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Chapter 1

Introduction

On July 4th 2012 the ATLAS and CMS experiments at CERN presented their

results in the search for the Higgs boson. The data collected at the Large Hadron Collider

(LHC) during the �rst run clearly indicated that a new particle had been observed. The

search for this particle was one of the main reasons the LHC was constructed as the Higgs

boson, it is not just a new particle in particle physics, but really forms one of the foundations

of the electroweak sector of the Standard Model (SM), it allows to give masses to both

fermions and gauge bosons in a local gauge invariance theory, it is at the heart of electroweak

uni�cation, quark mixing etc.

The importance discovery was clear a bit more than a year later when, on October

8th 2013, François Englert and Peter Higgs were awarded the Nobel prize in physics: �for

the theoretical discovery of a mechanism that contributes to our understanding of the origin

of mass of subatomic particles, and which recently was con�rmed through the discovery of

the predicted fundamental particle, by the ATLAS and CMS experiments at CERNs Large



6

Hadron Collider�.

Despite the remarkable experimental con�rmation of the Standard Model, even

with the Higgs boson present, it is not able to explain several observations like dark matter,

the special role of gravity and the expansion of the universe. It is these irritating open ques-

tions that make particle physicists believe that the Standard Model is only a simpli�cation

of a more complex underlying structure.

There are various motivations for studying noncommutative space-time (NC). The

idea of space-time noncommutativity is in fact very old. It is usually attributed to Werner

Heisenberg who proposed it in the late 1930�s as a means of regulating the ultraviolet

divergences which plague quantum �eld theory (GFT). Heisenberg suggested this idea in a

letter to his doctoral student Rudolf Peierls [1], who actually applied it in a non-relativistic

context of electronic systems in external magnetic �elds. He also passed the idea to Wolfgang

Pauli who then involved Robert Oppenheimer in the discussion [2]. Oppenheimer carried

it to his student Hartland Snyder, who published the �rst concrete example in 1947 [3,

4]. It was a period where ideas about renormalization also born and the success of the

renormalization theory took over the ideas about noncommutative coordinates. Thus, the

idea of noncommutative space-time was abandoned for the time being. On the other hand,

noncommutativity was pursued on the mathematical side, where especially the work of Alain

Connes on noncommutative geometry in the 1980�s stands out, providing the mathematical

tools for further studies on noncommutative space-time [5]. In particle physics the interest

in quantum �eld theories on noncommutative space-time declined, though not entirely, and

was renewed only in 1999 by the work of Seiberg and Witten on string theory [6]. They
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showed that the dynamics of the endpoints of an open string on a D-brane in the presence

of a magnetic background �eld can be described by a Yang-Mills theory on noncommutative

space-time. Since string theory is nowadays the most popular ansatz for an ultimate theory

capturing all laws of nature up to the Planck scale, the impact of this result on the particle

physics community resulted in an outburst of publications on theories on noncommutative

space-time within the last decade.

Nevertheless, the motivation for studying physics on noncommutative space-time

can also be provided independently of string theory. Whatever the theory describing physics

at the Planck scale is, we know that it is certainly not the Standard Model (SM) of particle

physics, even though its predictive power has been experimentally veri�ed to astonishing

accuracy within the past decades. One of its major drawbacks is its incompatibility with

general relativity. Thus, QFT and the SM have to be altered on the road towards the

Planck scale in order to incorporate gravity. Since gravity alters the geometry of ordinary

space-time, we expect that its quantization occurs at or before the Planck scale. Doplicher

et al. show that space-time noncommutativity prevents the gravitational collapse allowing

thus to incorporate space-time �uctuations into quantum �eld theory [7].

Several physical models have been formulated in the framework of the noncom-

mutative space-time such as noncommutative quantum electrodynamics (NCQED) and the

noncommutative standard model of particle physics (NCSM). Regarding the latter model,

there are two approaches that have been proposed; the �rst one is given by Chaichian et al.

[8] which enlarges the gauge group of the Standard Model (SM) by introducing new gauge

bosons in addition to those of the SM, where new Higgs scalars are then also required. The
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second approach [9] keeps the same gauge group of the SM, i.e. the same structure group

SU(3)C 
 SU(2)L 
 U(1)Y as in the original SM, no new particles are introduced but it

links between commutative and noncommutative gauge theories via Seiberg-Witten (SW)

maps [6]. This approach introduce corrections to the SM interactions which are given in

[10] and [11]. The contributions of these corrections up to the second order in ��� are also

calculated in [12].

The starting point is that the space-time coordinates do not commute with each

other. The noncommutative space-time can be characterized by Hermitian operators satis-

fying the following commutation relations:

[x̂�; x̂� ] = i��� ;

where here, and throughout the rest of the paper, hatted quantities indicate oper-

ators. A priori there is no reason to expect that ��� is constant. There is no fundamental

theoretical obstacle to formulate the theory also for non-constant ���(x), but we shall con-

centrate on the constant case in the following for simplicity of presentation. ��� is a real

and antisymmetric matrix which describes the noncommutativity and assumed here to be

constant. This constant matrix can also be thought of as some background �eld relative to

which the various space-time directions are distinguished. Furthermore, introducing a NC

scale �NC where the noncommutative e¤ects of the space-time become relevant, we rewrite

equation above as

[x̂�; x̂� ] =
i

�2NC
c�� :

where the matrix c�� are dimensionless coe¢ cients of order unity and can be

parametrized with two three-vectors ~E and ~B, and denote the timelike components c0i by
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~E and the spacelike components cij by ~B.

Instead of constructing quantum �eld theories on NC space-time (NCQFT) directly

in terms of the operators x̂, the NCQFT can be phrased in terms of conventional commuting

QFT through the application of the Weyl-Moyal (WM) correspondence, [13] i.e. an ordinary

function can be used instead of the corresponding NC one, by replacing the ordinary product

with the star -product.

The noncommutative extension of the SM considered within this work relies on

two building blocks: the Moyal-Weyl ?-product of functions on ordinary space-time and

the Seiberg-Witten maps. The latter relate the ordinary �elds and parameters to their

noncommutative counterparts such that ordinary gauge transformations induce noncom-

mutative gauge transformations. This requirement is expressed by a set of inhomogeneous

di¤erential equations �the gauge equivalence equations�which are solved by the Seiberg-

Witten maps order by order in the noncommutative parameter. Thus, by means of the

Moyal-Weyl ?-product and the Seiberg-Witten maps a noncommutative extension of the

SM as an e¤ective theory as expansion in powers of can be achieved, providing the frame-

work of our phenomenological studies.

There has been a lot of activity recently around physics on noncommutative space-

time. Since the construction of the NC version of the SM, many studies have been done

to explore its phenomenological consequences. The �rst limits on NCQED from an e+e�

colider experiment, yielding 141 GeV at 95% con�dence level was obtained at LEP by the

OPAL collaboration [14] and several high energy processes have also been explored by many

authors in order to obtain the limits on the scale of noncommutativity parameter �NC such
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as e�e� ! e�e� (Möller), e+e� ! e+e� (Bhabha) [15] e+e� !  [12], e+e� ! �+��

[16], e+e� ! HH [17] and neutrino-photon scattering [18] have been investigated in the

context of mNCSM. The usual bounds on the NC scale obtained from the mentioned papers

are about 1 TeV. On the other hand, there exist other works where the predicted a reach

scale seem ambiguous such as t! bW [19].

Actually, there are no theoretical predictions on the scale of noncommutativity

parameter �NC , such that only experiments can determine or constraint it. The main

purpose of this Theses is to estimate the bounds on the noncommutative scale �NC in

the context of NCSM, by following the approach of [9] and using the de�nition of the �

matrix that we have assumed and we will adopt it throughout this work. This thesis is

structured as follows. Chapter 2 is meant to provide the theoretical basis for the model

we will study in the remainder of this work. We will de�ne noncommutative space-time

in the canonical case and we will see Moyal-Weyl formalism which will play a central role

in this model. In the following chapter, Chapter 3, will be a presentation of the gauge

theory on noncommutative space-time, and giving �rst a brief recall about classical gauge

theory. In Chapter 4, we will discuss the basics of electroweak symmetry breaking and

the role of the Higgs mechanism in the Standard Model (SM) in quite some detail. In

Chapter 5, we will give an introductory overview of the NCSM. We will show di¤erent

choices for representations of the gauge group and the expressions of the noncommutative

electroweak interactions with Higgs and Yukawa sector. Additionally, in Chapter 5, we

will list a number of selected Feynman rules for noncommutative electroweak sectors up to

the �rst order in �. We are �nally moving to the main part of this thesis. In Chapter 6,
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we will discuss the limits on the scale of the noncommutativity parameter �NC via studying

the top-quark pair production through electron-positron collision in the framework of the

minimal noncommutative standard model (mNCSM), using the Seiberg-Witten (SW) maps

up to the �rst order of the noncommutativity parameter ��� . The closing chapter, Chapter

7, contains a summary of this study with some remarks, while the Appendix A contains

the complete source code of the program used to calculate the scattering cross-section at

tree level of the process e�e+ ! ; Z ! t�t. It also contains the instruction how one can

modify FeynArts and FormCalc [20-23] in order to include NCSM.
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Chapter 2

Noncommutative Space-Time (NC)

This chapter is meant to provide the theoretical basis for the model we will study

in the remainder of this work. We present noncommutative space-time in the canonical

case with Moyal-Weyl formalism which will play a central role in the construction of the

noncommutative standard model.

2.1 Noncommutative Space-Time (Canonical case)

Noncommutative space-time is a deformation of space-time that can be realized

by representing ordinary space-time coordinates x� by Hermitian operators x̂� that do not

commute:

[x̂�; x̂� ] = i��� : (2.1)

In this work, we assume for simplicity that

[��� ; x̂�] = 0: (2.2)
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A priori � has an arbitrary complicated dependency on x̂�. Nevertheless, we can assume a

constant �. In the literature two other cases have also been studied, where depends linearly

and quadratically on x̂�. Thus, noncommutativity with a Lie algebra structure

[x̂�; x̂� ] = i���� x̂� (2.3)

and noncommutative space-time with quantum group structure

[x̂�; x̂� ] =

�
1

q
R̂���� � ������

�
x̂�x̂� (2.4)

can be de�ned. We assume that the canonical noncommutativity (2:1) is a reasonable

approximation. Thus, we will introduce the following parametrization

[x̂�; x̂� ] = i��� =
i

�2NC
c�� =

i

�2NC

0BBBBBBBBBB@

0 �E1 �E2 �E3

E1 0 �B3 B2

E2 B3 0 �B1

E3 �B2 B1 0

1CCCCCCCCCCA
; (2.5)

with the constant symmetric 4 � 4 matrix c�� . In analogy to the electromagnetic �eld

strength tensor we have denoted the time-like components of c�� by
�!
E and the space-like

components by
�!
B .
�!
E and

�!
B will play di¤erent rôles, theoretically as well as phenomeno-

logically.

Building quantum �eld theories on the noncommutative space-time (2:1) starting

from the noncommuting operators x̂� is a bold venture. The construction of quantum �eld

theories on noncommutative space-time can be done more straightforwardly, if we take into

account that experiments do not measure space-time coordinates themselves, but particles

and �elds, and that in the corresponding mathematical framework providing the calculation
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of observables we only encounter functions of the space-time coordinates and not the coor-

dinates themselves. Therefore, we may seek for a way to express the commutator (2:1) of

the noncommuting objects x̂� by means of ordinary coordinates x� and a deformed product.

Thus, we are looking for a homomorphism between the associative algebra (Â; �) generated

by x̂� which de�nes the noncommutative space-time and the algebra (A; ?) of functions of

the ordinary space-time coordinates and a deformed product ?, just like noncommutative

geometry is constructed in algebraic geometry.

2.2 Moyal-Weyl ?-Product

The framework of Weyl�s quantization procedure [24] provides a formalism for

associating with the algebra of noncommuting coordinates (Â; �) an algebra of functions of

commuting variables with deformed product (A; ?). We de�ne a map W : A! Â by which

an element from Â is assigned to a function f(x0; :::; xn�1) � f(x) from A:

W (f) = f̂ =
1

(2�)
n
2

Z
dn�ei�� x̂

� ~f (�) ; (2.6)

with ~f (�) the Fourier transform of f(x):

~f (�) =
1

(2�)
n
2

Z
dnxe�i��x

�
f (x) : (2.7)

The multiplication of two operators W (f) and W (g) obtained from (2:6) yields another

operator W (f ? g):

W (f) �W (g) = f̂ � ĝ =W (f ? g) ; (2.8)
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with f ?g 2 (A; ?), a classical function which is well de�ned, as we will now show. Inserting

(2:6) in (2:8) we obtain:

W (f ? g) =W (f) �W (g) =
1

(2�)n

Z
dn�dnpei��x̂

�
eip� x̂

� ~f (�) ~g (p) : (2.9)

In the case of canonical noncommutativity (2:1), the product of the two exponentials in the

above formula will give an exponential of a linear combination of the x̂� after applying the

Baker-Campbell-Hausdor¤ formula

eÂeB̂ = eÂ+B̂+
1
2 [Â;B̂]+

1
12([Â;[Â;B̂]]+[[Â;B̂];B̂])+::: (2.10)

and considering the commutator relation (2:2), which thus makes all terms including more

than one commutator in (2:10) vanish:

ei��x̂
�
eip� x̂

�
= ei(��+p�)x̂

�� i
2
��p���� : (2.11)

We obtain f?g by comparing (2:9) with (2:6) and replacing the operator x̂� by the coordinate

x�:

(f ? g) (x) =
1

(2�)n

Z
dn�dnpei(��+p�)x

�� i
2
�����p� ~f (�) ~g (p) : (2.12)

Thus, the Moyal-Weyl ?-product [25] is obtained:

(f ? g)(x) = exp

�
i

2
���

@

@x�
@

@y�

�
f(x)g(y) jy!x : (2.13)

Using this prescription for the ?-product, we now calculate the ?-commutator of the ordinary

coordinate functions [x�?;x� ] and obtain, remembering the antisymmetry of ��� :

[x�?;x� ] = x� ? x� � x� ? x� = x�x� +
i

2
��� � x�x� � i

2
��� = i��� : (2.14)

This reproduces exactly the commutator (2:1):

[x�?;x� ] = [x̂�; x̂� ] = i��� ; (2.15)
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and shows how the noncommutativity encoded in the operators x̂� is shifted into the ?-

product of functions on ordinary space-time. Thus, we are now able to start the construction

of SM on noncommutative space-time still dealing with ordinary space-time coordinates or

more precisely, with functions on the ordinary space-time, but with a deformed product

instead of the ordinary one. Before going on in doing so, we need to give some important

properties of the ?-product. Under the integral the ?-product of two functions is equivalent

to the ordinary product

Z
d4x(f ? g)(x) =

Z
d4x(g ? f)(x) =

Z
d4xf(x)g(x); (2.16)

but this is not the case for the ?-product of three or more functions, where only one ?-

product can be replaced by the usual �-product:

Z
d4x(f ? g ? h)(x) =

Z
d4x((f ? g) � h)(x) =

=

Z
d4x(f � (g ? h))(x)

6=
Z
d4xf(x)g(x)h(x): (2.17)

Furthermore, we have invariance under cyclical permutation of the functions under the

integral:

Z
d4x(f ? g ? h)(x) =

Z
d4x((f ? g) � h)(x)

=

Z
d4x(h � (f ? g))(x)

=

Z
d4x(h ? f ? g)(x): (2.18)
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Chapter 3

Gauge Theory on Noncommutative

Space-Time

We will now concentrate on physics. We want to discuss the Standard Model on

a canonically deformed space-time in Chapter 5. Before we can do so, we have to think

about gauge theory on noncommutative space-time. Let us �rst brie�y recall classical gauge

theory. We will discuss in some detail the features that are essential for the noncommutative

generalization.

3.1 Gauge Theory on Classical Spaces

Internal symmetries are described by Lie groups or Lie algebras, respectively.

[T a; T b] = fabc T
c (3.1)
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The elements T a are generators of the Lie algebra, where fabc are its structure constants.

Fields are given by n-dimensional vectors carrying a irreducible representation of the gauge

group. Elements of the symmetry algebra are represented by n � n matrices. The free

action of the �eld  is given by

S =

Z
d4xL =

Z
d4x@� @

� : (3.2)

Requiring the gauge invariance of the action S, one has to introduce additional �elds, gauge

�elds and to replace the usual derivatives by covariant derivatives D�.

Let us start with the �eld  building an irreducible representation of the gauge

group, i.e.,

� (x) = i� (x) (x) ; (3.3)

where � is Lie algebra valued,

� (x) = �a (x)T
a:

Observe that the derivative of a �eld  does not transform covariantly, i.e.,

�@� (x) 6= i� (x) @� (x) : (3.4)

Replacing the usual derivatives @� by covariant derivatives D� and demanding that D� 

transforms covariantly, one has to introduce a gauge potential A�(x),

D� = @� � igA�(x);

A�(x) = A�a(x)T
a;
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�A�(x) =
1

g
@�� (x) + [� (x) ; A�(x)] :

As it is well known, the interaction �elds are a consequence of the gauge invariance of the

action. Interactions are gauge interactions. The modi�ed action reads

S =

Z
d4xD� D

� ; (3.5)

including gauge Fields A�. Forgetting about mass terms, we still need a kinetic term for

the gauge �elds in our action. The only requirements are the gauge invariance of the kinetic

term and renormalizablility of the theory. That �xes the kinetic term uniquely. This is a

crucial point, and the situation will be di¤erent in the case of the NCSM. The action is

given by

S =

Z
d4x (D� D

� + TrF��F
��) ; (3.6)

where F�� = @�A��@�A��ig[A�; A� ] is the �eld strength. Considering abelian gauge sym-

metry, commutators in F�� and in �A� will vanish. Let us make one more important remark,

that there is a sharp distinction between internal and external symmetry transformations.

As we will see, that is not true in the case of noncommutative gauge theory.

3.2 Noncommutative Gauge Theory

Noncommutative gauge theory, as presented in [26, 27], is based on essentially

three principles,

� Covariant coordinates,

� Locality and classical limit,
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� Gauge equivalence conditions.

Let us �rst brie�y recall our starting point. We have noncommutative coordinates

[x̂�; x̂� ] = i��� ;

Â =
C



x̂1; :::; x̂n

��
I

;

where I is the ideal generated by the commutation relations of the coordinate functions.

The product of function f; g 2 A is given by the Weyl-Moyal product.

3.2.1 Covariant Coordinates

Let  be a noncommutative �eld, i.e., b 2 �ni=1Â,
b� b (x̂) = i�̂ ̂ (x̂) (3.7)

or

b�  (x) = i� ?  (x) ; (3.8)

in the ? formalism, where W (�) = b�. Now, a similar situation arises as in Eq:(3:4), only
the derivatives are replaced by coordinates. The product of a �eld and a coordinate does

not transform covariantly, since the ?-product is not commutative,

b� (x ?  (x)) = ix ? � (x) ?  (x) 6= i� (x) ? x ?  (x) (3.9)

The arguments are the same as before, and we introduce covariant coordinates

X� � x� +A�; (3.10)



21

such that

b�(X� ?  ) = i� ? (X� ?  ): (3.11)

The covariant coordinates and the gauge potential transform under a noncommutative gauge

transformation in the following way

b�X� = i[�?;X�]; (3.12)

b�A� = i[�?;x�] + i[�?;A�]: (3.13)

Other covariant objects can be constructed from covariant coordinates, such as a general-

ization of the �eld strength,

F�� = [X�?;X� ]� i��� ; b�F�� = i[�?;F�� ]: (3.14)

For non degenerate �, we can de�ne another gauge potential V�

b�V� = @��+ i[�?;V�]; (3.15)

F�� = @�V� � @�V� � i[V�?;V� ]; (3.16)

b�F�� = i[�?;F�� ]; (3.17)

using

A� = ���V� ; F�� = i������F�� ; (3.18)

i���@�f = [x
�?;f ]:
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And we get for the covariant derivatives

D� ?  = (@� � iV�) ?  ; (3.19)

b�(D� ?  ) = i� ? D� :

Even for abelian gauge groups, the ?-commutators in Eq:(3:15) and (3:16) do not vanish,

and the theory has similarities to a non-abelian gauge theory on a commutative space-time.

Let us have a closer look at the gauge parameters and the gauge �elds. In classical

theory, the gauge parameter and the gauge �eld are Lie algebra valued, as we have men-

tioned before. Two subsequent noncommutative gauge transformations are again a gauge

transformation,

���� � ���� = ��i[�;�]; (3.20)

where �i[�; �] = �a�bf
ab
c T

c. However, there is a remarkable di¤erence to the noncommuta-

tive case. Let M� be some matrix basis of the enveloping algebra of the internal symmetry

algebra. We can expand the gauge parameters in terms of this basis, � = �aM
a, � = �bM

b.

Two subsequent gauge transformations take again the form

b��b�� � b��b�� = b��i[�;�]; (3.21)

but the commutator of two gauge transformations involves the ?-commutator of the gauge

parameters, and

[�?;�] =
1

2
f�a?;�bg

h
Ma;M b

i
+
1

2
[�a?;�b]

n
Ma;M b

o
; (3.22)

where
�
Ma;M b

	
= MaM b +M bMa is the anti-commutator. The di¤erence to (3:20) is

the anti-commutator
�
Ma;M b

	
, respectively the ?-commutator of the gauge parameters,
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[�a?;�b]. This term causes some problems. Let us assume that Ma are the Lie algebra

generators. Does the relation (3:22) close? Or does (3:22) rule out Lie algebra valued gauge

parameters? Clearly, the only crucial term is the anti-commutator. The anti-commutator

of two Hermitian matrices is again Hermitian. But the anti-commutator of traceless ma-

trices is in general not traceless. Relation (3:22) will be satis�ed for the generators of the

fundamental representation of U(n). Therefore it has been argued [28] that U(n) is the only

gauge group that can be generalized to NC spaces. But in fact arbitrary gauge groups can

be tackled. But the gauge parameters �, � and the gauge �elds A� have to be enveloping

algebra valued [26-29], in general. Gauge �elds and parameters now depend on in�nitely

many parameters, since the enveloping algebra is in�nite dimensional. Luckily, the in�-

nitely many degrees of freedom can be reduced to a �nite number, namely the classical

parameters, by the so-called Seiberg-Witten maps we will discuss in the next paragraph.

3.2.2 Locality and Classical Limit

The noncommutative ?-product can be written as an expansion in a formal para-

meter h,

f ? g = f � g +
1X
n=1

hnCn (f; g) :

In the commutative limit h! 0, the ?-product reduces to the pointwise product of functions.

One may ask, if there is a similar commutative limit for the �elds? The solution to this

question was given for abelian gauge groups by [6],

bA�[A] = A� +
1

2
��� (A�@�A� + F��A� ) +O

�
�2
�
; (3.23)
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 ̂ [ ;A] =  +
1

2
���A�@� +O

�
�2
�
; (3.24)

b� = �+
1

2
���A�@��+O

�
�2
�
: (3.25)

In this case, � is the noncommutativity parameter. First of all, let me introduce an impor-

tant convention to which we will stick from now on. Quantities with hat (b ; bA; b�::: 2 (A; ?))
refer to noncommutative �elds and gauge parameters, respectively which can be expanded

(cf. above) in terms of the ordinary commutative �elds and gauge parameters, resp.

( ;A; �). The Seiberg-Witten maps (3:23)-(3:25) reduce the in�nitely many parameters

of the enveloping algebra to the classical gauge parameters. The origins of this map are

in string theory. It is there that gauge invariance depends on the regularization scheme

applied [6]. Pauli-Villars regularization provides us with classical gauge invariance

�ai = @i�; (3.26)

whence point-splitting regularization comes up with noncommutative gauge invariance

b� bAi = @ib� + i hb�?; bAii : (3.27)

Seiberg and Witten argued that consequently there must be a local map from ordinary

gauge theory to noncommutative gauge theory

bA [a] ; b� [�; a] (3.28)

satisfying

bA [a+ ��a] = bA [a] + b�� bA [a] : (3.29)
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The Seiberg-Witten maps are solutions of (3:29). By locality we mean that in each order

in the noncommutativity parameter � there is only a �nite number of derivatives.

3.2.3 Gauge Equivalence Conditions

Let us remember that we consider arbitrary gauge groups. Noncommutative gauge

�elds bA and gauge parameters b� are enveloping algebra valued. Let us choose a symmetric
basis in the algebra, T a, 12(T

aT b + T bT a), . . ., such that

b� (x) = b�a (x)T a + b�1ab (x) : T aT b : +:::; (3.30)

bA� (x) = bA�a (x)T a + bA�ab (x) : T aT b : +:::; (3.31)

Eq:(3:29) de�nes the SW maps for the gauge �eld and the gauge parameter. However,

it is more practical to �nd equations for the gauge parameter and the gauge �eld alone

[26]. First we will concentrate on the gauge parameters b�. We already encountered the
consistency condition

b��b�� � b��b�� = b��i[�;�]:
More explicitly, it reads

ib��b� [A]� ib��b� [A] + hb� [A] ?;b� [A]i = �[[�; �]� [A] : (3.32)

Keeping in mind the results from Section 3:2:2, we can expand b� in terms of the noncom-
mutativity �,

b� [A] = �+ �1 [A] + �2 [A] + :::; (3.33)
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where �n is O(�n). The consistency relation (3:32) can be solved order by order in �.

0th order: �0 = �; (3.34)

1st order: �1 =
1

4
��� f@��;A�g ; (3.35)

=
1

2
���@��aA�b : T

aT b : : (3.36)

For �elds b the condition
��b [A] = b��b [A] = ib� [A] ? b [A] (3.37)

has to be satis�ed, keeping in mind that �� denotes an ordinary gauge transformation and

b�� a noncommutative one. That means that the ordinary gauge transformation induces a
NC gauge transformation. We expand the �elds in terms of the noncommutativity

b =  0 +  1 [A] +  2 [A] + ::: (3.38)

and solve Eq:(3:37) order by order in �. In �rst order, we have to �nd a solution to

�� 
1 [A] = i� 1 + ib� � 1

2
���@��@� : (3.39)

It is given by

0th order:  0 =  ; (3.40)

1st order:  1 = �1
2
���A�@� +

i

4
���A�A� : (3.41)

The gauge �elds bA� have to satisfy
�� bA� [A] = @�b� [A] + i hb� [A] ?; bA� [A]i (3.42)

Using the expansion

bA� = A0� +A
1
� [A] +A

2
� [A] + ::: (3.43)
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and solving (3:42) order by order, we end up with

0th order : A0� = A�; (3.44)

1st order : A1� = �
1

4
��� fA� ; @�A� + F��g ; (3.45)

where F�� = @�A� � @�A� � i[A� ; A�]. Similarly, we have for the �eld strength bF��
�� bF�� = i

hb�; bF��i (3.46)

and

bF�� = F�� +
1

2
��� fF��; F��g �

1

4
��� fA�; (@� +D� )F��g ; (3.47)

where

D�F�� = @�F�� � i [A�; F�� ] :

Let us conclude this Section with some remarks and observations.

� SW maps provide solutions to the gauge equivalence relations.

� Gauge equivalence relations are not the only possible approach to SW maps. Another

approach is via noncommutative Wilson lines, see e.g., [31].

� However, a certain ambiguity in the SW map remains. They are unique modulo

classical �eld rede�nition and noncommutative gauge transformation. We used these

ambiguities in order to choose b�; bA� Hermitian. The freedom in SW map may also

be essential for renormalization issues. There, parameters characterizing the freedom

in the SW maps become running coupling constants [32]. Discussing tensor products

of gauge groups, this freedom will also be of crucial importance in Section 5:2.
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� Gauge groups in noncommutative spaces contain space-time translations. Since

@f = �i��1ij
�
xj ; f

�
; (3.48)

we can express the translation of the �eld Ai as

�Ai = �j@jAi = i [�?;Ai] ;

where � = ��j��1jk xk The gauge transformation of Ai with gauge parameter � gives

b��Ai = i [�?;Ai]� �j��1ji

ignoring the overall constant, which has no physical e¤ect [33].

� NC gauge theory allows the construction of realistic particle models on a noncommu-

tative space-time with an arbitrary gauge group as internal symmetry group. Non-

commutative gauge parameters and gauge �elds are enveloping algebra valued, in

general (e.g., for SU(n)), but via SW maps the in�nite number of degrees of freedom

is reduced to the classical gauge parameters. Therefore these models will have the

proper number of degrees of freedom.
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Chapter 4

Standard Model of Particle Physics

(SM)

4.1 Introduction

The goal of particle physics is to explain the nature of the universe at its most

fundamental level, including the basic constituents of matter and their interactions. The

standard model of particle physics (SM) is a quantum �eld theory (QFT) based on the

SU(3)C 
 SU(2)L 
 U(1)Y gauge symmetry group which describes the strong, weak, and

electromagnetic interactions among fundamental particles. This theory has been the focus

of intense scrutiny by experimental physicists, most notably at high energy particle colliders,

over the last three decades. It has been demonstrated to accurately describe particles and

their interactions up to O(100) GeV. Despite the success of the SM, there are many reasons

to believe that the SM is an e¤ective theory which is only valid up 1 TeV. The Glashow-
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Salam-Weinberg (GSW) model of the electroweak interaction was proposed by Glashow

[34], Weinberg [35] and Salam [36] for leptons and extended to the hadronic degrees of

freedom by Glashow, lIliopoulos and Maiani [37]. The GSW model is a Yang-Mills theory

[38] based on the symmetry group SU(2)L 
 U(1)Y . It describes the electromagnetic and

weak interactions of the known 6 leptons and 6 quarks. The electromagnetic interaction

is mediated by a massless gauge boson, the photon (). The short-range weak interaction

is carried by 2 massive gauge bosons, Z and W . The strong interaction, mediated by

the massless gluon, is also a Yang-Mills theory based on the gauge group SU(3)C . This

is known as Quantum chromodynamics (QCD) [39-42]. The Standard Model of particle

physics is just a trivial combination of GSW model and QCD. The particle content of the

SM is listed in Fig:4:1: There is an additional scalar �eld called the Higgs boson (H), the

only remnant of the spontaneous symmetry breaking (SSB) mechanism invented by Brout,

Englert, Guralnik, Hagen, Higgs and Kibble [43-47]. The SSB mechanism is responsible for

explaining the mass spectrum of the SM.

This chapter gives a general overview of the SM of Particle Physics by taking

a brief look at the de�nition of the symmetry group and showing how the spontaneous

symmetry breaking is responsible for explaining the mass spectrum of the SM. In order to

understand the �eld content of the SM, it is necessary to begin with the de�nition of the

symmetry group.



31

4.2 Symmetries, Gauge Theory and Particle Content

Symmetries have always played an important role in physics. The creation of the

SM has not followed a di¤erent path; it is a theory based on a local symmetry.

The �rst theorem of Noether assures that any di¤erentiable symmetry of the action

of a physical system leads to a corresponding conservation law [48]. Any conservation law

of physics can be interpreted as resulting from the symmetries of a particular theory.

One example is the theory of Quantum Electrodynamics (QED). The invariance

under local transformation implies the existence of gauge �elds with speci�c properties.

To demonstrate such remarkable consequence, let us begin by considering a free theory of

fermions. The free Lagrangian can be written as

L = � (i�@
� �m) ; (4.1)

with  being the spin-1=2 �eld, � =  y0, and � the Dirac matrices. The lagrangian is

invariant under a global gauge transformation  ! e�i� , with � a constant phase, which

implies the conservation of the Dirac current j�(x):

@�j
� = 0; j� = � � : (4.2)

However, Eq:(4:1) is not invariant under local gauge transformations, where now � depends

on the space-time coordinates, and suggests that the derivative should be rede�ned as

@� ! D� � @� + iqA�: (4.3)
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where A� is a vector �eld. The lagrangian (4:1) with the replacement @� ! D� is now

invariant under the following local transformations

 (x)!  0(x) = e�i�(x) (x); (4.4)

A�(x)! A�0(x) = A�(x) +
1

q
@��(x) (4.5)

and is �nally given by

L = � (i�@
� �m) � q� �A� : (4.6)

The second term has been derived from the imposition of local invariance. It describes

the interaction of the fermionic matter  already existent on the theory, with the gauge

�eld A�. Therefore, a theory that had in principle only matter �elds, needs vector �elds to

provide interactions amongst fermions.

One could thus generalize this principle for all interactions, i.e. generate inter-

action terms for the weak, electromagnetic, strong and also gravitational forces through

speci�c symmetries imposed on the theory. This is basically the idea for constructing the

SM initially proposed by Glashow [34] and independently by Salam and Ward [49], extended

later by Weinberg [35] and Salam [36]. Of course the complexity is larger than previously

explained, since it works perfectly for abelian theories, however the world is not only de-

scribed by them. Before going ahead, it is worth reminding that the SM of particle physics

was created as a puzzle, and each piece was put together at di¤erent moments of History.

Initially, the electroweak theory was developed, and the gauge group SU(2)L 


U(1)Y was used to relate electric charge with the isospin and the leptonic hypercharge of a

particle. Besides matter �elds, four gauge bosons are included due to the gauge symmetry:
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one triplet associated with the SU(2) group and one singlet associated to the U(1). The

corresponding lagrangian, restricted to the leptonic �elds, is given by

L = �L�D�L+ �eR
�D0

�eR �
1

4
W��iW i

�� �
1

4
B��B�� (4.7)

where the covariant derivatives are de�ned by

D� = @� + i
g

2
�iW i

� + i
g0

2
B�; (4.8)

D0
� = @� + ig

0B�;

and L is the isospin doublet that contains the left-handed neutrino and electron, eR is the

right-handed electron; �Right-handed neutrinos are not included in the theory�, �i are the

Pauli matrices, and g and �g are the coupling constants. W i
�� and B�� are the �eld-strength

tensors:

W i
�� = @�W

i
� � @�W i

� � g�ijkW j
�W

k
� (4.9)

B�� = @�B� � @�B�:

The matter content of the world is not only formed by leptons but also by hadrons, and

it has been discovered that hadrons are composed by quarks. The symmetry that relates

the color charge in quarks is SU(3)C . The SM is consequently de�ned to have SU(3)C 


SU(2)L
U(1)Y as the gauge symmetry group. Each gauge boson �eld is associated to the

generator of the algebra of each group. Therefore, eight colored spin-1 particles associated

to the SU(3)C gauge group exist and are also known as gluons. In addition, there are still

the four uncolored particles, W i
�� and B�� quoted previously, that will mix to form the

massive W� and Z0 gauge bosons and the massless photon.



34

In a nutshell, the �nal particle content of the SM is summarized in Fig:4:1 [50].

The masses and most signi�cant quantum numbers of each particle are stated in the �gure.

One important piece of the SM, the scalar �eld, has not been mentioned. It has been

stated that conservation laws are a consequence of imposed symmetries. The SM theory is

therefore based on gauge symmetries, and Lagrangians are constructed from the assumption

of massless �elds. The mechanism to generate mass to the particles requires the existence

of at least one scalar particle, the Brout-Englert-Higgs boson; �From the present moment on

we shall abbreviate Brout-Englert-Higgs boson by Higgs boson, which is the usual shortened

form used in the literature�. This is the so-called BEH mechanism [45, 46, 51], which will

be explained in what follows.

Fig:4:1 An illustration of the particle content of the Standard Model,

excluding scalar �elds. This is an interpretation of the periodic table

of elements adapted to fundamental particle physics based on [50]
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4.3 The Brout�Englert�Higgs Mechanism

It is known from Noether�s theorem that symmetries imply conservation laws. It

is a consequence of the invariance of both the lagrangian and the vacuum of a theory.

However, there could be a situation where the lagrangian is invariant under a symmetry in

which the vacuum is not. If such circumstance occurs, the symmetry is de�ned as to be

broken, or hidden.

Consider for instance a scalar �eld � whose lagrangian is given by [52]:

L� =
1

2
(@��)(@

��)� V (�) ; with V (�) =
1

2
�2�2 +

1

4
��4 (4.10)

where � is real and � > 0. The lagrangian is clearly invariant under the transformation

� ! ��. When the vacuum expected value (vev) is calculated, two separated situations

arise:

(a) If �2 > 0, the vacuum is invariant under such symmetry,

h�i0 � h0 j�j 0i = 0 (�2 > 0): (4.11)

(b) However, if �2 < 0:

h�i0 = �
r
��2
2�
� � �p

2
(�2 < 0): (4.12)

The vacuum state in this case is degenerated, and it depends on the choice between +� and

��. Both situations are illustrated in Fig:4:2: On the left side, the potential is shown as a

function � for �2 > 0. As Eq:(4:11) revealed, only one vev is obtained. However, on the

right, the plot of same potential is shown for the choice of �2 < 0. Equation (4:12) exhibits

a degenerate vacuum state, displayed by the two local minimums in Fig:4:2b.
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(a) (b)

Fig:4:2 Potential V (�) of Eq:(4:10) as a function of � for the two situations

presented: a with �2 > 0 and b for �2 < 0. For case (a), the minimum

is at �0 = 0 and for case (b) �0 = ��, where the vacuum is degenerated.

We could therefore choose one state, for instance h�i0 = +�, and re-de�ne the �eld in order

for the vacuum to be at the origin:

�(x) � �(x)� h�i0 = �(x)� �: (4.13)

Now h�i0 = 0, and the lagrangian (4:10) becomes

L� =
1

2
(@��)(@

��)� ��2�2 � ���3 � 1
4
��4: (4.14)
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This is the lagrangian of a free scalar �eld � with mass term m� =
p
�2�2; �Notice the mass

is positive, since we are analyzing the case where �2 < 0�. The symmetry was therefore

hidden behind the primary de�nition of the �eld. By rede�ning the �eld � it was possible

to obtain the massive �. This concept is named spontaneous symmetry breaking and it

illustrates the main mechanism used to generate the mass of fermionic and bosonic �elds of

the SM.

In the SM, it is necessary to de�ne a doublet composed of two complex scalar

�elds. Suppose the doublet � can be de�ned in a Hermitian basis as [53-55]

� =

0BB@ �+

�0

1CCA =
1p
2

0BB@ �1 � i�2

�3 � i�4

1CCA (4.15)

The scalar lagrangian to be added to (4:7) will be similar to the one given in (4:10). However,

in order to maintain the gauge invariance under SU(2)L 
 U(1)Y , the covariant derivative

(4:8) should be used:

LBEH = jD��j2 � V (�): (4.16)

In the new basis, the potential is

V (�) =
1

2
�2

 
4X
i=1

�2i

!
+
1

4
�

 
4X
i=1

�2i

!2
: (4.17)

We can choose the position of the minimum as �1 = �2 = �4 = 0 and �3 = �, being �

the Higgs vev. A new �eld h can be de�ned to be a radial excitation around the vev. The

symmetry SU(2)L 
 U(1)Y is broken to U(1)em if we choose the speci�c value for the vev

to be
p
��2=2�. The �eld can thus be re-written as

� =
1p
2

0BB@ 0

� + h

1CCA ; (4.18)
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The potential V (�) of the lagrangian becomes

VBEH = �
1

4
��4 + ��2h2 + ��h3 +

1

4
�h4 (4.19)

The second term indicates the mass of the Higgs �eld, m2
h = 2�

2�. The third and the forth

terms, i.e. the terms related to h3 and h4, indicate self-couplings of the Higgs boson.

The kinetic term of the lagrangian, jD��j2 includes terms with the W i
� and B�

�elds�����ig2�iW i
� + i

g0

2
B�

�
�

����2 = (� + h)2

8

h
g2
�
W 1
�

�2
+ g2

�
W 2
�

�2
+
�
�gW 3

� + g
0B�
�2i

: (4.20)

If four new vector �elds are de�ned as:

Z0� =
1p

g2 + g02

�
gW 3

� � g0B�
�
; W�

� =
1p
2

�
W 1
� � iW 2

�

�
; (4.21)

A� =
1p

g2 + g02

�
g0W 3

� + gB�
�
;

Equation (4:20) can be written in terms of the new �elds. The boson masses can be identi�ed

by the following terms of the lagrangian

m2
WW

+
� W

�� +
1

2

�
m2
ZZ�Z

� +m2
AA�A

�
�
: (4.22)

With the above expression, it is straightforward to �nd the masses related to the W�, Z�

and A� �elds [53]:

mW =
�g

2
; mZ =

�

2

p
g2 + g02 and mA = 0: (4.23)

Notice however that covariant derivatives can now be written in terms of the new bosonic

�elds. Consequently, it is possible to re-write Eq:(4:8) in a more useful format, in terms of

the electromagnetic coupling, given by

ge =
gg0p
g2 + g02

(4.24)
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or in terms of the weak mixing angle,

ge = g sin �!; cos �! =
gp

g2 + g02
; and sin �! =

g0p
g2 + g02

: (4.25)

The mass of the W� and Z bosons are therefore related through the expression

mW = mZ cos �!: (4.26)

As a result, all e¤ects of W� and Z exchange processes (at tree level) can be exhibited as

a function of the ge, �! and mW parameters.

Finally, to �nd the value for the vev � we can replace the expression found for the

mass of the W� bosons in terms of the Fermi constant:

GF =
p
2
g2

8mW
=

p
2

2�2
: (4.27)

Because the Fermi constant is experimentally known with a very good accuracy, GF =

1:16637(1)� 10�5GeV �2 [56], the value for the Higgs vev can be deduced as � � 246 GeV .

This is the value where the SU(2)L 
 U(1)Y is broken. However, because the parameter �

is not known, the mass of the Higgs boson cannot be predicted.

A similar mechanism is used to obtain the mass of the fermions. The invariant

lagrangian that should be added to (4:7) can be exhibited as

Lyuk = ��e �L�eR � �d �QL�dR � �u �QL~�uR + h:c: (4.28)

where QL is the isospin doublet that contains the left-handed up and down quarks, uR

and dR are the right-handed up and down quarks, ~� = i�2�
�, and �2 is one of the Pauli

matrices. After spontaneous symmetry breaking, the mass of the fermions �except neutrinos�

are generated as mf = �f�=2, and neutrinos continue to be massless.
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The couplings �f are called Yukawa couplings [53], and are determined depending

on the experimental values of fermionic masses.
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Chapter 5

Noncommutative Standard Model

(NCSM)

5.1 Introduction

The approach to noncommutative �eld theory based on star products and Seiberg-

Witten (SW) maps allows the generalization of the Standard Model (SM) of particle physics

to the case of noncommutative space-time, keeping the original gauge group and particle

content [6; 9; 25-27; 30; 57; 58].

In this chapter we present the electroweak charged and neutral currents in the

Noncommutative Standard Model (NCSM) [9] and also present the Higgs and Yukawa

parts of the NCSM action. Among the features which are novel in comparison with the

SM is the appearance of additional gauge boson interaction terms and of interaction terms

without Higgs boson which include additional mass dependent contributions. All relevant
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expressions are given in terms of physical �elds and selected Feynman rules are provided

with the aim to make the model more accessible to phenomenological considerations.

In the star product formulation of noncommutative �eld theory, one retains the

ordinary functions �and �elds� on Minkowski space, but introduces a new noncommuta-

tive product which encodes the noncommutative structure of space-time. For a constant

antisymmetric matrix ��� , the relevant product is the Moyal-Weyl star product

f ? g =

1X
n=0

�
i

2

�n 1
n!
��1�1 :::��n�n

�
@�1 :::@�nf

�
(@�1 :::@�ng) : (5.1)

For coordinates: x� ? x� � x� ? x� = i��� . More generally, a star product has the form

(f ? g)(x) = f(x)g(x) +
i

2
���(x)@�f(x)@�g(x) +O

�
�2
�
; (5.2)

where the Poisson tensor ���(x) may be x-dependent and satis�es the Jacobi identity.

Higher-order terms in the star product are chosen in such a way that the overall star

product is associative. In general, they involve derivatives of �.

Carefully studying noncommutative gauge transformations one �nds that in gen-

eral, noncommutative gauge �elds are valued in the enveloping algebra of the gauge group

[26, 30]. �Only for U(N) in the fundamental representation it is possible to stick to Lie-

algebra valued gauge �elds�. A priori this would imply an in�nite number of degrees of

freedom if all coe¢ cient functions of the monomials that form an in�nite basis of the en-

veloping algebra were independent. That is the place where the second important ingredient

of gauge theory on noncommutative spaces comes into play, Seiberg-Witten maps [6, 26]

which relate noncommutative gauge �elds and ordinary �elds in commutative theory via a

power series expansion in �. Since higher-order terms are now expressed in terms of the



43

zeroth-order �elds, we do have the same number of degrees of freedom as in the commutative

case. Noncommutative fermion and gauge �elds read

b = b [V ] =  � 1
2
���V�@� +

i

8
��� [V�; V�] +O

�
�2
�
; (5.3)

bV� = bV� [V ] = V� +
1

4
���f@�V� + F��; V�g+O

�
�2
�
; (5.4)

where  and V� are ordinary fermion and gauge �elds, respectively. Noncommutative �elds

throughout this work are denoted by a hat. The Seiberg-Witten maps are not unique. The

free parameters are chosen such that the noncommutative gauge �elds are hermitian and

the action is real.

In [9], it was shown how to construct a model with noncommutative gauge invari-

ance, which stays as close as possible to the regular Standard Model. The distinguishing

feature of this minimal NCSM (mNCSM) is the absence of new triple neutral gauge boson

interactions in the gauge sector. However, as shown here, triple Z coupling does appear

from the Higgs action. Triple gauge boson interactions do quite naturally arise in the gauge

sector of extended versions [9; 59-61] of the NCSM and have been discussed in [59, 60].

Another interesting novel feature of NCSM, introduced by Seiberg-Witten (SW) maps, is

the appearance of mixing of the strong and electroweak interactions already at the tree level

[9, 11, 59].

We consider the �-expanded NCSM up to �rst order in the noncommutativity

parameter with an emphasis made on the electroweak interactions only. In this chapter, we

give an introductory overview of the NCSM. We discuss di¤erent choices for representations

of the gauge group which then yield minimal and non-minimal versions of the NCSM. We
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carefully discuss electroweak charged and neutral currents of the NCSM. Explicit expressions

for the NCSM corrections in the Higgs and Yukawa sectors are also presented in this chapter.

The Feynman rules for the selected three- and four-�eld electroweak vertices are given at

the end.

5.2 Noncommutative Standard Model

The action of the NCSM formally resembles the action of the classical SM; the

usual point-wise products in the Lagrangian are replaced by the Moyal-Weyl product and

matter and gauge �elds are replaced by the appropriate Seiberg-Witten expansions. The

action of the NCSM is

SNCSM = Sfermions + Sgauge + SHiggs + SY ukawa; (5.5)

where

Sfermions =

Z
d4x

3X
i=1

(bL(i)L ?
�
ib/DbL(i)L �+ bQ(i)L ?

�
ib/D bQ(i)L �+ be(i)R ?

�
ib/Dbe(i)R �

+bu(i)R ?
�
ib/Dbu(i)R �+ bd(i)R ?

�
ib/D bd(i)R �); (5.6)

SHiggs =

Z
d4x(hy0

� bD�
b�� ? h0 � bD�b��� �2hy0(b�) ? h0(b�)

��hy0(b�) ? h0(b�) ? hy0(b�) ? h0(b�)); (5.7)
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SU(3)C SU(2)L U(1)Y U(1)Q T3

e
(i)
R 1 1 �1 �1 0

L
(i)
L =

 
�
(i)
L

e
(i)
L

!
1 2 �1=2

�
0
�1

� �
1=2
�1=2

�
u
(i)
R 3 1 2=3 2=3 0

d
(i)
R 3 1 �1=3 �1=3 0

Q
(i)
L =

 
u
(i)
L

d
(i)
L

!
3 2 1=6

�
2=3
�1=3

� �
1=2
�1=2

�
� =

�
�+

�0

�
1 2 1=2

�
1
0

� �
1=2
�1=2

�
W+; W�; Z 1 3 0 (�1; 0) (�1; 0)

A 1 1 0 0 0

Gb 8 1 0 0 0

Table:5:1: The Standard Model �elds. Here i 2 f1; 2; 3g denotes the generation

index. The electric charge is given by the Gell-Mann-Nishijima relation Q = (T3+Y ). The

physical electroweak �elds A; W+; W� and Z are expressed through the unphysical U(1)Y

and SU(2)L �elds A and Ba (a 2 f1; 2; 3g) in Eq:(5:26). The gluons Gb (b 2 f1; 2; :::; 8g)

are in the octet representation of SU(3)C .

SY ukawa = �
Z
d4x

3X
i;j=1

(G(ij)e

�bL(i)L ? he(b�) ? be(j)R �+Gy(ij)e

�be(i)R ? he(b�)y ? bL(j)L �
+G(ij)u

� bQ(i)L ? hu(b�c) ? bu(j)R �+Gy(ij)u

�bu(i)R ? hu(b�c)y ? bQ(j)L �
+G

(ij)
d

� bQ(i)L ? hd(b�) ? bd(j)R �+Gy(ij)d

�bd(i)R ? hd(b�)y ? bQ(j)L �):
(5.8)

The gauge part Sgauge of the action is given in the next section. The particle spectrum

of the SM, as well as that of the NCSM, is given in Table:5:1. Analogously to the usual

SM de�nitions for fermion �elds, we de�ne b = b y0. �The  matrix can be pulled out of
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the SW expansion because it commutes with the matrices representing internal symmetries�.

The indices L and R denote the standard left and right components  L = 1=2(1�5) and

 R = 1=2(1 + 5) . For the conjugate Higgs �eld, we have �c = i�2�
�, ��2 is the usual

Pauli matrix�. In Eqs:(5:6) and (5:8) the generation index is denoted by i; j 2 f1; 2; 3g.

The matrices Ge, Gu and Gd are the Yukawa couplings.

The noncommutative Higgs �eld b� is given by the hybrid SW map

b� � b� ��; V; V 0�
= �+

1

2
���V�

�
@���

i

2

�
V��� �V 0�

��
(5.9)

+
1

2
���

�
@���

i

2

�
V��� �V 0�

��
V 0� +O

�
�2
�
;

which generalizes the Seiberg-Witten maps of both gauge bosons and fermions. b� is a func-
tional of two gauge �elds V and V 0 and transforms covariantly under gauge transformations:

�b� ��; V; V 0� = ib� ? b�� ib� ? b�0; (5.10)

where b� and b�0 are the corresponding gauge parameters. Hermitian conjugation yields
b� [�; V; V 0]y = b� ��y; V 0; V �. The covariant derivative for the noncommutative Higgs �eld
b� is given by

bD�
b� = @�b�� ibV� ? b�+ ib� ? bV 0�: (5.11)

As explained in [9], the precise representations of the gauge �elds V and V 0 in the Yukawa

couplings are inherited from the fermions on the left
�
� 
�
and on the right side ( ) of the

Higgs �eld found in (5:8), respectively. The following notation was introduced in Eqs:(5:7)
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and (5:8)

h0(b�) = b� ��; 1
2
g0A+ gBaT aL; 0

�
;

h (b�) = b� ��; R L (V ) ; R R (V )� ; (5.12)

h (b�c) = b� ��c; R L (V ) ; R R (V )� :
The representations R , determined by the multiplet  , are listed in Table:5:2. Note

that R (f(V�)) = f(R (V�)) for any function f . Gauge invariance does not restrict the

choice of representation for the Higgs �eld in SHiggs. The simplest choice for h0 which is

adopted in the NCSM closely follows the SM representation for the Higgs �eld. For a better

understanding of the gauge invariance, let us consider the hypercharges in two examples:

bLL [V ] ? b� ��; V; V 0� ? beR �V 0�
Y : 1=2 �1=2; 1| {z }

1=2

� 1;

bQL [V ] ? b� ��; V; V 0� ? bdR �V 0� (5.13)

Y : �1=6 1=6; 1=3| {z }
1=2

� 1=3:

The choice of representation allows us to assign separate left and right hypercharges to the

noncommutative Higgs �eld b�, which add up to Higgs usual hypercharge [9]. Because of
the minus sign in (5:10), the right hypercharge attributed to the Higgs is e¤ectively �Y R .
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 R (V�)

e
(i)
R �g0A�

L
(i)
L =

 
�
(i)
L

e
(i)
L

!
�12g

0A� + gBa
�T

a
L

u
(i)
R

2
3g
0A� + gsGb�T

b
S

d
(i)
R �13g

0A� + gsGb�T
b
S

Q
(i)
L =

 
u
(i)
L

d
(i)
L

!
1
6g
0A� + gBa

�T
a
L + gsG

b
�T

b
S

Table:5:2: The gauge �elds in the covariant derivatives of the fermions and in the

Seiberg-Witten maps of the fermions in the Noncommutative Standard Model. The matrices

T aL = �a=2 and T bS = �b=2 correspond to the Pauli and Gell-Mann matrices respectively,

and the summation over the indices a 2 f1; 2; 3g and b 2 f1; :::; 8g is understood.

In Grand Uni�ed Theories (GUT) it is more natural to �rst combine the left-handed and

right-handed fermion �elds and then contract the resulting expression with Higgs �elds to

obtain a gauge-invariant Yukawa term. Consequently, in NC GUTs we need to use the

hybrid SW map for the left-handed fermion �elds and then sandwich them between the NC

Higgs on the left and the right-handed fermion �elds on the right [62].

5.3 Gauge Sector of the NCSM Action

The general form of the gauge kinetic terms is [62]

Sgauge = �
1

2

Z
d4x
X
R

cRTr
�
R( bF��) ? R( bF��)� ; (5.14)

where the noncommutative �eld strength bF��
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bF�� = @� bV� � @� bV� � i hbV�?; bV�i
= F�� +

1

2
��� fF��; F��g

�1
4
��� fV�; (@� +D�)F��g+O

�
�2
�
; (5.15)

was obtained from the SW map for the noncommutative vector potential (5:4). Ordinary

�eld strength F�� is given by

F�� = @�V� � @�V� � i [V�; V� ] ; (5.16)

while its covariant derivative reads

D�F�� = @�F�� � i [V�; F�� ] : (5.17)

Here V� represents the whole of the gauge potential for the SM gauge group,

V�(x) = g0A�(x)Y + g
3X

a=1

Ba
�(x)T

a
L + gs

8X
b=1

Gb�(x)T
b
S : (5.18)

The sum in (5:14) is over all unitary, irreducible and inequivalent representations R of a

gauge group. The freedom in the kinetic terms is parametrized by real coe¢ cients cR that

are subject to the constraints

1

g2I
=
X
R

cRTr (R(T
a
I )R(T

a
I )) ; (5.19)

where gI are the usual �commutative�coupling constants g0, g, gs and T aI are generators

of U(1)Y ; SU(2)L; SU(3)C ; respectively. Equations (5:14) and (5:19) can also be written

more compactly as

Sgauge = �
1

2

Z
d4xTr

1

G2
bF�� ? bF�� ; 1

g2I
= Tr

1

G2
T aI T

a
I ; (5.20)
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where the trace Tr is again over all representations and G is an operator that commutes

with all generators T aI and encodes the coupling constants [59]. The trace in the kinetic

terms for gauge bosons is not unique, it depends on the choice of representation. This would

not be of importance if the gauge �elds were Lie algebra valued, but in the noncommutative

case they live in the enveloping algebra. The possibility of new parameters in gauge theories

on noncommutative space-time is a consequence of the fact that the gauge �elds can take

any value in the enveloping algebra of the gauge group.

It is instructive to provide the general form of Sgauge, (5:14), in terms of SM �elds:

Sgauge = �1
2

Z
d4xTr

1

G2
F��F

��

+���
Z
d4xTr

1

G2

��
1

4
F��F�� � F��F��

�
F��

�
+O

�
�2
�
: (5.21)

5.3.1 Minimal NCSM

In the minimal Noncommutative Standard Model (mNCSM) which adopts the

whole of the gauge potential (5:18) for the SM gauge group, the mNCSM gauge action is

given by

SmNCSMgauge = �1
2

Z
d4x

�
1

g02
Tr1 +

1

g2
Tr2 +

1

g2s
Tr3

� bF�� ? bF�� : (5.22)

Here the simplest choice was taken, i.e., a sum of three traces over the U(1), SU(2), SU(3)

sectors with

Y =
1

2

0BB@ 1 0

0 �1

1CCA (5.23)



51

in the de�nition of Tr1 and the fundamental representations for SU(2) and SU(3) generators

in Tr2 and Tr3, respectively. In terms of physical �elds, the action then reads

SmNCSMgauge = �1
2

Z
d4x

�
1

2
A��A

�� + TrB��B�� + TrG��G��
�

(5.24)

+
1

4
gsd

abc���
Z
d4x

�
1

4
Ga��G

b
�� �Ga��Gb��

�
G��;c +O

�
�2
�
;

where A�� , B��(= Ba
��T

a
L) and G��(= Ga��T

a
S ) denote the U(1), SU(2)L and SU(3)c �eld

strengths, respectively:

A�� = @�A� � @�A�;

Ba
�� = @�B

a
� � @�Ba

� + g�
abcBb

�B
c
� ;

Ga�� = @�G
a
� � @�Ga� + gsfabcGb�Gc� : (5.25)

Note that in order to obtain the above result, one makes use of the following symmetry

properties of the group generators T aL = �a=2 and T aS = �a=2:

Tr
�
T aT b

�
=
1

2
�ab; Tr

�
�a� b� c

�
= 2i�abc; Tr

�
�a�b�c

�
= 2

�
dabc + ifabc

�
;

where �abc is the usual antisymmetric tensor, while fabc and dabc are totally antisymmetric

and totally symmetric structure constants of the SU(3) group.

There are no new electroweak gauge boson interactions in Eq:(5:24) nor the ver-

tices already present in SM, like W+W� and W+W�Z, do acquire any corrections. This

is a consequence of the choice of the hypercharge (5:23) and of the antisymmetry in both

the Lorentz and the group representation indices. However, new couplings, like ZZZ, and

� corrections to SM vertices enter from the Higgs kinetic terms as elaborated in Section
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5:5.

W�
� =

B1� � iB2�p
2

;

Z� =
�g0A� + gB3�p

g2 + g02
= � sin �WA� + cos �WB3�;

A� =
gA� + g

0B3�p
g2 + g02

= cos �WA� + sin �WB
3
�; (5.26)

where electric charge e = g sin �W = g0 cos �W .

5.3.2 Non-Minimal NCSM

We can use the freedom in the choice of traces in kinetic terms for gauge �elds to

construct non-minimal versions of the mNCSM (nmNCSM). Since the fermion-gauge boson

interactions remain the same regardless on the choice of traces in the gauge sector, the

matter sector of the action is not a¤ected, i.e. it is the same for both versions of the NCSM.

The expansion in � is at the same time an expansion in the momenta. The

�-expanded action can thus be interpreted as a low-energy e¤ective action. In such an

e¤ective low-energy description it is natural to expect that all representations that appear

in commutative theory �matter multiplets and adjoint representation�are important. All

representations of gauge �elds that appear in the SM then have to be considered in the

de�nition of the trace (5:20). In [59] the trace was chosen over all particles on which

covariant derivatives act and which have di¤erent quantum numbers. In the SM, these are,

�ve multiplets of fermions for each generation and one Higgs multiplet. The operator G,

which determines the coupling constants of the theory, must commute with all generators

(Y; T aL; T
b
S) of the gauge group, so that it does not spoil the trace property of Tr. This

implies that G takes on constant values g1; :::; g6 on the six multiplets Table:5:1. The
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operator G is in general a function of Y and of the Casimir operators of SU(2) and SU(3).

The action derived from (5:21) for such nmNCSM takes the following form:

SnmNCSMgauge = SmNCSMgauge

+g03k1�
��

Z
d4x

�
1

4
A��A�� �A��A��

�
A��

+g0g2k2�
��

Z
d4x

��
1

4
A��B

a
�� �A��Ba

��

�
B��;a + c:p:

�
+g0g2sk3�

��

Z
d4x

��
1

4
A��G

b
�� �A��Gb��

�
G��;b + c:p:

�
+O

�
�2
�
; (5.27)

where c.p. denotes cyclic permutations of �eld strength tensors with respect to Lorentz

indices. The constants k1; k2 and k3 represent parameters of the model given in [59, 60]. In

the following we comment only the pure triple electroweak gauge-boson interactions.

New anomalous triple-gauge boson interactions that are usually forbidden by

Lorentz invariance, angular moment conservation and Bose statistics �Landau-Pomeranchuk-

Yang theorem�can arise within the framework of the nmNCSM [59, 60], but also in the

alternative approach to the NCSM given in [8]. Neutral triple-gauge boson terms which

are not present in the SM Lagrangian can be extracted from the action (5:27). In terms of

physical �elds (A;Z) they are

L =
e

4
sin 2�WK�

��A�� (A��A�� � 4A��A��) ;

LZ =
e

4
sin 2�WKZ�

��[2Z�� (2A��A�� �A��A��)

+8Z��A
��A�� � Z��A��A�� ];

LZZ = LZ (A� $ Z�) ;

LZZZ = L (A� ! Z�) ; (5.28)
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where

K =
1

2
gg0 (k1 + 3k2) ;

KZ =
1

2

�
g02k1 +

�
g02 � 2g2

�
k2
�
;

KZZ =
�1
2gg0

�
g04k1 + g

2
�
g2 � 2g02

�
k2
�
;

KZZZ =
�1
2g2

�
g04k1 + 3g

4k2
�
; (5.29)

and here we have introduced the shorthand notation X�� � @�X� � @�X� for X 2 fA;Zg.

Details of the derivations of neutral triple-gauge boson terms and the properties of the

coupling constants in (5:27) are explained in [59, 60].

Additionally, in contrast to the mNCSM (5:24), electroweak triple-gauge boson

terms already present in the SM acquire � corrections in the nmNCSM. Such contributions

which originate from (5:27) read

LWW = LSMWW + L�WW +O
�
�2
�
;

LWWZ = LSMWWZ + L�WWZ +O
�
�2
�
;

L�WW =
e

4
sin 2�WKWW�

��fA�� [2(W+
��W

�
�� +W

�
��W

+
��)

�(W+
��W

�
�� +W

�
��W

+
��)] + 4A��

�
W+��W�

�� +W
���W+

��

�
�A��W+

��W
��� ];

L�WWZ = L�WW (A� $ Z�) ; (5.30)

with
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KWW = � g

2g0
�
g02 + g2

�
k2;

KWWZ = �g
0

g
KWW : (5.31)

It is important to stress that in both the mNCSM and the nmNCSM there are additional

� corrections to these vertices coming from the Higgs part of the action. This will be

elaborated in detail in Section 5:1.

The new parameters in the non-minimal NCSM can be restricted by considering

GUTs on noncommutative space-time [62].

5.4 Electroweak Matter Currents

In this section we concentrate on the fermion electroweak sector of the NCSM.

Some terms are derivative valued. Nevertheless, the hermiticity of the Seiberg-Witten

maps for the gauge �eld guarantees the reality of the action. Using the SW maps of the

noncommutative fermion �eld b with corresponding function R (V�)
b =  � 1

2
���R (V�)@� +

i

8
��� [R (V�); R (V�)] +O

�
�2
�
; (5.32)

and it�s covariant derivative

bD�
b = @�b � iR (bV�) ? b 

= D�

�
 � 1

2
���R (V�)@� +

i

8
��� [R (V�); R (V�)] 

�
(5.33)

�iR 
�
1

4
��� f@�V� + F��; V�g

�
 +

1

2
���(@�R (V�))@� +O

�
�2
�
;



56

it is straightforward to derive the general expression

S =

Z
d4xb ? ib/Db 

=

Z
d4x

�
i /D � i

4
 ����R (F��)D� +O

�
�2
��

; (5.34)

where ���� is a totally antisymmetric quantity:

���� = ���� +���� +���� : (5.35)

The terms of the form given in Eq:(5:34) appear in Sfermions (5:6). One can easily show

that Syfermions = Sfermions, to order O
�
�2
�
. From Eq:(5:34) we have

Sy = S �
i

4

Z
d4x

�
 ����R (D�F��) 

�
+O

�
�2
�
:

Since R (����D�F��) = �
���R (D�F��) for constant �, and

����(D�F��) = �
��� (D�F�� +D�F�� +D�F��) ;

the �-dependent term vanishes due to the Bianchi identity

D�F�� +D�F�� +D�F�� = 0;

thereby proving the reality of the action S and, hence, the reality of the action Sfermions

to O
�
�2
�
. However, note that the reality of the action is not essential, but is very desirable

[63].

Next, we express the NCSM results for the electroweak currents in terms of physical

�elds starting with the left-handed electroweak sector. In the following 	L represents
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	L 2
n
L
(i)
L ; Q

(i)
L

o
and has the general form

	L =

0BB@  up;L

 down;L

1CCA : (5.36)

In this case, according to the Table:5:2 the representation R	L(V�) without SU(3) �elds

takes the form

R	L(V�) = g0A�Y	L + gB
a
�T

a
L: (5.37)

The hypercharge generator Y	L (see Table:5:1) can be rewritten as

Y	L = Q up � T3; up;L = Q down � T3; down;L ; (5.38)

and we make use of Eqs:(5:26). The left-handed electroweak part of the action S can be

cast in the form

S ;eW;L =

Z
d4x

�
	Li /@	L +	LJ(L)	L

�
=

Z
d4x(	Li /@	L +  up;LJ

(L)
12  down;L +  down;LJ

(L)
21  up;L

+ up;LJ
(L)
11  up;L +  down;LJ

(L)
22  down;L); (5.39)

where J(L) is a 2 � 2 matrix whose o¤-diagonal elements (J (L)12 ; J
(L)
21 ) denote the charged

currents and diagonal elements (J (L)11 ; J
(L)
22 ) the neutral currents. After some algebra we
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obtain

J
(L)
12 =

gp
2
/W+ + J

(L;�)
12 +O

�
�2
�
; (5.40a)

J
(L)
21 =

gp
2
/W� + J

(L;�)
21 +O

�
�2
�
; (5.40b)

J
(L)
11 =

�
2Q up /A+

g

cos �W

�
T3; up;L �Q up sin

2 �W

�
/Z
�

+J
(L;�)
11 +O

�
�2
�
; (5.40c)

J
(L)
22 =

�
2Q down /A+

g

cos �W

�
T3; down;L �Q down sin

2 �W

�
/Z
�

+J
(L;�)
22 +O

�
�2
�
; (5.40d)

where

J
(L;�)
12 =

g

2
p
2
����W+

� f�i
 �
@ �
�!
@ �

+e
h
Q upA�

�!
@ � +Q downA�

 �
@ � + (Q up +Q down)(@�A�)

i
+

g

cos �W
[
�
T3; up;L �Q up sin

2 �W

�
Z�
�!
@ �

+
�
T3; down;L �Q down sin

2 �W

�
Z�
 �
@ �

+
��
T3; up;L + T3; down;L

�
�
�
Q up +Q down

�
sin2 �W

�
(@�Z�)]

� ieg

cos �W

�
Q upT3; down;L �Q downT3; up;L

�
A�Z�g (5.41)
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and

J
(L;�)
11 =

1

2
����fieQ up(@�A�)

�!
@ �

+
ig

cos �W

�
T3; up;L �Q up sin

2 �W

�
(@�Z�)

�!
@ �

�e2Q2 up(@�A�)A�

� g2

cos2 �W

�
T3; up;L �Q up sin

2 �W

�2
(@�Z�)Z�

� eg

cos �W
Q up

�
T3; up;L �Q up sin

2 �W

�
[(@�A�)Z� �A�(@�Z�)]

�g
2

2

h
W+
� W

�
�

�!
@ � + (@�W

+
� )W

�
�

i
+
ieg2

2

�
2Q up �Q down

�
W+
� W

�
� A�

+
ig3

2 cos �W

h�
2T3; up;L � T3; down;L

�
�
�
2Q up �Q down

�
sin2 �W

i
�W+

� W
�
� Z�g; (5.42)

while

J
(L;�)
21

J
(L;�)
22

)
=

(
J
(L;�)
12

J
(L;�)
11

�
W+ $W�; Q up $ Q down ; T3; up;L $ T3; down;L

�
:

(5.43)

Here and in the following we use the notation in which
�!
@ � denotes the partial derivative

which acts only on the fermion �eld on the right side, while
 �
@ � denotes the partial derivative

which acts only on the fermion �eld on the left side, i.e.
�!
@ �
 �
@ �

@� �
�!
@ � @� �  

 �
@ �: (5.44)

We note that in contrast to the SM case, although

�Z
d4x up;LJ12 down;L

�y
=

Z
d4x down;LJ21 up;L;
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we have

J
(L)
21 6= 0

�
J
(L)
12

�y
0:

The reason is the speci�c form of the interaction term (see Eq:(5:34)) which contains deriv-

atives, whose presence produces

J
(L)
21 = 0

�
J
(L)
12 (
�!
@ $ �@ )

�y
0:

Now, we turn to the results for the right-handed electroweak sector. Here  R represents

 R 2 fe
(i)
R ; u

(i)
R ; d

(i)
R g, and the representation R R(V�) from Table:5:2 without SU(3) �elds

is given by

R R(V�) = g0A�Y R = eQ A� �
g

cos �W
Q sin

2 �WZ�: (5.45)

For the right-handed fermions, T3; R = 0, Y R = Q . The right-handed electroweak part

of the action S is of the form

S ;eW;R =

Z
d4x

�
 Ri /@ R +  RJ

(R) R

�
; (5.46)

J (R) =

�
eQ /A�

g

cos �W
Q sin

2 �W /Z
�
+ J (R;�) +O

�
�2
�
; (5.47)

J (R;�) =
1

2
����fieQ (@�A�)

�!
@ � �

ig

cos �W
Q sin

2 �W (@�Z�)
�!
@ �

�e2Q2 (@�A�)A� �
g2

cos2 �W
Q2 sin

4 �W (@�Z�)Z�

+
eg

cos �W
Q2 sin

2 �W [(@�A�)Z� �A�(@�Z�)]g: (5.48)

Let us now present the results in a form suitable for further calculations, derivation of

Feynman rules and phenomenological applications, i.e. in terms of 	 2
�
L(i); Q(i)

	
, and
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thus  up 2
�
�(i); u(i)

	
, and  down 2

�
e(i); d(i)

	
. The electroweak part of the action S then

takes the form

S ;eW =

Z
d4xf	i /@	

+ upJ
(L)
12

1

2
(1� 5) down +  downJ

(L)
21

1

2
(1� 5) up

+ up
1

2

h
(J
(L)
11 + J (R))� (J (L)11 + J (R))5

i
 up

+ down
1

2

h
(J
(L)
22 + J (R))� (J (L)22 + J (R))5

i
 downg; (5.49)

and the currents J (L)ij can be read from Eqs:(5:40)-(5:43), while J (R) is given by Eqs:(5:47)-

(5:48); �with Q substituted by the corresponding Q up or Q down�.

Finally, we note that the fermion �elds appearing in this section are not mass but

weak-interaction eigenstates. In order to present the results in terms of mass eigenstates,

the Cabbibo-Kobayashi-Maskawa matrix �denoted by Vij in the following�enters the quark

currents leading to mixing between generations and to the modi�cation of the quark currents

by Vij factors:

q(i)upVijJ
(L)
12

1

2
(1� 5)q

(j)
down; q

(j)
downV

�
ijJ

(L)
21

1

2
(1� 5)q(i)up ;

where q(i)up and q
(i)
down represent mass eigenstates. In the NCSM, as in the SM, the neutrino

masses are not considered and consequently the leptonic mixing matrix is diagonal in con-

trast to the neutrino mass extended models. The corresponding noncommutative extensions

which include neutrino masses can be made along the lines sketched here, �see Section 5:2

for further details on this subject�.

In this section, only electroweak interactions were considered.
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5.5 Higgs Sector of the NCSM Action

In the preceding section we have expanded the fermionic part of the action and

performed a detailed analysis of the electroweak interactions. We devote this section to the

analysis of SHiggs and SY ukawa to �rst order in �.

5.5.1 Higgs Kinetic Terms

The expansion of the Higgs part of the action (5:7) to �rst order in � yields

�In order to make the presentation more transparent, in this section, we denote the 2 � 2

matrices appearing in the action by bold letters�.

SHiggs =

Z
d4x

�
(D��)

y (D��)� �2�y�� �(�y�)2
�

+
1

2
���

Z
d4x�y

�
U�� +U

y
�� +

1

2
�2F�� � 2i��(D��)

yD�

�
�;

(5.50)

where

U�� = (
 �
@� + iV�)(�@�V�@� �V�@�@� + @�V�@�

+iV�V�@� +
i

2
V�V�@� +

i

2
@�(V�V�)

+
1

2
V�V�V� +

i

2
fV�; @�V� + F��g): (5.51)

Equation (5:50) contains the usual covariant derivative of the Higgs boson D� = @�1�iV�

where V� = g0A�Y�1+gB
a
�T

a
L, and 1 is a unit matrix suppressed in the following. Also

F�� = @�V� � @�V� � i [V�;V� ].

Let us construct explicit expressions for the electroweak gauge matrices occurring
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in (5:50) and (5:51). The gauge �eld V� can be expressed in a matrix form as

V� =

0BB@ g0A�Y�+gT3;�upB
3
�

gp
2
W+
�

gp
2
W�
� g0A�Y�+gT3;�downB

3
�

1CCA ; (5.52)

where from Table:5:1 one can read �Note Y� = Q�up � T3;�up = Q�down � T3;�down�:

Y� = 1=2; T3;�up = 1=2; T3;�down = �1=2:

The diagonal matrix elements can also be expressed in terms of physical �elds usingEqs:(5:26).

Hence, one obtains

V11;� = eA� +
g

2 cos �W
(1� 2 sin2 �W )Z�;

V22;� = �
g

2 cos �W
Z�: (5.53)

The product of two gauge �elds is given by

V�V� =

0BB@ V11;�V11;� +
g2

2 W
+
� W

�
�

gp
2
(W+

� V11;� +W
+
� V22;�)

gp
2
(W�

� V22;� +W
�
� V11;�) V22;�V22;� +

g2

2 W
�
� W

+
�

1CCA ;

(5.54)

while the product of three gauge �elds can be expressed as

V�V�V� =M���; (5.55a)
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with matrix elements

M���;11 = V11;�V11;�V11;�

+
g2

2

�
V11;�W

+
� W

�
� +W

+
� W

�
� V11;� +W

+
� V22;�W

�
�

�
;

M���;12 =
gp
2
(V11;�W

+
� V22;� + V11;�V11;�W

+
� +W

+
� V22;�V22;�

+
g2

2
W+
� W

�
� W

+
� );

M���;21 =
gp
2
(V22;�W

�
� V11;� + V22;�V22;�W

�
� +W

�
� V11;�V11;�

+
g2

2
W�
� W

+
� W

�
� );

M���;22 = V22;�V22;�V22;�

+
g2

2

�
V22;�W

�
� W

+
� +W

�
� W

+
� V22;� +W

�
� V11;�W

+
�

�
:

(5.55b)

For the �eld strength one obtains

F�� =

0BB@ eA�� +
g

2 cos �W
(1� 2 sin2 �W )Z�� gp

2
W+
��

gp
2
W�
�� � g

2 cos �W
Z��

1CCA

� ig
2

2

0BB@ W+
� W

�
� �W+

� W
�
�

p
2(B3�W

+
� �W+

� B
3
�)

�
p
2(B3�W

�
� �W�

� B
3
� �W+

� W
�
� +W

+
� W

�
�

1CCA ;

(5.56)

where X�� = @�X� � @�X� for X 2 fA;Z;W+;W�g. By making use of Eq:(5:26) one can

completely express the o¤-diagonal elements in terms of the physical �elds A� and Z�. The

other combinations of �elds appearing in Eqs:(5:50) and (5:51) can also be easily obtained.

We will not provide the explicit expressions here.

It is not di¢ cult to see that the value of the Higgs �eld that minimizes the �non-
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commutative�Higgs potential is the same as in the commutative case because, we are looking

for the minimum value of the potential attained for constant �elds and hence can ignore all

derivative terms and all star products. This leaves terms like ���V�V�� in the hybrid SW

map that could possibly lead to corrections of the vacuum expectation value of the Higgs.

Taking into account also the potential of the gauge �elds it is, however, clear that we should

consider only V� = 0, i.e. b� = � when �xing the vacuum expectation value.

The Higgs �eld is chosen to be in the unitary gauge

�(x) � �(x) = 1p
2

0BB@ 0

h(x) + �

1CCA ; (5.57)

where � =
p
��2=� represents the Higgs vacuum expectation value, while h(x) is the

physical Higgs �eld.

There are several points that need to be mentioned in connection with the NCSM

version of the SHiggs part of the action (5:50). From (5:57) one trivially obtainsZ
d4x�yH� =

Z
d4x(h(x) + �)H22(h(x) + �);

where H stands here for any 2� 2 matrix. Taking into account this along with (5:52) and

(5:54)-(5:56), it is easy to see that terms containing one or more Higgs �elds h(x) as well

as terms containing solely gauge bosons reside in (5:50).

First, let us examine the contributions of the last two �-dependent terms in

Eq:(5:50). By making use of (5:50)-(5:56) for the Higgs �eld in unitary gauge we �nd

1

2
���

Z
d4x�y

�
1

2
�2F�� � 2i��(D��)

yD�

�
�

=
1

8
���fig2

Z
d4x(h+ �)2

�
�2 + �(h+ �)2

�
W+
� W

�
�

+
g

cos �W

Z
d4x(h+ �)2

�
��2(@�Z�) + 2�(h+ �)(@�h)Z�

�
g: (5.58)
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Owing to the Stokes theorem the term containing only one Z �eld vanishes. Similarly, by

performing partial integration and taking into account �2 = ��2=�, the spuriously looking

two-�eld terms vanish and (5:58) simpli�es to

1

8
����

Z
d4xh(h+ �)(h+ 2�)

�
ig2(h+ �)W+

� W
�
� + 2

g

cos �W
(@�h)Z�

�
:

(5.59)

Second, let us note that, in contrast to the SM case, in the NCSM action SHiggs

(5:50) there are terms proportional to �2 that cannot be identi�ed as the mass terms of

the Higgs and weak gauge bosons �elds but represent interaction terms. Hence, after the

identi�cation of the mass terms (�1=2m2
Hh

2), M2
WW

+
� W

�� and 1=2M2
ZZ�Z

� with Higgs,

W and Z boson masses

m2
H = 2�

2 = �2�2�;

M2
W =

1

4
�2g2; M2

Z =
1

4
�2(g2 + g02) =

M2
W

cos2 �W
; (5.60)

respectively, additional terms remain which describe interactions of Higgs and gauge bosons

and interactions of solely gauge bosons. The latter behavior is novel in comparison with

the Standard Model and is introduced by the Seiberg-Witten mapping. The analysis of

Eq:(5:50) reveals that, in addition to the interaction terms contained in Sgauge (5:21), the

last three terms of the second bracket in U�� (5:51) give rise to order � contributions to

the three- and four-gauge-boson couplings. Speci�cally, the three-gauge-boson interaction

terms from SHiggs read (�1=4)�2��� [I��+Iy�� ]22, where I�� = V�[(@�V�)V�+V�(@�V�)+

(@�V�)V�] . By making use of (5:55) one arrives at explicit expressions for the W+W�,
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W+W�Z and ZZZ interaction terms:

�1
4
�2��� [I�� + I

y
�� ]22

=
e

2
M2
W�

��
��
W+�W�

� +W
��W+

�

�
A�� + (@�A�)W

+�W�
�

�
� g

4 cos �W
M2
W�

��fZ�
�
W+
� (@�W

�
� ) +W

�
� (@�W

+
� )
�

+
�
Z�W+

� + Z�W
+�
�
W�
�� +

�
Z�W�

� + Z�W
���W+

��

� cos 2�W
��
W+�W�

� +W
��W+

�

�
Z�� + (@�Z�)W

+�W�
�

�
+

g

4 cos �W
M2
Z�

��Z�Z�(2@�Z� � @�Z�):

(5.61)

The four-gauge-boson interaction terms can be analyzed analogously.

5.5.2 Yukawa Terms

Next, we proceed to the �-expansion of the SY ukawa action (5:8). Similarly to

the analysis of the electroweak currents presented in Section 5:4, let us �rst analyse the

general form for the Yukawa action,

S ;Y ukawa = �
Z
d4x

3X
i;j=1

[(G
(ij)
down(

b	(i)L ? h down(
b�) ? b (j)down;R) + h:c:)

+(G(ij)up (b	(i)L ? h up(
b�c) ? b (j)up;R) + h:c:)]: (5.62)

Here Gdown and Gup are general 3 � 3 matrices which comprise Yukawa couplings while

 
(j)
up;R and  

(j)
down;R denote up and down fermion �elds of the generation j. As we analyse a

simple noncommutative extension of the SM, Gijup vanishes for leptons. Furthermore, as in



68

the SM one can �nd a biunitary transformation that diagonalizes the G matrices

Gdown =

p
2

�
SdownMdownT

y
down; Gup =

p
2

�
SupMupT

y
up;

and obtain the diagonal 3 � 3 mass matrices Mdown and Mup. Next, one rede�nes the

fermion �elds to mass eigenstates

b (i)down;LS(ij)down ! b (j)down;L T
y(ij)
down

b (j)down;R ! b (i)down;R
b (i)up;LS(ij)up ! b (j)up;L T y(ij)up

b (j)up;R ! b (i)up;R:
This rede�nition of the �elds introduces the fermion mixing matrix V = SyupSdown in the

electroweak currents (5:49), and, owing to the hybrid SW mapping of the Higgs �eld, in the

Yukawa part of the NCSM action as well. We introduce the matrix Vf , which like in the

SM, corresponds to

Vf =

8>><>>:
1 for f = l

V � VCKM for f = d

; (5.63)

where l and q denote leptons and quarks, respectively. Hence, the quark mixing is de-

scribed by the CKM matrix, while the mixing in the lepton sector is absent but can be

additionally introduced following the commonly accepted modi�cations of the SM which

comprise neutrino masses. Furthermore, as the Higgs part of the NCSM action introduces

mass dependent gauge boson couplings �see Eq:(5:61)�, the Yukawa part of the NCSM ac-

tion introduces fermion mass dependent interactions. In contrast to the NCSM, in the SM

fermion mass dependent interactions always include an interaction with the Higgs �eld.



69

Using Eq:(5:12) we �nd

Z
d4xb	(i)L ? h down(

b�) ? b (j)down;R
=

Z
d4x(	

(i)
L � 

(j)
down;R) +

1

2

Z
d4x���	

(i)
L [�i

 �
@ ��

�!
@ �

� �@ �R	L(V�)�� �R down;R(V�)
�!
@ �

�R	L(V�)(@��)� (@��)R down;R(V�)

+iR	L(V�)R	L(V�)� + i�R down;R(V�)R down;R(V�)

�iR	L(V�)�R down;R(V�)] 
(j)
down;R: (5.64)

The representations R	L(V�) and R down;R(V�) can be read from Table:5:2. Expressions

valid for both leptons and quarks, with strong interactions omitted, are given in Eqs:(5:37)

and (5:45). For the Higgs �eld (5:57) is used.

Finally, using (5:64), after some algebra we obtain the following result for (5:62)

expressed in terms of physical �elds �and with gluons omitted�:

S ;Y ukawa =

Z
d4x

3X
[

i;j=1

 
(i)
down(N

V (ij)
dd + N

A(ij)
dd ) 

(j)
down

+ 
(i)
up(N

V (ij)
uu + 5N

A(ij)
uu ) (j)up

+ 
(i)
up(C

V (ij)
ud + 5C

A(ij)
ud ) 

(j)
down

+ 
(i)
down(C

V (ij)
du + 5C

A(ij)
du ) (j)up ]: (5.65)
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The neutral currents read

N
V (ij)
dd = �M (ij)

down

�
1 +

h

�

�
+N

V;�(ij)
dd +O

�
�2
�
;

N
A(ij)
dd = N

A;�(ij)
dd +O

�
�2
�
;

NV (ij)
uu = �M (ij)

up

�
1 +

h

�

�
+NV;�(ij)

uu +O
�
�2
�
;

NA(ij)
uu = NA;�(ij)

uu +O
�
�2
�
; (5.66)

where

N
V;�(ij)
dd = �1

2
���M

(ij)
downfi

(@�h)

�

�!
@ �

�[eQ downA� +
g

2 cos �W
(T3; down;L � 2Q down sin

2 �W )Z�]
(@�h)

�

+[eQ down(@�A�) +
g

2 cos �W
(T3; down;L � 2Q down sin

2 �W )(@�Z�)

�ig
2

2
W+
� W

�
� ]

�
1 +

h

�

�
g; (5.67)

N
A;�(ij)
dd =

g

4 cos �W
T3; down;L�

��M
(ij)
down

�
1 +

h

�

�
Z�

�
h� �
@ � �

�!
@ �

�
+ 2ieQ downA�

i
; (5.68)

and

N
V;�(ij)
uu

N
A;�(ij)
uu

9>>=>>; =

8>><>>:
N
V;�(ij)
dd

N
A;�(ij)
dd

(W+ $W�; down! up): (5.69)

The charged currents are given by

C
V (ij)
ud = C

V;�(ij)
ud +O

�
�2
�
;

C
A(ij)
ud = C

A;�(ij)
ud +O

�
�2
�
; (5.70)
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where

C
V;�(ij)
ud

= � g

4
p
2
���

�
1 +

h

�

�
f[((VfMdown)

(ij) + (MupVf )
(ij))(@�W

+
� )

+
�
(VfMdown)

(ij)�!@ � + (MupVf )
(ij) �@ �

�
W+
� ]

+ie((VfMdown)
(ij)Q up � (MupVf )

(ij)Q down)A�W
+
�

+i
g

cos �W
[(VfMdown)

(ij)(2T3; up;L �Q up sin
2 �W )

�(MupVf )
(ij)(2T3; down;L �Q down sin

2 �W )]Z�W
+
� g; (5.71)

and

C
A;�(ij)
ud = C

V;�(ij)
ud (Mup ! �Mup); (5.72)

while

C
V (ij)
du =

�
C
V (ij)
ud (

�!
@ $ �@ )

�y
;

C
A(ij)
du = �

�
C
A(ij)
ud (

�!
@ $ �@ )

�y
: (5.73)

Note that
�!
@ and

 �
@ are de�ned in (5:44).

At the end, observe that the simpli�ed introduction of the fermion mass and the

use of the relation

S ;m =

Z
d4xb ? (ib/D �m)b 

=

Z
d4x[ (i /D �m) � 1

4
 R (F��)(i�

���D� �m���) 

+O
�
�2
�
]: (5.74)

is valid only in the case of pure QED and pure QCD.
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5.6 Feynman Rules

On the basis of the results presented in Sections 5:4 and 5:5, it is now straight-

forward to derive the Feynman rules needed for phenomenological applications of the NCSM,

i.e. for the calculation of physical processes. In this section, we list a number of selected

Feynman rules for the NCSM pure electroweak interactions up to order �. We omit in-

teractions with the Higgs particle, boson interactions with four and more gauge �elds, and

fermion interactions with more than two gauge bosons.

The following notation for vertices has been adopted: all gauge boson momenta are

taken to be incoming; following the �ow of the fermion line, the momenta of the incoming

and outgoing fermions are given by pin and pout, respectively. In the following we denote

fermions by f , and the generation indices by i and j. Furthermore, f (i)u 2 f�(i); u(i)g and

f
(i)
d 2 fe(i); d(i)g.

For the Feynman rules we use the following de�nitions:

cV;f = T3;fL � 2Qf sin2 �W ;

cA;f = T3;fL : (5.75)

The charge Q and the weak isospin T3 can be read from Table:5:1. The notation Vf is

introduced in (5:63), while ���� is de�ned in (5:35). We also make use of (�k)� � ���k� =

�k���� � �(k�)� and (k�p) � k����p� .

5.6.1 Minimal NCSM

In this subsection we present selected Feynman rules for the mNCSM containing

SM contributions and � corrections. The � corrections to vertices containing fermions are
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obtained using Eq:(5:49) and the Yukawa part of the action (5:65) has to be taken into

account as well, because it generates additional mass dependent terms which modify some

interaction vertices. In comparison with the SM, this is a novel feature. Similarly, the gauge

boson couplings present in (5:24) receive additional � dependent corrections from the Higgs

part of the action (5:50) and even new three- and four-gauge boson couplings appear, see

(5:61).

First, we list three-vertices that appear in the SM as well.

ieQf

�
� �

i

2
k� (����p

�
in ����mf )

�
= ieQf� (5.76)

+
1

2
eQf [(pout�pin)�(pout�)�( /pin �mf )� ( /pout �mf )(�pin)�];

ie

sin 2�W
f(� �

i

2
k�����p

�
in) (cV;f � cA;f5)

� i
2
���mf [p

�
in (cV;f � cA;f5)� p�out (cV;f + cA;f5)]g; (5.77)
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ie

2
p
2 sin �W

0BB@ V
(ij)
f

V
�(ij)
f

1CCA f[� � i

2
����k

�p�in](1� 5)

� i
2
��� [

0BB@ m
f
(i)
u

m
f
(j)
d

1CCA p�in(1� 5)�

0BB@ m
f
(j)
d

m
f
(i)
u

1CCA p�out(1 + 5)]g; (5.78)

iefg��(k1 � k2)� + g��(k2 � k3)� + g��(k3 � k1)�

+
i

2
M2
W [�

��k�1 +�
��k�1 + g

��(�k1)
� � g��(�k1)� + g��(�k1)� ]g; (5.79)



75

ie cot �W fg��(k1 � k2)� + g��(k2 � k3)� + g��(k3 � k1)�

+
i

2
M2
W [�

��k�1 +�
��k�1 + g

��(�k1)
� � g��(�k1)� + g��(�k1)� ]

� i
4
M2
Z [�

��(k1 � k2)� +���(k2 � k3)� +���(k3 � k1)�

�2g��(�k3)� � 2g��(�k1)� � 2g��(�k2)� ]g: (5.80)

Here we give the new three-gauge-boson coupling which follows from the Higgs action (5:50),

i.e., Eq:(5:61)

eM2
Z

2 sin 2�W
[���(k1 � k2)� +���(k2 � k3)� +���(k3 � k1)�

�2g��(�k3)� � 2g��(�k1)� � 2g��(�k2)� ]: (5.81)

Additionally, from the Higgs action (5:50) one can derive the � corrections to the elec-

troweak four-gauge-boson vertices already present in SM �see (5:24)�, as well as, new four-

gauge-boson vertices.

Equation (5:49) also describes the interaction vertices involving fermions and two

or three gauge bosons. These do not appear in the SM. In the following we provide all con-

tributions to such vertices with four legs and corresponding mass-dependent contributions
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from (5:65).

�e2Q2f
2

����(k
�
1 � k

�
2); (5.82)

�e2Qf
2 sin 2�

(5.83)

� [����(k�1 � k
�
2) (cV;f + cA;f5)� 2���mfcA;f5] ;

�e2

2 sin2 2�
����(k

�
1 � k

�
2) (cV;f + cA;f5)

2 ; (5.84)
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�e2

8 sin2 �
[����(p

�
in + k

�
1)(1� 5) + 2���mf ] ; (5.85)

�e2

4
p
2 sin �W

f����[

0BB@ Q
f
(i)
u

Q
f
(j)
d

1CCA (p�in + k�1)�
0BB@ Q

f
(j)
d

Q
f
(i)
u

1CCA (p�in + k�2)](1� 5)

+��� [

0BB@ m
f
(i)
u
Q
f
(j)
d

m
f
(j)
d

Q
f
(i)
u

1CCA (1� 5)�
0BB@ m

f
(j)
d

Q
f
(i)
u

m
f
(i)
u
Q
f
(j)
d

1CCA (1 + 5)]g
0BB@ V

(ij)
f

V
�(ij)
f

1CCA ;

(5.86)
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�e2

4
p
2 sin �W sin 2�W
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(ij)
f

V
�(ij)
f
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f����[
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d

+ 3c
A;f

(j)
d
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f
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V;f
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u
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A;f
(i)
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i
1CCA (1� 5)
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0BB@ m
f
(j)
d
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c
V;f
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u
+ 3c

A;f
(i)
u

i
m
f
(i)
u

h
c
V;f

(j)
d

+ 3c
A;f

(j)
d

i
1CCA (1 + 5)]g: (5.87)

Similarly, ffWWZ, ffWW and ffWZ can be extracted from Eq:(5:49) as well. They

have no mass-dependent corrections.
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Chapter 6

New Limit for the

Noncommutativity Parameter of

the Noncommutative Standard

Model

In this chapter, we discuss the limits on the scale of the noncommutativity para-

meter �NC via studying the top-quark pair production through electron-positron collision

in the framework of the minimal noncommutative standard model (mNCSM), using the

Seiberg-Witten (SW) maps up to the �rst order of the noncommutativity parameter ��� .
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6.1 Cross-Section of tt Pair Production and Numerical Analy-

sis

The action of NCSM can be written as �See Chapter 5 for more details�

SNCSM = Sfermions + Sgauge + SHiggs + SY ukawa;

We just consider the matter sector of the action, i.e. the action of the fermions �leptons and

quarks�; which there are terms taking part in this process e�e+ ! ; Z ! t�t:

Sfermions =

Z
d4x

3X
i=1

0@�
 ̂

(i)

L ?
�
i�/D ̂

(i)

L

�1A+ Z d4x

3X
i=1

0@�
 ̂

(i)

R ?
�
i�/D ̂

(i)

R

�1A :

We study the process e�(p1)e+(p2) ! t(p3)�t(p4) in the NCSM, which proceeds via the s-

channel exchange of  and Z bosons. We are interested in the �rst order of NC corrections

on the cross-section of the t�t production. The Feynman rules are given in [9].

The relative Feynman rule for

� e(pin)-e(pout)-(k) vertex to the �rst order in � is

= ieQf

�
� �

i

2
k� (����p

�
in ����mf )

�

� e(pin)-e(pout)-Z(k) vertex to the 1st order in � is

=
ie

sin 2�W
f(� �

i

2
k�����p

�
in) (CV;f � CA;f5)

� i
2
���mf [p

�
in (CV;f � CA;f5)� p�out (CV;f + CA;f5)]g

with ���� = ���� +���� +����
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Fig:6:1 Feynman diagrams for the process e�e+ ! ; Z ! t�t in the NCSM.

The corresponding Feynman diagrams are shown in Fig:6:1. Di¤erential cross

section can be written as

d�

d

=

1

64�2s

�� �A��2 :
We can obtain the cross-section � = � (

p
s;�NC ; �; �) as

� =

Z 1

�1
d(cos �)

Z 2�

0
d�
d�

d


where � and � are polar and azimuthal angles, respectively.

Most analysis studies have been assumed c�� = (�i; �ijk�
k) where �i = ( ~E)i and

�k = ( ~B)k. The vectors ~E and ~B are given in [15, 64], i.e. ~E = 1p
3
(~i+ ~|+ ~k),
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~B = 1p
3
(~i+ ~|+ ~k);where c�� has the following form:

c�� =

0BBBBBBBBBB@

0 �1 �1 �1

1 0 �1 1

1 1 0 �1

1 �1 1 0

1CCCCCCCCCCA
:

In the present work, c�� is represented by the ansatz

c�� =
1

2

�
��� + (���)+

�
;

knowing that

��� =
i

2
(�� � ��) ;

where � are Dirac matrices.

All calculations of the cross-section scattering have been done using the packages

FeynArts and FormCalc [20-23], for which we have written a complete FeynArts model

�le and have extended the corresponding FormCalc Fortran drivers for the NCSM. The

implementation is described for the FeynArts model �le in the Appendix A:1: and for the

FormCalc Fortran drivers in A:2: In our numerical analysis we also have used LoopTools

[66]. We analyze the total cross-section in the presence of space-time noncommutativity. In

Fig:6:2, we have plotted the total cross-section for the process e�e+ ! ; Z ! t�t [pb] as a

function of center-of-mass energy Ecom(=
p
s) [GeV]. The ordinary SM is presented by solid

curve �the black one�and the NCSM with di¤erent curves short-dashed �red�, dotted �blue�

and long-dashed �green�, with the corresponding �NC = 400; 300 and 200 GeV, respectively.
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Fig:6:2: The total cross-section for the process e�e+ �! ; Z �! t�t [pb] as a

function of center-of-mass energy Ecom(=
p
s) [GeV].

We can see that the e¤ect of the noncommutativity appears at around 700 GeV. Moreover,

notice that the deviations become more important with the upper energy and with smaller

values of �NC . We �nd that for lower values of the noncommutativity scale �NC , there

is a signi�cant deviation from the SM result and with the increase in NC, all the curves

approach the SM value, i.e. the deviations from the standard model are signi�cant for small

values of the noncommutative characteristic scale. The cross-section for e+e� ! �+�� up

to the �2 order was studied in [64]. An interesting result is that all the contribution from

�, �2 and �3 terms to the cross-section canceled out. We con�rm this result that this

process is not sensible to the noncommutative corrections at the �rst order in �, i.e. there

is no noncommutative e¤ect at O(�).
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Chapter 7

Conclusions

We have presented the Standard Model on noncommutative spacetime and its

main ingredients, the Moyal-Weyl ?-product of functions on ordinary space-time which

reproduces thus the noncommutativity inherent to the noncommutative operators x̂� on

an algebra of functions on the ordinary spacetime, and the Seiberg-Witten maps. The

latter map the ordinary �elds to noncommutative �elds in such a way that ordinary gauge

transformations induce noncommutative transformations. This requirement was described

mathematically by the so called gauge equivalence conditions for the gauge and matter �eld,

and the consistency equation for the gauge parameter. These di¤erential equations can be

solved order by order in the noncommutative parameter ��� and their solutions are the

Seiberg-Witten maps, determined nonuniquely, since they di¤er by homogeneous solutions

of the di¤erential equations. The result is an e¤ective theory as expansion in powers of �,

which preserves noncommutative gauge invariance, is anomaly free, does not modify the

SM particle content.
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The extension of the standard model of elementary particle physics to noncommu-

tative space-time opens a window on a rich variety of new physical phenomena. The presence

of the noncommutativity parameter ��� which breaks Lorentz invariance at a scale �NC ,

results in deviation of the production cross-section from the one of SM prediction. In this

work, we have studied the top-quark pair production process e�e+ ! ; Z ! t�t in the

framework of the NCSM in order to derive bounds on the NC scale �NC . Our analysis has

been made up to the �rst order in O(�). We have de�ned the noncommutative parameter

with the help of the gamma matrices. The noncommutative structure is determined by

some spinor background on which the gamma-dependent ��� acts.

The noncommutative e¤ects seem to be completely hidden under the shadow of

the SM results for most part of the parameter space and it is only in a very small range,

for very low values of the noncommutativity scale that there are any signi�cant deviations

from the SM values. The NC e¤ects are found to be signi�cant only for low values of the

NC characteristic scale �NC , which is in the range 0:1-0:2 TeV and we have noticed also

that the noncommutativity e¤ects become more pronounced for Ecom � 700 GeV. We got

the same results that has been obtained by [65]. Another lowest bound on the NC scale

which is surprisingly low, has been given in [61] which are in the order of 0:1- 0:2 TeV.

To conclude, regarding the top-quark pair production through electron-positron

collision and the possibility that the space-time noncommutativity is observed in such a

scattering, our theoretical predicted signature is relatively small. However, there is much

more work that can be done in this direction. For further phenomenological consequences,

one could go beyond calculating the cross-sections of this to the second order O(�2).
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In this spirit, it is much better if we can expand the model to higher orders in

theta, because it takes more corrections into account. The contributions of the corrections

to higher orders will become less and less important, but still they might play a role for

certain processes.
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Appendix A

Implementation of the NCSM in

FeynArts and FormCalc

Serious perturbative calculations in physics can generally no longer done by hand:

required accuracy, Models with many particles, etc. In order to calculate some physical

processes; hybrid programming techniques are necessary: Computer algebra is an indis-

pensable tool because many manipulations must be done symbolically and fast number

crunching can only be achieved in compiled language. Using FeynArts, FormCalc and

LoopTools [20-23; 66] which are Mathematica packages is quite convenient for studying par-

ticular processes. These programs are available [67] and up to now the FeynArts package

does not contain model �les for the NCSM. In the following sections we describe how we

have implemented the new model �le for calculations in the NCSM in FeynArts, and how

we have extended the corresponding FormCalc fortran drivers. The reason why we give this

summary is to pass on the knowledge we have, such that it can be used by others who want
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to perform calculations in the NCSM using FeynArts and FormCalc.

We have performed our changes using: the versions FeynArts 3.9., FormCalc 9.2.

and LoopTools-2.13..

Operating system: Linux

Programming language used: Mathematica

A.1 FeynArts Model File for the NCSM

In FeynArts, the �elds, the propagators and the couplings are de�ned in special

�les, i.e. the information about the physical model is provided in two �elds: The Generic

model �le de�nes the representation of the kinematical quantities like spinors or vectors

�elds �the generic analytical propagators�and couplings. The Classes model �le de�nes the

particles contents and speci�es the actual coupling. In the NCSM, no new particles are

introduced so we work with the same �elds and with the same parameters as in the SM,

there are no NC corrections to the propagators but the couplings are modi�ed and we should

introduce the scale of the noncommutativity �NC , so obviously we need a new model �les.

We have collected the information about the couplings of the NCSM into Generic model

�le and Classes model �le. As we have mentioned in Chapter 6. We have assumed that

c�� has the form:

c�� =
i

4

�
(�� � ��)� (�� � ��)+

�
(A.1)

The diagrams and the amplitudes are generated with the new FeynArts model �les

NCSM.mod and NCSM.gen. In the following part we are going to present the new model
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�les that have been created in FeynArts for calculations in the NCSM.

� Classes model �le: NCSM.mod

(*

NCSM.mod

last modi�ed 10 March 11 by Linda GHEGAL

This �le contains the de�nition of a Classes model for FeynArts.

It needs the Generic model �le Lorentz.gen.

When you change things, remember:

�All particles are arranged in classes. For single particle

model de�nitions each particle lives in its own class.

�For each class the common SelfConjugate behavior and the

IndexRange MUST be present in the de�nitions.

�IMPORTANT: The coupling matrices MUST be declared in the

SAME order as the Generic coupling.

Reference:

Ansgar Denner, "Techniques for the calculation of electroweak

radiative corrections at one-loop level and results for

W-physics at LEP200", Fortschr. d. Physik, 41 (1993) 4

Oct 95: one-loop counter terms added by Stefan Bauberger:

Some corrections and addition of all one-loop counter terms

according to A. Denner. The gauge-�xing terms are assumed not
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to be renormalized. The Denner conventions are extended to

include �eld renormalization of the Goldstone bosons.

The counter terms associated with quark mixing are not well

tested yet.

Apr 99: Christian Schappacher added colour indices for the quarks

Apr 99: Terms for ghost sector updated by Ayres Freitas.

The gauge-�xing terms are still assumed not to be renormalized

but the renormalized gauge parameters follow the R_xi-gauge.

In addition, renormalization for the ghost �elds is included.

The 2-loop counter terms for vector-boson selfenergies and for

the W-nu-l vertex have been added.

Old versions of the changes of sbau are removed!

Apr 01: Thomas Hahn added the de�nitions of the renormalization

constants a la A. Denner.

This �le introduces the following symbols:

coupling constants and masses:

� � � � � � � � � �

EL: electron charge (Thomson limit)

CW, SW: cosine and sine of Weinberg angle

MW, MZ, MH: W, Z, Higgs masses

MLE: lepton class mass

ME, MM, ML: lepton masses (e, mu, tau)
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MQU: u-type quark class mass

MU, MC, MT: u-type quark masses (up, charm, top)

MQD: d-type quark class mass

MD, MS, MB: d-type quark masses (down, strange, bottom)

CKM: quark mixing matrix

(set CKM = IndexDelta for no quark-mixing)

GaugeXi[A, W, Z]: photon, W, Z gauge parameters

one-loop renormalization constants (RCs):

� � � � � � � � � � � � � �

dZe1: electromagnetic charge RC

dSW1, dCW1: Weinberg angle sine/cosine RC

dZH1, dMHsq1: Higgs �eld and mass RC

dZW1, dMWsq1: W �eld and mass RC

dMZsq1: Z mass RC

dZZZ1, dZZA1,

dZAZ1, dZAA1: Z and photon �eld RCs

dMf1: fermion mass RCs

dZfL1, dZfR1: fermion �eld RCs

dCKM1: quark mixing matrix RCs

dZG01, dZGp1: �eld RC for unphysical scalars

dUZZ1, dUZA1,

dUAZ1, dUAA1: �eld RCs for photon and Z ghosts
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dUW1: �eld RC for +/- ghosts

two-loop renormalization constants:

� � � � � � � � � � � �

dZe2: electromagnetic charge RC

dSW2: weak mixing angle sine/cosine RC

dZW2, dMWsq2: W �eld and mass RC

dMZsq2: Z mass RC

dZZZ2, dZZA2,

dZAZ2, dZAA2: Z and photon �eld RCs

dZfL2: fermion �eld RCs

*)

IndexRange[ Index[Generation] ] = Range[3]

IndexRange[ Index[Colour] ] = NoUnfold[Range[3]]

IndexStyle[ Index[Generation, i_Integer] ] := Alph[i + 8]

MaxGenerationIndex = 3

ViolatesQ[ q__ ] := Plus[q] =!= 0

mdZfLR1[ type_, j1_, j2_ ] :=

Mass[F[type, {j1}]]/2 dZfL1[type, j1, j2] +

Mass[F[type, {j2}]]/2 Conjugate[dZfR1[type, j2, j1]]

mdZfRL1[ type_, j1_, j2_ ] :=

Mass[F[type, {j1}]]/2 dZfR1[type, j1, j2] +

Mass[F[type, {j2}]]/2 Conjugate[dZfL1[type, j2, j1]]
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(* the leptonic �eld RCs are diagonal: *)

dZfL1[ type:1 j 2, j1_, j2_ ] :=

IndexDelta[j1, j2] dZfL1[type, j1, j1] /; j1 =!= j2

dZfR1[ type:1 j 2, j1_, j2_ ] :=

IndexDelta[j1, j2] dZfR1[type, j1, j1] /; j1 =!= j2

(* some short-hands for fermionic couplings: *)

FermionCharge[1] = 0;

FermionCharge[2] = -1;

FermionCharge[3] = 2/3;

FermionCharge[4] = -1/3

gR[ type_ ] :=

-SW/CW FermionCharge[type];

gL[ type_ ] :=

(If[ OddQ[type], 1/2, -1/2 ] - SW^2 FermionCharge[type])/(SW CW);

dgR[ type_ ] :=

gR[type] (dZe1 + 1/(CW^2 SW) dSW1);

dgL[ type_ ] :=

If[ OddQ[type], 1/2, -1/2 ]/(SW CW) *

(dZe1 + (SW^2 - CW^2)/(CW^2 SW) dSW1) + dgR[type]

M$ClassesDescription = {

(* Leptons (neutrino): I_3 = +1/2, Q = 0 *)

F[1] == {
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SelfConjugate -> False,

Indices -> {Index[Generation]},

Mass -> 0,

QuantumNumbers -> LeptonNumber,

PropagatorLabel -> ComposedChar["nnnu", Index[Generation]],

PropagatorType -> Straight,

PropagatorArrow -> Forward },

(* Leptons (electron): I_3 = -1/2, Q = -1 *)

F[2] == {

SelfConjugate -> False,

Indices -> {Index[Generation]},

Mass -> MLE,

QuantumNumbers -> {-Charge, LeptonNumber},

PropagatorLabel -> ComposedChar["e", Index[Generation]],

PropagatorType -> Straight,

PropagatorArrow -> Forward },

(* Quarks (u): I_3 = +1/2, Q = +2/3 *)

F[3] == {

SelfConjugate -> False,

Indices -> {Index[Generation], Index[Colour]},

Mass -> MQU,

QuantumNumbers -> 2/3 Charge,
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PropagatorLabel -> ComposedChar["u", Index[Generation]],

PropagatorType -> Straight,

PropagatorArrow -> Forward },

(* Quarks (d): I_3 = -1/2, Q = -1/3 *)

F[4] == {

SelfConjugate -> False,

Indices -> {Index[Generation], Index[Colour]},

Mass -> MQD,

QuantumNumbers -> -1/3 Charge,

PropagatorLabel -> ComposedChar["d", Index[Generation]],

PropagatorType -> Straight,

PropagatorArrow -> Forward },

(* Gauge bosons: Q = 0 *)

V[1] == {

SelfConjugate -> True,

Indices -> {},

Mass -> 0,

PropagatorLabel -> "nngamma",

PropagatorType -> Sine,

PropagatorArrow -> None },

V[2] == {

SelfConjugate -> True,
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Indices -> {},

Mass -> MZ,

PropagatorLabel -> "Z",

PropagatorType -> Sine,

PropagatorArrow -> None },

(* Gauge bosons: Q = -1 *)

V[3] == {

SelfConjugate -> False,

Indices -> {},

Mass -> MW,

QuantumNumbers -> -Charge,

PropagatorLabel -> "W",

PropagatorType -> Sine,

PropagatorArrow -> Forward },

(*

V[4] == {

SelfConjugate -> True,

Indices -> {},

Mass -> MAZ,

MixingPartners -> {V[1], V[2]},

PropagatorLabel -> {"nngamma", "Z"},

PropagatorType -> Sine,
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PropagatorArrow -> None },

*)

(* mixing Higgs gauge bosons: Q = 0 *)

SV[2] == {

SelfConjugate -> True,

Indices -> {},

Mass -> MZ,

MixingPartners -> {S[2], V[2]},

PropagatorLabel -> {ComposedChar["G", Null, "0"], "Z"},

PropagatorType -> {ScalarDash, Sine},

PropagatorArrow -> None },

(* mixing Higgs gauge bosons: charged *)

SV[3] == {

SelfConjugate -> False,

Indices -> {},

Mass -> MW,

QuantumNumbers -> -Charge,

MixingPartners -> {S[3], V[3]},

PropagatorLabel -> {"G", "W"},

PropagatorType -> {ScalarDash, Sine},

PropagatorArrow -> Forward },

(* physical Higgs: Q = 0 *)
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S[1] == {

SelfConjugate -> True,

Indices -> {},

Mass -> MH,

PropagatorLabel -> "H",

PropagatorType -> ScalarDash,

PropagatorArrow -> None },

(* unphysical Higgs: neutral *)

S[2] == {

SelfConjugate -> True,

Indices -> {},

Mass -> MZ,

PropagatorLabel -> ComposedChar["G", Null, "0"],

PropagatorType -> ScalarDash,

PropagatorArrow -> None },

(* unphysical Higgs: Q = -1 *)

S[3] == {

SelfConjugate -> False,

Indices -> {},

Mass -> MW,

QuantumNumbers -> -Charge,

PropagatorLabel -> "G",
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PropagatorType -> ScalarDash,

PropagatorArrow -> Forward },

(* Ghosts: neutral *)

U[1] == {

SelfConjugate -> False,

Indices -> {},

Mass -> 0,

QuantumNumbers -> GhostNumber,

PropagatorLabel -> ComposedChar["u", "nngamma"],

PropagatorType -> GhostDash,

PropagatorArrow -> Forward },

U[2] == {

SelfConjugate -> False,

Indices -> {},

Mass -> MZ,

QuantumNumbers -> GhostNumber,

PropagatorLabel -> ComposedChar["u", "Z"],

PropagatorType -> GhostDash,

PropagatorArrow -> Forward },

(* Ghosts: charged *)

U[3] == {

SelfConjugate -> False,
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Indices -> {},

Mass -> MW,

QuantumNumbers -> {-Charge, GhostNumber},

PropagatorLabel -> ComposedChar["u", "-"],

PropagatorType -> GhostDash,

PropagatorArrow -> Forward },

U[4] == {

SelfConjugate -> False,

Indices -> {},

Mass -> MW,

QuantumNumbers -> {Charge, GhostNumber},

PropagatorLabel -> ComposedChar["u", "+"],

PropagatorType -> GhostDash,

PropagatorArrow -> Forward }

}

MLE[1] = ME;

MLE[2] = MM;

MLE[3] = ML;

MQU[1] = MU;

MQU[2] = MC;

MQU[3] = MT;

MQD[1] = MD;
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MQD[2] = MS;

MQD[3] = MB;

MQU[gen_, _] := MQU[gen];

MQD[gen_, _] := MQD[gen]

TheLabel[ F[1, {1}] ] = ComposedChar["nnnu", "e"];

TheLabel[ F[1, {2}] ] = ComposedChar["nnnu", "nnmu"];

TheLabel[ F[1, {3}] ] = ComposedChar["nnnu", "nntau"];

TheLabel[ F[2, {1}] ] = "e";

TheLabel[ F[2, {2}] ] = "nnmu";

TheLabel[ F[2, {3}] ] = "nntau";

TheLabel[ F[3, {1, ___}] ] = "u";

TheLabel[ F[3, {2, ___}] ] = "c";

TheLabel[ F[3, {3, ___}] ] = "t";

TheLabel[ F[4, {1, ___}] ] = "d";

TheLabel[ F[4, {2, ___}] ] = "s";

TheLabel[ F[4, {3, ___}] ] = "b"

GaugeXi[ V[1] ] = GaugeXi[A];

GaugeXi[ V[2] ] = GaugeXi[Z];

GaugeXi[ V[3] ] = GaugeXi[W];

GaugeXi[ S[1] ] = 1;

GaugeXi[ S[2] ] = GaugeXi[Z];

GaugeXi[ S[3] ] = GaugeXi[W];
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GaugeXi[ U[1] ] = GaugeXi[A];

GaugeXi[ U[2] ] = GaugeXi[Z];

GaugeXi[ U[3] ] = GaugeXi[W];

GaugeXi[ U[4] ] = GaugeXi[W]

M$CouplingMatrices = {

(* F-F-V: *)

C[ -F[1, {j1}], F[1, {j2}], V[1] ] == I EL FermionCharge[1] IndexDelta[j1, j2] *

{ {1},

{1},

{(I/4)*(1/LambdaNC^2)},

{(I/4)*(1/LambdaNC^2)},

{0},

{0},

{0},

{0},

{(-I/4)*(1/LambdaNC^2) Mass[F[1, {j1}]]},

{(-I/4)*(1/LambdaNC^2) Mass[F[1, {j1}]]} },

C[ -F[2, {j1}], F[2, {j2}], V[1] ] == I EL FermionCharge[2] IndexDelta[j1, j2] *

{ {1},

{1},

{(I/4)*(1/LambdaNC^2)},

{(I/4)*(1/LambdaNC^2)},
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{0},

{0},

{0},

{0},

{(-I/4)*(1/LambdaNC^2) Mass[F[2, {j1}]]},

{(-I/4)*(1/LambdaNC^2) Mass[F[2, {j1}]]} },

C[ -F[3, {j1, o1}], F[3, {j2, o2}], V[1] ] == I EL FermionCharge[3] IndexDelta[j1,

j2] IndexDelta[o1, o2] *

{ {1},

{1},

{(I/4)*(1/LambdaNC^2)},

{(I/4)*(1/LambdaNC^2)},

{0},

{0},

{0},

{0},

{(-I/4)*(1/LambdaNC^2) Mass[F[3, {j1}]]},

{(-I/4)*(1/LambdaNC^2) Mass[F[3, {j1}]]} },

C[ -F[4, {j1, o1}], F[4, {j2, o2}], V[1] ] == I EL FermionCharge[4] IndexDelta[j1,

j2] IndexDelta[o1, o2] *

{ {1},

{1},
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{(I/4)*(1/LambdaNC^2)},

{(I/4)*(1/LambdaNC^2)},

{0},

{0},

{0},

{0},

{(-I/4)*(1/LambdaNC^2) Mass[F[4, {j1}]]},

{(-I/4)*(1/LambdaNC^2) Mass[F[4, {j1}]]} },

C[ -F[1, {j1}], F[1, {j2}], V[2] ] == I EL IndexDelta[j1, j2] *

{ {gL[1]},

{0},

{(I/4)*(1/LambdaNC^2) gL[1]},

{0},

{(I/4)*(1/LambdaNC^2) Mass[F[1, {j1}]] gL[1]},

{0},

{0},

{-(I/4)*(1/LambdaNC^2) Mass[F[1, {j1}]] gL[1]},

{0},

{0} },

C[ -F[2, {j1}], F[2, {j2}], V[2] ] == I EL IndexDelta[j1, j2] *

{ {gL[2]},

{gR[2]},
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{(I/4)*(1/LambdaNC^2) gL[2]},

{(I/4)*(1/LambdaNC^2) gR[2]},

{(I/4)*(1/LambdaNC^2) Mass[F[2, {j1}]] gL[2]},

{(I/4)*(1/LambdaNC^2) Mass[F[2, {j1}]] gR[2]},

{(-I/4)*(1/LambdaNC^2) Mass[F[2, {j1}]] gR[2]},

{(-I/4)*(1/LambdaNC^2) Mass[F[2, {j1}]] gL[2]},

{0},

{0} },

C[ -F[3, {j1, o1}], F[3, {j2, o2}], V[2] ] == I EL IndexDelta[j1, j2] IndexDelta[o1,

o2] *

{ {gL[3]},

{gR[3]},

{(I/4)*(1/LambdaNC^2) gL[3]},

{(I/4)*(1/LambdaNC^2) gR[3]},

{(I/4)*(1/LambdaNC^2) Mass[F[3, {j1}]] gL[3]},

{(I/4)*(1/LambdaNC^2) Mass[F[3, {j1}]] gR[3]},

{(-I/4)*(1/LambdaNC^2) Mass[F[3, {j1}]] gR[2]},

{(-I/4)*(1/LambdaNC^2) Mass[F[3, {j1}]] gL[3]},

{0},

{0} },

C[ -F[4, {j1, o1}], F[4, {j2, o2}], V[2] ] == I EL IndexDelta[j1, j2] IndexDelta[o1,

o2] *
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{ {gL[4]},

{gR[4]},

{(I/4)*(1/LambdaNC^2) gL[4]},

{(I/4)*(1/LambdaNC^2) gR[4]},

{(I/4)*(1/LambdaNC^2) Mass[F[4, {j1}]] gL[4]},

{(I/4)*(1/LambdaNC^2) Mass[F[4, {j1}]] gR[4]},

{(-I/4)*(1/LambdaNC^2) Mass[F[4 {j1}]] gR[4]},

{(-I/4)*(1/LambdaNC^2) Mass[F[4, {j1}]] gL[4]},

{0},

{0} },

C[ -F[1, {j1}], F[2, {j2}], -V[3] ] ==

I EL/(Sqrt[2] SW) IndexDelta[j1, j2] *

{ {1},

{0},

{(I/4)*(1/LambdaNC^2)},

{0},

{(I/4)*(1/LambdaNC^2) Mass[F[1, {j1}]]},

{0},

{0},

{(-I/4)*(1/LambdaNC^2) Mass[F[2, {j1}]]},

{0},

{0} },
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C[ -F[2, {j1}], F[1, {j2}], V[3] ] ==

I EL/(Sqrt[2] SW) IndexDelta[j1, j2] *

{ {1},

{0},

{(I/4)*(1/LambdaNC^2)},

{0},

{(I/4)*(1/LambdaNC^2) Mass[F[2, {j1}]]},

{0},

{0},

{(-I/4)*(1/LambdaNC^2) Mass[F[1, {j1}]]},

{0},

{0} },

C[ -F[3, {j1, o1}], F[4, {j2, o2}], -V[3] ] ==

I EL/(Sqrt[2] SW) CKM[j1, j2] IndexDelta[o1, o2] *

{ {1},

{0},

{(I/4)*(1/LambdaNC^2)},

{0},

{(I/4)*(1/LambdaNC^2) Mass[F[3, {j1}]]},

{0},

{0},

{(-I/4)*(1/LambdaNC^2) Mass[F[4, {j1}]]},
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{0},

{0} },

C[ -F[4, {j2, o2}], F[3, {j1, o1}], V[3] ] ==

I EL/(Sqrt[2] SW) Conjugate[CKM[j1, j2]] IndexDelta[o1, o2] *

{ {1},

{0},

{(I/4)*(1/LambdaNC^2)},

{0},

{(I/4)*(1/LambdaNC^2) Mass[F[4, {j1}]]},

{0},

{0},

{(-I/4)*(1/LambdaNC^2) Mass[F[3, {j1}]]},

{0},

{0} },

(* F-F-V-V: *)

C[ -F[1, {j1}], F[1, {j2}], V[1], V[1] ] == -(1/2) EL^2 *(1/LambdaNC^2)

{ {0},

{0},

{0},

{0},

{0},

{0} },
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C[ -F[2, {j1}], F[2, {j2}], V[1], V[1] ] == -(1/2) EL^2 *(1/LambdaNC^2) Fermi-

onCharge[2]^2 IndexDelta[j1, j2]

{ {1},

{1},

{-1},

{-1},

{0},

{0} },

C[ -F[3, {j1, o1}], F[3, {j2, o2}], V[1], V[1] ] == -(1/2)* EL^2 *(1/LambdaNC^2)

FermionCharge[3]^2 IndexDelta[j1, j2] IndexDelta[o1, o2] *

{ {1},

{1},

{-1},

{-1},

{0},

{0} },

C[ -F[4, {j1, o1}], F[4, {j2, o2}], V[1], V[1] ] == -(1/2)* EL^2 *(1/LambdaNC^2)

FermionCharge[4]^2 IndexDelta[j1, j2] IndexDelta[o1, o2] *

{ {1},

{1},

{-1},

{-1},
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{0},

{0} },

C[ -F[1, {j1}], F[1, {j2}], V[1], V[2] ] == -(1/2)* EL^2 *(1/LambdaNC^2) Fermi-

onCharge[1] IndexDelta[j1, j2] *

{ {gL[1]},

{gR[1]},

{-gL[1]},

{-gR[1]},

{Mass[F[1, {j1}]] (gR[1]-gL[1])},

{Mass[F[1, {j1}]] (gL[1]-gR[1])} },

C[ -F[2, {j1}], F[2, {j2}], V[1], V[2] ] == -(1/2)* EL^2 *(1/LambdaNC^2) Fermi-

onCharge[2] IndexDelta[j1, j2] *

{ {gL[2]},

{gR[2]},

{-gL[2]},

{-gR[2]},

{Mass[F[2, {j1}]] (gR[2]-gL[2])},

{Mass[F[2, {j1}]] (gL[2]-gR[2])} },

C[ -F[3, {j1, o1}], F[3, {j2, o2}], V[1], V[2] ] == -(1/2)* EL^2 *(1/LambdaNC^2)

FermionCharge[3] IndexDelta[j1, j2] IndexDelta[o1, o2] *

{ {gL[3]},

{gR[3]},
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{-gL[3]},

{-gR[3]},

{Mass[F[3, {j1}]] (gR[3]-gL[3])},

{Mass[F[3, {j1}]] (gL[3]-gR[3])} },

C[ -F[4, {j1, o1}], F[4, {j2, o2}], V[1], V[2] ] == -(1/2)* EL^2 *(1/LambdaNC^2)

FermionCharge[4] IndexDelta[j1, j2] IndexDelta[o1, o2] *

{ {gL[4]},

{gR[4]},

{-gL[4]},

{-gR[4]},

{Mass[F[4, {j1}]] (gR[4]-gL[4])},

{Mass[F[4, {j1}]] (gL[4]-gR[4])} },

C[ -F[1, {j1}], F[1, {j2}], V[2], V[2] ] == -(1/2)* EL^2 *(1/LambdaNC^2) In-

dexDelta[j1, j2] *

{ {gL[1]^2},

{gR[1]^2},

{-gL[1]^2},

{-gR[1]^2},

{0},

{0} },

C[ -F[2, {j1}], F[2, {j2}], V[2], V[2] ] == -(1/2)* EL^2 *(1/LambdaNC^2)

IndexDelta[j1, j2] *
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{ {gL[2]^2},

{gR[2]^2},

{-gL[2]^2},

{-gR[2]^2},

{0},

{0} },

C[ -F[3, {j1, o1}], F[3, {j2, o2}], V[2], V[2] ] == -(1/2)* EL^2 *(1/LambdaNC^2)

IndexDelta[j1, j2] IndexDelta[o1, o2] *

{ {gL[3]^2},

{gR[3]^2},

{-gL[3]^2},

{-gR[3]^2},

{0},

{0} },

C[ -F[4, {j1, o1}], F[4, {j2, o2}], V[2], V[2] ] == -(1/2)* EL^2 *(1/LambdaNC^2)

IndexDelta[j1, j2] IndexDelta[o1, o2] *

{ {gL[4]^2},

{gR[4]^2},

{-gL[4]^2},

{-gR[4]^2},

{0},

{0} },
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C[ -F[1, {j1}], F[1, {j2}], -V[3], V[3] ] == EL^2 *(1/LambdaNC^2) *

-1/(4 SW^2) IndexDelta[j1, j2] *

{ {1},

{0},

{0},

{0},

{Mass[F[1, {j1}]]},

{Mass[F[1, {j1}]]} },

C[ -F[2, {j1}], F[2, {j2}], -V[3], V[3] ] == EL^2 *(1/LambdaNC^2) *

-1/(4 SW^2) IndexDelta[j1, j2] *

{ {1},

{0},

{0},

{0},

{Mass[F[2, {j1}]]},

{Mass[F[2, {j1}]]} },

C[ -F[3, {j1, o1}], F[3, {j2, o2}], -V[3], V[3] ] == EL^2 *(1/LambdaNC^2)

*IndexDelta[o1, o2] *

-1/(4 SW^2) IndexDelta[j1, j2] *

{ {1},

{0},

{0},
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{0},

{Mass[F[3, {j1}]]},

{Mass[F[3, {j1}]]} },

C[ -F[4, {j1, o1}], F[4, {j2, o2}], -V[3], V[3] ] == EL^2 *(1/LambdaNC^2)

IndexDelta[o1, o2] *

-1/(4 SW^2) IndexDelta[j1, j2] *

{ {1},

{0},

{0},

{0},

{Mass[F[4, {j1}]]},

{Mass[F[4, {j1}]]} },

C[ -F[1, {j1}], F[2, {j2}],V[1], -V[3] ] == EL^2 *(1/LambdaNC^2)

-1/(2 Sqrt[2] SW) IndexDelta[j1, j2] *

{ {FermionCharge[1]},

{0},

{-FermionCharge[2]},

{0},

{FermionCharge[2] Mass[F[1, {j1}]]},

{-FermionCharge[1] Mass[F[2, {j1}]]} },

C[ -F[2, {j1}], F[1, {j2}],V[1], V[3] ] == EL^2 *(1/LambdaNC^2)

-1/(2 Sqrt[2] SW) IndexDelta[j1, j2] *



115

{ {FermionCharge[2]},

{0},

{-FermionCharge[1]},

{0},

{FermionCharge[1] Mass[F[2, {j1}]]},

{-FermionCharge[2] Mass[F[1, {j1}]]} },

C[ -F[3, {j1, o1}], F[4, {j2, o2}], V[1], -V[3] ] == EL^2 *(1/LambdaNC^2)

-1/(2 Sqrt[2] SW) IndexDelta[j1, j2] *

{ {FermionCharge[3]},

{0},

{-FermionCharge[4]},

{0},

{FermionCharge[4] Mass[F[3, {j1}]] CKM[j1, j2]},

{-FermionCharge[3] Mass[F[4, {j1}]] CKM[j1, j2]} },

C[ -F[4, {j2, o2}], F[3, {j1, o1}], V[1], V[3] ] == EL^2 *(1/LambdaNC^2)

-1/(2 Sqrt[2] SW) IndexDelta[j1, j2] *

{ {FermionCharge[4]},

{0},

{-FermionCharge[3]},

{0},

{FermionCharge[3] Mass[F[4, {j1}]] Conjugate[CKM[j1, j2]]},

{-FermionCharge[4] Mass[F[3, {j1}]] Conjugate[CKM[j1, j2]]} },
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C[ -F[1, {j1}], F[2, {j2}], V[2], -V[3] ] == EL^2 *(1/LambdaNC^2)

-1/(2 Sqrt[2] SW) IndexDelta[j1, j2] *

{ {gL[1]},

{0},

{-gL[2]},

{0},

{Mass[F[1, {j1}]] (2gL[2]-gR[2])},

{Mass[F[2, {j1}]] (2gL[1]-gR[1])} },

C[ -F[2, {j1}], F[1, {j2}],V[2], V[3] ] == EL^2 *(1/LambdaNC^2)

-1/(2 Sqrt[2] SW) IndexDelta[j1, j2] *

{ {gL[2]},

{0},

{-gL[1]},

{0},

{Mass[F[2, {j1}]] (2gL[1]-gR[1])},

{Mass[F[1, {j1}]] (2gL[2]-gR[2])} },

C[ -F[3, {j1, o1}], F[4, {j2, o2}], V[2], -V[3] ] == EL^2 *(1/LambdaNC^2)

-1/(2 Sqrt[2] SW) CKM[j1, j2] IndexDelta[j1, j2] *

{ {gL[3]},

{0},

{-gL[4]},

{0},



117

{Mass[F[3, {j1}]] (2gL[4]-gR[4])},

{Mass[F[4, {j1}]] (2gL[3]-gR[3])} },

C[ -F[4, {j2, o2}], F[3, {j1, o1}], V[2], V[3] ] == EL^2 *(1/LambdaNC^2)

-1/(2 Sqrt[2] SW) Conjugate[CKM[j1, j2]] IndexDelta[j1, j2] *

{ {gL[4]},

{0},

{-gL[3]},

{0},

{Mass[F[4, {j1}]] (2gL[3]-gR[3])},

{Mass[F[3, {j1}]] (2gL[4]-gR[4])} },

(* V-V-V: *)

C[ V[1], -V[3], V[3] ] == I EL *

{ {1},

{(I/4) MW^2*(1/LambdaNC^2)},

{0},

{0} },

C[ V[2], -V[3], V[3] ] == I EL CW/SW *

{ {1},

{(-I/4) MW^2*(1/LambdaNC^2)},

{(I/8) MZ^2*(1/LambdaNC^2)},

{(-I/4) MZ^2*(1/LambdaNC^2)} },

C[ V[2], V[2], V[2] ] == (EL MZ^2)/(4 CW SW) * (1/LambdaNC^2)
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{ {0},

{0},

{(-1/2)*(1/LambdaNC^2)},

{(1/LambdaNC^2)} },

(* S-S-V: *)

C[ S[1], S[1], V[2] ] == EL /(4 CW) *

{ {(1/LambdaNC^2) MH^2} }

}

M$LastModelRules = {}

(* some short-hands for excluding classes of particles *)

QEDOnly = ExcludeParticles -> {F[1], V[2], V[3], S, SV, U[2], U[3], U[4]}

NoGeneration1 = ExcludeParticles -> F[_, {1, ___}]

NoGeneration2 = ExcludeParticles -> F[_, {2, ___}]

NoGeneration3 = ExcludeParticles -> F[_, {3, ___}]

NoElectronHCoupling =

ExcludeFieldPoints -> {

FieldPoint[_][-F[2, {1}], F[2, {1}], S],

FieldPoint[_][-F[2, {1}], F[1, {1}], S] }

NoLightFHCoupling =

ExcludeFieldPoints -> {

FieldPoint[_][-F[2], F[2], S],

FieldPoint[_][-F[2], F[1], S],
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FieldPoint[_][-F[3, {1, ___}], F[3, {1, ___}], S],

FieldPoint[_][-F[3, {2, ___}], F[3, {2, ___}], S],

FieldPoint[_][-F[4], F[4], S],

FieldPoint[_][-F[4], F[3, {1, ___}], S],

FieldPoint[_][-F[4], F[3, {2, ___}], S] }

NoQuarkMixing =

ExcludeFieldPoints -> {

FieldPoint[_][-F[4, {1, ___}], F[3, {2, ___}], S[3]],

FieldPoint[_][-F[4, {1, ___}], F[3, {2, ___}], V[3]],

FieldPoint[_][-F[4, {1, ___}], F[3, {3, ___}], S[3]],

FieldPoint[_][-F[4, {1, ___}], F[3, {3, ___}], V[3]],

FieldPoint[_][-F[4, {2, ___}], F[3, {1, ___}], S[3]],

FieldPoint[_][-F[4, {2, ___}], F[3, {1, ___}], V[3]],

FieldPoint[_][-F[4, {2, ___}], F[3, {3, ___}], S[3]],

FieldPoint[_][-F[4, {2, ___}], F[3, {3, ___}], V[3]],

FieldPoint[_][-F[4, {3, ___}], F[3, {1, ___}], S[3]],

FieldPoint[_][-F[4, {3, ___}], F[3, {1, ___}], V[3]],

FieldPoint[_][-F[4, {3, ___}], F[3, {2, ___}], S[3]],

FieldPoint[_][-F[4, {3, ___}], F[3, {2, ___}], V[3]] }

(* The following de�nitions of renormalization constants

are for the on-shell renormalization of the Standard Model in

the scheme of A. Denner, Fortschr. d. Physik, 41 (1993) 4.



120

The renormalization constants are not directly used by

FeynArts, and hence do not restrict the generation of diagrams

and amplitudes in any way. *)

Clear[RenConst]

RenConst[ dMf1[type_, j1_] ] := MassRC[F[type, {j1}]]

RenConst[ dZfL1[type_, j1_, j2_] ] :=

FieldRC[F[type, {j1}], F[type, {j2}]][[1]]

RenConst[ dZfR1[type_, j1_, j2_] ] :=

FieldRC[F[type, {j1}], F[type, {j2}]][[2]]

RenConst[ dCKM1[j1_, j2_] ] := 1/4 IndexSum[

(dZfL1[3, j1, gn] - Conjugate[dZfL1[3, gn, j1]]) CKM[gn, j2] -

CKM[j1, gn] (dZfL1[4, gn, j2] - Conjugate[dZfL1[4, j2, gn]]),

{gn, MaxGenerationIndex} ]

RenConst[ dMZsq1 ] := MassRC[V[2]]

RenConst[ dMWsq1 ] := MassRC[V[3]]

RenConst[ dMHsq1 ] := MassRC[S[1]]

RenConst[ dZAA1 ] := FieldRC[V[1]]

RenConst[ dZAZ1 ] := FieldRC[V[1], V[2]]

RenConst[ dZZA1 ] := FieldRC[V[2], V[1]]

RenConst[ dZZZ1 ] := FieldRC[V[2]]

RenConst[ dZG01 ] := FieldRC[S[2]]

RenConst[ dZW1 ] := FieldRC[V[3]]
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RenConst[ dZGp1 ] := FieldRC[S[3]]

RenConst[ dZH1 ] := FieldRC[S[1]]

RenConst[ dTH1 ] := TadpoleRC[S[1]]

RenConst[ dSW1 ] := CW^2/SW/2 (dMZsq1/MZ^2 - dMWsq1/MW^2)

RenConst[ dZe1 ] := -1/2 (dZAA1 + SW/CW dZZA1)

� Generic Model �le: NCSM.gen

(* NCSM.gen

last modi�ed 10 March 11 by Linda GHEGAL

*)

(* Kinematic indices are �transported�along a propagator line.

KinematicIndices[X] = {Name} means that the generic �eld X

will carry an index Index[Name, i] along the line:

X[ n, {m..}, p, {Index[Name, i]} -> {Index[Name, i + 1]} ] *)

KinematicIndices[ F ] = {};

KinematicIndices[ V ] = {Lorentz};

KinematicIndices[ S ] = {};

KinematicIndices[ SV ] = {Lorentz};

KinematicIndices[ U ] = {}

$FermionLines = True

P$NonCommuting = F j U

Attributes[ MetricTensor ] = Attributes[ ScalarProduct ] = {Orderless}

ThSlash[mu_, nu_, ro_] :=
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NonCommutative[DiracMatrix[mu], DiracMatrix[nu],DiracMatrix[ro]]

-NonCommutative[DiracMatrix[nu], DiracMatrix[mu], DiracMatrix[ro]]

+NonCommutative[DiracMatrix[nu], DiracMatrix[ro], DiracMatrix[mu]]

-NonCommutative[DiracMatrix[ro], DiracMatrix[nu], DiracMatrix[mu]]

+NonCommutative[DiracMatrix[ro], DiracMatrix[mu], DiracMatrix[nu]]

-NonCommutative[DiracMatrix[mu], DiracMatrix[ro], DiracMatrix[nu]]

FourVector/: -FourVector[ mom_, mu___ ] := FourVector[Expand[-mom], mu]

FourVector[ 0, ___ ] = 0

SpinorType[j_Integer, ___] := MajoranaSpinor /; SelfConjugate[F[j]]

SpinorType[_Integer, __] = DiracSpinor

M$GenericPropagators = {

(* general fermion propagator: *)

AnalyticalPropagator[External][ s1 F[j1, mom] ] ==

NonCommutative[ SpinorType[j1][-mom, Mass[F[j1]]] ],

(* Remarks:

Fermionic propagators have (like all others, too) their

momentum �owing from left to right. The fermion �ow (for

Dirac fermions: fermion number �ow) is from right to left.

If the fermion inside the propagator has no sign (i.e. fermion

number �ow is opposite to fermion �ow or fermion is self

conjugate) we just use the internal propagator S(-p).

If the fermion has a sign, we have to use the Feynman rule S(p)



123

according to the Majorana paper. However, this rule is given

for a momentum �owing against the fermion �ow so, again, we

end up with S(-p). *)

AnalyticalPropagator[Internal][ s1 F[j1, mom] ] ==

NonCommutative[ DiracSlash[-mom] + Mass[F[j1]] ] *

I PropagatorDenominator[mom, Mass[F[j1]]],

(* general vector boson propagator: *)

AnalyticalPropagator[External][ s1 V[j1, mom, {li2}] ] ==

PolarizationVector[V[j1], mom, li2],

AnalyticalPropagator[Internal][ s1 V[j1, mom, {li1} -> {li2}] ] ==

-I PropagatorDenominator[mom, Mass[V[j1]]] *

(MetricTensor[li1, li2] - (1 - GaugeXi[V[j1]]) *

FourVector[mom, li1] FourVector[mom, li2] *

PropagatorDenominator[mom, Sqrt[GaugeXi[V[j1]]] Mass[V[j1]]]),

(* general mixing scalar-vector propagator: *)

AnalyticalPropagator[Internal][ s1 SV[j1, mom, {li1} -> {li2}] ] ==

I Mass[SV[j1]] PropagatorDenominator[mom, Mass[SV[j1]]] *

FourVector[mom, If[s1 == 1 jj s1 == -2, li1, li2]],

(* general scalar propagator: *)

AnalyticalPropagator[External][ s1 S[j1, mom] ] == 1,

AnalyticalPropagator[Internal][ s1 S[j1, mom] ] ==

I PropagatorDenominator[mom, Sqrt[GaugeXi[S[j1]]] Mass[S[j1]]],
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(* general Fadeev-Popov ghost propagator: *)

AnalyticalPropagator[External][ s1 U[j1, mom] ] == 1,

AnalyticalPropagator[Internal][ s1 U[j1, mom] ] ==

I PropagatorDenominator[mom, Sqrt[GaugeXi[U[j1]]] Mass[U[j1]]]

}

(* De�nition of the generic couplings.

The couplings must be de�ned as a Dot product of the (generic)

coupling vector G[+/-][ �eld1, �eld2, .. ] and the

kinematical vector Gamma = {Gamma1, Gamma2, ...}.

The kinematical vector must have the following properties:

a) the entries of Gamma must close under permutation of the

�elds, i.e. under permutation of the momenta and

kinematical indices. One exception is allowed: if the

elements of Gamma only change their signs under certain

permutations (e.g. Gamma1 = mom1 - mom2), a coupling vector

G[-] can be used.

This leads to the following behaviour during the

construction of the classes couplings: if a permuted

coupling was found and the corresponding permutation doesn�t

resolve the coupling vector entry, then the program tries

the negative expression of the corresponding Gamma and

multiplies the coupling with (-1).
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b) the entries of the kinematical vector have to be closed

under application of the M$FlippingRules, i.e. fermionic

couplings have to be written such that the �ipped couplings

are present in the generic coupling. Again, it is possible

to de�ne �ippings that change the sign of Gamma and to

take care for those signs by using a G[-]. *)

M$GenericCouplings = {

(* F-F-V: *)

AnalyticalCoupling[ s1 F[j1, mom1], s2 F[j2, mom2],

s3 V[j3, mom3, {li3}] ] ==

G[-1][s1 F[j1], s2 F[j2], s3 V[j3]] .

{ NonCommutative[DiracMatrix[li3], ChiralityProjector[-1]],

NonCommutative[DiracMatrix[li3], ChiralityProjector[+1]],

NonCommutative[ThSlash[li3, mom3, mom2], ChiralityProjector[-1]],

NonCommutative[ThSlash[li3, mom3, mom2], ChiralityProjector[+1]],

NonCommutative[DiracMatrix[li3], DiracMatrix[mom2], ChiralityProjector[-1]]

-NonCommutative[DiracMatrix[mom2], DiracMatrix[li3], ChiralityProjector[-1]],

NonCommutative[DiracMatrix[li3], DiracMatrix[mom2], ChiralityProjector[+1]]

-NonCommutative[DiracMatrix[mom2], DiracMatrix[li3], ChiralityProjector[+1]],

NonCommutative[DiracMatrix[li3], DiracMatrix[mom1], ChiralityProjector[-1]]

-NonCommutative[DiracMatrix[mom1], DiracMatrix[li3], ChiralityProjector[-1]],

NonCommutative[DiracMatrix[li3], DiracMatrix[mom1], ChiralityProjector[+1]]
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-NonCommutative[DiracMatrix[mom1], DiracMatrix[li3], ChiralityProjector[+1]],

NonCommutative[DiracMatrix[li3], DiracMatrix[mom3], ChiralityProjector[-1]]

-NonCommutative[DiracMatrix[mom3], DiracMatrix[li3], ChiralityProjector[-1]],

NonCommutative[DiracMatrix[li3], DiracMatrix[mom3], ChiralityProjector[+1]]

-NonCommutative[DiracMatrix[mom3], DiracMatrix[li3], ChiralityProjector[+1]]

},

(* F-F-V-V: *)

AnalyticalCoupling[ s1 F[j1, mom1], s2 F[j2, mom2],

s3 V[j3, mom3, {li3}], s4 V[j4, mom4, {li4}] ] ==

G[-1][s1 F[j1], s2 F[j2], s3 V[j3], s4 V[j4]] .

{ NonCommutative[ThSlash[li3, li4, mom2 + mom3], ChiralityProjector[-1]],

NonCommutative[ThSlash[li3, li4, mom2 + mom3], ChiralityProjector[+1]],

NonCommutative[ThSlash[li3, li4, mom2 + mom4], ChiralityProjector[-1]],

NonCommutative[ThSlash[li3, li4, mom2 + mom4], ChiralityProjector[+1]],

NonCommutative[DiracMatrix[li3], DiracMatrix[li4], ChiralityProjector[-1]]

-NonCommutative[DiracMatrix[li4], DiracMatrix[li3], ChiralityProjector[-1]],

NonCommutative[DiracMatrix[li3], DiracMatrix[li4], ChiralityProjector[+1]]

-NonCommutative[DiracMatrix[li4], DiracMatrix[li3], ChiralityProjector[+1]] },

(* V-V-V: *)

AnalyticalCoupling[ s1 V[j1, mom1, {li1}], s2 V[j2, mom2, {li2}],

s3 V[j3, mom3, {li3}] ] ==

G[-1][s1 V[j1], s2 V[j2], s3 V[j3]] .
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{ MetricTensor[li1, li2] FourVector[mom1 - mom2, li3] +

MetricTensor[li2, li3] FourVector[mom2 - mom3, li1] +

MetricTensor[li3, li1] FourVector[mom3 - mom1, li2],

NonCommutative[DiracMatrix[li1], DiracMatrix[li2], FourVector[mom1, li3]]

-NonCommutative[DiracMatrix[li2], DiracMatrix[li1], FourVector[mom1, li3]]

+NonCommutative[DiracMatrix[li1], DiracMatrix[li3], FourVector[mom1, li2]]

-NonCommutative[DiracMatrix[li3], DiracMatrix[li1], FourVector[mom1, li2]]

+MetricTensor[li1, li2] NonCommutative[DiracMatrix[li3], DiracMatrix[mom1]]

-MetricTensor[li1, li2] NonCommutative[DiracMatrix[mom1], DiracMatrix[li3]]

-MetricTensor[li2, li3] NonCommutative[DiracMatrix[li1], DiracMatrix[mom1]]

+MetricTensor[li2, li3] NonCommutative[DiracMatrix[mom1], DiracMatrix[li1]]

+MetricTensor[li3, li1] NonCommutative[DiracMatrix[li2], DiracMatrix[mom1]]

-MetricTensor[li3, li1] NonCommutative[DiracMatrix[mom1], DiracMatrix[li2]],

NonCommutative[DiracMatrix[li1], DiracMatrix[li2], FourVector[mom1 - mom2,

li3]]

-NonCommutative[DiracMatrix[li2], DiracMatrix[li1], FourVector[mom1 - mom2,

li3]] +NonCommutative[DiracMatrix[li2], DiracMatrix[li3], FourVector[mom2 - mom3, li1]]

-NonCommutative[DiracMatrix[li3], DiracMatrix[li2], FourVector[mom2 - mom3,

li1]] +NonCommutative[DiracMatrix[li3], DiracMatrix[li1], FourVector[mom3 - mom1, li2]]

-NonCommutative[DiracMatrix[li1], DiracMatrix[li3], FourVector[mom3 - mom1,

li2]],

MetricTensor[li1, li2] NonCommutative[DiracMatrix[li3], DiracMatrix[mom3]]
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- MetricTensor[li1, li2] NonCommutative[DiracMatrix[mom3], DiracMatrix[li3]]+

MetricTensor[li2, li3] NonCommutative[DiracMatrix[li1], DiracMatrix[mom1]]

- MetricTensor[li2, li3] NonCommutative[DiracMatrix[mom1], DiracMatrix[li1]]+

MetricTensor[li3, li1] NonCommutative[DiracMatrix[li2], DiracMatrix[mom2]]

- MetricTensor[li3, li1] NonCommutative[DiracMatrix[mom2], DiracMatrix[li2]]},

(* S-S-V: *)

AnalyticalCoupling[ s1 S[j1, mom1], s2 S[j2, mom2],

s3 V[j3, mom3, {li3}] ] ==

G[-1][s1 S[j1], s2 S[j2], s3 V[j3]] .

{ DiracMatrix[mom1 - mom2] DiracMatrix[li3]

-DiracMatrix[li3] DiracMatrix[mom1 - mom2]}}

(* FlippingRules: the �ipping rules determines how Dirac

objects change when the order of fermion �elds in the

coupling is reversed. In other words, it de�nes how the

coupling C[F, -F, ...] is derived from C[-F, F, ...].

Of the elements of the Dirac algebra we need to consider

only gamma_mu omega_pm since the others are either

unchanged or not used (sigma_{mu,nu}).

See Denner, Eck, Hahn, Kueblbeck, NPB 387 (1992) 467. *)

M$FlippingRules =

NonCommutative[dm:_DiracMatrix j _DiracSlash, ChiralityProjector[pm_]] ->

-NonCommutative[dm, ChiralityProjector[-pm]]
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(* TruncationRules: rule for omitting the wave functions of

external Propagators de�ned in this �le. *)

M$TruncationRules = {

_PolarizationVector -> 1,

_DiracSpinor -> 1,

_MajoranaSpinor -> 1

}

(* LastGenericRules: the very last rules that are applied to an

amplitude before it is returned by CreateFeynAmp. *)

M$LastGenericRules = {

PolarizationVector[p_, _. mom:FourMomentum[Outgoing, _], li_] :>

Conjugate[PolarizationVector][p, mom, li]

}

(* cosmetics: *)

(* left spinor in chain + mom incoming -> nbar v

left spinor in chain + mom outgoing -> nbar u

right spinor in chain + mom incoming -> u

right spinor in chain + mom outgoing -> v *)

Format[ ThSlash ] = "Th"

Format[

FermionChain[

NonCommutative[_[s1_. mom1_, mass1_]],
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r___,

NonCommutative[_[s2_. mom2_, mass2_]]] ] :=

Overscript[If[FreeQ[mom1, Incoming], "u", "v"], "_"][mom1, mass1] .

r . If[FreeQ[mom2, Outgoing], "u", "v"][mom2, mass2]

Format[ DiracSlash ] = "gs"

Format[ DiracMatrix ] = "ga"

Format[ ChiralityProjector[1] ] = SequenceForm["om", Subscript["+"]]

Format[ ChiralityProjector[-1] ] = SequenceForm["om", Subscript["-"]]

Format[ GaugeXi[a_] ] := SequenceForm["xi", Subscript[a]]

Format[ PolarizationVector ] = "ep"

Unprotect[Conjugate];

Format[ Conjugate[a_] ] = SequenceForm[a, Superscript["*"]];

Protect[Conjugate]

Format[ MetricTensor ] = "g"

Format[ ScalarProduct[a__] ] := Dot[a]

Format[ FourVector[a_, b_] ] := a[b]

Format[ FourVector[a_] ] := a

A.2 FormCalc Drivers for the NCSM

After the diagram generation with the new FeynArts model �le NCSM.mod, Form-

Calc calculates the squared matrix elements with the help of Form [23] and the resulting

expressions are translated into Fortran for the further numerical evaluation. For consistency,
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the Fortran drivers necessary for the initialization of the NCSM parameters. The scale of

the noncommutativity �NC of the NCSM is initiated into two speci�c �les NCSM.F and

NCSM.h as real parameter. In the following part we are going to present the corresponding

FormCalc Fortran drivers.

� NCSM.F

* xsection.F

* routines to compute the cross-section

* this �le is part of FormCalc

* last modi�ed 3 Mar 11 th

#include "decl.h"

#include "process.h"

#include MODEL

#ifdef BREMSSTRAHLUNG

#include "softphoton.F"

#endif

************************************************************************

** ProcessIni translates the polarization string into bit-encoded

** helicities, determines the averaging factor, and initializes the

** model defaults.

subroutine ProcessIni(fail, pol,

& sqrtSfrom, sqrtSto, sqrtSstep)

implicit none
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integer fail

character*(*) pol

double precision sqrtSfrom, sqrtSto, sqrtSstep

#include "xsection.h"

#if U77EXT

integer lnblnk

external lnblnk

#endif

integer i, c, bits, df

#de�ne SCALAR Z�001�

#de�ne FERMION Z�10A�

#de�ne PHOTON Z�20A�

#de�ne GLUON PHOTON

#de�ne VECTOR Z�20E�

#de�ne GRAVITINO Z�31B�

#de�ne GRAVITON Z�41B�

#de�ne TENSOR Z�41F�

integer type(LEGS)

data type /TYPES/

if( lnblnk(pol) .ne. LEGS ) then

fail = 1

return
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endif

df = 2**(LEGS)

do i = 1, LEGS

bits = iand(type(i), 255)

c = ior(ichar(pol(i:i)), 32)

if( c .eq. ichar(�t�) ) then

c = ior(c, ibits(bits, 3, 1))

bits = iand(bits, 16+8+2+1)

else if( c .eq. ichar(�p�) ) then

bits = iand(bits, 16)

else if( c .eq. ichar(�+�) ) then

bits = iand(bits, 8)

else if( c .eq. ichar(�l�) ) then

bits = iand(bits, 4)

else if( c .eq. ichar(�-�) ) then

bits = iand(bits, 2)

else if( c .eq. ichar(�m�) ) then

bits = iand(bits, 1)

else if( c .ne. ichar(�u�) ) then

bits = 0

endif

if( bits .eq. 0 ) then
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Error("Invalid polarization for leg "/ /Digit(i))

return

endif

if( i .le. LEGS_IN ) df = df*(ibits(bits, 4, 1) +

& ibits(bits, 3, 1) + ibits(bits, 2, 1) +

& ibits(bits, 1, 1) + ibits(bits, 0, 1))

#ifdef DIRACFERMIONS

if( type(i) .eq. FERMION ) then

df = df/2

bits = 1

endif

#endif

pol(i:i) = char(c)

helicities = helicities*32 + bits

enddo

Lower(SQRTS) = sqrtSfrom

Upper(SQRTS) = sqrtSto

Step(SQRTS) = sqrtSstep

Var(FIXED) = 0

Step(FIXED) = 1

Var(TRIVIAL) = 0

Step(TRIVIAL) = 0
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avgfac = 2**(LEGS)*DBLE(COLOURFACTOR)

*DBLE(IDENTICALFACTOR)/df

sqrtS = -1

threshold = -1

scale = -1

sqrtSinvalid = 1

call ltini

#ifdef SAMURAI

* args are:

* 1. imeth = "diag" (numerators) or "tree" (products of tree amps)

* 2. isca = 1 (QCDloop) or 2 (OneLOop)

* 3. verbosity = 0, 1, 2, 3

* 4. itest = 0 (none), 1 (powertest), 2 (nntest), 3 (lnntest)

call initsamurai("diag", 2, 1, 1)

#endif

call ModelDefaults

call LumiDefaults

fail = 0

end

************************************************************************

** ProcessExi wraps up the calculation, e.g. prints a summary of

** messages, deallocates arrays etc.
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subroutine ProcessExi

implicit none

call ltexi

end

************************************************************************

** SetEnergy sets the energy for the partonic scattering process.

** All scale-dependent quantities are initialized at SCALE.

subroutine SetEnergy(fail, newsqrtS)

implicit none

integer fail

double precision newsqrtS

#include "xsection.h"

double precision oldscale, oldmass_in, oldmass_out

logical reset

integer i

fail = 0

reset = abs(newsqrtS - sqrtS) .gt. 1D-9

sqrtS = newsqrtS

oldscale = max(DBLE(SCALE), 1D0)

if( sqrtSinvalid .eq. 1 .or.

& btest(�ags, BIT_RESET) .or.

& abs(oldscale - scale) .gt. 1D-9 ) then
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oldmass_in = MASS_IN

oldmass_out = MASS_OUT

do i = 1, 10

call ModelVarIni(fail, oldscale)

scale = max(DBLE(SCALE), 1D0)

mass_in = MASS_IN

mass_out = MASS_OUT

if( abs(scale - oldscale) +

& abs(mass_in - oldmass_in) +

& abs(mass_out - oldmass_out) .lt. 1D-9 ) goto 1

oldscale = scale

oldmass_in = mass_in

oldmass_out = mass_out

enddo

1 threshold = max(mass_in, mass_out)

sqrtSinvalid = fail

reset = .TRUE.

endif

if( reset ) �ags = ibset(�ags, BIT_RESET)

if( fail .ne. 0 .or. sqrtS .lt. threshold ) then

fail = 1

else
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call InitialState

endif

end

************************************************************************

** ParameterScan performs the actual calculation.

** It scans over the parameter loops LOOP* declared in run.F.

subroutine ParameterScan(dir,

& serialfrom, serialto, serialstep)

implicit none

character*(*) dir

integer serialfrom, serialto, serialstep

#include "xsection.h"

integer openlog

external openlog

integer serial, next

next = serialfrom

serial = 0

#ifdef LOOP1

LOOP1

#endif

#ifdef LOOP2

LOOP2
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#endif

#ifdef LOOP3

LOOP3

#endif

#ifdef LOOP4

LOOP4

#endif

#ifdef LOOP5

LOOP5

#endif

#ifdef LOOP6

LOOP6

#endif

#ifdef LOOP7

LOOP7

#endif

#ifdef LOOP8

LOOP8

#endif

#ifdef LOOP9

LOOP9

#endif
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#ifdef LOOP10

LOOP10

#endif

#ifdef LOOP11

LOOP11

#endif

#ifdef LOOP12

LOOP12

#endif

#ifdef LOOP13

LOOP13

#endif

#ifdef LOOP14

LOOP14

#endif

#ifdef LOOP15

LOOP15

#endif

#ifdef LOOP16

LOOP16

#endif

#ifdef LOOP17
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LOOP17

#endif

#ifdef LOOP18

LOOP18

#endif

#ifdef LOOP19

LOOP19

#endif

#ifdef LOOP20

LOOP20

#endif

serial = serial + 1

if( serial .lt. next ) goto 1

call �ush(6)

if( openlog(dir, serial) .eq. 0 ) then

call IntegratedCS

call �ush(6)

call closelog

endif

next = next + serialstep

if( next .gt. serialto ) return

1 continue
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end

************************************************************************

** IntegratedCS computes the integrated cross-section at one point in

** parameter space. The cross-section is di¤erential in all variables

** with non-zero step, i.e. integration variables have step = 0.

subroutine IntegratedCS

implicit none

#include "xsection.h"

integer nvars

parameter (nvars = MAXVAR - (MINVAR) + 1)

external Di¤erentialCS

double precision result(NCOMP), error(NCOMP), show(nvars)

integer fail, f, v, n�x, ndim, �x(nvars)

call ModelConstIni(fail)

if( fail .ne. 0 ) goto 999

�ags = 2**BIT_RESET + 2**BIT_LOOP

#ifdef MUDIM

call setmudim(DBLE(MUDIM))

#endif

#ifdef DELTA

call setdelta(DBLE(DELTA))

#endif
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#ifdef LAMBDA

call setlambda(DBLE(LAMBDA))

#endif

Divergence = getdelta()

mudim = getmudim()

lambda = getlambda()

epscoe¤ = -dim(0, int(lambda))

call KinIni(fail)

if( fail .ne. 0 ) goto 999

n�x = 0

do v = MINVAR, MAXVAR

if( Step(v) .ne. 0 ) then

n�x = n�x + 1

�x(n�x) = v

Var(v) = Lower(v)

endif

enddo

ndim = nvars - n�x

call LumiIni(fail)

if( fail .ne. 0 ) goto 999

call ModelDigest

#de�ne SHOW print 100,
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100 format("j# ", A, "=", F10.4, SP, F10.4, " I")

#ifdef MMA

call MmaSetPara

#endif

#ifdef PRINT1

PRINT1

#endif

#ifdef PRINT2

PRINT2

#endif

#ifdef PRINT3

PRINT3

#endif

#ifdef PRINT4

PRINT4

#endif

#ifdef PRINT5

PRINT5

#endif

#ifdef PRINT6

PRINT6

#endif
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#ifdef PRINT7

PRINT7

#endif

#ifdef PRINT8

PRINT8

#endif

#ifdef PRINT9

PRINT9

#endif

#ifdef PRINT10

PRINT10

#endif

#ifdef PRINT11

PRINT11

#endif

#ifdef PRINT12

PRINT12

#endif

#ifdef PRINT13

PRINT13

#endif

#ifdef PRINT14
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PRINT14

#endif

#ifdef PRINT15

PRINT15

#endif

#ifdef PRINT16

PRINT16

#endif

#ifdef PRINT17

PRINT17

#endif

#ifdef PRINT18

PRINT18

#endif

#ifdef PRINT19

PRINT19

#endif

#ifdef PRINT20

PRINT20

#endif

#ifdef MMA

call MmaEndSet
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call MmaSetData

#endif

1 call Cuba(ndim, Di¤erentialCS, result, error)

do f = 1, n�x

show(f) = Show(�x(f))

enddo

#ifdef MMA

call MmaData(show, n�x, result, error, NCOMP)

#else

* Note: "real" data lines are tagged with "j" in the output.

101 format("j ", 10(4G19.10, :, /"j+"))

print 101, (show(f), f = 1, n�x)

102 format("j+ ", NCOMP G24.15)

print 102, LambdaNC, result(1)

print 102, error(1)

call �ush(6)

#endif

do f = n�x, 1, -1

v = �x(f)

Var(v) = Var(v) + Step(v)

if( (Var(v) - Upper(v))/Step(v) .lt. 1D-10 ) goto 1

Var(v) = Lower(v)
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enddo

#ifdef MMA

call MmaEndSet

#else

103 format("j"/"j"/)

print 103

#endif

999 continue

end

************************************************************************

** Di¤erentialCS computes the di¤erential cross-section at x.

** For all integration variables (those with zero step) it factors in

** the Jacobian, too.

subroutine Di¤erentialCS(ndim, x, ncomp, result)

implicit none

integer ndim, ncomp

double precision x(ndim), result(ncomp)

#include "xsection.h"

#ifdef BREMSSTRAHLUNG

double precision SoftPhotonFactor

external SoftPhotonFactor

#endif



149

double precision fac, range, �ux

integer v, d, c

fac = avgfac

d = 0

do v = MINVAR, MAXVAR

if( Step(v) .eq. 0 ) then

range = Upper(v) - Lower(v)

d = d + 1

Var(v) = Lower(v) + x(d)*range

fac = fac*range

endif

Show(v) = Var(v)

enddo

do c = 1, ncomp

result(c) = 0

enddo

call Luminosity(fac)

if( fac .eq. 0 ) return

call FinalState(fac)

if( fac .eq. 0 ) return

if( btest(�ags, BIT_RESET) ) then

call clearcache
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#ifndef NO_RENCONST

call CalcRenConst

#endif

endif

call SquaredME(result, helicities, �ags)

�ags = ibclr(�ags, BIT_RESET)

#if LEGS_IN == 1

�ux = 2*sqrtS

#else

�ux = 4/hbar_c2*sqrtS*momspec(SPEC_K, 1)

#endif

fac = fac/((2*pi)**(3*LEGS_OUT - 4)*2*sqrtS*�ux)

do c = 1, ncomp

if( .not. abs(result(c)) .lt. 1D16 ) then

Warning("Got strange values from SquaredME:")

INFO result

INFO "(Did you compute the colour matrix elements?)"

stop

endif

result(c) = result(c)*fac

enddo

#ifdef BREMSSTRAHLUNG
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result(2) = result(2) + SoftPhotonFactor()*result(1)

#endif

#ifdef WF_RENORMALIZATION

result(2) = result(2) + (WF_RENORMALIZATION)*result(1)

#endif

end

************************************************************************

** Cuba is a chooser for the Cuba routines, with special cases

** for ndim = 0 (integrand evaluation) and ndim = 1 (Patterson

** integration).

subroutine Cuba(ndim, integrand, result, error)

implicit none

integer ndim

external integrand

double precision result(NCOMP), error(NCOMP)

integer nregions, neval, fail, c

double precision prob(NCOMP)

#include "xsection.h"

#de�ne GAUSS 1

#de�ne PATTERSON 2

#de�ne VEGAS 3

#de�ne SUAVE 4
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#de�ne DIVONNE 5

#de�ne CUHRE 6

#de�ne FLAGS_LAST 4

#de�ne FLAGS_PSEUDO 8

if( ndim .eq. 0 ) then

call integrand(0, 0D0, NCOMP, result)

do c = 1, NCOMP

error(c) = 0

enddo

return

else if( ndim .eq. 1 ) then

#if METHOD == GAUSS

neval = 32

call Gauss(NCOMP, 0D0, 1D0, integrand,

& neval, result)

do c = 1, NCOMP

error(c) = -1

prob(c) = -1

enddo

nregions = 1

fail = 0

INFO "Gauss integration results:"
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#else

call Patterson(NCOMP, 0D0, 1D0, integrand,

& DBLE(RELACCURACY), DBLE(ABSACCURACY),

& neval, fail, result, error)

do c = 1, NCOMP

prob(c) = -1

enddo

nregions = 1

INFO "Patterson integration results:"

#endif

else

#if METHOD == VEGAS

call vegas(ndim, NCOMP, integrand, USERDATA,

& DBLE(RELACCURACY), DBLE(ABSACCURACY),

& VERBOSE, SEED, MINEVAL, MAXEVAL,

& NSTART, NINCREASE, NBATCH,

& GRIDNO, STATEFILE,

& neval, fail, result, error, prob)

nregions = 1

INFO "Vegas integration results:"

#elif METHOD == SUAVE

call suave(ndim, NCOMP, integrand, USERDATA,
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& DBLE(RELACCURACY), DBLE(ABSACCURACY),

& VERBOSE + FLAGS_LAST, SEED, MINEVAL, MAXEVAL,

& NNEW, DBLE(FLATNESS),

& nregions, neval, fail, result, error, prob)

INFO "Suave integration results:"

#elif METHOD == DIVONNE

call divonne(ndim, NCOMP, integrand, USERDATA,

& DBLE(RELACCURACY), DBLE(ABSACCURACY),

& VERBOSE, SEED, MINEVAL, MAXEVAL,

& KEY1, KEY2, KEY3, MAXPASS,

& DBLE(BORDER), DBLE(MAXCHISQ), DBLE(MINDEVIATION),

& 0, NDIM, 0, 0, 0,

& nregions, neval, fail, result, error, prob)

INFO "Divonne integration results:"

#else

call cuhre(ndim, NCOMP, integrand, USERDATA,

& DBLE(RELACCURACY), DBLE(ABSACCURACY),

& VERBOSE + FLAGS_LAST, MINEVAL, MAXEVAL,

& KEY,

& nregions, neval, fail, result, error, prob)

INFO "Cuhre integration results:"

#endif
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endif

INFO "nregions =", nregions

INFO "neval =", neval

INFO "fail =", fail

if( fail .gt. 0 ) then

Warning("Failed to reach the desired accuracy")

else if( fail .lt. 0 ) then

Error("Integration error")

endif

100 format(I2, G24.15, " +- ", G24.15, " p = ", F6.3)

print 100, (c, result(c), error(c), prob(c), c = 1, NCOMP)

end

� NCSM.h

* process.h

* de�nes all process-dependent parameters

* this �le is part of FormCalc

* last modi�ed 12 May 09 th

* De�nition of the external particles.

* Each TYPEn is one of SCALAR, FERMION, PHOTON (= GLUON), or VEC-

TOR.

* (PHOTON/GLUON is equivalent to VECTOR, except that longitudinal

* modes are not allowed)
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* Note: The initial de�nitions for particles 2...5 are of course

* sample entries for demonstration purposes.

#de�ne TYPE1 FERMION

#de�ne MASS1 ME

#de�ne CHARGE1 1

#de�ne TYPE2 FERMION

#de�ne MASS2 ME

#de�ne CHARGE2 -1

#de�ne TYPE3 FERMION

#de�ne MASS3 MT

#de�ne CHARGE3 2/3D0

#de�ne TYPE4 FERMION

#de�ne MASS4 MT

#de�ne CHARGE4 -2/3D0

* When using Dirac fermions (FermionChains -> ChiraljVA) and

* the trace technique (HelicityME), the following �ag should be

* de�ned to compute unpolarized cross-sections e¢ ciently,

* i.e. without actually summing up the di¤erent helicities.

* This has no e¤ect on the result, only on the speed of the

* calculation.

* Note: DIRACFERMIONS must NOT be de�ned when using Weyl fermions,

* i.e. FermionChains -> Weyl in CalcFeynAmp.
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c#de�ne DIRACFERMIONS

* The combinatorial factor for identical particles in the �nal state:

* 1/n! for n identical particles, 1 otherwise

#de�ne IDENTICALFACTOR 1

* Possibly a colour factor, e.g.

* - an additional averaging factor if any of the incoming particles

* carry colour,

* - the overall colour factor resulting from the external particles

* if that cannot computed by FormCalc (e.g. if the model has no

* colour indices, as SMew.mod).

#de�ne COLOURFACTOR 1

* The scale at which the interaction takes place

* (= the factorization scale for an hadronic process).

#de�ne SCALE sqrtS

* Whether to include soft-photon bremsstrahlung.

* ESOFTMAX is the maximum energy a soft photon may have and may be

* de�ned in terms of sqrtS, the CMS energy.

c#de�ne BREMSSTRAHLUNG

#de�ne ESOFTMAX .1D0*sqrtS

* Possibly some wave-function renormalization

* (e.g. if calculating in the background-�eld method)

c#de�ne WF_RENORMALIZATION (nW*dWFW1 + nZ*dWFZ1)
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* NCOMP is the number of components of the result vector. Currently

* the components are 1 = tree-level result, 2 = one-loop result.

#de�ne NCOMP 2

* Choose the appropriate luminosity for the collider:

* - lumi_parton.F for a "parton collider" (e.g. e+ e- -> X),

* - lumi_hadron.F for a hadron collider (e.g. p pbar -> X),

* - lumi_photon.F for a photon collider (gamma gamma -> X)

#de�ne LUMI "lumi_parton.F"

* for lumi_parton.F: whether to force the decaying particle to

* be on-shell, independent of the command-line choices for sqrtS;

* the value speci�es the maximum value of jsqrtS - sum_masses_inj

c#de�ne FORCE_ONSHELL 1D-9

* for lumi_hadron.F: PARTON1 and PARTON2 identify the

* incoming partons by their PDG code, where

* 0 = gluon

* 1 = down 3 = strange 5 = bottom

* 2 = up 4 = charm 6 = top

#de�ne PARTON1 1

#de�ne PARTON2 1

#de�ne PDFSET "cteq5l.LHgrid"

#de�ne PDFMEM 0

* Include the kinematics-dependent part.
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#include "2to2.F"
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الهندسة اللاتبديليةدراسة بعض النماذج الفيزيائية في إطار   

 

 ملخص:

و ذلك بدراسة تكوين كوارك العلوي كوارك علوي مضاد الناتج من اصطدام   NCΛننافش الحدود على سلم طاقة اللاتبديلية 

-و هذا باستعمال خريطة سيبارق، الكترون ببوزيترون و هذا في اطار النموذج المعياري الأصغري في زمكان لا تبديلي 

 .μνΘفي الدرجة الأولى بالنسبة لمعامل اللاتبديلية  (SW)ويتن 

في المجال من  NCΛو وجدنا حد جديد لسلم طاقة اللاتبديلية   μνΘفي هذا البحث استعملنا اختيار مناسب لمعامل اللاتبديلية 

 .TeV 1.0إلى  1.0

 تتوافق نتائجنا مع تلك المتحصل عليها من تشكل زوج من الميونات.

 

 المفتاحية:الكلمات 

 زمكان لا تبديلي، التموذج المعياري اللاتبديلي، المقطع الفعّال.

 



Etude de Quelques Modèles Physiques dans le Cadre de la 

Géométrie Non Commutative 

 

Résumé: 

On discute les limites sur l’échelle du paramètre de la non commutativité ΛNC  

en étudiant le processus de production d’une paire quark top-antiquark top à 

partir de la collision d’un électron avec un positron dans le cadre du modèle 

standard minimal non commutatif (mNCSM), et cela en utilisant la carte de 

Seiberg-Witten au premier ordre du paramètre de la non commutativité Θμν . 

Dans ce travail on suppose un ansatz du paramètre  Θμν et on trouve une nouvelle 

limite de l’échelle ΛNC dans le domaine 0.1-0.2 TeV.  

Les résultats trouvés coïncident avec ceux obtenus à partir de la production 

d’une paire de muons. 

 

Mots Clé : Espace-temps non commutatif ; le modèle standard non commutatif ; 

la section efficace de diffusion. 

 

 

 

 

 

 

 

 

 



Abstract: 

We discuss the limits on the scale of the noncommutative (NC) parameter ΛNC 

via studying the top-quark pair production through electron-positron collision in 

the framework of the minimal noncommutative standard model (mNCSM), 

using the Seiberg-Witten(SW) maps to the first order of the NC parameter Θμν. 

 In this work we assume an ansatz for the NC parameter Θμν and we find new 

limit on the NC scale ΛNC, which is in the range 0.1-0.2 TeV. We confirm the 

results obtained in muon pair production. 

 

Keywords: Noncommutative space-time; noncommutative standard model; 

scattering cross-section. 
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