′′ + x′))

Γ(λ′ − p+ 1/2)

Γ(2λ′ + 1)

×M−p,λ′(−ωe
λ
2
x′)W−p,λ′(−ωe

λ
2
x′′), (6.20)

where p = 2E−V0

λ2ω
, ω =

√
8γ/λ2 and λ′ =

√
−2EM/λ2.

Preforming the S and EM integrals we find that EM = −λ2+32β
32

, then

K(Q′′, P ′′, s′′;Q′, P ′, s′) =

∫ ∞
−∞

dE

2π
e−iET

(−1)λ
′+1

iλωexp(λ
4
(x′′ + x′))

Γ(λ′ − p+ 1/2)

Γ(2λ′ + 1)

×M−p,λ′(−ωe
λ
2
x′)W−p,λ′(−ωe

λ
2
x′′). (6.21)

The discrete energy levels can be found from the poles of the Γ function in the

numerator

λ′ − p+ 1/2 = −n, n ∈ N. (6.22)

Replacing λ′, and p by their values one can find that

En =
λ2ω

2
(
√

1/16 + 2β/λ2 + 1/2 + n) + V0. (6.23)
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We have presented two examples here, but using the method that have been

presented in this chapter one can find many systems that can have exact solu-

tions, for example the system with the mass m(x) = m0/x, and the potential

V (x) = α/x + βx where the problem will be reduced to the system of a free

particle in Coulomb and an inverse quadratic potentials in one dimension.

6.4 Conclusion

In the present work we reduce the phase space path integral with position-dependent

mass and time-dependent potential to that with constant mass and stationary po-

tential, simply by using explicitly time-dependent canonical transformation and

appropriate time transformations. The general form of the propagator is given and

closed expressions are deduced for tow specific mass functions particles moving in

familiar physical potentials, together with their energy spectra and corresponding

wave functions.

We should point out that that our result can provide solutions for systems with

different mass functions and typical potentials frequently used in the literatures

and can also be extended to get solutions for systems with more complicated time-

dependent mass distributions combined with other potentials to model interesting

physical phenomena.



Chapter 7

Path integral for a particle in an

infinite square well

The problem of a particle in an infinite square well potential is a simple problem

in quantum mechanics and is known as the simplest bound-state problem. The

system has been solved by Schroedinger equation exactly but via path integral the

problem was one of the great puzzles for a long time. After by introducing the

image point method equivalent to the sum over all classical paths[48] the author

was able to solve it. Then Sokman [46] using a point canonical transformation on

the coordinate, he could find the exact solution of such problem.

The propagator is not invariant under any change of variables, which means that

the change should taken such that it will lead to the same quantum theory as the

original one. In [46] a general method to compute the exact propagator under a

point canonical transformation accompanied by a new time-transformation, where

the problem reduced to that of a particle in a Rosen-Morse potential.

We aims in this work to find the exact propagator of a particle in infinite square

well, in which the will be constrained in the interval 0 < x < 1 with some poten-

tials.

58
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7.1 The propagator

Let us first present the Lagrangian of this problem which has the following form

L(ẋ, x, t) =
m

2
ẋ2 − V (x)− U(x) (7.1)

where the potential V (x) is defined by

V (x) =
{ 0 where 0 < x < 1

∞ elsewhere,
(7.2)

and U(x) will be given latter(It will be chosen).

The propagator expressed in phase space as

K(x′′, p′′, t′′;x′, p′, t′) =

∫
D[x(t)]D[p(t)]

2π~
e
i
~
∫ t′′
t′ dt(pẋ−

1
2m

ṗ2−V (x)−U(x)). (7.3)

This propagator may not be evaluated directly because that we will transform it

to another one that has a known exact solution. To deal with such problem we

need to make a point canonical transformation, a transformation that saves the

system quantum mechanically. The chosen transformation will be

x = f(q) = arctanh(−cos(πq))

p = π−1sin(πq)P, (7.4)

where P is the conjugate momentum of the variable q. As shown in [45] that an

effective potential will be created and giving by the following expression

Ve =
9

31

g′2

g3
− g′′

8g2
, (7.5)

with the function g(q) is given by

g(q)1/2 = f ′(q) =
π

sin(πq)
, (7.6)

which means that

Ve(q) =
5

8
cos2(πq)− 1

4
, (7.7)
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Then the propagator related to this system will be

K(p′′, x′′, t′′; p′, x′, t′) =(g(q′′)g(q′))−1/4

∫
D[q(t)]D[P (t)]

2π~

e
i
~
∫ t′′
t′ dt(P q̇−

m
2g(q)

P 2−U(q)−Ve(q)) (7.8)

The factor of kinetic part is some how nasty, because it is position-dependent and

we may not be able to find the path integral of this problem easily in this case.

We will make a time transformation [45] t→ s

ds

dt
= 1/f ′(q)2 (7.9)

which means that the propagator after this transformation is

K(p′′, x′′, t′′; p′, x′, t′) =(g(q′′)g(q′))1/4

∫
dE

2π
e−iET

∫
dS

∫
D[q(s)]D[P (s)]

2π~

e
i
~
∫ s′′
s′ ds(P q̇−

m
2
P 2−g(q)U(q)−g(q)Ve(q))−Eg(q)+ g′2

8g2
)

=

∫
dE

2π
e−iETG(q′′, q′;E) (7.10)

With G(q′′, q′;E) is the Green’s function related to this system, which has the

expression

G(q′′, q′;E) =

∫
dS

∫
D[q(s)]D[P (s)]

2π~

e
i
~
∫ s′′
s′ ds(P q̇−

m
2
P 2− π2

sin2(πq)
U(q)+π2

8
cos2(πq)−2−8E

sin2(πq)
)

(7.11)

At this stage we see that the problem taking a form that we can deal with for

some chosen potentials. Using the transformation we were able to transform the

problem of a particle in an infinite square wall subjected in the potential U to that

of a particle subjected in the potentials V ∝ 1
sin2(πq)

and π2

sin2(πq)
U(q).
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7.2 Examples

7.2.1 U(x) = U0 = constant

In this case the particle will be subjected in a constant potential U0, here the

Green’s function we will be

G(q′′, q′;E) =

∫
dSe−

i
~
π2

8
S

∫
D[q(s)]D[P (s)]

2π~

e
i
~
∫ s′′
s′ ds(P q̇−

m
2
P 2−π

2

8
1+8E+8U0
sin2(πq)

)
(7.12)

7.2.2 U(x) = U0tanh
2(x)

In this case the particle will be subjected in the Rosen-Morse potential U(x) =

U0tanh
2(x), after the point canonical transformation that has been chosen it is

clear that the expression of this potential will be changed to take the form

U(q) = U0cos
2(πq) (7.13)

Then inserting this in the Green’s function given above one would find that

G(q′′, q′;E) =

∫
dSe

i
~π

2(U0−1/8)S

∫
D[q(s)]D[P (s)]

2π~

e
i
~
∫ s′′
s′ ds(P q̇−

m
2
P 2−π

2

8
1+8E+8U0
sin2(πq)

)
(7.14)

7.2.3 U(x) = U0tanh(x)

The potential U(x) will be

U(q) = U0cos(πq) (7.15)

Then the Green’s function will be

G(q′′, q′;E) =

∫
dSe−

i
~
π2

8
S

∫
D[q(s)]D[P (s)]

2π~

e
i
~
∫ s′′
s′ ds(P q̇−

m
2
P 2−π

2

8
1+8E+8U0cos(πq)

sin2(πq)
)

(7.16)
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Using the relations

1

sin2(2x)
=

1

4

(
1

sin2(x)
+

1

cos2(x)

)
(7.17)

and

cos(2x)

sin2(2x)
=

1

4

(
1

sin2(x)
− 1

cos2(x)

)
(7.18)

Then one will find that the Green’s function will be

G(q′′, q′;E) =

∫
dSe−

i
~
π2

8
S

∫
D[q(s)]D[P (s)]

2π~

e
i
~
∫ s′′
s′ ds(P q̇−

m
2
P 2−π

2

32
1+8E+8U0
sin2(π/2q)

−π
2

32
1+8E−8U0
cos2(π/2q)

)
(7.19)

7.2.4 U(x) = U0

tanh2(x)

This is the case of a particle on a infinite square wall with an inverse Rosen-Morse

potential. Under the transformation that has been taken this potential will take

the form

U =
U0

cos2(πq)
(7.20)

Inserting this in Green’s function it will be

G(q′′, q′;E) =

∫
dSe−

i
~
π2

8
S

∫
D[q(s)]D[P (s)]

2π~

e
i
~
∫ s′′
s′ ds(P q̇−

m
2
P 2−π

2

8
1+8E+8U0
sin2(πq)

− π2U0
cos2(πq)

)
(7.21)

7.3 Conclusion

In this chapter we have seen the problem of a particle in an infinite square wall

with some chosen potentials, where we used a point canonical transformation to

relate the problem to another one that has an exact solution, for many cases.

Using the Schrödinger equation it may be difficult to find the solution for each

case, but via path integral technique we were able to find the exact propagators.



Chapter 8

Charged particle in a field of

Dayon

The problem of a particle with an electric charge −e interacting with an electro-

magnetic field of Dirac monopole with a positive electric charge q and a magnetic g

has been considered via path integral. The Green function and the discrete energy

spectrum and its correspond eigenfunctions have been calculated exactly

A great deal of attention has been paid to the subject of existence of monopole

and dyons [49,50] and the problem has become a challenging new frontier and the

object of more interest in high energy physics. Dirac proved [49] that the quantum

mechanics of an electrically charged particle of charge e and a magnetic charge g

is consistent only if eg
~c = 2πn, where n being an integer. Then a generalization has

been made by Schwinger-Zwanziger [50] shows that for two particles of electric and

magnetic charges (e, g) and (e′, g′) the relations eg−e′g′
~c = 2πn for the consistence

of quantum mechanics. Then a great attention and generalization in the context

of quantum field theory has been mad.

In this job we will find the propagator and the eigenfunctions for the non relativistic

problem of a charged particle −e with mass m interacting with electromagnetic

field of a Dirac monopole of charge q and magnetic g

A magnetic monopole of charge g at the origin produces a radial field ~B = g ~r
r2 .

One possible vector potential can be chosen in spherical coordinate is

~A = g
α + βcos(θ) + γcos2( θ

2
)

rsin(θ)
~eφ (8.1)

63
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where α, β and γ are constants, with β + γ/2 = −1, in the simple case where

α = 1, β = −1 and γ = 0,we will be in the case given in [51,52]. We have chosen

the potential ~A to have this form for the sake of being in a general case. The

Lagrangian related to our problem in general can take the form

L(~r, ~̇r) =
m

2
~̇r2 − e

c
~A~̇r +

eq

r
(8.2)

Where ~A is the vector potential, which in this case will be considered to have the

following form

8.1 Green’s Function

The Lagrangian describing the system is given in spherical coordinates (r, θ, φ) by

L(~r, ~̇r) =
m

2
~̇r2 − e

c
~A~̇r +

eQ

r
. (8.3)

Following the path integral approach, the discrete expression of the propagator is

explicitly defined in the post-point prescription by

K(~rf , ~ri;T ) = lim
N→∞

(
µ

2πi~ε
)3N/2

∫ N−1∏
j=1

r2
jsinθjdrjdθjdφj

exp
i

~

N∑
j=1

(m
2ε

(r2
j + r2

j−1(cosθjcosθj−1 + sinθjsinθj−1cos∆φj)+

− eg

c
(α + βcosθj + γcos2 θj

2
)∆φj +

eQ

rj
ε
)
, (8.4)

with the standard notation:

ε = tj − tj−1, T = Nε = tf − ti, ~rf = ~r(tN = T ), ~ri = ~r(r0 = 0).

We note that adopting the post-point prescription, a simplification arises in the

computation of the elementary action. However, owing to the Coulomb’s attractive

term, this action presents a singularity at the origin. It is therefore essential to

stabilize the path integral(8.4) by first introducing the energy E by means of

Green’s function, which is the Fourier transform of the propagator.
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G(~rf , ~ri;E) =

∫ ∞
0

dTe
i
~ETK(~rf , ~ri;T ) (8.5)

Then we use a time transformation t→ s with a regulating function f(r)[53]

dt = f(r)ds = fR(r)fL(r)ds, (8.6)

its discrete version is

ε = εsfR(rj)fL(rj−1), εs = Sj − Sj−1, S = Nεs. (8.7)

Taking into account the constrain dT = dSR(rf )fL(ri), the Green’s function (8.5)

is rewriting following Ref.[19] as

G(~rf , ~ri;E) =

∫ ∞
0

dSPN
E (~rf , ~ri;S), (8.8)

where the promoter PN
E (~rf , ~ri;S) is given formally by the path integral

PN
E (~rf , ~ri;S) =fR(rf )fL(ri)limN→∞

∫ N∏
j=1

(
µ

2πi~εsfR(rj)fL(rj−1)

)3/2

N−1∏
j=1

r2
jsin(θj)drjdθjdφj

N∏
j=1

exp(
i

~
ANE (j, j − 1)), (8.9)

with the pseudo-time sliced action,

ANE (j, j − 1) =
N∑
j=1

( µ

2εsfR(rj)fL(rj−1)
(r2
j + r2

j−1(cosθjcosθj−1+

sinθjsinθj−1cos∆φj))−
eg

c
(α + βcosθ̃j + γcos2 θ̃j

2
)∆φj+

− (
eq

rj
− E)εsfR(rj)fL(rj−1)

)
. (8.10)

The path integral(8.9) is too complicated for explicit calculation. Then in order

to make it manageable, we use the approximation

cos∆φ ' cos∆φ+ cε+ cε∆φ+ 1/2c2ε2, (8.11)
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and the Fourier expansion[24]

exp(zcos∆φ) =
∞∑

k=−∞

(
1

2πz
)1/2exp(z − 1

2z
(k2 − 1/4))eik∆φ. (8.12)

Then we can find that

exp(
i

~

N∑
j=1

ANE (j, j − 1)) =
N∏
j=1

+∞∑
kj=−∞

√
εsfR(rj)fL(rj−1)

2πuj
exp
( i
~

(
µ

2ε
(r2
j + r2

j−1+

− 2rjrj−1cos∆θj)− (
eq

rj
− E)εsfR(rj)fL(rj−1)+

− ε

2uj
((kj − iujvj)2 − 1

4
))
)
eikj∆φj , (8.13)

where

uj =
m

i~εsfR(rj)fL(rj−1)
rjrj−1sinθjsinθj−1

vj = − eg
mc

α + βcosθ̃j + γcos2 θ̃j
2

rjrj−1, sinθ̃jsinθ̃j−1

, (8.14)

which leads to the following expression of the promoter

PN
E (~rf , ~ri;S) =fR(rf )fL(ri)limN→∞

∫ N∏
j=1

(
µ

2πi~εsfR(rj)fL(rj−1)

)3/2

N−1∏
j=1

r2
jsin(θj)drjdθjdφj

N∏
j=1

exp(
i

~
ANE (j, j − 1))

N∏
j=1

+∞∑
kj=−∞

√
εsfR(rj)fL(rj−1)

2πuj
exp
( i
~

(
µ

2ε
(r2
j + r2

j−1 − 2rjrj−1cos(∆θj))

− (
eq

rj
− E)εsfR(rj)fL(rj−1)− ε

2uj
((kj − iujvj)2 − 1/4))

)
eikj∆φj .

(8.15)

Then we will perform the integral over φ, where we have∫ 2π

0

ei(k
′−k)φdφ = 2πδk′,k, (8.16)
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then ∫ 2π

0

N−1∏
j=1

dφje
i
∑N
j=1 kj∆Φj = (2π)N−1eik(φN−φ0), (8.17)

which means that promotor (8.15) will have the following expression

PN
E (~rf , ~ri;S) =fR(rf )fL(ri)limN→∞

∫ N∏
j=1

(
µ

2πi~εsfR(rj)fL(rj−1)

)3/2

N−1∏
j=1

r2
jsin(θj)drjdθjdφj

N∏
j=1

exp(
i

~
ANE (j, j − 1))

= fR(rf )fL(ri)limN→∞

+∞∑
kj=−∞

eik(φN−φ0)

2π
(2π)N

∫ N∏
j=1

(
µ

2πi~εsfR(rj)fL(rj−1)

)3/2 N−1∏
j=1

r2
jsinθjdrjdθj

N∏
j=1

√
εsfR(rj)fL(rj−1)

2πuj
exp
( i
~

(
µ

2ε
(r2
j + r2

j−1 − 2rjrj−1cos∆θj)

− (
eq

rj
− E)εsfR(rj)fL(rj−1)− εsfR(rj)fL(rj−1)

2uj
((k − iujvj)2 − 1/4))

)
= fR(rf )fL(ri)limN→∞

+∞∑
kj=−∞

eik(φN−φ0)

2π

∫ N∏
j=1

(
µ

2πi~εsfR(rj)fL(rj−1)

)
N−1∏
j=1

r2
jsinθjdrjdθj

N∏
j=1

√
1

rjrj−1sinθjsinθj−1

exp
( i
~

(
µ

2ε
(r2
j + r2

j−1+

− 2rjrj−1cos∆θj)− (
eq

rj
− E)εsfR(rj)fL(rj−1)+

− εsfR(rj)fL(rj−1)

2uj
((k − iujvj)2 − 1/4))

)
. (8.18)
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After some simplification this will be

PN
E (~rf , ~ri;S) =

fR(rf )fL(r0)√
r0rNsinθ0sinθN

limN→∞

+∞∑
kj=−∞

eik(φN−φ0)

2π∫ N∏
j=1

(
µ

2πi~εsfR(rj)fL(rj−1)

)N−1∏
j=1

rjdrjdθjexp
( i
~

(
µ

2ε
(r2
j+

+ r2
j−1 − 2rjrj−1cos∆θj)− (

eq

rj
− E)εsfR(rj)fL(rj−1)+

− ~2εsfR(rj)fL(rj−1)

2µrjrj−1sinθjsinθj−1

((k +
eg

~c
(α + βcosθj+

+ γcos2θj))
2 − 1/4))

)
. (8.19)

In order to separate the variables r and θ, we first turn to throw the singularity

at r = 0 to the infinity with the spacial transformation r → q defined by the

equation:

r = eσq, −∞ < q <∞, and σ > 0. (8.20)

In parallel we have to take the following choice for the regulating functions[53]

f(r) = e2σq and fR = 1. (8.21)

With these new variables, the promotor (8.18) is then rewritten as

PN
E (~rf , ~ri;S) =

e2σq0√
eσ(qN+q0)sinθ0sinθN

limN→∞

+∞∑
kj=−∞

eik(φN−φ0)

2π∫ N∏
j=1

(
µ

2πi~εse2σqj

)N−1∏
j=1

σe2σqjdqjdθjexp
( i
~

(
µ

2εse2σqj
(e2σqj+

+ e2σqj−1 − 2eσ(qj+qj−1)cos∆θj)− (
eq

eσqj
− E)εse

2σqj

− ~2εse
2σqj

2µeσ(qj+qj−1)sinθjsinθj−1

((k +
eg

~c
(α + βcosθj+

+ γcos2θj))
2 − 1/4))

)
. (8.22)
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In addition, it is useful to replace the integration over the upper-position qj and

θj by one over intervals ∆qj and ∆θj, thanks to the identity

∫ N−1∏
j=1

dqjdθj =

∫ N∏
j=2

d∆qjd∆θj, (8.23)

with the result that the measure also changes as

N−1∏
j=1

σe2σqjdqjdθj =
N∏
j=2

e2σqj−1dσ∆qjd∆θj, (8.24)

which will lead to

PN
E (~rf , ~ri;S) =

1√
sinθ0sinθN

limN→∞

+∞∑
kj=−∞

eik(φN−φ0)

2π

∫ N∏
j=1

(
µ

2πi~εs

)
N∏
j=1

e−2σ∆qj

N∏
j=2

d∆σqjd∆θjexp
( i
~
µ

2εs
(1 + e−2σ∆qj+

− 2e−σ∆qjcos∆θj − (
eq

eσqj
− E)εse

2σqj

− ~2εse
2σqj

2µeσ(qj+qj−1)sinθjsinθj−1

((k +
eg

~c
(α + βcosθj+

+ γcos2θj))
2 − 1/4))

)
. (8.25)

From the other part we have at the post-point

e−2σ∆qj ≈ 1− 2σ∆qj + 2σ2∆q2
j (8.26)

and

cos∆θj ≈ 1− 1

2
∆θ2

j +
1

24
∆θ4

j , (8.27)
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then inserting this in (8.25) one find that

PN
E (~rf , ~ri;S) =

1√
sinθ0sinθN

limN→∞

+∞∑
kj=−∞

eik(φN−φ0)

2π

∫ N∏
j=1

(
µ

2πi~εs

)
N∏
j=1

(1 + Cmes)
N∏
j=2

d∆σqjd∆θjexp
( i
~
µ

2εs
(1 + (1− 2σ∆qj + 2σ2∆q2

j+

− 4

3
σ3∆q3

j +
2

3
σ4∆q

4

j )− 2(1− σ∆qj +
1

2
σ2∆q2

j+

− 1

6
σ3∆q3

j +
1

24
σ4∆q4

j )(1−
1

2
∆θ2

j +
1

24
∆θ4

j )+

− (
eq

eσqj
− E)εse

2σqj − ~2εs
2µsinθjsinθj−1

((k +
eg

~c
(α + βcosθj+

+ γcos2θj))
2 − 1/4))

)
, (8.28)

where

Cmes = −2σ∆qj + 2σ2δq2
j . (8.29)

Taking into account all contributions up to first order in εs, the promotor (8.22)

can be put in the form

PN
E (~rf , ~ri;S) =

1√
sin(θ0)sinθN

limN→∞

+∞∑
kj=−∞

eik(φN−φ0)

2π

∫ N∏
j=1

(
µ

2πi~εs

)
N∏
j=1

(1 + Cmes)
N∏
j=2

d∆σqjd∆θjexp
( i
~

(
µ

2εs
(σ2∆q2

j + ∆θ2
j ) + ∆ANE+

− (
eq

eσqj
− E)εse

2σqj − ~2εs
2µsinθjsinθj−1

((k +
eg

~c
(α + βcosθj+

+ γcos2θj))
2 − 1/4))

)
, (8.30)

where ∆ANE represent the correction terms which is

∆ANE =
µ

2εs

(
−σ3∆q3

j − σ∆qj∆θ
2
j −

1

12
∆θ4

j +
7

12
σ4∆q4

j +
1

2
σ2∆q2

j∆θ
2
j

)
, (8.31)

and the exponent of it will be

exp(
i

~
∆ANE ) ≈ 1 +

i

~
∆ANE −

1

2~2
(∆ANE )2, (8.32)
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which leads

PN
E (~rf , ~ri;S) =

1√
sinθ0sinθN

limN→∞

+∞∑
kj=−∞

eik(φN−φ0)

2π

∫ N∏
j=1

(
µ

2πi~εs

)
N∏
j=1

(1 + CT )
N∏
j=2

d∆σqjd∆θjexp
( i
~

(
µ

2εs
(σ2∆q2

j + ∆θ2
j )+

− (
eq

eσqj
− E)εse

2σqj − ~2εs
2µsinθjsinθj−1

((k +
eg

~c
(α + βcosθj+

+ γcos2θj))
2 − 1/4))

)
, (8.33)

where CT is the total correction given by

CT =
i

~
∆ANE −

1

2~2
(∆ANE )2 + Cmes(1 +

i

~
∆ANE )

=
i

~
∆ANE −

µ2

8ε2s~2
(σ6∆q6

j + 2σ4∆q4
j∆θ

2
j + σ2∆q2

j∆θ
4
j ) + Cmes+

+ 2
µ2

2εs
(σ4∆q4

j + σ2∆q2
j∆θ

2
j ). (8.34)

To simplify this expression of path integration we will use the procedure given by

McLaughlin-Shulman [21]. Using the integral∫ ∞
0

x2nexp(−αx2)dx =
(2n− 1)!!

2n+1αn

√
π

α
. (8.35)

This will lead to a pure quantum effective potential by simply making the substi-

tutions:

∆q2
j →

i~εs
σ2µ

, ∆θ2
j →

i~εs
µ
, ∆q4

j → 3

(
i~εs
σ2µ

)2

, ∆θ4
j → 3

(
i~εs
µ

)2

∆q2
j∆θ

2
j →

(
i~εs
σµ

)2

, ∆q2
j∆θ

4
j →

3

σ2

(
i~εs
µ

)3

, ∆q4
j∆θ

2
j →

3

σ4

(
i~εs
µ

)3

,

∆q6
j → 15

(
i~εs
σ2µ

)3

. (8.36)
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and the contribution of the impair terms is 0. By replacing that in (8.33) one

would find that Ctot = 0, which means that PN
E (~rf , ~ri;S) will be

PN
E (~rf , ~ri;S) =

1√
sinθ0sinθN

limN→∞

+∞∑
k=−∞

eik(φN−φ0)

2π

∫ N∏
j=1

(
µ

2πi~εs

)
N∏
j=2

d∆σqjd∆θjexp
( i
~

(
µ

2εs
(σ2∆q2

j + ∆θ2
j )− (

eq

eσqj
− E)εse

2σqj+

− ~2εs
2µsin2θj

((k +
eg

~c
(α + βcosθj + γcos2θj))

2 − 1/4))
)

=
1

σ

1√
sinθ0sinθN

limN→∞

+∞∑
k=−∞

eik(φN−φ0)

2π

∫ N∏
j=1

(
µσ

2πi~εs

)
N−1∏
j=1

dqjdθjexp
( i
~

(
µ

2εs
(σ2∆q2

j + ∆θ2
j )− (

eq

eσqj
− E)εse

2σqj+

− ~2εs
2µsin2θj

((k +
eg

~c
(α + βcosθj + γcos2θj))

2 − 1/4))
)

=limN→∞

+∞∑
k=−∞

eik(φN−φ0)

2π
PN
E (qf , qi;S)PN

E (θf , θi;S) (8.37)

with

PN
E (qf , qi;S) =

1

σ

∫ N∏
j=1

(
µσ2

2πi~εs

)1/2 N−1∏
j=1

dqjexp
( i
~

(
µσ2

2εs
∆q2

j − (
eq

eσqj
− E)εse

2σqj
)

(8.38)

and

PN
E (θf , θi;S) =

1√
sinθ0sinθN

∫ N∏
j=1

(
µ

2πi~εs

)1/2 N−1∏
j=1

dθjexp
( i
~

(
µ

2εs
∆θ2

j+

− ~2εs
2µsin2θj

((k +
eg

~c
(α + βcosθj + γcos2θj))

2 − 1/4))
)

=
1√

sinθ0sinθN

∫ N∏
j=1

(
µ

2πi~εs

)1/2 N−1∏
j=1

dθjexp
( i
~

(
µ

2εs
∆θ2

j+

− ~2ε

8mr̃2
j

(
ν

sin2(
θ̃j
2

)
+

κ

cos2(
θ̃j
2

)
))
)

(8.39)

With ν = k2− 1
4

+ 2keg
~c (α+ β + γ) +

(
eg
~c

)2
(α+ β + γ)2, and κ = k2− 1

4
+ 2keg

~c (α−
β) +

(
eg
~c

)2
(α− β)2.

It is obvious that the kernel PN
E (qf , qi;S) describes the motion of a particle with



Chapter 9. Charged particle in a field of Dayon 73

mass µσ2 subjected to Morse like potential(MP) which has been solved by different

methods[23,53].

Then, after taking the Fourier transform of the kernel (8.38)

PN
E (qf , qi;S) =

∫
dEM
2π

exp(− i
~
EMS)GMP , (8.40)

we obtain the familiar result expressed in term of the standard Whittaker functions

GMP =

(
4

σ2~2ω2eσ(qf+qi)

)1/2 Γ(λ−p+1
2

)

Γ(λ+ 1)
Mp/2,λ/2(µσ2ω~−1eσqf/2)

Wp/2,λ/2(µσ2ω~−1eσqi/2), (8.41)

where λ2 = −(8µ/~2)EM , ω = [8(−E)/µσ4]1/2, p = −4eq/σ2~ω.

On the other hand, the path integral(8.39) is recognized as the propagator for

particle of mass µ in Pöschl-Teller potential which has spectral representation in

terms of the associated Legendre polynomials Pnθ(cosθ) [22]

PN
E (θf , θi;S) =

∑
nθ

e−
i
~EnθSϕ∗k,nθ(θi)ϕk,nθ(θf ), (8.42)

where ϕk,nθ(θ) is the angular wave function and are of the form

ϕk,nθ(θ) = Ck,nθsin(θ)
1
4

√
1+4νcos(θ)

1
4

√
1+4κ+1/2P

( 1
4

√
1+4ν, 1

4

√
1+4κ)

nθ (cos(θ)), (8.43)

with the normalization constants

Ck,nθ =

√√√√√23/2
nθ

√
mEnθ
~ Γ(

√
mEnθ
~ − nθ)

Γ(

√
mEnθ
~ − nθ − 1

4

√
1 + 4ν)Γ(

√
mEnθ
~ − nθ − 1

4

√
1 + 4κ)

, (8.44)

and the following formula for energy spectrum

Enθ =
~2

4µ
(8nθ + 2

√
4κ+ 1 +

√
4ν + 1 + 4)2. (8.45)
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After (8.40) and (8.42) are substituted in (8.37) the Green’s function (8.8) relative

to out problem is found to be

G(~rf , ~ri;E) =
+∞∑

k=−∞

eik(φN−φ0)

2π

∫ ∞
0

dS

∫
dEM
2π

exp(− i
~

(EM + Enθ)S)

(
4

σ2~2ω2eσ(qf+qi)

)1/2 Γ(λ−p+1
2

)

Γ(λ+ 1)
Mp/2,λ/2(µσ2ω~−1eσqf/2)

Wp/2,λ/2(µσ2ω~−1eσqi/2)ϕ∗k,nθ(θi)ϕk,nθ(θf ). (8.46)

8.2 Energy spectrum and wave functions

In order to determine the bound states energy levels of the system and its cor-

responding wave functions, we perform the integration with respect to S and

EMsuccessively. After some straightforward calculation, we easily get the final

expression for the Green’s function.

G(~rf , ~ri;E) =

(
4

σ2~2ω2eσ(qf+qi)

)1/2 Γ(λ−p+1
2

)

Γ(λ+ 1)

+∞∑
k=−∞

eik(φN−φ0)

2π

Mp/2,λ/2(µσ2ω~−1eσqf/2)Wp/2,λ/2(µσ2ω~−1eσqi/2)ϕ∗k,nθ(θi)ϕk,nθ(θf ),

(8.47)

with λ2 = 2(8nθ +
√

4κ+ 1 +
√

4ν + 1 + 4)2.

The energy spectrum and the wave functions can be obtained from the poles and

from the residues of the Green’s function (8.46),respectively. These poles occur

when the argument of the Gamma function in the numerator in negative integer

n or

λ− p+ 1

2
= −n n = 0, 1, 2.... (8.48)

after solving this equation with respect to E we find the following formula for the

energy levels

En =
−2µe2q2/~2

(2n+ 1 + λ)2
. (8.49)
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From the residues of the function G(~rf , ~ri;E) at E = En, we can write the nor-

malized wave functions as

ψn(~r) =

(
µσ2ω

2π~

)1/2
√

Γ(p− n)√
n!Γ(p− 2n)

eikφϕk,nθ(θ)M p
2
, p−1

2
−1(

µσ2

~
ωeσq). (8.50)

We notice that the wave function ψn(~r) is single valued. Moreover, the vector

potential ~A = gα+βcos(θ)+γcos2(θ/2)
rsin(θ)

has a singularity at θ = π. This can be avoided

by making the change θ = θ + π. Then we will have another vector potential ~̃A

which is singular at θ = 0, such that

~̃A = −gα− βcos(θ) + γsin2(θ/2)

rsin(θ)
(8.51)

The corresponding Green’s function G̃(~rf , ~ri;E) will differ form the obtained one

(8.46) just by the phase exp(i∇( ~A − ~̃A)) = exp(ie g
c~(2α + γ)(φf − φi)). In other

words, the wave functions will differ from the old ones (8.50) by the phase factor

exp( ieq
c~ (2α + γ) φ). The wave function will be single valued before and after the

transformation if and only if the following condition

e
g

c~
(2α + γ) = integer, (8.52)

is satisfied.

Since 2e g
c~ is integer [49], α + γ/2 should be an integer or half-integer.

8.3 Conclusion

In this research we calculated the path integral for an electrically charged parti-

cle in orbit around a dyon by connecting it to Morse potential and Pöschl-Teller

potentials problems.

We have given a parametric form to the vector potential associated with the mag-

netic charge.

We have shown that the Green’s function can be simply and naturally constructed

in spherical coordinates with the post-point consideration.

As we have seen, after we have applied a coordinate transformation to Lagrangian

path integral we have suitably chosen regulating functions so that the Green’s

function has become entirely defined by a stable promotor. Then we have exactly
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extracted the bound states energies and the corresponding wave function.

Compared to the methods given in Refs.[51,52], it seems to us that our method

leads most directly to exact solution without any need for cumbersome artifices

and the advantage to significantly simplify the calculation and avoid the prolifer-

ation of unnecessary detail.

For the set of parameters (α = 1, β = −1 and γ = 0), the obtained energy spec-

trum agrees with the result of the Refs. [51,52] which proves that our extended

result is without doubt the correct propagator for a charged particle moving in

the field od dyon.



Conclusion

We have presented a new description of non-relativistic quantum systems according

to the Feynman path integral formalism. And we have shown that the path integral

can be put under two explicit notions. The first called the Hamiltonian form (the

integral path in the phase space), and the second is the Lagrangian form.

The study of harmonic oscillators with time-dependent mass has assumed in the

second chapter and we have used space-time transformations in the phase and

configuration spaces to treat the problem and find the exact propagators of new

generalized examples.

We have studied a general model of explicitly time-dependent quantum prob-

lems by path integrals using some time-dependent transformations. The problem

treated in both configuration and phase space, we used space-time transformations

in configuration space and point canonical transformations in phase space, that

leads to considerable simplification in computation and gives unambiguous results

in comparison with already existing methods.

Using the space-time transformations to path integral we were able to exactly solve

the problem of a particle with the exponentially time-dependent mass subjected to

a Coulomb potential in two dimensions. We have also obtained the corresponding

eigenfunctions and energy spectrum. The problem can be evaluated in three di-

mensions following the same way done here, and an extra phase term will appear

in the wave functions.

We considered in the phase space the path integral with position-dependent mass

and time-dependent potential and we reduced it to that of constant mass and sta-

tionary potential, simply by using explicitly time-dependent canonical transforma-

tion and appropriate time transformations. The general form of the propagator is

77
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given and closed expressions are deduced for tow specific mass functions of parti-

cles moving in familiar physical potentials, together with their energy spectra and

corresponding wave functions.

The problem of a particle in an infinite square well with some chosen potentials

was solved also, where we used a point canonical transformation to relate the

problem to another one that has an exact solution, for many cases. Using the

Schrödinger equation it may be difficult to find the solution for each case, but via

path integral technique we were able to find the exact propagators.

Lastly, we calculated the path integral for an electrically charged particle in orbit

around a dyon by connecting it to Morse and Pöschl-Teller potentials problems.

We have given a parametric form to the vector potential associated with the mag-

netic charge. We have shown that the Green’s function can be simply and naturally

constructed in spherical coordinates with the post-point consideration. We have

applied a coordinate transformation to Lagrangian path integral where we have

suitably chosen regulating functions so that the Green’s function has become en-

tirely defined by a stable promotor. Then we have exactly extracted the energies

of the bound states and the corresponding wave functions.

In future work, we will use path integral technique to solve more problems and

even use it to build some artificial intelligence models.



79



Bibliography

[1] R. K Colegrave and M. S. Abdalla, J. Phys A. 14, 2269(1981)

[2] B. K. Berger, Phys. Rev D.12, 368(1975)

[3] L. S. Brown, Phys. Rev lett. 66 527 (1991)

[4] Y. Ben-Aryeh and A. Monn, Phys. Rev lett. 54, 1020 (1985).

[5] R. K.Colegrave and M. S. Abdalla, Opt. Acta 30, 861(1983); 28, 495(1981).

[6] D. C. Khandekar, S. V. Lawand and K. V. Bhagwat, path integral method and

their applications, (World Scientific, Singapore, 1990).

[7] M. Sabir, S. Rajagopalan, Pramana J. Phys 37, 253(1991).

[8] H. R. Lewis, W. B. Riesenfeld, J. Math. Phys. 10, 1458(1969).

[9] C. I. Im, T.F. George, L. N. Pandey, K. H. Yeon, D. H. Kim, Phys. Rev A 55,

4023(1997).

[10] A. B. Nassar, J. M. F. Bassalo, H. S. Antunes Neto and P de T Santos

Alencar, J.Phys A, Math .Gen. 19, 891(1986).

[11] B. K. Cheng, Phys. Lett A 101, 464(1983).

[12] R. Cordero-Soto, E. Suazo and S. K. Suslov, Quantum integrals of motion

for variable quadratic Hamiltonians, to appear in Annals of Physics, see also

arXiv:0912.4900v8 [math-ph] 31 Jan 2010.

[13] D. McLaughlin and L.S. Schulman, J. Math. Phys. 12, 2520(1971).

[14] S. Pepre et al, ScienceAsia 32, 173(2006)

[15] H. Sobhani, H. Hassanabadi, Int. J. Mod. Phys. E 25, 1650073 (2016)

80



Bibliography. Bibliography 81

[16] H. Sobhani, H. Hassanabadi, Journal of the Korean Physical Society 71,

8(2017).

[17] C. Grosche, Phys. Rev. Lett A, 8, 151(1990).

[18] H. Sobhani, H. Hassanabadi, V. Davydov, Phys. Lett B 760, 1(2016).

[19] B. Bentag, L, Chetouani, Czech. J. Phys 50, 593(2000).

[20] V.V.Dodonov, V.I.Man’ko, D.E.Nikonov, Phys.Lett. A 162, 359(1992).

[21] D. McLaughlin and L.S. Schulman, J. Math. Phys. 12, 2520 (1971).

[22] S. Haouat, Commun. Theor. Phys. 58, 12(2012).

[23] A. Inomata, H. Kuratsuji and C. C. Gerry, Path Integrals and Coherent States

of SU(2) and SU(1, 1) (World Scientific, Singapore,1992).

[24] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,

(Academic Press, New York, 1979).

[25] A. De Souza Dutra and C.A.S. Almeida Phys. Lett. A 275, 25(200).

[26] B. Roy and P. Roy J. Phys. A: Math. Gen. 35, 3961(2002).

[27] Ko R Koca and E. Korcuk J. Phys. A: Math. Gen.35, 527(2002).

[28] B. Gonul, O. Ozer and F. Uzgum, Mod. Phys. Lett. A 17, 2453(2002).

[29] A.D. Alhaidari, Int. J. Theor. Phys. 42, 2999(2003).

[30] B. Bagchi , P. Gorain P, C. Quesne and R. Roychoudhury Mod. Phys. Lett.

A 19, 2765(2004).

[31] C. Quesne and V.M. Tkachuk, J. Phys. A: Math. Gen. 37, 4267(2004)

[32] C. Quesne, Ann. Phys. (NY) 321, 1221(2006)

[33] A. Puente and M. Casas, Comput. Mater Sci. 2, 441(1994)

[34] G. Bastard Wave Mechanics Applied to Semiconductor Heterostructures ( Les

Ulis Cedex, France : Les Editions de Physique ; New York, N.Y. )(1988)

[35] L.I. Serra and E. Lipparini , Europhys. Lett. 40, 667(1997)



Bibliography. Bibliography 82

[36] F. Arias de Saaverda , J. Boronat , Polls A and Fabrocini A Phys. Rev. B 50,

4248(1994).

[37] A. Puente , L.I. Serra and M. Casas Z. Phys. D 31, 283(1994).

[38] A. Bhattacharjie , E.C.G.Sudarshan, Nuovo Cimento 25, 864(1992).

[39] G.A. Natanzon, Theoret. and Math. Phys 38, 146(1979).

[40] G. Levai J. Phys. A: Math. Gen. 22, 689(1989).

[41] Y. Alhassid, F. Gursey and F. Iachello, Ann. Physics 167, 181(1986).

[42] J. Wu . and Y. Alhassid, J. Math. Phys 31, 557(1990).

[43] M.J. Engleeld and C. Quesne J. Phys. A: Math. Gen. 24, 3557(1991).

[44] C. Quesne, SIGMA 3, 067, 14 pages(2007)

[45] A. Anderson and S.B. Anderson, Annals of Physics 199, 155(1990).

[46] A. Inomata , H. Kuratsuji and C.C. Gerry, Path Integrals and Coherent States

of SU(2) and SU(1, 1) (World Scientific, Singapore, 1992).

[47] I. Sokman Phys. Lett A 106, 212(1984).

[48] K.P. Namik, I. Sokman, Phys. Lett. 132, 65(1988)

,

[49] M. Goodman, Am. J. Phys. 49, 9(1981)

[50] P. A. M. Dirac, Proc. Roy. Soc. London, A133, 60(1931) ; Phys. Rev., 74 ,

817(1948).

[51] J. Schwinger , Phys. Rev, 144, 1087(1966); 151 1055(1966); 165, 757(1969)

[52] C.Grosche, Phys Rev Lett A,8, 151(1990).

[53] L. Chetouani, L. Guechi, M. Letlout, Il Nouvo Cimento, 105 B, 387(1990).

[54] Kleinert H. Path Integrals in Quantum Mechanics, Statistics, Polymer

Physics, and Financial Markets. 3rd ed World Scientific; Singapore: (2004).

[55] R. P. Feynman and A.R. Hibbs, quantum Mechanics and Path integrals

(McGraw-Hill, 1965)



الكمومية       الحركات لدراسة المسالك تكامل استخدام

ملخص

قدمنا   .لقد لفيانمان            المسالك تكامل لتقنية ققا وف النسبية غير الكمومية للنظمة قدا جدي قفا وص
ذات              التوافقية المتذبذبات ذلك على وكمثال الزمن على المعتمدة النظمة يدراسة اهتممنا

قضا               أي ؛ الطور وفضاء الجداثيات فضاء الفضاءين كلى في الزمن على المعتمدة الكتلة
مع               الجسيم مشكلة حل من تمكنا ، والمكان الزمان في التحولت مع التقنية نفس باستخدام

بعدين            في كولومب لكمون تخضع التي ، الزمن على المعتمدة الكتلة

على             المعتمدة الكتلة ذات الجسيمات مشاكل حل من تمكنا ، القانوني التحول بفضل
كموني                بئر في المحصور الجسيم جملة وكذا المسالك تكامل تقنية عبر والزمن الموضع

المختارة   الكمونات وبعض

حول               مدار في قيا كهربائ مشحون لجسيم الناشر او النتقال احتمال سعة بحساب قمنا ، قرا أخي
تيلر                وبوشل مورس كموني في موجود بجسيم الخاص ذلك الى النظام تحويل طريق عن ديون

مفتاحية  المعتمدة:              كلمات النظمة ؛ الطور فضاء ؛ الحداثيات فضاء النتقال؛ احتمال سعة
؛                كولومب ؛كمون المسالك تكامل ؛ الزمن على المعتمد التوافقي المتذبذب ؛ الزمن على

أحادي               ؛ بالموضع المتعلقة الكتلة ؛ الموجة ودوال الطاقة طيف ؛ الزمن على المعتمدة الكتلة
المغناطيسي  القطب



Utilisation de l’intégrale de chemin dans l’étude des mouvements quantiques

RÉSUM É :

Cette thèse est consacrée à l'étude des systèmes quantiques non relativistes avec des coefficients
dépendant explicitement du temps et aussi dépendant de la position et du temps simultanément dans
le cadre du formalisme des intégrales de chemin de Feynman.

Nous  avons  présenté  une  méthode  systématique  pour  construire  le  propagateur  de  systèmes
dépendant du temps dans les espaces de configuration et de phase. Comme application, nous avons
considéré le problème de l'oscillateur harmonique dont la masse et la fréquence sont des fonctions
arbitraires  du  temps.  Le  traitement  a  été  basé  sur  l'utilisation  des  transformations  spatiales
explicitement dépendantes du temps ainsi que des transformations temporelles, qui permettent de
réduire le propagateur à celui dont la masse et la fréquence sont constantes. Nous avons illustré le
résultat général en choisissant des modèles de masse et de fréquence variables.

D'autre part, nous avons étendu la technique des transformations spatio-temporelles pour ramener le
problème  d'une  particule  avec   masse  dépendante  du  temps  se  déplaçant  dans  un  espace
bidimensionnel et  soumise au potentiel  de Coulomb plus un potentiel  quadratique inverse à un
problème stationnaire. Ensuite, les coordonnées polaires étaient adéquates pour évaluer la fonction
de Green et  déduire exactement les niveaux d'énergie du spectre discret  et  les fonctions d'onde
associées.

Nous nous sommes  également  intéressés  au  développement  d'une  procédure  systématique  pour
étudier l'intégrale du chemin unidimensionnel dans l'espace des phases pour une classe de masses
dépendant  de  la  position  et  du  temps  et  des  potentiels  dépendant  du  temps.  Grâce  à  une
transformation  canonique  explicitement  dépendante  du  temps,  nous  avons  pu  absorber  la
dépendance  temporelle  de  l'hamiltonien.  Comme  application,  nous  avons  considéré  deux
distributions de masse différentes, chacune associée à un potentiel choisi de sorte que l'intégrale de
chemin correspondant soit exactement résolue

Nous avons également obtenu des propagateurs exacts pour une particule confinée dans un puits
carré infini et soumise en outre à certains potentiels. La fonction de Green a été construite pour
chaque situation grâce à une transformation canonique ponctuelle appropriée.

Enfin, nous avons évalué l’intégrale de chemin pour une particule chargée électriquement sur une
orbite autour d'un dyon. Des fonctions régulatrices judicieuses ont permis d'exprimer le promoteur
comme un produit de deux noyaux partiels qui sont les problèmes des potentiels de Morse et de
Pöschl-Teller.

Mots-clés: Intégral  de  chemin;  Propagateur;  Espace  de  configuration;  Espace  des  phases;
Transformations canoniques; Transformations temporelles; Systèmes dépendant du temps; Masse
dépendante  du  temps;  Masse  dépendante  de  la  position;  Oscillateur  harmonique  dépendant  du
temps; Potentiel de Coulomb; Monopôle magnétique; Spectre d’énergie; Fonctions d'onde.



ABSTRACT:

This thesis is devoted to the study of non-relativistic quantum systems with explicitly time and
position-time dependent coefficients in the framework of the Feynman's path integrals formalism.

We have presented a systematic method for constructing the propagator of time-dependent systems
in  both  configuration  and  phase  spaces.  As  application,  we  have  considered  the  problem  of
harmonic oscillator with both mass and frequency being arbitrary functions of time. The treatment
has been based on the use of explicitly time-dependent coordinate transformations as well as of time
transformations, which permit to reduce the propagator to that with constant mass and frequency.
We have illustrated the general result by choosing some models of varying mass and frequency.

On the other hand, we have extended the space-time transformations technique to bring the problem
of  a  particle  with  time-dependent  mass  moving  in  two-  dimensional  space  and  subjected  to
Coulomb plus inverse quadratic potential  to a stationary problem. Then, polar coordinates were
adequate for evaluating the Green's function and exactly deducing the discrete spectrum energy
levels and the relating wave functions. 

We have been also interested in developing a systematic procedure to study one-dimensional path
integral in phase space for a class of position-time dependent masses and time dependent potentials.
Thanks to an explicitly time dependent canonical transformation, we have been able to absorb the
time  dependence  of  the  Hamiltonian.  As  application,  we  have  considered  two  different  mass
distributions each associated with a chosen potential so that the corresponding path integral have
been exactly solved.

We have also obtained exact propagators for a particle confined in infinite square well and further
subjected to some potentials. The Green's function have been constructed for each situation thanks
to an appropiate point canonical transformation.

Finally, we have found the path integral solution for an electrically charged particle in orbit around
a dyon. Judicious regulating functions have permitted to express the promotor as a product of two
partial kernels that are the problems of Morse and Pöschl-Teller potentials.

Keywords:  Path  integral;  Propagator;  Configuration  space;  Phase  space;  Canonical
transformations; Time transformations; Time-dependent systems; Time-dependent mass; Position-
dependent  mass;  Time-dependent  harmonic  oscillator;  Coulomb  potential;  Magnetic  monopole;
Energy spectrum; Wave functions.
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