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Chapter 1 Theoretical analysis

Chapter 1

Literature Review

1.1 Theoretical analysis

Laminar mixed convection in tubes finds itself in many industria applications such
as cooling corps in nuclear reactors [1], solar water heating systems [2], heat exchangers
[3] and closed-loops thermosyphon [4]. These numerous domains of applications justify
the production of an abundant bibliography in the past decades. On the other hand, the
understanding of the inherent physical phenomena to the interaction of the free and forced

convection congtitutesin itself a very important objective.

For the two kinds of mixed convection in ducts (upward mixed convection and
downward mixed convection), one finds few works treating the transient downward or
upward mixed convection in vertical duct with or without the effect of axial wall and fluid
conductions, while in the steady state, these two kinds of mixed convection have received a

rather particular attention from researchers in the past decades.

To the departure, the researchers used simplified models like those based on the
equations of the boundary layer approximations but, these last years, the spectacular
development of the computers and the techniques of numerical analysis have permitted the

modelling of the mixed convection phenomena from the Navier-Stockes equations.

Between 1901 and 1903, Gauthier-Villars published in Paris, Joseph Boussnesg's
treaty entitled: "Analytic theory of the Heat" in which one recovers the following fragment:

"... it was necessary to observe again that, in most movements provoked by the heat on our

5



Chapter 1 Theoretical analysis

heavy fluids, the volumes or the dendties are conserved to very little near, athough the
corresponding variation of the weight of the unit volume is justly the reason of the
phenomena that it is about analysing. There results from that the possibility to disregard
the variations of the density, where they are not multiplied by the gravity g, while keeping,
in the calculations, their product by this one .

This drives to the more used hypothesis in the natural or mixed convection that is
caled "the Boussinesg approximation”. It means that the density pis supposed constant

except in the gravitation term of the equation of quantity of movement.

The experimental studies imply costs of very important realization. For this reason
we find a few experimental works in the literature that concern the mixed convection.
Besides, the chosen geometry doesn't facilitate us the task. Two techniques have been used
until now in the experimental studies: the first one is quantitative while the second is
qualitative. The first consists in taking measures of temperature or velocity on several
sections along an opague tube, while the second consists in visualizing the flowing fluid in
atransparent tube.

Among the first experimental studies concerning the assisted or opposed mixed
convection in a vertical tube one recovers the one of Hanratty et al [5] in 1958. The
authors show experimentally and numerically that the non-isotherm flow becomes
unstable, even for a weak Reynolds number. The thermal boundary condition (positive or
negative wall heat flux) has been realized by the way of a plastic cutaway fixed in a
concentric manner around the tube in which circulates hot or cold water. Two cases have

been analyzed:

(2) the heated upward flow (or the cooled downward flow) that corresponds to the
assisted mixed convection, and

(2) the cooled upward flow (or the heated downward flow) that coincides with the

opposed mixed convection.

In the first case they observed that the fluid in the center of the tube is decelerated, while
the one close to the pipe wall is accelerated, so that a recirculation zone of parabolic shape
appears. They also observed that if the temperature in the envelope decreases or the debit
in the tube increases, the summit of the parabola goes up. In the second case they observed

the inverse phenomenon. Otherwise, for a value of Reynolds equal to 50, and a
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temperature difference between the zone where the fluid is heated or cooled by the

cutaway and the inlet of the tube of 10 the turbulent régime gets settled.

In 1972, Zeldin and Schmidt [6] have studied the effect of the gravitation force on
the hydrodynamic and thermal characterigtics of the flow in a vertical tube. The used fluid
isair. The temperature of the pipe wall is assumed constant and the velocity at the inlet of
the tube is either constant or parabolic. The system is composed of two concentric tubesin
which the one that is inside serves to take the measures and the annular space ensure to
maintain the temperature of the interior wall tube constant while making circulate water.
The authors found that the heat transfer has been improved by the action of the gravity
when the ratio Gr/Re<0, and that the Nusselt number varies linearly with
Gr/Rewhen- 50 £ Gr/Re £0.

Mori and Ohbuchi [7] have realized an experimental study of a downward water
flow in a uniformly heated tube. They found that for weak heat flux values, the heat
transfer is decreased by the effect of the natural convection compared to the case of the
forced convection.

Bernier and Baliga [8] finalized a technique of visuaization in a uniformly heated
vertical tube through the intermediary of a very thin and semitransparent gold leaf. The
experiences have been done for severa representative cases of assisted mixed convection.
They have observed, for each case, a recirculation cell in the centre of the tube. The
apparition of these cells are due to the fact that the fluid close to the pipe wall is hot
therefore its density decreases in relation to the one that is far from the pipe wall. This
difference of density added to the force of gravity lead to the acceleration of the fluid
adjacent to the pipe wall and at the same time, to keep the conservation of the mass, the
fluid at the centre decelerates.

The numerical studies of steady combined forced and free convection in vertical
parallel plate or pipe, without the effect of wall conduction, have been performed by

numerous researchers, which refer to different kinds of boundary conditions [9-17].

Carlos and Guidice [18] presented a numerical analysis of the effect of the entrance

region on mixed convection in horizontal concentric cylinders.

Fusegi [19] investigated the combined effect of the oscillatory through-flow and the

buoyancy on the heat characteristics of alaminar flow in a periodically grooved channel.
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Cheng and Weng [20] numerically studied the mixed convection flow and heat
transfer processes in the developing region of a vertical rectangular duct with one heating
wall.

Morton and Leung [21] investigated numerically and experimentally the mixed
convection in vertical circular duct subjected to constant temperature condition. In the
downward mixed convection, a recirculation cell has been observed experimentally in the
vicinity of the wall. They have shown that the upstream extent of the observed
recirculation cell is more important than the one computed numerically. Morton and
Leung have attributed this effect to the axial conduction of heat in the pipe wall.

Chan and Leung [22] shows that in the case of the opposed mixed convection, the
correlation between the Nusselt number and the ratio Gr/Re?is:

Nu = 8.16* (Gr/Re?)” %1% if  0.5p Gr/Re® p 2.77
Nu = 8.54* (Gr/Re?)” 3 if  0.008p Gr/Re? p 0.35

Wang et al [23] have presented a numerica analysis of upward and downward mixed
convections in vertical and horizontal circular ducts with reversed flow. Their results

indicate that the velocity profile distortions increase with (Gr/ Re) but decrease
considerably when Pe increases for a constant value of (Gr / Re). They have also shown

that for high values of Gr/Re, the recirculation zone appears at the center of the tube for

the heating case and near the pipe wall for the cooling case.

Chow et al [24] have analysed the effect of the natural convection and the fluid axial
conduction on the fully developed laminar flow in a vertical channel subjected to constant
wall temperature. The temperature profile at the inlet of the channel is assumed constant.
They treated two cases. heating and cooling. Their results indicate that in the heating case,
the heat flux and the Nusselt number increase with the Grashof number. On the contrary, in

the cooling case these last two magnitudes decrease with the increase of Grashof number.

Barletta et al [25] have studied the non-axisymmetric forced and free convection in
vertical circular duct subjected to:
(1) Periodic sinusoida temperature change at the wall, or
(2) Convection from Ambient.
For these two cases they find a critical value of Gr/Re, corresponding to the apparition of the
recirculation zones that depends on the angular frequency q for the first case:
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(Gr/ Re) =32(q+1), and the number of Biot for the second case:

critical

16p ¥ - 1)n+1 l‘:l_:L
- = e u
(GI’/Re)Cntlcal Bi gqa:]_n( 2n- 1)(2n- 1+ Bi )H

Joye [26] performs a comparison of heat transfer in a vertical tube between the
assisted-buoyancy and the opposed-buoyancy cases. He shows that in the case of the
opposed-buoyancy, there is an increase of the heat transfer compared to the case of the

assisted-buoyancy.

Zghal et al [27] studied numerically laminar upward mixed convection flows in a
vertical tube with a uniformly heated zone preceded and followed by adiabatic zones for a
wide range of heating lengths, Reynolds and Richardson numbers. According to the
combination of these parameters, the results show the existence of five regime of flow:
developing with or without flow reversal, developing followed by a fully developed region
both without flow reversal, and developing with flow reversal followed by a fully
developed region with or without flow reversal. The conditions leading to the flow reversal
as well as significant upstream diffusion of heat and momentum have been mapped on the
Peclet-Richardson plan for different lengths of the heated zone.

More lately, Behzadmher et al [28] examined a similar problem of laminar and
turbulent mixed convection, while using the turbulent model k- e for the turbulent regime.
The upward flow of air in a vertical heated tube has been analysed for two values of
Reynolds number (Re=1000, 1500) and for several values of the Grashof number
(Gr£10°). A corrdation for the Nusselt number, valid in laminar and in turbulent regime,
has been elaborated for Gr£ 5.10” and 1000£ Re £1500:

b5 ) Gr 0468 o
Nup = 436%1+— —~
8 750+ 0.24 Reg

Hadjadj and El Kyal [29] studied numerically the effect of two sinusoida
protuberances on natural convection in a vertical concentric annulus. They found that the
presence of protuberances, lead to an increase in the heat transfer rate in the location of the

obstruction along the wall.

El-Shaarawi and Negm [30] have studied numerically the coupling between the wall

conduction and the laminar natural convection in open-ended vertical concentric annuli.
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The effect of the wall-to-fluid thermal conductivity ratio has been investigated and found

to have prominent effects on the steady heat transfer parameters.

Busedra and Soliman [31] have considered the geometry of semicircular duct and
solved the problem of laminar fully developed mixed convection under buoyancy-assisted
and opposed conditions. Their results are presented with a detailed assessment of the
effects of inclination, Reynolds number, Grashof number and the therma boundary

conditions.

Other works about this subject in the steady state regime can be consulted in the
references [32-39].

The effect of axial wall conduction on the steady combined forced and free

convection in vertical pipes or parallel plates has been studied by numerous researchers.

Bernier and Baliga [40] have presented the steady state results of a numerical
investigation of conjugate conduction and laminar mixed convection in vertical cylindrical
pipe for upward flow and uniform wall heat flux. The Prandtl number was fixed a 5, the
Grashof number, based on heat flux, was set at 5000. In their study, two values 1 and 10 of
the Reynolds number are used. The results are presented for four different values of solid-
to-fluid thermal conductivity ratio K (0.5, 5, 50 and 500) and three different values of wall
thickness-to-pipe diameter ratio D (0.01, 0.05 and 0.25). For Re equal to 1, they found that
the effects of axial conduction in the pipe wall are quite pronounced when K and/or D are
high. Furthermore, they found that the upstream axial conduction distorted the parabolic
velocity profile in the upstream adiabatic section to the point that the centreline velocity
was negative at the entrance of the heated section, which established a zone of

recirculation.

A similar survey is achieved by, Heggs et al [41] for opposed mixed convection. In
their study, some parameters have been fixed such: Re=50, Gr=-10000, Pr=7. The ratio
(R/R) between the external (Re) and internal (R) radius of the tube vary between 1.1 and
14. The results are presented for three different values of solid-to-fluid thermal
conductivity ratio K (0.5, 5 and 500). The authors observe that the effect of axial wall
conduction on the mixed convection increases with the increase of the values of these last

ratios.

The effect of wall axial conduction on downward flow with opposed mixed

convection in vertical circular duct have also been examined numerically by, L aPlante and
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Bernier [42]. The results are presented for (Pr=5), for a Reynolds number egual to 1 and
10, and for two vaues of the Richardson number (Ri=5000 and 50). Their study
demonstrates that, under buoyancy effect, and for high values of the solid-to-fluid thermal
conductivity ratio and high pipe thickness-to-diameter ratio, some heat flux quantities, are
redistributed in the upstream adiabatic section situated forward of the beginning of the
recirculation cell. They also show that in some cases the heating effects are felt until 25

diameters upstream of the heated section.

Nasredine et al [43] have studied the effect of the axial wall conduction on the

upward mixed convection.

Ouzzane and Galanis [44] have analyzed numerically the effects of the axial wall
conduction and the non-uniform heat flux condition on the upward mixed convection in an
inclined circular duct. They found that the calculated results for local parameters
(circumferential distribution of the interfacial temperature or axial velocity profile) and for
average variables (circumferentially average values of the Nusselt number and of the
interfacial shear stress) are quite different, especialy for high values of Grashof number.
As a consequence, they found that for Gr=10° Re=500 and Pr=7, the asymptotic average
Nusselt number for a uniform heat flux applied over the entire outer tube surface is 16.47.
The corresponding values for the case of a heat flux applied on the fluid-solid interface is
26.14 for a uniform heat flux over the entire circumference, and 29.71 for a heat flux

applied only on the top half of the interface.

Burch et al [45] performed apioneering study of wall conduction effect on steady

natural convection between vertical parallel plates.

Similar studies were dso performed by, Kim et al [46] and Anand et al [47]. Their
results show that the influence of wall conduction on the heat transfer and flow behaviors
are significant, particularly for the system with higher Grashof number, larger wall-to-fluid

conductivity ratio or thicker wall.

In the transient regime, Mai et al [48-49] have studied the problem of upward
vertical pipe flow with step change in the inlet temperature and velocity. Their results
show a dissymmetry of the velocity and temperature profiles between the positive and
negative step changes.

Nguyen et al [50] have studied the problem of 3D transient laminar mixed

convection flow in vertica tube with negligible thickness under buoyancy effect and time

11
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dependant wall heat flux condition. Their results have shown that the flow seemsto remain
stable and unique for Gr=5.10° and 10°, respectively for opposed and assisted-buoyancy
cases. Beyond this critical Grashof numbers, an extremely slow and rather difficult and
tedious convergence behaviours have been experienced, which are believed to be due to a

possible flow transition.

Barletta and Ross di Shio [51] have studied the fully developed laminar mixed
convection in vertical circular duct subjected to aperiodic sinusoidal temperature change at
the wall. Their results show that there exists resonance frequency such that the velocity, the

friction coefficient and the heat flux reach a maximum.

The unsteady mixed convection heat transfer in a vertical channel was presented by,
Lin et al [52] and Yan [53]. Their results show that the wall heat capacity can have a
profound influence on the unsteady mixed convection flow and thermal characterigtics.
The axial conduction in the fluid and in the pipe wall remains untreated in [52, 53] and

hence its effect is not known.

Lee and Yan [54] have presented a numerical analysis for unsteady mixed convection
heat transfer in a parallel-plate channel or a circular pipe experiencing a sudden change in
ambient temperature with high Péclet number and a relatively thick pipe. So the axial
conduction in both the flow and the pipe wall is negligibly small. Their results show that
the ignorance of wall effect causes a substantial error, especidly in the early transient

period.

Bae et al [55] numerically investigated the enhancement of mixed convection heat in
a multi-block heater arrangement in a channel. For the studied specific case they
demonstrate the possibility of resonant heat transfer augmentation by thermal modulation.
The resonance frequency depends on the heater block geometry and the spacing between

neighbouring blocks.

Cheng et al [56] conduct their numerical study on the criterion of apparition of the
recirculation zones in the case of assisted mixed convection between vertical parallel
plates. Special atention is devoted to the following sets of thermal boundary conditions
imposed on the two opposed duct walls:

Uniform heat flux Q; at Y=1 -Uniform heat flux Q, at Y=0 with Q;> Q. or Q1= Q..
Uniform heat flux Q; at Y=1 -Uniform temperature T at Y=0.
Uniform temperature T; at Y=1 -Uniform temperature T, at Y=0 with T1> T».

12
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In the first situation, two cases have been examined: symmetrical heating ry, =Q,/Q, =1
and asymmetrical heating ry, =Q,/Q, <1. For the symmetrical heating case, the condition
for the onset of the flow reversal is Gr/Re<3,2.10"%, while of the case where r,, <1, the

recirculation zones appear for large values of the ratio Gr/ Re. Besdes, the authors

presented a diagram with the recirculation zones in the r, and Re/ Gr coordinates in
which one observes that for ry >0.053, the velocity profile include two points of
inflection and for 0 <r, <0.053, it includes one of it only.

In the second situation Q, - T,, the conditions for the onset of the flow reversal have been

defined asfollows:

gd_U ue~d—U l1'3O.Whatisequivalenttow£££ﬁ.
gdY |- HEAY |- 3 dX 2

In the third situation T, - T,, the conditions for the onset of the flow reversal have been

2 1 Pt e It =T2-To

dX 2 T-T

defined asfollows: £

In the same geometry, Hamadah and Wirtz [57] have conducted a similar analysis
for a downward opposed mixed convection flow and for the same boundary conditions.
They define the criterion for the onset of the reversal flow, respectively for the second and

the third case, as follows:

asro 288 aro
Lo - 200 @10 gy
eRegy, 1-1 eRegy,

For the first case, they found that criterion for the onset of the reversal flow depends on the
values of theratio ry, =Q,/Q,.

In the study of unsteady forced convection channel flow, Abboudi et al [58], Bilir
and Ates [59] and Faghri and Sparrow [60] found that both heat conduction in the wall and
wall heat capacity play an important role in the case of transient conjugated heat transfer.

As can be shown from the previous literature review the effect of wall conduction on
the characteristics of purely free or mixed convection channel flows at the steady state
have received more attention, contrary to the case of transient mixed convection channel

flows.
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1.2 Summarized of theliteraturereview

The first numerical studies on the mixed convection stayed limited to the fully
developed flows. The arrival of the computers made possible the resolution of the

simultaneous development of the thermal and hydrodynamical boundary layers.

Several cases of mixed convection have been solved numerically with parabolic
algorithms by using the boundary layer approximations. However, when the axial
conduction becomes important or when the flow is reversed, an dliptic agorithm is
required to solve the problem of mixed convection. In the case where no instability appears
in the flow, the existing results are in agreement on the fact that the mixed convection
increases the heat transfer for assisted mixed convection (upward with heating or
downward with cooling), while for opposed mixed convection (downward with heating or

upward with cooling) the heat transfer is reduced.

Several experimenta studies show that the apparition of instabilities in the flow
coincides with the apparition of an inflection point in the axial velocity profile and can
really occur for Reynolds numbers below 2300, especially for adownward flow. However,
for low Reynolds numbers and for a relatively short heating section, stable and symmetric

recirculation cells have been observed experimentally for laminar flow.

Although it is generally accepted that, for the forced convection flows the axial
conduction becomes only important when the Péclet number is lower than 100. For the

mixed convection case, no similar rule has been established.

1.3 Concluson

Through this literature review it can be concluded that the most part of works treated
this problem in the steady state, while in the transient state the available few works neglect
the coupling between the pipe wall and the fluid flow. The lack of information on transient
conjugated laminar mixed convection motivates the present work, which represents an
extension of the steady state cases studied before by different authors and the continuation
of our investigations [61-63, 74].

1.4 Objective

The main objective of the present work is to analyze numerically the effects of wall
and fluid axial conduction, physical and geometrical properties and heat capacity in the

14
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pipe wall on the transient downward mixed convection in a circular duct experiencing a
sudden change of the applied heat flux on the outside surface of a central zone preceded
and followed by adiabatic zones.

15
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Chapter 2
Mathematical modelling

2. 1 Introduction

As it has been mentioned in the previous chapter, the present study treats the
transient mixed convection problem. One studies the conjugated heat transfer in a vertical
duct submitted to a uniform heat flux and in which one recovers a downward transient

mixed convection flow.

2. 2 Problem formulation and boundary conditions

The problem consists of a smultaneously developing conjugated downward flow
inside a vertical tube with a uniformly heated section preceded and followed by adiabatic
sections. A schematic drawing of the problem under consideration is presented in Figure
3.1a Onewill first of al note that the origin of the system of axesis situated at the entry of
the heated section (x=0) on the symmetry axis of the tube (h=0). Upstream and
downstream adiabatic sections have been added to the heated section in order to permit the
study of: (1) axia diffusion of quantity of movement and (2) axial fluid and wall heat
conduction. The governing equations are: the mass conservation equation, the Navier-
Stockes equations and the equation of energy in the fluid and in the pipe wall. In view of
the tubular geometry of the domain, these equations will be written in cylindrical
coordinates. Besides, being given the bi-directional nature of the problem, the dliptic
equations should be solved.

16
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2.2.1 Hypothesis

Several hypotheses have been restraint on the above-mentioned system of
equations. On the one hand, these hypotheses permit to avoid a heaviness of the problem,
and on the other hand, they simplify the application of the boundary conditions while,
keeping a good physical representation of the problem. These hypotheses are:

1. The flow and hesat transfer are axisymmetric and two-dimensional (none azimuthal
variation).
2. Thethermal radiation is negligible.

. Theflow is assumed to be incompressible, laminar and transient.

3
4. The viscous dissipation and the pressure force work are negligible.
5

. The physica properties of the fluid(C,, m k;, r andb) and of the wall

(C,, k, and r) are constant and estimated at the fluid temperature at the entry of the tube.

However, the density varies linearly with the temperature in the term representing the body
forces in the momentum equation according to the axis Z (Boussinesq approximation).
Thus, r isreplaced by the expression r {1- b(T - T,)}.

6. Thefluid is Newtonien.

7. The fluid enters in the upstream section with a uniform temperature and a fully
developed velocity profile.

8. The upstream and downstream sections, including the extremities of the tube, are
perfectly isolated.

9. Initidly({t =0), the whole systems, including the flowing fluid and the duct wall are at
the same uniform temperatureT, . The velocity of the flowing fluid is assumed parabolic

and the applied heat flux at the outer surface of the central section Qis zero. Att >0, the

heat flux applied at the outer surface of the central section is suddenly raised to a new
valueQ > 0 and maintained at thislevel thereafter.

10. At the exit of the duct, the adiabatic downstream section is considered long enough to
permit an axial invariance of the velocity components and of the axial diffusive thermal

flux, and a preponderance of the convective contribution over to the diffusive one.

The hypotheses 1) and 2) merit some reflections. As it has been mentioned in chapter
1, the opposed mixed convection flows tend to become asymmetric under some conditions.

Thus, for arelatively high values of the ratio Gr/Re’ or Gr / Re, the main flow arranges
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itself uncertainly on one hand of the tube, whereasiif the ratio Gr/Re? or Gr / Re israised
enough, one observes a recirculation cell on the other side. It seems that the apparition of
this asymmetry is joined to the length of the heated section. Thus, Senécal [65] have
observed experimentally this asymmetry for aratio L, /D =54 and for Gr/Re* ratios of

the order of those used in the present study. On the other hand, the experimental studies of
Morton et al [21] show a nearly perfect symmetry of the flow for L, /D =0.85. Theratio

L,/Dused in the present study is of 10. This value is located between the geometry of

Senécal and the one of Morton et al. For such ratio, one can affirm with certainty that the
flow will stay symmetrical.

As for the hypothesis of a negligible thermal radiance, it carries to controversy
when one uses a gas as fluid coolant. The presented farther results are for Pr=5,
representing a fluid whose properties are typically similar to those of water. For this case,
the coefficients of extinction are relatively high for the wavelengths corresponding to the
infrared radiance (Siegel and Howel [66]). Consequently, the liquid being in contact with
the wall immediately absorbs the thermal radiation given out by the wall.

2.2.2 Governing equations

With reference to the nomenclature presented in Fig. 1a, the governing equations and
boundary conditions for the transient conjugated heat conduction and laminar mixed

convection are presented as follows:

Conservation of mass:

19Crv) , fu 2 1)
r qr Iz
Conservation of momentum:
W, WMo NV T, mieive mv, T
r0(1] +V‘|]r ) o + e gr e mﬁ (2.2
fu ‘Hp JURI ‘Huo Tu
vy ™ T-T &= 2.3
o(.”,[’LV‘”r U ) P9 - Bpod( )- r‘ﬂre ‘Hrg m@ (2.3)
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Conservation of energy in thefluid:

. k . 2-
rOCp§£+v£+u£2:—fla?£2+k g (2.4)
et 9r zg r Tre rg 1z
Conservation of energy in the pipewall:
ATo_kp TeeTTo, , 17T
r \CpC——+=——cfr—=+kp— 2.5
PPE Yty & g P2 (23)
2.2.3 Initial and boundary conditions
2.2.3.1 Initial conditions
t =0: ur)=2v(t- (r/R)?) v=0 T=0 (2.6)
2.2.3.2 Boundary conditions
t T0O:
- Inlet of theduct: x =- L
- 20 |, = -
O£r< u(r)=2vee- (r/ * v=0 T=T, 2.7
R (r)=2v- (r/R)"9 v 0 (2.74)
T
RErER+R u=0 v=0 EZO (2. 7b)
- Upstream and downstream sections. - L, <z<0 and L, <z<Lj+Lq
T
r=0 E:O v=0 ﬂ_f:O (283)
I r
r:R u=0 v=0 (28b)
r
-Heated section: O£ z£ Ly,
T
- W_g yveo M _, (2.98)
fir fir
r:R u =0 Vik =0 (29b)
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r=R+Rg | ﬂﬂTrW (2.90)

- Outlet of theduct: z= L}, + Ly

0E£r <R %:o %:o %:o (2.108)
REFER+R, u=0 v=0 %:o (2.100)

2.2.4 Adimensionalization

The governing equations as well as the boundary conditions presented in the previous

section were nondimensionalized using the following dimensionless variables:

=4 V=Y op=l =2 (211d)
\Y \Y D D
* Ly o _Lh x_Ld 2.11b
=5 bth=5 d=7 (2.11b)
T- TO p- rOgZ _
= Y P=— Y~ D=2 211c
9=307 ke F V2 ( R) (2.11¢)
Where V isthe average axial velocity at the entrance of the duct.
2.2.5 Dimensionless gover ning equations
Conservation of mass:
1%y ) u _g 2.12)
h fh X
Conservation of momentum:
* e Py 2 * l:l
RIS AN A 3 | ﬂ_g_v_2+ﬂvzu (2.13)
ft " fh X  fh Rehfh& fh g h? I’ .
* . * . * é *  ax 2, * l:l
Tu +v Tu +U o __ Grzq-E+iAll§ﬂig+ﬂ uzlj (2.14)
t  fh  x R Tx ReghTh¥ fh 5 X2 §
Conservation of energy in thefluid:
Ta,y79,, fa_1¢172M9, ﬂq” (2.15)

ft Th X Peghth& Thy x°
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Conservation of energy in the pipewall:

Ja _ A& 1299, Tql

= 2.16
it PeghTh& Thy Tx°4 (216)
2.2.6 Dimensionlessinitial and boundary conditions
2.2.6.1 Initial conditions:
t =0 uh)=21- (1)?; v =0;q=0 (2.17)
2.2.6. 2 Boundary conditions:
- Inlet of theduct: x =- L
0£h <% u'(h)=21- ()2 v =0: q =0 (2.184)
lenglip w=0;v=0: Moy (2.18b)
2 2 x
- Upstream- L, <x <0, and downstream sectionsL,, <x <L, + L
h=0 W 0. v z0: M _g (2.199)
Th Th
1 * *
h:E u =0; v =0 (2.19b)
1
h==+D Ja-g 2.19c
> 1h ( )
- Heated section: 0£x £
h=0 U _o. v =0 Mg (2.208)
Th Th
1 " «
h:E u =0; v =0 (2.20b)
1 fiq
h==+D —~ =1 2.20c
> T ( )

- Outlet of theduct: x = L, + L,

RIS AN C T (2.21a)

O£h <E =0,
2 X X x
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%£h£%+D u =0; v*:O;h:O (2.21b)

Based on this nondimensionalization, the parameters governing the transient
conjugated mixed convection are:

Re= Vb (Reynolds number)
n
gbQD*
Grg = > (Grashof number based on the heat flux)
n kf

r OVDCp ,
Pe=Re.Pr = B (Péclet number)
f

K= P (wall-to-fluid conductivity ratio)
f
D= % = dB (pipe thickness to diameter ratio)
A= (wall-to-fluid diffusivity ratio)
a
f
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Chapter 3

Numerical resolution

3.1 Introduction

In this chapter we present the methodology of resolution of the dimensionless system
of eguations presented in the chapter 2 and the grid points distributions in both axial and

radia directions.

Considering the transient and the non-linear character of this system of equations as
well as the high coupling between the gravity and the advection terms, the solution of the

prescribed system of equationsis exclusively numerical.

In addition to the finite volumes method adopted in the setting of this work, the finite
differences and the finite elements methods are frequently used in the numerical
simulations of fluid mechanic and heat transfer problems. In each of these numerical
methods, one proceeds by the substitution of the differential equations of motion by a
system of algebraic equations. These algebraic equations describe the same modeling
physical phenomena by the original differential equations but at certain discrete number of
points named nodes.

The finite volumes method, developed at the origin by Patankar and Spalding [67],
has experienced an important success during the years 1980 due to many advantages that it

offers, such as;
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The differences eguations have a conservative property. This means that the extension
of the conservation principle, written under a discretized form for a typical finite
volume, is verified for the whole numerical domain.

Its ability, its numerical robustness and its formalism very close to the physical reality

(rate of heat flux and quantity of movement).

As introduced by Patankar [64], the finite volumes method consigts in dividing the
domain of computation in a finite number of volumes where each volume surrounds a
node. The terms of the modeling differential equations are integrated on every control
volume by using a suitable approximation scheme. The algebraic equations produced with
this manner express the conservation principle for afinite control volume in the same way

that the differential equations express it for an infinitesimal control volume.

3.2 Discretization of the physical domain
This section presents the discretization of the solution domain comprised between

O£h £05+D and - LL EXE I_*h + I_*d. This domain is two-dimensional according to h
and x , what presupposes that the angular component of the control volume is equal to one
radian. The schematic of the system, including the coordinates and the representation of

the grid distribution in the duct is sketched, respectively in Figures 3.1aand 3.1b.

The grid points were arranged according to the Type-B practice of Patankar [64],
with control volume faces placed at the wall-fluid interface (h =05) and at the

discontinuities in the thermal boundary conditions (x =0and x = Ly, ).

The problem of interest was solved as if it were a fluid flow problem throughout the
entire calculation domain (O£h £0.5+D). In the solid region (0.5<h £0.5+D),

following the recommendation of Patankar [64], the viscosty was set to a very large

value, resulting in zero velocities in that region.

To obtain enhanced accuracy, grids were chosen to be non-uniform both in the axial
and radial directions (based one a geometric series progression) to account to uneven
variations of velocity and temperature at the wall-fluid interface, at the inlet of the duct and
at the interfaces between the heated section and its downstream and upstream sections. In

the pipe wall, the grid distributions according to the radia direction are chosen uniform.
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Parabolic inlet
velocity profile

Upstream
section Ly
(adiabatic)

5

Downstream
section Ly
(adiabatic)

/D

(@ (b)
Figure 3.1: (@) Schematic diagram of the flow and the geometrical configuration
(b) Representation of the grid distribution in the fluid and in the pipe wall

The Figure 3.2 illustrates the main control volume (DV =hp.Dh.Dx ) in which the
geometric center is associated to the node P. This control volume is delimited by the faces
n, s, e and w, corresponding respectively to the common sides of the control volumes
belonging to the neighboring nodes N, S, E and W. In this numerical method, the scalar
magnitudes (pressure and temperature) are calculated at the node P, while the vectoria
magnitudes (velocities) are calculated at the points that lie on the faces of the control
volume. Thus, the axial and radial velocities, are respectively calculated at the faces which

arenormal to x and h directions, as can be shown in Figure 3.2.
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It is noticed that, with respect to the main grid points, the axial velocity locations are
staggered only in the x -direction. In other words, the location of the axial velocity lies on
the x -direction link joining two adjacent main grid points. Similarly, the radial velocity
locations are staggered only in the h -direction.

An important advantage of the staggered grid is that the pressure difference between

two adjacent grid points becomes the natura driving force for the velocity component

located between these grid points, contrary to the case of the non-staggered grid points.

Dh
Fig. 3.2 Typical control volume
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Chapter 3 Numerical resolution

3.2.1 Radial grid-point distributions

The grid distributions according to the radial direction are shown in Figure 3.3. The i
points are centered in the Dh(i), who are the measurements of the finite volumes

according to h direction.

h(l) he(? h(2) he(il-3) he(il-2) he(il-1)
‘Dh(Z)r ) Dh(3) ] )h(i+i Dh(|I2 ‘Dh( il-1)
[ : ®
dh(1) dh(2) dh(i-1) | dh() dh(il-2)| dh(il-1
<+

hg(®) hs(2) hei-1)  hyli)  hyi+1) e hy(i1-2) hg(il-1) hyfil
Fluid region Pipewall region
(0OEh £0.5) (0.5<h £0.5+D)

Figure 3.3: Radial distributions of the grid-point (O£h £ 0.5+ D)

3.2.2 Axial grid-point digtributions

The grid distributions according to the axial direction are shown in Figure 3.4aDb,
respectively for the upstream and the heated sections (Figure 44d), and for the downstream

section (Figure 3.4b). For each figure, the j points are centered in the Dx (), who are the

measurements of the finite volumes according to x direction.

xc(])xp(2)>§c(3) XC(]|2 xc(jl-1)
DX(2)Dx (3) Dx (j+1) DX (1-2) Dx (jI-1)
&-—0—O @ @ @ o—O 06 0°

» ¢ ¢ ¢

dx (1) dx (R) ‘dx (j-l)' dx (j) dx (]I£ ;jx Zj I-1)

%(1) Xp(2) %,(3) %0-1)  %0) %(+1) %o(il-2)x5(11-1) Xo(i1)

Figure 3.4a Axial distributions of the grid-point in the upstream (O£ x < L, ) and

heated(L, £x £ L, + L}, ) sections.
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XC 1)3xc(2)x0(3) xc(jl-3) xc(jl-2)  xc(jl-1)
Dx 21Dx(32 ) Dx(j+1) R ; Dx(jl-2) qu (jI-1)‘
®
dx(j-1) dx(j) dx(jl-1)
% (D) %R %) %(-1) %o(0) %(+1) %(1-1) (i)

Figure 3.4b: Axial distribution of the grid-point in the downstream section
(Ly+L, <x£L,+L,+Ly)

3.3 Conservative form of the conservation equations

The dimensionless system of equations (2-12)-(2-16), described in chapter 2, can be

written in dimensionless loca and conservative form, asfollows:

‘ﬂf 1 é1 Mo T af au
- I Ly et 2 3.1

wheref , G, e and S, for each equation, are given as follow:

Governing equations f I; e S

Mass 1 0 1 0

Axial momentum equation u 1/Re 1 - (Gr/Re?)q - TP/fx
Radial momentum equation V. 1/Re 1 -fP/fh-V /(h?Re)
Energy equation in the fluid q 1/ Pe 1 0

Energy equation in the pipe wall g Alpe  10° 0

Table 3.1 Expressions of the variables f , coefficients of diffusionr; , e and the source

termsS used in the conservative equations.
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3.4 Spatial and temporal discretization schemes
3.4.1 Discretization scheme of thetransient terms
Within the interval time Dt , the integration of the transient terms, over the typical

control volume (Figure 2) is obtained according to a progressive differences scheme of the

first order. For example, when the variable f =q the integration of the transient term

(integration over the non-staggered control volume Figure 2) is calculated as follows:

en t +Dt i i .
@ (0 g NThaxit :gtpmt - f e Dhp Dxp (3.2)
WS t

Where Dhp =hg- hy,, DXxp =X Xg and ftp represents the dependent variable a the
instant t that precedes the instant t + Dt for which the variable fthrDt is unknown. One

admitsthat f at the point P (:ftp) is the representation of f for the whole typical control
volume at the instantt .

For each variable f (q, u and Vv ), the other terms of the discretization equation

are evaluated at the instantt + Dt , what corresponds to the implicit scheme. Indeed,
because of the non-linearity of the Navier-Stockes equations, the used scheme is in fact

semi implicit.

3.4.2 Discretization schemes of the spatial terms

For the spatial discretization, one uses the centered differences scheme of the second
order, known by the appellation CDS (formulation with two points). Thus, the value of the
variable f on acommon face of two finite adjacent volumes is the half of the nodal values.

Also, the spatial derivative of the variable f on a common face is the difference of the

nodal variable values upstream and downstream of the interface divided by the distance
between the two corresponding nodal, as can be shown in the examples below (Egs.3.3 and
3.4) and Figures 3.5a-b.

fn:fp+fN fS:fp+fs E‘ :fN—fp E‘ :fp—fs (3.3)
2 2 ixIn dxp, xIs dxg

fe:fp+fE fW:fp+fW E :fE—fp E :fp—fW (3.4)
2 2 Mhie dhe Thiw Thy

29



Numerical resolution

Chapter 3

dXs an >

v
A S
v

U') .A

> <
<

Figure 3.5a Typical grid points for the calculation of f at the interface (s or n)

th dhe

A,
A

10 @
m

A\

Z ¢t

Figure 3.5b: Typical grid points for the calculation of f at the interface (w or €)

Wheat follows is a demonstration of the precision of the scheme CDS. Referring to the
Figures 3.5a and 3.5b, and while using the development in Taylor series of the function f ,

one shows that:
2 3
RN G G i (3.5)
ﬂX n 2 ﬂXZ n 6 ﬂXB n
2 3
fN:fn+IE +|—ﬁ +|—ﬁ ...... (3.6)
ﬂX n 2 ﬂXZ n 6 ﬂXB n
If we subtract Eq. (3. 6) from Eq. (3. 5), we have:
it 13 0%
+— i (3.7)

fn-Tp=21—
N-TP=2le 3 13

By substitution of the value of | = dx,, / 2, one obtains:
(3.8)

M Infp 19| 2
xIin Xn 24ﬂX3 n

From equation (3. 8), it is clear that the truncate error is of order of Dx 2.
Similar expressions can be obtained by the same development for the others

derivative of f at the interfacess, e, w. For example, the derivative of f a the interface

e isgiven by the following expression:
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M) fefe LF| 2

9
thle ™ fhe 24qy3in (3.9

3.5 Discretization of the conservative equations

3.5.1 Discretization of the conser vative equation of energy

The terms of the equation of conservation of energy are integrated over the typical
control volume ( DVyypq,e =hpDh .Dx ) (Figure 2), between theinstantst andt +Dt .

t+Dt ne 1.[ t+Dt ne 1 1.[ t+Dt ne 1.[
od‘)ﬂ—hdhdxdt+e omhﬂh(huq)hdhdxdt+e om—(vq)hdhdxdt
t sw t sw t sw

t+Dt ne ,
_ L a1 9 ‘ITQO 1 &lq
= dh .dx.dt 3.10
@ PSOM h 5 ﬂx%ﬂx%1 g (510

An appropriate rearrangement of the resulting terms from thisintegral givesthe

following general discretized form:

t
t+Dt t+Dt _ t+Dt t +Dt t+Dt t +Dt t+Dt t +Dt t +Dt \t +Dt
Qp — = an Qs e~ *taw Ow  thy (3.10a)
With:
a.tp+Dt =3 t+Dt +ats+m t+m +atN+m +a-tp: éa:“;u +a.tp (310b)
nb=N,S,EW

Where the coefficients ap, ag, ay, ay, ag ae evaluated according to the hybrid

scheme of Patankar [64]. This scheme is based on the absolute value of the local Péclet
number associated to the controle volume. The local Péclet number (Pe) is defined as the
ratio of the convection to the diffusion magnitudes (Pe = F/D). The hybrid differentiation

consists in using the following combination for the calculation of the above coefficients:

_ é Fe .U I:\N U
aF =maxazx Fe, De- —, O, maxs D 3.11
E g Fer Dem 7 Oy ay = g FW W - H (3.11)
Fn A0 Fs U
ay = g Fn, Dn- =5 OEI ag = é Fs» Ds- = OEI (3.12)

The significance of the hybrid scheme can be understood by observing that (1) it is
identical with central-difference scheme for the Péclet number range- 2 £ Pe£ 2, and (2)
outside this range it reduces to the upwind scheme in which the diffusion has been set
equal to zero. It should be noted that the hybrid scheme is in fact a less expensive
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approximation in time of calculation of the exponential scheme [64], developed to assure
an exact solution to a one-dimensional problem of convection/diffusion in the steady state.
Some superior order schemes are recognized generally more precise, but more expensive
and lessrobust [68-71].

It should also be noted that this formulation is valid for any arbitrary location of the

interfaces between the grid points and is not limited to midway interfaces.

Furthermore, to handle the abrupt change of the conductivity at the wall-fluid interface,
and consequently to obtain, a good representation for the interfacial heat flux, the

conductivity at the wall-fluid interface is obtained by way of the harmonic mean of k, and

k, [64].
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3.5.2 Discretization of the conser vative momentum equations
3.5.2.1 Axial direction

The terms of the conservation equation of the axial momentum are integrated on the

staggered control volume (DVSu :hPU.Dh.dx)in the axial direction, Figure 3. 6, between

the instants t and t + Dt (the superscript * of the axial velocity has been voluntarily

omitted).

> h
Figure 3.6: Staggered internal control volume for the axial velocity

t +Dt nueu t +Dt nueu t +Dt nueu

d 00 %hdh.dx.dt e o0 S thu u nohddt e 3 oY 'nlx(v u nch dx dt

O
t suwu t suwu t suwu

t +Dt nueu t +Dt nueu
=-(Gr/Re?) O oodhdndxdt - & oo (TP/Txhdh dx.dt +
t suwu t suwu
t+Dt nueu .

L 226l T e, T U

A xR dax. d

Q@ 0 00 g & T g‘ﬂx' dh .dx dt (3.13)
t suwu

An appropriate rearrangement of the resulting terms from this integral gives the

following general discretized form:
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t+D0, E+DN _ 4Dt 4Dt At 4D, £ 4D, 4Dt 4Dt At 4Dt 4D
ap, Up, =y, Uy, *ag Ug  +ag, Ug, +ay Uy -

2\ ot _(pt . pt
(Gr/Re)g! DV_ - (P - P)Dv_ (3.139)
With:
i =gl D gl gt gD gt = 2 atn;Dt +ak, (3.13b)

nb = Nu, Su, Eu,Wu

Where (P't\I - P;).DVSJ is the appropriate pressure force in the axial direction.

3.5.2.2 Radial direction

The terms of the conservation equation of the radial momentum are integrated over the

staggered control volume(DVy, :hpv.dh.Dx), Figure 3.7, between the instants t and

t + Dt (the superscript * of the radia velocity has been voluntarily omitted)

" h
Figure 3.7: Staggered internal control volume for the radial velocity.

t +Dt nvev ﬂV t +Dt nvev 1 1.[ t +Dt nvev 1.[
0O 00 —hdhdxdt +e ¢ OO —o—(h uv hdhdxdt +e ¢ OO) (v v hdh.dx dt
t AT ﬂt t svw h ﬂh t AT ﬂx

O t+Dt nvev

dhdxdt - ¢ OO (TP/ Thhdh dx dt +

Reg

t +Dt nvev F> <)
NN N \

=- 0 00
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t +Dt nvev

\\\6111 ‘ﬂvo 1 &v o

PN

dh dx dt (3.14)
O0G me 5 ﬂx%ﬂxm

An appropriate rearrangement of the resulting terms from this integral gives the

following general discretized form:
atp:Dtth:Dt _aNVDtVt+Dt +Dt\,t37Dt a.E+DtVt+Dt t+Dt +Dt +h/ (P; _ P;)-DVSI

(3.148)
With:

4D _ At #+DU | AUHDU | At+DU Lt 4D ot 4D ot
py  Tayy,  tdg T tag, tay tapy = aa ™ +ap, (3.14b)
nb = Nv, Sv, Ev,W

Where (P; - P;).DVSI is the appropriate pressure force in the radial direction.

Let's note, that the coeff|C|entsaPu, 2y A’ g’ Bsy’ and
a5, e A Ay’ 3, respectively for the axial and the radial momentum equations

are obtained by the same manner as those of the energy equation.

The viscogty at the wall-fluid interface is obtained by way of the harmonic mean of
the fluid and solid viscosities. In the fluid, the real viscosity is used. In the wall region, a

very big value (1030) of viscosity is used, resulting in zero velocities in that region.

3.6 Equation of pressure
3.6.1 Pressure and velocities corrections

The coupling of the discretized equations of conservation is at the origin of the
complexity of their resolution. In addition to the velocities and the temperature appearing
in the momentum and the energy equations, one finds the unknown pressure field that
intervenes in the momentum equations. This paragraph presents the development of the
equations that leads to the discretized equation of pressure. The used development is based
on the SIMPLE algorithm developed by Patankar [64]. The pressure field is unknown; an
initial field is necessary to start the iterative process of solution. This p* field, when
applied to the equations (3.13a) and (3.144) leads to values of u* and v* that don't satisfy
exactly the conservation equation of mass. One considers that the exact pressure is given
by:
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p=p*+p¢ (3.15)
Where p¢is the pressure correction.

In the same way, the exact velocities are:

u=u*+uc¢ (3.16)
and
V=V +v (317)

Where u¢and v¢are the corresponding velocity corrections.
By substitution of the values of u, v and p by u*, v* and p* in the equation (3. 13a) and (3.

144), one obtains:

&t +Dt t +Dt

t +Dt _ 9 ) t *t * t
= +b + - . .
ap, U Pu a a U bu (PP PN )DVSu (3.18)
nb = Nu, Su, Eu,Wu
and
t +Dt t +Dt
¢ +Dt ¥ _ 9 t 4+ Dt ¥ t * t * t
\Y; = a \Y; +b +(P "' - P ")DV 3.19
P a nb nb Vv (P E ) Sv ( )

nb = Nv, Sv, Ev,W

If we subtract Eq. (3.18) from Eqg. (3.13a) and Eq. (3.19) from Eq. (3.14a), we have:

it +Dt Dt

anMup = & a;;D‘uﬁn; +(P: - P: )V (3.20)
nb = Nu, Su, Eu,Wu

and

A ° tapr, R 't 't

ap, Vv = a a "= Vb +(PP - PE ).DVSI (3.21)

nb = Nv, Sv, Ev,W

. . o t +D it +Dt o .t +Dt it +Dt .
By disregarding theterms, d ay, ~Unp and day, Vo  Of theright

member of equations (3. 20) and (3. 21), one obtains:
t+Dt

a'Pupy = (PPt - Pl\tI )V (3.22)
t +Dt . .
aiPvpy = (PPt - PEt ) DV, (3.23)
or
it + Dt lt lt
up  =d, (P - P)) (3.24)
t + Dt lt lt
Ve =d, (P - PD) (3.25)
where:

36



Chapter 3 Numerical resolution

_ Dvg,
dpu =5 (3.26)
apy
and
__DVs,
AR (327)
apy

An extensive discussion of these actions can be found in [64]. Equations (3.24) and

(3.25) would be called the vel ocity-correction formulas, who can be aso written as:

tepp _ KD t ot

G =un edy (P - PO) (3.28)
D «t + Dt lt [

VP =V ad (P - P‘N ) (3.29)

+ Dt

t Dt
This shows how the garted vel ocitiesu* PU

*t + .
and v p, areto becorrected in response to

the pressure corrections to produce, respectively uk,” ™ and v

3.6.2 Pressure-correction equation

The continuity equation is:

lﬂ(hv)+mzo

h o (3.30)

We shall integrate this equation over the typical control volume, shown previously in

Figure 3.2, asfollows:

t+Dt ne 1ﬂ(hv) t+Dt ne T[u
t sSw t sw

With an appropriate rearrangement of the resulting terms from this integral, the
integrated form of this equation becomes:
heVa™™ - hy, "™ )Dx Dt +0.5(uU ™ - u*™).h2-h2)Dt =0 (3.30b)
If now we subgtitute for the two velocity components the expressions given by the
velocity-correction formulas, such as Egs. (3.28)- (3.29), we obtain, after an appropriate

arrangement, the following discretization equation for the pressure pé¢

it +Dt it +Dt it +Dt it +Dt it +Dt
t +Dt t +Dt t +Dt t +Dt t +Dt +bt + Dt (331)

ap " Pp =y PN taAs " Ps tag P tady Pw
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al\*?" =d,hDh Dt (3.314)
as"™ =d h,Dh,Dt (3.31b)
a-"™™ - d,.Dx.Dt (3.31c)
ay ™ =d,.Dx.Dt (3. 30d)
atP+Dt :atN+Dt +atS+Dt +atE+Dt +atN+Dt (3.31¢)
b "™ =(h,u, - haug )DXDt +(u - U, hpDhpDt (3.31f)

Let’s note that if b' *™ is zero; it means that the started velocities satisfy the

continuity equation, and no pressure correction is needed. The term b' *™ thus represents

a “mass source”, which the pressure corrections must annihilate.

The discretized equations for T, u, v and p (3.10, 3.13a, 3.14a and 3.31) represent a
general formulation. This generality in the establishment of these equations will permit us

to use the same resolver for T, u, v and p for every global iteration of the solution process.

3.7 Boundary conditions: discretized equationsfor T, u, vand p

The following paragraphs describe in the order the application of the boundary
conditions for the discretized equations for T, u, v and p. For al cases, the boundary
conditions will be expressed under the same form than the one of the general equation.
3.7.1 Discretized equationsfor T

On the axis of the cylinder (h =0), what correspondsto (i=1, 1 £ j £ JL), we have:

36 - 0. Thediscretized form of this equation is: 92.1)- L J)

=0,0r 0(2,))=0(1,]), what
" D) or 0(2,j)=0(1,]), w

correspondsto ab*™ =al*™ =1, &\ '™ =al"* =al,** =p* * D =0,

For the control volumes adjacent to the outer surface of the pipe wall of the heated
section, the heat flux is introduced in the term b by the discretization of the boundary

o 0 .
condition K‘|‘|§—|h:0_5+D =1, it results a'® =a,™=1, a.™=a"™=a,"™ =0,
n

1
bt *® = —Dh -1).
" (NT-1)
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For the control volumes adjacent to the pipe wall of the adiabatic sections and those
adjacent to the exit of the tube, we have respectively:

altP =gl P =1, gt =gl D =gl P = * Pt =,
and
a™™ =ag™ =1, at™ =al, ™ =a"™ =b' * ™ =0.

At the entry of the tube, in the fluid, the treatment is trivial because the temperatureis

known. In the solid, the treatment is similar to the one of the adiabatic sections.

3.7.2 Discretized equationsfor u

In the case of the discretized equation of axial momentum and for the control
volumes adjacent to the pipe wall, an equation similar to the equation (3.13a) is applied

with ut!™ =0. For the control volumes adjacent to the line of symmetry, the same
Eu J

equation is applied but this time while, ignoring the condition to the node Wu (U™ =0).

In this case, at every time steps (i.e. at the end of every global iteration), ul;™ is set equal
to ub ™

At the inlet of the duct (Figure 3.8), the equation (3.13a) is applied. In this case,

ug ™ corresponds to the inlet velocity, supposed known.

At the exit of the tube (Figure 3.9), the same equation is also applied but this time while

ignoring the conditions to the node Nu(utN:Dt =0) and at every time steps (i.e. at the end

of every global iteration), ul"™ isset equal to ub™
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Boundary (inlet of the duct)

»
»

h
Figure 3.8 Staggered control volume at the inlet of the duct for the axial velocity

l/— Boundary (outlet of the duct)
UNu/wu

Vne

» h

Figure 3.9: Staggered control volume at the outlet of the duct for the axial velocity
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3.7.3 Discretized equationsfor v
The same principle is applied for the equation of radial momentum. At the line of

symmetry (h=0), (Figure 3.10), the same equation is applied with ;™ =0. At the outside

surface of the duct (h=0.5+D) (Figure 3.11), the equation (3.14a) is applied with

ver™ =0. At the entry and the exit of the duct, the same equation is applied while putting

vy, =0a the entry and while omitting vi;™ =0 at the exit.

Boundary(h=0)

i U

vV

\ /
VEV

Figure 3.10: Staggered control volume at the symmetry line (h=0) for the radia velocity

Boundary(h=0.5+D)

]

Figure 3.11: Staggered control volume at the outside surface of the tube (h=0.5+D) for the
radia velocity
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3.7.4 Discretized equationsfor p
Finally, the boundary conditions for the discretized equation of pressure are

established, as follows. The equation (3. 31) is applied by considering: at™™ =0for the
control volumes situated in the fluid along the wall-fluid interface (h=0.5); a,™ =0 a

the line of symmetry (h=0); al,"™ =0 at the exit of the tube and a;*™ =0 at the inlet of

the duct. In the solid region, a zero value is assigned to the pressure. The calculated
pressure at every point in the fluid is normalized by subtracting form it the value of the

pressure of the control volume situated at the entry and adjacent to the line of symmetry.

3. 8 Method of solution

Due to the fact that the basic equations are non-linear and highly coupled, an iterative
algorithm based on the SIMPLE method [50] is used to solve these equations. The
establishment of the iterative solution is as follows:

1. Start with a guessed pressurefieldsp at thetimet
2. Changethetime t=t+Dt

3. Solve the momentum equations, such as (3.18)- (3.19), to obtainu and v .

4. Solvethe p' equation (3.31)

5. Caculate p from equation (3.15) by adding p' to p*.

6. Caculate u and v from their starred values using the velocity-correction formulas
(3.28)- (3.29).
7. Solve the discretized equation for the equation of energy (3-10a) and deduct the

temperature g.

8. Treat the corrected pressure pas a new guessed pressure p*, return to step 2, and

repeat the whole procedure until the steady state regime is obtained.
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3.9 Underrelaxation and conver gence
3.9.1 Underrelaxation

In the iterative solution of the algebraic equations or in the overall iterative scheme
used for handling non-linearity, it is often desirable to slow down the changes, from
iteration to iteration, in the values of the dependant variable. This processis called under-
relaxation. Underrelaxation is a very useful device for nonlinear problems. It is often
employed to avoid divergence in the iterative solution of strongly nonlinear equations.

In the purpose of introducing the under-relaxation, we shall work with the general
discretization equation of the form

al‘p+Dt.rl|ﬂj+Dt — éatp+thllﬂ:J+[x +bt+Dt (332)
Further, ftp will be taken as the value of f pfrom the previous iteration. Equation (3.32)

can be written as:

o t +Dtst +Dt t +Dt
greoe o 88 TfpT  ¥b 3.32a
p
at+Dt
p

If weadd f ][3 to the right-hand side and subtract it, we have

&®s .t +Dt .t +Dt , t +Dt 0

aa f +b X
ftP+Dt :ftp+g P P _ftp: (3.32b)

g at+Dt -

P (%}

Where the contents of the parentheses represent the change in f p produced by the current

iteration. This change can be modified by the introduction of arelaxation factor a, so that

&2y .t +Dtt +Dt & +Dt 0

t+Dt _¢t adp “f b t =

fErt =fb+a¢—P tP+Dt el (3.32¢)
& a o

at+Dt a_t+Dt

P = g D e ) (3.32d)

There are no general rules for choosing the best value of a. The optimum value

depends upon a number of factors, such as the nature of problem, the number of grid
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points, the grid spacing, and the iterative procedure used. In this work, the values of the
used relaxation factors are:

Axial velocity: o =0.5

Radial velocity: ay =0.5

Pressure: ap =0.8

These values of the relaxation factors have been found to be satisfactory in a large

number of fluid-flow computations Patankar [64].

3.9.2 Convergence

The marching in the time is assured by an external loop in which the dependent
variables at the insant t + Dt are affected in those at the instants t . In this work, we are

fixed two criteria of convergence of the numerical code, as follows:

1. Convergence was considered as being achieved when |(f RS YA i‘fj| <10"* where

fi‘fj isu’ or qat every (X, ,h; ) location of the discretized domain at the iteration k.

2. Ore verifies, graphicaly, in some points of the domain that there are not anymore
temporal variations of all variables associated to these points.
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Chapter 4

Numerical results and analyses

4.1 Introduction

This chapter is devoted to the results of the numerical simulation of the transient
conjugated mixed convection in a vertical thick tube. The considered geometry as well as
the boundary conditions and the grid-point distributions have been presented in Figures
3.1aand 3.1b. The dimensionless thickness of the pipe wall is equal toD. A uniform heat
flux, Q is applied at the external surface of the tube on the central section. This section is
located between two adiabatic sections that permit the study of the diffusion in the fluid
and in the pipe wall. The fluid flow is laminar, transient and axisymmetric. Besides, the
fluid penetrates to the top of the tube (inlet) and falls down toward the bottom (exit);

therefore oneisin presence of opposed mixed convection flow case.

Natural convection flow, resulting from the variation of the fluid density inside the
tube, is then superposed to the forced convection flow of Poiseuille type. So, a decrease of
the fluid density in the neighbouring region of the heated pipe wall provokes a
corresponding deceleration of the fluid in that region. One even attends, for a sufficiently
elevated heat flux (or equivalently elevated Gr) to the reversing of the flow close to the
pipe wall, and consequently to the apparition of arecirculation cell. In some cases, the wall
thermal conduction generates an important redistribution of the applied heat flux, what
generates an elongation of this cell upsiream of the heated section. The cell acts like an
insulator in the upstream section and the interfacial heat flux propagates itself upstream of
this cell before being transmitted to the fluid.
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4.2 Preliminary consderations

4. 2.1 Selection of the dimensionless parameters

The foregoing analysis indicates that the heat transfer characteristics in the flow and
in the pipe wall depend on five dimensionless groups, namely: the Prandtl number Pr, the
Richardson number Gr/Re (or Gr and Re), the wall-to-fluid conductivity ratio K,

dimensionless wall thickness D, and the wall-to-fluid diffusivity ratio A.

One recovers the first two parameters in all mixed convection problems. The
second two other parameters are specific to the calculations of the steady or transient
conjugated heat transfer, while the last parameter is specific to the transient conjugated
heat transfer problems. In addition to the already mentioned parameters, the solution of this
problem requires the specification of the length of each of the three sections of the domain:
(L; /D), wherei=u, h, d.

In the transient state regime, a parametric study of all these individua parameters
would have required an enormous set of results and this was not the main goal of this
work. In order to present a reasonable quantity of solutions and to concentrate on the
understanding of the transient conjugate mixed convection heat transfer characterigtics, al
numerical runs were performed for Pr=5, what represents a fluid whose properties are
similar to those of the water. The Grashof number has been fixed at 5.10% and 5.10°. Three
velocities of the flow have been kept, leading to three values of the Reynolds number 1, 10
and 100, qualified of low and high Re. The corresponding Gr/Re’ ratios are 5000 and 50.

In summary, three cases of mixed convection are examined:

Low Re High Re
Gr4=5000 Gr4=5000, 500000
Re=1 Re=10, 100
Gr/Re?=5000 Gr/Re?=50

Pe=5 Pe=5

The dimensionless heated length, L, =10. This length is judged adequate because it

permits to study the development of the flow while, keeping the length of the calculation

domain to an acceptable level.

The first and the third portion of the duct namely respectively: the upstream and the
downstream sections are insulated. Their values were sufficiently long for all cases

considered in thiswork to study:
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(1) Thediffusion of heat by axial conduction,

(2) To ensure that the inlet conditions remain no affected by mixed convection in the
upstream section,

(3) To enaure that the outlet boundary conditions in the fluid region were appropriate, as
can be seen, respectively in Figure 4.1, Figure 4.4, Figure 4.6 and Figure 4.12b for the
hydrodynamic field, and in Figures 4.2a-b for the thermal field. In these figures, one can
note that the corresponding hydrodynamical and thermal fields at the outlet of the duct are
fully developed.

Parameter K is chosen to have the value 10, 50, 100 or 500, and A is assigned to
have the values 0.01, 0.03 or 4. Parameter D is chosen to have the values 0.01, 0.05, 0.15
or 0.25. A typical case for Gr/Re?=5000, K=50, D=0.05 and A=4 is discussed in detail.

These values of the stated parameters were selected as appropriate for problems of
engineering interest and from the range that all the presumed effects of the defined
problem, i.e. two dimensional wall and axial fluid conduction are in a significant level [36,
40, 42, 59].

48 e Steady state N
1 Gr=5.10% Re=1
40 o ---=-Gr=5.10% Re=100 |]

\ Pr =5, D=0.05, K=50
32 \
24 ] \
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:O)

u*(x, h

-40 -30 -20 -10 0 10 20 30 40

Figure4.1 Evolution of the centreline axial velocity at the steady state
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4.2.2 Grid independency

Numerical experiments were made to ensure that the numerical results are grid
independent for Re=100, Gr=5.10°, D=0.05 and K=50. This case has been retained
because of the importance of the two modes of convection and the extent of the heat flux

redistribution in the upstream section.

While beginning with an enough coarse grids and while refining it, the obtained
results have been compared until the refinement doesn't have a noticeable effect anymore
on the solution. One estimates whereas that, solution is grid independent.

Some exploratory simulations demonstrated that, ten (10) nodes in the pipe wall are
sufficient to get the grid independency. Therefore, this number has been adopted in the
pipe wall. It iswhy, in what follows, one only preoccupies of the grid effect in the radial
direction in the fluid.

The grid independency has been verified with the help of four criteria:
-The profile of dimensionless axia velocity, u/V
-The axial distributions of q,, and gy
-The axial redistributions of the friction coefficient ratio ( f.Re)/( f.Re),

-The normalized interfacial heat flux Qui.

Among these criteria, the axial distribution of the friction coefficient ratio and of the
normalized interfacial heat flux proved to be the more severe criteria. For this reason, only

these results are presented.

For different grid arrangements in the axial direction, namely: A(30,16,30),
B(60,30,60), C(90,60,90), D(150,90,120) and E(180,90,120) we present in Figures 4.3a-c,
the axial distribution of the interfacial heat flux at several ingtants of the transient period
including the steady state, and in Figure 4.4, the axial distribution of the friction coefficient
at the steady date.

For each cases A, B, C, D and E, the first, the second and the third value refer respectively,
to the upstream section, the heated and the downstream sections. For these grid
arrangements, the number of nodes in the radial direction is 30 and 10, respectively in the

fluid and in the pipe wall.

One concludes that the increase of the nodes improve the accuracy of the interfacia heat

flux and the friction coefficient ratio, in particular, in the upstream section. In these figures,
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it is obvious that the grid arrangement corresponding to the case D is sufficiently accurate
to describe the heat transfer in the duct.

It may be observed that Q,, presents large extreme values in the upstream section. This

behaviour will be explained in the following paragraphs.

The effect of the number of nodes in the radial direction is presented at the steady
state in Figures 4.5 and 4.6, respectively for the interfacial heat flux and for the friction
coefficient ratio. It may be observed that the curve corresponding to the case C1 is

sufficiently accurate.

Consequently and based on these numerical experiments, all numerical runs were
performed with the case D (150, 90, 120) in the axial direction, and with the case C1(40,
10), inthe radia direction.

1,25 I - T r 1T T 1 1
1,00
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0,50
0,25
s ]
O 0,00
-0,25
] —=— A(30,16,30)
] —e— B(60,30,60)
-0,50 —: —— C(90,60,90) 1
] —4—D(150,90,120) |
-0,75 —o— E(180,90,120) |4
] t =32
B0 e S T B T T —
-8 -4 0 4 8 12 16

Figure 4.3a Influence of the grid distribution in the axial direction on the interfacial heat
flux
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Figure 4.3b Influence of the grid distribution in the axial direction on the interfacial heat
flux
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Figure 4.3c Influence of the grid distribution in the axial direction on the interfacial heat
flux
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Figure 4.6 Influence of the grid distribution in the radial direction on the friction
coefficient ratio

4.2.3 Effect of theinitial time step

Since the size of time increments particularly important at the beginning of the
transient, and t is of order magnitude of the time needed for the inside wall to respond to
the sudden change of the applied heat flux at the outside surface of the heated section. A
comparison was made for severa first time intervals for the case Pr=5, Gr=510°, Re=100,
D=0.05 and K=50. Asshownin Figure4.7 at t = 0.1, it isclear that atime interval of 510"

is sufficiently accurate to describe the flow and heat transfer.

4.2.4Validation

To check the accuracy of the numerical computation results, the interfacial heat flux
and the axial velocity obtained at the steady state by the present developed code, are
compared with the corresponding one of LaPlante [42]. Asone can seein Figures 4.8 and

4.9 the agreement between our results and those of LaPlante s very satisfactory.

In the transent period, the computer model has been successfully validated by
comparing the results obtained by the present developed code with the corresponding

numerical data [50] of the simultaneousy developing mixed convection flow of air inside a
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vertical tube which is submitted to uniform but time-depending wall heat flux, at a specific
axial postion x=19.5, see Table 4.1.

As one can notice, the agreement between our results and those of Nguyen [50] may be

qualified as very good.

In view of these comparisons, we conclude that the model and the computer code

are reliable and can be used to analyse the problem under consideration.
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Figure 4.7 Effect of time steps At on the initial distribution of the interfacial heat flux
at=01.
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Figure 4.9 Validation of the computer code with available results

Table 4.1 Comparison of the radial distributions of the axial velocity u* obtained by the
present code with those in reference [50].
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Gr=0 Gr=10° Gr=3.10° Gr=4.510° Gr=5.10°

r/D Ref | Present Ref | Present | Ref | Present | Ref Present | Ref | Present
[50] | study [50] | study [50] | study [50] study [50 | study

0.0 195 | 193 222 | 224 292 | 293 3.58 3.58 383 |38

0.05 193 | 191 220 | 221 2.87 | 2.88 351 3.51 3.78 | 3.77

0.10 190 | 188 213 | 213 270 | 272 3.30 3.30 351 | 3.52

0.15 182 | 180 200 | 201 249 | 2.50 2.92 2.92 314 | 314

0.20 166 | 1.65 179 | 181 214 | 215 2.46 2.46 259 | 260

0.25 151 | 150 168 |1.68 171 | 1.72 1.86 1.87 193 | 193

0.30 132 | 131 113 | 114 127 | 1.27 1.20 121 119 | 119

0.35 106 | 1.04 0.97 |0.98 0.79 | 0.80 0.59 0.60 054 | 054

0.40 0.73 | 0.72 0.62 | 0.62 0.38 | 0.38 0.13 0.13 0.02 | 0.022

0.45 041 | 0.39 034 |0.35 0.04 | 0.09 |-0.098 |-0.099 |-0.18 |-0.18

0.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.3 Numerical resultsand analysis
4.3.1 Introduction

This section presents the numerical results of the parametric study of the transient
conjugated laminar mixed convection in vertical thick duct. A part of the presented results
was the subject of publications [61-63, 75].

Local Nusselt number, as traditionally considered in the presentation of the
convection heat transfer results is not a convenient tool for the conjugate problems [60],
since it contains three unknowns in its definition. However, local interfacial heat flux gives
more useful information. Therefore, the results are presented by the normalized interfacial
heat flux and, for some cases, by the transient radia distribution of temperatures for
thermal magnitudes and by the friction coefficient ratio ( f.Re)/( f.Re), and the vector

velocities for the dynamical magnitudes.

Even, though calculations were performed from x= -40 to x= 40. It is noted that for

reasons of clearness, most of the results will not be plotted in this rang of x. Recall that

x =0and x =10 corresponds, respectively to the inlet and the exit of the heated section.

Inafirst step, we suggest a brief description of the transient behaviour of the flow in

downward mixed convection. Ast <0, the flow is considered laminar, isothermal and
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dynamically developed (parabolic profile of the axial velocity). Ast 3 0, we applied a

uniform and constant heat flux on the outside surface of the heated section (0£x £10).

With elapsing time, and as the fluid approaches the heated section it undergoes a local
deceleration close to the pipe wall compensated by an increase of the velocity in the centre
of the tube in order to obey the of the mass conservation law. The fluid deceleration in the
near wall region is due to the Archimede's forces. Indeed, because of the heating, it
establishes a difference of density inside the tube. The density of the fluid situated close to
the pipe wall decreases in relation to the one of the flow in the core region. This variation
of density combined with the gravitational field provokes upwards Archimede's forces on

the fluid situated close to the pipe wall.

While approaching the heated section, Archimede's forces increase gradually in relation to
the viscous forces. At agiven axial position and instant of the transient period, the gradient
of the axial velocity on the tube wall vanishes, indicating obviously that the flow reversal
has just been initiated. While heading toward the downstream of this axial postion, a
reversing zone appears in the velocity profile. The thickness of this reversing zone
increases with time and with the increase of the magnitude of Archimede's forces in
relation to the viscous forces.

While continuing towards the downstream and while approaching the end of the heated
section, the reversing zone becomes thins, whatever is the time. This is due to the fact that
the viscous forces take gradualy over on Archimede's forces. The reversing zone tends to
disappear and while approaching of the exit of the tube, the flow becomes fully developed
with parabolic velocity and uniform radia temperature profiles.

Let's note that for low values of Gr/Re’, this cell disappears because Archimede's
forces, in presence, are weak in relation to the viscous forces. Thus, for a given Pr, the
transient extent and the intensity of this cell will be, therefore, function of the ratio Gr/Ré,
and of K andD. Indeed, when the axial wall conduction is important, one attends an
important redistribution of the applied heat flux, what influences the position of the
beginning of this cell.

In summary, in the reversing zone, which is situated close to the pipe wall, the fluid
possesses an ascending movement. This ascending quantity of fluid is extracted from the
central descendant flow, in the region of the end of the reversing zone. When this quantity

of fluid arrives in the region of the beginning of the reversing zone, it loses gradually its
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ascending quantity of movement and it is carried away by the descending central flow.
Then, it establishes a buckle where a given quantity of fluid circulates in closed circuit. It

isthe recirculation cell.

4.3.2 Transient normalized interfacial heat flux Q,

In Figures 10a and 10b, axial distributions of the normalized interfacial heat flux
Qui =Q/Q=K(R /Re)(law/Th) 05 ae given a several times for typical
combination of parameters under consideration.
In this ratioQ is the uniform heat flux applied at the outside surface of the pipe wall
(r=Reg) and Q isdefined asfollow: Qj = Qe (R /Re), Where Qe isthelocal heat flux
transferred to the fluid at the inner surface of the pipe wall (r = R ), given by the relation:

Qnner = k\,\,('ﬂT\,\,/'nr)|r:R . A ratio of unity indicates that the applied heat flux goes directly

to the fluid without any axial wall conduction.

At the early transientt <0.005, where the heat transfer is globally dominated par
radial conduction, one can note that the ratio Q,, increases quickly in the heated section.
With elapsing time, Q,; continues to increase in the heated section with a symmetric
upstream and downstream diffusion, indicating the beginning of the axial wall conduction
effect.

Att =2, one notesthat Q,; presents aweak minimum followed by a weak maximum

in the vicinity of x =0 with a notable corresponding reduction in the heated section before
it decreases rapidly towards zero. One notes also, at this time instant, that the maximum of
Q,; shift towards the inlet of the heated section (x =0). Such behaviour is due to the

recirculation cell, which is established from the first instants of the transient period.

In fact, during these first moments, the recirculation cell is still confined in the heated
section as can see it later in the representation of the vector velocities. As time goes on, its
effect widens towards the upstream section, involving therefore the evacuation of a certain
quantity of energy in the opposite direction of the main fluid flow (appearance of the

minimum indicated previously). This quantity of energy added to that conducted by axial
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wall conduction leads to increase more the interfacial heat flux (presence of the

maximum).

With further increase in time, the intensity of the cell increases resulting in an increase of
the evacuated energy in the direction opposite to the main fluid flow. Then, the fluid
temperature in the vicinity of the wall is higher than the inner wall temperature and
therefore negative interfacial heat flux Q, values are obtained, indicating that the heat
transfer is from the fluid to the pipe wall. This transferred quantity of energy to the pipe

wall is then diffused by axial conduction in the upstream section of the duct, resulting in a
significant redistribution of the applied heat flux in this adiabatic section, Figure 4.10a.
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Figure4.10a Transient axial distribution of interfacial heat flux

The process of the heat flux redistribution in the upstream section continues with
elapsing time, until the steady State is reached. At this final time, Figure 10b, one notices
that a significant quantity of the applied heat flux of the order of 15%, represented by a
maximum of the curveQ,, = f(x) is redistributed in the upstream section far from the
inlet of the heated section, before being released upstream of the beginning of the
recirculation cell.
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We notice that a t =2and4, the negative values of Q,, in the vicinity of x =0 are
about 10% of the applied heat flux, whereas, with further increase in time, it tends to
decrease rapidly and reach very low values at the steady state. This is due to the fact that,
at the beginning of the transient state, the temperatures difference at the wall-fluid interface
is important, while with further increases in times, the hot fluid contained in the
recirculation cell tends to decrease this difference. Such effects result in a gradient of the

radial temperature at the wall-fluid interface ((iq / Th )}, _ 5) approximately equal to zero,

as one can see it later at the time of the representation of the radial distribution of
temperatures. In addition, we note that the maximum of the redistributed heat flux in the
upstream section decreases according to time, whereas the zone through which the heat
transfer at the wall-fluid interface is produced increases (Figure 4.10a-b).

In the downstream section, the energy diffused by axial conduction in the pipe wall
increases with elapsing time until the instantt = 8. From this time, one notices a decrease
of the ratio Q, in the vicinity ofx =10, whereas forx >10, an increase is observed
(t =12.5and25). Fromt >25until the steady state, the ratio Q, presents a weak
widening of its redistribution towards the downstream section (x >10) and tends to zero

on the remainder of this section.
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Figure4.10b Transient axial distribution of interfacial heet flux.
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This behaviour of Q,is due to the fact that at the beginning of the transient, for

exampleat t =0.1, the fluid decelerates near the wall at the point where the axial velocity
becomes negative in the vicinity of x =10, Figure 4.11. With elapsing time, the fluid axial
velocity increases from negative to positive values, as can be seen, for example att =4,
whereas from t 3 8 until the steady State, one can observe that the fluid axial velocity
presents, again, negative values. This effect leads to the apparition, the disappearance and,
finally again, the apparition of the recirculation cell in the vicinity of this axial position,

which affects the transient evolution of the normalized interfacial heat fluxQ,, .
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Figure4.11 Transient digtribution of the axial velocity profiles at the exit of the heated
section (x=10)
4.3.3 Transient axial distribution of friction coefficient and vectors velocities

Shown in Figures 4.12a and 4.12b are the transient axial distributions of the friction
coefficient ratio( f.Re)/( f.Re),. Inthisratio ( f.Re), isthe friction coefficient relating to

the case of the forced convection and (f.Re) is defined as follows:

(f.Re) :2[' ﬂU*/ﬂh]h=o.5'

During the early transient period, t <0.005, one notes that the friction coefficient is
equal to 1 while fromt =0.1, it becomes negative indicating that the flow is reversed in
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the vicinity of the wall, as one can see it in Figure 4.13, where we represent the radial

distributionsof ur att =0.1, fromx =-5 to x = 20.

This behaviour of the friction coefficient ratio continues with elgpsing time where it is
noted that this later presents more and more negative values in the heated and in the
upstream sections. However, one can note, that the friction coefficient ratio decreases
guasi-linearly from the value 1 in the downstream section to a negative maximum value at

the vicinity of x=0 and then it increases again to the value 1 in the vicinity of the inlet of
the upstream section (limit case of forced convection).

This maximum negative value can be explained by the fact that at the inlet of the heated
section (x = 0), the temperatures difference between the fluid located close to the wall and
that in the core region is more important than the corresponding one at the centre (x=5)
and the exit (x =10), as can be seen in Figures 4.14 and 4.15, respectively for a
representative instantt = 2 in the transient period and at the steady state. In Figure 4.14, it

is noted that the recirculation cell has not reached yet the axial postionx =-5.
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Figure4.12a Transient axial distributions of the friction coefficient ratio.

At the steady state, Figure 4.12b, one can note that theratio ( f.Re)/( f.Re), presents

negative values in the heated section and along the most length of the upstream section,
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indicating that the flow is reversed in the vicinity of the wall. In particular, one finds the

stationary asymptotic values corresponding to forced convection flow in the vicinity of the

inlet of the ductx = - 30 and in the downstream section, 10<x £ 20.
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Figure4.12b Transient axial distributions of the friction coefficient ratio.

Figure 4.13 Radial digtribution of the axial velocity profiles at different axial positions at
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The widening of the recirculation cell towards the upstream section mentioned above
is confirmed by Figures 4.16a-c. In these figures we present the development of the vector
velocities at the momentst =0.1, 4, and 119 (steady state). Inspection of these figures
shows that:

-Ast <0.5, the recirculation cell is very weak and remains confined in the heated section,
Figure4.16aatt =0.1.

-Fromt 3 0.5, an increase of the intensity of this recirculation cell at the inlet and the
centre of the heated section is observed. As a consequence, the cell spreads toward the
adiabatic upstream section, as can be seen, in Figure 16b att =4. It is also shown on this
figure that the recirculation cell tends to shift towards the upstream section before
returning gradually downwards with elapsing time. This behaviour is a consequence of the
temperatures difference at the beginning of the transient period explained previousy
(Figure 4.14).

-As time goes on, the recirculation cell becomes more intense with however a weak
widening toward the downstream section compared with the corresponding one toward the
upstream section until the steady state is reached. At this final time the cell covers more
than two-thirds of the length of the adiabatic upstream section (Figure 4.16c¢).
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Figure4.14 Radial distribution of temperature profiles for different axial positions at
t=2
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Figure 4.15 Steady radial distribution of temperature profiles for different axial positions
(t =119 or greater)

a) b) 9

-30 30
2B DB
oo Holdd s
200 ool /ST T
S 1/ I
177 7t
o 15 /9PN
O ///-\\\\1‘\,
Lo ///‘\\\\ I
A0+ . . -10 VAN i
oo AN .
A
| 7/

Qs 1 8 7Y :
oo //q |
773\ :
R /4\\ !
o7 ol Y,

177 i =
it \=%J,
B i = |
r | it \ N !
sl =
F !1 N
10 [g‘} f}i

T

15

D NN A NN AN N sottn b b b D NN N N NN
01 02 03 04 05 0 0l 02 03 04 05 0 01 02 03 04 05
/D 1/D /D

o

Figures4.16a-c Vector velocitiesat: @) t =0.1, b) t =4, ¢) t =119 (steady date)

65



Chapter 4 Numerical results

The upstream extent of the cell can be explained by atransfer of energy between the
hot fluid contained in the recirculation cell and the pipe wall, as described previoudly in
relation to the Figures 4.10a and 4.10b. This energy is conducted theresfter by axial
conduction in the wall in the opposite direction to the main flow, involving again the
heating of the fluid in near wall, situated forward of the beginning of the recirculation cell.
This effect results in adeceleration of the fluid located close to the wall at the point where
the axial velocity becomes negative. As a consequence, the cell moves in the upstream
section toward the inlet of the duct. Thus, the thermal gradient at the wall [(1lg / Th )}, _; 5]

becomes then increasingly weak, tending toward zero inside the cell with elapsing time,
see Figure 4.15, representing the radial distribution of the temperatures at the steady state
for theinterval - 25 <x £20.

On Figure 4.15, it is also noted that the radial distribution of temperatures at the exit of the
duct (x =20) is constant. This behaviour is due to the fact that, at this axial position, the

forced convection is dominant, and consequently, the flow field is fully developed.

4.3.4 Effect of the thermal diffusivity ratio A

In order to investigate the effects of thermal diffusivity ratio, one presents in Figures

4.17a-c the transient axial distributions of normalized interfacial heat flux Q,, for three

values of A at several time steps, including the steady state.

An overall inspection of these curves discloses that the values of the interfacial heat flux
are higher for higher values of A. Thisis due to the fact that thermal resistance and heat
capacity of the pipe wall(rC,),are smal for higher values of A. Thus, during the

transient period, the heat flux supplied from the outer surface of the heated section is easily
transferred to the fluid. This in turn causes a large thermal lag in the system. A similar
trend has been found by, Lee & Yan [54].

For example att =4, see Figure 4.17a, the amount of heat transferred to the wall-fluid
interface in the heated section for A=0.1, is of order of 50% than the corresponding one
for A= 4. Thus, the quantity of energy transported by the recirculation cell in the opposite
direction of the main flow is more important for A= 4. This results in a negative value of

the interfacial heat flux Q, in the vicinity of x=0 for A=4, while for A=0.3
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and A=0.1, the corresponding values of Q, are even positive, indicating that the heat

transfer is ill from the pipe wall to the fluid at this time instant.

In the downstream section, the effects of the thermal diffusivity ratios on the
thermal response are also more pronounced. For example, a t =4andt =50, the heat
transfer is from the fluid to the pipe wall over a large length of this section for A = 0.1,
contrary to the case of A=4, where Q,, is positive (Figure 4.17b). Indeed, at this period of
the transient, the quantity of heat conducted by axial conduction in the pipe wall
for A = 0.1is small compared with that evacuated by the recirculation cell toward this
section. Thisis adirect consequence of the effect of the pipe wall heat capacity.

In the upstream section, one can observe that the thermal lag between the curves of

Q, correponding to the three values of A increases with elapsing time. As a

conseguence, the heat flux redistribution in the upstream section slows down with the
decrease of A(Figure 17b), and consequently, affects the upstream widening of the
recirculation cell, as one can see it later on the corresponding vectors velocities (Figures
4.19a-c).

With further increase in time, heat transfer between the pipe wal and the fluid continues
with thermal lag effect between the curves of Q,, relative to the three ratios of A until the

steady state is reached. At this time one can observe, as expected, that the curves of
Q,, corresponding to the three values of the wall-to-fluid therma diffususivity ratio are

superposed, see Figure 4.17c. Indeed, it can be made plausible by noting that the governing
equations for the system at the steady state, is independent of A.

Figures 4.18a-c, presents the transient distribution of the friction coefficient ratio for
the same three values of the thermal diffusivities ratio at severa times of the transient
period. In these figures, one notes that as time goes on, the friction coefficient

corresponding to A =0.1has the lowest negative values. At the steady state, the curves of
Q,, corresponding to the three ratios of A are superposed.
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Figure 4. 17a Influence of the thermal diffusivities ratios A on the axial distribution of the
interfacial heat flux at t = 4.
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Figure 4.17b Influence of the thermal diffusivities ratios A on the axial distribution of the
interfacial heat flux at t = 50.
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Figure 4.17c Influence of the thermal diffusivities ratios A on the axial distribution of the
interfacial heat flux at the steady state.
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Figure 4.18a Influence of the thermal diffusivities ratios A, on the axial distribution of the
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69



Chapter 4

Numerical results

4 T T T T T T T T T
m b) 4
EIETESSeene e 80 6 6 € 8 @ 8 6 6 8 GRS S9N s
. s, St s sreng
4 A 4
4 ° Oo % 22 O
e o T Qﬁ © o
4 - * O o
-4 D\‘ Ooi Pl ° 4 _
i ] A & o -
. o o ©
o T B Ogﬁ o o
_ - \ r
(0) ] © (<R
0 -8 1 5 © o 7 7
e ] 8 s o °
B o o © .
T 1 ¢ %g
e -12 o ° -
= ] o °
i 5 -
- - o o -
16 i DD%MFD“D
-20 1 t =4.0
1| —=—A=4, ——A=03——A=0.1 | = 4.
T T T T T T T T T
-30 -20 -10 0 10 20

Figure 4.18b Influence of the thermal diffusivities ratios A on the axial distribution of the

friction coefficient

ratiot =4.

0

(f.Re)/(f.Re)

-25 4

-30

t 3 119,115and 3

respectively for
A=4,03and0.1

Gr = 5000, Re=1, K =50,D=0.05 1

-35

-30

-20

T
-10

20

Figure 4.18c Influence of the thermal diffusivities ratios A on the axial distribution of the
friction coefficient ratio at t =50 and in the steady state.

The Figures 4.19a-c, are presented to analyse the effect of the thermal diffusivity

ratios on the transient development of the recirculation cell inside the duct for a

70



Chapter 4 Numerical results

representative instant of the transient periodt =4. For low vaues of A and during the whole
transient period, the intensty and the upstream and downstream widening of the cell
remain the lowest. This is due to the weak diffusion of energy by axial wall conduction
caused by the high heat capacity of the wall. Thus, in Figures 4.19a-c, one can observe that
the recirculation cell is mainly confined inside the heated section for A=0.1, whereas for
A=4 its effect already reached the axial positionx =-5.

The effect of thermal lag on the transient development of the cell continues with further
increase in time until the steady state is reached. At thisfinal time, the cells relative to the
three ratios of thermal diffusivity, not represented here, present the same intensity and the
same level of extent toward the two adiabatic sections.

Note that the time needed to reach the steady state increases with the decrease of the ratio
A
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Figures 4.19a-c Influence of the thermal diffusivities ratio A on the vector velocities at
t =4: a) A=4,b) A=0.3,c) A=0.1
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4.3.5 Effect of the Grashof number Gr
The effect of the Grashof number on the transient axial distribution of the normalized
interfacial heat flux,Q, are shown in Figures 4.20ab, respectively for a representative

instant of the transient periodt =25 and at the steady state.

At the initial transient stage, not represented here, the curves of Q,; for the various values

of the Grashof number under consideration are indistinguishable. This is due to the fact
that the heat transfer is dominated by the radial conduction. With elapsing time, the effect
of buoyancy increases with the increase of Gr, especially in the upstream section, where
one can observe that the redistribution of the applied heat flux is more and more localised

far from the inlet of the heated section as the Grashof number increases.

This process continues until the steady state regime, where one can observe no maximum

of Q, in the upstream section for Gr=1000, while in the heated section it remains the

lowest. Thisis a direct consequence of the recirculation cell that remains confined in the

heated section.
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Figure 4.20a Influence of Gr on the axial distribution of Qi a t =25.
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Figure 4.20b Influence of Gr on the axial distribution of Q. at the steady state

The corresponding steady state axia distribution of the friction coefficient ratio for
the stated values of the Grashof number, Figure 4.21, shows clearly that with the increase

of Grashof number, the intensity and the region of the flow reversal increase in itsturn.
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Figure 4.21 Influence of Gr on the axial digtribution of the friction coefficient ratio in the
steady state
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The Figures 4.22a-c, present the effect of Grashof number on the widening of the cell
upstream and downstream of the heated section at the steady state. The inspection of these
figures reveals that the extent and the intensity of the cell increase with the increase of Gr .
This confirms the upstream redistribution of the applied heat flux, observed previously for
different values of the Grashof number Gr .
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Figures 4.22a-c Influence of Gr on the vector velocities at the steady state
a) Gr=1000, b) Gr=2000, c) Gr=3000.

4.3.6 Effect of wall-to-fluid conductivity ratio

The axial digtribution of the normalized interfacial heat flux Q,, for different
values of K and for different instants of interest is shown in Figures 4.23a-d.
An overall inspection of these figures show that, in the whole transient period, higher
values of the normalized interfacial heat flux are obtained in the heated section for lower
values of K, since the low values of K [K=A.(r co)w/(r cp)i] with A fixed, decrease the

thermal capacity of the wall (r ¢,)w. Such effect leads to alarge thermal lag in the system as

74



Chapter 4 Numerical results

one can see it by comparing the curves of Q,, corresponding to the three values of K

(Figures 4.23ad).

Furthermore, at the early transient period (t £ 0.5), the magnitude of the normalized
interfacial heat flux Q. increases quickly in the heated section, while in the upstream and
downstream sections it increases symmetrically with the increase of K (Figure 4.23a at
t =0.5). This behavior is due to the fact that the heat transfer in the pipe wall and in the

flow is essentially dominated by conduction at small t.

Later (t>0.5), one can observe a decrease of Q. in the heated section, which is
more substantial for high values of K, as one can see it in Figure 4.24, representing the
transient evolution of Q.;, fromt =0 tot = 8 in the medium of the heated section (x=5).
In the adiabatic upstream and downstream sections an important diffuson of heat is
noticed, Figure4.23b, at t =2.

It is also shown in Figure 4.23b (t =2) that the normalized interfacial heat flux Qui
present a local minimum and maximum in the vicinity of the inlet of the heated section
before decreases rapidly towards zero. At this time, the minimum of Q,; corresponding to
K=10 is more pronounced compared to the corresponding one for K=50 and 100. Thus, for
K=10, Qui presents a negative value (minimum), indicating that the heat transfer is from
the fluid to the pipe wall. This later quantity of energy, that has been transferred from the
fluid to the pipe wall, is then diffused by axial wall conduction, resulting in a positive
value of Qi (maximum), while for K=50 and 100, Q. till positive.

This presence of these negative vaues of Qy is attributed to the recirculation cell. In fact,
at the early transient period, the recirculation cell is confined in the heated section, and its
intensity is very low, as one can note it in Figures 25a-b (t =0.5) for the limiting cases,
K=10 and K=100. With elapsing time, the intensity of the cell increases and spreads
towards the adiabatic upstream section (Figures 4.26ab, t = 4), involving the evacuation
of some quantity of energy in the direction opposite to the main flow, which is more
important than that diffused by axial wall conduction for K=10. Then, Q. iS negative at
the vicinity of x=0 for K=10 at this period of the transient, contrary to the other values of
K, where the energy diffused by axial wall conduction is too large than that transported by
the cell.
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Figure4.23a Influence K (K=10, 50 and 100) on the axial distribution of Q,; at t=0,5.
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Figure 4.23c Influence K (K=10, 50 and 100) on the axial distribution of Q,; att = 4.
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Figure 4.24 Transient distribution of the Q; at (x=5) for Gr=5.10°, Re=1.

On Figures 4.26a-b, relative to another instant of the transient, it is noticed that the

intensity of the cell for K=10 is more important than the corresponding one for K=100.
Thisis also due to the fact that for low value of K [K=A(r c,)w/(r Cp)] with A fixed, the heat
capacity of the wall is lower by comparing with that of the fluid. So, the supplied heet flux
from the outside surface of the heated section is easily transported in the wall and,
conseguently to the fluid.
This effect results in a difference of temperatures between the fluid located close to the
wall and that in the core region, more important for lower K than for higher K, as can be
seen, for example, at t =4 in Figure 4.27a. Therefore, the local deceleration of the fluid in
the near wall region is more important for K=10 than for K=100. Consequently, the
acceleration of the fluid on the tube centreline is greater for K=10.

With elgpsing time, it may be observed in the upstream section that the local
minima and maxima of Q,;, shown previoudly for each value of K, are more pronounced,
resulting in a negative value of Qu for K=50, while for K=100 it remains positive, see
Figure 4.23c.

As time goes on, one can observe that the present quantity of energy at the vicinity
of the inlet of the heated section is redistributed in the adiabatic upstream section, for all
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values of K (Figure 4.23d). This redistribution of the applied heat flux is due to the fact
that, the hot fluid circulating inside the cell, tends to diminish the radial gradient of
temperature, see Figure 4.27b a t =25, for K=10 and 100. Thus, the cell acts like an
insulator and, with elapsing time, as the cell moves towards the inlet of the adiabatic
upstream section, the heat flux inside the wall is redistributed further upstream of the
region of the beginning of the cell.

Further inspection of Figure 4.27b, show also that for K=100, the cell has not yet
reached the axial position x = -10, and the temperature at the exit of the heated section (x
=10) corresponding to K=10 is greater than the corresponding one for K=100. This is the
direct consequence of the quantity of energy transferred to pipe-wall interface.

It is also shown in Figures 4.23a-d that fromt 3 4, Q, increases in the heated
section for al values of K due to the effects of the widening of the cell towards the
upstream section.
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Figure 4.27b Influence of K (K=10, 100) on the radial distribution of temperature for Gr =
5.10°, Re=1a t =25 from x =-10t0 10.

In the downstream section, one can observe that the energy diffused by axial conduction
continues to increases at the first period of the transient, say for t <8, and then, decreases
with elapsing time until the steady state is reached where it becomes zero, Figure 4.23d and
Figure 4.28.

This behaviour of Qi at this period of the transient is due to the effect of the axial wall
conduction and the recirculation cell. Thus, for all values of K, and after the initial period of
the transient where the cell is confined in the heated section, Qi continues to increase in the
upstream and downstream sections due to the effect of axial conduction. Whereas, as time
goes on, the cell becomes more intense, especially at the inlet of the heated section (x=0) than
at the middle (x =5) and the exit (x =10), Figures 4.26a-b, resulting in a displacement of the
cell upwards, at the point where the reversed flow region near the wall, spreads toward the

downstream region and leads consequently to increase Qi in this section (Figure 4.23c).
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Figure 4.28 Influence of K (K=10, 50 and 100) on the axial distribution of Q,; in the steady
state.

As time goes on, we have observed that the cell starts to spread towards the exit of the
heated section, see Figures 4.29a-b, leading consequently to the disappearance of the reversed
flow near the wall region. This effect results in the evacuation of the energy diffused by axial
conduction towards the downstream section during the early period of the transient (Figure
4.23d).

Note that for K=100 and, with further increase in time, the energy evacuated by the cell
becomes also higher than that conducted by axial wall conduction. Then, the interfacial heat
flux Quw becomes aso negative in the vicinity of x=0 (Figure 4.23d), before being
redistributed, in its turn, in the upstream section, in the same way as for the other values of K
(K=10 and 50).

82



Numerical results

5.10°,

1l
200

Chapter 4

ﬁm
@
-
o
—
Lo
10 I
R 1@ ()] . Sl ]
. Iz AN I« = LoD IIIIIT N 7
- \\.\\\\\n\H\\\tHHMNNNNNNW,f, -1c r.ﬁ|u : H MHHHHH.\\WJJl444!\.tu«v7/////////// \H
. . H \\mw\\.ﬂw‘MH\.\\n\vh////Nﬂﬂ// ﬁ,, ] nv.. . AR B
N NN e M - v 0ttt =
SRR Y 3, 8 : ) ]
ot " ] . o ]
SN syt 1.8 I : L Zﬁﬁ%ﬂﬂﬁ%@x\\\\\\\‘ 1
NN ///////////A\ﬁ\\\\\ I 3 \'e : NENININEN NN/ }
NN 1° : NN/ 7
R e M CNIN— :
/r A - NN B
aNssSEe=—=—— 42§ SRR 2
S22z . =
o ENNNSSSS S , ] ﬂ_ m - ~ ,/ ~ ~—3
ootT L | 1 s Tt e e _ [
o) <° o © ) = )
= = A4 @ N a4
w0 1 S
S Jjo o - — .
: TS . — O Lo o 1
. ;- \\4\4\11**11&!;/////””/ “ < __ \__/ H M M M HHHV ///@T n
~ . e s e SN -~ R i —
S “ M\\\,\\\A\%«/Nﬁﬂﬂﬂ// 140 +— % A aaes meveRReRRN | I ]
- N . SISO i - ESS M. .
S R\Aw\\\w\w\wﬂéﬁzg -3 B2 N R RSN ]
. SUERA Els = B ARt =
SR R R ) o 8% o ]
) ) SN ‘f Hn/_ = = N N NN ///////////% m
SN 1o (&} w - - N ﬂ ///////»//»/%ﬁ%V\«\\\ﬂ —
N B OM - Y ///////Yi%\ 1
N > 1 T : CAVN DT T ]
N ! - N — = N
S 1o > = VNI : SR =
) N / B = € . NI Jo 1
N o 3 B > < |- TN N TS i
R e e e e i i D o wd R e e e e e e —verness TR Y
b= PRI B D) o o o = Q IS = o S I
AN arz > mu @ ) Yoae
To
8>
N B
< T
g
L.
2T
o
T &

01 02 03 04 05
/D

0.10.
83

01 02 03 04 05
/D

Figures 4.30a-b Vector velocities at the steady state: @ K=10, b) K=100 for Gr

Re=1. Scale: Relative (Grid units’Magnitude)
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The process of the widening of the cell and consequently the heat flux redistribution
continues as time goes on until the steady state is reached. At this final time, one can observe
that the redistributed quantity of energy corresponding to low values of K is the lower and, for
al values of K, thislater, isalso represented by a maximum of the curve Q,, i= f(X), see Figure
4.28. The cell begins far upstream of the inlet of the heated section and extends downstream
from this latter, see Figures 4.30a-b. A smilar trend was found, at the steady state by,
LaPlante [42].

Finally, it is worth noting in these figures that in the whole transient period, the
widening of the cell and consequently the heet flux redistribution in the upstream section slow

down with the increase of K.

The transient axial distribution of the friction coefficient ratio (f .Re)/(f.Re)g is shown

on Figures 4.31aand 4.31b.

As can be shown previously and, due to the fact that at small t, the heat transfer is essentially
made by conduction, the friction coefficient ratio for t < 0.5 presents a weak distortion over
the most of the length of the heated section. As time goes on (t =2), one can find the results
discussed above, relating to the behaviour of the recirculation cell during the transient period.
It is also shown at this representative instant (t =2) that the friction coefficient ratio present
negative values for all K in the downstream adiabatic section, indicating that the reversed flow

region spreads towards this section, as mentioned above.

With further increase in time and as a consequence of the spreading of the cell toward
the upstream and downstream sections, the friction coefficient ratio follows the same
behaviour until the steady state is reached. At this final time, see Figure 4.31b, one can note
that the friction coefficient is negative over an important length of the upstream section,
especially for higher values of K, before tending asymptotically to the corresponding value of

forced convection in the vicinity of the inlet of the duct(x = - 40). In the downstream section
(10<x £40), the friction coefficient ratio is equal to 1, indicating that the flow is fully
developed.
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Figure4.31a Influence of K (K=10, 50 and 100) on the axial distribution of the friction
coefficient ratio for Gr=5.10°, Re=1 att = 0.5 and 2
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Figure 4.31b Influence of K (K=10, 50 and 100) on the axial distribution of the friction
coefficient ratio for Gr=5.10°, Re=1 at the steady state.
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4.3.7 Effects of high Reynoldsand Grashof numbers

In order to examine the effect of the therma conductivity ratio K on the transient
behaviour of the previous dynamical and therma magnitudes for high Gr and Re numbers,
one present for Gr =5.10°, Re =100, the axial distribution of the normalized interfacial heat
flux, Figure 4.32 for a representative instant t =25 in the transient period where the
convection in the flow becomes increasingly important. For the early transient period note
represented here, we have noted that, Q,; increases rapidly for all values of K.

Gr=5.10° Re=100 D=0.05 |_3

] —m— K=10 —o— K=100 —+— K=500 | 1
-1,00 L L A A B L B B R BN B BN
-10 -5 0 5 10 15 20

X

Figure 4.32 Influence of K (K=10, 100 and 500) on the axial distribution of Q,; at t=25 for
Gr=5.10", Re=100.

A comparison of the results of this case (Figure 4.32) with the corresponding one,
(Figures 4.23b-d) for Gr=5 10° Re=1, shows that:
- The time required for the appearance of the minimum and maximum of Q. is much longer
(t £2 for Gr=510% Re=1) and (t £ 25 for Gr=5 10°, Re=100).
- The values of the minimum and maximum corresponding to each value of K are more

important.

It isalso worth noting in Figure 4.32 that for the limiting case K=500, the interfacial
heat flux is negative in the heated section. In fact, for these values of Re (Re=100) and Gr
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(Gr=5.10"), the negative values of Q,; in the heated section have also been observed for the
other values of K (10, 50 and 100) before t=25.

Indeed, as can be seen in Figures 4.33a and 4.33b, respectively for K=10 and 500, the
interfacial heat flux is negative in the heated section from t >10 for K=10, while for K=500, it
becomes negative from t >20. This difference in time between the two values of K is due to
the thermal lag effect. Recall that the negative values of Q. indicate that the heat transfer is
from the fluid to the pipe wall.

The presence of these negative values of Q. in the heated section in this case
(Gr=5.10°, Re=100), contrary to the case (Gr=5.10% Re=1) is due to the fact that the axial
conduction in the fluid is negligible (Pe =500). Indeed, at the beginning of the transient state,
the cell is not yet sufficiently intense to overcome the forces exerted by the fluid flow coming
from the entry of the duct. So the cell remains confined longer in the heated section and,
spreads slowly toward the upstream section, see Figures 4.34a and 4.34b.

This effect leads to an increase in the fluid temperature with a maximum in the vicinity of the
wall-fluid interface a x=0, as can be seen, for example, in Figure 4.35afor K=10 a t =17.5
and 20 and, in Figure 4.35b for K=500 at t =25. In these figures one can note that the
maximum corresponding to K=10 is more pronounced and still much longer than the
corresponding one for K=500.

This behaviour explain the large values of the minimum and maximum and the very sharp
changes of Q,; in this case, contrary to the case of Figures 4.23b-d (Gr=5 10°, Re=1), where

theaxial conduction in the fluid isimportant.

With elapsing time, the cell becomes more intense and starts to spread toward the
upstream section, involving the evacuation of the accumulated energy and, leading
consequently to the disappearance of the maximum of the temperature at x=0, see Figures
4.35aDh.
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Figure 4.33a Axia distribution of Q,; for K=10 at t =10, 20 and 35 for Gr= 5.10°, Re=100.
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Figure 4.33b Axia distribution of Qu for K=500 at t=5, 10,20 and 35 for Gr=5.10",
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It is also shown in Figures 4.33ab that the appearance of the first minimum and
maximum of Q,; is accompanied by a corresponding reduction of this later in the heated
section. With further increase in time, the cell spreads toward the upstream section, leading to
increase Qui in the heated section for the two values of K. This is due to the fact that the cell
acts like an insulator between the pipe wall and the fluid, as it has been explained previously
for the case (Gr=5.10°, Re=1).

Other inspections of Figure 4.32 and Figures 4.33a-b show that the extreme values of
Qui increase with the decrease of K. Thisis due to the fact that for low K the heat transmission
in the wall by axial conduction is slower, whereas the energy transferred from the hot fluid to
the pipe wall is conducted in the pipe wall more rapidly for large value of K. This effect
results in lower extreme values of the redistributed energy in the upstream section for large
values of K and, consequently slowly sharp changes between the maximum and minimum

points, contrary to the case of low values of K.
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Figure 4.35a Radia distribution of temperature at the inlet of the heated section (x =0) at
different instants of the transient period, for Gr= 5.10° Re=100, K=10.

0,25 ——————1—————1—————1—
] L - b 1
1| Gr=5.10° Re=100 K =500 ]

] t =35 4
0,20 .

25
0,15+ _

0)

20

0,10

g(h, x

0,05

0,00 ]

0,0 0.1 0,5

Figure 4.35b Radial distribution of temperature at the inlet of the heated section (x =0), at
different instants of the transient period, for Gr= 5.10°, Re=100, K=500.
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At the steady state, Figure 4.36 and, contrary to the result shown in Figure 4.28
(Gr= 5.10%, Re= 1), one can observe that the heat flux redistribution in the upstream adiabatic
section slows down with the decrease of K and it is more close to the entry of the heated
section. Thisis the consequence result of the axial conduction. Thus, in this case (Gr:5.105,
Re=100), the heat flux redistribution is done mainly by axial wall conduction (Pe=500).

More inspections of the Figure 4.36 reveal that the time needed to reach the steady state
regime is more important compared to the corresponding one of the case (Gr=5.10° Re=1).

Thisis also adirect consequence of the pipe wall and fluid axial conductions.
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Figure 4.36 Axial distribution of Q,; at the steady state for K=10, 50, 100 and 500 for
Gr=5.10, Re=100.

The axial distribution of the friction coefficient ratio for Gr=5.10" and Re=100 at a
representative instants t =5, 25 in the transient period and, at the steady state, Figures 37a-b,

shows;

-The same behaviour to the one corresponding to the previously studied case (Gr=5.10°,
Re=1) at the early transient period.
-Local values higher than the unity (>1) in the downstream section, during a period of the

transient, before decrease asymptotically to the unity at the outlet of the duct.
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-At the steady state, a local minimum in the vicinity of the inlet of the heated section. This
later is more pronounced than the corresponding one shown in Figure 4.31b, before tending
slowly towards the limiting case corresponding to the forced convection at the exit and the

inlet of the duct.
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Figure 4.37a Influence of K (K=10, 50, 100 and 500) on the axial distribution of the friction
coefficient ratio for Gr=5.10%, Re=100 att =5 and 25.
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Figure 4.37b Influence of K (K=10, 50, 100 and 500) on the axial distribution of the friction
coefficient ratio for Gr =5.10°, Re =100 at the steady State.
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In order to improve our understanding of heat transfer characteristics in the unsteady
mixed convection and to prove that the large values of Qi in the upstream section for this
case (Gr=5.10°, Re=100) is due to an important heat transfer at the wall-fluid interface, we
present the transient evolution of the temperatures difference Dqy; at the wall-fluid interface,

Figure 4.38aand of Qui, Figure 4.3%a at three axial positions (x =0, x = -5 and x = -10).

As can be seen in these figures, it is obvious that the large values of the maximum and
minimum points of Q. are due to a large temperatures difference Dgw at the wall-fluid
interface. Furthermore, it is also observed that for the three axial positions, Dqgw. and
consequently Qui, increases with time and reach a maximum value. Thereafter, it decreases

rapidly towards a minimum value and finally it increases again asymptotically towards zero.

This behaviour of Dgwi and Qwi is explained by the fact that, for each axial position, the heat
transfer is firstly dominated by conduction in the pipe wall, which results in a lower rate of
increase in the fluid temperature than in the interfacial temperature. Then, Dg, increases with
elapsing time until the recirculation cell reach the corresponding axial position. At this
transient period, the energy transported by the cell becomes more important than that diffused
by conduction in the pipe wall from the adjacent heated section. This effect result in negative
values of Dqy,; and consequently Qy, indicating that the heat transfer is from the fluid to the
pipewal.

As time goes by, the cell continues to move towards the inlet of the upstream section,
resulting in a decrease of Dgwi and consequently Qui until they become zero after a certain
period of time. This is due to the fact that, as the cell passes the corresponding axial position
(x=0, x= -5 or x= -10), it acts like an insulator, as it has been explained previoudy for the
case (Gr=5.10°, Re=1).

Figure 4.38b and Figure 4.39b gives, respectively the transient evolution of Dgw and
Qui at the same conditions and axial positions for Re=50. It is observed that the decreases of
Re leads to decrease the extreme values of Q,;. Thisis dueto the fact that as Re decreases, the
forces exerted by the fluid flow coming from the inlet of the duct decrease also in its turn.
Therefore, the cell spreads in the upstream section more rapidly, as can be seen in Figure 39b.

Consequently, the accumulated energy at each axial positionis lower.
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It is also seen in these figures that for Re=50, Dg. and consequently Q. are positive at
the axial position x=0, Figure 4.38b contrary to the case of Figure 4.38a (Re=100), indicating
that the interfacial heat flux is positive in the heated section for Re=50.
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Figure 4.38a Transient evolution of the temperature difference at the wall-fluid interface at
x=0, - 5 and x=-10 for Gr=5.10°, K=50, Re=100.
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Figure 4.38b Transient evolution of the temperature difference at the wall-fluid interface at
x=0, -5 and x=-10 for Gr=5.10", K=50, Re=50.
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Figure 4.39a Transient evolution of the interfacial heat flux at x=0, -5 and x =- 10, for
Gr=5.10°, K=50, Re=100.
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Figure 4.39b Transient evolution of the interfacial heat flux at x=0, - 5 and x =- 10 for
Gr=5.10°, K=50, Re=50.

95



Chapter 4 Numerical results

4.3.7.1 Observations on the maximum of theradial temperaturein the
upstream section

The maximum of the radia distribution of temperatures to the neighbourhood of the
pipe wall observed previoudy to the entry of the heated section during a weak period of the
transient period has also been observed in the upstream section.

Indeed, for every axial position, the radial temperature presents a distribution smilar to
the one of the forced convection in the absence of the recirculation cell as one can see it in
Figures 4.40a (x= -5) and 4.40b (x = - 10), respectively at t = 80 and 180. The corresponding
vectors velocities are represented in Figures4.41ab and 4.41c-d. The Figures 4.41b and
441d represents an enlarging of the =zones situated between -5£x £0and

between- 15£x £ - 5.

In Figures 4.41a-c, one notes that the velocity profiles at the axial positions (x= -5) or
(x =-10) are parabolic, indicating that the recirculation cell has not reached these two axial
positions again. As the recirculation cell reaches a given axial postions, (x=-5) or (x= -10),
the radial temperature profiles undergo a distortion in the neighbourhood of the pipe wall,
represented by a maximum, see Figures 4.40a-b, respectivelyatt =90 and t =190. This

digtortion subsists until the moment where the cell passes the corresponding axial position.

With elapsing time, for the reasons that we evoked previoudly, the cell moves toward the
upstream section, Figures 4.42a-b. Such effect results in the evacuation of the accumulated
energy to the neighbourhood of the pipe wall. Consequently, these maxima undergo a
decrease and finish by disappearing completely with elapsing time, Figures 4.40a-b,
respectively from t>100 and t>210.

Later, t 2110 (Figure 4.40a) and t3250 (Figure 4.40b), the radial distribution of
temperatures to the neighbourhood of the pipe wall presents a flat profile, indicating that the
gradient of temperature between the pipe wall and the fluid is nearly equal to zero. Thisisdue
to the fact that, when the recirculation cell passes a given axial position, it acts like an
insulator between the pipe wall and the fluid. In Figures 4.43ab (t=110) and 4.43c-d
(t=250), representing the vector velocities, one can see that the reversed flow region has

already passe the two axial positions x=-5 and x=-10.

This flat profile in the near wall maintains itself until the steady state is reached for

every axial position reached by the recirculation cell.
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Figure 4.40a Transient evolution of temperature profiles at x=-5.
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Figure 4.40b Transient evolution of temperature profiles at x=-10.
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4.3.7.2 Observations on the maximum of theradial temperaturein the
heated section

The analysis of the numerical results showed that the transient evolution of the radia
distribution of temperatures in the heated section is different from the one in the adiabatic

upstream section, except in the first instants of the transient period.

Indeed, during the first instants of the transient period where the heat transfer is globally

dominated by radia conduction we have noted that the flow corresponds to the case of ‘pure

forced convection' without the effect of the natural convection as one can see it in Figure 4.44

representing the radial axial velocity profiles at t =0.5. On the Figure 4.45, relative to the

radial temperature profiles at the same instant, one notes as for the case of the upstream

section, asimilar profile to the one of the forced convection.

With elapsing time, the energy transferred to the wall-fluid interface increases.

Consequently, the effect of the natura convection in the vicinity of the wall starts to appear

and, acts on the main descendant flow, in particular from the middle to the exit of the heated

section. This results in a deceleration of the fluid close to the pipe wall compensated by an
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acceleration in the centre of the duct in order to satisfy the conservation of the continuity

equation, see Figure4.44 at t =5.
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Figure 4.44 Radia distributions of axia velocity profiles inside the heated section for two
instants of the transient period.
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Figure 4.45 Radial distribution of temperature profiles inside the heated section at t=0.5

At this instant (t =5), where the axial velocity at the middle of the heated section
(x=5) is negative (Figure 4.44) and, where the gradient of the axial velocity to the exit of the
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heated section (x=10) is zero, there is practically no noticeable effect on the radial

distributions of the temperature, see Figure 4.46.
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Figure 4.46 Radial distribution of temperature profilesinside the heated section at t =5

Asthe time goes on, the negative values of the axial velocity to the vicinity of the pipe
wall become more vishble. Consequently, the reversed flow region thickness increases
considerably, see Figure 4.47. The presence of this reversed flow region in the vicinity of the
pipe wal has strongly distorted the radial temperature profiles. Such effect results in a clear
change in the shape of the fluid temperature profiles in the whole heated section. So, at the
entry of the heated section, one notes a local maximum in the near wall region (observed
previoudy) and aloca minimum close to the axis of the duct. From the middle to the exit, the

temperature profiles present two local minima, Figure 4.48.

From t>17.5, the recirculation cell, spreads toward the upstream section (Figures 4.
49a-b), leading to the disappearance of the loca maxima of the temperature profiles at the
inlet of the heated section and, indicating the end of the period where the heat transfer at the
vicinity of the inlet of the heated section is from of the fluid to the pipe wall.

After this period and until the steady state the temperature profiles along the heated
section presents two local minima: one observed on the centreline of the duct and the other
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one located in the near wall region, see Figure 4.50. Consequently, the heat transfer at the

wal l-fluid interface is again from the pipe wall to the fluid.
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Figure 4.47 Radial distribution of the axial velocity profiles inside the heated section
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Figure 4.48 Radial distribution of the temperature profilesinside the heated section
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Figure 4.50 Radial temperature profilesinside the heated section at t =25 and 100.

Such behaviour (presence of two local minima), concerning the radial temperature
profilesin this case is due to the fact that the recirculation cell brings the colder fluid from the

outer space adjacent to the end of the recirculation cell (x® 10) and, injects it in the heated
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section. This effect results in weak values of temperatures at the exit of the heated section
(x=10) over alarge zone of the cross-section of the duct, compared to the corresponding one

at the middle (x =5) and the exit (x=0), see Figure 4.50.

Asthe fluid moves toward the inlet of the heated section (x=0), the radial temperature
increases and reach its maximum values at this axia postion. The fact that the temperature at
the inlet of the heated section (x=10) is the higher compared to one at the middle (x =5) and
the exit (x=0) can be explained by the fact that the heat coming from the wall continuingly
heats the fluid brought from the outer space adjacent to the exit of the heated section into the
reversed flow region. A similar trend has been found, at the steady state by, Nguyen & al
[50].

Let's note that on a weak region of the cross-section at x=10, the radial temperature is
dightly greater than the corresponding one at x=5 and x=0 (Figure 4.50). Thisis a result of
the permanent contact of the beginning of the recirculation cell with the cold fluid, coming

from the entry of the duct.

It is also noted on the Figure 4.45 at t =0.5 (at the beginning of the transient period),
that the pipe wall temperature at x=0 is higher than the corresponding one at x=10, whereas at
t =5, Figure 4.46, one notes the inverse. As the time goes on, one realizes that the radial
temperature at x=0 is again higher than that at x=10 over a large zone of the cross-section,
say between0.2£ n £ 0.55, Figure 4.50.

This can be explained by the fact that at the beginning of the transient period, the heat transfer
is made without natural convection effect and, that upstream of the heated section one
recovers the colder fluid, what favourites the heat transfer. After a short time, the effect of the
natura convection begins to gppear, resulting in a more important reduction of the axial
velocity at the vicinity of the pipe at x=10 than at x=0 (Figure 4.44 a t =5), leading thus to
an increase of temperature at x=10. Later, the intensity of the cell becomes more pronounced,
resulting in an important extent toward the upstream section. This results therefore in an
important evacuation of energy toward the entry of the heated section. Consequently, the
temperature at x=0 is again greater than that at x=10.
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4.3.8 Effect of the pipe wall thickness-to-diameter ratio D

In order to examine the effect of the pipe wall thickness-to-diameter ratio D on the
interfacial heat flux, we present on the Figures 4.51ac the obtained results at different

ingtants of the transient period for different values of the parameter D.

On these Figures, one notes that the values of the interfacial heat flux in the heated
section decrease according to the parameter D. This is due to the fact that for low values of D,
the thermal resistance and the thermal capacity of the pipe wall are weaker. Consequently, the
applied heat flux at the outer surface is easily transferred to the fluid. Upstream and

downstream of the heated section, the diffusion of the heat increases with the increase of D.

Let's note that at the instant t =5, Figure 4.514a, the heat transfer is globally dominated

by conduction.
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Figure 4.51a Effect of the parameter D on the axia distribution of the interfacial heat flux at
t =5.

As the time goes on, Figure 4.51b, the effects of convection become more important
and we attend, as seen previously, to an important redistribution of the energy provided to the
system at the vicinity of the inlet of the heated section. One aso notes, that with the increase

of D, the corresponding maximum and minimum of the redistributed energy decreases, while

105



Chapter 4

Numerical results

the heat exchange surface between the fluid and the pipe wall increases. These results are a

direct consequence of the effect of the axial conduction.

At this instant (t =25), the corresponding interfacial heat flux for D equal to 0.15 and
0.25 is negative in the heated section. Such behaviour is attributed, as we have explained it
before (effect of the conductivity ratio) to the large values of the thermal capacity and the
thermal resistance. Thus, at this period of the transient regime, the energy evacuated by the
recirculation cell is higher than the one transmitted to the wall-fluid interface through the pipe

wall. It results an exchange of heat from the fluid to the pipe wall.
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Figure 4.51b Effect of the parameter D on the axial distribution of the interfacial heat flux

With further increase in time, the therma lag between the different curves increases
considerably. So, in Figure 4.51c, one notes that with the decrease of the values of the

parameterD, the redistribution of the applied heat flux becomes closer to the inlet of the
heated section. This behaviour continues until the steady state regime, not represented here,

because of atoo long upstream section for the cases D=0.15 and 0.25.

Finally, one note that the time needed to reach the steady state increases with the

values of the parameter D.
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Figure 4.51c Effect of the parameter D on the axial distribution of the interfacial heat flux

For two extreme values of the pipe wall thickness-to-diameter ratio D and for the same
ingtants that those corresponding to the case of the interfacial heat flux, we present in Figures

4.52a-b, the axial evolution of the friction coefficient ratio.

Through these two Figures, one notes that at t =5 (Figure 4.52d), the friction
coefficient ratio in the heated section corresponding to D=0.01 is more distorted than the one
corresponding to D=0.25. This is due to the fact that the quantity of energy transferred to the
wal-fluid interface for D=0.01 is more important than the one relative to D=0.25 (Figure
4.518). Consequently, the effect of the natural convection is more important. Outside of the
heated section, the two curves corresponding to D=0.01 and D=0.25 are superposed.

With elapsing time, the distortion relative to D=0.25 becomes more pronounced that
the one of D=0.01 due to the effects of the thermal inertia of the system and the axial wall
conduction. Consequently, at the ingtant t =25, one notes that in the vicinity of the inlet and
the exit of the heated section, the distortion of the friction coefficient for D=0.25 is larger
than the one corresponding to D =0.01.

This behaviour continues until the steady state with more and more important
digtortions as the values of D increase, in particular in the upstream section, as one can see it

in Figure 4.52b.
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Far from the exit of the heated section, the different curves join themselves, indicating
that the system tends toward an established regime characterized by a ratio of the friction

coefficient equal to 1 corresponding to the case of the forced convection.

In Figures 4.53a and 4.53b, one presents the radia distribution of temperatures at the
inlet of the heated section for two values of the parameter D and, for different instants of the
transient period representing the development and the disappearance of the maximum of
temperature profiles at this axial position.

On these Figures, one notices that the development of the maximum corresponding to
D=0.01 is more pronounced. Thus, at t =21, the maximum value reached by the radial
temperature is greater than 0.26 for D=0.01, whereas for D=0.25 it is of the order of 0.18. One
also notes that these maxima remain longer for D=0.25 than for D=0.01. These results
represent a direct consequence of the effect of the thermal capacity and the axial wall

conduction.
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Figure 4.52b Effect of the parameter D on the axial distribution of the friction coefficient
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Figure 4.53a Radia distribution of temperature profiles a x=0 for different instants of
the transient period D=0.01.
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Figure 4.53b Radia distribution of temperature profiles a x=0 for different instants of
the transient period D=0.25.

In order to improve our understanding of the effect of the dimensionless pipe wall
thickness on the heat transfer characterigtics in the unsteady mixed convection, we present in
Figure 4.54, the transient evolution of temperatures difference at the wall-fluid interface
(DQwaii-fiia), for the analysed preceding values of the parameter D at the same axial position
x=0.

On this Figure, one notes that the maximum and the minimum of the temperatures
difference a the wall-fluid interface become more pronounced with the decrease of the D.
One also notes, that the period of time during which the heat transfer is from the fluid to the
pipe wall, increase with the increase of the pipe wall thickness.

Let's recall that these maxima and minima correspond respectively to a heat transfer
from the pipe wall to the fluid and, from the fluid to the pipe wall.

Finally, one notes that during the transient period where the effect of the natura
convection effect is negligible (t£ 15), the temperatures difference (Doai-nuia) COrresponding
to D=0.01 present the weakest values.

From this it can be concluded that the presence of the pipe wal has a considerable
influence on the characteristics of the heat transfer during the transient period and, therefore,
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the effects of the pipe wall cannot be disregarded in the case of the transient conjugated mixed

convection heat transfer.
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Figure 4.54 Transient evolution of the difference of temperature at the wall-fluid interface
DOjwai-fiuid at X=0.

4.3.9 Influence of Grashof and Reynolds numbers for the same Richardson
number

The transient axial evolution of Q. for two values of the Reynolds and Grashof
numbers, respectively (10, 100) and (5.10% 5.10°) is shown in Figures 4.55a-c. For these two
values of Reynolds and Grashof numbers, the Richardson number has the same value Ri=50.
In the beginning of the transient period the values of the interfacial heat flux for (Re, Gr)=(10,
5.10%) are greater than these relative to (Re, Gr)=(100, 5.10°), see Figure 4.55a. With elapsing
time, Archimedes forces take the over on the viscous forces, in particular for the case (Re,
Gr)=(100, 5.10°). This leads to the appearance of a recirculation cell, more intense for the
case (Re, Gr)=(100, 5.10°), see Figures 4.56a-b. This result in negative values of Q,; in the
vicinity of the inlet of the heated section, see Figure 4.55b. For the case (Re, Gr)=(10, 5.10%),
one notices that the transient distribution of Qy; is sSimilar to the one relative to the case of the
pure forced convection with axial wall conduction effect. This is due to the fact that in this
case the recirculation cell is very weak, therefore, it remain confined in the heated section
(Figure 4.564a).
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This behaviour continues for the two cases until the steady state, see Figure 4.55c. At
this final time, one notes the absence of any redistribution of the interfacial heat flux in the
upstream section for the case (Re, Gr)=(10, 5.10°), contrary to the case (Re, Gr)=(100, 5.10).
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Face 4.55a Axial distribution of the interfacial heat flux at t =0.5
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Figure 4.55b Axial distribution of the interfacial heat flux at t =25.
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Figures 4.56a-b Vector velocities att =25:a)(Re, Gr)=(10, 5.10%), b)(Re, Gr)=(100, 5.10°)

The corresponding transient axial evolution of the friction coefficient ratio is
illustrated in Figures 4.57a-b. One notes a weak distortion of the friction coefficient ratio
relative to the case (Re, Gr)=(10, 5.10%. This distortion is limited to the heated section
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(OEXE10), contrary to the case (Re, Gr)=(100, 5.10°) where the distortion spreads upstream
and downstream of the heated section. This jugtifies the confinement of the recirculation cell
at the interior of the heated section for the case (Re, Gr)=(10, 5.10° and consequently, there
were no redistribution of the interfacial heat flux in the upstream section.
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Figure4.57b Axial distribution of the friction coefficient ratio at the steady state.
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The radial distribution of temperatures in the heated section corresponding to these two
cases is presented in Figures 4.58 and 4.59. One observe that the radial distribution of
temperatures, relative to the case (Re, Gr)=(10, 5.10%) presents no distortion and, that this last
is greatly similar to the one of pure forced convection. On the other hand, the one relative to
the case (Re, Gr)=(100, 5.10°) present an important distortion along the heated section.

Furthermore, one notices in Figure 4.58, that the temperature at x=0 is greater to the one
at x=5 and 10 on nearly the half of the cross-section, due to a strong reversed flow at this

region. In Figure 4.59, one notes the inverse.

Let's note that the time needed for the system to reach the steady state for the case (Re,
Gr)=(100, 5.10°) is more important than the corresponding one for the case (Re, Gr)=(10,
5.10%).

From this comparison it can be concluded that the characteristics of the heet transfer by
mixed convection are characterized in addition to the number of Richardson (Ri:Gr/Rez) by
the values of the Reynolds (Re) and Grashof (Gr) numbers.
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Figure 4.58 Radial distribution of temperature profilesin the heated section at t =25
(Re, Gr)=(100, 5.10°)
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Figure 4.59 Radial distribution of temperature profilesin the heated section at t =25
(Re, Gr)=(10, 5.10%
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5 General concluson and per spective

5.1 Contribution of the present work

In the present work, a numerical study has been performed to investigate the unsteady
conjugated downward laminar mixed convection in circular pipe submitted partially to a
uniform and constant wall heat flux. The solution takes wall conduction and wall heat

capacity in to account.

The various investigated parameters were the Reynolds and Grashof numbers, the
thermal conductivity and diffusivity ratios between the pipe wall and the fluid, respectively K

and A, and the dimensionless wall thickness D .

For the typical studied cases, the reversed flow is limited to the heated section during the
early transient while, with elapsing time, such recirculation zone becomes more important

and, is spreading upstream of the heated section.

This recirculation cell spreads rapidly towards the upstream section for (Gr, Re) =
(5.10° 1), while for (Gr, Re) = (5.10°, 100) it remains confined longer in the heated section,
resulting in a more pronounced minimum and maximum of Q. in the inlet of the heated

section.

The presence of the reversed flow region has drastically perturbed the internal flow as
well as the thermal field, resulting in negative values of the friction coefficient and a
significant redistributed portion of the applied heat flux in the upstream section where no
energy isdirectly applied.

Moreover, the radial temperature profile at x=0 increases and presents a maximum at
the vicinity of the wall-fluid interface for al values of K, over a specific period of the
transient for (Gr, Re) = (5.10, 100) due to the fact that the cell remains confined longer in the
heated section before spreading towards the adiabatic section. Furthermore, this maximum of
the radial temperature profile at the vicinity of the wall-fluid interface has also been observed

at every axial position of the upstream section reached by the reciculation cell.

Results have also shown that the upstream redistribution of the applied heat flux and
consequently the upstream widening of the cell slowdown with the decrease of A and the

dimensionless wall thickness D.

It is also found that the transient redistribution of the applied heat flux in the adiabatic

upstream section slowdown with the increase of K for the case when the axial conduction is
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significant in the fluid (Pe=5) and in the pipe wall, whereas when the axial conduction in the
fluid is neglected (Pe=500), the transient evolution of this redistribution is reversed.

For the two values of Gr and Re numbers, the time required to the heat transfer to reach
the steady state increases with the decrease of K, contrary to the of forced convection case
[60].

With the increases of the Grashof number, the upstream redistribution of the applied
heat flux is more and more localised far from the inlet of the heated section.

5. 3 Per spectives of thiswork

Although the results presented in this work form a coherent whole, other aspects could

be the subjects of ulterior research, of which these:

The numerical code could be generalized by adding the required elements to smulate
the turbulent flows. Indeed, the present results are only valid for a very restricted rang of Re
and Gr corresponding to laminar flow regime. This last extension would permit to widen the

application fields of the generated results.

It would be interesting to examine the effects of the viscous dissipation. Indeed, Barletta
[72] has examined this effect on the steady fully developed mixed convection in a paralel flat
vertical channel. He found that the effect of viscous dissipation is important especialy in the
case of upward flow. Moreover, for asymmetric heating, it has been shown that viscous
dissipation enhances the effect of flow reversal in the case of downward flow while it lowers

this effect in the case of upward flow.

The extension of this work to the case of concentric annular duct encountered in
numerous heat transfer and fluid flow devices involving two fluids. One fluid flows through
the inner tube while the other flows through the annular passage between the two tubes. For
example, heat exchangers designed for chemical processes require the consideration of mixed

convection in annular flow.

The extension of the present work to the time-dependant [50], or the time-periodic [51,

73] boundary conditions (wall temperature or wall heat flux).
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RESUME
Dans le cadre de ce travail, on présente les résultats d’une simulation numérique de la
convection mixte conjuguée transitoire dans un tube vertical de géométrie cylindrique.
L’épaisseur de la paroi du tube est égale a (D). L’écoulement est laminaire et
axisymétrique. Un flux de chaleur uniforme (Q) est appliqué a la surface externe du tube,
sur une section centrale, d’une longueur égale & 10 fois le diamétre hydraulique. Cette
section est comprise entre deux sections adiabatiques, respectivement L, et Lq. De plus, le
fluide pénétre au haut du tube pour se diriger vers le bas; par conséquent on est en présence
d’un écoulement de convection mixte opposé. Les équations gouvernantes sont résolues
numériquement en utilisant la méthode classique des volumes finis développée par
Patankar. Le couplage pression-vitesse est assuré en utilisant I’algorithme SIMPLE.
Deux nombres de Grashof ont été choisis, 5.10° et 5.10°. Deux vitesses d’écoulement ont
été retenues, conduisant a des nombres de Reynolds de 1 et 100, qualifiés de bas et de haut
Re. Les rapports Gr/Re? correspondants sont de 5000 et 50, respectivement. On étudie
I’influence des propriétés physiques et géométriques sur I’évolution transitoire des
grandeurs thermiques (flux de chaleur a I’interface paroi-fluide et température) et
dynamiques(coefficient de frottement et vecteurs vitesses).
Pendant les premieres périodes du régime transitoire ou le transfert de chaleur est
globalement dominé par conduction, nous avons constaté une certaine quantité d’énergie
au voisinage immédiat de I’entrée de la section chauffée (x=0). Plus tard, les mouvements
convectifs s'intensifient. 1l en résulte une augmentation de la valeur de cette quantité
d’énergie et une redistribution de cette derniére dans la section de préchauffage. La valeur
et la position axiale de cette redistribution dépend du rapport des conductivités et des
diffusivités thermiques de laparoi acelle du fluide ainsi que de |I’éaisseur de la paroi.
Nous avons constaté aussi que la redistribution du flux de chaleur imposé dans la section
de préchauffage ralentit avec I’augmentation du rapport des conductivités et la diminution
du rapport des diffusivités dans le cas ou la conduction axiale est significative dans la paroi
et dans le fluide (Pe=5). Dans le cas ou la conduction axiale dans le fluide, est négligeable,
nous avons constaté I’effet inverse. Pour les deux cas étudiés, nous avons constaté que le
coefficient de frottement prend de faibles valeurs négatives dans la section chauffée. Avec
le temps, ces valeurs augmentent et s’étendent vers la section adiabatique de préchauffage.
Loin de I’entrée et de la sortie de la section chauffée, la valeur de ce dernier tend vers celle

d’un écoulement isotherme pleinement développé.

Mots clés: flux de chaleur, convection mixte, régime transitoire, conduite cylindrique, régime laminaire



SUMMARY OF THE THESIS

The proposed survey in this thesis appears in the setting of the conjugated laminar and
transient mixed convection in athick vertical conduct. The external surface of the conduct is
submitted to a constant and uniform heat flux, applied on a central section of length equa to
ten times the hydraulic diameter. Two adiabatic sections have been added upstream and
downstream the central section. Besides, the fluid penetrates to the top of the conduct to head
downwards, therefore one is in presence of opposed mixed convection flow (unfavourable).
The objective of this work consists in finalizing a two dimensional numerical code to study
the problems of forced, free and mixed convection in the transient regime in thick cylindrical
conducts. The originality of this work resides in the consideration of the transient phenomena
and the wall-fluid coupling. The numerous analyses and illustrations presented in this thess
put in evidence some origina and interesting results that contribute in general to the
improvement of the knowledge in the domain of the heat transfers, and in particular of the
heat transfers by mixed convection.

In the beginning of the transient, we noted that the flow corresponds to the case of 'pure
forced convection'. Consequently, the interfacial heat present no distribution towards the
upstream adiabatic section due to the weak intensity of the recirculaion cell, which still
enclosed in the heated section. With elapsing time, the effects of the natural convection close
to the pipe wall become more pronounced and act on the descendant main flow. This leads to
increase the intensity of the recirculation cell, driving to an evacuation of a quantity of energy
toward the upstream adiabatic section. The anaysis of the effects of the physica and
geometrical properties have shown that the redistribution of the interfacial heat flux in the
upstream adiabatic section accelerates with the increase of the wall-to-fluid thermal
conductivity and the thermal diffusivity ratios, and also with the increase of the dimensionless
thickness of the pipe wall. Otherwise, we noted for some cases that the radial distribution of
the temperatures present, during a weak period of the transient, a local maximum close to the
pipe wall. This loca maximum appears to the neighborhood of the entry of the heated section

and also to every axial position of the upstream section reached by the recirculation cell.

Key words: heat flux, mixed convection, transient laminar regime, cylindrical duct, opposed-
buoyancy
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Nomenclature

Symbol  Definition

A wall-to-fluid thermal diffusivity ratio (=a./a)
D tube diameter (=2R), m

F friction coefficient, Kg.m™.s

g acceleration due to gravity, m.s

Grg Grashof number (=gbQD*/n%k)

K wall-to-fluid thermal conductivity ratio (= ki/k)
Ly length of the upstream section, m

Lk length of the heated section, m

Lg length of the downstream section, m

Li dimensionless length (=L; /D), i=u, h, d

p pressure, Pa

dimensionnelless pressure (=(p-r og2)/r o\V?)

Pe Peclet number (=Re.Pr)

Pr Prandtl number (=n/ &)

Q heat flux at the outer surface of the pipe, W.m
Qui normalized heat flux (= (Qinne/Q).(R/Re))

Qinner heat flux at the wall-fluid interface, W.m 2

R internal radius of the pipe, m

Re external radius of the pipe, m

Re Reynolds number (=V.D/n)

r relate to theradial coordinate, m
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T temperature, K

To initial or inlet temperature, K

u axial velocity, ms™

v radial velocity, m.s™

u dimensionless axial velocity (=u/V)

v dimensionless radial velocity (=v/V)

Vv average axial velocity at the entrance of the duct, ms™
4 relate to the axial coordinate, m

Greek symbols

t dimensionlesstime (=t.V/D)

h dimensionless radial coordinate (=r/D)

X dimensionless axial coordinate (=z/D)

n cinematic viscosity, nf.s™

b thermal volumetric expansion coefficient, K .
D pipe thickness-to-diameter ratio (= (Re-R)/D)
q dimensionless temperature (=T-To/ QD/k)

r density, kg.m?

Dg dimensionless temperature difference at the wall-fluide interface
Subscripts

b bulk quantity

f fluid

d downstream

h heated

u upstream

w wall

Wi wall-fluid interface

0 evauated at theinlet temperature

Exponents

* dimensionless value

t designate the instant t

t+Dt designate the ingtant t + Dt
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