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Acknowledgements

My gratitude for five years of friendship, clear thinking and fun to explore and

learn together: To my supervisor Noureddine Mebarki and my fellow students.

Vivid discussions have nourished my work. Special thanks to my supervisor (for

improving my English), to K. Ait Moussa, H. Aissaoui and A. Bouchared.

Foremost, I thank my family, my parents to whom I dedicate this thesis.

i



Contents

Acknowledgements i

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1

2 Loop gravity 5

2.1 The Group of Loops . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Infinitesimal Generators of the Group of Loops . . . . . . . . . . . 6

2.2.1 Loop Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Loop structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Spin Network States . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Spinfoam 12

3.1 3 dimensional Euclidean gravity . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Kinematical Hilbert space . . . . . . . . . . . . . . . . . . . 12

3.1.2 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 4 dimensional Lorentzian gravity . . . . . . . . . . . . . . . . . . . 15

3.2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.4 Transition amplitudes . . . . . . . . . . . . . . . . . . . . . 17

4 Length of Space Quantization 18

4.1 Biancki’s quantization of the length of space . . . . . . . . . . . . . 18

4.1.1 Construction of the length operator . . . . . . . . . . . . . . 19

4.1.2 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . 19

ii



Contents iii

4.1.3 External Regularization: the Two-Hand Operator . . . . . . 20

4.2 Thiemann’s quantization of the length of space . . . . . . . . . . . . 21

4.2.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.2 The Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Ma’s quantization of the length of space . . . . . . . . . . . . . . . 23

4.4 Semiclassical Quantization of the Length of Space . . . . . . . . . . 24

4.4.1 Tetrahedra Space of Shapes . . . . . . . . . . . . . . . . . . 24

4.4.2 The Length of Space Quantization . . . . . . . . . . . . . . 25

4.4.2.1 The volume of space quantization . . . . . . . . . . 25

4.4.2.2 The angle of space quantization . . . . . . . . . . . 26

4.4.2.3 The length of space quantization . . . . . . . . . . 27

5 The quantum polyhedra 29

5.1 The phase space of polyhedra . . . . . . . . . . . . . . . . . . . . . 29

5.2 Polyhedra from areas and normals . . . . . . . . . . . . . . . . . . . 31

5.3 Relation to loop quantum gravity . . . . . . . . . . . . . . . . . . . 31

5.4 The quantum tetrahedron . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Bohr-Sommerfeld quantization . . . . . . . . . . . . . . . . . . . . . 32

5.5.1 Old quantum theory . . . . . . . . . . . . . . . . . . . . . . 32

5.5.2 Heisenberg Representation . . . . . . . . . . . . . . . . . . . 33

5.5.2.1 Mathematical derivation . . . . . . . . . . . . . . . 33

5.5.2.2 Matrix mechanics . . . . . . . . . . . . . . . . . . . 34

5.5.3 Canonical commutation relations . . . . . . . . . . . . . . . 36

5.5.3.1 Transformation theory . . . . . . . . . . . . . . . . 36

5.5.4 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 The Quantum Trihedron . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6.1 The Areas and Volume of Tetrahedron as Boundaries and
Bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6.2 The Quantization . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6.3 The first strategy . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6.4 The second strategy . . . . . . . . . . . . . . . . . . . . . . 43

5.7 The quantum Trihedron: Generalization . . . . . . . . . . . . . . . 44

6 The Complete Spectrum of the Volume of Space from Bohr-
Sommerfeld Quantization 46

6.1 The Quantum Polyhedron: The volume Spectrum . . . . . . . . . . 46

6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 The three valent node H3 :trihedron . . . . . . . . . . . . . 48

6.2.2 The four valent node H4 : tetrahedron . . . . . . . . . . . . 48

6.2.3 The five valent node H5 : pentahedron . . . . . . . . . . . . 49

6.2.3.1 The chaotic behavior . . . . . . . . . . . . . . . . . 50

7 The Quantum Pentahedra 51

7.1 The Haggard’s Rescaling Reconstruction . . . . . . . . . . . . . . . 51

7.2 An alternative approach to the pentahedron volume . . . . . . . . . 52



Contents iv

7.3 The physical interpretation . . . . . . . . . . . . . . . . . . . . . . . 54

8 Regge and Twisted Geometries in Loop Gravity 56

8.1 Regge and twisted geometries . . . . . . . . . . . . . . . . . . . . . 56

8.2 Twisted Geometries from Holonomy-Flux variables computation . . 58

9 Regge and Twisted Geometries in Schwarzschild Spacetime 62

9.1 The quantum Schwarzschild spacetime . . . . . . . . . . . . . . . . 62

10 Space Density from Loop gravity 67

10.1 Space Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10.2 Gravity as Mass Defect . . . . . . . . . . . . . . . . . . . . . . . . . 70

10.2.1 Gravity Force . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.2.2 Gravitational Potential Energy . . . . . . . . . . . . . . . . 72

11 Conclusion 74

11.1 Summary of the Key Results . . . . . . . . . . . . . . . . . . . . . . 74

11.2 Future Research Interests . . . . . . . . . . . . . . . . . . . . . . . 75

A The SL(2, C) representations 77

Bibliography 79
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Chapter 1

Introduction

During the last years, a remarkable interest to loop quantum gravity has been

devoted [1–4]. The discreteness of space quantities (area, volume, length and

angle) has been the most fundamental result of the theory [5–16]. The main

virtue of the theory lies in the fact that it starts from general theory of relativity

via canonical, covariant [17–26] and geometrical [27–35] approaches to end up with

same results.

The canonical approach was the first step in developing this new quantum theory

of gravity. Within it, several works have been developed starting from the Ashtekar

paper of Ref. [36] with imaginary connection (later, the connection was modified to

be real variant, see for instant Refs. [37, 38]) which led to the solution of Wheeler-

DeWitt equation [39] as Wilson loops. This had been the fertile ground for Rovelli

and Smolin to find the loops representation [40]. The theory then has become well

defined especially after introducing d0 measure (which is diffeomorphism invariant)

by Ashtekar and at. el. [41, 42]. This construction led immediately to the expected

results which are the discreteness of area and volume [43]. Despite all of these

developments, the Hamiltonian constraints still having difficulties until the papers

by Thiemann of Refs. [44–46]. In the practical dealing point of view, the theory

(via the framework of Ref. [47]) reproduces the entropy of black holes, see for

instance Ref. [48].

In the covariant approach, several models have been assumed starting from the

model by Barrett–Crane of Ref. [49], that has been further motivated by Baez in

Ref. [50]. In fact, this model was the expected result after the paper by Barbieri of

Ref. [51] and its generalization demonstrated in Ref. [52]. The most well-known

1



Chapter 1. Introduction 2

model is that by The Engle–Pereira–Rovelli–Livine (EPRL) in which the basic

idea has been that one has to relax the imposition of the Plebanski constraints

that reduce BF theory to general relativity (imposing the constraints weakly).

Another model which reproduces the results of the above model in some limits

has been given by Freidel–Krasnov (FK) in Ref. [53]. In the latter, the coherent

state representation has been used as a main technical tool. Other models have

been explored and introduced. I refer, for a detailed overview on these models, to

Ref. [54].

In the geometric approach, the research started considerably with the paper by

Bianchi and et. al. -polyhedron in loop gravity- of Ref. [27]. A remarkable paper

which motivated the search very much in the field of the quantum Polyhedra has

been the one by Bianchi and Hall Haggard of Ref. [28] on the discreteness of the

volume o space in which the authors provide an explicit semi-classically compu-

tation of the volume of space. The authors showed a remarkable compatibility, in

the results, with the canonical derivation of the spectrum of the volume of space

studied in Ref. [11].

This thesis is organized as follows:

• In chapter 2, we summarize the fundamental structure of the theory in a

quick brief overview in which we fix the notation and the reader makes him-

self familiar with the notions and definitions. We start by investigating the

main problems and their solutions by the loops representations (according to

the paper by Rovelli and Smolin). We give in addition a simple description

about the loop algebra in order that the mathematical part of the theory

gets an easy access for the reader.

• In chapter 3, the covariant formulation of the theory is explored and stud-

ied in an easy way close to the usual language considered often in the loop

gravity lectures. We take the two cases: (a) the three Euclidean dimensional

quantum gravity in which we compute the amplitude and give the variables

that reproduce it; (b) we also study the four dimensional case and the corre-

sponding amplitude. This chapter is not explored in enough details in order

to be readable for a beginner reader. We refer to Refs. [1, 2] for more de-

tails in which the authors provide a complete derivation in an easy way and

accessible for all.
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• In chapter 4, the length of space quantization is addressed. We summarize

the current searches on the field in the context of the three papers of Refs.

[55–57]. The semi-classical study of the length of space quantization has not

been considered in the literature yet (up the work done by us of Ref. [58]),

we therefore demonstrate our contribution on the field. In this contribution,

we compare the results obtained by us with those found canonically.

• In chapter 5, the quantum Polyhedra is investigated. We give an intro-

ductory overview to the field and its relation with loop gravity. As our

quantization is rather semi-classical based essentially on the arguments by

Bohr and Summerfield (Bohr Summerfield quantization condition), we give

an overview about the old quantum theory in order that the thesis be self-

contained as much as possible . Then, we describe our contribution in the

field, the quantum trihedron shown in Refs. [59, 60] and its generalization.

• In chapter 6, we give a generalization to the work done in Ref. [27] which

has been explored in Ref. [61]. The study aims at completing the derivation

of the discreteness of the volume of space and its spectrum for any node

Hilbert with arbitrary valency.

• In chapter 7, we study the quantum pentahedron [62], a new proposed model

for the quantum pentahedral volume. We give a nice representation for

the atoms of space (tetrahedron and pentahedron). The volume spectrum

proposed for the quantum polyhedron is compared with the one found by

Hall Haggard.

• In chapter 8, we investigate the generalization [63] of the word done by

Rovelli and et al. to the case of twisted truncation of general relativity.

In Rovelli’s paper, the truncation is supposed to be the Regge one, our

truncation is taken more generally, twisted truncation, where graphs present

polyhedral structure in which the areas connecting tetrahedra do not define

the same configuration.

• In chapter 9, we address the discretization of the Schwarzschild spacetime

graph [64]. The method adopted in this work is the idea, concluded in loop

gravity, that the areas variables are the natural variables in describing the

structure of spacetime. The results found open new trends in studying the

quantum spacetime according to the concluded general visualization about

the gravity effects on a test particle.
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• The results obtained in chapter 9 lead to introduce a new quantity, in chapter

10, called space density [65]. This quantity plays the same role as the one

in the usual density known in ordinary matter. This new quantity leads

to new avenues since the results already understood in ordinary matter can

be explored and studied to discover new properties about the spacetime

structure.



Chapter 2

Loop gravity

The starting point in the canonical construction (or generally, in loop gravity) is

general relativity formulated in terms of sen-Ashtekar-Barbaro connection [66, 67]

in which SU(2) connections Aia(x) can be complex or real. In literature, the real

connection approach is more used because of its simplicity.

Let us consider a three dimensional initial hypersurface data manifold M without

boundaries, the SU(2) connections Aia(x) and the vector density Ei
a(x). The

indices i, j, . . . refer to locality and a, b, . . . to the general curved spatial coordinates

x. The quantities Ei
a(x) are related to the metric of space via ggab = Ea

i E
b
i where

g = det gab and

Aia(x) = Γia(x) + γkia(x) (2.1)

such that the triads {eib(x)} satisfy ∂[ae
i
b](x) = Γi[a(x)eb]j(x). The quantities Γia(x)

and kia(x) called spin connection and extrinsic curvature respectively. The quantity

γ called immirzi parameter. Picking up a value for it amounts to pick up a model,

e.g. the choice γ = 1 corresponds to Euclidean Hamiltonian constraints and

γ =
√
−1 corresponds to the Lorentezian Hamiltonian constraints. However,

this constant has been fixed in order that the Bekenstein-Hawking formula is

reproduced [68, 69].

5



Chapter 2. Loop gravity 6

2.1 The Group of Loops

Let M be a manifold, in which we consider the embedded piecewise smooth and

continuous curve p defined via the map

p : [0, s1] ∪ [s1, s2] . . . [sn−1, 1]→M. (2.2)

The composition of two curves p1 and p2 can be symbolized as p1op2. The inverse

of a curve p is symbolized via p−1(s) := p(1− s). The strategy in doing so is that

(as convention) the interval is always has to be defined in a length of interval that

equals to the unity. Let us now consider a closed curve L0 and the lie algebra-

valued one form Aa on M . The parallel transport along Lo is given by a quantity

called holonomy which takes the definition

HA(l) = P exp

{∫
l

Aa(y)dya
}
. (2.3)

This holonomy has some properties:

1. it takes the simple definition: l̂(1) = HA(l)l̂(0); where the hat ˆ refers to

lifting the curve L0 to the principle fiber bundle P (M,G) of the group G;

2. it is defined as the product of holonomies once we have successive curves

composition. For the case of two curves l1 and l2 we have: HA(l1ol2) =

HA(l1)HA(l2)

3. it transforms once the points at which the curves get closed (on P (M,G))

transform by a group element g of G via the relation: H́A(l) = g−1HA(l)g.

2.2 Infinitesimal Generators of the Group of Loops

We denote by L0 the set of loops with the composition operation o. Let us first

talk a little about the notion of continuity, which can be defined for L0 as follows:

for any two loops α and β we guaranty that these loops are closed iff there are two

curves a ∈ α and b ∈ β such that a belongs to the neighbor Uε(β) of β. The notion

of continuity leads naturally to the notion of derivative or loop derivative. This

leads to the notion of the infinitesimal change in performing the parallel transport

along a loop γ once this loop is deformed by an infinitesimal loop δγ.
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The infinitesimal loop introduced here is defined via the map πxo where o refers to

the base-point of γ and x refers to the base-point of δγ. It encircles, in addition,

an infinitesimal area defined by two unit vectors u and v. We suppose that we

have functions Ψ(δγ, γ, πxo ) depend on these infinitesimal variations. We attempt

to study the Taylor expansion of them. It is natural that for the case of two dimen-

sional perturbation, the first term is given by a derivative of the two dimensional

expanded functions multiplied with two differential form. This can be given via

Ψ(δγ, γ, πxo ) =

(
1 +

1

2
σab∆ab

)
Ψ(δγ, γ, πxo )|o≈x (2.4)

such that σab = 2ε1ε2(u[avb]) where ε1 and ε2 are the infinitesimal displacement

towards u and v respectively. The quantity ∆ab called the derivative of the loop γ.

Furthermore, one can go further and compute the second derivative which takes

the form of a commutator of two areas elements, that is

Ψ(δγ1, δγ2, γ) =

(
1 +

1

4
σab1 σ

cd
2 [∆ab(π

x
o ),∆ab(π

y
o)]

)
Ψ(δγ1, δγ2, γ)|o≈(x,y) (2.5)

2.2.1 Loop Algebra

Let us consider a loop α in which we set n points s1, s2, s3, . . . , sn ∈ α. The parallel

transport along α called holonomy which is symbolized as Uα and can be defined

via

T [α] = −Tr [Uα] , (2.6)

T a [α] (s) = −Tr [Uα(s, s)Ea(s)] . (2.7)

For the partition with n points, the algebra read

T a1...an [α](s1, . . . , sn) = −Tr[Uα(s1, sn)Ean(sn)Uα(s1, sn) . . .Ea1(s1)]. (2.8)

where Ean(sn) = −iEa
i (x)σi and {σi} are the Pauli matrices. The holonomy Uα

has to satisfy the differential equation:

Uα(1, s) =
dαa(s)

ds
Aa(α(s))Uα(1, s) (2.9)
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where Aa = − i
2
Aia(x)σi, that is

Uα(s1, s2) = P exp

{∫ s2

s1

Aa(α(s))ds

}
. (2.10)

These called loop observables. Their phase space known phrased as the loop

algebra. Moreover, one can compute the the Poisson brackets between T [α] and

T a [α] (s) and get:

{T [α] , T a [α] (s)} = ∆a [α, β(s)]
[
T [α]β]− T

[
α]β−1

]]
(2.11)

where ∆a [α, β(s)] =
∫
dsdα(s)

ds
δ3(α(s), x) and α]β refers to the loop that is the

union of the two intersected loops α and β. The inverse β−1 refers to inverted

direction of the loop β (in performing the parallel transport).

2.3 Loop structure

In M , we consider the graph Γ with n links γ1, . . . , γn. Each links γi has a parallel

transport Uγi . Let us consider the functional f(U1(A), . . . , Un(A)) on SU(2)n. This

functional has to be defined with respect to the SU(2)n transformations. This sym-

metry introduces the notion of cylindrical functions, that is f(U1(A), . . . , Un(A))

has to be equivalent to a set of cylindrical functions ΨΓ,f (A), that is

ΨΓ,f (A) = f(U1(A), . . . , Un(A)). (2.12)

These functions are defined in a Hilbert space and they can be assigned to different

graphs by simply guaranty that the new graph Γ́ has no dependence on extra links

with respect to Γ. This allows to define the scalar product between any two

cylindrical functions f and h via〈
ΨΓ,f (A),ΨΓ́,h(A)

〉
=

∫
SU(2)n

dg1 . . . dgnf(g1 . . . gn)h(g1 . . . gn) (2.13)

such that dg is defined to be the Haar measure on SU(2). These functions are

integrable and they belong to a Hilbert space, which we denote as H.
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2.4 Spin Network States

The space H is defined to be the largest space with n capies of SU(2) subspaces.

So it is natural to think about the invariance at the point those subspaces are

intersected. This introduces a new subspace in H which can be denoted as H0

in which we introduce new orthonormal basis called spin network basis. The

normalized states in H are exactly the traces introduced above, that is

ψα(A) = TrUα(A). (2.14)

Generally (for a multiloop α), we write

ψα(A) = ψα1(A)× . . .× ψαn(A). (2.15)

This construction was the fist step in the loop gravity program, which was the key

to define in more concise and clear form the notion of spin network. For this let us

consider the graph Γ with links γi such that each link has a color which is, in fact,

an associating of an irreducible representation of SU(2) to that link. The result

for this is that we have assigned n SU(2) irreducible representations to n links

that construct the graph Γ. This is the first assignment. The second assignment

comes naturally by the virtue that the coupling of n irreducible representations

of SU(2) belongs to the subspace H0 which introduces the notion of intertwiners,

that is at each point of n SU(2) coupling irreducible representations we assign an

intertwiners coloring (intertwiners tensor).

Now, one can see that, for each graph (such as the one displayed in Fig. 2.1),

we have a coloring assignment (for the links) and an intertwiners assignment (for

the nodes at which the irreducible representations are coupled). This defines the

notion of spin network via the triple S = {Γ, ~s, ~v} where ~s refers to the n coloring

assignment, that is {si}, and ~v refers to the intertwiners.

2.4.1 Dynamics

The stage now is to solve the Hamiltonian constraints. The well known solution in

the literature is the one given by Thiemann [44–46]. The result in that construction

(for the Euclidean Hamiltonian Ĥ) is that the action of Ĥ on spin network state
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Figure 2.1: Spin network graph the corresponding dual picture

|s〉 takes the form

Ĥ |s〉 =
∑
i

∑
(IJ)

∑
ε=±1

∑
έ=±1

Aεέ(pi, . . . , pn)D̂i;(IJ),εέ |s〉 (2.16)

where i refers to the nodes of the s-knot s, (IJ) refer to couples of distinct links

at i and D̂i;(IJ),εέ is an operator acting on |s〉 as follows: it creates two additional

nodes on the two links (IJ) and a link of color equals to one relating the two new

nodes, also assigns the colors pi + ε and pj + έ to the links between the new nodes

and the old node on the which the action of Ĥ is considered. The coefficients

Aεέ(pi, . . . , pn) can be understood in further details reading, for instance, Ref. [1].

It is to be noted that the loop quantum gravity theory aims at studying the

quantum nature of spacetime, that is the spacetime itself. So it is expected that

the results of the quantization have to be about the discreteness of geometric

quantities such as area, volume, angle and length. In fact, in the literature the

spectra of those quantities have been found, discussed and investigated:

1. in Ref. [28], the discreteness of the area and volume of space have been

discovered. This work was the first result claiming the discreteness of the

space measures. In Ref. [11], the authors provided a general formula for the

area and volume of space using recoupling theory technology,

2. in [70, 71], the derivation of the area and volume discreteness have been

performed using connection formulation of quantum gravity. The results

match exactly the previous work by Rovelli and at. el.

3. in Ref. [13], the authors studied the Ashtekar’s volume derived in Ref. [71]

numerically and analytically.
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4. in Ref. [72], the derivation of the volume spectrum has been performed using

the discreetness of the length of space. The derivation is a little complicated

because of the complexity in computing the length spectrum, but it provides

new insights.



Chapter 3

Spinfoam

Spinfoam is the modern step achieved in the progress of the loop quantum gravity

program. It is investigated and well-studied in both three and four dimensional

quantum gravity. This step is the analogous of the Regge discretization of space.

However, there is a crucial difference between three and four dimensional theory of

gravity since the 3d theory does not have a local degrees of freedom whereas the 4d

theory is characterized by this property. In this chapter we study and summarize

the current trends of searches in this field by exploring the most attracting and

interesting results in the theory.

3.1 3 dimensional Euclidean gravity

3.1.1 Kinematical Hilbert space

The theory is defined by groups of elements SU(2) and the corresponding algebra

elements su(2). These variables satisfy the relation

[
Ul, L

i
ĺ

]
= i(8π~G)δlĺUlτ

i. (3.1)

Now, let us consider a graph with Γ with L links. In this subspace, the truncated

Hilbert space can be described via

HΓ = L2

[
SU(2)L

]
(3.2)

12
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Thus, one can consider an appropriate measure (the Haar measure) and define the

following scalar product:

〈ψ|ϕ〉 =

∫
SU(2)L

dUlψ(Ul)ϕ(Ul). (3.3)

3.1.2 Invariance

Now, let us turn back to the most important point in the theory: the invariance.

The above subspace has to be invariant under any symmetry, namely under general

gauge transformations elements at the corresponding node Hilbert space. This

consideration defines what is known as spin-network states.

Taking into account the invariance amounts to truncate the subspace that rep-

resents the invariant part under general gauge transformation which called inter-

winer. This subspace is symbolized by the notation.

KL = L2

[
SU(2)L/SU(2)N

]
L

(3.4)

Such that N is the number of nodes, L number of links and Γ is the graph under

study.

3.1.3 Basis

There is an important fact characterizing the above structure which is the fact

that the links of the graph are SU(2) rotation generators. This fact reminds us

with the theorem by Peter-Weyl, which states with the following orthogonality:

∫
dUDj́

ḿń(U)Dj
mn(U) =

1

dj
δj́jδḿmδńm. (3.5)

This relation is the direct consequences of the orthogonality pointed out above

and it plays a crucial role in what follows.

For trivalent node Hilbert space, one can see that the invariant part of the space

takes the form

L2

[
SU(2)L

]
= ⊕jl ⊗n InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3) (3.6)
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Such that

|j2 − j1| ≤ j3 ≤ |j2 + j1| . (3.7)

Using Wigner matrices, the states can be written via

ψ(Ul) =
∑
j1...jL
m1...mL
n1...nL

Cj1...jLm1...mLn1...nLD
jl
mlnl

(Ul) . . . D
jL
mLnL

(UL). (3.8)

For the case of three valent node Hilbert space, the function C = im1m2m3 (3jm

symbol). Generally, spin network states can be defined via the following relation:

ψ(Ul) = ⊗nin · ⊗lDjl
Ul
. (3.9)

3.1.4 Dynamics

In talking about dynamics we often mean transition amplitude which can be de-

fined after determining the boundaries. Let us consider the two complex deltas.

The notion of amplitude is taken from the notion of path integral introduced by

Feynman which gives the following formula

W∆(Ul) = N
∫
dUe

∫
dLf exp

i
8~πG

∑
f Tr[UfLf ] (3.10)

Where N stands for normalization. This formula can be simplified as

W∆(Ul) = N
∫
dUe

∏
f

δ(Uf ). (3.11)

Using the identity

δ(Uf ) =
∑
j

djD
(j)(U), (3.12)

one can show

W∆(Ul) = N
∫
dUe

∏
f

(∑
j

djD
(j)(U)

)
. (3.13)

For the case of tetrahedron, this formula reduces to

W∆(Ul) = N∆

∑
jf

∏
f

(−1)jfdjf
∏
V

(−1)jV {6j} . (3.14)
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This formula completes the covariant derivation.

3.2 4 dimensional Lorentzian gravity

Four dimensional Lorentzian gravity is the natural description of quantum gravity

since it represents the real word. The starting point is the Holst action which

takes the form

S[e, w] =

∫
e ∧ e ∧

(
∗+

1

γ

)
F (3.15)

such that the corresponding (to w) sl(2, C)−algebra valued two-form is given by

Π =
1

8πG

(
(e ∧ e) ∗+

1

γ
(e ∧ e)

)
, (3.16)

and e is the triads field.

3.2.1 Discretization

Let us consider a given triangulation delta of a region of space time (supposed

compact). As the case of three dimensional quantum gravity, 4-simplex is the

convex hull on four points in four dimensional Euclidean spaces. In the 3d case,

the boundaries are 2d areas (triangles). Here the boundaries (which bound the 4-

simplex, that is the pentahedron) are tetrahedra. The corresponding two-complex

∆∗ is defined as follows: at each vertex we consider a 4-simplex (pentahedron), at

each edge we consider a tetrahedron and at each face we consider a triangle.

3.2.2 Variables

We discretize the variables following the same procedure followed in the case of

three dimensional gravity. For this reason we associate SL(2, C) group element Ue

to each edge e of the two-complex and SL(2, C) group element Ue to each edge e

of the two-complex. The discrete version of this setting is defined via the following
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relations:

Ue = P exp
∫
e w ∈ SL(2, C), (3.17)

Bf =

∫
tf

B ∈ sl(2, C). (3.18)

3.2.3 States

• In defining the states, it will be of worth to give the simplicity constraints

which takes the crucial role in quantum theory of gravity in four dimensional

space. These constraints take the following formal form:

~K = γ~L, (3.19)

where ~K is defined to be the time component of the four dimensional electric

fields, ~L is the so(3) rotation generators and γ is the immirzi parameter.

• An important point to consider in this approach is what is known as the

Yγ map, which takes the following definition: the groups associated with

SL(2, C) belong to the Hilbert space V (p, k) of the (p, k) representation

which decomposes into the irreducible of the subgroup SU(2) ∈ SL(2, C) as

follows:

V p,k = ⊕∞j=kHj (3.20)

Such that we have

K2 − L2 = p2 − k2 + 1, ~K · ~L = pk. (3.21)

Using the simplicity constraint with the last equations one can get

p = γk (3.22)

k = j (3.23)

• So the sates of the theory are those of the form

|p, k, j,m〉 = |γj, j, j,m〉 . (3.24)
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Therefore, The above map can be written via

Yγ : L2 [SU(2)] 7−→ F [SL(2, C)] (3.25)∑
jmn

CjmnD
j
mn(h) 7−→

∑
jmn

CjmnD
γj,j
jmjn

(g) (3.26)

3.2.4 Transition amplitudes

We follow the same procedure as in the case of 3d gravity. In doing so one can get

the following formal form for the amplitude

W (hl) =

∫
SU(2)

dhV f
∏
f

δ(hf )
∏
V

AV (hV f ), (3.27)

which gives

AV (hV f ) =
∑
jf

∫
SL(2,C)

dǵV e
∏
f

(2jf + 1)Trjf

[
Y+
γ géVgVeYγhVf

]
. (3.28)

such that

Trjf

[
Y+
γ géVgVeYγhVf

]
=
∑
mn

Dγj,j
jm,jn(g)Dj

mn(h). (3.29)

This derivation completes the covariant formulation.



Chapter 4

Length of Space Quantization

The length of space quantization has been studied canonically through three pa-

pers: (a) the Thiemann’s length [55], (b) Biancki’s length [56] and (c) Ma’s length

[57]. The method of the derivation through the three papers is not the same due

to the different adopted regularization. Thiemann’s derivation characterized by its

simplicity and its direct spectrum computation. Bianchi spectrum is a little com-

plicated but has a very clear physical interpretation especially its compatibility

with the dual picture of geometry. Ma (and et. al.) derivation present a formula

in which new geometric quantities get arisen (the area of space quantization). In

addition, it provides two regularizations to end up with the same formula for the

length spectrum. Independently, A semiclassical computation of the length of

space is performed in Ref. [61]. The results have been compared with those found

canonically in Ref. [57]. In this chapter, we investigate the three derivations. We

finish the chapter by investigating our strategy in the semiclassical quantization

of the length of space.

4.1 Biancki’s quantization of the length of space

The starting point in the Bianchi construction is the dual picture of quantum

geometry. This picture is available due to the fact that both the area and volume

of space are of well known spectra. The point of interest noticed by Bianchi was

the fact that: a node connected to two other nodes identifies two surfaces which

intersect at a curve. The quantization of this curve was the task done by Bianchi.

18



Chapter 4. Length of Space Quantization 19

4.1.1 Construction of the length operator

Let consider a three initial data hypersurface Γ (fixed with respect to time) in

which we consider the embedded curve γ that is defined as

γ : [0, 1]→ Σs 7→ γa(s). (4.1)

A direct formula to compute the length of such curve can be given as

L (γ) =
∫ 1

0
ds
√
δilGi(s)Gl(s)

=
√

3
2

∫ 1

0
ds

√
δil

εijkεabcE
b
jE

c
kγ̇
a(s)εlmnεdefEemE

f
nγ̇d(s)

|εijkεabcEai EbjEck|

(4.2)

where γ̇d(s) = d
ds
γd(s) and Gi = eia (γa(s)) γ̇a corresponds to the pullback of

the triad on the curve. Dealing with this expression, one has to overcome two

difficulties: the huge kernel in the denominator and the non-polynomial function

of the electric field in the numerator. The Overcoming of these difficulties can

be achieved using the Tikhonov regularization [73] for the first difficulty and the

two-hand operator for the second.

4.1.2 Tikhonov Regularization

The problem that facing the construction in Eq. 4.2 is that the volume of space

has a huge kernel which makes ill-defined its inversion. So the task is to find via

an appropriate regularization the function 1
V

= V −1 where V is the volume of Σ.

The candidate formula for this expression has to satisfy two conditions: (a) V −1

has to act at nodes and (b) shares the same eigenstates of V . Thanks to Tikhonov

regularization, the following formula for V −1 can be considered as solution:

ˆV −1 =
lim

ε→ 0
(
V̂ 2 + ε2L6

p

)−1

V̂ . (4.3)

This operator satisfy the above two requirements and make the volume of space

inversion well-defined. A remarkable result from this regularization is that once

the volume V is zero its inverse is immediately zero. This result is the most interest

part of this regularization since it resolve the problem of inverting non-invertible

functions of huge kernel.
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4.1.3 External Regularization: the Two-Hand Operator

we mean by regularization the way the refinement is performed. The length of

space is defined via an integration along the curve. The regularization on this

integration will be performed through three steps: (a) replacing the continuous

integration in Eq. 4.2 by a Riemann sum,

L (γ) =
∑
I

∆s
√
δilGi

∆s(sI)G
l
∆s(sI); (4.4)

(b) smearing the area in the numerator over a domain of integration

Gi
∆s(sI) =

1
2

1
(∆s)4

∫
S1
I
d2σ

∫
S2
I
d2σ́V ijk

xI
(σ, σ́)Ea

j (σ)na(σ)Eb
k(σ́)nb(σ́)√

1
48

1
(∆s)6

∫
∂RI

d2σ
∫
∂RI

d2σ́
∫
∂RI

d2 ´́σQ
(4.5)

where

Q =
∣∣∣V ijk
xI

(σ, σ́, ´́σ)Ea
i (σ)na(σ)Eb

j
´́σnb(´́σ)Ec

i (
´́σ)nc(´́σ)

∣∣∣ ; (4.6)

and

V ijk
xI

= εimnD(1)(hxI )
j
mD(1)(hxI )

k
n (4.7)

and finally (c) replacing those integrations (for the areas) by Riemannian sums.

In the above analysis, the curve γ has been considered as split into n sub-intervals

via γ = ∪IγI .

The result for the length regularization is that this length can be written as sum

of finite elementary lengths via the equation

L(γ) = lim
∆s→0

∑
I

LI . (4.8)

Combining the above results, one can get the following action for the length of

space operator

〈ΨΓ,j,ih| (L̂2(γ))2 |ΨΓ,j,ik〉 = c 〈h12| Λ̂nĤ12Λ̂n |k12〉 (4.9)

where c is a constant and Λ̂n has the following actions

Λ̂n |k12〉 〈k12| =
√

12

V
|k12〉 〈k12| (4.10)
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and for Ĥ12 we have

Ĥ12 |k12〉 〈k12| =
(
j1(j1 + 1)j2(j2 + 1)− ρ2 − ρ

)
|k12〉 〈k12| (4.11)

such that ρ = j(j+1)−j1(j1+1)−j2(j2+1)
2

and j(j+1) is the casimir of k12 = j1+j2. This

formula completes the Bianchi construction of the length of space quantization.

A remarkable feature in the Bianchi construction is that it fits very well in the dual

picture of quantum geometry provided by spin network. In the next subsection

we will explore the Thiemann’s construction of the length of space quantization

4.2 Thiemann’s quantization of the length of space

Thiemann derived a formula for the length operator of space and its spectrum and

eigenfunctions using the key equalities

δV

δEa
i

= e
eia
2

=
1

k

{
Aia, V

}
(4.12)

where V is the total volume of an initial data hypersurface Σ, eia is a triad field

with inverse eai , e = sgn
(
det
(
ei

a

))
, Ea

i = det(ej
b)ea

i , k is Newton’s constant and Ei
a

is a SU(2) connection. Together with the fact that the total volume V of Σ can

be quantized in a mathematically rigorous way, the Thiemann’s length spectrum

becomes well-defined.

4.2.1 Regularization

Setting a base in su(2) by τi = −iσi/2 (σi are Pauli matrices) such that ea = eiaτi

and Aa = Aiaτi, using the expansion (for small Aa) he(Aa) = 1 + Aa + 0(A2
a and

the key equality

qab = −2Tr(eaeb) = − 8

k2
Tr({Aa,V} {Ab,V}) (4.13)

the regularization becomes an easy task: we replace the integration in the following

expression

L(γ) :=

∫
[0,1]

ds
√
γ̇a(s)γ̇b(s)qab(γ(s)) (4.14)
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by a Riemann sum and substituting in it the expression of qab(γ(s)). This amounts

to subdivide the interval s ∈ [0, 1] into n subdivisions and taking the sum, that is

Ln(γ) :=
1

k

n∑
i=1

ds
√

Tr
(
{hi,V}

{
h−1

i ,V
})
. (4.15)

This formula gives the lengths spectrum when it is considered in the limit n→∞,

that is

L(γ) := lim
n→∞

Ln(γ) (4.16)

Computing length of space spectrum using this formula amounting to compute

the actions of the commutators inside the square rout on cylindrical functions.

A remarkable feature in the Thiemann’s construction is that it does not suffer

from non-invertible functions of huge kernel.

4.2.2 The Spectrum

The last equation defines completely the length of space spectrum in the sense

that the volume of space is of a well known action on cylindrical functions. Using

eq.(88) we get

1

8
L̂2(γ) =

[
Tr(h−1V̂h)V̂ + V̂Tr(h−1V̂h)

]
+ 2V̂ 2 + Tr(h−1V̂2h) (4.17)

For the case of trivalent spin network, the three first terms vanish identically,

the computation restricted to the last term. In Thiemann’s paper of the length

quantization this spectrum is given explicitly by the following formula

L(γ) =
lp
√

(j3 + 1)λ

2
√
j3 + 1

2
+ j3η

(4.18)

here λ =
√

(j1 + j2 + j3 + 2)(j1 + j2 − j3)(−j1 + j2 + j3 + 1)(j1 − j2 + j3 + 1) and

η =
√

(j1 + j2 + j3 + 1)(j1 + j2 − j3 + 1)(−j1 + j2 + j3)(j1 − j2 + j3). In this for-

mula and for a bi-valent vertex such that j1 = j2 = j0 we get L(γ) = lp
4
√
j0(j0 + 1)

which gives for the minimal case, that is j0 = 1/2, the minimal length value
1√
2

4
√

3lp.
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the result by Thiemann can be stated as follows: The length of space can change

only in packets of δL = ±1
2

1√
j0
lp which (for large spin) looks like a continuous

operator.

4.3 Ma’s quantization of the length of space

Ma derived the length spectrum in a slightly analogous way to the one shown in

Ref.[56] but in terms of an additional geometric quantity, the angle spectrum that

was derived in Ref.[74]. The derivation was shown using two regularizations, that

was introduced in Ref.[75] and that in Ref.[76], to end up with the same spectrum

formula.

The derivation has been shown for the case of four valent spin network. To fully

explore the the explicit formula, we have to have a prior knowledge of:

1. the direction of space spectrum which can be written as

sinφ12
v =

√√√√1−

(
cos

(
j12 (j12 + 1)− j1 (j1 + 1)− j2 (j2 + 1)

2
√
j1 (j1 + 1) j2 (j2 + 1)

))2

(4.19)

where φ12
v is the spectrum that represents the angles between the vectors

corresponding to j1 and j2 such that j2 − j1 ≤ j12 ≤ j1 + j2, the index v

refers to the fact that the three corresponding operators to j1, j2 and j12 are

coupled at the vertex v.

the volume of space V spectrum, which has a well known action on cylindrical

functions.

With this, the spectrum of the length of space shown in Ref.[57]. can be simplified

much by the following expression

L(γ) =

√
j1(j1 + 1)

√
j2(j2 + 1)

√
1−

(
cos

(
j12(j12+1)−j1(j1+1)−j2(j2+1)

2
√
j1(j1+1)j2(j2+1)

))2

V
.

(4.20)
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This formula completes the (Ma and et. al.)’s construction. The authors found

this result via two regularization, which makes its argument more strength. The

spectrum found via this last equation will be compared with our result of the

semiclassical quantization of the length of space derived in the next subsection

(by us).

4.4 Semiclassical Quantization of the Length of

Space

All of the three derivations demonstrated above three subsections lies in the notion

of the regularization of space and the action of the geometric quantities operators

on cylindrical functions.

In this quantization, however, we will not talk about the regularization of space

and cylindrical functions because this is naturally included in the relation between

the quantum polyhedra and loop gravity. In fact, the point of interest the present

work lies in is a simple relation relating the length of the tetrahedral edges with the

volume and areas, which is obtained by restricting the bulkback of triads on curves

to the case of the quantum tetrahedra. Together with the fact that the volume of

space has a well-known semiclassical spectrum, one can quantize semiclassically

the length from Bohr Sommerfeld quantization.

4.4.1 Tetrahedra Space of Shapes

tetrahedron space of shapes can be fully explored, suing the results obtained from

Refs. [77, 78], via the pair (p, ϕ) which defines the phase space of tetrahedron.

Performing BSQ on it results the quantum tetrahedron. For the present work,

however, BSQ quantization will not be performed directly, it will be tacitly taken

in the calculations (for the volume spectrum) since the point of interest here is the

quantization of the length of space in which the integration of a symplectic area

(as it will be clear later) does not appear.
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4.4.2 The Length of Space Quantization

As our quantization is rather semiclassical, the length of space meant here is the

length of a tetrahedral edge L. To proceed, let us consider the euclidean 3d space

ξ (α, β, λ) where α, β and λ are its dimensions and ∂ξ (α (λ) , β (λ)) its slices, in

which we localize the ξ’s three coordinates associated with a tetrahedron τ by

bounding them in intervals such that 0 ≤ α ≤ α0, 0 ≤ β ≤0 and 0 ≤ λ ≤ σ.

the τ ’s areas A1, A2, A3 and A4 can be defined by choosing a basis at a corner c

in τ of three unit vectors uα, uβ and uλ such that ~A1 = 1
2
α0β0 (uα × uβ) , ~A2 =

1
2
α0σ (uα × uλ) , ~A3 = 1

2
β0σ (uλ × uβ) and ~A4 = −

(
~A1 + ~A2 + ~A3

)
.

Let us now proceed into the quantization. By combining the following two key

observations:

1. The volume of space has a well-defined semiclassical spectrum via the frame-

work in Ref.[28];

2. the length L (γ) =
∫ 1

0
ds
√
δilGi(s)Gl(s) for the quantum tetrahedra can be

defined via

L =
2

3

∣∣∣ ~A1 × ~A2

∣∣∣
√
Q

(4.21)

where Q is the squared volume of τ , the computation of length spectrum is an easy

task. This amounts to promoting the volume, area and angle in the last equation

into operators, that is

L̂ =
2

3

Â1Â2 sin θ̂√
Q̂

. (4.22)

where θ is the angle between ~A1 and ~A2 and the hat ^ refers to the operator.

The fully semiclassically computation of L̂ via the last equation requires a prior

knowledge of the spectra of both Q̂ and θ̂. Those were studied very well in the

literature and they are summarized in of the following subsections

4.4.2.1 The volume of space quantization

In Ref.[28], the discreteness of the volume of space from Bohr-Sommerfeld quanti-

zation was performed. The basic idea in this framework is that the volume of space

has been considered as playing the role of Hamiltonian generating classical orbits



Chapter 4. Length of Space Quantization 26

together with the fact that Bohr-Sommerfeld orbits encircle symplectic areas that

is 2π
(
n+ 1

2

)
times the Planck constant. The resulted spectrum for the volume of

space matches well the one found canonically in loop gravity. This framework has

been investigated in further details in Ref.[29], in which some data of the volume

spectrum found semiclassically and canonically are presented and compared. The

relevance of this framework to the present work is that the resulted spectrum of

the volume will be used directly here in the computation of the length spectrum

by using Eq. (4.22).

4.4.2.2 The angle of space quantization

In Ref. [74], the author introduced an operator for the angle of space and its

spectrum via an appropriate regularization. The derivation is based solely on

canonical arguments and the spectrum has a simple and nice formula which can

be written as s

φ12
v = arccos

(
j12 (j12 + 1)− j1 (j1 + 1)− j2 (j2 + 1)

2
√
j1 (j1 + 1) j2 (j2 + 1)

)
. (4.23)

where φ12
v is the spectrum that represents the angles between the vectors corre-

sponding to j1 and j2 such that j2 − j1 ≤ j12 ≤ j1 + j2, the index v refers to the

fact that the three corresponding operators to j1, j2 and j12 are coupled at the

vertex v.

This spectrum is used properly when the study is based solely on canonical argu-

ments, but as our quantization to the length of space is rather semiclassical, one

has to derive that spectrum semiclassically. This task can be done using Heron’s

formula and the equidistant spacing spectra for the areas. For the triple ~A1, ~A2

and ~A = ~A1 + ~A2, we have

ϕ = arcsin

(√
(A1 + A2 + A) (A1 + A2 − A) (A1 − A2 + A) (−A1 + A2 + A)

2A1A2

)
.

(4.24)

where ϕ is the angle between ~A1 and ~A2 , A1 = j1 + 1
2

and A2 = j2 + 1
2
.



Chapter 4. Length of Space Quantization 27

Table 4.1: Comparison of the Bohr-Sommerfeld and loop gravity length
spectrum. The tetrahedral areas are assumed quantized equidistantly via
Ai = ji + 1

2 , i = 1, 4. The tetrahedral volume used in computing the length
spectrum was computed separately for both the semiclassical and canonical

derivation.

j1 j2 j3 j4 Bohr-Sommerfeld Loop gravity Accuracy
length spectrum length spectrum

0.5 0.5 0.5 0.5 3.436 2.279 33 %
0.0 0.0 exact

0.5 0.5 0.5 1.5 0.0 0.0 exact
0.5 0.5 1.0 1.0 2.517 1.783 29 %

0.0 0.0 exact
0.5 0.5 1.0 2.0 0.0 0.0 exact
0.5 0.5 1.5 1.5 2.133 1.524 28 %

0.0 0.0 exact
0.5 0.5 1.5 2.5 0.0 0.0 exact
0.5 1.0 1.0 2.5 0.0 0.0 exact
0.5 0.5 2.0 2.0 1.890 1.355 28 %

0.0 0.0 exact
1.0 1.0 1.0 2.0 3.745 2.791 25 %

2.368 2.791 15 %
1.0 1.0 1.0 3.0 0.0 0.0 exact
0.5 0.5 2.5 2.5 1.718 1.233 28 %

0.0 0.0 exact

4.4.2.3 The length of space quantization

: The length of space quantization means the statement that the τ ’s edges lengths

have to be varied in discrete steps and consistently with the discrete variation of

the areas, volume and angles since the edges lengths depend only on these. By

combining the above results, the length spectrum takes the formula

L =

√
(A1 + A2 + A) (A1 + A2 − A) (A1 − A2 + A) (−A1 + A2 + A)

3
√
Q

. (4.25)

The numerator presents no problem since its spectra are well-defined. The de-

nominator presents a serious problem: in fact, the volume of space has a huge

kernel which makes the length spectrum ill-defined. However, one can adopt the

regularization of Tikhonov discussed in Ref.[73] (as it was done in ref.[55]) canon-

ically and the action of this regularization on polyhedra is naturally included in

the relation between the quantum polyhedra and loop gravity. The result of this

regularization is that when the volume of space equals to zero then the length of

space is immediately zero. This overcomes the problem of kernel and makes the

length spectrum well-defined.
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In summary, this chapter shows the discreetness of the length of space from Bohr-

Sommerfeld quantization. The resulted spectrum has a nice and simple formula

summarized in eq. (5.35). The fully computation of this spectrum requires a prior

determination of the spectrum of the volume
√
Q, which is the task done in ref.[28].

Some values of the spectrum found via the method of the present work compared

with those found canonically in Ref.[57] are shown in Table 4.1, above.

The accuracy values shown in this table present some deviation between the two

spectra. In fact, this deviation can be traced back to the fact that the equidis-

tant spacing spectrum of the tetrahedral areas used in the semiclassical derivation

does not match well (for small values of the area) the standard spectrum derived

canonically in loop gravity.



Chapter 5

The quantum polyhedra

Loop quantum gravity (LQG) has taken its attraction extensively during the last

years. This fact is not of a surprising matter and it is expected due to the fact

it comes via three different roads to end up with the same results such as the

discreteness of the space measurements like volume, area, angle and length. In this

chapter we describe the geometric approach which has got clear after the the paper

entitled Polyhedra in loop quantum gravity has been published. Here we summarize

the main results and present our contribution in the quantum polyhedron, by

studying a new quantum geometric object called the quantum trihedron.

Starting from two key results:

1. the physical space HF of spin network at a node n with N valence is equiva-

lent to the quantization of a classical phase space SN called Kapovich-Millson

phase space (KMPS);

2. there is unique polyhedron at each point in SN with given areas,

one can explore the following results

polyhedra with F faces↔ classical phase space SF ↔ intertwiner spaceHF (5.1)

5.1 The phase space of polyhedra

Let us consider a set of N non-co-planar vectors (see Fig 5.1) {Fi = Aini} such

that the condition
∑N

i=1 Fi = 0 holds, then the Minkowski theorem states that:

29
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Figure 5.1: Polyhedron with N faces

there is a unique bounded convex polyhedron (up to translations ans rotations

SO(3)) p having those areas as faces.

According to Kapovich and Milson, the set {Fi = Aini} has the structure of a

symplectic manifold. In this space, we have a set of (N − 3) pairs (θi, µi) of

action-angle variables with canonical Poisson brackets.

In the field of polyhedra shapes, there are several possible ways to visualize the

possible figure that can be constructed via N areas vectors. This introduces the

notion of classes. The case of tetrahedron is trivial since there is only one possible

shape can be constructed via four areas vectors. The first non-trivial case is the

one corresponding to the possible shapes that can be constructed via five areas

vectors, that is N = 5. For this case, there are two shapes: triangular prism

and pyramid. In this case also, there is a notion of dominant class which is here

corresponds to the triangular prism. The dominant class is that which has the

maximum number of vertices. For the case of N = 6, there are seven different

classes and the dominant is the one named as cuboid.
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5.2 Polyhedra from areas and normals

By the title of this subsection we mean the way to measure the lengths of polyhedra

edges and their volume. This task is done via an algorithm called Lasserre’s

procedure Ref.[79]. In Ref.[27], this algorithm is investigated in further details. It

gives the lengths of polyhedra edges and their volume. This construction can be

used in numerical study as well as analytical study.

5.3 Relation to loop quantum gravity

The relation between the quantum polyhedron and loop gravity has a crucial

role in adopting the geometric approach in LQG. In fact, this adoption simplify

very much our understanding to LQG especially its applications and the practical

dealing with it.

The authors in Ref.[27] studied this relation via two key observations:

• Intertwiners are the building blocks of spin-network states

• Intertwiners are the quantization of the phase space of Kapovich and Millson.

Therefore, spin network can be understood as a collection of quantum polyhedra

at each vertex.

5.4 The quantum tetrahedron

In Ref.[28], the authors studied the quantization of the volume of space (tetrahe-

dron volume) using Bohr Sommerfeld quantization. This study can be considered

as a special case in talking about the quantum polyhedra, but it was of great

interest since it is sounds like a good example to understand better the quantum

polyhedra (via the generalization). The central result by the authors is the good

matching of the volume spectrum of space with the canonical derivation. The

agreement is extremely well for large values of tetrahedron’s areas values. In small

values of the areas, some deviation is remarked. However this can be traced back

to the fact that the equidistant area spectrum of the areas of tetrahedron does
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not match well (for small values) the standard one derived canonically. In this

quantization, two key observations are considered:

• the volume of space it taken as playing the role of Hamiltonian generating

classical orbits;

• the Planck hypothesis: symplectic areas vary in discrete steps and they are

2π(n+ 1
2
) times the Plank constant.

5.5 Bohr-Sommerfeld quantization

Bohr-Sommerfeld quantization (BSQ) or old quantum theory applied on com-

pletely integrable Hamiltonian systems. The energy spectrum of the hydrogen

atom obtained by Sommerfeld agrees exactly with the observation. The problem

with Bohr–Sommerfeld theory is that it does not provide a way to discuss the

probability of transition between states. So the next stage in improving the model

was the matrix theory of Heisenberg [80] and the wave theory of Schrodinger [81].

Heisenberg’s approach was further developed by Born and Jordan [82]. Dirac [82]

showed that the theories of Heisenberg and Schrodinger are equivalent.

5.5.1 Old quantum theory

1. The main tool in the old quantum theory has been Bohr–Sommerfeld quanti-

zation: the statement that there are just limit discrete of states of a classical

integrable motion as allowed states. The basic principle in this predating

theory (to the modern quantum mechanics) is Bohr-Sommerfeld quantiza-

tion (BSQ) condition: ∮
pidqi = nih (5.2)

where (pi, qi) are pairs of canonically conjugated variables and ni is an inte-

ger.

2. De Broglie waves : in 1924, Broglie suggested that all matter are described

by waves obeying the relations.

p = ~k (5.3)
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where k is the wave-number of a wave. Performing BSQ condition with

this prediction gives the statement: the matter waves only takes discrete

frequencies or discrete energy levels. This was the heuristic starting point

into the Schrodinger equations.

Some limitations to note on the old quantum theory are: (a) we can not (using it)

calculate intensities of the spectral lines, (b) Zeeman effect is not explainable and

(c) does not explore chaotic behaving. Thus, the old quantum theory has been

known as semi-classical approximation to the standard quantum mechanics.

5.5.2 Heisenberg Representation

In 1925, Werner Heisenberg derived and introduced a new formulation for quantum

mechanics. A remarkable feature which characterizes this representation is that

the operators incorporate a dependency on time and the states not. It differs from

the Schrodinger representation in that it can be achieved via passive and active

transformation. In addition, the Heisenberg transformation can be seen as the

matrix formulation of the quantum mechanics.

In this representation, the observables have to satisfy the following equation

dA

dt
=
i

~
[H,A(t)] +

(
∂A

∂t

)
H

(5.4)

Such that H is the Hamiltonian. The equivalence between this representation and

that of Schrodinger can be explored via Stone–von Neumann theore, which proves

that those two representations are nothing than two unitarily equivalent represen-

tations.

5.5.2.1 Mathematical derivation

Let us start by giving the meaning of the expectation value. For an observable o

which is a Hermitian linear operator defined via a state χ at a given moment of

time t, the expectation value of o takes the form

〈A〉t = 〈ψ|A(t)|ψ〉 (5.5)
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Now, let us borrow the idea by Schrodinger which declare that the relation between

two states defined at two different times t1 and t2 is given by the relation

|ψ(t) = U(t)|ψt = 0)〉 (5.6)

where

U(t) = e−iHt/~, (5.7)

(H is supposed time-independent). This gives the following

A(t) := eiHt/~A(t = 0)e−iHt/~ (5.8)

Which allows in turn to derive the following

dA

dt
=
i

~
[H,A(t)] + eiHt/~A(t = 0)e−iHt/~

(
∂A

∂t

)
eiHt/~A(t = 0)e−iHt/~ (5.9)

Via the relation between Poisson brackets and commutators

i

~
[H,A(t)] ≡ i~ {H,A(t)} (5.10)

we get (when A is supposed time independent)

{H,A(t)} =
dA

dt
(5.11)

5.5.2.2 Matrix mechanics

In 1925, Werner Heisenberg, Max Born, and Pascual Jordan derived a new for-

mulation for quantum mechanics called now ‘’matrix mechanics”. This was the

first successful attempt into a quantum word describing nature and the consistent

picture conceptually.

The basic idea

In fact, the birth of the quantum mechanics was not with Heisenberg, it was

with what is known as the old quantum theory. Which states that classical orbits
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encircles sympletic areas that are 2π n times the Planck constant, that is∫ 0

T

PdX = nh (5.12)

The problem with this formulation is that it does not include the evolution in

time. The first remark was made by Heisenberg is that the position X is periodic

which allow us to use what is known as Fourier analysis, that is the position can

be expanded via Fourier series via the relation

X(t) =
n=0∑
∞

e2πint/TXn (5.13)

Any orbit describes an energy level, say Hn. So if we pick up two levels Hn and

Hm one can see that there is a difference between them which describes an energy

of radiation characterizing the emission or absorption of a photon in the transition

between the two levels which has the value Hm −Hn. Now one can see that the

two orbits can be described via two systems of coordinates Xm and Xn or simply

Xmn. Those coordinates can be, in fact, written using the relation

Xmn(t) = e2πi(En−Em)t/hXnm(0) (5.14)

This allows deducing another quantity called momentum matrix Pmn and its prod-

uct with the position matrix can be defined via the criteria of multiplication in

matrix analysis, that is we have

(XP )mn =
∞∑
k=0

XmkPkn (5.15)

Notice that the product is not necessarily commute which is the remarkable prop-

erty characterizing operators in the quantum theory of modern physics.

On the other hand, one can express the uncertainty principle using the following

relation
∞∑
k=0

(XnkPkm − PnkXkm) =
i~
2π
δmn (5.16)
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5.5.3 Canonical commutation relations

Let first write the action integral using matric language. This can be achieved via

the relation ∫ T

0

∑
k

Pmk
dXkn

dt
dt = Tmn (5.17)

The derivation with respect to j gives (after a straightforward calculations)

2π

T

∫ T

0

dt

(
dp

dj

dX

dθ
− dX

dj

dp

dθ
(5.18)

This is the commutation relation between J and the evolution parameter (time).

It corresponds to the commutation relation between time and energy.

5.5.3.1 Transformation theory

As in the case of the ordinary space of dimensions, in phase space there are trans-

formations which preserves the Poisson structure which called transformation the-

ory. Those transformations can be defined via the following system of equations

x 7−→ x+ dx = x+
∂H

∂p
dt, (5.19)

p 7−→ p+ dp = p− ∂H

∂x
dt. (5.20)

For a general function A of x and p, one can write

dA =
∂A

∂x
dx+

∂A

∂p
dp = {A,G} ds, (5.21)

where G (Hamiltonian) is known as the infinitesimal generator of the canonical

transformation. The integration of the last equation gives

Á = U+AU (5.22)

where

U = eiGs (5.23)
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5.5.4 Symmetry

If we consider L as generators of symmetry, then one can expect the following

dH

ds
= i [H,H] = 0 (5.24)

dL

ds
= i [L,H] = 0 (5.25)

This means that L is constant and conserved like the energy.

5.6 The Quantum Trihedron

In Ref. [28], the Bohr-Sommerfeld quantization (BSQ) of tetrahedron has been

performed using the Kapovich Millson phase space (KMPS). The tetrahedron’s

areas were assumed quantized equidistantly. The consistency of this assumption

with the quantization of space using KMPS has not been fully explored. How-

ever, this consistency has to be checked because adapting this assumption without

checking the proof can be seen as a limitation.

Therefore, attempting to extend the quantization using KMPS to the case of the

area of space will be an important step. The present work provides a clear proof

to that assumption by proving that the only spectrum for the tetrahedron’s areas

(using KMPS) is that of equidistant spacing. The key idea to explore this result is

to consider the tetrahedron’s areas as boundaries for the volume and the limit to

these boundaries has to be taken after the quantization, namely after performing

BSQ.

The physical interpretation of the result is simple: the KMPS for the bulk tetrahe-

dron reduces to two points for a given boundary area and the quantization means,

in fact, that the length of the line relates the two points varies in discrete steps.

The remarkable feature in this analysis (as it will e clear later) is that one can

quantize semi-classically both the area and volume of space consistently using only

KMPS within BSQ.



Chapter 5. The quantum polyhedra 38

5.6.1 The Areas and Volume of Tetrahedron as Boundaries

and Bulk

In Minkowski theorem, the vectors that represent the areas of a convex polyhedron

must satisfy two properties: the non-co-planarity and the closure constraint. For

a tetrahedron τ , the convex hull on four points can be represented by four areas

A1, A2, A3 and A4, which can be defined in 3d space ξ (β, α, λ), where β, α and λ

are its dimensions and ∂ξ (α (λ) , β (λ)) its slices. In the context of this space, we

attempt to localize the τ ’s areas and its volume. One can define the τ ’s covered

region (by the convex hull) by bounding the three associated coordinates β, α and

λ in intervals, that is 0 ≤ α ≤ α0, 0 ≤ β ≤ β0 and 0 ≤ λ ≤ σ. We restrict σ

to be defined in the neighborhood of λ = 0, then the quantum volume of τ will

be restricted to its minimal value in spectrum, which corresponds to the largest

phase space orbit. In addition, we suppose (for simplicity) that the angle between

the two vectors ~A1 and ~A2 and that between ~A1 and ~A3 is π
2

and A2 = A3.

α

u
λ

βuu

α
0

β
0

σ

φ
0

Figure 5.2: A parametrized tetrahedron τ(σ) at the minimum value of its
volume (with respect to the variation in σ) in spectrum, such that σ is defined

in the neighborhood of λ = 0.

The quantities α0, β0 and σ represent (for τ) tetrahedral edges (see Fig. 5.2) and

they are defined as functions of the tetrahedron’s volume conjugate variable η.

In addition, σ is defined as function of λ. The dependence of σ on λ refers to

the maximum value of λ and its dependence on η refers to the dynamics (orbital

evolutions in the space of shapes Pτ(σ)). Therefore, varying σ refers to the jumping

from an eigenvalue of the tetrahedron’s volume into the next one. For large values

of the volume, this jumping will be considered (for the maximum value of the

coordinate λ, that is σ) as differentiation.

The areas of τ can be defined by choosing a basis in ξ (β, α, λ) of three unit vectors

uα, uβ and uλ supported by the three edges α0, β0 and σ at a corner in τ such
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that ~A1 = 1
2
α0β0 (uα × uβ), ~A2 = 1

2
α0σ (uα × uλ) and ~A3 = 1

2
β0σ (uβ × uλ), where

α0 = α (λ = 0) and β0 = β (λ = 0) . If we tend σ to zero then ~A2
∼= ~0, ~A3

∼= ~0 and

~A1
∼= ~A4. These considerations will be the key to study the quantization of the

tetrahedron’s areas using the KMPS boundary.

5.6.2 The Quantization

By the quantization, we mean our looking for the spectra of the tetrahedron’s

areas, which have only one value (one level for the Hamiltonian) due to the fact

that the tetrahedron’s areas were fixed first. In doing so, we adapt two distinct

strategies, which give surprisingly the same result, equidistant areas spectra. The

Planck hypothesis is used formally in the first strategy and modified slightly in

the second one:

• In the first strategy, the quantization of the τ areas will be obtained as a

quantum limit, namely after performing the quantization, to the boundaries

of the τ ’s quantum volume, that is we will take the encircled symplectic

area (by Bohr-Sommerfeld orbits) as times of the Planck constant (for the

tetrahedral phase space) and then the limit to the boundaries (τ ’s KMPS

boundary) will correspond, as consequence, a symplectic line taken as times

the Planck constant.

• In the second strategy, we determine the KMPS boundaries, which are (as we

will see later) two points. Then, the Hamiltonian of our system (τ ’s bound-

aries) will be considered as the τ ’s areas. The symplectic area reduces to a

line. The Planck hypothesis (BSQ condition) will be reduced as: the lengths

of encircled lines (bounded) by two phase space points in a one dimensional

symplectic space vary in discrete steps, that is 2π
(
n+ 1

2

)
times the Planck

constant.

5.6.3 The first strategy

In Ref. [28], the authors handled the discreteness of the volume of space from

BSQ using KMPS. In the present work, we deal with the discreteness of the area

using the boundary of the tetrahedron’s KMPS. To proceed, we first give a brief

summary to the key results that allow one to define the phase space variables
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of the theory. The first result is a theorem due to Minkowski which states that

for M non-co-planar unit vectors {~nM} and M positive numbers {AM} such that

the closure condition
∑M

k=1Ak~nk = ~0 holds, then the areas
{
~AM = AM~nM

}
fully

characterize the shapes of a geometrical object called polyhedron (up to rotations

and translations, this polyhedron is unique). This allows to define the space of

shapes of polyhedron PM to be

PM =

{
~Ak, k = 1, ...,M |

M∑
k=1

Ak~nk = ~0,
∣∣∣ ~Ak∣∣∣ = Ak

}
/SO (3) . (5.26)

; (b) the so-called Kapovich-Millson phase space: As it is shown in the quantum

polyhedron paper, the set Pm has a symplectic structure. The Poisson brackets

between two arbitrary functions F ( ~Al) and G( ~Al) can be defined via

{F,G} =
h∑
l=1

~Al ·
(
∂F

∂ ~Al
× ∂G

∂ ~Al

)
. (5.27)

The second result is the so-called Kapovich-Millson phase space: As it is shown

in Refs. [27, 28], the set PM has a symplectic structure. The Poisson brackets

between two arbitrary functions F ( ~Al) and G( ~Al) can be defined via

{F,G} =
M∑
l=1

~Al ·
(
∂F

∂ ~Al
× ∂G

∂ ~Al

)
. (5.28)

The variables that satisfy the equations {pm, qn} = δmn are defined as follows:

the momenta variables are the norms |~pm| =
∣∣∣∑m+1

l=1
~Al

∣∣∣ where m = 1, . . . ,M , the

coordinates variables is the angles between the vectors ~pm× ~Am+1 and ~pm× ~Am+2

(for more details see Ref. 6). For our case, a tetrahedron defined in ξ (β, α, λ ∈ ζ)

where ζ is the neighborhood of λ = 0, the momentum variable is the norm p =∣∣∣ ~A1 + ~A2

∣∣∣ which limits to A1 when σ is tented to zero. The coordinate variable

ϕ is the angle between the two vectors ~A1 × ~A2 and ~A3 × ~A4 and it limits to the

angle between the two unit vectors uα and uβ at σ = 0.

As we have mentioned above, the limit to the boundary must be after the quan-

tization in order to get the correct limit (the quantum limit), which will be the

quantization of the KMPS boundary. To proceed, we have first to find the KMPS

in the neighborhood of the boundary, namely when ζ surrounds λ = 0 and then

quantize it using the Planck hypothesis (BSQ condition). This procedure will
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forces one to make vapid calculations. However, the calculations can be simplified

using the notion of parametrized volume V (σ), namely integrating V (σ) over clas-

sical orbits and then tending σ to zero. The volume in this parametrization can

defined by integrating an area S (α (λ) , β (λ) , λ) to an arbitrary value of λ = σ

such that

V (σ) =

∫ λ=σ

λ=0

S (α (λ) , β (λ) , λ) · uλdλ (5.29)

where S (α (λ) , β (λ) , λ) = α (λ) β (λ) (uα × uβ). Considering this volume as

the one of a tetrahedron, integrating over classical orbits and using the equal-

ity (α (λ) β (λ) (uα × uβ) + α (λ)σ (uα × uλ)) · uλ = α (λ) β (λ) (uα × uβ) · uλ we

find

2πV (σ) =

∮ (∫ λ=σ

λ=0

P (σ) · uλdλ
)
dϕ (5.30)

where P (σ) = α (λ) β (λ) (uα × uβ) + α (λ)σ (uα × uλ). Notice that the norm

of this vector is exactly the momentum variable in the τ ’s KMPS. Taking into

account the equality P (σ) · uλ = |P (σ)| cos θ and reordering the integrations, the

last equation becomes

2πV (σ) =

∫ λ=σ

λ=0

dλ cos θ

∮
|P (σ)| dϕ. (5.31)

The term cos θ was put outside the integral (along ϕ) because we have supposed

first that uλ⊥ ~A1. Performing BSQ for the closed integral in the last equation gives

2πV (σ) = 2πh

(
n+

1

2

)∫ λ=σ

λ=0

dλ cos θ (5.32)

where n is an integer. When σ → 0, cos θ ∼= 1 and the integral
∫ λ=σ

λ=0
dλ reduces to

dλ. Replacing this we find

V (σ → 0) = h

(
n+

1

2

)
dλ. (5.33)

On the other hand, V (σ → 0) = A1dλ (the factor 1
3

was dropped with the one in

the right hand side of Eq. (5.33)). Substituting this in the last equation gives

A1 = h

(
n+

1

2

)
. (5.34)

The number n symbolizes the levels the Hamiltonian (the area) can take. These

levels can be determined considering the fact that the area A1 is encircled by
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three lengths, which give spectrum for the encircled area when these lengths are

promoted into operators in an appropriate Hilbert space. But for our case, the

spectrum has only one level due to the fact that the areas of the bulk tetrahedron

were fixed first. This level corresponds to the chosen value of the SU (2) rotation

generator, namely n = j. Switching this into the last equation gives the well-

known equidistant area spectrum

A1 = h

(
j +

1

2

)
. (5.35)

In the context of KMPS, this formula was assumed in Ref. [28]. In Ref. [83], the

same formula was derived by lifting the problem of angular momenta addition into

the space of Schwinger’s oscillators. Furthermore, it was shown in Ref. [84] that

assigning the spectrum shown in this formula to the links variables in loop gravity

can reproduce both the thermodynamics and the quasinormal mode properties of

black holes. However, this formula has a long history starting from the Ponzano

and Regge paper of Ref. [85] to the present work [83]. In comparing this with

the quantization proved canonically in loop gravity [11], one can see that the

quantitative agreement is extremely well in the large values of areas.

However, some aspects of this strategy are incomplete and deserve more details

• The notion of neighborhood and the limit to zero, σ → 0, should not be

understood mathematically, since we have performed BSQ before considering

them. Instead, they can be understood physically considering the fact that

for large values of areas the gap between zero volume and the minimal level

of it will be considered as a differentiation (for the change in the maximum

value of the coordinates λ, that is σ). Notice that this is nicely consistent

with the fact that the equidistant area spectrum does not match well the

standard spectrum of the area (derived canonically in loop gravity) for small

angular momentum values.

• The classical orbit that represents the minimal level for the volume can be

studied using the results found in Ref. [29]. In fact, it can be considered in

the case of phase spaces with no flat configurations and the corresponding

volume gap can be given by Vmin = c (A1A2A3A4)
1
4 where c equals to 2

3
for

an odd number of levels and to
√

2
3

for an even number.
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5.6.4 The second strategy

According to the Planck hypothesis, Bohr-Sommerfeld orbits in phase spaces

encircle symplectic areas that is 2π
(
n+ 1

2

)
times the Planck constant. This

hypothesis has been used in the first strategy (above) and the results are:

– the tetrahedron’s areas are defined in phase spaces of two points bound-

ing a symplectic lines relates these points (see Fig. 5.3),

–

– the tetrahedron’s areas are quantized equidistantly with one value in

the spectrum for each area (one level for the Hamiltonian).

p 1p2

Figure 5.3: A symplectic line encircled (bounded) by two phase space points.
The length of this line is 2π

(
n+ 1

2

)
times the Planck constant, where (for this

case) n = 2.

One may expect that these two results are related each one to the other.

In fact, if we reduce the Planck hypothesis to the case when the symplectic

area is one dimensional phase space, that is the length of the line bounded

by the two phase space points varies in discrete steps, together with the fact

that the role of the Hamiltonian generating classical orbits is played by the

tetrahedron’s areas then it will be an easy check to show that the spectrum

of these areas is exactly that of equidistant spacing, that is∮
pdϕ = 2πh

(
n+

1

2

)
= p

∮
dϕ = 2πA1 (5.36)

where we have considered the fact that p = A1 and the closed orbit as:

p1 (A1, ϕ1) → p2 (A1, ϕ2) → p1 (A1, ϕ1). Then, one can replace n by the

chosen SU (2) generator as we have done above, which completes the deriva-

tion. It turns out that that this strategy is nicely consistent with studying

the quantization of the tetrahedron’s volume because, in this strategy, the

tetrahedron’s areas were considered as playing the role of Hamiltonian gen-

erating classical orbits, which fix them along these orbits.

If we want to study the dynamics of the theory using this strategy, we have

to identify the phase space variables, which are two points. So, what is

expected to do is that one has to support the symplectic line by a line of
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coordinate and study the position of these points with respect to a chosen

origin (with base of one unit vector). The two points referred to above can

be determined using the relation

arcsin

(
± 2A1

α0β0

)
= ϕ. (5.37)

Using the second strategy simplify very much the calculations and provides

new insights into the quantization when the symplectic area is more or less

than two dimensional phase space.

In summary, in this chapter, the semi classical methods into the study of

the area spectrum in loop gravity using KMPS has been introduced. This

quantization is nicely consistent with the quantization of the volume of space

proved in Ref. [28] since it generalizes the quantization using KMPS to the

case of the area of space, which gives further credibility to semi classical

methods in loop gravity. The main result is summarized in Eq. (5.35), which

gives an equidistant area spectrum. The key idea in this approach is not

new in the field of the quantum polyhedron, in fact the author in Ref. [86]

has derived a formula for the volume of pentahedron by closing it into a

tetrahedron. This is somewhat analogous to our case (closing tetrahedron

into an area).

5.7 The quantum Trihedron: Generalization

In the above derivation, the spectrum has only one level due to the fact that

the tetrahedron areas were fixed first. The result was that the KMPS for the

τ ’s areas are two points and the lengths of the lines relating these points in

the quantization procedure vary in discrete steps. In this section, we attempt

to generalize the above derivation in the sense that the Hamiltonian of our

system (the area) has more than one level. To proceed, let us first establish

the semiclassical ground for the quantization. This amounts to find the

lengths of lines relating two phase space points in one symplectic spaces. As

the momentum
∣∣∣ ~A1

∣∣∣ is fixed along classical orbits, those lengths are defined

by the difference

l =

∣∣∣∣arcsin

(
2η

x

)
− arcsin

(
−2η

x

)∣∣∣∣ = |f | (5.38)
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where x = α0β0. Supposing f � 0 and differentiating the two sides of the

last equality gives

dl = dϕ = 2d arcsin

(
2η

x

)
. (5.39)

substituting this into Eq. (5.36) (by considering the general case for the ϕ

interval) gives

2η

∫ x

x1

d arcsin

(
2η

x

)
= 2πh

(
n+

1

2

)
. (5.40)

Performing the integration on the last equation gives

η =
πh
(
n+ 1

2

)
arcsin (θ)− χ

(5.41)

where 0 ≤ θ = 2η
x
≤ 2π and χ = arcsin

(
2η
x1

)
such that arcsin (θ) 6= χ. The

computation using this formula is performed by varying η and taking the

values that satisfy BSQ condition. If we equal the denominator to π, the

result for η is an equidistant spacing spectrum (by taking n = j).

Table 5.1: Comparison between the Bohr-Sommerfeld (BS) and loop grav-
ity (LG) area spectrum. The accuracy values are computed as accuracy =

(BS−LG)∗100
BS

.

j1 Bohr-Sommerfeld Loop gravity Accuracy

0.5 1
√
3
2 13.39 %

1.0 3
2

√
2 5.71 %

1.5 2
√
15
2 3.17 %

2.0 5
2

√
6 2.02 %

3.0 7
2

√
12 1.02 %

5.0 11
2

√
30 0.41 %

8.0 17
2

√
72 0.17 %

15.0 31
2

√
240 0.05 %

20.0 41
2

√
420 0.02 %

100.0 201
2

√
10100 0.00 %

200.0 401
2

√
40200 0.00 %



Chapter 6

The Complete Spectrum of the

Volume of Space from

Bohr-Sommerfeld Quantization

In this chapter, the work done in Ref. [28] is generalized (about the discrete-

ness of the volume of space from Bohr Sommerfeld quantization concerning

the node Hilbert space H4 of valency four) to the case of the node Hilbert

space HN with valency N . The quantization is purely semiclassical applied

to grains of space, classical polyhedron, in the context of the relation be-

tween the quantum polyhedra and loop gravity addressed in Ref.[27]. The

role of Hamiltonian generating classical orbits is played by the volume of

space.

The fact that the volume operator acts only on nodes in spin network is con-

sidered strongly. Together with the key idea of virtual lines considered in the

canonical derivation of the volume of space, the semiclassical computation

of the volume of the quantum polyhedron is an immediate result.

6.1 The Quantum Polyhedron: The volume

Spectrum

The quantization of Kapovich-Milson phase space leads to the quantum poly-

hedron. In the trivial case for the node Hilbert space H4, the volume of the

quantum tetrahedron can be computed and studied [28]. But forHN , N ≥ 5,

46
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the study becomes difficult. Nevertheless, Hal Haggard has fully explored

the case of H5 by closing pentahedron into tetrahedron so that its volume

becomes equal to the difference between two tetrahedral volumes. However,

this technique does not work in general. This motivates the search for a

new general technique leading to a complete computation of the volume of

polyhedra. To proceed, let us first explore the key results:

– the volume of space acts only on nodes, therefore by using the vir-

tual lines at each node we can construct new areas so that the origi-

nal polyhedron becomes a set of connected tetrahedra with matching

boundaries;
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Figure 6.1: The network dual to polyhedra faces.

– for the node Hilbert space H4 of four SU(2) rotation generators j,j2, j3

and j4, the semiclassical volume of tetrahedron V has a well defined

action via the successful computation done by Bianchi and Haggard.

We denote it as: V vi
BH where vi stands for the vertex v of the index i.

It is worth to notice that:

1. the idea of introducing virtual lines is the analogous of coupling N

angular momenta which is, in turn, equivalent to the simultaneous cou-

pling of all the momenta. However, this idea is not new, it has been

considered in Ref. [11] in computing the volume of space for the node

Hilbert space HN with valency N (it will be clarified in the last section

with some examples); and

2. this technique is not in a contradiction with Minkowski’s theorem, this

because that theory only concentrates on the existence and uniqueness

of a polyhedron and not specifies the way it is constructed.

Let us now consider a general element of polyhedra DN with N faces (see

Fig. 6.1). The number of virtual lines equals the number of nodes which

is N − 3, that is
{
vi, i = 1, (N − 3)

}
. We denote the generators of rotation

corresponding to the virtual lines by Ji. Therefore we have: J1 = j1+j2, J2 =
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J1 + j3, · · · , JN−3 = JN−4 + jN−2 such that for each equality ji + jj = jij we

have

jj − ji ≤ jij ≤ ji + jj. (6.1)

We call V vi
BH the Bianchi-Haggard operator (generally we write V v

BH), which

acts on the vertex vi and gives the corresponding semiclassical spectrum.

Since the action of the volume operator on any three valent vertex gives

zero, the number of the possible actions on a polyhedron belonging to HN is

(N − 3) and the resulted volume is the sum of all elementary volumes, that

is

V̂ v
BH |χ〉 =

N−3∑
i=1

V̂ vi
BH |vi〉 (6.2)

where χ is the network depicted in Fig. 6.1, vi is the ith node and “ˆ” refers

to the semiclassical action of the volume.

The geometric interpretation of this result is simple: suppose that we have

N connected (with matching boundaries) tetrahedra, so the total volume is

(clearly) the sum of all the tetrahedra volumes. The computation using this

formula is performed in the framework of Ref. 3 for V v
BH with respecting the

condition of Eq. (6.1).

6.2 Examples

6.2.1 The three valent node H3 :trihedron

It is well-known that the action of the volume operator on the three valent

node Hilbert space H3 results zero, so how this can be understood geomet-

rically ?

Let us take three vector areas ~A1, ~A2 and ~A3 such that the condition
∑3

i=1
~Ai =

0 holds, then it will be clear (easily) that those vectors are co-planar. There-

fore the quantity
(
~A1 × ~A2

)
· ~A3 = 0, which is corresponding action of the

volume operator on three valent node Hilbert space H3.

6.2.2 The four valent node H4 : tetrahedron

This is the simplest and the elementary case. In Refs. [28, 29] the quan-

tum study of classical tetrahedra has been performed. Two key results were
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considered: (a) the volume of space is considered as playing the role of Hamil-

tonian generating classical orbits; and (b) the Planck hypothesis: symplectic

areas vary in discrete steps and they are 2π
(
n+ 1

2

)
times the Plank con-

stant. The results of the semiclassical quantization, for the volume spectrum,

match well the canonical quantization in loop gravity.

6.2.3 The five valent node H5 : pentahedron

In Ref. [86], Haggard fully studied the quantum pentahedron, he proved that

such system is chaotic. A formula for the volume was derived by closing pen-

tahedron into tetrahedron and taking the difference between two tetrahedral

volumes. In Ref. [34], the authors provided an analysis (analytical and nu-

merical) of the dynamics of the equifacial pentahedron. The study examines

the local stability of trajectories within KMPS and addresses the chaotic

property of such systems.

In such studies, the starting point is the KMPS, which is described via two

pairs of canonical variables (p1, ϕ1) and (p2, ϕ2) defined by:

p1 =
∣∣∣ ~A1 + ~A2

∣∣∣ , (6.3)

p2 =
∣∣∣ ~A1 + ~A2 + ~A3

∣∣∣ , (6.4)

ϕ1 = angle
{
~p2 × ~A2, ~p1 × ~A3

}
, (6.5)

ϕ1 = angle
{
~p2 × ~A3, ~p2 × ~A4

}
. (6.6)

Let us now make use the result at Eq. 6.2. In this case, classical pentahedron,

the number of nodes is two. Thus, the volume is the sum of the volumes

of two tetrahedra described as it is shown in Fig. 6.1. If we denote to the

Bianchi-Haggard spectrum for a node vi with four SU(2) rotation generators

j1, j2, j3 and j4 as V
vi(j1,j2,j3,j4)
BH , then the volume of pentahedron Vpent with

five SU(2) rotation generators j1, j2, j3, j4 and j5 can be given as follows:

Vpent = V
v1(j1,j2,j3,J2)
BH + V

v2(J1,j3,j4,j5)
BH (6.7)

The physical interpretation of this result is simple: the volume Vpent is the

sum of the volumes of two connected tetrahedra (with a face). Notice that the
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Figure 6.2: The Lorenz attractor displays chaotic behavior. These two plots
demonstrate sensitive dependence on initial conditions within the region of

phase space occupied by the attractor.

connection is valid since the condition of matching boundaries is respected

(the two tetrahedra sharing a common area, that is | ~A3|).

6.2.3.1 The chaotic behavior

Edward Lorenz summarized the notion of chaos as follows chaos: when the

present determines the future, but the approximate present does not approx-

imately determine the future. The notion of chaos for pentahedron has been

discussed in Refs. [34, 86]. Here, we show an independent road to that fact.

We have seen from the last subsection that the volume of the original pen-

tahedron Vpent is the sum of the volumes of two tetrahedra Vtet1 and Vtet2 .

Furthermore, notice that the two pairs (p1, ϕ1) and (p2, ϕ2) are associated

with Vtet1 and Vtet2 respectively (note that p2 = | ~A1 + ~A2 + ~A3| = | ~A4 + ~A5|).
This means that the two volumes are constants along classical orbits of the

corresponding pair of the phase space.

Now, for simplicity let us suppose that ~p1⊥~p2. So, if we pick up a level for

Vtet1 and another for Vtet2 then you can visualize (geometrically) that we

have two orbits span a sphere. That is, one can move arbitrarily on the

sphere provided that this movement has a closed orbital projections on the

planes defined by (p1, ϕ1) and (p2, ϕ2). The orbits on the sphere (for Vpent)

are not closed necessarily; this means that the volume Vpent presents a clear

chaotic behavior. Notice that the volume Vpent is constant on 3d spheres

surfaces defined by picking up two levels for Vtet1 and Vtet2 , but the latter

are not constant separately (on the spheres surfaces). Fig 6.2, above, the

Lorenz attractor, displays a chaotic behavior studied by Lorenz.



Chapter 7

The Quantum Pentahedra

Recently [86], it has been shown that closing a pentahedron into tetrahedron

allows to explicitly find the volume of the pentahedron. This amounts to

consider a map πvolume : P5 7−→ P4 × P4 from the space of shapes of the

pentahedron into the spaces of shapes of the resulted two tetrahedra.

In this chapter, we provide an alternative approach. Two key results are

considered in doing so: (a) the fact that the volume operator acts only

on nodes in spin network and (b) the idea of virtual lines considered in

the canonical derivation of the volume in Ref. [11]. The volume spectrum

for pentahedron, we find, has a very similar form to the one found by Hal

Haggard [86], but with a rich structure in which the earlier Bohr’s model of

atoms gets arisen.

7.1 The Haggard’s Rescaling Reconstruction

The quantization of Kapovich-Milson phase space leads to the quantum poly-

hedron. In the trivial case for the node Hilbert space H4, the volume of

the quantum tetrahedron can be computed and studied [28, 29]. But for

HN , N ≥ 5, the semiclassical computation of the volume becomes difficult.

Nevertheless, the author in Ref. [86] fully explored the case of H5 by closing

pentahedron into tetrahedron so that the tetrahedral-volume is reproduced

via the difference of tetrahedral-volumes. Roughly speaking, Let us consider

a pentahedron P ∈ P5, which can be closed into a tetrahedron T1 ∈ P4 (as
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it was done in Ref. [86], see Fig. 1 in it). The Haggard’s rescaling recon-

struction is the step from

~A1 + ~A2 + ~A3 + ~A4 + ~A5 = 0 (7.1)

to

α ~A1 + β ~A2 + γ ~A3 + ~A4 = 0 (7.2)

where
{
~A
}

are the non-coplanar vectors areas of P. The main result within

this rescaling has been the formula for the P’s volume

Vpent =

√
2

3

(√
αβγ −

√
αβγ

)√
W123 (7.3)

where Wijk = ~Ai ·
(
~Aj × ~Ak

)
, α = −W234

W123
, β = −W134

W123
, γ = −W124

W123
and

x = x− 1;x = α, β, γ. This construction allows to define πvolume as

πvolume : P5 → P4 × P4 (7.4)

Eq. (3) → Eq. (4). (7.5)

where P4×P4 correspond to T1 and T2 such that T2 is the tetrahedron that

close P into T1. The P’s volume is taken as the Hamiltonian, generating

classical orbits, of the P’s system.

7.2 An alternative approach to the pentahe-

dron volume

Two technical steps are considered for the present task: (a) splitting the P’s

graph into two connected tetrahedral graphs via virtual lines (as it was done

in Ref. [11]) and (b) taking into account the fact that the volume operator

acts only on nodes in spin network. This amounts to explore a graph with

two virtual lines J1, J2 and two four valent vertices v1 and v2. See Fig. 7.1.

Considering the statement at (b) leads us to write the volume of P as

Vpent =

√
2

3
(Vv1 (j1, j2, j3, J2) + Vv2 (J1, j3, j4, j5)) , (7.6)
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Figure 7.1: The P’s graph as two connected tetrahedral graphs, which are

dual to two connected tetrahedra T1 and T2 by the area
∣∣∣ ~A3

∣∣∣ dual to j3

therefore we write

Vpent =

√
2

3

(√
W123 +

√
W345

)
(7.7)

=

√
2

3
(1 + η)

√
W123 (7.8)

where η =
√
W345√
W123

. Notice that this formula is somewhat analogous to the

one of Haggard defined in Eq. 7.3, but with an additional constraint due

to the existence of a shared area
∣∣∣ ~A3

∣∣∣ connecting the two tetrahedra. In

fact even this constraint, it has a correspondence in the Haggard’s rescaling

reconstruction; if we denote the areas of the dashed tetrahedron (see Fig. 1

in Ref. [86]), that is T2, by
~́
A1,

~́
A2,

~́
A3,

~́
A4, one can write

~́
A1 +

~́
A2 +

~́
A3 + ~A1 + ~A2 + ~A3 + ~A4 = 0. (7.9)

where
{
~Ai, i = 1, 4

}
stand for the P’s areas.

It is to be noted that: the two tetrahedra T1 and T2 are constructed by

considering the coupling in Fig. 7.1. Thus, one may be wonder that these

tetrahedra present some possible interference. However, it has been argued

[1–4] that the volume and area of space in loop quantum gravity should

not naively be thought as something to manipulate directly, but they are

understood the way they act (because the spacetime is not defined in a

spacetime, it is spacetime itself). Furthermore, we have seen that the volume

is taken as the Hamiltonian generating classical orbits, thus it has the role of

energy and we know that the energy can be associated with a density, so the

fact that tetrahedra are interfered is not something to worry about. Notice

that even in the Hal Haggard’s rescaling reconstruction this interference is

taking place in the sense that

T1space ∩ T2space = T1space (7.10)
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where
{

Tjspace, j = 1, 2
}

refer to the space of points covered by the convex

hull of the corresponding tetrahedra.

7.3 The physical interpretation

Our interpretation to the findings is based on an observation and a technical

tool:

1. in Ref. [59], it has been shown that the areas of tetrahedron can be

studied and quantized using KMPS and BSQ, i.e. they have orbits

along which they are constant. Let us denote these orbits by ;

2. we represent the areas of polyhedra via points-like particles on phase

spaces. This choice is motivated by the fact that the areas are studied in

loop gravity as entire objects with specific levels. On the other hand,

the change in the configurations (over orbit-configurations) does not

affect the Hamiltonian.

A

A

A

A
12

3

4

A

Figure 7.2: The quantum tetrahedron depicted on phase spaces. Its areas
are presented by points-like particles moving on the corresponding phase-space-

orbits. The big black point refer to the area
∣∣∣ ~A∣∣∣ =

∣∣∣ ~A1 + ~A2

∣∣∣ =
∣∣∣ ~A3 + ~A4

∣∣∣, which

represents, in turn, a point-like particle playing the role of the tetrahedron’s
noyau.

Via the above two idems, the quantum tetrahedra can be depicted as in Fig

7.2.

For our case, the quantum pentahedron, we have two connected tetrahedra.

Thus if we denote the volume-orbits of T1 by T1 and similarly for T2 by T2 ,

then the quantum pentahedron can be depicted as in Fig. 7.3. Note that

in this depiction, we have considered the simplest case; the the volumes of

the two connected tetrahedra are constant along an orbit o ∈P . The general

case is not constrained with this.
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Figure 7.3: (a) Two connected tetrahedra by the area
∣∣∣ ~A3

∣∣∣. The illustration

is intended to be considered to imagine the real case (orbits in 3d space). (b)
The two tetrahedral noyaux of T1 and T2 moving on the corresponding phase-
space-orbits around a common center called the pentahedron’s noyau. The big

blue point refer to the area
∣∣∣ ~AP

∣∣∣ of P defined by
∣∣∣ ~AP

∣∣∣ =
∣∣∣ ~A1 + ~A2 + ~A3

∣∣∣ =∣∣∣ ~A4 + ~A5 + ~A3

∣∣∣, which is playing the role of the pentahedron’s noyau moving

long the corresponding phase-space-orbits of the pentahedron.

The results shown in this chapter show a remarkable similarity between

the structure of spacetime and the one of ordinary matter. This can be

understood in the sense that in ordinary matter the phase space variables

are exactly the spacetime coordinates (in the Bohr model of atoms, the

radial variables r and the angle θ of an electron’s orbit can be replaced in

the spherical coordinates). While in loop gravity, some reconsiderations are

considered because the fact that the area variables are the natural variables

in loop gravity, see for instance Ref. [1, 2].



Chapter 8

Regge and Twisted Geometries

in Loop Gravity

In practical dealing with loop gravity people usually restrict the attention to

a finite number of gravitational field variables [1–3, 87], allowing to capture

the physics of appropriate regimes. This restriction called truncation, it is

defined via states supported by a graph Γ in the Hilbert space HΓ. The trun-

cation may reflect the Regge geometries [88] or (more generally) the twisted

geometries [89, 90]. The computation of the holonomy-Flux variables over a

Regge-truncation of general relativity (GR) leads to twisted geometries [87],

but does (generally) work for a twisted-truncation of GR?

The trial to answer the question leads to generalize the work done by Rov-

elli and Speziale of Ref. [87] to the case where the matching in the area-

configuration does not hold. More explicitly, the question leads us to com-

pute the extrinsic curvature across a face connecting two tetrahedra with no

matching in the area-configuration.

8.1 Regge and twisted geometries

In Ref. [89], a geometric parametrisation of SU(2) phase space is studied.

In Ref. [87], the relation of this constructions to loop quantum gravity is

discussed. In this section, we summarize the relevant points to the present

work.
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The essential results to be noted here is that the computation of the holon-

omy and the flux of the electric field in a given 4d Regge geometry repro-

duces exactly the canonical transformation of the parametrisation studied

in Ref. [89]. To proceed into the details, let us consider a graph Γ with l

links and n nodes determining 3d discrete quantum geometry. The study

is bridged to semiclassical description via coherent states. The phase space

of the theory is the one of Ashtekar given by the pair (Ea
i (x), Aia(x)) where

Ea
i (x) and Aia(x) are the electric field and connection respectively. The graph

Γ supports states belonging to the Hilbert space HΓ which corresponds to

a truncation of the theory. Here, Γ is constructed via L copies of SU(2),

that is we have SU(2)L, and the holonomy plays the role of coordinates and

it is invariant under gauge transformations as Ul → Vs(l)UlV
−1
t(l) , such that

V, U ∈ SU(2) and s(l), t(l) are the source and the target node of the link

l respectively. With this, the phase space becomes (Ul, Xl) where X are

generators of SU(2) rotations.

Twisted geometries are a class of discrete metric spaces with the following

set of variables (
Nl, Ñl, jl, ξl

)
∈ Pl ≡ S2 × S2 ×R× S1 (8.1)

for each link l of two normals Nl and Ñl defined in the two frames that share

the face dual to the link l of area |j| where ξ is a quantity related to the

extrinsic curvature at l. The task of Ref. [87] was to explore the following

correspondence

X = jnτ3ñ
−1, (8.2)

U = neξτ3ñ−1 (8.3)

where X = X iτi ∈ su(2), τi (i = 1, 3) are the Pauli matrices multiplied by

−i/2 and n, ñ ∈ SU(2). To proceed, let us consider a 4d Regge manifold

(which is built via glued flat four-simplices with matching geometry) and an

initial hypersurface data Σ in it. Σ can be seen as a collection of tetrahe-

dra endowed with intrinsic (on the edges) and extrinsic (on the triangles)

curvatures. Across a face f in Σ, the 4d normal to Σ changes and defines

a quantity called the extrinsic curvature given by (see Ref. [87] for more



Chapter 8. Regge and Twisted Geometries in Loop Gravity 58

details)

kab = θ

∫
f

δ3 (x, f(σ)) d2σ = θNaNb (8.4)

where θ is the dihedral angle between the 4d normals to the two tetrahedra

at f and N is the normal to the face f . In this context, the holonomy-flux

variables can be computed via

X i
l =

∫
f

EaiNad
2σ, (8.5)

Ul = P exp

∫
l

dla
(
Γia + γeiakab

)
τi (8.6)

where Eai is the Ashtekar’s electric field, Γia+γeiakab is the Ashtekar-Barbero

connection and the notation P refers to the path ordering along l. After some

calculations (with a chosen gauge), one can get

X i
l = jN i, (8.7)

Ul = ne(γθ−α)τ3ñ−1 (8.8)

where N i = eiaNa and α is an angle of rotation between the two frames

sharing the face f . The last two equations map the holonomy-flux variables

into twisted geometry defined in Eqs. 8.2 and 8.2.

The above analysis handles the case when the areas of the two connected

tetrahedra sharing the face f have the same configuration. However, the

general case is not constrained with this matching and it extends more gen-

erally in the sense that the configuration has not to be generally matched,

which extends the geometry to be not (generally) the Regge one.

8.2 Twisted Geometries from Holonomy-Flux

variables computation

In Ref. [87], it has been shown that the explicit computation of the holonomy-

flux variables over a Regge-truncation of GR leads to twisted geometries.

Here, we show that we get the same result, but with a twisted-truncation.

To proceed, let us start computing the extrinsic curvature across a shared-

face (with no matching in the area-configuration, of course) in two connected

tetrahedra, see Fig. 8.1. The 4d normal to Σ varies only across the shared-



Chapter 8. Regge and Twisted Geometries in Loop Gravity 59

p
1

2
p

Figure 8.1: Two connected tetrahedra by an area with no matching in the
area-configuration. The two points p1 and p2 refer to the general location inside

the tetrahedra (not single points)

face f (of direction Na) and it is clear that its variation is orthogonal to this

face (for more details see Ref. [87]), therefore the extrinsic curvature defined

across f takes the form

Kab = θ

∫
ft

δ3 (x, f(σt)) d
2σt = θNaNb (8.9)

where we have added the index t to refer to the no matching in the area-

configuration of the two connected tetrahedra (i.e. we have a twisted-

truncation). The quantity θ is defined to be the dihedral angle between

the 4d normals to the two tetrahedra at ft.

The problem with this construction is that we have no idea about the face ft

because of the fact that its configuration varies at each point on the orbits

associated with the volumes of the two connected tetrahedra (the shared-

face should not be thought as corresponding to a fixed area-configuration).

The trial to overcome this problem leads us to explore the fact that the

tetrahedral edges corresponding to the shared-area allows to identify the

set of points, say X , that is bounded by the shared-face edges. This set is

expected naturally to include the change in the configuration at each point

p of the Hamiltonians-orbits of the system. The key idea to go further in

this, is the fact that the tetrahedral edges can be determined explicitly via

the areas of the two tetrahedra. Let us denote the areas-vectors of the first

tetrahedron by A1, A2, A3, A4 and the second by Á1, Á2, Á3, Á4, suppose that

the two connected areas are A1 and Á1, denote the set of points p ∈ A1 by

X1 and ṕ ∈ Á1 by X1́. Therefore, we have

X = X1 ∩ X1́. (8.10)

Furthermore, we determine two pairs of two edges (e1, e2) and (é1, é2) bound-

ing A1 and Á1 respectively using the vectorial product of the tetrahedral
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areas-vectors, i.e.

e1 = αA1 × A2, (8.11)

e2 = βA1 × A3, (8.12)

é1 = άÁ1 × Á2, (8.13)

é2 = β́Á1 × Á3 (8.14)

where α, β, ά and β́ are functions not depending on the configurations of

the two tetrahedra. They are introduced to guaranty that the quantities

|e1|, |e2|, |é1| and |é2| have the lengths of the tetrahedral edges, and can be

given explicitly via

α = β =
1

Q
, (8.15)

ά = β́ =
1

Q́
(8.16)

where Q and Q́ stand for the tetrahedral volumes of the two connected

system.

Now, let us introduce two pairs of coordinates (x1, x2) and (x́1, x́2) with the

bases defined by the two pairs (e1, e2) and (é1, é2) respectively, therefore one

has:

0 ≤ x1 ≤ (x1)max = 1, (8.17)

0 ≤ x2 ≤ (x2)max = 1, (8.18)

0 ≤ x́1 ≤ (x́1)max = 1, (8.19)

0 ≤ x́2 ≤ (x́2)max = 1. (8.20)

Notice that the manifold, sayM, constructed by the coordinates (x1, x2; x́1, x́2)

is four dimensional exactly the same as the dimension of the phase space

of the theory (two connected tetrahedra). This means that the manifold

in which the extrinsic curvature is defined (in a twisted geometry) locally

has the dimension of the corresponding phase space. Furthermore, one

can see that the doublets {(x1, x2)} and {(x́1, x́2)} reproduce X1 and X1́

as X1 ≡ {(x1, x2)} and X1́ ≡ {(x́1, x́2)}.
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Via the above analysis, the face ft across which the extrinsic curvature is

defined can be defined very-well via the relation

ft ≡ X . (8.21)

The holonomy-flux variables can be computed in the same way as it was

done in section 2, but by replacing f with ft.

The Regge geometries can be obtained by imposing the following additional

constraints

X = X1 = X1́. (8.22)

This results discussed in this chapter show how the Regge and twisted ge-

ometries are related. Furthermore, they reflect the generality of the twisted

geometries and the particularity of the Regge ones. Moreover, they can have

important applications in the quantum polyhedra [27–29].



Chapter 9

Regge and Twisted Geometries

in Schwarzschild Spacetime

In testing general theory of relativity, people usually focus on Schwarzschild

space-time. For this reason, the study of quantum gravity in this field of

space takes an important interest hoping to find tests for loop gravity.

Thus, it is natural to try to find out a mechanism by which the spacetime

manifold coordinates are discritized, in particular Schwarzschild’s manifold

coordinates. A moments of reflection leads to explore the results derived in

Refs. [87, 91]. In fact, in Ref. [87], the authors derived an elegant and nice

relation between Regge and twisted geometries. This relation is considered

in dealing with the extrinsic curvature and computing the holonomy along

Schwarzschild geodesics; in Ref. [91], the extrinsic curvature in Schwarzschild

spacetime is computed (in part). This result is considered in constructing

the quantum geometry for Schwarzschild spacetime.

9.1 The quantum Schwarzschild spacetime

What is the possible graph for Schwarzschild spacetime? The trial to answer

this question leads us to a specific discretization of the Schwarzschild space-

time manifold coordinates. This discretization is the center problem of the

present paper.

Let us first discuss some results in the literature. In Ref. [92], some useful

discussion about the possible graph for a Schwarzschild spacetime is given.
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The discussion motivated the choice of what is known as the wheel graph. In

Ref. [93], the author motivated the choice that the graph has to be structured

with the maximum number of continuum points, this amounts to add non-

radial edges (see for instance Ref. [92]). These results are very useful heuristic

ideas, but some modifications are needed in order that the above question

get answered correctly.

The problem with the above graphs is that: (a) they are constructed before

exploring the mathematical structure of the holonomy-flux variables (via

Schwarzschild metric) and (b) the fact that the area of space is the natural

variable in loop gravity (see for instance [1–3]) is not considered seriously;

in fact, the infinitesimal calculation (as it looks in the large scale) has to be

based on this variable. Thus, one is motivated to search for a new graph

resolving the above problems provided that it is still of spherical symmetry.

The fact that the holonomy-flux variables can be computed explicitly is the

key result to construct the correct graph. To see how does this work, we

follow the following two steps:

1. we compute the holonomy-flux variables via Schwarzschild metric. This

step is the task done in Ref. [91]. The results are

Ki
a = − ∂

∂R
eia (9.1)

where Ki
a = 1√

det(E)
KabE

b
jδ
ij, Kab = 1

2
∂τqab and Ea

i = 1
2
εabcεijke

j
be
k
c . The

pair (R, τ) (Lemaitre coordinates) is the transformed Schwarzschild pair

(r, t) in order that the studied slice Σ becomes constant τ slices. Let us

denote the manifold constructed by Lemaitre coordinates by L. In this

manifold, we attempt to interpret
{
Eb
j

}
geometrically. One can see that

this set, let us denote it by , is of three areas orthogonal at any point

of spacetime, so one can add the closure area face and get the following

interpretation: constructs at any point of spacetime a tetrahedron (to

understand how does this work, see Ref. [87]; Through the perspective

in it, you can relate the extrinsic curvature with this structure),

2. we discritize the coordinates of L by considering the fact that the area

of space is the natural variable in loop gravity and the infinitesimal

calculations should be based on this variable. This discretization can
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be performed as follows:

ER
1 = ρ2 sin θ = jR +

1

2
, (9.2)

Eθ
2 =

√
rsρ sin θ = jθ +

1

2
, (9.3)

Eφ
3 =

√
rsρ = jφ +

1

2
(9.4)

where rs is the Schwarzschild constant radius, jR, jθ, jφ = 1
2
, 1, · · · (we

have considered the large values in which one can approximate by the

equidistant spacing spectra) and ρ =
[

3
2
(R− τ)

] 2
3 r

1
3
s . These equations

allow to vary the coordinates of L freely provided that the area of space

is the natural variable to be dealt with infinitesimally.

This construction opens a central question, what is the right geometry

that can be assigned to the Schwarzschild spacetime graph. In order that

this question get answered correctly, we first discuss the relation between

Schwarzschild geodesics and the extrinsic curvature. Throughout the above

construction and considering the results in Ref. [87], one can see that: (a) the

jumping in moving along a Schwarzschild geodesic does not generally pre-

serve the matching in the configurations of the shared areas separating two

tetrahedra of a jump. This result reflects the statement: Regge geometries

are not generally valid and they only correspond to some specific geodesics ;

the general case requires more general geometries such as twisted geometries.

Fig. 9.1 displays a visualization to the way gravity affects a test particle; it

provides a way to imagine the structure of spacetime in the presence of mat-

ter. The source of gravity is presented as a huge node Hilbert spaceHN of va-

lency N ; the test particle presents a small spherical symmetry Schwarzschild

spacetime graph. A visualization to the way gravity affects a test particle is

given: the huge node Hilbert space (gravity source) affects the configuration

of the areas and the latter are connected with the test particle, which in

turn affect the test particle. In order to be familiar with the Schwarzschild

spacetime graph and the picture about this construction becomes more clear,

we provide a computation of the holonomy along Schwarzschild geodesics.

In Ref. [87], the computation of the extrinsic curvature is performed only

for two adjacent tetrahedra. This computation for a Schwarzschild geodesic

between two points p1 and p2 looks as an elementary extrinsic curvature.

This is can be considered in the following sense: if we have a test particle
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gravity source

test particle

Figure 9.1: A source of gravity (the big ball) and test particle (the small
ball) embedded in a 2d graph. The illustration is intended to be considered
to imagine the real case which is in three dimensional space: each triangle is
replaced by a tetrahedron and the 2d graph becomes 3d one. The dashed lines

refer to the presence of additional structures not presented.

moving along a Schwarzschild geodesic, then it will be at any time located

in a given volume which is the integration of elementary volumes, and the

latter are having different 4d vectors (perpendicular to Σ) at any point of

the geodesic. This means that the test particle will get a series of actions

of curvatures (along the geodesic) and the total action on the particle is

the sum of all the actions or simply the integration. Therefore, between p1

and p2 in a Schwarzschild geodesic, the total holonomy is defined as: UT =

Ul1Ul2 · · ·Uln = nl1e
(γΘl1−αl1 )τ3ñ−1

l1
· nl2e(γΘl2−αl2 )τ3ñ−1

l2
· · ·nlne(γΘln−αln )τ3ñ−1

ln
.

Thus, one has to get

UT = nl1e
(γ

∑i=n
i=1 Θli−

∑i=n
i=1 αli )τ3ñ−1

ln
(9.5)

where n is the number of jumps recorded by the test particle between p1

and p2. Note that we have considered a geodesic compatible with Regge

geometries and fixed θ to be π
2
; the holonomy is computed along a geodesic

parametrized in the plane (R, φ).

As we have discussed, in the large scale each quantity in the sum corre-

sponds to an elementary object, which amounts to replace the sum with an

integration, that is we have

UT = nl1e
(γ

∫
Θli−

∫
αli )τ3ñ−1

ln
. (9.6)

Now, let us make use the result at Eq. 9.1 . Remind that we have discritized
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L’s coordinates, and at each point of Schwarzschild spacetime the curvature

computed at Eq. 9.1 corresponds to a value of {θli}. This leads us to write

UT = nl1e
(γ

∫
(− ∂

∂R
e3φ)−

∫
αli )τ3ñ−1

ln
. (9.7)

integrating over R and taking the rotation between the two frames (the

initial the the final tetrahedron) as
∫
αli = Ξ, we get

UT = nl1e
(−γρ−Ξ)τ3ñ−1

ln
. (9.8)

This gives the total parallel transport along the geodesic.

The electric field X is a vectorial quantity, its total can be seen as the sum of

all its elementary vectors along the geodesic, by considering the continuous

variation of ρ between the two points p1 and p2 and taking the values that

satisfy its discrete aspect.

The above computation is defined in the Lemaitre manifold, so one has to

consider the following transformations to get measurable quantities in the

Schwarzschild manifold:

dτ = dt+

√
rs
r

1

1− rs
r

dr, (9.9)

dR = dt+

√
r

rs

1

1− rs
r

dr (9.10)

The results of this chapter provide a discretization for Schwarzschild man-

ifold, which can be considered in searching for tests for loop gravity. Fur-

thermore, they provide a truncation of general theory of relativity closely

related to the full theory since the Schwarzschild manifold is the full space

in the case of spherical symmetry. Moreover, the findings can have impor-

tant applications in developing semiclassical methods in loop gravity [27] for

Schwarzschild spacetime.



Chapter 10

Space Density from Loop

gravity

In this chapter, we collect some results recently obtained from Refs. [64, 87,

91] in a consistent way, and then try to find out a new property for spacetime

called space density. The fact that (in the quantum polyhedra) the volume

of space Vs is playing the role of the Hamiltonian generating classical orbits,

it has to be considered seriously: Vs should not be taken just as an abstract

mathematical notion, but as a physical quantity representing the energy.

10.1 Space Density

In the context of the results of Refs. [64, 87, 91], let us first start with a

simple example (for simplicity). Consider three tetrahedra T1,T2 and T3

with a common corner c. We denote by
{

Tjspace, j = 1, 3
}

the spaces of

points covered by the convex hulls of the tetrahedra
{

Tj, j = 1, 3
}

. Fig. ??

displays three different regions R1,R2 and R3 defined by

R1 R
2 R

3

T1

T T
2 3

Figure 10.1: Three tetrahedra with a common corner. This illustrates the real
case (three dimensional space); the triangles are replaced by tetrahedra and the

2d areas becomes 3d regions.
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R1 = T1space ∩ T2space ∩ T3space, (10.1)

R2 = T2space ∩ T3space, (10.2)

R3 = T3space. (10.3)

But the three tetrahedra
{

Tj, j = 1, 3
}

have the comment corner c, thus

any point p ∈ R1 presents a degeneracy g = 3, i.e. it reflects the position in

T1,T2 and T3. If we define a quantity called space density DR for a region R

as the number of intersections recorded on this region, and gauge the space

density of separate tetrahedron (no intersection recorded on its region) to be

one, it is then clear to write

DR1 = 3, (10.4)

DR2 = 2, (10.5)

DR3 = 1. (10.6)

It is worth to note that the space density discussed here is not an abstract

mathematical visualization but a deep property characterizing the space-

time. Furthermore, it was shown that (in the quantum polyhedra [27–29])

taking the volume of tetrahedra as playing the role of the Hamiltonian gen-

erating classical orbits reproduces the right spectrum of the volume found in

loop gravity. Even canonically [44–46], it was shown that the Hamiltonian

constraints affect the spacetime structure by adding a quanta of space, or

simply a volume. Thus, a density for space is not something to worry about,

it is like assigning a density for the energy.

Let us now generalize the idea to the Schwarzschild spacetime graph. Be-

cause of the complexity of the construction, we restrict our computation of

space density to the contributions of the tetrahedra
{

Ti, i = 1, n
}

along the

R-line coordinate and take θ = π
2

(in the Lamaiter coordinates, of course).

First, we suppose that the gravitational field, sayF , of our system F ∼= 0 at

ρ = ρmax, therefore it is possible to find n as

n = 2(jR)max + 1 (10.7)
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space density: continuous approximation

Figure 10.2: (a) n tetrahedra with a common corner. This illustrates the
real case (three dimensional space); the triangles are replaced by tetrahedra
and the 2d areas becomes 3d regions. (b) A visualization to the space density,
around the gravity source, using color intensity. (c) A continuous approximation
(analytic) to the space density as a function of ρ. The dashed line in (a) refers

to additional structures which are not presented here.

where we have considered infinitesimal jumps with δjR = 1
2
. Therefore, the

number of regions along theR-line coordinate is n, i.e. we have
{

Rj, j = 1, n
}

.

Accordingly to what we have done in the above example, it is clear that one

can write:

DRi = n+ 1− i = 2(jR)max + 2− i, i = 1, n. (10.8)

or as a function of ρ as

DR = 2
(
η − ρ2

)
+ 3. (10.9)

where η = (jR)max and ρ gets discrete values. Fig. ?? visualizes the struc-

ture. Note that restricting the computation of the space density to the

contributions of the tetrahedra
{

Ti, i = 1, n
}

along the R-line coordinate is

not just an abstract non physical example, it can be rigorously applied to

test particles moving along geodesics, say , which belong to the R-line coor-

dinate. It is to be noted that
{

Ri, i = 1, n
}

naturally include the change in

the configurations of the tetrahedra. This is because of the fact that they

are defined as intersections.

The very important results shown above open new trends and avenues for

studying the properties of the spacetime structure. Exploring the properties

already found concerning ordinary matter and the notion of density in the

context of the present study will help to discover more the structure of space-

time.
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10.2 Gravity as Mass Defect

Since the general theory of relativity papers have been published, the gravity

theory still defined as a manifestation of curved geometry. Even quantita-

tively (e.g. loop gravity [1]), quantum geometries become arisen such as

twisted and Regge geometries. But, the geometric aspect still the corner-

stone.

More recently, the authors in Ref. [65] have shown that space is defined with

a property called space density. In the present paper, we find that the space

density property can interpret gravity very nicely. In fact, the space density

found in Ref. 96 interpret gravity the same as mass defect, in nuclear physics,

interprets the bending energy that holds nucleus together. This leads to state

the main result the paper try to show: gravity can be seen as mass defect

happens to test particles.

It is a well-known fact that the mass of a nucleus does not equal to the sum

of its constituents masses. The difference called the mass defect. It serves as

a binding energy holding the nucleus together. Surprisingly, something like

this gets arisen in loop gravity. To see how does really work, let start with a

simple example and then generalize the idea. We suppose (theoretically) that

a test particle p, with mass m and volume V , is located in the tetrahedron

T3 such that pspace ∈ R3 where pspace is defined by V =
∫

pspace
dx3, that is

the space occupied by the particle volume. Thus the volume mass ρp can be

written as

m = ρpV =

∫
pspace

ρpdx3 = ρp

∫
pspace

dx3. (10.10)

Now, how to define m when pspace ∈ R2 or ∈ R1?. We have seen that

space is defined with density. Thus if we gauge the space density of separate

tetrahedra (that is there are no intersections recorded on their regions) to

be one, it is clear that
∫

pspace
dx3 for R2 and R3 must contain an additional

term, say K(DRi
) where i = 2, 3, referring to the density such that we have

the map:

π3→i :

∫
pspace

dx3 7−→
∫

pspace

K(DRi
)dx3 = K(DRi

)V (10.11)

where the map practically refers to the jump of the test particle from R3 7−→
Ri, i = 2, 3. Note that there is no clear arguments lead to identify the
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quantity K(DRi
). Thus we keep it unknown and symbolized by K(DRi

) until

some evidence about get arisen. This because our understanding of the

space structure is far from been practical and clear; its explicit definition

may includes non trivial behavior. It is clear that in π3→i the quantity of

ordinary matter do not change (except the relativistic effect: increasing the

mass with the velocity). This allows to answer the above question writing

mRi
= ρp

∫
pspace

K(DRi
)dx3 = K(DRi

)ρp

∫
pspace

dx3 (10.12)

where i = 2, 3 and mRi
is the test particle mass in R2 or in R3. This leads

to introduce a quantity called mass defect defined by the difference

∆mi = mRi
−m = (K(DRi

)− 1)m. (10.13)

But, what does this quantity serve for?. What we know, so far, about gravity

is just the fact that gravity is a geometric theory based on the Einsteinien

idea of curvature (except some new perspectives such as those in string

theory which are not proved yet). The present novel quantity, mass defect,

interprets very nicely the fact being gravitationally interacted. It simply

states that when a test particle is moving in a gravitational field, it manifests

a mass defect happens with it which becomes a kinetic energy (this should

not be confused with the relativistic effects on the mass of the test particle

which appears with the increase in the velocity). In fact, the mass defect

found here has a very close notion to what it is well known as gravitational

potential energy. Roughly, it replaces this notion.

It is to be noted that the novel quantity we have found, mass defect, it

is not a strange and subtle result. In fact, the presence of this quantity

can be traced back to the presence of the notion of space density (together

with the fact that a test particle can not never be placed in a gravitational

field without occupying a volume), which in turn can be traced back to

the well-known fact in loop quantum gravity (more specifically the quantum

polyhedron): the volume of space has the role of the Hamiltonian generating

classical orbits, i.e. it has the role of energy which can be defined with a

density.

Note that in the above study, we have considered a simple example. The

general case (for a macroscopic motion) refers to the continuum where the
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indice i is dropped and the density becomes DR (or more generally D for a

motion in the 3d space) , then the mass of a test particle depends on the

position in the spacetime around the gravity source, which can be written

generally as

mphys = K(D)m. (10.14)

10.2.1 Gravity Force

How gravity force can be interpreted in the context of the present study?.

Note that we have found a mass defect happens to test particles moving in a

gravitational field. Together with the fact that the mass is equivalent to the

energy (via Einstein relation E = mc2), the the gravity force becomes clear

fact. More explicitly, we write (we have considered the jumps in the map

π3→i as presenting an infinitesimal motion, as it looks in the large scale)

dm = (K(DRi
)− 1)m =

dE

c2
=

Fdx

c2
(10.15)

where E the energy of the test particle, F the gravity force affecting it and

dx = a the distance between the two tetrahedra in the jump (infinitesimal,

as it looks in the large scale). The last relation leads to write

F =
(K(DRi

)− 1)mc2

a
(10.16)

which gives the gravity force locally.

10.2.2 Gravitational Potential Energy

We have stated above that the mass defect replaces in fact the gravitational

potential energy, how does really work?. It is a well known fact that test

particles around a gravity source have potential energy. If we take a particle

moving (near the earth surface) in the R-lined coordinates (radial motion)

such that the distance a is the radial distance the particle moves. Thus, the

particle will get a gravitational potential energy (when it moves from the

source tetrahedron into the target one, separated by a distance a) given by

Ep = mga where g = 9.81. This energy manifests as a kinetic energy given

by

Ec =
1

2
mv2 = mga = (K(DRi

)− 1)mc2 (10.17)
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(we have supposed that the particle started with a zero velocity) where v its

velocity at the target tetrahedron in the jump.

In summary, in this chapter, we find a new interpretation for the fact being

gravitationally interacted. This very important result, although it is still a

starting idea (not developed yet or generally accepted) for further develop-

ment, open new trends in studying gravity and the quantum spacetime.

It is to be emphasized that there are no evidences, as much as we know,

can be considered to identify the quantity K(D). Thus it still unidentified

waiting future researches about.



Chapter 11

Conclusion

11.1 Summary of the Key Results

Loop gravity has brought and opened new trends and avenues in exploring

the quantum structure of spacetime through its three well-known methods:

canonical, covariant and geometrical approaches. In the semiclassical limit,

the three approaches give close results. e.g. in Ref (28), it has been proved

that the volume spectrum in the geometric approach has a good agreement

with the spectrum found canonically in loop gravity. However in the deep

quantum regime, each approach has its own behavior.

After the introductory chapters 1 and 2, we have seen that the SU(2)

parametrization for loop gravity graph, as it has been proved this parametriza-

tion has a nice representation via the framework by Rovelli in Ref (11), can

be interpreted in the more general case: twisted-truncation of general relativ-

ity. Then an explicit study on the exact nature of Schwarzschild Spacetime

graph has been concluded and discussed. The study on the Schwarzschild

Spacetime graph led us to find a new quantity called space density, which de-

scribe and provide a nice property for space like the one in ordinary matter.

Next, we have found that Bohr-Sommerfeld quantization condition can be

applied not only to the quantum tetrahedron but, more specifically, to the

quantum trihedron. Moreover, the idea of virtual lines used in the canonical

derivation of the volume of space has been proved that can be applied rig-

orously to derive the semiclassical spectrum of the volume. Then, we have

seen that the quantum pentahedron behaves in a more analogous way to the

behavior of ordinary matter at the quantum level: a representation on phase
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spaces gives an atomic structure for the space structure closely related to the

one in ordinary matter. Next, we have seen that the discreteness of the space

measures, via Bohr-Sommerfeld quantization, is not only related to area and

volume but even to the length of space quantization. The spectrum found

matches well the one found in loop gravity.

11.2 Future Research Interests

– Regge and Twisted Geometries in Loop Gravity: The work done

in this title concerns the euclidean case where the graph is constructed

of N copies of SU(2), the number of links constructing it. A future

research will address the general case where the grains of space are

four dimensional objects. The generalization is the step from an SU(2)

parametrization of the loop gravity graph into SL(2, c) parametrization.

– Regge and Twisted Geometries in Schwarzschild Spacetime:

The graph found and discussed in the title of this study open new trends

and avenues in exploring the quantum structure of the Schwarzschild

Spacetime. A future research will handle a numerical study for the

Schwarzschild Spacetime geometry using the technical tools and the

results found in the ”Regge and Twisted Geometries in Schwarzschild

Spacetime” paper.

– Space Density from Loop Gravity: the notion of space density

open trends for studying the spacetime structure and its properties. A

future works will address the the other solutions of Einstein’s general

theory of relativity equations.

– Length of Space Quantization: The main virtue in the length of

space quantization shown in the paper of this title is that it considerably

simplify the quantitative study of spacetime geometry. This because of

the fact that all classical physics are based on the length of space de-

scription as a technical tool. The length of space quantization shown in

the ”the quantum tetrahedron and the length spectrum”paper handles

the case of the quantum polyhedron. Future research will address the

general case: the quantum polyhedron and the length spectrum.

– The quantum Trihedron: A followed work to the ”The quantum

Trihedron” paper will address the relation between the area of space
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and the quantum polyhedron. An expected result is that the quantum

polyhedron has structure analogous to the one of ordinary matter.

– The Quantum Pentahedra: In the ”The Quantum Pentahedra” pa-

per, an atomic structure of the quantum pentahedron has been dis-

covered. The generalization of the work for the quantum polyhedron

would give an analogous between the spacetime steructure and ordinary

matter. This work will be considered in a followed paper to the work.



Appendix A

The SL(2, C) representations

Let start by giving the corresponding casimirs, which are

C1 =
1

2
JIJJ

IJ = k2 − l2 (A.1)

C2 =
1

8
εijklJ

IJJKL = ~K · ~L. (A.2)

In this derivation for |p, k, j,m〉 of V (p,k) one has to diagonalizes the corre-

sponding operators. A direct computation allows to find the following (these

were first derived and investigated by Gelfand et al (1963))

L3 |j,m〉 = m |j,m〉 (A.3)

L+ |j,m〉 =
√

(j +m+ 1)(j −m) |j,m+ 1〉 (A.4)

L− |j,m〉 =
√

(j −m+ 1)(j +m) |j,m− 1〉 (A.5)

k3 |j,m〉 = −α(j)

√
j2 −m2 |j − 1,m〉 − β(j)m |j,m〉+ α(j+1)Θ |j + 1,m〉

(A.6)

k+ |j,m〉 = −α(j)$ |j − 1,m+ 1〉 − β(j)ϑ |j,m+ 1〉 − α(j+1)ς |j + 1,m+ 1〉
(A.7)

k− |j,m〉 = α(j)$ |j − 1,m− 1〉 − β(j)ξ |j,m− 1〉 − α(j+1)ψ |j + 1,m− 1〉 .
(A.8)
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where

ψ =
√

(j −m+ 1)(j −m+ 2) (A.9)

ξ =
√

(j −m+ 1)(j +m) (A.10)

ς =
√

(j +m+ 1)(j +m+ 2) (A.11)

ϑ =
√

(j +m+ 1)(j −m) (A.12)

$ =
√

(j −m− 1)(j −m) (A.13)

L± = L1 ± L2 (A.14)

K± = K1±K2 (A.15)

α(j) =
i

j

√
(j2 − k2)(j2 + p2)

4j2 − 1
(A.16)

β(j) =
pk

j(j + 1)
. (A.17)

Θ =
√

(j + 1)2 −m2. (A.18)
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Résumé 87

DEVELOPPEMENT MATHEMATIQUE ET APPLICATIONS

DE LA GRAVITATION QUANTIQUE A BOUCLES

Gravitation quantique à boucles est une théorie de principe pour décrire

la structure quantique de spacetime à l’échelle de Planck, l’échelle à laque-

lle la relativité générale et la théorie quantique manifestent également. La

théorie vient dans trois versions: L’approche canonique, approche covariante

et approche géométrique. Toutes les approches utilisent le même espace de

Hilbert, mais nous ne savons pas si elles correspondent en fait à la même

théorie.

Dans cette thèse, je vais présenter nos principaux résultats dans la gravité

quantique à boucles programme, qui se situent entre ces trois approches.

Nous commençons par décrivant les approches canoniques et covariantes dans

laquelle les notations et les concepts généraux de la théorie sont fixés. En-

suite, on calcule la longueur de l’espace, la longueur des arêtes tétraédriques.

Après cela, nous étudions polyèdres quantique et sa relation avec la gravité

quantique à boucles. Plus spécifique, nous discutons du tétraèdre quan-

tique: le 4-noeud espace de Hilbert. Nous terminons le chapitre en exam-

inant notre contribution dans les quantum polyèdres: la discrétisation de

l’espace en utilisant Bohr-Sommerfeld quantification. Dans le suivant, nous

dériverons le volume d’espace pour nombre arbitraire de faces du polyèdre.

Nous utilisons le idée de lignes virtuelles ainsi que le fait que le noeud es-

pace de Hilbert avec valences N peut être cracher en série de connectés

4-valences nœuds espaces de Hilbert. Ensuite, nous étudions la pentaèdre

quantique dans lequel une belle représentation sur les espaces de phase pour

les atomes pentaèdres d’espace est donné. Ensuite, nous étudions: (a) Regge

et Twisted Géométries dans le contexte de la Gravity à boucle et (b) Regge

et Twisted Geometries dans Schwarzschild Spacetime. En plus, le graphique

de Schwarzschild Spacetime est bien étudiée. Enfin, une nouvelle quantité

appelé densité d’espace est introduit et une interprétation de la force de

gravité est discuté.

Mots-clés:

gravitation quantique à boucles; Spin Foam; Méthodes semiclassique; La

gravité quantique
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MATHEMATICAL DEVELOPMENT AND APPLICATIONS

OF LOOP QUANTUM GRAVITY

Loop Quantum gravity is a tentative theory to describe the quantum struc-

ture of spacetime at the Planck scale, the scale at which both general rel-

ativity and quantum theory manifest equally. The theory comes in three

versions: The canonical approach, covariant approach and geometric ap-

proach. All the approaches use the same Hilbert space, but we do not know

whether they actually correspond to the same theory.

In this thesis, I will present our main results in the loop quantum gravity

program, all of which lie in between the three approaches. We start with de-

scribing The canonical and covariant approaches in which the notations and

general concepts of the theory are fixed. Then, we discuss our contribution

on the length spectrum of space, the length of the tetrahedral edges. After

that, we investigate the quantum polyhedra and its relation to loop quantum

gravity. More specifically, we discuss the quantum tetrahedron: the 4-node

Hilbert space. We finish the chapter by investigating our contribution in

the filed the quantum polyhedra: the discreteness of the area of space via

Bohr-Sommerfeld quantization. Next, we investigate our deriving to the vol-

ume of space spectrum for arbitrary number of faces of the polyhedron. We

use the idea of virtual lines together with the fact that the node Hilbert

space with valency N can be split into series of connected 4-valent nodes

Hilbert spaces. Then, we study the quantum pentahedron in which a nice

representation on phase spaces for the pentahedral atoms of space is given.

Next, we investigate our works on: (a) Regge and Twisted Geometries in

the context of the loop Gravity Hilbert space and (b) Regge and Twisted

Geometries in Schwarzschild Spacetime. We discuss the interesting results in

which twisted-truncation is included in interpreting the loop gravity graph.

Furthermore, the Schwarzschild Spacetime graph is well-studied. Finally, a

new quantity called space density is introduced and an interpretation for

gravity force is discussed.

Key Words: Loop Quantum Gravity; Spinfoam; Semiclassical Methods;

Quantum gravity
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