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Notation and Abbreviations

Abbreviations

Abbreviations used in the manuscript, given in alphabetical order:

CV Continuous variables
dB deci Bell
DFS Decoherence free sub-spaces
DV Discrete varaiables
EPR Einstein–Podolsky–Rosen
GNFS General Number Field Sieve
QIP Quantum Information Processing
QND Quantum Non–Demolition
Qubit Quantum bit
RSA Rivest-Shamir-Adleman
RWA Rotating wave approximation
TMSS Two–modes squeezed state
TO-QCT Time Optimal Quantum Control Theory

Notation

1m m×m identity matrix
0m m×m zero matrix
0m×n m× n zero matrix
<z real part of complex number z
=z imaginary part of complex number z
log x the natural logarithm of x
log10 x logarithm base 10 of x
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Chapter 1

Introduction

During the past two decades, quantum information and quantum computation have
attracted much attention as a new mode of information processing, and it was the
subject of many scientific research supported by different organizations (universities,
governments, military, banks, . . . )

In this chapter we review briefly the subject of quantum information and quan-
tum computation and namely we discuss the problem of decoherence in quantum
computers.

1.1 Quantum Computation

Quantum information processing (QIP) is based on the use of the laws and proper-
ties1 of quantum mechanics where the information is encoded in the different states
of a quantum system, and the computation is accomplished by applying a series of
(unitary) transformations of these states. The result of computation (output) is ob-
tained by appropriate measurements done on the system. The device that performs
QIP is called quantum computer.

The idea of quantum computers goes back to the early 80’s [1–3]. R. Feynman
suggested [2] that building computers obeying the laws of quantum mechanics would
allow us to simulate quantum mechanical systems, because it is very difficult to do
that in classical computers2. The idea of Feynman was raised earlier by R. Poplavskii
[4], who showed that, due to the superposition of states present in quantum systems,
one can not simmulate the dynamics of the system using a classical computer.

Quantum computers can efficiently solve problems that are believed to be hard
to solve in classical computers. The solution of a problem is obtained by using an
algorithm. An algorithm is said to be efficient if it gives a solution using resources
(time, memory3 , energy) scaling as a polynomial function of the size of the (input
of) problem. There are problems that are believed to have no efficient classical4

algorithm in a classical computer, but have an efficient quantum algorithm in a
quantum computer. The most famous example is the problem of finding the prime
factors of an integer number. The best classical algorithm, up-to-date, is the general

1quantum mechanical properties such as entanglement and superposition
2A classical computer is a device performing computation using the laws of classical physics.

The computers that we use today are classical computers.
3Some times it is called space.
4All algorithms that do not use quantum mechanics are called classical algorithm.
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CHAPTER 1. INTRODUCTION

number field sieve (GNFS) that finds a solution in a time scaling sub-exponentially
with the number of bits of the (input) integer [5]. On the other hand, in a quantum
computer, this problem can be solved by a quantum algorithm proposed by P. Shor
[6]. Shor’s algorithm solves the prime factoring problem in time exponentially faster
than its classical counterpart. Other problems where quantum computers have ad-
vantage over classical computers are: discrete logarithm [6], searching in a database
[7, 8], linear system of equations [9].

Quantum computers gained much interest because they can solve many problems
encountered in classical computers. Also, they can be used to verify some funda-
mental theories in quantum mechanics. There are many reasons and advantages to
consider a quantum computer:

• Simulating physical systems: Simulating physical systems in a classical com-
puter is a difficult task, even for small systems with few degrees of freedom,
because the dimension of Hilbert space increases exponentially with the size
of the system [4]. Simulating physical systems in a quantum computer is
the natural choice as stated by R. Feynman [2], and investigated further by
D. Deutsch [3] and S. Lloyd [10].

• Improving communications security: Ciphering information is in the heart of
protecting information during communication process from eavesdropping, and
it is the subject of cryptography. Many cryptographic systems depend on the
difficulty of solving some problems on a classical computer [11]. For example,
the RSA cryptosystem [12] depends on the difficulty of solving the problem
of finding prime factors of (big) integers5, but this problem has an efficient
quantum algorithm in a quantum computer (Shor’s algorithm [6]). Therefore,
the RSA cryptosystem can be broken using a quantum computer. On the other
hand, one can use quantum computers to build (quantum) cryptosystems that
are more secure than their classical counterparts [15–17].

• Quantum effects issues in classical computers: Classical computers are becom-
ing more powerful and smaller, where an increasing number of electric devices
is put together in a very small area [18], which will make (in the near future)
quantum effects interfere with the normal functioning of computers [19–22].
Quantum computers, on the other hand, will not suffer from this issue, because
quantum effects are an essential part in their functioning.

1.2 Models of quantum computation

Quantum computation relies on encoding information in a physical system and ap-
plying a set of (unitary) operations that constitutes the computation. Physical
systems that encode information can be classified into two categories : discrete
variables (DV) and continuous variables (CV) systems.

In DV systems, the information is encoded in the different levels of the system. A
system of d–levels is sometimes referred to as qudit [23]. The very common systems

5In 2009, researchers from many institutions collaborated to factorize 768 bit number with 232
decimal digits [13]. The two years needed to finish calculations were equivalent to approximately
2000 years of calculations if it was performed on 2.2 GHz single-core AMD-Opteron [14]
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CHAPTER 1. INTRODUCTION

used in DV quantum computation are qubits. A qubit is a two–level quantum
system and information in encoded as |0〉 and |1〉 which is in analogy to (classical)
bits 0 and 1. On the other hand, information in CV systems is encoded in an
infinite–dimensional systems [24]. Since CV quantum computation uses less complex
realizations compared to its DV version, it is easier to encode information and to
process it using CV systems [25].

In both modes of computation (DV and CV), there are many models of quantum
computation such as the circuit model [26, 27], measurement–based (or one–way)
model [28], quantum walks [29], and quantum Turing machines [3, 30]. These models
are equivalent i.e., they perform computations with the same efficiency.

In particular, the one–way model of quantum computation consists of performing
a series of measurements on a particular quantum state called cluster state (more
details on cluster states are given in Section 2.5). In this thesis, we are interested
in preparing this quantum state over CV.

1.3 Decoherence in quantum computers

Many physical implementations of quantum computer devices were proposed and
fabricated during the last decades: Ion traps [31–36], Nuclear magnetic resonance
[37–41], high-Q optical cavities [42–44], . . .

To be able to build a quantum computer, one needs to be able to:

1. represent quantum information as the states of a quantum system:
There are two approaches of QIP: discrete and continuous. In the discrete
case, the information is encoded in the state of two level systems: the qubit.
The qubit’s two states are denoted |0〉 and |1〉 [45, 46].

In contrast, the CV approach of QIP consists of encoding information in the
state of a bosonic system: each boson6 has a mode described by the quadratures
q̂ and p̂ ([q̂, p̂] = ih̄). CV QIP uses the quadratures q̂ and p̂ to represent
information [24, 47–49].

2. prepare the system in a desired initial state: Quantum computation is
the evolution of the state of the system (quantum computer) from an initial
state (input) to some final state that represents the outcome of the computa-
tion (output). Therefore, to do computation, one must be able to to prepare
the input state of the quantum computer in some predefined state. The process
of preparing the state of the quantum computer faces many challenges:

(a) The ability of controlling some of or all the parts of the system, for
example, how to individually manipulate the state of a (target) qubit
among many qubits.

(b) Decoherence: every physical system (except the whole universe) is in a
continuous interaction with its environment. This interaction may affect
the prepared state of the quantum computer, which in turn leads to
unwanted input state, and this will give wrong output from the quantum
computer. This unwanted behaviour is called decoherence and it is the
result of noise in the system [44, 50–56].

6Bosons used in CV QIP are photons or phonons.
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3. perform a universal set of unitary transformations on the state of
the system: Quantum computation is the time evolution of the state of the
quantum computer where the initial state is the input of computation and the
final state is the output of computation. Therefore, a quantum algorithm is
a unitary evolution governed by an appropriate Hamiltonian. But, there is
always decoherence that will affect the dynamics of the system which in turn
will result in errors in the output.

4. measure the system quantities: To obtain the output information, one
have to do an appropriate measurement of the system at the end of computa-
tion.

The different stages, mentioned above, which are involved in quantum computation
do suffer from the effects of noise. These stages are summarized in figure 1.1. When
building a quantum computer, one must take into account the decoherence7 of the
system. There are many proposals to overcome or lower the effects of decoherence
on the system:

1. Quantum error correction protocols: To protect information from the
effects of noise, it is encoded in a way that it can be recovered after the action
of noise [57–65]. For example, the information can be encoded by repeating
it many times then if probably some of the encoded information is lost (as a
result of the noise), we can recover the original information by extracting it
from the unaffected encoded information.

2. Time optimal quantum control theory (TO-QCT): TO-QCT [66–71] is
a framework that enables us to find the optimal Hamiltonian implementing a
given quantum algorithm in a given time. We can use TO-QCT framework to
build a quantum computer that is reliable against the effects of decoherence:
Say that we know the decoherence time τd of the quantum computer, then we
must find a Hamiltonian that implements the quantum algorithm in time τ
such that τ << τd.

3. Dissipation engineering: As we have previously said, every quantum com-
puter interacts with its environment. This interaction will affect the input, the
dynamics, and/or the the output of computation. To overcome this issue, it is
proposed to use this interaction8 as a resource to drive the system to a desired
steady state. The obtained steady state must be robust against decoherence,
so one can use dissipation engineering to do reliable quantum computation
[72–81].

4. Decoherence free subspaces (DFS): In DFS scheme, information is en-
coded in states belonging to sub-spaces of Hilbert space of the system (quan-
tum computer) that are decoupled from the envirenoment, i.e., its dynamics
is unitary and conserved from the effects of decoherence processes. [82–87]

7I will use the two terms decoherence and noise interchangeably
8We will call it dissipation, because the interaction will cause energy dissipation between the

system and its environment.
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Preparation

Computation

Measurement

Noise

Noise
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The input information 
is encoded in the 
qauntum state of a 
well prepared system

The system's state 
evolves in time 
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computation
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measurement on the 
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result of computation

Figure 1.1: Quantum computation steps: each phase of quantum computation is
affected by decoherence. First step is the preparation of the input state. Then,
this input evolves according to the quantum algorithm. The last step in quantum
computation is extracting information from output by measuring the final state of
the system.

1.4 Motivation of this work

Many recent experiments have shown that the degrees of freedom of mechanical
oscillators can operate in the quantum regime [88–90], which can lead to interesting
applications in quantum information technologies. In particular, advances in quan-
tum optomechanical theory and experiments [90] allowed the demonstration and
implementations of many quantum processes such as squeezing [91–93] and entan-
glement [94]. Also, it has been shown that optomechanical systems can be scaled
up to build larger systems [95–98]. These achievements can lead to important ap-
plications in QIP [99, 100] and quantum many body simulation [101–103].

A promising domain of QIP is the CV one-way model of computation [28, 49,
104–108], where a cluster state is prepared then a sequence of measurements are
performed on it. Much research had been devoted towards the study and generation
of cluster states of light [108–110]. However, protocols and schemes to generate
cluster states of mechanical degrees of freedom are still lacking.

This thesis has the intention of introducing a scheme to generate CV cluster
states in mechanical oscillators. The proposed scheme should be robust against the

5



CHAPTER 1. INTRODUCTION

unavoidable environmental noise, namely the mechanical bath interaction with the
oscillators. One way to generate the cluster state is by using dissipation engineering
and switching scheme [111–113]. Such a scheme will pave the way towards build-
ing scalable and reliable solid-state based QIP devices. We propose to work with
optomechanical systems where one cavity mode is coupled to many mechanical oscil-
lators via radiation pressure force [114–118]. The generation of the desired (target)
cluster state in the mechanical modes is done with the help of the optomechanical
coupling and the cavity dissipation.

1.5 Outline

This thesis introduces a scheme for generating cluster states in the mechanical res-
onators of an optomechanical system. A suitable choice of the driving lasers with
the help of cavity decay will generate the desired cluster state in the mechanical
oscillators. In Chapter 2, the CV quantum information framework is introduced
and some notions of Gaussian states are given. In particular, we talk about clus-
ter states, their definition, canonical preparation and the definition of approximate
cluster sates. Also we give the definition of quantum fidelity that will play an im-
portant role in quantifying the quality of the generated cluster states by our scheme.
Chapter 3 starts by briefly introducing the theory of quantum optomechanics. Our
optomechanical system that will host the cluster state is studied in details, and then
we explain a scheme that enables the control of the system via a tunable linearised
Hamiltonian. This chapter is concluded by extending our scheme to other configu-
rations of optomechanical systems. Chapter 4 shows how to generate the cluster
state in the mechanical degrees of freedom, where we gave the general protocol and
some examples of generic cluster states. We also study the realistic case of generat-
ing the cluster state in a finite time. In Chapter 5, the analysis of the robustness
of the cluster state generation in presence of mechanical noise is presented. Namely,
we considered quantum–optical like noise for the mechanical oscillators. Finally,
Chapter 6 resumes the obtained results and possible extensions of this work are
discussed.

6



Chapter 2

Gaussian quantum information

Gaussian quantum information is attracting more consideration in theoretical re-
search works as well as in experimental implementations. Because of the simple
theoretical study of Gaussian states and the wealthy toolbox and framework devel-
oped for quantum optics, Gaussian quantum information theory shows a promising
path towards developing reliable and scalable quantum computers.

In this chapter, we give a short introduction to CV systems where we introduce
the necessary language and tools that will be exploited in the subsequent chapters.
This chapter is organized as follows: after we define the most important concepts of
bosonic field quadratures and some quantities and properties related to them such
as symplectic transformations and the covariance matrix, we introduce some basic
but important examples of Gaussian quantum states. Then, a section is dedicated
to cluster states which their generation is the main subject of this thesis. This
chapter is concluded by introducing the concept of quantum fidelity which we will
extensively be using in the following chapters as a tool to quantify the quality of the
generated cluster states by our protocol.

2.1 Quadratures of bosonic fields

A system consisting of N quantized bosonic field modes is called a continuous vari-
able (CV) system [49]. A CV system has infinite dimensional Hilbert space with
continuous eigen-spectra of its observables.

Associated with the kth mode, is a pair of dimensionless operators ak and a†k
that, respectively, lower and raise the number of quanta of that mode:

ak |n〉k =
√
n |n− 1〉k n ≥ 1 , (2.1)

ak |0〉k = 0 , (2.2)

a†k |n〉k =
√
n+ 1 |n+ 1〉k n ≥ 0 , (2.3)

where |n〉k is the state of the kth mode containing n quanta.
The quadratures of the bosonic field are observables of the system and are defined

as follows:

qk =
1√
2

(ak + a†k) , (2.4)

pk =
1

i
√

2
(ak − a†k) , (2.5)

7
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with the property:
[qk, pk] = i , (2.6)

and the Heisenberg uncertainty principle :

∆qk∆pk ≥
1

2
. (2.7)

The different modes are independent from each other, therefore we can write:

[ak, a`] = 0 , (2.8)

[ak, a
†
`] = δk` , (2.9)

and in terms of the quadratures :

[qk, p`] = iδk` . (2.10)

We arrange the quadratures in one vector as:

x = (q1, . . . , qN ; p1, . . . , pN)T , (2.11)

where T denotes the transpose operation, then the commutation relations are written
in the condensed form:

[xk, x`] = iΩk` , (2.12)

where Ωk` are the elements of the 2N × 2N matrix

Ω =

(
0N 1N
−1N 0N

)
, (2.13)

with 0N and 1N denoting the zero and identity N ×N matrices, respectively. The
Matrix Ω is known as the symplectic form [119, 120].

2.2 Wigner function

In quantum mechanics, all the physical information about the system is contained
in its state. This state can be represented by a ket vector belonging to the Hilbert
space associated with the system, or by a trace one positive operator called density
operator.

It is convenient to use an equivalent representation of the system’s state called
Wigner function [121], defined as

W (x) =
∫
R2N

d2Nξ

(2π)2N
e−iX

TΩξ χ(ξ) , (2.14)

with χ(ξ) being the Wigner characteristic function given by :

χ(ξ) = Tr [ρ D(ξ)] , (2.15)

where D(ξ) is the Weyl operator

D(ξ) = eiX
TΩξ . (2.16)

The vector X ∈ R2N that shows in equations (2.14) and (2.16) consists of the
eigenvalues of the quadratures x of the system in the state ρ. The Wigner function
is a quasi-probability distribution which normalizes to one and may acquire negative
values [122, 123].

8
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2.3 Displacement vector and covariance matrix

The Wigner function W (or equivalently, the corresponding characteristic function
χ) is characterized by the statistical moments of the quantum state of the system
[124]. In particular, we will be interested in the first and second moments. The first
moment is the displacement vector given by

x ≡ 〈x〉 = Tr(ρx) , (2.17)

and the second moment is called the covariance matrix and its elements are given
by

Vij =
1

2
〈{∆xi,∆xj}〉 =

1

2
Tr (ρ {∆xi,∆xj}) , (2.18)

where ∆xi is variance of the quadrature xi :

∆xi = xi − 〈xi〉 . (2.19)

It is clear from Eq. (2.18) that the covariance matrix is symmetric, i.e., Vij = Vji,
and from the uncertainty principle, see Eq. (2.7), it must satisfy [125]

V +
i

2
Ω ≥ 0 , (2.20)

which leads to the positive semi-definiteness property

V > 0 . (2.21)

In other words, the following statements are equivalent [125, 126]:

1. V describes a physical state.

2. Eq. (2.20) is true.

3. Eq. (2.21) is true.

2.4 Gaussian states and Gaussian unitaries

2.4.1 Gaussian states

If the Wigner function (and equivalently the characteristic function χ) has a gaussian
form, then the corresponding quantum state is called Gaussian state [126–128]. The
Wigner function W and the characteristic function χ are written as:

χ(ξ) = exp{−1

2
ξT (ΩV ΩT )ξ − i(Ω x)T ξ} , (2.22)

W (x) =
exp{−1

2
(X − x)TV −1(X − x)}
(2π)N

√
detV

. (2.23)

Gaussian states are completely characterized by the displacement vector x and the
covariance matrix V . We write in this case, ρ = ρ(x, V ).

9
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2.4.2 Gaussian unitaries - Symplectic transformations

The class of quantum operations that transform a gaussian state into gaussian state
is called gaussian transformation. A gaussian unitary U is generated by at most a
quadratic Hamiltonian H of the field operators ak and a†k :

U = e−iH . (2.24)

In the state space, the quantum state ρ of a system transforms as:

ρ −→ ρ′ = UρU † . (2.25)

Correspondingly, the quadratures x of the field transform, in the phase-space, as
follows:

x −→ x′ = S · x+ d , (2.26)

with d ∈ R2N and S ∈ R2N×2N . The new quadratures must satisfy the commutation
relation :

[x′k, x
′
`] = iΩk` , (2.27)

⇒
∑
i,j

SkiS`j[xi, xj] = iΩk` ,

⇒
∑
i,j

SkiS`jiΩij = iΩk` ,

⇒
∑
i,j

SkiΩijS`j = Ωk` ,

⇒ SΩST = Ω , (2.28)

where the matrix S satisfying Eq. (2.28) is called Symplectic matrix, and the trans-
formation Eq. (2.26) is known as linear symplectic map.

Every gaussian unitary U can be decomposed as:

U = D(d) · US . (2.29)

The unitary D(d) corresponds to the symplectic map :

x −→ x+ d , (2.30)

therefore, D(d) is nothing then the Weyl displacement operator:

D(d) = eix
TΩd . (2.31)

The unitary transformation US corresponds to the symplectic map :

x −→ S · x . (2.32)

The displacement vector 〈x〉 transforms as

x −→ x+ d , (2.33)

and the covariance matrix V as

V −→ SV ST . (2.34)

10
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2.4.3 Vacuum states

The state of a system where there are no quanta in all the bosonic modes of the
field is called vacuum state, denoted by |0〉, and defined for an N modes system as :

|0〉 ≡ |0〉1 ⊗ · · · ⊗ |0〉N . (2.35)

The displacement vector and covariance matrix that correspond to the vacuum state
are:

x0 = (0 . . . 0)T ≡ 0 , (2.36)

V0 =
1

2
12N . (2.37)

The vacuum state is a state that minimizes the uncertainty principle. The diagonal
elements of the covariance matrix are the quadratures’ variances, and therefore it is
clear from Eq. (2.37) that

∆xj∆xN+j =
1

2
, (2.38)

which minimizes the uncertainty principle as said.

2.4.4 Thermal states

The state of a system in thermal equilibrium with a bath is called thermal state.
This state has displacement vector xth and covariance matrix Vth as follows:

xth = 0 , (2.39)

Vth =
1

2
Diag(2n1 + 1, . . . , 2nN + 1) , (2.40)

where Diag is the diagonal matrix with the diagonal elements are given by its ar-
gument. nk is the mean number of quanta present in the kth bosonic mode of the
field, and it is defined by

nk =k 〈n|a†kak|n〉k , (2.41)

and explicitly for the thermal state as :

nk =

(
exp

(
h̄ωk
KBTk

)
− 1

)−1

, (2.42)

where ωk is the frequency of the kth bosonic mode (modelled as a harmonic oscillator)
that is coupled to a bath at temperature Tk. KB and h̄ are the Boltzmann and
reduced Planck constants respectively.

If the bath’s temperature is zero, then from Eq. (2.42) we have nk = 0 and the
system’s state is the vacuum.

2.4.5 Coherent states

Consider a bosonic system consisting of N modes. The vacuum state of the system
is given by Eq. (2.35). A coherent state is defined as the displaced vacuum state.

Let D(α) be the displacement operator acting on the kth mode:

|αk〉 = D(αk) |0〉k . (2.43)

11
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|αk〉 is the coherent state of the kth mode, and αk is called the complex amplitude.
The displacement operator is generated by the linear Hamiltonian

Hk = i(αka
†
k − α∗kak) . (2.44)

The Bogoliubov transformations [129] for the field operators ak are:

ak −→ ak + αk , (2.45)

and the quadratures as :
xk −→ xk + dk , (2.46)

with
dk =

√
2(<αk,=αk)T . (2.47)

Put α ≡ (α1, . . . , αN)T and d =
√

(2)(<α1, . . . ,<αN ;=α1, . . . ,=αN)T , then the
field’s quadratures transform as

x0 −→ xc = x0 + d . (2.48)

The displacement vector of the coherent state is xc = x0 + d, but the vacuum state
has zero displacement, i.e., x0 = 0, therefore the displacement of the coherent state
is

xc = d . (2.49)

The covariance matrix of a coherent state is calculated from Eq. (2.34), with S = 1,
as follows:

Vc = 12N · V0 · (12N)T ,

=
1

2
12N . (2.50)

From Eq. (2.50) it is clear that coherent states minimize also the uncertainty prin-
ciple given in Eq. (2.7).

2.4.6 Squeezed states

Consider one mode vacuum state |0〉 with annihilation (creation) operator a (a†).
Define the operator

Us = exp
[
r

2
(a2 − a†2)

]
, (2.51)

generated by the Hamiltonian

Hs =
ir

2
(a2 − a†2) . (2.52)

The state |0, r〉 defined as
|0, r〉 = Us |0〉 , (2.53)

is called the squeezed vacuum, where Us and r are the squeezing operator and squeez-
ing parameter respectively.

The field operator a transforms by the Bogoliubov transformations as

a −→ cosh r a− sinh r a† , (2.54)

12
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which results in the symplectic map

x0 −→ xs = Sx0 , (2.55)

with

S =

(
e−r 0
0 er

)
. (2.56)

Therefore, the squeezed vacuum has zero displacement vector

xs = 0 , (2.57)

and the covariance matrix Vs, calculated using Eq. (2.34) and Eq. (2.56) :

Vs =
1

2

(
e−2r 0

0 e2r

)
. (2.58)

Notice that, from Eq. (2.58), the system has a quadrature with variance smaller
than the vacuum noise level1, while the other (conjugate) quadrature has variance
greater than that. The quadrature with variance smaller than the vacuum noise
level is called the squeezed quadrature.

Although the variances are bellow and above the vacuum noise level, the squeezed
vacuum state minimizes the uncertainty principle. From Eq. (2.58), we have ∆q∆p ≡√
V11V22 = 1/2, which as said, is the minimum of the uncertainty principle given in

Eq. (2.7).
The state described by the covariance matrix (2.58) is said to have a level of

squeezing 2 equal to [130]
10 log10 e2r dB . (2.59)

2.4.7 Two–modes squeezed state

Consider two modes defined by the field operators a1, a
†
1, a2 and a†2. The two–mode

operator US2 defined by

US2 = exp
r

2

(
a1a2 − a†1a†2

)
, (2.60)

and generated by the Hamiltonian

HS2 = i
r

2

(
a1a2 − a†1a†2

)
, (2.61)

is called the two–modes squeezing operator, where r is the squeezing parameter. The
state obtained when applying this operator on the vacuum state |0〉 ⊗ |0〉 is known
as the two–modes squeezed state (TMSS) or Einstein–Podolsky–Rosen (EPR) state
[131, 132], denoted by |r〉EPR, and it is equal to [127]

|r〉EPR = US2 |0〉 ⊗ |0〉 =
√

1− tanh2 r
∞∑
n=0

(− tanh r)n |n〉 ⊗ |n〉 . (2.62)

1The vacuum noise level is normalized to 1/2.
2The squeezing level is usually quantified in units of deci bell (dB) .
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The two–modes squeezing operator (2.60) induces the symplectic transformation

x0 → xTMSS = S2(r) x0 , (2.63)

where x0 is the quadratures vector of the two mode vacuum state, and S2(r) is given
by

S2 =


cosh r sinh r 0 0
sinh r cosh r 0 0

0 0 cosh r − sinh r
0 0 − sinh r cosh r

 . (2.64)

From Eq. (2.63) it is clear that the TMSS has zero displacement

x̄TMSS = 0 , (2.65)

and covariance matrix

VTMSS =
1

2
S2S

T
2 =

1

2


cosh 2r sinh 2r 0 0
sinh 2r cosh 2r 0 0

0 0 cosh 2r − sinh 2r
0 0 − sinh 2r cosh 2r

 . (2.66)

2.5 Cluster states

Cluster states are pure, multi–partite, highly entangled quantum states. Briegel and
Raussendorf [133] introduced the cluster state in qubit systems. Cluster states over
CV were proposed by J. Zhang and S. L. Braustein [134] where they studied ideal
cluster states. Then, N. M. Menicucci et al. [107] developed a graphical approach
for studying Gaussian pure states and in particular CV cluster states including the
physical case where the cluster contains finite squeezing i.e., approximate cluster
states. Cluster states are important because they allow universal quantum compu-
tation given that homodyne detection [135, 136] and a non-Gaussian measurement
are available [104]. This model of quantum computation that uses CV cluster states
is the extension of the one–way model of computation originally developed for qubit
systems [137].

Consider N–party system with N modes, and consider that every mode is in
an eigenstate of the momentum quadrature of that mode. In particular, we are
interested in the state where all the modes are in the zero–momentum eigenstate.
If we call this state |ψ0〉 then:

|ψ0〉 = |0〉1 ⊗ · · · ⊗ |0〉N , (2.67)

where |0〉k is the eigenstate of the momentum quadrature of the kth mode (k =
0, . . . , N). Since every mode is in a definite momentum state, then this means that
the momentum variance is zero. According to the uncertainty principle, the variance
of the position must be infinite. Therefore, every mode is in an infinite momentum–
squeezed state. By creating entanglement between the modes, one obtains the so
called ideal cluster states. The entangling operation between the ith and jth modes
is performed via the application of the controlled–Z unitary defined by

Cij
Z = exp (igij qi ⊗ qj) , (2.68)
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which is generated by the Hamiltonian

Hij = −χij qi ⊗ qj , (2.69)

where gij = h̄χijt and χ are, respectively, the gain of the interaction and coupling
strength between the ith and jth modes, and t denotes the time. The Hamiltonian
(2.69) is known as the quantum non–demolition (QND) coupling [138–140]. The
constants gij, with i, j = 1, . . . , N , form a real symmetric matrix, denoted by A,
and called the adjacency matrix :

Aij = gij . (2.70)

The adjacency matrix has zero elements on the diagonal and this is because the
couplings gij are associated to different modes. The cluster state is therefore written
as

|ψA〉 = CZ(A) |ψ0〉 , (2.71)

where CZ(A) is the resultant of applying all the controlled–Z operations between
the modes according to the adjacency matrix A :

CZ(A) =
N∏

i,j=1, j>i

Cij
Z ,

=
N∏

i,j=1, j>i

exp (iAijqiqj) = exp

i N∑
i,j=1, j>i

Aijqiqj

 . (2.72)

We should mention here that since all the position quadratures commute two by
two, then the order in which the controlled–Z operations are applied is unimportant.
Since A is symmetric and has null diagonal elements, then CZ(A) can be written as

CZ(A) = exp
(
i

2
qTA q

)
, (2.73)

where q is the vector of the position quadratures of the N–modes:

q = (q1, . . . , qN)T . (2.74)

Therefore, the cluster state is given by the equation

|ψA〉 = exp
(
i

2
qTA q

)
|ψ0〉 . (2.75)

Cluster states are represented graphically by a set of nodes connected by edges.
Every node corresponds to a zero–momentum eigenstate, and edges connecting two
nodes represents the coupling between the corresponding modes. The coupling
(gain) constants are put as a label for the edges, see Fig. 2.1. Since the couplings
gij depends on the choice of labelling the modes then the same cluster state can be
represented by many adjacency matrices. In the special case where all the couplings
between modes equal to one (unit), then the labels of the edges can be omitted.

Cluster states described so far are non-physical states, since momentum eigen-
states can not be normalized. In real world states, systems can only have finite
amount of squeezing (and not infinite squeezing as in the case of the ideal cluster
states). This leads to considering approximate cluster states instead of their ideal
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Figure 2.1: Cluster state representation by graph and a circuit. a) Graph repre-
sentation of 4–modes cluster state. b) Circuit showing how to prepare the cluster
state. A vertical line connecting two nodes represents the controlled–Z operation
between the modes and the labels of the lines correspond to the coupling strength.
The initial states |0〉’s are the zero–momentum eigenstates.

and non-physical counter part. Approximate cluster states must approach the ideal
one when considering big squeezing: If we denote by |ψA〉 the ideal cluster state and
by |ψA(r)〉 the approximate cluster state, then the following limit must hold:

lim
r→∞
|ψA(r)〉 = |ψA〉 , (2.76)

where r is a parameter that quantifies the squeezing present in the state. In terms of
the quadratures and the adjacency matrix, approximate cluster states must satisfy

lim
r→∞

cov (p− Aq) = 0 , (2.77)

where q, p and A are the position vector, momentum vector and adjacency ma-
trix respectively, and cov (·) is the covariance matrix defined for a vector x of N
quadratures as [107]

( cov (x))ij =
1

2
〈{xi, xj}〉 , (2.78)

with the expectation values are calculated in the state |ψA(r)〉 .
In this thesis, when the term cluster state is mentioned, it is approximate cluster

state that is meant unless otherwise is stated.

2.6 Quantum fidelity for Gaussian states

Being able to distinguish two quantum states is a crucial matter in quantum infor-
mation and computation theory.

The degree of distinguishibility between two states is quantified by a suitable
measure. There are many distance measures in use in QIP [141] such as the fidelity.

Fidelity in quantum information theory gives a measure of how close two quan-
tum states are. It is defined, for two states ρ1 and ρ2 as:

F (ρ1, ρ2) ≡
(

Tr
√√

ρ1ρ2
√
ρ1

)2

. (2.79)
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The fidelity given in Eq. (2.79) is known as Uhlmann-Jozsa fidelity [142, 143], and
it satisfies the following properties:
Let ρ1 and ρ2 be two quantum states belonging to the state space of a physical
system:

1. 0 ≤ F (ρ1, ρ2) ≤ 1 .

2. F (ρ1, ρ2) = 0⇔ ρ1 and ρ2 are orthogonal.

3. F (ρ1, ρ2) = 1⇔ ρ1 and ρ2 are identical.

4. F (ρ1, ρ2) is invariant under unitary transformations: Let U be a unitary trans-
formation, then ρ1 and ρ2 transforms as

ρj −→ UρjU
† , j = 1, 2 ,

and we have F (Uρ1U
†, Uρ2U

†) = F (ρ1, ρ2) .

In particular, for two Gaussian states ρ1(x1, V1) and ρ2(x2, V2), the Uhlman fidelity
becomes [144]:

F (ρ1, ρ2) =

√√√√√detO det
(
12N +

√
12N + (ΩO)−2

)
det(V1 + V2)

, (2.80)

where the matrix O is given by

O = Φ(V1)− [Φ(V1)− iΩ]
{

2V2 + Φ(V1)

−(2V2 − iΩ)[Φ(V1) + 2V2]−1(2V2 + iΩ)
}−1

[Φ(V1) + iΩ] , (2.81)

with the function Φ is defined as

Φ(V ) = 2V
(
12N +

√
12N + (2ΩV )−2

)
. (2.82)

Furthermore, when at least one of the two states is pure, the fidelity becomes [145]:

F (ρ1, ρ2) =
2N√

det(V1 + V2)
exp

[
−1

2
δT (V1 + V2)δ

]
, (2.83)

with δ = x1 − x2 .
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Chapter 3

Optomechanical systems

Cavity optomechanics is a field of quantum physics that studies the interaction
between mechanical and optical degrees of freedom in quantum systems. Cavity
optomechanics gained much interest both in the theoretical and experimental sides
leading to very precise devices with high controllability. These theoretical and tech-
nological advances rendered optomechanical systems good candidates for quantum
information processing devices.

In this chapter we aim to develop a framework enabling us to control the state of
an optomechanical system and driving it to a target quantum state. This chapter is
organized as follows: First, we introduce the simplest system that exploits radiation
pressure, Fabry–Pérot cavity with a movable mirror, where we describe its dynamics
in terms of a master equation. In the subsequent section the model optomechanical
system is introduced where we extend the simple Fabry–Pérot optomechanical sys-
tem to the case of many movable membranes inside an optical cavity. In Section 3.3
we derive the Hamiltonian of the model system in the case of weak optomechani-
cal interactions which will be the basis of the next section to develop a scheme for
controlling the quantum state of the model system. Then we conclude this chap-
ter by extending our scheme to other configurations of optomechanical systems to
overcome some limitations put by our model system.

3.1 Radiation pressure

The light can show a pressure force, called radiation pressure, when it hits an object.
This pressure force is explained by the fact that light possesses momentum and
when it collides another object its momentum (or part of it) is transferred to that
object. Much theoretical and experimental effort was devoted to the study of the
radiation pressure [114–118]. After the invention of the laser [146, 147], many other
sophisticated experiments were established such as cooling the vibrational motion
(of both micro and macro) objects to their ground state [148–152] which opened the
door for many other theoretical and experimental advances.

A typical system exploiting radiation pressure is the cavity optomechanics [90].
A simple cavity optomechanical system is shown in Fig. 3.1. This system consists
of a Fabry–Pérot cavity with a movable end–mirror. The cavity mode has a fre-
quency ω and annihilation operator a, and the movable mirror has frequency Ω and
annihilation operator b. The Hamiltonian of this system is

H0 = ωa†a+ Ωb†b . (3.1)
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The photons inside the cavity applies a pressure force on the movable mirror which
leads to a small displacement x. This results in a change of the resonance frequency
of the cavity and therefore ω is a function of the mirror’s displacement x i.e., ω =
ω(x), and we can write

ω(x) = ωc + x
dω

dx
+
x2

2

dω

dx
+ · · · , (3.2)

where ωc is the cavity’s frequency for the uncoupled system i.e., the same cavity
with fixed end–mirrors. For small displacement x we can stop at the second term
in Eq. (3.2) and we write

ω(x) = ωc −Gx , (3.3)

where G = −dω
dx

. The Hamiltonian (3.1) becomes

H0 = ωca
†a+ Ωb†b−Ga†ax . (3.4)

The first term in Eq. (3.4) is the uncoupled cavity Hamiltonian and the second
term is the uncoupled mechanical oscillator (the moving mirror) Hamiltonian. The
optomechanical interaction between the optical cavity and the mechanical oscillator
is given by the third term.

The mirror’s position operator is written in terms of the annihilation and creation
operators as

x =

√
h̄

2mΩ
(b+ b†) , (3.5)

where m is the effective mass of the mirror. We put

g =

√
h̄

mΩ
G , (3.6)

then the optomechanical interaction Hamiltonian is written as

Hcm = −g a†a b+ b†√
2

, (3.7)

and the Hamiltonian of the system becomes

H0 = ωc a
†a+ Ω b†b− g a†a b+ b†√

2
. (3.8)

The parameter g is called the vacuum optomechanical strength [90].
In Section 3.2, we consider a system with many mechanical modes where the

cavity mode is coupled to many movable mirrors (membranes) inside an optical
cavity (with unmovable end–mirrors). Systems similar to this one were studied in
the literature and implemented experimentally [100–103].

Up to now we considered a perfectly isolated optomechanical system where the
end–mirrors are totally reflective and no photons inside the cavity can leak out,
and also the mirrors were considered isolated from their phononic bath. But in
real world optomechanical systems, some intra–cavity photons leak out the cavity
and the movable mirrors are in a thermal equilibrium with their bath, see Fig. 3.2.
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a

x

Optical cavity Movable mirror

Figure 3.1: An optomechanical setup: This device consists of a fixed mirror and a
movable mirror that can be modeled by a harmonic oscillator. There are two bosonic
modes, an optical mode â (intra-cavity photon) and a mechanical mode b̂ (phonon).

Therefore the Hamiltonian of the system will contain other terms that characterize
these dissipation processes. The Hamiltonian becomes

H = H0 +Hd +Hγ +Hκ , (3.9)

where H0 is the Hamiltonian given in Eq. (3.8), Hd is the Hamiltonian that describes
driving the cavity with external laser fields, and Hγ and Hκ are the Hamiltonians
that take into account the dissipation of the mirror and the cavity respectively.

The dynamics of the system shown in Fig. 3.2 is usually described by a master
equation of the form

ρ̇(t) = −i[H0 +Hd, ρ(t)] + Lc(t)[ρ] + Lm(t)[ρ] , (3.10)

where ρ(t) is the density operator for the system, and Lc and Lm characterize the
dissipation processes for the cavity and the mirror respectively.

3.2 The model

We consider an optomechanical system consisting of one cavity mode coupled to
N non interacting mechanical oscillators. The cavity is driven by M classical laser
fields. The cavity decays with the rate κ. This configuration is sketched in Fig. 3.3.
Systems similar to this were suggested and realized in several experiments (see
Chapter 6 for references).

Since the optomechanical system shown in Fig. 3.3 interacts with the reservoirs of
both the cavity field and the mechanical oscillators, then the dynamics is described
by a unitary part and dissipative terms [52]. The unitary evolution of the system is
generated by the Hamiltonian

H = Hc +Hm +Hcm +HD , (3.11)

where Hc is the cavity’s free Hamiltonian and it is given by

Hc = ωc(c
†c+

1

2
) , (3.12)
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a

x

Optical cavity Movable mirrorDriving laser

Mechanical 
damping

x

Cavity 
decay

Figure 3.2: An optomechanical system where the mirror is in thermal equilibrium
with its bath (damping rate Γ) and the cavity photons decay with a rate κ.

with ωc and c (c†) are the frequency and annihilation (creation) operator respectively.
Hm is the Hamiltonian of the mechanical oscillators given by

Hm =
N∑
j=1

Ωj(d
†
jdj +

1

2
) , (3.13)

with Ωj and dj (d†j) are the frequency and the annihilation (creation) operator of the
jth mechanical oscillator. Hcm is the Hamiltonian describing the interaction between
the cavity mode and the mechanical modes, and it is given by [90]

Hcm = −
N∑
j=1

gj c
†c qj , (3.14)
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Figure 3.3: An optomechanical system consisting of one cavity mode and N me-
chanical oscillators. The cavity losses are characterised by the decay rate κ.
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where gj is the coupling rate between the cavity mode and the jth mechanical os-
cillator and it is called the optomechanical coupling constant where it quantifies the
strength of the interaction between one photon and one phonon [90]. The operator
qj = 1/

√
2 (dj + d†j) is the position quadrature of the jth mechanical oscillator. HD

is the Hamiltonian describing the coupling of the cavity mode with the pump laser
fields. We consider here that the pump consists of M lasers that are regarded as
classical fields. HD is given by

HD = ε(t) c† + ε∗(t) c , (3.15)

with ε(t) is the laser pump and it is given by

ε(t) =
M∑
k=1

εke
−i(ωkt+Φk) , (3.16)

where εk, ωk and Φk are, respectively, the intensity, frequency and the phase of the
kth laser field.

We should mention here that the Hamiltonians in equations (3.12) and (3.13)
contain constant terms (1/2 ωc and 1/2 Ωj). It is more convenient to drop writing
them in the subsequent equations by implementing a suitable shift of the energy
reference as follows:

Hc −→ Hc −
ωc
2

= ωcc
†c , (3.17)

Hm −→ Hm −
N∑
j=1

Ωj

2
=

N∑
j=1

Ωjd
†
jdj . (3.18)

The Hamiltonian of the system, therefore, is written as:

H = ωc c
†c+

N∑
j=1

{
Ωj d

†
jdj − gj c†c qj

}

+
M∑
k=1

{
εke
−i(ωkt+Φk)c† + ε∗ke

i(ωkt+Φk)c
}
. (3.19)

3.3 Linearised Hamiltonian

The Hamiltonian given in Eq. (3.19) contains cubic terms of the field operators.
We are interested in the weak coupling regime where the optomechanical coupling
constants are negligible compared to the other frequencies present in the system
,i.e.,

gj � Ωj , (3.20)

gj � ωc . (3.21)

In this regime, the Hamiltonian given in Eq. (3.19) can be approximated to an
expression that contains, at most, quadratic terms of the field operators1. This
approximate Hamiltonian contains an interaction term that is bilinear in the cavity
and mechanical field operators, and it is called linear Hamiltonian.

1Gaussian states are generated by quadratic Hamiltonians
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The first step to linearise the Hamiltonian given in Eq. (3.19) is to consider
that the cavity field consists of a coherent part with complex amplitude α and a
fluctuating part that we denote a, and we write

c = a+ α , (3.22)

where 〈c〉 = α.
Also we split the the mechanical motion as follows:

dj = bj + βj , j = 1, · · · , N , (3.23)

where 〈dj〉 = βj and bj is the operator that describes the fluctuations in the jth

mechanical oscillator.
Equations of motion of the cavity field and the mechanical one are:

dc(t)

dt
= −iωc c(t) +

i√
2
c(t)

N∑
j=1

gj
(
dj(t) + d†j(t)

)
−iε(t)− κ

2
c(t)−√κain , (3.24)

ddj(t)

dt
= −iΩj dj(t) +

i√
2
gj c(t)

†c(t) , (3.25)

where c(t) and d(t) are the Heisenberg picture field operators, and κ is the decay
rate of the cavity field, and ain is the input noise operator of the cavity mode [51].
We should mention here that the mechanical noise was neglected, but it will be
considered in Chapter 5 where we study the robustness of the generation of cluster
states in the mechanical degrees of freedom.

Substituting Eq. (3.22) and Eq. (3.23) in Eq. (3.24) and Eq. (3.25), one obtains

da(t)

dt
= −

κ
2

+ i

ωc −√2
N∑
j=1

gj<βj
 a(t)

− i√
2

N∑
j=1

gj a(t)
(
bj(t) + b†j(t)

)
−√κ ain , (3.26)

dbj(t)

dt
= −iΩjbj(t) +

i√
2
gj
(
a†(t)a(t) + αa†(t) + α∗a(t)

)
, (3.27)

α̇ = −
κ

2
+ i

ωc −√2
N∑
j=1

gj<βj
α− iε(t) , (3.28)

β̇j = −iΩjβj +
i√
2
gj|α|2 . (3.29)

Since a and bj are the fluctuations in the cavity and mechanical movement fields
respectively, then one can neglect second order terms of a and bj in Eq. (3.26) and
3.27 and obtain

ȧ ≈ −
κ

2
+ i

ωc −√2
N∑
j=1

gj <βj
 a−√κ ain , (3.30)

ḃj ≈ −iΩjbj +
i√
2
gj (αa† + α∗a) . (3.31)
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From equations (3.30) and (3.31) one obtains the Hamiltonian

H = ω′ca
†a+

N∑
j=1

[
Ωjb

†
jbj −

gj√
2

(αa† + α∗a)(bj + b†j)

]
, (3.32)

with ω′c is given by

ω′c = ωc −
√

2
N∑
j=1

gj <βj . (3.33)

3.4 Controlling the optomechanical system by ex-

ternal lasers

The state of the system shown if Fig. 3.3 can be controlled by tuning the frequency,
phase and intensity of the lasers pumping the cavity. The driving lasers parameters
enter in the system’s Hamiltonian through the cavity’s complex amplitude α. To
simplify the calculations and obtain analytical expressions for α,we assume that

gj<βj � ωc . (3.34)

Relation (3.34) is valid in the weak coupling regime (see Eq. (3.21)) for small me-
chanical vibration amplitude βj. In this case we have ω′c ≈ ωc and

α̇ ≈ −(
κ

2
+ iωc)α− iε(t) , (3.35)

which has the solution

α(t) = α0e−(κ
2

+iωc)t +
M∑
k=1

εk
(ωk − ωc) + i κ

2

e−i(ωkt+Φk) , (3.36)

where α0 is a constant. We are interested in the stationary regime of the cavity,
i.e., when t→ +∞, then α(t) becomes

α(t) =
M∑
k=1

εke
−i(ωkt+Φk)

∆k + i κ
2

, (3.37)

where ∆k is the detuning of the kth laser with the cavity, and it is given by

∆k = ωk − ωc . (3.38)

We write α(t) as

α(t) =
M∑
k=1

αk e−i(ωk t+φk) , (3.39)

with αk and φk are given by

αk =
εk√

∆2
k + (κ

2
)2
, (3.40)

φk = Φk + arctan
κ

2∆k

. (3.41)
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The Hamiltonian in Eq. (3.32) becomes

H = ωc a
†a+

N∑
j=1

{
Ωj b

†
jbj −

1√
2

M∑
k=1

αk gj
(
e−i(ωkt+φk) a† + ei(ωkt+φk) a

)
(bj + b†j)

}
.

(3.42)
Now we want to eliminate the time dependence in this Hamiltonian. To do that,
we first transform into the interaction picture with respect to the free Hamilto-
nian of the optomechanical system, and therefore we are considering the following
transformation operator:

U = exp

it
ωc a†a+

N∑
j=1

Ωj b
†
l bj

 , (3.43)

and we obtain the following Hamiltonian

H = UHU † − iU ∂U
†

∂t

= − 1√
2

M∑
k=1

N∑
j=1

αkgk
(
e−i(∆kt+φk) a† + ei(∆kt+φk) a

) (
e−iΩj bj + eiΩj b†j

)
.(3.44)

We then associate for the jth mechanical oscillator, two laser drives with the frequen-
cies ω+

j and ω−j , amplitudes α+
j and α−j , and phases φ+

j and φ−j with the following
convention

ω−j ≡ ωj , ω+
j ≡ ωN+j , (3.45)

α−j ≡ αj , α+
j ≡ αN+j , (3.46)

φ−j ≡ φj , φ+
j ≡ φN+j . (3.47)

The detunings of these two lasers are

∆−j ≡ ∆j , ∆+
j ≡ ∆N+j . (3.48)

The Hamiltonian (3.44) is written

H = −
N∑

j,`=1

gj√
2
a†
{(
α−` e−i[(∆

−
`

+Ωj)t+φ
−
`

] + α+
` e−i[(∆

+
`

+Ωj)t+φ
+
`

]
)
bj

+
(
α−` e−i[(∆

−
`
−Ωj)t+φ

−
`

] + α+
` e−i[(∆

+
`
−Ωj)t+φ

+
`

]
)
b†j
}

+ H.C. , (3.49)

where H.C. denotes the hermitian conjugate.
In order to control the dynamics of the optomechanical system shown in Fig. 3.3,

one should be able to tune independently the coefficients of a†bj and a†b†j in Eq. (3.49).
To achieve this, we assume that the following conditions are satisfied:

• The mechanical oscillators have non overlapping frequencies.

• In addition to the weak coupling condition (3.20), we should have

α±j gj � Ωj . (3.50)
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We put
ω±j = ωc ± Ωj , (3.51)

then, the detunings of the driving lasers become

∆±j = ±Ωj , (3.52)

and the Hamiltonian (3.49) writes

H = −
N∑

j,`=1

gj√
2
a†
{(
α−` e−i[(−Ω`+Ωj)t+φ

−
`

] + α+
` e−i[(Ω`+Ωj)t+φ

+
`

]
)
bj

+
(
α−` e−i[−(Ω`+Ωj)t+φ

−
`

] + α+
` e−i[(Ω`−Ωj)t+φ

+
`

]
)
b†j
}

+ H.C. (3.53)

Applying the rotating wave approximation (RWA) to the Hamiltonian (3.53) one
obtains

H = −
N∑
j=1

gj√
2
a†
(
α−j e−iφ

−
j bj + α+

j e−iφ
+
j b†j

)
+ H.C. (3.54)

The Hamiltonian (3.54) generates controlled dynamics by tuning the intensities and
phases of the driving lasers. These later enter in (3.54) through the parameters α±j
and φ±j that are now written as

α±j =
ε±j√

Ω2
j + (κ

2
)2
, (3.55)

φ±j = Φ±j ± arctan
κ

2Ωj

, (3.56)

where equations (3.40), (3.41) and (3.52) are used to obtain equations (3.55) and
(3.56). ε±j and Φ±j are defined as

ε−j ≡ εj , ε+j ≡ εN+j , (3.57)

Φ−j ≡ Φj , Φ+
j ≡ ΦN+j . (3.58)

In this work we are interested in driving the system’s steady state to a desired
quantum state. This is done with the help of the cavity losses. The open system dy-
namics of the system shown in Fig. 3.3 is governed by the following master equation
[50–55]

ρ̇(t) = −i[H, ρ(t)] + Lc[ρ(t)] , (3.59)

where ρ(t) is the system’s density operator ,i.e., the system’s quantum state, and
ρ̇(t) is its time derivative, H is the Hamiltonian given in Eq. (3.54), and Lc[ρ(t)]
describing the cavity’s losses is given by [153]

Lc[ρ(t)] = κ D[a]ρ(t) , (3.60)

with κ is the decay rate of the cavity mode, and D[a]ρ(t) is the super operator
defined as

D[a]ρ(t) = aρ(t)a† − 1

2
{a†a, ρ(t)} , (3.61)

where the symbol {·, ·} denotes the anti-commutator.

26



CHAPTER 3. OPTOMECHANICAL SYSTEMS

The asymptotic solution of Eq. (3.59), if it exists, is called steady state:

ρsteady = lim
t→∞

ρ(t) . (3.62)

The existence and uniqueness of a steady state solution of the master equation
(3.59) is studied in Section 4.1. It is shown there that the master equation (3.59)
have a unique steady state if and only if the cavity mode is coupled to only one
mechanical mode. A scheme to overcome this issue, i.e., when considering more
than one mechanical mode, is given in Section 4.3, and an example of generating
two modes squeezed state is demonstrated in Appendix A.

3.5 Interacting mechanical modes

When we studied the quantum state of the system shown in figure Fig. 3.3, we
required that the frequencies of the mechanical modes do not overlap (see Sec-
tion 3.4). One can overcome this limitation and consider mechanical modes fre-
quencies that overlap with each other. But this comes with the price of requiring the
existence of couplings between the mechanical modes. Figure 3.4 shows a schematic
representation of the couplings between different modes of the optomechanical sys-
tem.

  

b1

b2 b3

bN

a
g1

g2

Figure 3.4: Graphical representation of the couplings between different parts of
the optomechanical system. Every circle denotes a bosonic mode, and each line
connecting two circles represents interaction between the two corresponding modes.
The g’s are the optomechanical coupling constants while the χ’s are the mechanical
couplings.

The Hamiltonian of such a system writes

H = Hc +Hm +Hcm , (3.63)

with Hc is the cavity Hamiltonian and it is given by

Hc = ωca
†a , (3.64)
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and Hm is the Hamiltonian of the mechanical modes in the absence of the optome-
chanical interaction and it is given by:

Hm =
N∑
j=1

Ωjb
†
jbj +

N∑
`, s>`

χqq`sq`qs +
N∑
`,s

χqp`sq`ps +
N∑

`, s>`

χpp`sp`ps , (3.65)

where the first summation is the free Hamiltonian of the mechanical oscillators, while
the second, third and fourth summations are respectively the position–position,
position–momentum and momentum–momentum interactions between different me-
chanical modes with coupling constants χqq`s , χ

qp
`s and χpp`s respectively. Hcm is the

optomechanical Hamiltonian that describes the coupling of the cavity mode with
the mechanical ones and it equals

Hcm =
−1√

2

(
αa† + α∗a

) N∑
j=1

gj
(
bj + b†j

)
. (3.66)

We can arrive at the form of the Hamiltonian (3.54) even if some or all the
mechanical modes frequencies overlap. The idea is to consider the normal modes of
the mechanical oscillators and obtain a controllable configuration in this new space
of modes. By applying an appropriate transformation, the Hamiltonian (3.63)
becomes

H̃ = ωca
†a+

N∑
j=1

Ω̃j b̃
†
j b̃j −

1√
2

(
αa† + α∗a

) N∑
j=1

g̃j
(
b̃†j + b̃j

)
, (3.67)

where Ω̃j = Ω̃j(Ω1, . . . ,ΩN , χ
qq
1 , . . . , χ

qq
N , χ

qp
1 , . . . , χ

qp
N , χ

pp
1 , . . . , χ

pp
N ) are the frequen-

cies of the normal modes of the mechanical oscillators. Also, the new optomechan-
ical coupling constants g̃j are functions of the g’s, Ω’s and χ’s as a result of the
considered transformation.

We should mention here that only some systems with carefully chosen frequencies
(Ω’s) and couplings (g’s and χ’s) will give non overlapping normal frequencies Ω̃’s
with optomechanical couplings that satisfy the following conditions:

α±j g̃j � Ω̃j , (3.68)

g̃j � ωc . (3.69)

Indeed, if one can find the normal modes, then the non overlappness of the fre-
quencies Ω̃’s and the conditions (3.68) and (3.69) can be controlled by tuning the
coupling between the mechanical modes (χqq’s, χqp’s and χpp’s). As an example, we
consider an optomechanical system consisting of one cavity mode coupled to one
mechanical mode, and the later is coupled to a chain of mechanical oscillators as
shown in Fig. 3.5. Let the frequencies of the mechanical oscillators be all equal2 and
assuming that only position–position interactions are present between the modes,
then the Hamiltonian (3.63) becomes

H = ωca
†a+Ω

N∑
j=1

b†jbj+
N−1∑
j=1

χj
2

(
bj + b†j

) (
bj+1 + b†j+1

)
− g√

2

(
αa† + α∗a

) (
b1 + b†1

)
,

(3.70)

2This is not mandatory, one can have a situation where only a subset of the mechanical fre-
quencies do overlap, and this study will remain valid.
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where χj is the position–position coupling between the jth and the (j+1)th mechan-
ical oscillators. This Hamiltonian can be put in normal modes form as

H̃ = ωca
†a+

N∑
j=1

Ωj b̃
†
j b̃j −

1√
2

(
αa† + α∗a

) N∑
j=1

gj
(
b̃1 + b̃†1

)
, (3.71)

with Ωj = Ωj(Ω, χ1, . . . , χN) and gj = gj(Ω, χ1, . . . , χN). These two later quanti-
ties should be controllable via changing the couplings χ’s and one will obtain non
overlapping frequencies as required by our scheme described in Section 3.4.
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Figure 3.5: An optomechanical system consisting of one cavity mode and N me-
chanical oscillators. The mechanical modes have equal frequencies and are coupled
with chain interaction. Only the first mechanical oscillator interacts with the cavity
mode while the other modes do not.
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Chapter 4

Cluster states generation by
dissipation in optomechanical
systems

Cluster states are the key resource in the measurement based model of quantum
computation, being able to generate them will allow the building of quantum com-
puters. In this chapter we aim to generate the cluster state in optomechanical system
and namely in the mechanical degrees of freedom of the model system studied in
Chapter 3.

This chapter introduces a scheme for generating cluster states in mechanical
oscillators with the help of the optomechanical coupling and the cavity dissipation.
This chapter considers the case of noiseless mechanical oscillators i.e., mechanical
modes that do not couple to a bath, but this later will be considered in Chapter 5.
This chapter is organized as follows: in Section 4.1 we study the existence of a
steady state of the model system described in Chapter 3, and in Section 4.2
we show how to obtain the one mode squeezed state which will be the basis for
Section 4.3 where we introduce the switching scheme that allows us to generate
a given target quantum state. Section 4.4 uses the results of preceding section
and introduces the protocol for generating cluster states in the mechanical modes
of the considered model optomechanical system. Then we conclude this chapter in
Section 4.5 with studying the impact of finite time dynamics on the quality of the
generated cluster state.

4.1 Existence and uniqueness of Gaussian steady

state

We write the master equation (3.59) for the Hamiltonian (3.54) and cavity losses
(3.60) in terms of the covariance matrix1 instead of the density matrix ρ(t).

First, we write the master equation (3.59) as

ρ̇(t) = −i[H, ρ(t)] +
(
Lcρ(t)L†c −

1

2
{L†cLc, ρ(t)}

)
, (4.1)

1Read Chapter 2 for definitions, notations and details regarding quadratures and covariance
matrices.
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with the operator Lc is defined by

Lc =
√
κ a , (4.2)

and we write the Hamiltonian (3.54) in the form

H =
1

2
xTGx , (4.3)

with x is the vector of quadratures defined as

x = (q1, . . . , qN , qc; p1, . . . , pN , pc)
T , (4.4)

and G is 2(N + 1) × 2(N + 1) real matrix. Since H is hermitian, then G must be
symmetric. In Eq. (4.4) the quadratures qj, pj, qc and pc are given by

qj =
1√
2

(bj + b†j) , (4.5)

pj =
1

i
√

2
(bj − b†j) , (4.6)

qc =
1√
2

(a+ a†) , (4.7)

pc =
1

i
√

2
(a− a†) . (4.8)

From Eq. (3.54), one can show that the matrix G is equal to

G =


0N A 0N B
AT 0 CT 0
0N C 0N D
BT 0 DT 0

 , (4.9)

where A, B, C and D are N × 1 vectors whose elements are given by

Aj =
−gj√

2

(
α+
j cosφ+

j + α−j cosφ−j
)
, (4.10)

Bj =
gj√

2

(
α+
j sinφ+

j + α−j sinφ−j
)
, (4.11)

Cj =
−gj√

2

(
−α+

j sinφ+
j + α−j sinφ−j

)
, (4.12)

Dj =
−gj√

2

(
−α+

j cosφ+
j + α−j cosφ−j

)
. (4.13)

Writing Lc in Eq. (4.2) as
Lc = Cx , (4.14)

it is easy to show that the 1× (2N + 1) complex matrix C is equal to

C =

√
κ

2

(
01×N , 1 , 01×N , i

)
. (4.15)

One can show that the master equation (4.1) is equivalent to [112]

d〈x〉
dt

= A〈x〉 , (4.16)

dV

dt
= AV + V AT +B , (4.17)
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where the matrices A and B are given by

A = Ω
[
G+ =

(
C†C

)]
, (4.18)

B = −Ω <
(
C†C

)
Ω , (4.19)

with the symplectic form Ω [119, 120] is equal to2

Ω =

(
ON+1 1N+1

−1N+1 0N+1

)
. (4.20)

Substituting equations (4.9) and (4.15) in equations (4.18) and (4.19), one finds
matrices A and B as follows:

A =


0N C 0N D
BT −κ

2
DT 0

0N −A 0N −B
−AT 0 −CT −κ

2

 , (4.21)

B =
κ

2
Diag

0, . . . , 0︸ ︷︷ ︸
N

, 1 , 0, . . . , 0︸ ︷︷ ︸
N

, 1

 . (4.22)

The existence and uniqueness of a steady state for the system shown in Fig. 3.3
with the master equation (4.1) depends on whether the matrix A given in Eq. (4.21)
is Hirwitz or not. There exists a unique steady state if and only if A is Hirwitz,
i.e., all its eigenvalues have negative real part [154]. One can show that the eigen-
values of the matrix A are

−κ
4
±
√(

κ

4

)2

−AT · D + CT · B︸ ︷︷ ︸
2−degenerate

, 0, . . . , 0︸ ︷︷ ︸
2(N−1)

. (4.23)

It is clear from Eq. (4.23) that the matrix A is Hirwitz if and only if:

N = 1 , (4.24)

<
√(

κ

4

)2

−AT · D + CT · B <
κ

4
. (4.25)

Therefore, condition (4.24) says that if the system of Fig. 3.3 contains more than
one mechanical mode then it will not have a unique steady state. Condition (4.25)
when N = 1 translates to

α+ < α− , (4.26)

g 6= 0 . (4.27)

While condition (4.27) is always satisfied because the optomechanical coupling is
different from zero, one must satisfy condition (4.26) .

2See Section 2.1 for more details about the symplectic form Ω.
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4.2 One–mode squeezed state

We have proved in Section 4.1 that the system shown in Fig. 3.3 obeying the master
equation (4.1) has a unique steady state while condition (4.27) is satisfied. In this
section we investigate further on the reachable steady states that can be obtained
by tuning the system parameters α± and φ±. In particular, we are interested in
finding the conditions to obtain the one–mode squeezed state.

The covariance matrix V (t) of the considered system obeys the differential equa-
tion (4.17). We put V (t) in the following form:

V (t) = eAtM(t)eA
T t , (4.28)

and substituting in Eq. (4.17), we obtain:

dM(t)

dt
= e−AtBe−A

T t ⇒M(t) = M(t0) +

t∫
t0

e−AsBe−A
T s ds , (4.29)

and V (t) becomes:

V (t) = eAtM(t0)eA
T t +

t∫
t0

eA(t−s)BeA
T (t−s) ds . (4.30)

But we have the following:

V (t0) = eAt0M(t0)eA
T t0 ⇒M(t0) = e−At0V (t0)e−A

T t0 , (4.31)

where V (t0) is the initial state of the system, then we obtain the formal solution of
Eq. (4.17):

V (t) = eA(t−t0)V (t0)eA
T (t−t0) +

t∫
t0

eA(t−s)BeA
T (t−s) ds , (4.32)

with the matrices A and B are calculated from equations (4.21) and (4.22) and
are given by

A =


0 C1 0 D1

B1 −κ
2
D1 0

0 −A1 0 −B1

−A1 0 −C1 −κ
2

 , (4.33)

B =
κ

2
Diag (0 , 1 , 0 , 1) , (4.34)

where A1, B1, C1 and D1 are given by

A1 =
−g√

2

(
α+ cosφ+ + α− cosφ−

)
, (4.35)

B1 =
g√
2

(
α+ sinφ+ + α− sinφ−

)
, (4.36)

C1 =
−g√

2

(
−α+ sinφ+ + α− sinφ−

)
, (4.37)

D1 =
−g√

2

(
−α+ cosφ+ + α− cosφ−

)
. (4.38)
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We diagonalize the matrix A as

A = PDP−1 , (4.39)

where the columns of the matrix P are the eigenvectors of A and D is the diagonal
matrix containing the eigenvalues of A. The covariance matrix (4.32) becomes:

V (t) = P eD(t−t0)P−1V (t0)P−1T eD(t−t0)P T +

t∫
t0

P eD(t−s)P−1BP−1T eD(t−s)P T ds .

(4.40)
The steady state (Vs) is given by the limit

Vs = lim
t→∞

V (t) , (4.41)

and since the real part of the eigenvalues of the matrix A (and hence the elements
of the matrix D) are strictly negative (because A is Hirwitz, see Section 4.1), then
the steady state Vs becomes

Vs =

∞∫
0

P eDtP−1BP−1T eDtP T dt . (4.42)

Remark that Eq. (4.42) can also be put in terms of the matrix A in the following
form

Vs =

∞∫
0

eAtBeA
T t dt . (4.43)

After lengthy but simple algebra, one finds the steady state to be equal to

Vs =
1

2


α−2

+α+2−2α−α+ cos(φ−−φ+)

α−2−α+2 0 −2α−α+ sin(φ−−φ+)

α−2−α+2 0

0 1 0 0
−2α−α+ sin(φ−−φ+)

α−2−α+2 0 α−2
+α+2

+2α−α+ cos(φ−−φ+)

α−2−α+2 0

0 0 0 1

 . (4.44)

The covariance matrix (4.44) represents the steady state of the system of one
cavity mode coupled to one mechanical mode. One can extract from it the following
informations:

1. The cavity and the mechanical modes are uncorrelated,

2. the cavity mode is in the vacuum state:

V cavity
s =

1

2
12 , (4.45)

3. and the mechanical mode is in a state given by the covariance matrix

V mech
s =

1

2

 α−2
+α+2−2α−α+ cos(φ−−φ+)

α−2−α+2
−2α−α+ sin(φ−−φ+)

α−2−α+2

−2α−α+ sin(φ−−φ+)

α−2−α+2
α−2

+α+2
+2α−α+ cos(φ−−φ+)

α−2−α+2

 . (4.46)
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In particular, the one–mode squeezed state of the mechanical mode can be obtained
(as the steady state) if we put:

α+ = rα− , (4.47)

φ+ = φ− = 0 . (4.48)

Since condition (4.26) must be satisfied, and because α± ≥ 0, then we have

0 ≤ r < 1 , (4.49)

and the covariance matrix becomes:

V mech
s =

1

2

(
1−r
1+r

0

0 1+r
1−r

)
, (4.50)

which can be put into the form

V mech
s =

1

2

(
e−2ξ 0

0 e2ξ

)
, (4.51)

with the parameter ξ is given by

ξ =
1

2
log

1 + r

1− r = tanh−1 r . (4.52)

The mechanical mode state has squeezing equal to (see Section 2.4.6)

10 log10

1 + r

1− r dB . (4.53)

4.3 Switching protocol to generate steady states

We consider the optomechanical system shown in Fig. 3.3. The dynamics of this sys-
tem is governed by the master equation (3.59) with the effective Hamiltonian (3.54)
and cavity dissipation (3.60). We have shown in Section 4.1 that the master equa-
tion (3.59) has a unique steady state if and only if the cavity mode is coupled to
one mechanical mode. Therefore, the system of Fig. 3.3 with N > 1 has no unique
steady state. To overcome this issue, one should couple the cavity mode to one
effective mechanical mode at any instant of time. In particular, one can reach the
target steady state in N steps where in each step the cavity mode is coupled to one
collective mechanical mode, then the system is let to reach an intermediate steady
state, and the target steady state is obtained as the steady state of the system at
the N th step. This scheme was first proposed by Li et al. [111] and was generalized
by Y. Ikeda and N Yamamoto [113]. Although they studied the generation of cluster
states in atomic ensembles, this scheme can be easily applied to the optomechanical
system shown in Fig. 3.3 with the effective Hamiltonian (3.54).

Consider the transformation U defined by

e = Ub , (4.54)

where b and e are vectors of operators defined as

b = (b1, . . . , , bN)T , e = (e1, . . . , eN)T , (4.55)
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and U is N ×N complex matrix.
Equation (4.54) can be written as

e` =
N∑
j=1

U`jbj . (4.56)

We impose the following commutation relation on the operators e’s

[e†i , ej] = δij , (4.57)

and since [b†i , bj] = δij, therefore the matrix U must be unitary, i.e., UU † = 1N .
Let x and x′ be quadrature vectors defined by x = (q1, . . . , qN ; p1, . . . , pN)T and

x′ = (q′1, . . . , q
′
N ; p′1, . . . , p

′
N)T with

qj =
1√
2

(bj + b†j) , pj =
1

i
√

2
(bj − b†j) , (4.58)

q′j =
1√
2

(b′j + b′
†
j) , p′j =

1

i
√

2
(b′j − b′†j) , (4.59)

then, using Eq. (4.56), one can arrive to

x′ = Sx , (4.60)

with the matrix S is given as the following bloc matrix

S =

(
<U −=U
=U <U

)
. (4.61)

Equation (4.60) is a symplectic transformation of the system’s mechanical modes
quadratures, and the covariance matrix transforms as (see Chapter 2)

V ′ = SV ST , (4.62)

where V and V ′ are respectively the covariance matrix of the mechanical modes
subsystem in the space of the b’s and e’s operators.

Since U is unitary and using Eq. (4.61) one can show that

STS = SST = 1N , (4.63)

then, from Eq. (4.62), one arrives to

V = STV ′S . (4.64)

Now, we return to the Hamiltonian (3.54), and we impose

φ+
j = −φ−j , (4.65)

α+
j = rα−j , (4.66)

with r being a real parameter satisfying

0 ≤ r < 1 . (4.67)
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Condition (4.67) ensures the existence and uniqueness of a steady state solution of
the master equation (3.59) (see Section 4.2 for the proof).

By substituting Eq. (4.65) and Eq. (4.66) in Eq. (3.54), one finds

H = −
N∑
j=1

gj√
2
α−j a†

{
e−iφ

−
j bj + r

(
e−iφ

−
j bj

)†}
+ H.C. (4.68)

We put:
1√
2
gjα

−
j e−iφ

−
j = β`U`j , (4.69)

where β` is a positive real parameter. By using Eq. (4.56), one arrives to the
Hamiltonian

H` = −β`a†(e` + re†`) + H.C. (4.70)

The dynamics of the system in terms of the collective modes {e`}N`=1 obeys the
following master equation:

ρ̇`(t) = −i[H`, ρ`(t)] + Lc[a]ρ`(t) , (4.71)

where ρ`(t) is the state of the subsystem (cavity–`th mechanical collective mode),
and the term Lc[a]ρ`(t) describes the cavity losses and it is given by [155]:

Lc[a]ρ`(t) =
√
κ D[a]ρ`(t) , (4.72)

with the super operator D[a] is defined in Eq. (3.61).
The master equation (4.71) has the unique steady state denoted by |0, r〉, where

the cavity (mechanical) mode is in the vacuum (squeezed) state. The corresponding
covariance matrix is (see Section 4.2 for detailed derivation)

V` =
1

2


1 0 0 0
0 e−2ξ 0 0
0 0 1 0
0 0 0 e2ξ

 , (4.73)

where ξ, the squeezing parameter, is given by the formula

ξ = tanh−1 r . (4.74)

Since the collective mechanical modes e’s are independent (see Eq. (4.57)), one can
squeeze each collective mode e` independently by setting the Hamiltonian to H` and
wait sufficient time to reach the steady state. By repeating this procedure for all
the collective mechannical modes, they become all squeezed. The covarinace matrix
of the optomechanical system is then written as

V ′ =
1

2

(
e−2ξ1N 0N

0N e2ξ1N

)
. (4.75)

In the space of modes {bj}Nj=1 the covariance matrix is given by Eq. (4.64), which is
written explicitly as

V =

 − sinh(2ξ) (<U)T<U + 1
2
e2ξ sinh(2ξ) (<U)T=U

sinh(2ξ) (<U)T=U sinh(2ξ) (<U)T<U + 1
2
e−2ξ

 . (4.76)
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It is clear that the system’s steady state depends on the choice of the unitary
matrix U . One can find system parameters, namely driving lasers phases and am-
plitudes that drives the system to a target steady state. An example demonstrating
the generation of the two modes squeezed state in the mechanical modes of the
optomechanical system is given in Appendix A, and a protocol to generate the
approximate cluster state is given in Section 4.4.

4.4 Cluster states in the mechanical modes

In this section, we give the scheme to generate cluster states in the mechanical modes
of the optomechanical system shown in Fig. 3.3 where its dynamics is described
by the Hamiltonian (4.68) and obeys the master equation (3.59). As said in
Section 4.3, we will use Hamiltonian switching scheme where the switching program
is given by the unitary transformation U (see Eq. (4.54)). For the generation of
cluster states, the switching program U can be determined in a systematic way
using the method developped by Ikeda and Yamamoto3 [113] and will be presented
in Section 4.4.1.

4.4.1 Switching program

Canonical cluster states (see Section 2.5) satisfy the condition

lim
ξ→∞

cov (p− Aq) = 0 , (4.77)

where ξ is the squeezing parameter, q and p are the quadratures, A is the adjacency
matrix [134, 158] of the cluster state, and cov (x) denotes the covariance matrix
and it is defined as

cov (x) =
1

2
〈
{

∆x, (∆x)T
}
〉 . (4.78)

In practice, we can not have quantum states with infinite squeezing, and in this case
we talk about approximate cluster state: for big enough squeezing, approximate
cluster states can be regarded as (ideal or canonical) cluster states. In the following,
when we mention cluster state we mean approximate cluster state (Section 2.5).

Let A be the adjacency matrix of the graph of the cluster state that one wants
to generate, and consider a system in the state described by the covariance matrix
(4.76), then cov (p− Aq) is written as [113]

cov (p− Aq) = (−A,1N) V

(
−A
1N

)

=
1

2
e2ξ

(
−A(<U)T<UA− (<U)T=UA− A(<U)T=U + (<U)T<U + A2

)
+

1

2
e−2ξ

(
A(<U)T<UA+ (<U)T=UA+ A(<U)T=U − (<U)T<U + 1N

)
.

We define the matrices F1 and F2 as the following:

F1 = <UA+ =U , F2 = =UA−<U , (4.79)

3Ikeda and Yamamoto generalized previous works of P. Loock et al. [156], X. Li et al. [111] and
A. Furusawa et al. [157]
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then, cov (p− Aq) becomes:

cov (p− Aq) =
1

2
e−2ξ F T

1 F1 +
1

2
e2ξ F T

2 F2 . (4.80)

In order Eq. (4.80) to be consistent with Eq. (4.77), we must have

F T
2 F2 = 0⇒ <U = =UA , (4.81)

and therefore, the unitary transformation U becomes

U = =U(A+ i1N) , (4.82)

or equivalently
A+ i1N = (=U)−1 U . (4.83)

Now, we want to find (=U)−1 in terms of the adjacency matrix A. We calculate
(A+ i1N) (A+ i1N)†

(A+ i1N) (A+ i1N)† = A2 + 1N = (=U)−1 (=U)−1T . (4.84)

If we assume that =U is symmetric, then we obtain

(=U)−1 =
√
A2 + 1N , (4.85)

and the unitary matrix U is written

U = (A2 + 1N)−1/2(A+ i1N) . (4.86)

Therefore, one can find the switching program (unitary U) for a given cluster state
described by its adjacency matrix A by using Eq. (4.86) .

Before concluding this section, we should mention that if we relabel the modes
of the cluster state while keeping the same geometry of the graph, this will change
the adjacency matrix A of the corresponding graph which also change the switching
program U given by Eq. (4.86). In Appendix B we give explicit formula for
expression of the matrix U when relabelling the modes. We show in Appendix B
that the switching programs for different relabelling of the modes of the target
cluster state are equivalent (they are related by a transformation that corresponds
to modes permutations).

In the following, we give explicit examples of generating different cluster states
in optomechanical systems using the switching scheme presented so far.

4.4.2 Linear cluster states

A linear cluster state consisting of N modes is represented in Fig. 4.1. Its adjacency
matrix A is given by

A =



0 1 0 · · · 0

1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · 0 1 0


. (4.87)
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1 2 N

Figure 4.1: A graph representation of N modes linear cluster state.

In particular, we consider two modes and four modes linear cluster states:
The adjacency matrix of the two modes cluster state is

A2 =

(
0 1
1 0

)
, (4.88)

and from Eq. (4.86) one obtains

U =
1√
2

(
i 1
1 i

)
. (4.89)

Without loss of generality, we assume that, for j = 1, . . . , N , we have :

βj = β , (4.90)

gj = g , (4.91)

then the system parameters that generate the two modes cluster state are obtained
using Eq. (4.69) with U being replaced by Eq. (4.89) and they are given in Table. 4.1.

Step α−1 α−2 φ−1 φ−2
1 1/

√
2 1/

√
2 −π/2 0

2 1/
√

2 1/
√

2 0 −π/2

Table 4.1: System parameters for generating the two modes cluster state. The α−’s
are given in units of

√
2β/g. The φ+’s and α+’s parameters are obtained from

Eq. (4.65) and Eq. (4.66) respectively.

The adjacency matrix of the four modes linear cluster state (Fig. 4.2-a) is

Alinear
4 =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 , (4.92)

the switching program is

U =
1

5


i
√

2(5 +
√

5)
√

5 + 2
√

5 −i
√

5− 2
√

5 −
√

5− 2
√

5√
5 + 2

√
5 i

√
5 + 2

√
5

√
10− 2

√
5 −i

√
5− 2

√
5

−i
√

5− 2
√

5
√

10− 2
√

5 i
√

5 + 2
√

5
√

5 + 2
√

5

−
√

5− 2
√

5 −i
√

5− 2
√

5
√

5 + 2
√

5 i
√

2(5 +
√

5)

 , (4.93)

and the system parameters that generate the four modes linear cluster state are
given in Table. 4.2.

40



CHAPTER 4. CLUSTER STATES GENERATION BY DISSIPATION IN
OPTOMECHANICAL SYSTEMS

Step α−1 α−2 α−3 α−4 φ−1 φ−2 φ−3 φ−4

1

√
2(5+

√
5)

5

√
5+2
√

5

5

√
5−2
√

5

5

√
5−2
√

5

5
−π/2 0 π/2 π

2

√
5+2
√

5

5

√
5+2
√

5

5

√
2(5−

√
5)

5

√
5−2
√

5

5
0 −π/2 0 π/2

3

√
5−2
√

5

5

√
2(5−

√
5)

5

√
5+2
√

5

5

√
5+2
√

5

5
π/2 0 −π/2 0

4

√
5−2
√

5

5

√
5−2
√

5

5

√
5+2
√

5

5

√
2(5+

√
5)

5
π π/2 0 −π/2

Table 4.2: System parameters for generating the four modes linear cluster state.
The α−’s are given in units of

√
2β/g. The φ+’s and α+’s parameters are obtained

from Eq. (4.65) and Eq. (4.66) respectively.

4.4.3 Four modes square cluster state

The graph representation of the four modes square cluster state is given in Fig. 4.2-b.
Its adjacency matrix is

Asquare
4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , (4.94)

the switching program is

U =
1

10


i(5 +

√
5) 2

√
5 i(−5 +

√
5) 2

√
5

2
√

5 i(5 +
√

5) 2
√

5 i(−5 +
√

5)

i(−5 +
√

5) 2
√

5 i(5 +
√

5) 2
√

5

2
√

5 i(−5 +
√

5) 2
√

5 i(5 +
√

5)

 , (4.95)

and the system parameters that generate the four modes square cluster state are
given in Table. 4.3.

Step α−1 α−2 α−3 α−4 φ−1 φ−2 φ−3 φ−4
1 (5 +

√
5)/10 1/

√
5 (5−

√
5)/10 1/

√
5 −π/2 0 π/2 0

2 1/
√

5 (5 +
√

5)/10 1/
√

5 (5−
√

5)/10 0 −π/2 0 π/2

3 (5−
√

5)/10 1/
√

5 (5 +
√

5)/10 1/
√

5 π/2 0 −π/2 0

4 1/
√

5 (5−
√

5)/10 1/
√

5 (5 +
√

5)/10 0 π/2 0 −π/2

Table 4.3: System parameters for generating the four modes square cluster state.
The α−’s are given in units of

√
2β/g. The φ+’s and α+’s parameters are obtained

from Eq. (4.65) and Eq. (4.66) respectively.

4.5 Finite time dynamics

The described protocol for generating the cluster state given in Section 4.3 and
Section 4.4 requires one to wait infinite time to reach the steady state. But in
practice we spend finite time in each step of the switching scheme. This results in
deviations of the system’s steady state from the (ideal) target state. We quantify
this deviation by the fidelity, namely the Uhlmann fidelity [142, 143] introduced in
Section 2.6.
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2

4 3

b)
1 1 2

4 3

c)

1 2 3 4

a)

Figure 4.2: A graph representation of 4 modes cluster states of different geometries.
a) Linear cluster state. b) Square cluster state. c) Full–interaction cluster state.

4.5.1 Speed of approaching the steady state

At the `th step of the switching scheme described in Section 4.3, the system’s
dynamics is described by the master equation (4.71) with Hamiltonian (4.70) and
dissipator (4.72). The covariance matrix V`(t) of this system at the `th step is given
by

V`(t) = eA
(`)tV`(0)eA

(`)T t +

t∫
0

eA
(`)sBeA

(`)T s ds , (4.96)

with t ≥ 0, B is given by Eq. (4.34) and A(`) is given by:

A(`) =


0 0 0 −β`(1− r)
0 −κ

2
−β`(1− r) 0

0 β`(1 + r) 0 0
β`(1 + r) 0 0 −κ

2

 . (4.97)

Equation (4.96) was obtained by following the same steps to arrive to Eq. (4.32)
then we made appropriate time transformations so that time t starts from zero at
the beginning of each switching step. We should mention that V`(0) is the initial
state of the system at the `th step and it equals the final state of the system in the
preceding switching step, except for the first switching step where it is the system’s
state before starting the switching protocol.

Hence the matrix A(`) has eigenvalues:

λ±` = −κ
4
±
√(

κ

4

)2

− β2
` (1− r2) , (4.98)

and since 0 ≤ r < 1 (Eq. (4.67)) then it is always true that(
κ

4

)2

>
(
κ

4

)2

− β2
` (1− r2) , (4.99)

which leads to
κ

4
> <

√(
κ

4

)2

− β2
` (1− r2) , (4.100)

42



CHAPTER 4. CLUSTER STATES GENERATION BY DISSIPATION IN
OPTOMECHANICAL SYSTEMS

and hence the eigenvalues λ±` satisfy

<λ±` < 0 . (4.101)

Eq. (4.101) tells us that the matrix A(`) (Eq. (4.97)) is Hirwitz i.e., the system’s
dynamics has always a unique steady state. The system approaches its steady
state with speed that depends only on the negativity of the the real part of the
eigenvalues (4.98): The more negative <λ±` , the faster to reach the steady state.

This later statement is clear from Eq. (4.96) because the matrices A(`) and A(`)T

appear in exponentials and since the eigenvalues of A(`) have negative real part then
the exponentials will decay when the time increases.

Since we always have
|<λ−` | ≥ |<λ+

` | , (4.102)

then the system reaches its steady state in time of the order of few multiples of τ (`):

τ (`) =
1

|<λ+
` |

. (4.103)

From Eq. (4.98) we also have

|<λ+
` | ≤

κ

4
⇒ |<λ+

` |max =
κ

4
, (4.104)

therefore the minimum value for τ (`) is

τmin =
4

κ
, (4.105)

which represents the limit of speed one can reach in order to approach the steady
state of the system. Using Eq. (4.98) once more this limit translates to(

κ

4

)2

− β2
` (1− r2) ≤ 0⇒ β` ≥

κ

4
√

1− r2
. (4.106)

As said in Section 2.5, our cluster state approaches the ideal (canonical) one for
large squeezing strength i.e., when ξ → ∞ or equivalently when r → 1 (we used
Eq. (4.74)), but in this situation Eq. (4.106) tells us that κ must be very small i.e.,

κ→ 0 , (4.107)

in order to render β` a finite quantity satisfying condition

β` � Ω` (4.108)

obtained from Eq. (3.50) and Eq. (4.69).
But when κ → 0 the time to reach the steady state given in Eq. (4.105) will be
infinite, therefore if we want to prepare a cluster state that has large squeezing we
have to consider very good cavity (κ → 0) and we must wait a very long time to
generate it.
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4.5.2 Four–modes linear cluster state

Without loss of generality, we study the case of four modes cluster states with the
mechanical oscillators having the frequencies

Ωj = 2πj MHz . (4.109)

The choice of the frequencies in Eq. (4.109) is for demonstration only. In fact,
one can choose any other values as long as the RWA used in the derivation of the
Hamiltonian (3.54) must be valid. Indeed, choosing non-overlapping mechanical
frequencies (as in Eq. (4.109)) and the weak coupling assumptions (Eq. (3.20) and
Eq. (3.50)) should be enough for the RWA to be valid, i.e., Hamiltonian (3.54)
is a good approximation of the dynamics of the optomechanical system shown in
Fig. 3.3.

First, we study the evolution of the fidelity4. In Fig. 4.3 we plot the fidelity
versus time for the four-modes linear cluster state for different squeezing strengths:
5 dB, 12.7 dB5 and 20.5 dB6. We see that the fidelity increases monotonically in
each step, and step by step, up to the value of 1 where the target cluster state is
reached. Also notice that regardless of the squeezing strength, the target cluster
state is obtained after the same time (around 80 κ−1 when we spend time equal to
20 κ−1 in each step).

In the numerical simulations (see Appendix C for a brief outline of the codes
used to simulate the dynamics of the system) shown in Fig. 4.3, the parameter β
was set to

β =
κ

4
√

1− r2
. (4.110)

This choice is to guarantee reaching the steady state in minimal time while keeping
the driving laser power at its minimum (See Section 4.5.1). Taking into account
Eq. (3.50) one arrives to

κ� 4
√

1− r2 min
k,j=1,...,N

Ωj

|Ukj|
. (4.111)

This means that the cavity must operate in the resolved-sideband regime [149, 150,
160–165]. Also, from Eq. (4.111) it is clear that the higher the squeezing strength
the deeper the cavity should operate in the resolved-sideband regime. On the other
hand, Eq. (4.111) puts an upper bound limit on how fast one can reach the target
cluster steady state: In order to obtain the cluster state quickly, the cavity decay
rate should be as big as possible as long as condition (4.111) is satisfied (resolved
sideband regime).

We now study the fidelity of the generated state and the target cluster state when
we change the duration of each step of the switching scheme. For this, we consider
again the target cluster state to be the four modes linear cluster state (Fig. 4.2-a)
with mechanical oscillators frequencies (4.109). We calculate the fidelity of the
system’s state at the end of the last switching step and that of the target cluster

4what we mean by the word fidelity here and in the subsequent sections is the Uhlmann fidelity
of the system’s state at time t (with t ∈ [0,∞[) and the target (approximate) cluster state.

512.7 dB is the highest achieved squeezing of one optical mode in experiment [159].
6It is shown in [108] that squeezing of 20.7 dB is the threshold to perform universal fault–tolerant

quantum computation in CV.
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Figure 4.3: Fidelity evolution in time for the four-modes linear cluster state.
Squeezing strengths of 5 dB, 12.7 dB and 20.5 dB are considered. The frequency
of the jth mechanical oscillator is chosen to be equal to 2πj MHz (see text). The
duration of each step is ts = 20 κ−1 where κ is the cavity’s decay rate.

state. We call this fidelity the final fidelity. In Fig. 4.4 we plot the final fidelity
as function of the total evolution time per switching step for the same squeezing
strengths used in Fig. 4.3. Also we have set the total evolution time in each step
to be equal in all steps. This choice should not lead to any prime difference in the
results and conclusions of this analysis.

We notice that the final fidelity reaches one when enough time is allowed in each
switching step. Also we see that the more the squeezing strength the longer time
one has to spend in each step. In other words, when the squeezing strength of the
target cluster state is big7, then the system needs more time to reach the steady
state at each step.

One would ask the question whether the geometry of the target cluster state
affects the evolution of the fidelity in time. To answer this question we consider
the four-modes and eight-modes cluster states represented in Fig. 4.2 and Fig. 4.5
respectively, then we plot the fidelity versus time for a squeezing strength 12.7 dB
with β set to the value as in (4.110). The results of the simulations are shown in
Fig. 4.6 and Fig. 4.7. We see that the geometry of the target cluster state does not
affect the fidelity in time of the state of the system during the generation of that
target cluster state. This observation should be the subject of further study where

7Remember that cluster states generated by the switching scheme approach the canonical cluster
states when considering infinite squeezing (read Section 2.5)
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Figure 4.4: Final fidelity function of total evolution time per switching step for the
four-modes linear cluster state. Squeezing strengths of 5 dB, 12.7 dB and 20.5 dB
are considered. The frequency of the jth mechanical oscillator is chosen to be equal
to 2πj MHz (see text).

one should show analytically that the fidelity in time is independent of the geometry
of the target cluster state for fixed number of modes.
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Figure 4.5: A graph representation of 8 modes cluster states of different geometries.
a) Linear cluster state. b) Dual-rail cluster state. c) Full–interaction cluster state.
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Figure 4.6: Fidelity evolution in time for different four-modes cluster state geome-
tries. The squeezing strengths was chosen to be equal to 12.7 dB. The frequency
of the jth mechanical oscillator is chosen, as before, to be equal to 2πj MHz with
j = 1, . . . , 4 (see text). The duration of each step is ts = 20 κ−1 where κ is the
cavity’s decay rate.
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Figure 4.7: Fidelity evolution in time for different eight-modes cluster state geome-
tries. The system parameters are as follow: squeezing strengths 12.7 dB, frequency
of the jth mechanical oscillator 2πj MHz with j = 1, . . . , 4, and the duration of each
step ts = 20 κ−1
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Chapter 5

Cluster state generation in the
presence of mechanical noise

We showed in Chapter 4 how to generate cluster states in the mechanical modes
of the optomechanical system shown in Fig. 3.3. The scheme developed there to
obtain the cluster state assumes the ideal situation where the mechanical modes are
decoupled from their bath1. In this chapter we study the effects of the (unwanted)
mechanical noise2 on the generation of cluster states using the switching protocol
presented in Chapter 4. This will be quantified in terms of the quantum fidelity
between the system’s state and the target cluster state.

This chapter is organized as follows: in Section 5.1 we introduce the quan-
tum optical noise and in Section 5.2 we persue the same steps as in Section 4.1 to
prove that the optomechanical system model considered here has always a unique
steady state. Then, in Section 5.3, we show how the quality of the generated clus-
ter state is affected by the mechanical noise, namely the bath’s temperature and the
damping of mechanical oscillators.

5.1 Quantum optical like noise : The model

Consider an optomechanical system consisting of one (optical) cavity mode coupled
to N non interacting mechanical oscillators. The coupling of the cavity mode to
its reservoir is characterized by a decay rate κ, and the mechanical modes are also
coupled to their (independent) baths with damping rates γj (j = 1, . . . , N). Fig. 5.1
shows a sketch of the considered system.

The dynamics of the system is governed by the master equation

ρ̇(t) = −i[H, ρ(t)] + Lc[ρ(t)] + Lm[ρ(t)] , (5.1)

where H is the system’s Hamiltonian given by Eq. (4.68) and Lc[ρ(t)] is the Lindblad
term that describes the cavity losses and it is given by Eq. (3.60) rewritten here for
convenience as

Lc[ρ(t)] = κ D[a]ρ(t) , (5.2)

1The bath is a physical system containing infinite number of modes (called reservoir) and is in
thermal equilibrium state [52].

2Mechanical noise results from the coupling of the mechanical system with its bath. For further
reading about this topic, one can consult references [50–55].
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Figure 5.1: An optomechanical system of one cavity mode and N mechanical oscil-
lators. The cavity losses are characterised by the decay rate κ, and the mechanical
noise is modelled by damping rates γ1, . . . , γN , where each mechanical oscillator
exchanges quanta (phonons) with its bath. The cavity is pumped by M laser fields.

with a is the annihilation operator for the cavity, and D[·]ρ(t) is the super operator
defined as

D[v]ρ(t) = vρ(t)v† − 1

2
{v†, v} . (5.3)

The Lindblad terms for the mechanical oscillators are given by

Lm[ρ(t)] =
N∑
j=0

L(−)
j [ρ(t)] + L(+)

j [ρ(t)] , (5.4)

where L(−)
j [ρ(t)] and L(+)

j [ρ(t)] are given by

L(−)
j [ρ(t)] = γj(nj + 1)D[bj]ρ(t) , (5.5)

L(+)
j [ρ(t)] = γjnjD[b†j]ρ(t) , (5.6)

with γj and nj are, respectively, the damping rate and mean-phonon number of the
jth mechanical mode.

The term L(−)
j [ρ(t)] describes the process of quanta (phonon) leaking from the

jth mode into its bath (cooling), while the term L(+)
j [ρ(t)] describes the opposite

process, i.e., phonons entering from the bath to the mechanical mode (heating)
[52]. Notice that Lindblad operators (5.5) and (5.6) for the mechanical modes are
similar in their form to that for the (optical) cavity mode. For this reason we call
the mechanical noise quantum optical like noise. The master equation (5.1) is valid
if the followings are satisfied:

κ � ωc , (5.7)

γj � Ωj . (5.8)

Condition (5.7) is always satisfied for the optical setting3 [153]. It remains that
we assume that condition (5.8) is true for the mechanical modes to ensure that the
analysis that will be given in this section is valid.

3Typical values of κ are in the range Hz–GHz, while ωc is of the order of THz.
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5.2 Existence and uniqueness of the steady state

In this section, we aim to answer the question whether the system’s dynamics gov-
erned by the master equation (5.1) has unique steady state. In Section 4.1 we
have proved that the considered system has a unique steady state if and only if one
mechanical mode is considered (see conditions (4.24) and (4.26)). In this section
we consider the mechanical noise and check if the system still has a steady state.

We will be following the same steps as in Section 4.1:
We rewrite the master equation (5.1) as follows:

ρ̇(t) = −i[H, ρ(t)] +
2N+1∑
k=1

(
Lkρ(t)L†k −

1

2
{L†kLk, ρ(t)}

)
, (5.9)

with the operators Lk are defined by

Lj =
√
γj(nj + 1) bj , (5.10)

LN+j =
√
γjnj b

†
j , (5.11)

j = 1, . . . , N

L2N+1 =
√
κ a . (5.12)

Writing the Hamiltonian H in the form H = 1
2
xTGx, and from Eq. (4.68), one can

show that the matrix G is equal to

G =


0N A′ 0N B′
A′T 0 C ′T 0
0N C ′ 0N D′
B′T 0 D′T 0

 , (5.13)

where A′, B′, C ′ and D′ are N × 1 vectors whose elements are given by

A′j =
−1√

2
α−j gj(1 + r) cosφ−j , (5.14)

B′j =
1√
2
α−j gj(1− r) sinφ−j , (5.15)

C ′j =
−1√

2
α−j gj(1 + r) sinφ−j , (5.16)

D′j =
−1√

2
α−j gj(1− r) cosφ−j . (5.17)

Considering the switching scheme, and using Eq. (4.69), then equations (5.14)–
(5.17) become

A′(`)j = −β`(1 + r)<U`j , (5.18)

B′(`)j = −β`(1− r)=U`j , (5.19)

C ′(`)j = β`(1 + r)=U`j , (5.20)

D′(`)j = −β`(1− r)<U`j , (5.21)

where we put the super script ` to indicate the parameters at the `th switching step.
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By defining the vector L as

L = (L1, . . . , L2N , L2N+1)T , (5.22)

and writing
L = C ′x , (5.23)

one can show that the (2N + 1)× (2N + 1) complex matrix C ′ is equal to

C ′ =


C1 0N×1 iC1 0N×1

C2 0N×1 −iC2 0N×1

01×N
√

κ
2

01×N i
√

κ
2

 , (5.24)

where the matrices C1 and C2 are given by their elements as follows:

(C1)ij =

√
γj(nj + 1)

2
δij , (5.25)

(C2)ij =

√
γjnj

2
δij . (5.26)

The master equation (5.9) is equivalent to

d〈x〉
dt

= A〈x〉 , (5.27)

dV

dt
= AV + V AT +B , (5.28)

where the matrices A and B are defined in equations (4.18) and (4.19). Using
equations (5.13) and (5.24), one finds matrices A and B at the `th switching step
as follows:

A(`) =


E C ′(`) 0N D′(`)
B′(`)T −κ

2
D′(`)T 0

0N −A′(`) E −B′(`)
−A′(`)T 0 −C ′(`)T −κ

2

 , (5.29)

B =


F 0N×1

01×N
κ
2

0N+1

0N+1
F 0N×1

01×N
κ
2

 , (5.30)

where A′(`), B′(`), C ′(`) and D′(`) are given by equations (5.18)– (5.21), and the
matrices E and F are equal to

E =
−1

2
Diag (γ1, . . . , γN) . (5.31)

F = Diag
(
γ1(n1 +

1

2
), . . . , γN(nN +

1

2
)
)
, (5.32)

As before, we put the super script ` on the matrix A in Eq. (5.29) to indicate that
the parameters are given for the `th switching step.

The existence and uniqueness of a steady state at each step of the switching
scheme for the system shown in Fig. 5.1 with the master equation (5.1) depends on
whether the matrix A(`) given in Eq. (5.29) is Hirwitz or not. Indeed, one can show
that the matrix A(`) is Hirwitz by applying the Routh–Hirwitz stability criterion
[154, 166]. Hence, the system sketched in Fig. 5.1 has always a unique steady state
for all (allowed) system parameters at every switching step.
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5.3 Robustness of the generation of the cluster

state in the presence of mechanical noise

In Section 5.2, we proved that the system shown in Fig. 5.1 has a unique steady
state in every step of the switching scheme. In this section, we study the impact of
the presence of the mechanical noise on the generation of the cluster state. Since the
mechanical oscillators interact with their thermal baths, then the system’s steady
state will deviate from the target cluster state. We quantify this deviation by the
Uhlmann-Josza fidelity [142, 143] given in Section 2.6.

We start by considering the two modes cluster state. Without loss of generality,
we choose mechanical oscillators frequencies as4 Ω1 = 1 MHz and Ω2 = 10 MHz.
We choose the duration of the first switching step to be equal to ts = 20κ−1 while
we give the second step sufficient time so the system can reach its steady state. We
calculate the fidelity between the system’s state at time t and the target cluster
state, the result of the simulation is shown in Fig. 5.2, where we have considered
the following cases:

• ideal system where the mechanical modes are not coupled to any other system
except the cavity mode.

• the mechanical modes are coupled to their (independent) baths at zero tem-
perature). The damping rates γj were chosen to be equal to γ = 10−4κ.

• the mechanical modes are coupled to their baths (with equal damping rates
γ = 10−4κ) at temperature T = 10−4 kelvin.

Figure 5.2 (main) shows, as expected, that the mechanical noise affects the gen-
eration of the cluster state where the fidelity is degraded. Also we see from Fig. 5.2
that in the presence of mechanical damping and/or bath’s temperature, the fidelity
reaches a maximum value before it starts to decrease. Hence, the (approximate)
cluster state is no longer the system’s steady state (as in the ideal case), but instead
one obtains it as an intermediate state of the system during the application of the
switching scheme. Therefore, one must use the cluster state5 before the decoherence
dominates the dynamics, i.e., use the cluster state just after reaching the maximum
fidelity.

Since the mechanical noise degrades the quality (in terms of quantum fidelity)
of the generated cluster state, one expects that long switching steps implying more
decoherence of the system which results in low fidelities. To observe this behaviour,
we consider again the two–modes cluster state with the same parameters as before
(Ω1 = 1 MHz, Ω2 = 10 MHz, γ = 10−4κ and T = 10−4 kelvin) and plot the final
fidelity as function of the evolution time per switching step. The results are shown
in Fig. 5.3. Indeed, if the switching time is too long then there will be a considerable
deviation of the system’s state from the target cluster state. On the other hand, too
short switching times are not sufficient to let the system evolve to the target cluster
state. Therefore, one should consider the optimal switching time that yields the

4Read Section 4.5 for more details about the choice of the frequencies of the mechanical
oscillators.

5for example, one uses the cluster state in one way quantum computation where it is the main
resource for computation.
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Figure 5.2: Fidelity in time of the two modes cluster state. For the numerical
values of the system’s parameters, see text.

maximum final fidelity6 for given mechanical damping and bath’s temperature (in
the example shown in Fig. 5.3 the optimal switching time is approximately 20 κ−1).

Now, we study the effects of varying the bath’s temperature and the couplings
of mechanical modes to their baths on the final fidelity of the system’s state with
the target cluster state. In Fig. 5.4, we show contour plots of the final fidelity
as function of both bath’s temperature and mechanical couplings to the bath in
the case of three different cluster state geometries: two–modes, linear four–modes
and eight–modes dual rail cluster states7. The simulation data were obtained by
assuming the following:

• mechanical modes frequencies: Ωj = 2πj MHz where j varies from 1 up to
the number of mechanical modes (see comments about Eq. (4.109) in Sec-
tion 4.5).

• equal mechanical damping rates: γj = γ, and all the mechanical modes baths
have the same equilibrium temperature T .

• equal evolution time per switching step.

As we said, there is an optimal evolution time per switching step that yields maxi-
mum final fidelity. Every data point in the plots of Fig. 5.4 was calculated by finding

6check section Section 4.5.2 on page 45 for the meaning of the final fidelity
7We have chosen these particular cluster states because of their theoretical and practical uses.

The two–modes cluster state, up to local symplectic transformations, is equivalent to the two–
modes squeezed state. Whereas the linear four–modes and eight–modes dual rail cluster states
allow the implementation of one and two modes symplectic operations respectively which are
essential in measurement based quantum computation.
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Figure 5.3: Final fidelity function of evolution time per switching step of the
two modes cluster state. For the numerical values of the system’s parameters, see
text.

this optimal evolution time (see Appendix C for details about the computer code
used for this purpose). Also, we have set the parameter β as in Eq. (4.110) (see
comments on Eq. (4.110) on page 44). If we relate mechanical noise to bath’s tem-
perature and mechanical damping, then, from Fig. 5.4, one can say that the higher
the squeezing or the larger the graph state8 the less the mechanical noise tolerated.

8We quantify the size of the cluster state by the number of modes contained in it
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Figure 5.4: Fidelity as function of the mechanical bath’s temperature and the
mechanical damping rate. The contour plots give the fidelity of the generated state
and the target cluster states: two modes, linear four modes, and eight modes dual
rail cluster states, with squeezings 5 dB, 12.7 dB and 20.5 dB. The solid, dashed
and dotted contour lines correspond respectively to final fidelities 0.99, 0.90 and
0.80. See text for details about the chosen system’s parameters.
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Chapter 6

Conclusion and suggestions for
further works

We introduced a scheme to generate an approximate cluster state encoded in the
vibrational modes of a set of mechanical oscillators. The generated cluster state was
obtained as the steady state of the oscillators with the help of the optomechanical
coupling and cavity dissipation. We used a cavity optomechanical system where the
optical cavity mode is coupled to independent mechanical oscillators via radiation
pressure.

We were able to control the quantum state of the mechanical oscillators and drive
it to the target cluster state via applying multi–tone laser pump on the cavity where
each mechanical mode is manipulated by a pair of laser drives operating in the side–
band regime. This required us to consider that all mechanical frequencies do not
overlap, otherwise it is impossible to address each mechanical oscillator individually.
But this later limitation was relaxed by considering an optomechanical system where
the cavity mode is coupled to all or a subset of interacting mechanical oscillators and
we work in the space of the normal modes of the mechanical modes. We showed that
it is possible to tune the normal modes such that they do not overlap, where tuning
the normal modes is done via controlling the interactions between the mechanical
oscillators.

The quality of the generated cluster state was assessed for finite preparation time
and in the presence of mechanical noise. By using quantum fidelity tools, we found
that when the target cluster state contains high squeezing level and/or many modes,
then the quality is heavily affected. One has to eliminate the mechanical noise as
much as possible by cooling down the vibrational modes. A possible solution for this
later issue is to extend our scheme to use the mechanical dissipation as a resource in
order to obtain cluster states that are also robust against mechanical noise. Another
path for extending this study, is to consider non–Markovian mechanical noise instead
of the (Markovian) quantum–optical–like noise considered in this work.

Since the cluster state generated by our scheme is intended to be used in one–
way quantum computation, one would ask how to realize the optomechanical system
studied here, and how to perform measurements on the system. To answer the
first question we discuss the experimental feasibility of our scheme in the light of
previously realized experiments in optomechanics and electromechanics. The second
question is reduced to how to devise a strategy to read information out from our
generated cluster state.
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Our scheme uses an optomechanical system with the following characteristics:

• Many mechanical oscillators with non overlapping frequencies1, and

• one optical cavity mode that is coupled (via optomechanical interaction) to
the mechanical modes.

• The optomechanical interaction is considered weak, and

• the optical cavity is operated in the resolved–sideband regime.

Various experiments have been realized that exploit the weak optomechanical cou-
pling regime [88–90], while optomechanical networks i.e., systems with many me-
chanical modes, were reported in recent experiments [167–169]. Also, mechanical
oscillators with frequencies with values of the order of those used in our simulations
are within reach by experiments e.g. [170–173].

Returning to the measurement question raised before, we mention here a possible
read–out strategy. Using quantum state tomography tools and techniques [174]
and the ideas introduced in [175], one can obtain information from the motion of
the mechanical oscillators by using a suitable probe that is coupled to the target
mechanical mode that we want to measure. Indeed, this later is under study in [176]
where they consider optomechanical systems and in particular our cluster state.

Concluding, being able to realize and implement our scheme for generating the
cluster states in the vibrational modes of mechanical oscillators, and success in
devising a read–out protocol to extract information from our generated cluster state
will pave the path towards scalable and integrated solid–state technology for building
quantum computers.

1But as we said, this condition can be relaxed, see Section 3.5 for details and requirements.
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Appendix A

Generating the two modes
squeezed state of optomechanical
systems by Hamiltonian switching
and cavity dissipation

We will show in this appendix how to dissipatively generate the two modes squeezed
state (TMSS) in the mechanical modes of the optomechanical system shown in
Fig. A.1. We will use the switching scheme introduced in Section 4.3.

b1 b2

Figure A.1: An optomechanical system consisting of one cavity mode and two
mechanical oscillators inside the optical cavity.

The TMSS is characterized with the covariance matrix (see Section 2.4.7)

VTMSS =
1

2


cosh 2ξ sinh 2ξ 0 0
sinh 2ξ cosh 2ξ 0 0

0 0 cosh 2ξ − sinh 2ξ
0 0 − sinh 2ξ cosh 2ξ

 , (A.1)

where ξ is the squeezing parameter.
In the other hand, the covariance matrix of the steady state of the system of

Fig. A.1 was found to be equal to (see how did we arrive at Eq. (4.76))

V =

 − sinh(2ξ) (<U)T<U + 1
2
e2ξ sinh(2ξ) (<U)T=U

sinh(2ξ) (<U)T=U sinh(2ξ) (<U)T<U + 1
2
e−2ξ

 , (A.2)
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APPENDIX A. GENERATING THE TWO MODES SQUEEZED STATE OF
OPTOMECHANICAL SYSTEMS BY HAMILTONIAN SWITCHING AND
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where U is 2×2 unitary matrix that gives the switching program and ξ = arctan−1 r
with r is defined in Eq. (4.66) (see Section 4.3).

To simplify the calculations, we put

U = X + iY , (A.3)

where X and Y are 2 × 2 real symmetric matrices. Comparing Eq. (A.1) and
Eq. (A.2) and using Eq. (A.3), one can easily arrive at

−2 sinh 2ξX2 +
1

2
e2ξ =

1

2

(
cosh 2ξ sin 2ξ
sinh 2ξ cosh 2ξ

)
, (A.4)

XY = 0 , (A.5)

which leads to the following expressions for X and Y :

X =
1

2

(
1 −1
−1 1

)
, (A.6)

Y = µ

(
1 1
1 1

)
, (A.7)

where µ is a real constant that we fix from the unitarity condition for U :

U †U = 12 ⇒ X2 + Y 2 = 12 ⇒ µ = ±1

2
. (A.8)

The switching program U is therefore equal to:

U =
±eiπ/4√

2

(
1 e−iπ/2

e−iπ/2 1

)
. (A.9)

Now we have the switching program, we can calculate the intensities and phases of
the driving lasers that give the TMSS: using Eq. (4.69) and assuming, for simplicity,
that g1 = g2 ≡ g and β1 = β2 ≡ β we find the following parameters for the four
driving lasers , see Table. A.1.

Step α−1 α−2 φ−1 φ−2
1 1 1 0 π/2
2 1 1 π/2 0

Table A.1: System parameters for generating the two modes squeezed state. The
α−’s are given in units of β/g. The φ+’s and α+’s parameters are obtained from
Eq. (4.65) and Eq. (4.66) respectively.
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Appendix B

Relabelling modes in the cluster
state

In this appendix we aim to find how does relabelling modes in a cluster state change
the switching program found in Section 4.4.1.

Let A and A′ be the adjacency matrices of the same N–modes cluster state
geometry but with different mode labels. We will call this mode relabelling. A
demonstration example is shown in Fig. B.1

  

2 1 3

4

a)

1 2 3

4

b)

Figure B.1: Two cluster states with the same geometry (T-cluster) and with dif-
ferent mode labels.

The adjacency matrices of the cluster states shown in Fig. B.1–a and Fig. B.1–b
are respectively:

A =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 , A′ =


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . (B.1)

Notice that A and A′ are equivalent up to row and column swaps: it is easy to see
that when interchanging the first and second rows and then interchanging first and
second column of matrix A′, then one will obtain the matrix A.
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In general, for any relabelling of modes while keeping the same graph geometry,
A and A′ are related by:

A′ = TAT , (B.2)

where T is the row swap matrix and it is the resultant of possibly more than one
row swap:

T =
N∏
s=1

Tisjs , (B.3)

where the N ×N symmetric matrix Tisjs is the operation of interchanging between
the iths and jth

s rows, and it is equal to the identity matrix with rows iths and jth
s are

swapped. N is the number of row swaps required to transform A into A′.
Now, we want to see how does the switching program transform as a result of

relabelling modes in a given cluster state geometry. We found in Section 4.4.1
that the switching program for a cluster state with adjacency matrix A is equal to

U = −(A2 + 1N)−1/2(A+ i1N) , (B.4)

and hence for cluster state with adjacency matrix A′ we have

U ′ = −(A′2 + 1N)−1/2(A′ + i1N) . (B.5)

If we replace A′ in Eq. (B.5) with its expression (B.2), we obtain:

U ′ = −(TAT 2AT + 1N)−1/2(TAT + i1N) , (B.6)

and since the matrix T is the product of involutionary matrices [177] then T is also
involutionary ,i.e.,

T 2 = 1N , (B.7)

then, Eq. (B.6) simplifies to

U ′ = −(TA2T + 1N)−1/2(TAT + i1N) ,

= −T (A2 + 1N)−1/2(A+ i1N)T ,

= TUT . (B.8)

Therefore, relabelling the modes of the cluster state is equivalent to interchanging
rows and columns in the corresponding switching program.
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Appendix C

Computer codes used to produce
the simulations

Numerical simulations given in this thesis were produced by a set of FORTRAN pro-
grams and MATLAB scripts. FORTRAN was used to calculate covraiance matrices
and quantum fidelities and generate data files, while MATLAB was used to produce
the plots. In what follows we give flow charts of the most important sections of the
FORTRAN programs that generated the different types of simulations. Also, an
explicit FORTRAN code regarding the covariance matrix calculations is given.
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C.1 Calculate the covariance matrix of a state

prepared by the switchig scheme

The following subroutine will be denoted cluster–covariance–matrix in Section C.3
and Section C.4.

initialize
variables

system parameters

set initial
state (V0)

k ← 1

k ≤ N

set
parameters
for kth step

set initial
state at
kth step:
(Vk−1)

calculate
the

covariance
matrix

k ← k + 1

save data

stop

no

yes

64



APPENDIX C. COMPUTER CODES USED TO PRODUCE THE
SIMULATIONS

C.2 Fidelity as function of evolution time

initialize
variables

system parameters

k ← 1

k ≤ N

set
parameters
for kth step

calculate
the

covariance
matrix

calculate
fidelity

k ← k + 1

save data

stop

no

yes
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C.3 Final fidelity as function of switching time

initialize
variables

system parameters

i ← 1

i ≤ Nt

increase
switching

time

cluster–
covariance–

matrix

calculate
fidelity

i ← i + 1

save data

stop

yes

no
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C.4 Maximum fidelity as function of bath’s tem-

perature and mechanical damping rate

initialize
variables

system parameters

T ← Tmin

T ≤ Tmax

γ ← γmin

γ ≤ γmax

k ← 1

k ≤ Nmax

increment
switching

time

cluster–
covariance–

matrix

calculate
fidelity

fidelity in-
creasing?

save max
fidelityshow error stop

save to file stop

yes

yes

yes

no

yes

no

no

no
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C.5 covmat.f90 subroutines

module covmat_module

use defs_module

use helper_module

!standard covariance matrix IDs

Integer ,Parameter :: COVMAT_SQUEEZED =1, &

COVMAT_SQUEEZED_VACUUMCAVITY =2

!Butcher tableau

real(Kind=Long),parameter :: butcher_a11 =0.25 _Long , &

butcher_a12 =0.25 _Long -sqrt (3.0 _Long)/6, &

butcher_a21 =0.25 _Long+sqrt (3.0 _Long)/6, &

butcher_a22 =0.25 _Long , &

butcher_b1 =0.5 _Long , &

butcher_b2 =0.5 _Long , &

butcher_c1 =0.5 _Long -sqrt (3.0 _Long)/6, &

butcher_c2 =0.5 _Long+sqrt (3.0 _Long)/6

!COVMAT method IDs

Integer ,Parameter :: COVMAT_SOLVER_EULER =1, &

COVMAT_SOLVER_RK4 =2, &

COVMAT_SOLVER_RK4_IMPLICIT =3, &

COVMAT_VACUUM_THERMAL =4, &

COVMAT_THERMAL =5

!covmat solving method

integer ,parameter :: nCovmatMethod=COVMAT_SOLVER_RK4

contains

!===========================================

function covmat(A,B,t_f ,V_0 ,Nt ,Vfull ,t_0)

!

! calculates the covariance matrix

! this subroutine uses different methods: explicit/

implicit Runge -Kutta methods ,

!

! PARAMETERS:

! input , A,B are the system matrices (may be Time

dependent: must contain 2*(Nt -1) elements)

! input , t_f is the total evolution time

! input , V_0 is the initial state

! input , Nt , the number of data points used to solve

the diff equation

! output , (optional), Vfull to save the full dynamics

of the covariance matrix (from time t=0, to time t_f)

! input , optional , t_0 , initial time

!
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implicit none

!declaration of input/output variables

real(kind=long),dimension (:,:),intent(in)::V_0

real(kind=long),intent(in)::t_f

integer ,intent(in)::Nt

real(kind=long),dimension (:,:,:),intent(in)::A,B

real(kind=long),dimension (:,:,:),intent(out),optional ::

Vfull

real(kind=long),intent(in),optional ::t_0

real(kind=long),dimension (1: size(V_0 ,dim=1) ,1:size(V_0 ,

dim =1)):: covmat

real(kind=Long)::t0

if(PRESENT(t_0))then

t0=t_0

else

t0=0.0 _Long

end if

if(PRESENT(Vfull))then

if(nCovmatMethod == COVMAT_SOLVER_EULER)then

covmat=covmat_euler(A,B,t0 ,t_f ,V_0 ,Nt ,Vfull)

elseif(nCovmatMethod == COVMAT_SOLVER_RK4)then

covmat=covmat_RK4(A,B,t0,t_f ,V_0 ,Nt,Vfull)

elseif(nCovmatMethod == COVMAT_SOLVER_RK4_IMPLICIT)then

covmat=covmat_RK4_implicit(A,B,t0,t_f ,V_0 ,Nt,Vfull)

end if

else

if(nCovmatMethod == COVMAT_SOLVER_EULER)then

covmat=covmat_euler(A,B,t0 ,t_f ,V_0 ,Nt)

elseif(nCovmatMethod == COVMAT_SOLVER_RK4)then

covmat=covmat_RK4(A,B,t0,t_f ,V_0 ,Nt)

elseif(nCovmatMethod == COVMAT_SOLVER_RK4_IMPLICIT)then

covmat=covmat_RK4_implicit(A,B,t0,t_f ,V_0 ,Nt)

end if

end if

return

end function covmat

!===========================================

function covmat_RK4(A,B,t_0 ,t_f ,V_0 ,Nt,Vfull)

!

! calculates the covariance matrix using RK4 method

!

! PARAMETERS:
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! input , A,B are the system matrices (may be Time

dependent)

! input , t_0 is the initial time

! input , t_f is the final time

! input , V_0 is the initial state

! input , Nt , the number of data points used to solve

the diff equation

! output , (optional), Vfull to save the full dynamics

of the covariance matrix (from time t=0, to time t_f)

!

implicit none

!declaration of input/output variables

real(kind=long),dimension (:,:),intent(in)::V_0

real(kind=long),intent(in)::t_0 ,t_f

integer ,intent(in)::Nt

real(kind=long),dimension (:,:,:),intent(in)::A,B

real(kind=long),dimension (:,:,:),intent(out),optional ::

Vfull

real(kind=long),dimension (1: size(V_0 ,dim=1) ,1:size(V_0 ,

dim =1)):: covmat_RK4

!local variables

integer ::n,i,bTimeDependent =0

real(kind=Long) ::h

real(kind=long),dimension (1: size(V_0 ,dim=1) ,1:

size(V_0 ,dim =1))::k1,k2,k3 ,k4,M

real(kind=long),dimension (:,:,:),allocatable ::V

!cov mat size

n=size(V_0 ,dim=1)

!allocate memory

allocate(V(1:Nt ,1:n,1:n))

!check if A and B are time dependent

if(size(A,dim=1) >1)then

bTimeDependent =1

end if

!time step

h=(t_f -t_0)/(Nt -1)

!-------------------------------------

!-------------------------------------

! calculating the covariance matrix

!-------------------------------------
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!-------------------------------------

V(1,:,:)=V_0 !initial state <==> t=0

do i=2,Nt

M=MATMUL(A(bTimeDependent *2*(i-2)+1,:,:),V(i-1,:,:))

K1=M+TRANSPOSE(M)+B(bTimeDependent *2*(i-2)+1,:,:)

M=MATMUL(A(bTimeDependent *(2*i-3)+1,:,:),V(i-1,:,:)+h*

k1/2)

K2=M+TRANSPOSE(M)+B(bTimeDependent *(2*i-3)+1,:,:)

M=MATMUL(A(bTimeDependent *(2*i-3)+1,:,:),V(i-1,:,:)+h*

k2/2)

K3=M+TRANSPOSE(M)+B(bTimeDependent *(2*i-3)+1,:,:)

M=MATMUL(A(bTimeDependent *2*(i-1)+1,:,:),V(i-1,:,:)+h*

K3)

K4=M+TRANSPOSE(M)+B(bTimeDependent *2*(i-1)+1,:,:)

V(i,:,:)=V(i-1,:,:)+h*(k1+2*k2+2*k3+k4)/6.0 _Long

end do

covmat_RK4=V(Nt ,:,:)

if(present(Vfull))then

Vfull=V

end if

!free memory

deallocate(V)

return

end function covmat_RK4

!===========================================

function covmat_RK4_implicit(A,B,t_0 ,t_f ,V_0 ,Nt,Vfull)

!

! calculates the covariance matrix

! this subroutine uses implicit RK4 method

!

! PARAMETERS:

! input , A,B are the system matrices (may be Time

dependent: must contain 2*(Nt -1) elements)

! input , t_0 is the initial time

! input , t_f is the final time

! input , V_0 is the initial state

! input , Nt , the number of data points used to solve

the diff equation

! output , (optional), Vfull to save the full dynamics

of the covariance matrix (from time t=0, to time t_f)
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!

implicit none

!declaration of input/output variables

real(kind=long),dimension (:,:),intent(in)::V_0

real(kind=long),intent(in)::t_0 ,t_f

integer ,intent(in)::Nt

real(kind=long),dimension (:,:,:),intent(in)::A,B

real(kind=long),dimension (:,:,:),intent(out),optional ::

Vfull

real(kind=long),dimension (1: size(V_0 ,dim=1) ,1:size(V_0 ,

dim =1)):: covmat_RK4_implicit

!local variables

integer ::n,i,bTD=0

real(kind=Long) ::h

real(kind=long),dimension (1: size(V_0 ,dim=1) ,1:size(V_0 ,

dim =1))::K1,K2,Id

real(kind=long),dimension (1:2* size(V_0 ,dim =1) **2)::KK,FF

real(kind=long),dimension (1:2* size(V_0 ,dim =1) **2 ,1:2*

size(V_0 ,dim =1) **2)::M

real(kind=long),dimension (:,:,:),allocatable ::V

!cov mat size

n=size(V_0 ,dim=1)

!allocate memory

allocate(V(1:Nt ,1:n,1:n))

!check if A and B are time dependent

if(size(A,dim=1) >1)then

bTD=1

end if

!time step

h=(t_f -t_0)/(Nt -1)

!identity matrix

Id=IdentityMatrix(n)

!initial state <==> t=0

V(1,:,:)=V_0

!V(t)=???

do i=1,Nt -1

FF(1:n**2)=reshape( &

MATMUL(A(bTD *2*(i-1)+1,:,:),V(i,:,:)) &
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+MATMUL(V(i,:,:),TRANSPOSE(A(bTD *2*(i-1)+1,:,:))) &

+B(bTD *2*(i-1)+1,:,:) &

,(/n**2/))

FF(n**2+1:2*n**2)=reshape( &

MATMUL(A(bTD *(2*i-1)+1,:,:),V(i,:,:)) &

+MATMUL(V(i,:,:),TRANSPOSE(A(bTD *(2*i-1)+1,:,:))) &

+B(bTD *(2*i-1)+1,:,:) &

,(/n**2/))

M(1:n**2,1:n**2)=KRON(Id ,h*butcher_a11*A(bTD *2*(i-1)

+1,:,:)-Id/2)+KRON(h*butcher_a11*A(bTD *2*(i-1)

+1,:,:)-Id/2,Id)

M(1:n**2,n**2+1:2*n**2)=KRON(Id,h*butcher_a12*A(bTD *2*(

i-1)+1,:,:))+KRON(h*butcher_a12*A(bTD *2*(i-1)+1,:,:)

,Id)

M(n**2+1:2*n**2,1:n**2)=KRON(Id,h*butcher_a21*A(bTD *(2*

i-1)+1,:,:))+KRON(h*butcher_a21*A(bTD *(2*i-1)+1,:,:)

,Id)

M(n**2+1:2*n**2,n**2+1:2*n**2)=KRON(Id,h*butcher_a22*A(

bTD *(2*i-1)+1,:,:)-Id/2)+KRON(h*butcher_a22*A(bTD

*(2*i-1)+1,:,:)-Id/2,Id)

KK=-REAL(MATMUL(MATINVERSE(CMPLX(M,Kind=Long)),FF))

K1=reshape(KK(1:n**2) ,(/n,n/))

K2=reshape(KK(n**2+1:2*n**2) ,(/n,n/))

V(i+1,:,:)=V(i,:,:)+h*( butcher_b1*K1+butcher_b2*K2)

end do

covmat_RK4_implicit=V(Nt ,:,:)

if(present(Vfull))then

Vfull=V

end if

!free memory

deallocate(V)

return

end function covmat_RK4_implicit

!===========================================

function covmat_euler(A,B,t_0 ,t_f ,V_0 ,Nt ,Vfull)

!

! calculates the covariance matrix

! this subroutine uses euler method.

!

! PARAMETERS:
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! input , A,B are the system matrices (may be Time

dependent: must contain 2*(Nt -1) elements)

! input , t_0 is the initial time

! input , t_f is the final time

! input , V_0 is the initial state

! input , Nt , the number of data points used to solve

the diff equation

! output , (optional), Vfull to save the full dynamics

of the covariance matrix (from time t=0, to time t_f)

!

implicit none

!declaration of input/output variables

real(kind=long),dimension (:,:),intent(in)::V_0

real(kind=long),intent(in)::t_0 ,t_f

integer ,intent(in)::Nt

real(kind=long),dimension (:,:,:),intent(in)::A,B

real(kind=long),dimension (:,:,:),intent(out),optional ::

Vfull

real(kind=long),dimension (1: size(V_0 ,dim=1) ,1:size(V_0 ,

dim =1)):: covmat_euler

!local variables

integer ::n,i,bTD=0

real(kind=Long) ::h

real(kind=long),dimension (:,:,:),allocatable ::V

!cov mat size

n=size(V_0 ,dim=1)

!allocate memory

allocate(V(1:Nt ,1:n,1:n))

!check if A and B are time dependent

if(size(A,dim=1) >1)then

bTD=1

end if

!time step

h=(t_f -t_0)/(Nt -1)

!initial state <==> t=0

V(1,:,:)=V_0

!V(t)=???

do i=1,Nt -1
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V(i+1,:,:)=V(i,:,:)+h*( MATMUL(A(i,:,:),V(i,:,:))+MATMUL

(V(i,:,:),TRANSPOSE(A(i,:,:)))+B(i,:,:))

end do

covmat_euler=V(Nt ,:,:)

if(present(Vfull))then

Vfull=V

end if

!free memory

deallocate(V)

return

end function covmat_euler

!===========================================

subroutine covmat_get_time(t_i ,t_f ,Nt,t)

!

! calculates the intermediate times data points to be

used by covmat

!

! PARAMETERS :

! input , t_i , initial time

! input , t_f , final time

! input , Nt , number of principal time data points in

the interval [t_i ,t_f]

! output , t, time array: the calling routine must

deallocate the memory used by t

!

implicit none

!declaration of input/output variables

real(Kind=Long),intent(in)::t_i ,t_f

integer ,intent(in)::Nt

real(Kind=Long),dimension (:),allocatable ,intent(

out)::t

integer ::i,NNt

real(Kind=Long)::h

NNt=covmat_get_data_size(Nt)

allocate(t(1:NNt))

h=(t_f -t_i)/(Nt -1)

if(nCovmatMethod == COVMAT_SOLVER_EULER)then

do i=1,NNt

t(i)=(i-1)*h+t_i

75



APPENDIX C. COMPUTER CODES USED TO PRODUCE THE
SIMULATIONS

end do

elseif(nCovmatMethod == COVMAT_SOLVER_RK4)then

do i=1,NNt

t(i)=(i-1)*h/2.0 _Long+t_i

end do

elseif(nCovmatMethod == COVMAT_SOLVER_RK4_IMPLICIT)then

do i=1,Nt -1

t(2*i-1)=(i-1+ butcher_c1)*h+t_i

t(2*i)=(i-1+ butcher_c2)*h+t_i

end do

end if

return

end subroutine covmat_get_time

!===========================================

function gen_covmat(nID ,n,sParam ,vParam)

!

! generates a covariance matrix described by nID of

size dim1*dim2

!

! PARAMETERS:

! input , nID , cov matrix identifier , see def.f90

! input , n, number of modes

! input (OPTIONAL), sParam , is scalar parameter

relevant for some kinds of cov matrices (squeezing

param for example)

! input (optional), vParam , is vector parameter

relevant for some kinds of cov matrices (Omegas for

example)

!

implicit none

!declaration of input/output variables

integer ,intent(in)::nID ,n

real(kind=Long),intent(in),optional :: sParam

real(kind=Long),dimension (:),intent(in),optional ::

vParam

real(kind=Long),dimension (1:2*n ,1:2*n):: gen_covmat

!local variables

integer ::i

real(Kind=Long)::r,Nphon

if (present(sParam)) then

r=sParam

else
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r=0.0 _Long

end if

gen_covmat =0.0 _Long

if (nID== COVMAT_SQUEEZED) then !vacuum/coherent (r

=0) or squeezed state (r <> 0)

do i=1,n

gen_covmat(i,i)=exp(-2*ATANH(r))/2

gen_covmat(n+i,n+i)=exp(2* ATANH(r))/2

end do

elseif(nID== COVMAT_SQUEEZED_VACUUMCAVITY) then !vacuum/

coherent (r=0) or squeezed state (r <> 0) in the

mechanical part , and vacuum state in the cavity

do i=1,n-1

gen_covmat(i,i)=exp(-2*ATANH(r))/2

gen_covmat(n+i,n+i)=exp(2* ATANH(r))/2

end do

gen_covmat(n,n)=1.0 _Long /2

gen_covmat (2*n,2*n)=1.0 _Long/2

elseif(nID== COVMAT_THERMAL) then !thermal state

do i=1,n

if(sParam ==0) then !sParam=temperature

Nphon =0.0 _Long

else

Nphon =1/( exp(hbar*vParam(i)/Kb/sParam) -1) !vParam ==

Omegas

end if

gen_covmat(i,i)=Nphon +0.5 _Long

gen_covmat(n+i,n+i)=Nphon +0.5 _Long

end do

elseif(nID== COVMAT_VACUUM_THERMAL) then !vacuum state

for the cavity and thermal state for the mechanical

modes

do i=1,n-1

if(sParam ==0) then !sParam=temperature

Nphon =0.0 _Long

else

Nphon =1/( exp(hbar*vParam(i)/Kb/sParam) -1) !vParam ==

Omegas

end if

gen_covmat(i,i)=Nphon +0.5 _Long

gen_covmat(n+i,n+i)=Nphon +0.5 _Long

end do

gen_covmat(n,n)=1.0 _Long /2

gen_covmat (2*n,2*n)=1.0 _Long/2

end if

return
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end function gen_covmat

!===========================================

function covmat_fidelity(A1,A2)

!

! calculates the distance between two covariance

matrices using the fidelity measure

!

! REFERENCES:

! Phys. Rev. A. 61. 022306

! J. Phys. A: Math. Theor. 46. 025304

! PARAMETERS:

! input , A1 and A2, two cov matrices

!

implicit none

!declaration of input/output variables

real(kind=long),dimension (:,:),intent(in)::A1 ,A2

real(kind=Long):: covmat_fidelity

complex(kind=long),dimension (1: size(A1 ,dim=1) ,1:

size(A1,dim =1))::M1,M2,M3 ,M4,M5,M6,PHI1 ,B,

PHI_B ,J

real(kind=long),dimension (1: size(A1 ,dim=1) ,1:size

(A1 ,dim=1))::Id

real(kind=long)::L

integer ::n,i

!this definition is from J. Phys. A: Math. Theor. 46.

025304

!it is very fast compared to the other formula in Phys.

Rev. A. 61. 022306

!to use the other formula of Phys. Rev. A. 61. 022306 ,

comment the following two lines

covmat_fidelity =1/ SQRT(DET(CMPLX(A1+A2,Kind=Long)))

return

!identity and J matrices

J=0.0 _Long

Id=0.0 _Long

n=size(A1,dim =1)/2

do i=1,n

J(i,n+i)=1.0 _Long

J(n+i,i)=-1.0 _Long

Id(i,i)=1.0 _Long
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Id(n+i,n+i)=1.0 _Long

end do

!L=?

L=1/ real(DET(CMPLX(A1+A2 ,Kind=Long)))

!PHI(A1)

M1=MATINVERSE(MATMUL(J,2.0 _Long*A1))

M2=MATMUL(M1 ,M1)

M3=MATSQRT(Id+M2)

PHI1=MATMUL (2.0 _Long*A1,Id+M3)

!B=? and PHI(B) (here B is the matrix O ’Big O’ in the

reference paper)

M1=PHI1 -ii*J

M2=PHI1+ii*J

M3=2.0 _Long*A2 -ii*J

M4=2.0 _Long*A2+ii*J

M5=MATINVERSE(PHI1 +2.0 _Long*A2)

M6=MATINVERSE(PHI1 +2.0 _Long*A2-MATMUL(MATMUL(M3,M5),M4)

)

B=PHI1 -MATMUL(MATMUL(M1 ,M6),M2)

M1=MATINVERSE(MATMUL(J,B))

M2=MATMUL(M1 ,M1)

M3=MATSQRT(Id+M2)

PHI_B=MATMUL(B,Id+M3)

!fidelity

covmat_fidelity=sqrt(L*REAL(DET(PHI_B)))

return

end function covmat_fidelity

end module covmat_module
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Les Etats Du Cluster à Variables Continues dans

un Système Optomécanique

Résumé

Cette thèse présente la théorie et l’implémentation du traitement de l’information
de certaines ressources quantiques. Les états du cluster à variables continues sont
étudiés dans le cadre des degrés de liberté mécaniques des systèmes opto-mécaniques.
Nous avons essayé de surmonter les effets de la décohérence dans les ordinateurs
quantiques afin que le traitement de l’information quantique soit fiable. Nous avons
montré comment préparer par dissipation l’état du cluster dans les systèmes opto-
mécaniques. Nous avons utilisé l’idée de dissipation pour obtenir des états de cluster
stables et robustes contre les effets de la décohérence. En utilisant notre protocole,
les états du cluster de deux, quatre et huit modes avec compression et avec des
géométries différentes sont obtenus avec une grande fidélité et dans la présence de
bruit mécanique.

Mot–clés: cavité opto-mécanique, état du cluster, variables continues, décohérence,
dissipation, informatique quantique, information quantique, laser.



CONTINUOUS VARIABLE CLUSTER STATES

IN OPTOMECHANICAL SYSTEMS

Abstract

This thesis presents theory and implementations of some quantum information pro-
cessing resources. Continuous variable (CV) cluster states of the mechanical degrees
of freedom in optomechanical systems are considered. We attempt to overcome the
effects of decoherence in quantum computers so that quantum information process-
ing becomes reliable. We show how to dissipatively prepare cluster states in op-
tomechanical systems. We use the idea of dissipation engineering to obtain steady
cluster states that are robust against the effects of decoherence. Using the scheme
presented in this work, cluster states of two, four and eight modes with different
squeezings and geometries are obtained with high fidelity and in the presence of
mechanical noise.

Keywords: quantum cavity optomechanics, cluster state, continuous variables,
decoherence, dissipation, quantum computation, quantum information, laser.
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