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Introduction

Stochastic differential equations (SDE) occupy a central place in the modeling of continuous time
phenomena involving the hazard. On the other hand, The SDE are generalization of ordinary
differential equations where we have in addition a random term. The fields of application of these
SDE are vast and varied, they apply in the elaboration of phenomena of diffusion in physics,
and in the modeling of localization of a given species in population dynamics, the applications of
SDE also touch the field of ecology, signal processing, theory control and financial mathematics.
However, in 1900, L. Bachelier in his thesis "Theory of speculation" to present a Gaussian model
which fitted quite well with the data of the Paris Stock Exchange. This model had the form
X(t) = αt+σw(t); t ∈ [0;T ], w(t) is a standard Brownian motion. It follows from Itô’s formula,
that the geometric Brownian motion is a solution of this SDE, dX(t) = µX(t)dt+ σX(t)dw(t),
its dynamics is the basis of the Black-Sholes model (1973) which deals with the evaluation and
coverage of a European-type option on an action dividend.

We consider a diffusion process (X(t))t≥0 defined by a SDE of the form :

dX(t) = a (X, t) dt+ b (X, t) dw(t), X(0) = X0,

where w(t) is a standard Brownian motion, the functions a, b depend on certain parameters and
X0 is the initial state of this SDE. Fundamental questions about the existence and uniqueness
of a solution for such equation exist in a similar way to ordinary equations, but there are two
criteria for proving existence and uniqueness on a given interval I,

i. A Lipschitz condition that expresses the fact that for any couple (x, y) and all t ∈ I, there is
a constant K such that

|a(x, t)− a(y, t)|+ |b(x, t)− b(y, t)| ≤ K|x− y|

ii. A condition of growth that expresses the fact that variations in a(x, t) and b(x, t) are not too
fast, that is, there is a constant K ′ such as in the time interval I we have the condition

|a(x, t)|2 + |b(x, t)|2 ≤ K ′2(1 + x2)

For more details on the problem of existence and uniqueness, we can refer to Arnold [3], Lipcer
and Shiryayev [49], Le breton and Musiela [44]. In the above equation, if the functions a, b are
linear regarding to the first component, the SDE is called bilinear and behaves like a nonlinear
stochastic differential equation. It is this direction that we have chosen to study SDE for certain
reasons, among which the ability of these stochastic models in continuous time to model certain
phenomena more appropriate than time series in discrete-time, such as the well known ARMA
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Introduction 6

models being an effective and easy tool which is used for describing many equidistant data.
However, in many practical situations, the data generating the process is often observed irregu-
larly spaced. This phenomenon occurs for example in physics, economics and so on. Therefore,
the use of continuous time (which can be interpreted as a solution of some SDE) is inevitable.
Moreover, researchers have often assumed that these models are linear and can be Gaussian,
which continues to attract increasing interest from researchers (see for example Brockwell [15]
and references therein). However, recent studies have shown that assumptions of linearity and /
or gaussianity are very unrealistic. Thus, various nonlinear models have been widely proposed in
economics, sociology, ... to describe these characteristics. Indeed, a GARCH process in contin-
uous time (COGARCH) was recently introduced and studied by Kluppelberg et al. [42] and by
Brockwell et al. [14]. A general class of non-linear continuous time and threshold (CTAR) and
ARMA threshold autoregressive processes are constructed and briefly discussed by Brockwell
[15]. A bilinear model in continuous time (COBL) was introduced by Mohler [53] in control
theory and popularized in time series analysis by Le breton and Musiela [45], Subba Rao and
Terdik [62] and by Iglói and Terdik [38]. Finally, another reason that motivates us to study this
subject and that we remarked that there are not many researchers in Algeria working on this
axis of research.

The bilinear stochastic model

In this thesis, we focused on the probabilistic and statistical study of the so called bilinear
stochastic process COBL(1,1), so, we consider the process (X(t))t≥0 which is given by the fol-
lowing bilinear stochastic differential equation

dX(t) = (α(t)X(t) + µ(t)) dt+ (γ(t)X(t) + β(t)) dw(t), X(0) = X0,

in which α(t), µ(t), γ(t) and β(t) are measurable deterministic functions to the conditions ∀t ≥ 0,
α(t) 6= 0, γ(t)µ(t) 6= α(t)β(t) and the following conditions: ∀T > 0,

∫ T
0 |α(t)| dt < ∞ and∫ T

0 |µ(t)| dt < ∞,
∫ T

0 |γ(t)|2 dt < ∞,
∫ T

0 |β(t)|2 dt < ∞.The initial state X(0) is a random
variable, defined on (Ω,A, P ), independent of w such that E {X(0)} = m(0) and V ar {X(0)} =
K(0). This Equation is called continuous−time bilinear (COBL (1, 1)) (resp. linear) SDE when-
ever γ(t) 6= 0 (resp. γ(t) = 0) for all t > 0, in other words, when the solution is not Gaussian or
it is.

The Itô approach

The existence and uniqueness of the Itô solution process (X(t))t≥0 of bilinear SDE in time
domain is ensured by the general results on stochastic differential equations and under the above
assumptions (see Le breton and Musiela (1984)), this solution is given by

X(t) = ϕ(t)

X(0) +

t∫
0

ϕ−1(s) (µ(s)− γ (s)β (s)) ds+

t∫
0

ϕ−1(s)β (s) dε(s)


where ϕ(t) = exp

{
t∫

0

(
α(s)− 1

2γ
2 (s)

)
ds+

t∫
0

γ (s) dε (s)

}
, t ≥ 0, which reduce to that given by

Iglói and Terdik (1999) in constant coefficients case and provide a solution for non-stationary
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Gaussian Ornstein-Uhlenbeck process corresponding to the case when γ (s) = 0 for all s. In this
case we obtain

X(t) = ψ (t)

X(0) +

t∫
0

ϕ−1(s)µ(s)ds+

t∫
0

ϕ−1(s)β (s) dε(s)

 ,

where (ψ (t))t≥0 is the mean function of (ϕ(t))t≥0 i.e., ψ (t) = exp

{
t∫

0

α(s)ds

}
, t ≥ 0

The frequency approach

Let = = =(w) := σ(w(t), t ≥ t0) (resp =t := σ(w (s) , t0 ≤ s ≤ t)) be the σ -algebra generated by
(w(t))t≥0 (resp. generated by w(s) up to time t) and let L2(=) = L2(R,=, P ) (resp. L2(=t) ) be
the real Hilbert space of nonlinear L2−functional of (w(t))t≥0 and let Lr (F ) be the real Hilbert
space of complex valued functions ft

(
λ(r)

)
defined on Rr such that ft(−λ(r)) = ft(λ(r)) with a in-

ner product 〈ft, gt〉F = r!
∫
Rr Sym

{
ft(λ(r))

}
Sym

{
gs(λ(r))

}
dF (λ(r)) where λ(r) = (λ1, ..., λr) ∈

Rr, Sym
{
ft(λ(r))

}
=

1

r!

∑
π∈P

f
(
λπ(1),, ..., λπ(r)

)
∈Lr (F ) with P denotes the group of all permu-

tations of the set {1, ..., r} and dF (λ(r)) =
r∏
i=1

dF (λi). It is well known that for any regular

second-order process (X(t))t≥t0 (i.e., X(t) is =t−measurable not necessary stationary, belonging
to L2(=)) admits the so-called Wiener-Itô spectral representation (see Major [50] and Dobrushin
[23] for further discussions), i.e.,

X(t) = ft(0) +
∑
r≥1

1

r!

∫
Rr

ft(λ(r))e
itΣλ(r)dZ

(
λ(r)

)
,

where λ(r) = (λ1, ..., λr) , Σλ(r) =
∑r

i=1 λi and dZ
(
λ(r)

)
=
∏r
j=1 dZ (λi). This representation is

unique up to the permutation of the arguments of the evolutionary transfer functions ft(λ(r)),

r ≥ 2 and ft(λ(r)) ∈ Lr (F ) for all t ≥ t0 , with dF (λ(r)) =
1

(2π)r
r∏
i=1

dλ(r) and such that

∑
r≥0

1

r!

∫
Rr

∣∣∣ft(λ(r))
∣∣∣2 dF (λ(r)) <∞ for all t ≥ t0.

Analytical tools

Our study needs to know some useful analytical tools to establish the proof of the results which
are obtained in this study.

Itô’s Formula

Itô’s Formula is an important tool in stochastic calculus where its simplest form is given for any
twice differentiable scalar function f(t, x) of two real variables t and x, one has

df(t,X(t)) =

(
∂f

∂t
+ a(X(t), t)

∂f

∂x
+
b2(X(t), t)

2

∂2f

∂x2

)
dt+ b(X(t), t)

∂f

∂x
dw(t).
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Diagram Formula

The diagram formula for spectral representation which play an important role in some subsequent
proofs and that state that for all f and g defined on R and on Rr respectively such that (f, g) ∈
L1 (F )× Lr (F ), if f is symmetric then

∫
R
f(λ)dZ(λ)

∫
Rn
g
(
λ(n)

)
dZ(λ(n)) =

∫
Rn+1

g
(
λ(n)

)
f (λn+1) dZ(λ(n+1))

+
n∑
k=1

∫
Rn−1

∫
R
g
(
λ(n)

)
f (λk)dF (λk) dZ(λ(n\k))

where dZ(λ(n\k)) = dZ (λ1) ...dZ (λk−1) .dZ (λk+1) ...dZ (λn).

Orthogonal property

As a property of the above spectral representation is that for any ft(λ(n)) and fs(λ(m)), we have

E

{∫
Rn
ft(λ(n))dZ(λ(n))

∫
Rm

fs(λ(m))dZ(λ(m))

}
= δmn n!

∫
Rn
f̃t(λ(n))f̃s(λ(n))dF (λ(n)),

where δmn is the delta function.

Results

In this thesis, we are studying a class of continuous-time bilinear processes (COBL(1, 1)) gen-
erated by some stochastic differential equations where we have investigate some probabilistic
properties and statistical inference.

In first part, we use Itô approach for studying the L2 structure of the COBL(1, 1) process
and its powers for any order with time varying coefficients. Furthermore, we prove that these
results can be obtained by using the transfer functions approach, moreover, by the spectral
representation of the process, we give also conditions for the stability of moments, in particular
the moments of the quadratic process provide us to checking the presence of the so called Taylor
property forCOBL(1, 1) process.

In a second part of this thesis, we use the results of the first part and we propose some
methods of estimation for involving unknown parameters, so, we starting by the moments method
(MM) to estimate the parameters by two methods, taking into consideration the relation that
exists between the moments of the process and its quadratic version and those associate with
the incremented processes where we have showed that the resulting estimators are strongly
consistent and asymptotically normal under certain conditions. Using the linear representation of
COBL(1, 1) process, we are able to propose three other methods, one is in frequency domain and
the rest are in time domain and we prove the asymptotic properties of the proposed estimators.
Simulation studies are presented in order to illustrate the performances of the different estimators,
furthermore, this methods are used to model some real data such as the exchanges rate of the
Algerian Dinar against the US-dollar and against the single European currency and the electricity
consumption sampled each 15mn in Algeria.
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Organization of the thesis

This thesis is composed in two main parts, It is organized as follow.

Probabilistic study

Chapter 1

We are interested in this chapter on the one hand, on the necessary and sufficient conditions
for the existence of regular solution of a bilinear SDE with variable coefficients, this solution
is given in the frequency domain by its evolutionary transfer functions, which makes it possible
express explicitly the characteristics of the second order of the process generalizing thus of Iglòi
and Terdik [38] where they studied this model with constant coefficients. On the other hand we
used the frequency approach to study the probabilistic properties of the model already studied
in the time domain by Le breton and Musiela [45].

Chapter 2

In this chapter, we study a bilinear SDE with variable coefficients driven by a fractional
Brownian motion and under certain conditions imposed on the coefficients of the bilinear term,
the explicit solution is given in the frequency domain, Moreover, the second-order structure
for this class of processes is analyzed where we give explicitly the expectation, covariance, and
spectral density using the Itô approach. A consequence of this study shows that this process has
a long memory, or it is also said that the process has the property "long-rang dependent".

Chapter 3

We continue in this chapter the study of some probabilistic properties of a continuous-time
bilinear process defined as a nonlinear SDE which attracts the attention of researchers in recent
years. These properties are related to the strict and weak stationarity of the process and its
quadratic version, thus deducing the autocorrelations of these two processes in order to analyze
the presence of a Taylor effect and its relation with the property of the lepokurtosis of the
corresponding process. Recall that Goncalves, Martins and Mendes-Lopes [29] analyzed this
property for non-negative discrete-time linear models.

Statistical study

Chapter 4

In this chapter, we propose an estimation method for the first order continuous-time bilin-
ear process (COBL) based on the Euler-Maruyama discretization of the Itô solution associated
with the SDE defining the process. More precisely, certain relations connecting the param-
eters and the theoretical moments of the process and its quadratic version have been given.
These relationships allow us to construct two algorithms to estimate the parameters based on
the method of moments (MM). Using the fact that under certain conditions, the incremented
processes are strongly mixing with exponential rate. We also show that the obtained estimators
are strongly consistent and asymptotically normal. This method can be applied to the model
COGARCH(1, 1), and Ornstein-Uhlenbeck models (OU) and for other specifications. The prop-
erties of the finished samples are also taken into account in Monte Carlo experiments. Finally,
these algorithms are used to model the exchange rate of the Algerian dinar against the US dollar
and against the single European currency.
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Chapter 5

This chapter is devoted to the study of some probabilistic and statistical properties in the
frequency domain of continuous time bilinear processes driven by a standard Brownian motion.
Thus, the L2−structure of the process is studied and its covariance function is given. These
structures lead us to study the strong consistency and asymptotic normality of Whittle’s esti-
mator of the unknown parameters involved in the process. The properties of the finite sample
are also considered through Monte Carlo experiments.

Chapter 6

In this chapter, we examine the properties of the moments in the frequency domain of the
class of first-order continuous-time bilinear processes (COBL(1, 1)) with coefficients that depend
on time. So, we use the associated transfer functions to study the second-order structure of the
process and its powers. In time-invariant case, an expression of the moments of any order is
given and some properties of the moments for special cases are also presented. Based on these
results we are able to examine the statistical properties such that we develop an estimation
method of the process via the so-called generalized method of moments (GMM)illustrated by a
Monte Carlo study and applied to modelling two foreign exchange rates Dinar against US-Dollar
(USD/DZD) and against the single European currency Euro (EUR/DZD).

Chapter 7

This chapter studies in the time domain, a class of diffusion process generated by first order
continuous-time bilinear stochastic process (COBL(1; 1)) with time-dependent coefficients of
which we used the Itô formula approach to examine the L2− structure of the process and its
power of order k ≥ 2, in particular and in time-invariant case, an expression of the moments of any
order is given and the linear representation of such a process is given as well as the properties
of the moments of certain specifications. Based on these results, we are able to examine the
statistical properties to develop an estimation method of the process via the Yule-Walker (YW )
algorithm for the unknown parameters of the CAR representation. The method is illustrated
by a Monte Carlo study and applied to the modeling of the Algerian electricity consumption
sampled every 15 minutes. We refer to the introduction of each of these chapters for a more
detailed presentation of their respective contents.
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Chapter 1

A note on L2-structure of
continuous-time bilinear processes with
time-varying coefficients1

1. Ce chapitre est publié dans le journal : International Journal of Statistics and Probability.

Abstract

This chapter is concerned with the investigation of L2-structure issue of time-varying coefficients
continuous-time bilinear processes (COBL) driven by a Brownian motion (BM). Such processes
are very useful for modeling irregular spacing non linear and non Gaussian datasets and may
be proposed to model for instance some financial returns representing high amplitude oscilla-
tions and thus make it a serious candidate for describe processes with time-varying degree of
persistence and other complex systems. Our attention is focused however on the probabilistic
structure of COBL processes, so, we establish necessary and sufficient conditions for the exis-
tence of regular solutions in term of their transfer function. Explicite formulas for the mean and
covariance functions are given. As a consequence, we observe that the second order structure is
similar to a CARMA processes with some uncorrelated noise. Therefore, it is necessary to look
into higher-order cumulant in order to distinguish between COBL and CARMA processes.

1.1 Introduction

Discrete-time series such as the well-known ARMA models, provide an effective and tractable
tool to describe many datasets assumed to be equally spaced. However, in many practical situa-
tions, the data generating the process, are often observed irregularly spaced. This phenomenon
happens for instance in physics, engineering problems, economy and so on. Therefore, the re-
sort to continuous-time (which can be interpreted as a solution of some stochastic differential
equations (SDE)) models is unavoidable. These models are often assumed to be linear and may
be Gaussian which continue to gain a growing interest of researchers (see for instance Brockwell
(2001) and the references therein). However, recent studies have been shown that the linear-
ity and/or Gaussianity assumptions is very unrealistic. So, various nonlinear models have been

12



1.2 Wiener’s chaos representation 13

widely proposed in economics, sociology and in industrial panel data in order to describe these
features. Indeed, a continuous-time GARCH (COGARCH) process, was recently introduced
and studied by Kluppelberg et al. (2004) and by Brockwell et al. (2006). A general class of non-
linear continuous-time Autoregressive and threshold (CTAR) and threshold ARMA processes
are constructed and briefly discussed by Brockwell (2001). A continuous-time bilinear models
(COBL) was introduced firstly by Mohler (1973) in control theory and has popularized in time
series analysis by Lebreton and Musiela (1984), Subba Rao and Terdik (2003) and by Iglói and
Terdik (1999).

The main purpose of this chapter is, on hand, to generalize the time-invariant COBL model
proposed by Iglói and Terdik (1999) to time-varying one and on other hand, to extend the results
by Lebreton and Musiela (1984) in time domain to frequency domain. So, in the next section,
we present a powerful frame for studying the nonlinear SDE in terms of their transfer function.
This approach allows us to distinguish between linear and nonlinear and between regular and
singular solutions. Section 3, describes the COBL equation with respect to its evolutionary
(time-dependent) transfer function, so in Section 4 we use this representation to give sufficient
and necessary conditions ensuring the existence of second-order regular solutions. In section
5, an exact expression for the covariance function and the spectral density are given and it is
shown that the second-order structure is the same as a CARMA process with time-varying
coefficients. This result, we then conduct to investigate the third-order cumulants and showing
that the bispectrum is zero if the process is linear. In Section 6, we conclude and discuss possible
extensions.

1.2 Wiener’s chaos representation

Let (ε(t))t≥0 be a real Brownian motion defined on some filtered space (Ω,A, (At)t≥0 , P ) with as-

sociated spectral representation ε(t) =
∫
R
eitλ − 1

iλ
dZ(λ), where dZ(λ) is an orthogonal complex-

valued stochastic measure on R with zero mean, E
{
|dZ(λ)|2

}
= dF (λ) =

dλ

2π
and uniquely

determined by Z([a, b[) =
1

2π

∫
R

e−iλa − e−iλb

iλ
dε (λ), for all −∞ < a < b < +∞. So the pro-

cess (Z([0, t[))t>0 is also a Brownian motion. Consider the Hilbert space H = L2(R,BR, F ) of
the complex squared integrable functions f satisfying f(λ) = f(−λ) for any λ ∈ R where f(λ)
denotes the complex conjugate of f(λ). For any n ≥ 1, we associated three real Hilbert spaces
based on H. The first is Hn = H⊗n the n-fold tensor product of H endowed by the inner
product < f, f >=

∫
Rn f(λ(n))f(λ(n))dF (λ(n)) where λ(n) = (λ1, λ2, ..., λn) ∈ Rn, with λ(0) = 0,

dF (λ(n)) =
n∏
i=1

dF (λi) and f(λ(n)) = f(−λ(n)) such that ‖f‖2 =
∫
Rn
∣∣f(λ(n))

∣∣2 dF (λ(n)) <

∞. The second one is Ĥn = H⊕n ⊂ Hn the n−fold symmetrized tensor product of H de-
fined by f ∈ Ĥn if and only if f is invariant under permutation of their arguments i.e.,
f(λ(n)) = Sym{f(λ(n))} where Sym

{
f(λ(n))

}
= f̃(λ(n)) = 1

n!

∑
p∈Pn

f(λ(p(n))), Pn denotes the

group of all permutations of the set {1, 2, ..., n}, and we endowed Ĥn with the inner product
< f, f >⊕= n! < f, f > for f, f ∈ Ĥn. The last space is called Fock-space over H denoted by

=(H) defined by =(H) =
∞⊕
r=0

1
r!Ĥr with Ĥ0 = H0 = R (

⊕
denotes the direct orthogonal sum)
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whose elements f =
(
f(λ(r)), r ≥ 0

)
fulfilled the condition

‖f‖2 =
∑
r≥0

1

r!

∫
Rr

∣∣f(λ(r))
∣∣2 dF (λ(r)) <∞. (1.2.1)

Let = = =(ε) := σ(ε(t), t ≥ 0) (resp =≤t(ε) := σ(ε(s), s ≤ t)) be the σ-algebra generated by
(ε(t))t≥0 (resp. generated by ε(s) up to time t) and let L2(=) = L2(R,=, P ) be the real Hilbert
space of nonlinear L2−functional of (ε(t))t≥0. It is well known (see Major (1981) and Bibi (2006) )
that L2(=) is isometrically isomorphic to Fock-space =(H), so, for any random process (X(t))t∈R
(not necessary stationary) of L2(=) admits the so-called Wiener-Itô orthogonal representation

X(t) = ft(0) +
∑
r≥1

1

r!

∫
Rr
eitλ(r)ft(λ(r))dZ(λ(r)) (1.2.2)

where λ(r) =
r∑
i=1

λi and the integrals are the multiple Wiener-Itô stochastic integrals with respect

to the stochastic measure dZ (λ), ft(0) = E{X(t)}, dZ(λ(r)) =
r∏
i=1

dZ(λi) and f(λ(r)) ∈ Ĥr are

referred as the r− th evolutionary transfer function of (X(t))t∈R, uniquely determined and fulfill
the condition

∑
r≥0

1
r!

∫
Rr
∣∣ft(λ(r))

∣∣2 dF (λ(r)) < ∞. As a property of the representation (1.2.2) is

that for any ft ∈ Hn and fs ∈ Hm, we have

E

{∫
Rn
ft(λ(n))dZ(λ(n))

∫
Rm

fs(λ(m))dZ(λ(m))

}
= δmn n!

∫
Rn
f̃t(λ(n))f̃s(λ(n))dF (λ(n)) (1.2.3)

where δmn is the delta function. This means that the spaces Ĥn are orthogonal. Two interesting
properties related to the multiple Wiener-Itô stochastic integrals which is important for future
use are the diagram and Itô formulas summarized in the following lemma due to Dobrushin
(1979).

Lemma 1.2.1. Let (ϕi)1≤i≤k be an orthonormal system in H, (nj)1≤j≤k is a sequence of positive
integers such that n = n1 + ... + nk and let hj be the j − th Hermite polynomial with highest

coefficient 1, i.e., hj (x) = (−1)je
x2

2
dj

dxj
e−

x2

2 . Then,

1. The Itô’s formula states that
k∏
j=1

hnj

(∫
R
ϕj(λ)dZ(λ)

)
=

∫
Rn

k∏
j=1

nj∏
i=1

ϕj(λn(j−1)+i)dZ(λ(n))

=

∫
Rn
Sym


n∏
j=1

ϕj(λj)

 dZ(λ(n))

2. The diagram formulas state that for any f∈H1 and g∈Hn we have∫
R
f(λ)dZ(λ)

∫
Rn
g
(
λ(n)

)
dZ(λ(n)) =

∫
Rn+1

g
(
λ(n)

)
f (λn+1) dZ(λ(n+1))

+
n∑
k=1

∫
Rn−1

∫
R
g
(
λ(n)

)
f (λk)dF (λk) dZ(λ(n\k))

where dZ(λ(n\k)) = dZ (λ1) ...dZ (λk−1) .dZ (λk+1) ...dZ (λn).
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Remark 1.2.2. For any n ≥ 0, let Kn be the closed vector subspace of L2(=) spanned by
{hn(X), X ∈ = : V ar (X) = 1} with K0 =

{
Ct
}
. Then, it can be shown that the subspaces

Kn are mutually orthogonal and L2(=) =
∞⊕
n=0
Kn (see Peccati and Taqqu (2011)). Noting that

the condition V ar (X) = 1 in the definition of the subspaces (Kn)n≥0 is necessary. Indeed,
h2(X) = X2 − 1 is orthogonal to h0(X) = Ct, if and only if E{X2 − 1} = 0.

Noting here that the representation (1.2.2) is referred as regular solution if =≤t(X) ⊂ =≤t(ε)
i.e., the processX(t) depends only on the past of the noise ε(t). So, a stochastic process (X(t))t∈R
having a representation (1.2.2) has a regular (or also causal) second-order solution if for all t ∈ R
and every r ∈ N, the evolutionary transfer functions ft(λ(r)) satisfies Szego’s condition, i.e.,

∀t ∈ R:
∫
Rr

1

1 +
∥∥λ(r)

∥∥2 log
(∣∣ft(λ(r))

∣∣) dF (λ(r)) > −∞. (see Ibragimov and Rozanov (1978) for

further discussions).
In the following section, a class of non linear diffusion processes admitting the representation

(1.2.2) will be investigated.

1.3 Evolutionary transfer functions of time-varying COBL pro-
cesses

The representation (1.2.2) can be describe general nonlinear stochastic differential equation
(SDE) with a great accuracy and can be enlarged to include the processes (X(t))t∈R solving the
following SDE

dX(t) = f
(
X(s)(t), ε(r)(t), 0 ≤ s ≤ p, 0 ≤ r ≤ q

)
dt+ dε(t) (1.3.1)

in which the superscript (k) denotes the k−fold differentiation with respect to t and some mea-
surable function f . The derivative ε(j)(t), j > 0 do not exist in usual sense, hence it can be
interpret in the Itô sense. The main objective here is to derive the evolutionary transfer func-
tions system associated with some subclass of (1.3.1) and we establish necessary and sufficient
conditions ensuring the existence of second−order regular solutions. More precisely, we shall
restrict ourself to the diffusion processes (X(t))t∈R generated by the following SDE,

dX(t) = (α(t)X(t) + µ(t)) dt+ (γ(t)X(t) + β(t)) dε(t), t ≥ 0, X(0) = X0 (1.3.2)

in which α(t), µ(t), γ(t) and β(t) are measurable deterministic functions to the conditions ∀t ≥ 0,
α(t) 6= 0, γ(t)µ(t) 6= α(t)β(t) and the following conditions: ∀T > 0,

∫ T
0 |α(t)| dt < ∞ and∫ T

0 |µ(t)| dt < ∞,
∫ T

0 |γ(t)|2 dt < ∞,
∫ T

0 |β(t)|2 dt < ∞.The initial state X(0) is a random
variable, defined on (Ω,A, P ), independent of ε such that E {X(0)} = m(0) and V ar {X(0)} =
K(0). Equation (1.3.2) is called continuous−time bilinear (COBL (1, 1)) (resp. linear) SDE
whenever γ(t) 6= 0 (resp. γ(t) = 0) for all t > 0, in other words, when the solution is not
Gaussian or it is.

SDE given by (1.3.2) encompasses many commonly used models in the literature. Some
specific examples among others are:

1. COGARCH(1, 1): This classes of processes is defined as a SDE by dX (t) = σ (t) dB1(t)
with dσ2 (t) = θ

(
γ − σ2 (t)

)
dt + ρσ2 (t) dB2 (t), t > 0 where B1 and B2 are independent



1.3 Evolutionary transfer functions of time-varying COBL processes 16

Brownian motions. So, the stochastic volatility equation may be regarded as particular
case of (1.3.2) by assuming constant the functions α(t), µ(t), γ(t) and β(t) with β(t) = 0
for all t ≥ 0. (see Kluppelberg et al. (2004) and the reference therein).

2. CAR(1): This classes of SDE may be obtained by assuming γ (t) = 0 for all t ≥ 0. (see
Brockwell (2001) and the reference therein)

3. Gaussian Ornstein-Uhlenbeck (GOU) process: The GOU process is defined as dX(t) =
γ (µ−X(t)) dt + βdε(t), t ≥ 0. So it can be obtained from (1.3.2) by assuming constant
the functions α(t), µ(t), γ(t) and β(t) with γ(t) = 0 for all t ≥ 0. (see Brockwell (2001)
and the reference therein).

The solution of equation (1.3.2) may be obtained according to :

1.3.1 The time domain approach

The existence and uniqueness of the Itô solution process (X(t))t≥0 of equation (1.3.2) in time
domain is ensured by the general results on stochastic differential equations and under the above
assumptions (see Lebreton and Musiela (1984))

X(t) = ϕ(t)

X(0) +

t∫
0

ϕ−1(s) (µ(s)− γ (s)β (s)) ds+

t∫
0

ϕ−1(s)β (s) dε(s)


where ϕ(t) = exp

{
t∫

0

(
α(s)− 1

2γ
2 (s)

)
ds+

t∫
0

γ (s) dε (s)

}
, t ≥ 0, which reduce to that given by

Iglói and Terdik (1999) in constant coefficients case and provide a solution for non-stationary
Gaussian Ornstein-Uhlenbeck process corresponding to the case when γ (s) = 0 for all s. In this
case we obtain

X(t) = ψ (t)

X(0) +

t∫
0

ϕ−1(s)µ(s)ds+

t∫
0

ϕ−1(s)β (s) dε(s)

 (1.3.3)

where (ψ (t))t≥0 is the mean function of (ϕ(t))t≥0 i.e., ψ (t) = exp

{
t∫

0

α(s)ds

}
, t ≥ 0 and the

stochastic integral on the right-hand side of (1.3.3) has an expected value zero and by (1.2.3) we
obtain

E


t∫

0

f (s) dε(s)

t∫
0

g(s′)dε(s′)

 =


t∫

0

f (s) g(s)d(s)


for any squared integrable functions f and g with respect to Lebesgue measure on [0, t].

1.3.2 The frequency domain approach

In frequency domain, we have
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Theorem 1.3.1. Assume that the process (X(t))t≥0 generated by the SDE (1.3.2) has a regular
second-order solution. Then the evolutionary symmetrized transfer functions ft(λ(r)), (t, r) ∈
R×N of this solution are given by symmetrization of the following differential equations of order
1,

f
(1)
t (λ(r)) =

{
α(t)ft(0) + µ(t), if r = 0(
α(t)− iλ(r)

)
ft(λ(r)) + r

(
γ(t)ft(λ(r−1)) + δ{r=1}β(t)

)
, if r ≥ 1

(1.3.4)

Proof. Suppose that the system (1.3.2) has a regular second-order solution of the form (1.2.2)
with evolutionary symmetrized transfer functions ft(λ(r)), (t, r) ∈ R × N, then by putting the
solution (1.2.2) into (1.3.2) and using the diagram formula we obtain
X(t)dε(t)

=

{
ft(0) +

∞∑
r=1

1

r!

∫
Rr
ft(λ(r))e

itλ(r)dZ(λ(r))

}∫
R
eitλdZ(λ)

=

∫
R
ft(0)eitλdZ(λ)

+
∞∑
r=1

1

r!

{∫
Rr+1

ft(λ(r))e
itλ(r+1)dZ(λ(r+1)) + r

∫
Rr−1

eitλ(r−1)

(∫
R
ft(λ(r))dF (λr)

)
dZ(λ(r−1))

}
,

since a regular solution does not depends on ε(s), s > t, and depends on ε(t) linearly, then the
last term in above expression is equal to 0, and hence, the recursion (1.3.4) follows by identifying
the r − th order evolutionary transfer functions.

Remark 1.3.2. The existence and uniqueness of the evolutionary symmetrized transfer functions
ft(λ(r)), (t, r) ∈ R×N of this solution is ensured by general results on linear ordinary differential
equations (see, Kelly (2010), ch. 1) so,

ft(λ(r)) =


ϕt (0)

(
f0(0) +

t∫
0

ϕ−1
s (0)µ(s)ds

)
if r = 0

ϕt

(
λ(r)

)(
f0(λ(r)) + r

t∫
0

ϕ−1
s

(
λ(r)

) (
γ(s)fs(λ(r−1)) + δ{r=1}β(s)

)
ds

)
if r ≥ 1

(1.3.5)

where ϕt
(
λ(r)

)
= exp

{
t∫

0

(
α(s)− iλ(r)

)
ds

}
.

Remark 1.3.3. When α(t), µ(t), γ(t) and β(t) are constant, then the recursion (1.3.4) reduces
to

f(0) = −µ
α
, and f(λ(r)) = r

(
iλ(r) − α

)−1 (
γf(λ(r−1)) + δ{r=1}β

)
if r ≥ 1

or equivalently f(λ(r)) = r!γr−1
(
β − µ

α
γ
) r∏
j=1

(
iλ(j) − α

)−1
and the symmetrized version can be

rewritten as Sym
{
f(λ(r))

}
= (µγ − αβ) γr−1

+∞∫
0

exp {αλ}
r∏
j=1

1− exp {−iλλj}
iλj

dλ.
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Remark 1.3.4. Under the coditions specified in Remark 1.3.3 and when γ = 0, it is not difficult
to see that (X(t))t≥0 has a unique strictly stationary solution given by X(t) = f (0) +

∫
R
g(t −

u)dε(u) where
∫
R
g(u)e−iλudu = β

iλ−α , λ ∈ R.

1.4 Condition for the existence of regular solutions

In Theorem 1.3.1 a first-order ordinary differential equation is derived for evolutionary transfer
function of SDE (1.3.2). In order that these transfer function define a second-order regular
solutions, we need to check that its belong to =(H) and satisfies the condition (1.2.1). For this
purpose, let L∞ (resp. L∞⊗L∞) be the Banach space of infinite dimensional vectors of essentially
bounded complex functions on C (resp. on C2) and denote by f(λ(r)) =

(
ft(λ(r)), t ∈ R

)
∈ L∞

for any λ(r) ∈ Rr. Define the following bounded operators α = diag {α(t)}, γ = diag {γ(t)},
µ = diag {µ(t)} and β = diag {β(t)} where "diag" denotes the diagonal operator induced by a
function in L∞, i.e., (αv)t = α(t)v(t) for all v = (v(t), t ∈ R) ∈ L∞. Moreover, let D (resp. I) be
the differentiation (with respect to t) (resp. identity) operator on L∞, i.e., (Dv)t = v(1)(t),t ∈ R
(resp (Iv)t = v(t)) for all v ∈ L∞ with derivable components and set P (z) = Iz − Φ with
Φ = α − D (see Dunford and Schwartz, 1963 for further details). With this notation, the
functions (1.3.4) may be rewritten as f (1) (0) = αf (0)+µ1, f (1)

(
λ(r)

)
=
(
α− iλ(r)I

)
f
(
λ(r)

)
+

r
(
γf
(
λ(r−1)

)
+ δ{r=1}β1

)
, or equivalently

f (0) = P−1 (0)µ1, f (λ) = P−1 (iλ)
(
γf (0) + β1

)
, f
(
λ(r)

)
= rP−1

(
iλ(r)

)
γf
(
λ(r−1)

)
, r ≥ 2.

(1.4.1)
However, it is easily follows from (1.2.2) that the necessary and sufficient condition for the ex-

istence of second- order regular solution of SDE (1.3.2) is that the components of
∑
r≥0

1
r!

∫
Rr f̃

(
λ(r)

)
⊗ f̃

(
λ(r)

)
dF
(
λ(r)

)
be finite where f̃

(
λ(r)

)
= Sym

{
f
(
λ(r)

)}
. Thus we have

Proposition 1.4.1. The SDE (1.3.2) has a regular solution if and only if the following two
conditions hold true.

C1. The spectrum of the operator Φ lie in C = {z ∈ C : Re(z) < 0}.

C2. The spectrum of the operator
(
I ⊗ Φ + Φ⊗ I + γ⊗2

)−1 (
γ⊗2 − Φ⊗ I − I ⊗ Φ

)
lie in C.

Moreover, the solution process is unique, bounded up to the second order moments and its
infinite dimensional evolutionary transfer functions f

(
λ(r)

)
satisfy the recursion (1.4.1) is such

that
{
r!f t

(
λ(r)

)
, r ∈ N

}
∈ =(H).

To show the Proposition 1.4.1, we need the following lemmas

Lemma 1.4.2. Under the condition C1 of Proposition 1.4.1 the functions f t(λ(r)) and f̃ t(λ(r))
are well defined.

Proof. First we define the tensor product of two bounded linear operators A and B on L∞ by
((A⊗B) (u⊗ v))t,s = (Au)t . (Av)s for all u, v ∈ L∞ and note that under C1, the operator
P (z) has an analytic inverse. For any r ∈ N, let ‖f (r)‖ be the norm of the vector f

(
λ(r)

)
, then
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‖f (0)‖ ≤
∥∥P−1

∥∥∥∥µ∥∥ , ‖f (1)‖ ≤
∥∥P−1

∥∥ ‖f‖ where f = γf (0)+β1 and ‖f (r)‖ ≤ r!
∥∥P−1γ

∥∥r−1 ‖f‖
for r ≥ 2. This mean that

(
f
(
λ(r)

)
, r ≥ 0

)
is well defined and f

(
λ(r)

)
∈ L∞ for all r ∈ N.

Since ‖Symf (r)‖ ≤ ‖f (r)‖, then
(
f̃
(
λ(r)

)
, r ≥ 0

)
is also well defined. Now we prove that the

coordinates ft
(
λ(r)

)
of the vector f

(
λ(r)

)
belong to =(H) for all (t, n) ∈ R×N or more generally,

the integral υt,s (r) = 1
r!

∫
Rr
f̃t
(
λ(r)

)
f̃s
(
λ(r)

)
dF (λ(r)) (which is the r − th term of Cov(Xt, Xs))

exist and finite. Indeed, υt,s (r) ≤ 1
r!

∫
Rr

∣∣∣f̃t (λ(r)

)∣∣∣ ∣∣∣f̃s (λ(r)

)∣∣∣ dF (λ(r)) ≤

(
sup

λ(r)∈Rr

∥∥f (λ(r)

)∥∥)2

.

Since υt,t (r) = 1
r!

∥∥∥f̃ (λ(r)

)∥∥∥2
, then the functions ft

(
λ(r)

)
∈ =(H) for all (t, r) ∈ R× N.

In the following lemma an explicit formula for the quantities υt,s (r) is given.

Lemma 1.4.3. Let V (r) = (vt,s(r), t, s ∈ R) = 1
r!

∫
Rr

f̃(λ(r)) ⊗ f̃(λ(r))dF (λ(r), then under the

condition C1 of Proposition 1.4.1 we have

V (r) =
1

r!

∫
Rr

f̃(λ(r))⊗ f̃(λ(r))dF (λ(r) = Gr−1V (1),

where G = − (Φ⊗ I + I ⊗ Φ)−1 γ⊗2 and V (1) = − (Φ⊗ I + I ⊗ Φ)−1 f⊗2.

Proof. First we note that V (r) ∈ L∞ ⊗ L∞ for all r ≥ 0. On the other hand from (1.4.1) we
obtain for r = 1,

V (1) =

∫
R

f(λ)⊗ f(λ)
dλ

2π
=

∫
R

P−1(iλ)⊗ P−1(−iλ)
dλ

2π
f⊗2,

so by the residue theorem V (1) reduces to − (Φ⊗ I + I ⊗ Φ)−1 f⊗2. For r = 2, we obtain

V (2) =
1

2!

∫
R2

f̃(λ(2))⊗ f̃(λ(2))
dλ1dλ2

(2π)2

=
1

2!

∫
R2

P−1(iλ(2))γ ⊗ P−1(−iλ(2))γ{P−1(iλ1)⊗ P−1(−iλ1) + P−1(iλ1)⊗ P−1(−iλ2)

+ P−1(iλ2)⊗ P−1(−iλ1) + P−1(iλ2)⊗ P−1(−iλ2)}dλ1dλ2

(2π)2
f⊗2

=
1

2!

∫
R2

P−1(iλ(2))γ ⊗ P−1(−iλ(2))γ
{
P−1(iλ1)⊗ P−1(−iλ1) + P−1(iλ2)⊗ P−1(−iλ2)

} dλ(2)

(2π)2
f⊗2

= GV (1).

Now, assume that the Lemma 1.4.3 is valid up to r− 1. Then using the identity f̃(λ(r−1)) =
1
r

∑r
k=1f̃(λ(r\k)), we obtain after some tedious computations



1.4 Condition for the existence of regular solutions 20

1

r!

∫
Rr

f̃(λ(r))⊗ f̃(λ(r))
dλ(r)

(2π)r

=
1

r!

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γrf̃(λ(r−1))⊗ rf̃(λ(r−1))
dλ(r)

(2π)r

=
1

r!

r∑
k,l=1

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ f̃(λ(r\l))⊗ f̃(λ(r\k))
dλ(r)

(2π)r

=
1

r!

r∑
k=1

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ f̃(λ(r\k))⊗ f̃(λ(r\k))
dλ(r)

(2π)r

+
1

r!

r∑
k 6=l

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ f̃(λ(r\k))⊗ f̃(λ(r\l))
dλ(r)

(2π)r

=
r

r!

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ f̃(λ(r−1))⊗ f̃(λ(r−1))
dλ(r)

(2π)r

+
r(r − 1)

r!

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ f̃(λ(r−1))⊗ f̃(λ(r\r−1))
dλ(r)

(2π)r
.

Now, since the last term is zero (See Terdik [64]), the Lemma 1.4.3 follows.

Proof. of Proposition 1.4.1. The proof follows essentially from the fact that if the spectrum of
any operator A lies in C = {z ∈ C : Re(z) < 0}, then the spectrum of (I −A)−1 (I +A) lies in
{|z| ∈ C : z < 1}. Hence, for any r ≥ 1, V (r) converges to zero at an exponential rate as r →∞,
so
(
r!f t

(
λ(r)

)
, r ≥ 0

)
∈ =(H) for all t ∈ R and their components constitute however a regular

second-order solution for SDE (1.3.2).

Remark 1.4.4. The assumption C1 ensure also that the CAR part has a regular solution,
however, C2 is the infinite dimensional generalization of the condition that we found in literature
of differential equations systems ( see Kelly (2010) chap. 6).

Remark 1.4.5. It is worth noting that the condition C2 in Proposition 1.4.1, may be replaced
by

C0. The spectrum of the operator

Ψ =

∫
R

(P (iλ)⊗ P (−iλ))−1 γ⊗2dF (λ)

lies in C = {z ∈ C : Re(z) < 0}.
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Though the conditions C1 and C2 (or equivalently C0) of Proposition 1.4.1 could be used as a
sufficient condition for the existence of regular solution of SDE (1.3.2), they are of little use in
practice because they are based on the properties of infinite dimentional operators. Hence, some
simple sufficient conditions can be given. Indeed, define Pt (z) = z − α (t) and Rt (z) = γ(t)z, it
can be seen that P (z)1 = (Pt (z))t∈R and R (z)1 = (Rt (z))t∈R. So,

Proposition 1.4.6. A sufficient condition for the SDE (1.3.2) to have a second-order regular
solution is that the following two conditions hold true

C′1. Pt(z) 6= 0 for all t ∈ R and z ∈ C.

C′2. Υ =
∫
R

sup
t
|Rt (1) /Pt(iλ)|2 dλ < 1.

Proof. The condition C′1 implie the analycity of P−1 (z), so for all u, v ∈ L∞, the equation
P ∗ (z)u = v has a solution. On the other hand, the condition C′2 ensure the convergence of
the series V∞ =

∑
r≥1

Gr−1 (in the operator norm) or equivalently by remark 4.5, Ψ (1⊗ 1) ≤ Υ.

Indeed, for any υ ∈ `1 and V ∈ `∞ ⊗ `∞ let 〈υ ⊗ υ, V 〉 =
∫
R
∫
RυsυtVs,tdtds, G(z) = P−1(z)R(z)

and set k(z) = sup
t
|Rt (1) /Pt(z)|2. Then we have

〈υ ⊗ υ, (G(z)⊗G(z)) (1⊗ 1)〉 = |〈υ,G(z)1〉|2 =
∣∣〈P ∗(z)u, P−1(z)R(1)1

〉∣∣2 = |〈u,R(1)1〉|2

=

∣∣∣∣∫
R
utRt(1)dt

∣∣∣∣2 ≤ ∣∣∣∣∫
R
utPt(z)dt

∣∣∣∣2 k(z) = 〈u, P (z)1〉2 k(z)

= 〈υ, 1〉2 k(z) = 〈υ ⊗ υ,1⊗ 1〉 k(z).

The result follows by integrating this inequality along R for z = iλ.

Example 1.4.7. Consider the simplest COBL(1, 1) defined by

dX(t) = α(t)X(t)dt+ γ(t)X(t)dε(t), t ≥ 0, X(0) = X0 (1.4.2)

Let a = sup
t∈R
|α(t)| and γ = sup

t∈R
|Rt(1)|2. Then by the residue theorem we have

∫
R

sup
t

|Rt(1)|2

|iλ− α(t)|2
dF (λ) ≤ γ

2π

∫
R

1

λ2 − a2
dλ =

γ

2a
.

So the sufficient condition for (1.4.2) to has a regular solution is that γ < 2a.

1.5 Applications

In this section, the general results of previous sections are particularized for the computation
of the first and second- order moments totally describes the statistical properties of a Gaussian
processes.
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1.5.1 Second-order structure of COBL (1, 1) processes

Proposition 1.5.1. Under the conditions of Proposition 1.4.6 we have

E {X(t)} = ϕt (0)

f0(0) +

t∫
0

ϕ−1
s (0)µ(s)ds


and

Cov(X(t), X(s)) = ϕt (0)ϕ−1
s (0)K(s), t ≥ s ≥ 0

where K(t) = ψt

(
K(0) +

t∫
0

ψ−1
s (γ(s)fs(0) + β(s))2 ds

)
with ψt = exp

{
t∫

0

(
2α(s) + γ2(s)

)
ds

}
Proof. From the representation (1.2.2) we have E {X(t)} = ft(0), so the expression of E {X(t)}
follows from the first equation of the recursion (1.3.5). On the other hand, for any t ≥ 0, let
X(t)− ft(0) = ϕt (0)Y (t) where

Y (t) =
∑
r≥1

∫
Rr

f0(λ(r)) + r

t∫
0

ϕ−1
s

(
λ(r)

) (
γ(s)fs(λ(r−1)) + δ{r=1}β(s)

)
ds

 dZ(λ(r)),

since K(t) = Cov(X(t), X(t)) = ϕ2
t (0)Cov(Y (t), Y (t)), then we have

dK(t) = 2α(t)ϕ2
t (0)Cov(Y (t), Y (t))dt+ ϕ2

t (0) dCov(Y (t), Y (t))

where
dCov(Y (t), Y (t)) = ϕ−2

t (γ(t)ft(0) + β(t))2 dt+ ϕ−2
t γ2(t)dt

which implies the differential equation dK(t) =
(
2α(t) + γ2(t)

)
K(t)dt + (γ(t)ft(0) + β(t))2 dt

and its solution given by

K(t) = ψt

K(0) +

t∫
0

ψ−1
s (γ(s)fs(0) + β(s))2 ds


with ψt = exp

{
t∫

0

(
2α(s) + γ2(s)

)
ds

}
.

Remark 1.5.2. In stationary case, i.e., when the functions α(.), µ(.), γ(.) and β(.) are constants,
we have

E {X(t)} = −µ
α
,K(0) = V ar {X(t)} =

(αβ − µγ)2

α2 |2α+ γ2|
and Cov(X(t), X(t + h)) = K(0)eα|h|,

h ∈ R.

The result of the Proposition 1.5.1 shows that the covariance function of COBL (1, 1) processes
defined by (1.3.2) has the same form as that of a CAR (1). So we have the following result due
to Lebreton and Musiela [45].

Proposition 1.5.3. There exists a wide-sense Wiener process (ε∗(t), t ≥ 0) uncorrelated with
X(0) such that (X(t), t ≥ 0) admits the CAR (1) representation, i.e.,

dX(t) = (α(t)X(t) + µ(t)) dt+
{
γ2(t)K(t) + (γ(t)m(t) + β(t))2

}1/2
dε∗(t), t ≥ 0, X(0) = X0.
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Remark 1.5.4. To draw the conclusion that the second-order properties of COBL (1, 1) cannot
be distinguished from an CAR (1) process. This makes it necessary for us to look into third-order
cumulant in order to distinguish the nonlinear random processes.

1.5.2 Third-order structure of COBL (1, 1) processes

For the sake of convenience and simplicity, we shall assume constant the coefficients α(t), µ(t)
and γ(t), β(t) with µ(t) = 0 in Equation (1.3.2). Moreover, we assume the process solution is

given by the Wiener-Itô representation in the form X(t) =
+∞∑
r=1

∫
Rr g

(
λ(r)

)
eitλ(r)dZ

(
λ(r)

)
. Using

the above representation, we can obtain the following approximation

X(t) =

∫
R
g (λ1) eitλ1dZ (λ1) +

∫
R2

g
(
λ(2)

)
eitλ(2)dZ

(
λ(2)

)
+ ξ(t) = X(1)(t) +X(2)(t) + ξ(t),

where ξ(t) is a second-order stationary process which it is orthogonal to the first two terms.
The transfer functions g(λ1), g

(
λ(2)

)
are given by

g(λ1) = (iλ1 − α)−1β,

g(λ1, λ2) = γ (i(λ1 + λ2)− α)−1 (iλ1 − α)−1 β.

It can be shown that

CX(s, u) = E {X(t)X(t+ s)X(t+ u)}

=
[
E
{
X(1)(t)X(1)(t+ s)X(2)(t+ u)

}
+ E

{
X(1)(t)X(2)(t+ s)X(1)(t+ u)

}]
+
[
E
{
X(2)(t)X(1)(t+ s)X(1)(t+ u)

}]
+O (1) .

We calculate E
{
X(1)(t)X(1)(t+ s)X(2)(t+ u)

}
, and the other terms can be obtained by

symmetry. First we observe that

E
{
X(1)(t)X(1)(t+ s)X(2)(t+ u)

}
= E

[∫
R2

g(λ1)g(λ2)eitλ1+i(t+s)λ2dZ(λ(2))×
∫
R2

g(λ3, λ4)ei(t+u)(λ3+λ4)dZ(λ3, λ4)

]
= 2!

∫
R2

Sym
{
g(λ1)g(λ2)eitλ1+i(t+s)λ2

}
Sym

{
g(λ1, λ2)ei(t+u)(λ1+λ2)

}
dF
(
λ(2)

)
= 2

∫
R2

γg(λ1)g(λ2)g(−λ1 − λ2)
1

β
Sym {g(−λ1)}Sym

{
eisλ1

}
e−iu(λ1+λ2)dλ1λ2

(2π)2
.

We calculate E
{
X(1)(t)X(2)(t+ s)X(1)(t+ u)

}
,we get

E
{
X(1)(t)X(2)(t+ s)X(1)(t+ u)

}
= 2

∫
R2

γg(λ1)g(λ2)g(−λ1 − λ2)
1

β
Sym {g(−λ1)}Sym

{
eiuλ1

}
e−s(λ1+λ2)dλ1λ2

(2π)2
.
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It remains to compute E
{
X(2)(t)X(1)(t+ s)X(1)(t+ u)

}
, we have

E
{
X(2)(t)X(1)(t+ s)X(1)(t+ u)

}
= E

[∫
R2

g(λ1, λ2)eit(λ1+λ2)Z(dλ(2))×
∫
R2

g(λ3)g(λ4)ei(t+s)λ3+i(t+u)λ4dZ(λ3, dλ4)

]
= 2!

∫
R2

Sym
{
g(λ1, λ2)eit(λ1+λ2)

}
Sym

{
g(λ1)g(λ2)ei(t+s)λ1+i(t+u)λ2

}
dF
(
λ(2)

)
= 2

∫
R2

γg(λ1 + λ2)
1

β
Sym {g(λ1)} g(−λ1)g(−λ2)Sym

{
e−isλ1−iuλ2

} dλ1λ2

(2π)2
.

Hence

CX(s, u) = E {X(t)X(t+ s)X(t+ u)} = 2
γ

β

∫
R2

g(λ1)g(λ2)g(−λ1 − λ2)Sym {g(−λ1)}

×Sym
[
ei(s−u)λ1−uλ2 + ee

i(u−s)λ1−sλ2
+ ei(sλ1+uλ2)

] dλ1λ2

(2π)2
.

By taking Fourier transforms (omitting the terms of O(1)), the bispectral density function
f(λ1, λ2) can be shown to be

f(λ1, λ2) = 2
γ

β

1

(2π)2
{S(λ1λ2) + S(λ2,−λ1 − λ2) + S(λ1,−λ1 − λ2)}

where S(λ1, λ2) = g(λ1)g(λ2)g(−λ1 − λ2)Sym {g(−λ1)}. It is clear that the bispectrum is zero
for all frequencies λ1 and λ1 if and only if the process is linear (γ = 0) (and Gaussian).

1.6 Conclusion

In this chapter, we have extended some results of Terdik [64] on time-invariant bilinear SDE
to time-varying one. So, we have analyzed the probabilistic structure of general nonlinear
continuous-time processes via Wiener’s chaos. In particular, necessary and sufficient conditions
for the existence of regular second-order solutions are given for a COBL(1, 1) driven by a stan-
dard Brownian motion with explicit expression in terms of higher-order evolutionary transfer
functions. The main advantage of the frequency approach is that beside its adaptation with
nonlinear effects, it preserves the mathematically tractable CARMA structure. In particular,
it was seen in Section 4, that the spectrum (second-order properties) does not generally pro-
vide sufficient information about the structure of the process. Hence, it is necessary to look at
third-order cumulant in order to discriminate the COBL(1, 1) from a CAR(1) process which
seem to be too difficult and tedious. However, specific tools, for instance wavelet methods as
an alternative to Fourier methods should be adapted to analysis the general bilinear SDE with
time-varying coefficients. We leave this important issue for future researches.



Chapter 2

A study of the first-order
continuous-time bilinear processes
driven by fractional Brownian motion2

2. Ce chapitre est accepté le 15/11/2017 dans : Journal of statistical theory and application.

Abstract

The continuous-time bilinear (COBL) process has been used to model non linear and/or non
Gaussian datasets. In this chapter, the first-order continuous-time bilinear COBL (1, 1) model
driven by a fractional Brownian motion (fBm for short) process is presented. The use of fBm
processes with certain Hurst parameter permits to obtain a much richer class of possibly long-
range dependent property which are frequently observed in financial econometrics, and thus can
be used as a power tool for modelling irregularly series having memory. So, the existence of
Itô’s solutions and there chaotic spectral representations for time-varying COBL (1, 1) processes
driven by fBm are studied. The second-order properties of such solutions are analyzed and the
long-range dependency property are studied.

2.1 COBL(1,1) driven by fractional Brownian motion

In discrete-time series analysis, the assumption of linearity and/or Gaussianity is frequently
made. Unfortunately these assumption lead to models that fail to capture certain phenomena
commonly observed in practice such as limit cycles, asymmetric distribution, leptokurtosis,
etc..., Motived by these deficiencies, non linear parametric modelling of time series has attracted
considerable attention in recent years. Indeed, one of the most useful class of non-linear time
series models is the bilinear specification obtained by adding to an ARMA model one or more
interaction components between the observed series and the innovations. However, it is observed
that these models are not be able to give full information about some datasets exhibit unequally
spaced observations and hence the resort to a continuous-time version is crucial. So, in this
chapter we consider a continuous-time bilinear processes (X(t))t∈R defined on some complete
probability space (Ω,A, P ) equipped with a filtration (At)t≥0 and subjected to be a solution of

25
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the following affine time-varying stochastic differential equation (SDE)

dX(t) = (α(t)X(t) + µ(t)) dt+ (β (t) + γ(t)X(t)) dW h(t), t ≥ t0, X(t0) = X0 (2.1.1)

denoted hereafter COBL(1, 1). The parameters α(t), µ(t), γ(t) and β (t) are differentiable
complex deterministic functions subject to the following assumption
Condition 2.1

A1 For all T > t0,
∫ T
t0
|α(t)| dt <∞,

∫ T
t0
|µ(t)| dt <∞,

∫ T
t0
|γ(t)|2 dt <∞.

∫ T
t0
|β(t)|2 dt <∞.

A2 α(t), µ(t), β(t) ∈ C and <e (γ(t)) = 0 and <e {α(t)} < 0, for all t ≥ t0.

In (2.1.1), (W h(t))t∈R is a real fBm with Hurst parameter h ∈
]
0, 1

2

[
defined on a basic given fil-

tered stochastic probability space (Ω,A, (At)t≥0 , P ), its covariance kernel is Cov
(
W h(t),W h(s)

)
=

κ(h)

2
(|t|2h+1+|s|2h+1−|t− s|2h+1), for all t, s ≥ 0, where κ(h) =

Γ(1− 2h)

h(2h+ 1)π
cos
(π

2
(1− 2h)

)
and

admits a spectral representationW h(t) =
∫
R
φt (λ) (iλ)−hdZ(λ) where φt (λ) =

eitλ − 1

iλ
and dZ(.)

is a complex−valued Gaussian spectral measure defined on (Ω,A, P ) with zero mean, variance

E
{
|dZ(λ)|2

}
= dG(λ) =

dλ

2π
and where the principal value of 1

2π

∫
R
φt (λ) d(λ) is 0. Note that the

initial state X(t0) is a random variable, defined on the same probability space (Ω,A, P ) inde-
pendent of σ(W (t) , t0 ≤ t ≤ T ) such that E {X(t0)} = m(t0) and V ar {X(t0)} = R(t0) < +∞.
It is well known that if h = 0, then the corresponding fBm reduces to the usual Brownian motion,
otherwise,

(
W h(t)

)
t≥0

is neither a Markovian nor a semimartingales processes and hence the
usual calculus cannot be used, so a different calculus is required. This non Markovian processes
have not an independent stationary increments and are well suited for modelling data exhibiting
a long-range dependency. For an in-depth detailed mathematical framework of the pertinent
properties of fBm, we refer the reader to Mishura [51] and the references therein.
The SDE (2.1.1) is called time-invariant when α(t) , µ(t), γ(t) are complex deterministic constant
functions, i.e., there is some constants complex α, µ, γ such that α(t) = α, µ(t) = µ, γ(t) = γ
and for all t.
The SDE (2.1.1) encompasses many commonly used models in the literature. Some examples
among others are

1. First-order continuous-time Autoregressive processes ( CAR(1) for short): This classes of
SDE may be obtained by assuming γ (t) = 0 for all t. (see Duncan at al. [22] and the
reference therein).

2. Gaussian Ornstein-Uhlenbeck (OU) process: The Gaussian OU process is defined as
dX(t) = (µ (t)− α (t)X(t)) dt + β (t) dW h(t), with β (t) > 0 for all t ≥ 0. So it can
be obtained from (2.1.1) by assuming γ(t) = 0 for all t. (see Shen et al. [60] and the
reference therein).

3. Nelson’s diffusion process: In the diffusion process of Nelson (see Swishchuk [63], chapter
2), the time-varying volatility process may be defined as the second-order solution process
(V (t))t≥0 of dV (t) = λ (t) (µ (t)− V (t)) dt + γ (t)V (t)dW (h)(t) in which λ (t) , µ (t) and
γ (t) are positive deterministic functions. This SDE can be obtained easily from (2.1.1).
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4. Geometric Brownian motion (GBM): This class of processes is defined as a R−valued
solution process (X(t))t≥0 of dX(t) = α (t)X(t)dt + γ (t)X(t)dW (h)(t), t ≥ 0. So it can
be obtained from (2.1.1) by assuming β(t) = µ (t) = 0 for all t. (see Bender et al. [8] and
the reference therein).

It is worth noting that beside the above mentioned particular cases, the equation (2.1.1) may
be extended to vectorial case, i.e., when X(t) is Rd−valued process, so other particular models
can be deduced.

2.2 The solution processes of COBL(1, 1)

Let =(h) = =(W (h)) := σ(W (h)(t), t ≥ t0) (resp =(h)
t := σ(W (h) (s) , t0 ≤ s ≤ t)) be the σ

-algebra generated by
(
W (h)(t)

)
t≥0

(resp. generated byW (h)(s) up to time t) and let L2(=(h)) =

L2(C,=(h), P ) (resp. L2(=(h)
t ) ) be the Hilbert space of nonlinear L2−functional of

(
W (h)(t)

)
t≥0

.

In this section, we are interested in solving the SDE (2.1.1) in L2(=(h)
t ). As already pointed by

several authors (see for instance Duncan [21] for further discussions), that there is no general
theory for the solution of SDE driven by an fBm if h 6= 0. Nevertheless, recently some studies
was investigated the existence of such solutions for various families of SDE driven by an fBm.
Indeed,

2.2.1 The Itô approach

Our first approach is based on the Itô formula with respect to fBm and the general results on
SDE to prove the uniqueness of the solution. First, we start by the fractional Itô’s formula
which is a powerful tool for dealing the solution. Consider the following stochastic differential
equation driven by fBm

dX(t) = a(t,X(t))dt+ b(t,X(t))dW h(t), X(t0) = X0 (2.2.1)

in which a(., .), b(., .) are known continuous functions that represents the drift and diffusion
respectively of the SDE (2.2.1) supposed to be smooth enough, and set Y (t) = U(t,X(t)) for
some differentiable function U : R → R. Then Dai and Heyde [20] have shown that the Itô
formula with respect to fBm is given by

dY (t) =

{
∂U

∂t
(t,X(t)) + a(t, w)

∂U

∂x
(t,X(t))

}
dt+ b(t, w)

∂U

∂x
(t,X(t))dW h(t). (2.2.2)

Therefore, from the SDE (2.2.1) and the Itô formula (2.2.2) we obtain

dY (t) =
∂U

∂t
(t,X(t))dt+

∂U

∂x
(t,X(t))dX(t) (2.2.3)

So, the Itô′s solution of the SDE (2.1.1) is given by

Theorem 2.2.1. Under the assumption 2.1, the unique Itô’s solution of SDE (2.1.1) in L2(=(h))
is given by

X(t) = Φh(t, t0)

X(t0) +

t∫
t0

Φ−1
h (s, t0)µ(s)ds+

t∫
t0

Φ−1
h (s, t0)β(s)dW h(s)

 , t ≥ t0 (2.2.4)
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where Φh(t, t0) = exp

{
t∫
t0

α (s) ds+
t∫
t0

γ (s) dW h (s)

}
with Φh(t0, t0) = 1 and the stochastic inte-

gral
t∫
t0

γ (s) dW h (s) is defined in Riemann’s sense in probability.

Proof. First it is no difficult to see that Φh(t, t0) is the unique solution of stochastic differential
equation

dΦh(t, t0) = α(t)Φh(t, t0)dt+ γ(t)Φh(t, t0)dW h(t).

Now, set Φh(t, t0) = exp {Y (t)}, Z(t) = X(0) +
t∫
t0

e−Y (s)µ(s)ds +
t∫
t0

e−Y (s)β(s)dW h(s) and let

X(t) = U (Y (t), Z(t)), where U is the function defined by U(x, y) = exy. The fractional Itô
formula (2.2.2) and the expression (2.2.3) gives

dX(t) =
∂U

∂x
(Y (t), Z(t))dY (t) +

∂U

∂y
(Y (t), Z(t))dZ(t)

= eY (t)Z(t)dY (t) + eY (t)dZ(t)

= X(t)dY (t) + eY (t)dZ(t)

= X(t)
(
α(t)dt+ γ(t)dW h(t)

)
+ eY (t)

(
e−Y (t)µ(t) + e−Y (t)β(t)dW h(t)

)
dt

= (α(t)X(t) + µ(t)) dt+ (γ(t)X(t) + β(t)) dW h(t).

and hence the result follows.

Remark 2.2.2. If β(t) = 0, then the Itô solution of SDE (2.1.1) reduces to

X(t) = Φh(t, t0)

X(t0) +

t∫
t0

Φ−1
h (s, t0)µ(s)ds

 , t ≥ t0 (2.2.5)

and when γ(t) = 0 and β(t) 6= 0, this is provides a solution of Gaussian OU process, therefore
if we are interested in non-Gaussian solution of (2.1.1), it is necessary to assume that |µ (t)|2 +
|β (t)|2 > 0 and γ(t) 6= 0.

Remark 2.2.3. In time-invariant case, with <e {γ} = 0 and <e {α} < 0 , then the Itô solution
of SDE (2.1.1) can be written as

X(t) = µ

∫ t

−∞
exp

{
α(t− s) + iγ

(
W h(t)−W h(s)

)}
ds+ β

∫ t

−∞
exp {α(t− s)} dW h(s).

Remark 2.2.4. For any t ≥ t0, let −ξ(t) =
t∫
t0

α (s) ds+
t∫
t0

γ (s) dW h (s) and ηh(t) =
t∫
t0

µ (s) ds+

t∫
t0

β (s) dW h (s) , then the solution process (2.2.4) may be rewritten as

X(t) = e−ξ(t)

X(t0) +

t∫
t0

eξ(s)dηh(s)

 , t ≥ t0 (2.2.6)

is the solution process of generalized Ornstein-Uhlenbeck (GOU) process driven by an fBm de-
fined by dX(t) = −ξ(t)X(t)dt+ dηh(t), t ≥ t0, X(t0) = X0.
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2.2.2 The frequency approach

In this subsection, we discuss a second approach to solve the SDE (2.1.1) based on the spectral
representation. Indeed, it is now well known that for any regular second-order process (X(t))t≥t0
(i.e., X(t) is =(h)

t −measurable not necessary stationary, belonging to L2(=(h))) admits the so-
called Wiener-Itô (or Stratonovich) spectral representation, i.e.,

X(t) = gt(0) +
∑
r≥1

1

r!

∫
Rr

gt(λ(r))e
itΣλ(r)

r∏
j=1

(iλj)
−hdZ

(
λ(r)

)
. (2.2.7)

where λ(r) = (λ1, ..., λr) , Σλ(r) =
∑r

i=1 λi and dZ
(
λ(r)

)
=
∏r
j=1 dZ (λi). (see Bibi and Merahi

[11] for more details). The representation (2.2.7) is unique up to the permutation of the arguments
of the evolutionary transfer functions gt(λ(r)), r ≥ 2 and gt(λ(r)) ∈ L2

(
Gh
)

= L2

(
Cn, BCn , G

h
)

for all t ≥ t0 , with dGh(λ(r)) =
1

(2π)r
r∏
i=1
|λi|−2h dλ(r) and such that

∑
r≥0

1

r!

∫
Rr

∣∣∣gt(λ(r))
∣∣∣2 dGh(λ(r)) <∞ for all t ≥ t0. (2.2.8)

Let us recall here the so-called the diagram formula for Wiener–Itô representation (2.2.7) which
play an important role in some subsequent proofs and that state that for all g and f defined on
R and on Rr respectively such that (g, f) ∈ L2 (R)× L2r (Rr), if f is symmetric then∫

R

g(λ)dZ(λ)

∫
Rr

f(λ(r))dZ(λ(r)) =

∫
Rr+1

g(λr+1)f(λ(r))dZ(λ(r+1))

+
r

2π

∫
Rr−1


∫
R

g(λr)f(λ(r))dλr

 dZ(λ(r−1)).

The spectral representation of the solution process of SDE (2.1.1) is given in the following
theorem

Theorem 2.2.5. Assume that the process (X(t))t≥t0 generated by the SDE (2.1.1) has a regular
second-order solution. Then, the evolutionary symmetrized transfer functions

(
g̃t(λ(r))

)
t≥t0

, r ∈
N of such solution are given by the symmetrization of the solution of the following first order
ordinary differential equations

g
(1)
t (λ(r)) =


α(t)gt(0) + µ(t) +

γ(t)

2π

∫
R
gt(λ) |λ|−2h dλ, r = 0(

α(t)− iΣλ(r)

)
gt(λ(r)) + rδ[r=1]β(t)

+γ(t)

(
rgt(λ(r−1)) +

1

2π

∫
R
gt(λ(r+1)) |λr+1|−2h dλr+1

)
, r ≥ 1

(2.2.9)

where the superscript (j) denotes j−fold differentiation with respect to t and where Σλ(r) =∑r
i=1 λi.
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Proof. First, applying of the diagram formula for the nonlinear term X(t)
dW h(t)

dt
we get

X(t)
dW h(t)

dt
=

∫
R

gt(0)eitλ(iλ)−hdZ(λ) +
∞∑
r=1

1

r!

∫
Rr+1

g̃t(λ(r))e
itΣλ(r+1)

r+1∏
l=1

(iλl)
−h dZ(λ(r+1))

+
∞∑
r=1

1

(r − 1)!

∫
Rr−1

eitΣλ(r−1)

 1

2π

∫
R

gt(λ(r)) |λr|
−2h dλr

 r−1∏
l=1

(iλl)
−h dZ(λ(r−1)).

Second, we insert the spectral representation (2.2.7) of the process (X(t))t≥t0 and the last ex-
pression of X(t)dW h(t) in the equation (2.1.1) the results follows.

Remark 2.2.6. The existence and uniqueness of the solution (2.2.9) is ensured by general results
on linear ordinary differential equations, so

gt(λ(r)) =



ϕt (0)

(
gt0(0) +

t∫
t0

ϕ−1
s (0)

(
µ(s) + γ(s) 1

2π

∫
R
gs(λ) |λ|−2h

dλ

)
ds

)
, r = 0

ϕt (λ)

(
gt0(λ) +

t∫
t0

ϕ−1
s (λ)

{
β(s) + γ(s)

(
gs(0) + 1

2π

∫
R
gs(λ(2)) |λ2|−2h

dλ2

)}
ds

)
, r = 1

ϕt(λ(r))

(
gt0(λ(r)) +

t∫
t0

ϕ−1
s (λ(r))γ(s)

(
rgs(λ(r−1)) + 1

2π

∫
R
gs(λ(r+1)) |λr+1|−2h

dλr+1

)
ds

)
, r ≥ 2

(2.2.10)

in which ϕt
(
λ(r)

)
= exp

{
t∫
t0

(
α(s)− iΣλ(r)

)
ds

}
.

Remark 2.2.7. Noting that beside the condition (2.2.8) a necessary conditions for that the
evolutionary transfer functions

(
gt(λ(r)), r ∈ N

)
defined by (2.2.10) determines a second-order

process are

∫
R

∣∣∣∣∣∣
∫
R

gt(λ(r+1)) |λr+1|−2h dλr+1

∣∣∣∣∣∣
2

|λr|−2h dλr < +∞ and
∫
R

∣∣∣gt(λ(r+1))
∣∣∣ |λr+1|−2h dλr+1 < +∞

for all t ≥ t0. These conditions are extremely difficult to be verified, except in time-invariant case
when an explicit formula for the transfer functions are given (see for instance Iglói and Terdik
[38]).

It is worth noting that if <e {γ(t)} 6= 0 , the SDE (2.1.1) may be haven’t a second-order solution,
but it does if γ(t) is purely imaginary. So in what follows, we consider the particular SDE

dX(t) = (α (t)X(t) + µ (t)) dt+ iγ (t)X(t)dW h(t), t ≥ t0, X(t0) = X0. (2.2.11)

and assume that
A3. α(t), µ(t) ∈ C, γ(t) ∈ R and <e {α(t)} < 0, γ(t) 6= 0 for all t ≥ t0.

Under the condition A3, the Itô’s solution of (2.2.11) reduces to

X(t) = Φh(t, t0)

X(t0) +

t∫
t0

Φ−1
h (s, t0)µ(s)ds

 ,
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in which the function γ (t) is replaced by iγ (t). The spectral representation of equation (2.2.11)
is given in the following lemma

Lemma 2.2.8. Assume that the process (X(t))t≥t0 generated by the model (2.2.11) has a regular
second-order solution. Then, the symmetrized evolutionary transfer functions

(
g̃t(λ(r))

)
t∈R , r ∈

N of such solution may be obtained by the symmetrization of the following functions

gt(λ(r)) (2.2.12)

=


ϕt (0)

(
gt0(0) +

t∫
t0

ϕ−1
s (0)

(
µ(s) + iγ(s) 1

2π

∫
R
gs(λ) |λ|−2h

dλ

)
ds

)
, r = 0

ϕt(λ(r))

(
gt0(λ(r)) + i

t∫
t0

ϕ−1
s (λ(r))γ(s)

(
r gs(λ(r−1)) + 1

2π

∫
R
gs(λ(r+1)) |λr+1|−2h

dλr+1

)
ds

)
, r ≥ 1

Remark 2.2.9. In time-invariant case we obtain

g(λ(r)) =


g(λ(r)) = − 1

α

{
µ+

iγ

2π

∫
R
g(λ) |λ|−2h dλ

}
if r = 0

−iγ(
α− iλ(r)

) {r g(λ(r−1)) +
1

2π

∫
R
g(λ(r+1)) |λr+1|−2h dλr+1

}
if r ≥ 1

so, its symmetrized version may be written as

g̃(λ(r)) = Sym
{
g(λ(r))

}
= µ (iγ)r

∞∫
0

exp

{
αu− γ2

2
k(h)u2h+1

} r∏
j=1

1− e−iuλj
iλj

du.

2.3 The moments properties and the second-order structure

In this section, we analyze the spectrum i.e., the second-order structure of the process (X(t))t≥t0
solution of the SDE (2.1.1). For this purpose let (Ψh(t, t0))t≥t0 be the mean function of the pro-
cess (Φh(t, t0))t≥t0 , and setWh (t, u, s, v) = h(2h+1)κ(h)

∫ t
u

∫ s
v γ(v1)γ(v2)|v1−v2|2h−1dv2dv1, u ≤

t, v ≤ s. Then, we have

Lemma 2.3.1. Under the conditions of 2.1, we have the following assertions

1. Ψh(t, t0) = exp
{∫ t

t0
α(v1)dv1 + h(2h+ 1)κ(h)

2

∫ t
t0

∫ t
t0
γ(v1)γ(v2)|v1 − v2|2h−1dv1dv2

}
for t ≥

t0.

2. E
{

Φh(t, t0)Φ−1
h (u, t0)

}
= Ψh(t, u) for t ≥ u.

3. E
{

Φh(t, t0)Φh(s, t0)
}

= Ψh(t, t0)Ψh(s, t0) exp {Wh (t, t0, s, t0)} for t ≥ s.

4. E
{

Φh(t, t0)Φh(s, t0)Φ−1
h (v, t0)

}
= Ψh(t, t0)Ψh(s, v) exp {Wh (t, t0, s, v)} for t ≥ s ≥ v.

5. E
{

Φh(t, t0)Φh(s, t0)Φ−1
h (u, t0)Φ−1

h (v, t0)
}

= Ψh(t, u)Ψh(s, v) exp {Wh (t, u, s, v)} for t ≥
s ≥ v.
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Proof. The assertions of the Lemma 2.3.1 follows upon observation that by using the expectation
of exponential Gaussian process, we have

Ψh(t, t0)

= exp

{∫ t

t0

α(v1)dv1 +
1

2
E

{(∫ t

t0

γ(v1)dW h(v1)

)2
}}

= exp

{∫ t

t0

α(v1)dv1 + h(2h+ 1)
κ(h)

2

∫ t

t0

∫ t

t0

γ(v1)γ(v2)|v1 − v2|2h−1dv1dv2

}
and for t ≥ u

E
{

Φh(t, t0)Φ−1
h (u, t0)

}
= exp

{∫ t

u
α(v1)dv1 +

1

2
E

{(∫ t

u
γ(v1)dW h(v1)

)2
}}

= exp

{∫ t

u
α(v1)dv1 + h(2h+ 1)

κ(h)

2

∫ t

u

∫ t

u
γ(v1)γ(v2)|v1 − v2|2h−1dv1dv2

}
= Ψh(t, u).

and so on the rest are immediate.

Lemma 2.3.2. Under the condition of Lemma 2.3.1, the mean function (mh(t) = E {X(t)})t≥t0
is given by

mh(t) = Ψh(t, t0)m(t0) +

∫ t

t0

Ψh(t, u)µ(u)du, t ≥ t0.

and the covariance function
(
Rh(t, s) = E

{
(X(t)−mh(t)) (X(s)−mh(s))

})
t≥s

is given by

Rh(t, s) = Ψh(t, t0)Ψh(s, t0) exp {Wh (t, t0, s, t0)}R(t0)

+ Ψh(t, t0)Ψh(s, t0) [exp {Wh (t, t0, s, t0)} − 1] |m(t0)|2

+m(t0)

∫ s

t0

Ψh(t, t0)Ψh(s, v) [exp {Wh (t, t0, s, v)} − 1]µ(v)dv

+m(t0)

∫ t

t0

Ψh(s, t0)Ψh(t, u) [exp {Wh (t, u, s, t0)} − 1]µ(u)du

+

∫ t

t0

∫ s

t0

Ψh(t, u)Ψh(s, v) [exp {Wh (t, u, s, v)} − 1]µ(v)µ(u)dvdu

+ h(2h+ 1)κ(h)

∫ t

t0

∫ s

t0

Ψh(t, u)Ψh(s, v) exp {Wh (t, u, s, v)}β(v)β(u)|u− v|2h−1dvdu.

Proof. From the Itô’s solution (2.2.4), we can obtain

mh(t) = E {X(t)} = E {Φh(t, t0)X(t0)}+

t∫
t0

E
{

Φh(t, t0)Φ−1
h (u, t0)

}
µ(u)du

= Ψh(t, t0)m(t0) +

t∫
t0

Ψh(t, u)µ(u)du.
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SinceW h(t) independent ofX(t0), thenE {Φh(t, t0)X(t0)} = E {Φh(t, t0)}E {X(t0)} = Ψh(t, t0)mh(t0).
In order to evaluate the expression of Rh(t, s) we use the Itô’s solution (2.2.4) to obtain

E
{
X(t)X(s)

}
= E

{
Φh(t, t0)Φh(s, t0)

}
E
{
|X(t0)|2

}
+m(t0)

∫ s

t0

E
{

Φh(t, t0)Φh(s, t0)Φ−1
h (v, t0)

}
µ(v)dv

+m(t0)

∫ t

t0

E
{

Φh(s, t0)Φh(t, t0)Φ−1
h (u, t0)

}
µ(u)du

+

∫ t

t0

∫ s

t0

E
{

Φh(t, t0)Φh(s, t0)Φ−1
h (u, t0)Φ−1

h (v, t0)
}
µ(v)µ(u)dvdu

+ h(2h+ 1)κ(h)

∫ t

t0

∫ s

t0

E
{

Φh(t, t0)Φh(s, t0)Φ−1
h (u, t0)Φ−1

h (v, t0)
}
β(v)β(u)|u− v|2h−1dvdu,

In other hand

mh(t)mh(s) = Ψh(t, t0)Ψh(s, t0)|m(t0)|2 +m(t0)

∫ s

t0

Ψh(t, t0)Ψh(s, v)µ(v)dv

+m(t0)

∫ t

t0

Ψh(s, t0)Ψh(s, u)µ(u)du+

∫ t

t0

∫ s

t0

Ψh(t, u)Ψh(s, v)µ(v)µ(u)dvdu,

the fact that Rh(t, s) = E
{
X(t)X(s)

}
−mh(t)mh(s), the expression for Rh(t, s) follows.

Lemma 2.3.3. Consider the time-invariant process (X(t))t≥t0 generated by SDE (2.1.1). Then
under the condition (2.1) , the mean and covariance functions of the solution process (X(t))t≥t0
are given by

mh = µ

∫ ∞
0

Kh(u)du,

Rh (|τ |) = |µ|2
∫ ∞

0

∫ ∞
0

Kh(u1)Kh(u2)

(
exp

{
−γ

2

2
κ(h)W h

(τ) (u1, u2)

}
− 1

)
du1du2

+ |β|2 h(2h+ 1)κ(h)

∫ ∞
0

∫ ∞
0

Kh(u1)Kh(u2) exp

{
−γ

2

2
κ(h)W h

(τ) (u1, u2)

}
du1du2,

where
W h

(τ) (u1, u2) = |τ |2h+1 − |τ − u1|2h+1 − |τ + u2|2h+1 + |τ − u1 + u2|2h+1,

and Kh (t) = exp
{
αt− γ2

2 κ(h)t2h+1
}
.

Proof. Straightforward and hence omitted.

Corollary 2.3.1. Consider the time-invariant version of the SDE (2.2.11), then lim
τ→+∞

R(τ)

cτ−δ
=

1 for some constant c and 0 < δ < 1, this means that the solution process exhibits long range
dependence. In this case the dependence between X(t) and X(t + τ) decays slowly as τ → +∞
and

∫
R
R(|τ |)dτ =∞.
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Proof. First we have

exp

{
−γ

2

2
κ(h)

(
|τ |2h+1 − |τ − u1|2h+1 − |τ + u2|2h+1 + |τ − u1 + u2|2h+1

)}
= exp

{
−γ

2

2
κ(h)|τ |2h+1

(
1− |1− u1

τ
|2h+1 − |1 +

u2

τ
|2h+1 + |1 +

u2 − u1

τ
|2h+1

)}
,

and (
1− u1

τ

)2h+1
= 1− (2h+ 1)

u1

τ
+

(2h+ 1)(2h)

2

u2
1

τ2
+ ...τ → +∞(

1 +
u2

τ

)2h+1
= 1 + (2h+ 1)

u2

τ
+

(2h+ 1)(2h)

2

u2
2

τ2
+ ...τ → +∞(

1 +
u2 − u1

τ

)2h+1

= 1 + (2h+ 1)
(u2 − u1)

τ
+

(2h+ 1)(2h)

2

(u2 − u1)2

τ2
+ ...τ → +∞.

Let δ = −(2h− 1), it is clear 0 < δ < 1 because 0 < h < 1
2 , then we have

lim
τ→+∞

exp

{
−γ

2

2
κ(h)W h

τ (u1, u2)

}
− 1

τ−δ
= lim

τ→+∞

exp

{
γ2

2
κ(h)h(2h+ 1)u1u2τ

2h−1

}
− 1

τ2h−1

=
γ2

2
h(2h+ 1)u1u2.

It follows that

lim
τ→+∞

R(τ)

τ−δ

= |µ|2
∫ ∞

0

∫ ∞
0

Kh(u1)Kh(u2) lim
τ→+∞

τ δ
{

exp

{
−γ

2

2
κ(h)W h

τ (u1, u2)

}
− 1

}
du1du2

=
γ2

2
κ(h)h(2h+ 1) |µ|2

∫ ∞
0

u1Kh(u1)du1

∫ ∞
0

u1Kh(u2)du2

=
γ2

2
κ(h)h(2h+ 1) |µ|2

∣∣∣∣∫ ∞
0

uKh(u)du

∣∣∣∣2 = c <∞,

Hence, the process (X(t))t≥0 generated by the SDE (2.2.11) with time-invariant parameters is
a long memory process.

2.3.1 Third-order structure of COBL(1,1) process

For the sake of convenience and simplicity, we shall consider the time-invariant version of the
SDE (2.1.1). Moreover, we assume the process solution admits the spectral representation
(2.2.7) in which the symmetrized version of transfer functions g

(
λ(r)

)
may be written as

g(λ(r)) = µ (iγ)r
∞∫

0

Kh(u)

r∏
j=1

1− e−iuλj
iλj

du, ∀r ≥ 0.
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Then using the representation (2.2.7) we can obtain the following approximation

X(t) = g(0) +

∫
R
g (λ1) eitλ1dZ (λ1) +

∫
R2

g
(
λ(2)

)
eitλ(2)dZ

(
λ(2)

)
+ ξ(t)

= X(1)(t) +X(2)(t) + ξ(t),

where ξ(t) is a second-order stationary process which it is orthogonal to the first two terms. The
symmetrized transfer functions g̃(λ1) and g̃(λ(2)) are given by

g(λ1) = µ (iγ)

∞∫
0

Kh(u)
1− e−iuλ1

iλ1
du and g(λ1, λ2) = µ (iγ)2

∞∫
0

Kh(u)
2∏
j=1

1− e−iuλ2
iλ2

du

It can be shown that

Ch(s, u) = E {(X(t)− g(0)) ((X(t+ s)− g(0)) ((X(t+ u)− g(0))}

= E
{
X(1)(t)X(1)(t+ s)X(2)(t+ u)

}
+ E

{
X(1)(t)X(2)(t+ s)X(1)(t+ u)

}
+ E

{
X(2)(t)X(1)(t+ s)X(1)(t+ u)

}
+O (1) .

We calculate E
{
X(1)(t)X(1)(t+ s)X(2)(t+ u)

}
, and the other terms can be obtained by sym-

metry. First we observe that

E
{
X(1)(t)X(1)(t+ s)X(2)(t+ u)

}
= E

{∫
R2

g(λ1)g(λ2)eitλ1+i(t+s)λ2dZ(λ(2))

∫
R2

g(λ3, λ4)ei(t+u)(λ3+λ4)dZ(λ3, λ4)

}
= 2!

∫
R2

sym
{
g(λ1)g(λ2)eitλ1+i(t+s)λ2

}
sym

{
g(λ1, λ2)ei(t+u)(λ1+λ2)

}
dF
(
λ(2)

)
= 2

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)sym
{
eisλ1

}
e−iu(λ1+λ2) dλ1λ2

(2π)2

=
1

(2π)2

{∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)eisλ1e−iu(λ1+λ2)dλ1λ2 +

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)eisλ2e−iu(λ1+λ2)dλ1λ2

}
=

1

(2π)2

{∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)ei(s−u)λ1−iuλ2dλ1λ2 +

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)e−iuλ1+i(s−u)λ2dλ1λ2

}
.

Moreover we have

E
{
X(1)(t)X(2)(t+ s)X(1)(t+ u)

}
= E

{∫
R2

g(λ1)g(λ2)eitλ1+i(t+u)λ2dZ(λ(2))

∫
R2

g(λ3, λ4)ei(t+s)(λ3+λ4)dZ(λ3, λ4)

}
= 2!

∫
R2

sym
{
g(λ1)g(λ2)eitλ1+i(t+u)λ2

}
sym

{
g(λ1, λ2)ei(t+s)(λ1+λ2)

}
dF
(
λ(2)

)
= 2

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)sym
{
eiuλ1

}
e−is(λ1+λ2) dλ1λ2

(2π)2

=
1

(2π)2

{∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)eiuλ1e−is(λ1+λ2)dλ1λ2 +

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)eiuλ2e−is(λ1+λ2)dλ1λ2

}
=

1

(2π)2

{∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)ei(u−s)λ1−isλ2dλ1λ2 +

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)e−isλ1+i(u−s)λ2dλ1λ2

}
.
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It remains to compute E
{
X(2)(t)X(1)(t+ s)X(1)(t+ u)

}
, then

E
{
X(2)(t)X(1)(t+ s)X(1)(t+ u)

}
= E

{∫
R2

g(λ3)g(λ4)ei(t+s)λ3+i(t+u)λ4Z(dλ3, dλ4)

∫
R2

g(λ1, λ2)eit(λ1+λ2)Z(dλ(2))

}
= 2!

∫
R2

sym
{
g(λ1)g(λ2)ei(t+s)λ1+i(t+u)λ2

}
sym

{
g(λ1, λ2)eit(λ1+λ2)

}
dF
(
λ(2)

)
= 2

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2))sym
{
eisλ1+iuλ2

} dλ1λ2

(2π)2

=
1

(2π)2

{∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)eisλ1+iuλ2dλ1λ2 +

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)eiuλ1+isλ2dλ1λ2

}
.

Hence

Ch(s, u) = 2

∫
R2

g(λ1)g(λ2)g(−λ1,−λ2)sym
{
ei(s−u)λ1−uλ2 + ee

i(u−s)λ1−sλ2
+ ei(sλ1+uλ2)

} dλ1λ2

(2π)2
.

By taking Fourier transforms (omitting the terms of O(1)), the bispectral density function

f(λ1, λ2) can be shown to be f(λ1, λ2) =
2

(2π)2
{S(λ1, λ2) + S(λ2,−λ1 − λ2) + S(λ1,−λ1 − λ2)}

where S(λ1, λ2) = g(λ1)g(λ2)g(−λ1,−λ2). It is clear from the above that the bispectrum is zero
for all frequencies λ1 and λ2 if and only if the process is linear (γ = 0) (and Gaussian).

2.4 Conclusion

This chapter describes some basic probabilistic properties of continuous-time bilinear process
driven by an (f)Bm. Our main aim was focused firstly on the existence of the solution in
time-frequency domain and secondary to prove that the use of fBm as innovation we led to a
long-range dependency property.



Chapter 3

Transfer functions solution for
continuous-time bilinear stochastic
processes3

3. Ce chapitre est soumis dans le journal : Journal of the iranian statistical society.

Abstract

In the present chapter we study some probabilistic and statistical properties of continuous-time
version of the well known bilinear processes driven by standard Brownian motion. This class
of processes, which includes many popular growth curve processes, were defined as a nonlinear
stochastic differential equation which has raised considerable interest in the last few years. So,
the L2−structure is studied and the covariance function of the process and its powers are given.
The presence of the Taylor property and its relationship with respect to leptokurtosis effect is
analyzed.

3.1 Introduction

Discrete-time series analysis has been well developed within the framework of linear and/or
Gaussian models. Unfortunately these hypothesis lead to models that fail to capture certain
phenomena commonly observed in practice such as limit cycles, self-excitation, asymmetric dis-
tribution, leptokurtosis and sudden jumping behaviour. So, in recent times we have become more
aware of the fact that there are many datasets that cannot be modelled as discrete-time linear
models. Wegman et al. [69] provide a rich source of examples emanating from the oceanographic
and meteorological sciences which are clearly non-linear. One of the classes of non-linear models
which has attracted considerable attention is the classes of bilinear one, initially discussed by
Granger and Andersen [30]. The version of continuous-time of these models have been widely
studied and considered in time series analysis and in theory of stochastic differential equations.
For instance, Lebreton and Musiela [45] and Bibi and Merahi [11] have considered a processes
(X(t))t≥0 generated by the following time-varying stochastic differential equation (SDE)

dX(t) = (α(t)X(t) + µ(t)) dt+ (γ(t)X(t) + β(t)) dw(t), t ≥ 0, X(0) = X0 (3.1.1)

37
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denoted hereafter COBL (1, 1) in which (w(t))t≥0 is a standard Brownian motion in R de-
fined on some basic filtered space (Ω,A, (At)t≥0 , P ) and with spectral representation w(t) =∫
R
eitλ − 1

iλ
dZ(λ), where Z(λ) is an orthogonal complex-valued stochastic measure on R with zero

mean, E
{
|dZ(λ)|2

}
= dF (λ) = dλ

2π and uniquely determined by Z([a, b[) = 1
2π

∫
R

e−iλa − e−iλb

iλ
dw(λ),

for all −∞ < a < b < +∞. The SDE (3.1.1) is called time-invariant if there exists some con-
stants α, µ, γ and β such that for all t, α(t) = α, µ(t) = µ, γ(t) = γ and β(t) = β. The initial state
X(0) is a random variable defined on (Ω,A, P ) independent of w such that E {X(0)} = m1(0)
and V ar {X(0)} = KX(0). The parameters α(t), µ(t), γ(t) and β(t) are measurable deterministic
functions and subject to the following assumption:

Assumption 1. α(t), µ(t), γ(t) and β(t) are differentiable functions such that ∀T > 0,
∫ T

0 |α(t)| dt
<∞,

∫ T
0 |µ(t)| dt <∞,

∫ T
0 |γ(t)|2 dt <∞ and

∫ T
0 |β(t)|2 dt <∞.

The SDE (3.1.1) encompasses many commonly used models in the literature. Some specific
examples among others are:

1. COGARCH(1, 1): This classes of processes is defined as a SDE by dX (t) = σ (t) dB1(t)
with dσ2 (t) =

(
µ (t)− α (t)σ2 (t)

)
dt + γ (t)σ2 (t) dB2 (t), t > 0 where B1 and B2 are

independent Brownian motions and µ (t) > 0, α (t) ≥ 0 and γ (t) ≥ 0. So, the stochastic
volatility equation can be regarded a particular case of (3.1.1) by assuming constant the
function β(t) = 0 for all t. (see Kluppelberg et al. [42] and the reference therein).

2. CAR(1): This classes of SDE may be obtained by assuming γ (t) = 0 for all t. (see
Brockwell [15] and the reference therein)

3. Gaussian Ornstein-Uhlenbeck (GOU) process: The GOU process is defined as dX(t) =
(µ (t)− α (t)X(t)) dt+ β (t) dw(t), with β (t) > 0 for all t ≥ 0. So it can be obtained from
(3.1.1) by assuming γ(t) = 0 for all t. (see Brockwell [15] and the reference therein).

4. Geometric Brownian motion (GBM): This class of processes is defined as a R−valued
solution process (X(t))t≥0 of dX(t) = α (t)X(t)dt + γ (t)X(t)dw(t), t ≥ 0. So it can be
obtained from (3.1.1) by assuming β(t) = µ (t) = 0 for all t. (see ∅ksendal [7] and the
reference therein).

The existence of solution process of equation (3.1.1), was investigated by several authors, for
instance, Iglói and Terdik [38] have studied the same model driven by fractional Brownian in-
novation with time-invariant coefficients. A class of bilinear SDE with time-varying coefficients
was studied by Lebreton and Musiela [45], Bibi and Merahi [11] and Leon et. all [47]. Ter-
dik [64] and Lebreton and Musiela [46] have considered a general bilinear SDE driven by a
Brownian motion. In this chapter, we shall investigate some probabilistic and statistical proper-
ties of second-order solution process of equation (3.1.1) which are also causal (or regular), i.e.,
X(t) is σ {w(s), s ≤ t}−measurable. For this purpose, let Lr (F ) be the real Hilbert space of
complex valued functions ft

(
λ(r)

)
defined on Rr such that ft(−λ(r)) = ft(λ(r)) with a inner

product 〈ft, gt〉F = r!
∫
Rr Sym

{
ft(λ(r))

}
Sym

{
gs(λ(r))

}
dF (λ(r)) where λ(r) = (λ1, ..., λr) ∈ Rr,

Sym
{
ft(λ(r))

}
=

1

r!

∑
π∈P

f
(
λπ(1),, ..., λπ(r)

)
∈Lr (F ) with P denotes the group of all permutations
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of the set {1, ..., r} and dF (λ(r)) =
r∏
i=1

dF (λi). It is well known that if (X(t))t≥0 is second-order

and causal process (see Major [50] and Dobrushin [23] for further discussions) then it admits the
so-called Wiener-Itô representation, i.e.,

X(t) = ft(0) +
∑
r≥1

1

r!

∫
Rr
eitλ(r)ft(λ(r))dZ(λ(r)), (3.1.2)

where λ(r) =
r∑
i=1

λi and the integrals are multiple Wiener-Itô stochastic integrals with respect

to the stochastic measure dZ (λ), ft(0) = E{X(t)}, dZ(λ(r)) =
r∏
i=1

dZ(λi) and ft(λ(r)) are

referred as the r − th evolutionary transfer functions of (X(t))t≥0, uniquely determined up to
symmetrization and fulfill the condition∑

r≥0

1

r!

∫
Rr

∣∣ft(λ(r))
∣∣2 dF (λ(r)) <∞ for all t. (3.1.3)

As a property of the representation (3.1.2) is that for any ft(λ(n)) and fs(λ(m)), we have

E

{∫
Rn
ft(λ(n))dZ(λ(n))

∫
Rm

fs(λ(m))dZ(λ(m))

}
= δmn n!

∫
Rn
Sym

{
ft(λ(n))

}
Sym

{
fs(λ(n))

}
dF (λ(n))

(3.1.4)
where δmn is the delta function. Another property linked with (3.1.2) is the diagram formula
which state that∫

R
ft(λ)dZ(λ)

∫
Rn
gs
(
λ(n)

)
dZ(λ(n))

=

∫
Rn+1

gs
(
λ(n)

)
ft (λn+1) dZ(λ(n+1)) +

n∑
k=1

∫
Rn−1

∫
R
gs
(
λ(n)

)
ft (λk)dF (λk) dZ(λ(n\k))

where Z(dλ(n\k)) = Z (dλ1) ...Z (dλk−1) .Z (dλk+1) ...Z (dλn).
The main aim of the chapter is to use the transfer functions approach associated with the

solution process of (3.1.1) to establish some characterizations and properties for a such process.
So, in section 2 we study the conditions ensuring the existence of the processes (X(t))t∈R+ and
(X2(t))t∈R+ using their spectral representation. In section 3 we give the conditions of stability of
SDE (3.1.1) based on the associated transfer functions. In section 4 we analyze the presence of
the Taylor property of equation (3.1.1) and some simulations are given to confirm our theoretical
results for different values of parameters.

3.2 COBL (1, 1) equation and their solutions

The existence and uniqueness of the Itô solution process (X(t))t≥0 of equation (3.1.1) in time
domain is ensured by the general results on SDE and under the Assumption 1 (see e.g., [3])
which is given by

X(t) = Φ(t)

X(0) +

t∫
0

Φ−1(s) (µ(s)− γ (s)β (s)) ds+

t∫
0

Φ−1(s)β (s) dw(s)

 , a.e., (3.2.1)
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where Φ(t) = exp

{
t∫

0

(
α(s)− 1

2γ
2 (s)

)
ds+

t∫
0

γ (s) dw (s)

}
. The solution (3.2.1) is however

Markovian when β (t) 6= 0 for all t, otherwise the solution process is neither a Markov pro-
cess nor a martingale.

Remark 3.2.1. When everywhere γ (t) = 0, α (t) < 0 and β (t) 6= 0, this provides a second-
order solution processes for GOU or GAR(1) equations. If we are interested in second-order
non-Gaussian solution of COGARCH(1, 1) or GBM equations, it is necessary to assume that
everywhere µ2 (t) + β2 (t) > 0, γ (t) 6= 0 and not only α (t) < 0 but 2α (t) + γ2 (t) < 0 as well.
Moreover, the condition γ(t)µ(t) 6= α(t)β(t) for all t, must be hold, otherwise the equation (3.1.1)

has only a degenerate solution,i.e., X(t) = − β(t)

γ (t)
= −µ (t)

α (t)
.

The solution based on Wiener-Itô representation (3.1.2) is discussed along the following sections.
For this purpose, we recalling the following two theorems due to Bibi and Merahi [11].

Theorem 3.2.2. Assume that everywhere

2α (t) + γ2 (t) < 0, (3.2.2)

then the process (X(t))t≥0 generated by the SDE (3.1.1) has a regular second-order solution
given by the Wiener-Itô representation (3.1.2). The evolutionary symmetrized transfer functions
ft(λ(r)), (t, r) ∈ R+ × N of this solution are given by the symmetrization of the following differ-
ential equations

f
(1)
t (λ(r)) =

{
α(t)ft(0) + µ(t), if r = 0(
α(t)− iλ(r)

)
ft(λ(r)) + r

(
γ(t)ft(λ(r−1)) + δ{r=1}β(t)

)
, if r ≥ 1

(3.2.3)

where the superscript (j) denotes j−fold differentiation with respect to t.

Proof. See Bibi and Merahi [11].

Remark 3.2.3. The existence and uniqueness of the evolutionary symmetrized transfer functions
f t(λ(r)), (t, r) ∈ R×N given by (3.2.3) is ensured by general results on linear ordinary differential
equations (see, e.g., [40], ch. 1), so

ft(λ(r)) =


ϕt (0)

(
f0(0) +

t∫
0

ϕ−1
s (0)µ(s)ds

)
if r = 0

ϕt

(
λ(r)

)(
f0(λ(r)) + r

t∫
0

ϕ−1
s

(
λ(r)

) (
γ(s)fs(λ(r−1)) + δ{r=1}β(s)

)
ds

)
if r ≥ 1

(3.2.4)

where ϕt
(
λ(r)

)
= exp

{
t∫

0

(
α(s)− iλ(r)

)
ds

}
.

Corollary 3.2.1. Assume that α(t), µ(t), β(t) and γ(t) are constant ( time-invariant SDE),
then the transfer functions f(λ(r)) for all r ∈ N are given by

f(λ(r)) = −µ
α
δ{r=0} + r

(
iλ(r) − α

)−1 (
γf(λ(r−1)) + δ{r=1}β

)
for any r ≥ 0
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or also f(λ(r)) = γr−1r!
(
β − µ

α
γ
) r∏
j=1

(
iλ(j) − α

)−1
, and hence the symmetrized version can be

rewritten as

Sym
{
f(λ(r))

}
= (µγ − αβ) γr−1

+∞∫
0

exp {αλ}
r∏
j=1

1− exp {−iλλj}
iλj

dλ.

Moreover, if γ 6= 0, αβ 6= µγ and 2α + γ2 < 0, then the solution process (X(t))t≥0 is strictly
stationary and there exists a unique invariant probability distribution Π (θ) with θ = (γ, β, α, µ)
for the associated solution given by (3.2.1) such that Π (θ) is the the distribution of the inverse

Γ

(
1− 2α

γ2
,

γ3

2(γµ− αβ)

)
distribution.

Proof. See Lebreton and Musiela [45].

The following lemma give Wiener-Itô representation for the quadratic process
(
q(t) = X2(t)

)
t≥0

.

Lemma 3.2.4. Suppose that X(t) is σ {w(s), s ≤ t}−measurable satisfying equation (3.1.1) with
E
{
q2(t)

}
< +∞ . Then (q(t))t≥0 has a Wiener-Itô representation, i.e.,

q(t) = f
[2]
t (0) +

∑
r≥1

1

r!

∫
Rr
eitλ(r)f

[2]
t (λ(r))dZ(λ(r)),

where the transfer functions f [2]
t (λ(r)), r ≥ 0 are given by the following recursive formula

f
[2](1)
t (λ(r)) =


(
2α (t) + γ2(t)

)
f

[2]
t (0) + 2 (γ(t)β(t) + µ(t)) ft (0) + β2(t) if r = 0((

2α (t) + γ2(t)
)
− iλ(r)

)
f

[2]
t (λ(r)) + 2 (γ(t)β(t) + µ(t)) ft

(
λ(r)

)
)

+ 2r
(
γ(t)f

[2]
t (λ(r−1)) + β(t)ft(λ(r−1))

)
if r ≥ 1

(3.2.5)

Proof. The proof follows upon the observation that the process (q (t))t≥0 satisfying the following
stochastic differential equation

dq (t) =
[(

2α (t) + γ2(t)
)
q(t) + 2 (γ(t)β(t) + µ(t))X(t) + β2(t)

]
dt+ 2 (γ(t)q(t) + β(t)X(t)) dw(t), a.e.,

(3.2.6)
So, using the diagram formula the result follows.

Remark 3.2.5. The existence and uniqueness of the evolutionary symmetrized transfer func-
tions f [2]

t (λ(r)), (t, r) ∈ R × N given by (3.2.5) is ensured by general results on linear ordinary
differential equations (see, e.g., [40], ch. 1), so

f
[2]
t (λ(r)) =


φt (0)

(
f

[2]
0 (0) +

t∫
0

φ−1
s (0)µs(0)ds

)
if r = 0

φt

(
λ(r)

)(
f

[2]
0 (λ(r)) +

t∫
0

φ−1
s

(
λ(r)

)
µs(λ(r))ds

)
if r ≥ 1

(3.2.7)

in which φt

(
λ(r)

)
= exp

{
t∫

0

(
2α (s) + γ2(s)− iλ(r)

)
ds

}
and

µt(λ(r)) = 2 (γ(t)β(t) + µ(t)) ft
(
λ(r)

)
+ β2(t)δ{r=0} + 2r

(
γ(t)f

[2]
t (λ(r−1)) + β(t)ft(λ(r−1))

)
.
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Remark 3.2.6. In time-invariant case, the transfer functions f [2](λ(r)) associated with this case
reduces to

f [2](λ(r)) =


2 (γβ + µ) f (0) + β2

|2α+ γ2|
if r = 0

2 (γβ + µ) f(λ(r)) + 2rγf [2](λ(r−1)) + 2rβf(λ(r−1))

iλ(r) − (2α+ γ2)
if r ≥ 1

where f (0) = E {X(t)} = −µ
α
. In particular, when β = 0 and µ 6= 0, the transfer functions

reduces to

f [2](0) =
−2µ2

α|2α+ γ2|
and f [2](λ(r)) =

2µf(λ(r)) + 2rγf [2](λ(r−1))

iλ(r) − (2α+ γ2)
if r ≥ 1.

which are similar to the results already obtained by Subba and Terdik [65].

3.3 Second-order properties of (X(t))t≥0 and (X2(t))t≥0

In theorem 3.2.2 and remark 3.2.3 a recursive formula is derived for the evolutionary transfer
functions of regular solution of COBL(1, 1). Condition (3.2.2) give sufficient condition for that
these transfer functions determine a solution process given by the Wiener-Itô representation
(3.1.2) for equation (3.1.1). In this section we examine the second-order properties of the
solution processes (X(t))t≥0 and (q(t))t≥0.

3.3.1 Linear case

In linear case, i.e., γ(t) = 0, for all t ≥ 0,we have

dX(t) = (α(t)X(t) + µ(t)) dt+ β(t)dw(t), a.e., (3.3.1)

its Wiener-Itô representation (3.1.2) reduces to X(t) = ft(0) +
∫
R e

itλft(λ)dZ(λ), and the
evolutionary transfer functions associated with regular solution are uniquely given by

ft(λ) = ϕt (λ)

f0(λ) +

t∫
0

ϕ−1
s (λ)β(s)ds

 (3.3.2)

where ϕt (λ) is given in remark 3.2.3.
Thus, for equation (3.3.1) we have

Theorem 3.3.1. If α(t) < 0, then the solution process (X(t))t≥0 of equation (3.3.1) is Gaussian
if and only if X0 is normally distributed or constant. The mean m1 (t) , variance KX(t) and
covariance KX(t, s) functions are given by

m1 (t) = ϕt (0)

m1(0) +

t∫
0

ϕ−1
s (0)µ(s)ds

 ,
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KX(t) =
1

2π

∫
R

|ft (λ)|2 dλ, KX(t, s) =
1

2π

∫
R

eiλ(t−s)ft (λ) fs (λ)dλ.

Moreover, the solution process (X(t))t≥0 has independent increments if and only if X0 is constant
or α(t) = 0 (i.e., ϕt (0) = 1) for all t ≥ 0.

Proof. See Arnold [3] (see Theorem 8.2.10 and Theorem 8.2.12, Chapter 8).

Now we are in position to state the following theorem.

Theorem 3.3.2. The solution process of equation (3.3.1) is stationary Gaussian process if α(t),
µ(t) and β(t) are constant functions, with α(t) = α < 0, µ(t) = 0, β(t) = β, and X0 is

normally distributed with zero mean and KX(0) = −β
2

2α
. In this case the covariance function

Cov(X(t), X(t+ h)) = KX(0)eα|h| → 0 as |h| → +∞.

Proof. From theorem 3.3.1, It is clear that the solution process (X(t))t≥0 of the equation (3.3.1) is
Gaussian process, furthermore a necessary and sufficient condition for second-order stationarity is
that E {X(t)} is a constant and Cov(X(s), X(t)) = KX(0)eα|t−s|. These conditions are certainly
satisfied if µ(t) = 0, α(t) = α and β(t) = β. In this case and from the recursion (3.2.4) we can

see that f(0) = 0 and f(λ) =
β

iλ− α
. From the representation (3.3.1), we have E {X(t)} = 0

and by the property (3.1.4) we get

KX(0) = E

{∫
R
eitλ1f(λ1)dZ(λ1)

∫
R
eitλ2f(λ2)dZ(λ2)

}
=

∫
R
|f(λ)|2 dF (λ) = β2

(
1

2π

∫
R

1

λ2 + α2
dλ

)
=

β2

2 |α|
.

and

KX(h) = E

{∫
R
eitλ1f(λ1)dZ(λ1)

∫
R
ei(t+h)λ2f(λ2)dZ(λ2)

}
=

∫
R
|f(λ)|2 e−ihλdF (λ)

= β2

(
1

2π

∫
R

1

λ2 + α2
e−ihλdλ

)
=

β2

2 |α|
eα|h| = KX(0)eα|h|.�

Now we examine the second-order properties of the quadratic process (q(t))t≥0.

Theorem 3.3.3. Under the conditions of the theorem 3.3.2, the process (q(t))t≥0 is strict sta-

tionary and its distribution has the form
β2

2|α|
χ(1) where χ(1) is the chi-squared distribution with

1 degree of freedom. Moreover (q(t))t≥0 is a second order stationary process. The mean m2 (0)
, variance Kq(0) and covariance Kq(h) functions are given by

m2(0) =
β2

2|α|
, Kq(0) = 2

(
β2

2α

)2

, Kq(h) = Kq(0)e2α|h|, h ∈ R

Proof. The proof of this theorem follows from the fact that (X(t))t≥0 is stationary Gaussian
stochastic process and the definition of the chi-squared distribution. �
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3.3.2 Bilinear case

In this subsection we consider the SDE (3.1.1), first recalling the following theorem which is due
to Lebreton and Musiela [45] where we give the proof using the transfer functions approach..

Theorem 3.3.4. Under the condition (3.2.2), the mean, variance and covariance functions for
COBL (1, 1) are given respectively by the expressions

m1(t) = ϕt(0)

(
f0(0) +

∫ t

0
ϕ−1
s (0)µ(s)ds

)
. (3.3.3)

KX(t) = φt (0)

KX(0) +

t∫
0

φ−1
s (0) (γ(s)fs(0) + β(s))2 ds

 . (3.3.4)

KX(t, s) = ϕt(0)ϕ−1
s (0)KX(s), t ≥ s ≥ 0, (3.3.5)

where ϕt(0) = exp
{∫ t

0 α(u)du
}
and φt(0) = exp

{∫ t
0

(
2α(u) + γ2(u)

)
du
}
( see remark 3.2.3 and

remark 3.2.5 ).

Proof. From the formula (3.2.4) it follows

ft(0) = ϕt (0)

f0(0) +

t∫
0

ϕ−1
s (0)µ(s)ds

 ,

since E {X(t)} = m1(t) = ft(0), ∀t ≥ 0, the expression (3.3.3) holds.
To prove (3.3.5) we have V ar {X(t)} = KX(t) = E

{
X2(t)

}
− (E {X(t)})2, but E {X(t)} =

m1(t) = ft(0), and E
{
X2(t)

}
= m2(t) = f

[2]
t (0), ∀t ≥ 0 which implies KX(t) = f

[2]
t (0) −

(ft(0))2, then by differentiating with respect to t and from the formulae (3.2.3),(3.2.5) we sub-

stitute respectively
dft(0)

dt
,
df

[2]
t (0)

dt
we find

dKX(t)

dt
=
df

[2]
t (0)

dt
− 2ft(0)

dft(0)

dt

=
[(

2α (t) + γ2(t)
)
f

[2]
t (0) + 2 (γ(t)β(t) + µ(t)) ft (0) + β2(t)

]
− 2ft(0) [α(t)ft(0) + µ(t)]

=
(
2α (t) + γ2(t)

)
f

[2]
t (0) + 2γ(t)β(t)ft (0) + β2(t)− 2α(t) (ft (0))2

=
(
2α (t) + γ2(t)

) (
KX(t) + (ft(0))2

)
+ 2γ(t)β(t)ft (0) + β2(t)− 2α(t) (ft (0))2

=
(
2α (t) + γ2(t)

)
KX(t) + (γ(t)ft(0) + β(t))2

=
(
2α (t) + γ2(t)

)
KX(t) + (γ(t)m1(0) + β(t))2 ,

hence the expression (3.3.5) is ensured by applying the general results on linear ordinary differ-
ential equations.

Finally it remains to prove (3.3.4), first we remark that for all t ≥ s

KX(t, s) = Cov(X(t), X(s)) =
∑
r≥1

1

(r!)2
E

{∫
Rr
ft
(
λ(r)

)
eitλ(r)dZ(λ(r))

∫
Rr
fs
(
λ(r)

)
eisλ(r)dZ(λ(r))

}
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then differentiating with respect to t and the use of the formula (3.2.3) we obtain

dKX(t, s)

dt
=
∑
r≥1

1

(r!)2
E


∫
Rr

d
(
ft
(
λ(r)

)
eitλ(r)

)
dt

dZ(λ(r))

∫
Rr

fs
(
λ(r)

)
eisλ(r)dZ(λ(r))


=
∑
r≥1

1

(r!)2
E

{∫
Rr

(
f

(1)
t

(
λ(r)

)
+ iλ(r)ft

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr

fs
(
λ(r)

)
eisλ(r)dZ(λ(r))

}

=
∑
r≥1

1

(r!)2
E

{∫
Rr

(
α(t)ft

(
λ(r)

)
+ r

[
γ(t)ft

(
λ(r−1)

)
+ δ{r=1}β(t)

])
eitλ(r)dZ(λ(r))

∫
Rr

fs
(
λ(r)

)
eisλ(r)dZ(λ(r))

}
,

Now apply the property of orthogonality (3.1.4) to get

dKX(t, s)

dt
= α(t)

∑
r≥1

1

(r!)2
E

{∫
Rr
ft
(
λ(r)

)
eitλ(r)dZ(λ(r))

∫
Rr
fs
(
λ(r)

)
eisλ(r)dZ(λ(r))

}
= α(t)KX(t, s), for all t ≥ s,

and the expression (3.3.4) holds.
�

Corollary 3.3.1. In time-invariant case and under the condition (3.2.2), we have the following
results

m1(0) = −µ
α
, KX(0) =

(αβ − µγ)2

α2 |2α+ γ2|
, KX(h) = KX(0)eα|h|, h ∈ R

Now, we examine the second order properties of the quadratic process (q(t))t≥0 which satisfy the
SDE (3.2.6) in which the condition

2α(t) + 3γ2(t) < 0, for all t ≥ 0 (3.3.6)

must be imposed.

Theorem 3.3.5. Consider the quadratic version of the SDE (3.1.1), then under the condition
(3.3.6), the mean, covariance and variance functions are given respectively by

m2(t) = φt(0)φ−1
s (0)

{
m2(s) +

∫ t

s
φs(0)φ−1

u (0)
[
2 (γ(u)β(u) + µ(u))m1(u) + β2(u)

]
du

}
, t ≥ s.

(3.3.7)

Kq(t, s) = φt(0)φ−1
s (0) (3.3.8)

×
{
Kq(s) + 2

∫ t

s
φs(0)φ−1

u (0) (γ(u)β(u) + µ(u)) [Cum(X(u), X(s), X(s)) + 2KX(u, s)m1(s)] du

}

Kq(t) = ψ(t)ψ−1(s)Kq(s) + 4

∫ t

s
ψ(t)ψ−1(u) (3.3.9)

×
[
γ2(u)m2

2(u) + (µ(u) + 3γ(u)β(u))m3(u)− (µ(u) + γ(u)β(u))m1(u)m2(u) + β2(u)m2(u)
]
du,

where φt(0) = exp
{∫ t

0

(
2α(u) + γ2(u)

)
du
}

and ψ(t) = exp
{

2
∫ t

0

(
2α(u) + 3γ2(u)

)
du
}
.
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Proof. The formula (3.3.7) follows immediately from (3.2.6). To obtain the variance of the
quadratic process q(t) we need to compute the moments ofX(t), that aremk(t) = E

{
Xk(t)

}
, k ≥

2. Apply Itô formula to SDE (3.1.1), with f(x) = xk, we find

dXk(t) =
(
ak(t)X

k(t) + bk(t)X
k−1(t) + ck(t)X

k−2(t)
)
dt+

(
γ(t)kXk(t) + β(t)kXk−1(t)

)
dw(t),

(3.3.10)
with

ak(t) = α(t)k +
1

2
γ2(t)k(k − 1), bk(t) = µ(t)k + γ(t)β(t)k(k − 1) and ck(t) =

1

2
β2(t)k(k − 1).

(3.3.11)
We can write (3.3.10) as

Xk(t) = Xk(0) +

∫ t

0

(
ak(t)X

k(s) + bk(t)X
k−1(s) + ck(t)X

k−2(s)
)
ds

+

∫ t

0

(
γ(t)kXk(s) + β(t)kXk−1(s)

)
dw(s). (3.3.12)

Therefore, taking the expected value of each side of (3.3.12), if we put mk(t) = E
{
Xk(t)

}
we find

mk(t) = mk(0) +

∫ t

0
(ak(s)mk(s) + bk(s)mk−1(s) + ck(s)mk−2(s)) ds. (3.3.13)

Differentiating with respect to t we obtain

dmk(t)

dt
= ak(t)mk(t) + bk(t)mk−1(t) + ck(t)mk−2(t), for k ≥ 2, t > 0 (3.3.14)

mk(0) = E
{
Xk(0)

}
, for k ≥ 2 and m0(t) = 1, ∀t ≥ 0. (3.3.15)

We will solve the above of differential equations, finding mk(t) for k ≥ 2. Since Kq(t) =
m4(t)− (m2(t))2 and by differentiating with respect to t we find

dKq(t)

dt
=
dm4(t)

dt
− 2m2(t)

dm2(t)

dt
,

we use (3.3.14) for k ∈ {2, 4} and the fact that m4(t) = Kq(t) + m2
2(t) we abtain the following

differential equation

dKq(t)

dt
= a4(t)Kq(t)+(a4(t)− 2a2(t))m2

2(t)+b4(t)m3(t)−2b2(t)m1(t)m2(t)+(c4(t)− 2c2(t))m2(t),

from (3.3.11) the coefficients of this equation can be given as

a4(t) = 2
(
2α(t) + 3γ2(t)

)
, a4(t)− 2a2(t) = 4γ2(t), b4(t) = 4 (µ(t) + 3γ(t)β(t)) ,

− 2b2(t) = −4 (µ(t) + γ(t)β(t)) , c4(t)− 2c2(t) = 4β2(t),

by general results on linear ordinary differential equations (see, e.g., [40], ch. 1) the expression
(3.3.9) holds.
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To prove the formula (3.3.8), we observe that for any t ≥ s

dE {q(t)q(s)} =
(
2α(t) + γ2(t)

)
E {q(t)q(s)} dt+ 2 (γ(t)β(t) + µ(t))E {X(t)X(s)X(s)} dt

+ β2(t)m2(s)dt

By general results on linear ordinary differential equations (see, e.g., [40], ch. 1) we obtain

E {q(t)q(s)} = φt(0)φ−1
s (0) E

{
q2(s)

}
+

∫ t

s
φt(0)φ−1

u (0)
[
2 (γ(u)β(u) + µ(u))E {X(u)X(s)X(s)}+ β2(u)m2(s)

]
du.

Since E {q(t)q(s)} = Cov(q(t), q(s)) + E {q(t)}E {q(s)} = Kq(t, s) + m2(t)m2(s), E
{
q2(s)

}
=

Kq(s) +m2
2(s) and

E {X(u)X(s)X(s)} = Cum ((X(u), X(s), X(s)) +m1(u)m2(s) + 2m1(s)E {X(u)X(s)} − 2m1(u)m2
1(s)

= Cum ((X(u), X(s), X(s)) +m1(u)m2(s) + 2m1(s)KX(u, s),

then using the formula (3.3.7) we obtain

Kq(t, s) +m2(t)m2(s) = φt(0)φ−1
s (0)

×
{
Kq(s) + 2

∫ t

s
φs(0)φ−1

u (0) (γ(u)β(u) + µ(u)) [Cum {X(u), X(s), X(s)}+ 2m1(s)KX(u, s)] du

}
+ φt(0)φ−1

s (0)

{
m2(s) +

∫ t

s
φs(0)φ−1

u (0)
[
2 (γ(u)β(u) + µ(u))m1(u) + β2(u)

]
du

}
×m2(s)

= φt(0)φ−1
s (0)

×
{
Kq(s) + 2

∫ t

s
φs(0)φ−1

u (0) (γ(u)β(u) + µ(u)) [Cum {X(u), X(s), X(s)}+ 2m1(s)KX(u, s)] du

}
+m2(t)m2(s)

and the expression (3.3.8) holds.�

The second-order stationarity of the process (q(t))t≥0 is characterized in the theorem

Theorem 3.3.6. The quadratic process (q(t))t≥0 generated by the SDE (3.2.6) is second order
stationary if and only if one of the following assertions hold true

A. (q(t))t≥0 is deterministic with q(0) = m2(0), a.e., and(
2α(t) + γ2(t)

)
m2(0) + 2 (γ(t)β(t) + µ(t))m1(0) + β2(t) = 2 (γ(t)m2(0) + β(t)m1(0)) = 0

,

B. the SDE (3.2.6) is time-invariant such that(
2α+ γ2

)
m2(0) + 2 (γβ + µ)m1(0) + β2 = 0, (3.3.16)

and(
2α+ 3γ2

)
Kq(0) + 2γ2m2

2(0) + 2 (µ+ 3γβ)m3(0)− 2 (µ+ γβ)m1(0)m2(0) + 2β2m2(0) = 0.
(3.3.17)
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In this case, the covariance function of the process (q(t))t≥0 is given by

Kq(t, s) = Kq(0)e(2α+γ2)(t−s) +
2(γβ + µ) (CX(0, 0) + 2KX(0)m1(0))

α+ γ2

(
e(2α+γ2)(t−s) − eα(t−s)

)
(3.3.18)

where CX(. , .) denotes the third order cumulant of the process (X(t))t≥0.

Proof. In deterministic case with m2(0) = q(0) and Kq(0) = 0 the process (q(t))t≥0 is obviously
second-order stationary if and only if m2(t) = m2(0) and Kq(t) = 0, ∀t ≥ 0, which implies from
(3.3.7) and (3.3.9), (q(t))t≥0 is second order stationary if and only if(
2α(t) + γ2(t)

)
m2(0) + 2 (γ(t)β(t) + µ(t))m1(0) + β2(t) = 2 (γ(t)m2(0) + β(t)m1(0)) = 0 a.e.,

If the process (q(t))t≥0 is not deterministic i.e., Kq(0) > 0, it follows from the theorem 3.3.5

that the conditions (3.3.16) − (3.3.18) ensure the second order stationarity and the fact that
CX(u − s, u − s) = eα(u−s)CX(0, 0), KX(u, s) = eα(u−s)KX(0) for all u ≥ s. Conversely, if
(q(t))t≥0 is second-order stationary, then Kq(t) = Kq(0), which implies from (3.3.8) that for
t ≥ s ≥ 0,

Kq(t, s) = e(2α+γ2)(t−s)
{
Kq(0) + 2 (γβ + µ)

∫ t

s

e(2α+γ2)(s−u) (CX(u− s, u− s) + 2KX(u, s)m1(0)) du

}
= Kq(0)e(2α+γ2)(t−s) +

2(γβ + µ) (CX(0, 0) + 2KX(0)m1(0))

α+ γ2

(
e(2α+γ2)(t−s) − eα(t−s)

)
.

So that, there exists a constants α, γ and β such that α(t) = α, γ(t) = γ and β (t) = β a.e., and
sincem2(t) = m2(0), t ≥ 0, the formula (3.3.7) leads to

(
2α+ γ2

)
m2(0)+2 (γβ + µ)m1(0)+β2 =

0 a.e., Furthermore, since Kq(t) = Kq(0), t ≥ 0, formula (3.3.9) ensure that (3.3.17) holds.�

Remark 3.3.7. It is easy to show that if the process (X(t))t≥0 is deterministic with X(0) =
m1(0) a.e., and α(t)m1(0)+µ(t) = γ(t)m1(0)+β(t) = 0 a.e., then the quadratic process (q(t))t≥0

is deterministic with q(0) = m2(0) a.e., and(
2α(t) + γ2(t)

)
m2(0) + 2 (γ(t)β(t) + µ(t))m1(0) + β2(t) = 2 (γ(t)m2(0) + β(t)m1(0)) = 0

Example 3.3.8. Assume that γ(t) 6= 0, β(t) 6= 0, µ(t) 6= 0 and γ(t)β(t) + µ(t) = 0, then for all
t ≥ 0

m2(t) = φt (0)

{
m2(0) +

∫ t

0
φ−1
s (0)β2(s)ds

}
,

Kq(t) = ψ(t)

{
Kq(0) + 4

∫ t

0

ψ−1(s)
(
γ2(s)m2

2(s) + 2γ(s)β(s)m3(s) + β2(s)m2(s)
)
ds

}
= ψ(t)×{
Kq(0) + 4

∫ t

0

ψ−1(s)
(

2γ(s)β(s)Cov(q(s), X(s)) + β2(s)KX(s) + (β(s)m1(s) + γ(s)m2(s))
2
)
ds

}
,

Kq(t, s) = exp

{∫ t

s

(
2α(v) + γ2(v)

)
dv

}
Kq(s), t ≥ s.

In particular in time-invariant case, with 2α + 3γ2 < 0, (q(t))t≥0 is second-order stationary
process with

m2(0) =
β2

|2α+ γ2|
, Kq(0) = 2

(
2γβm3(0) + β2KX(0) + β2m2

1(0) + γ2m2
2(0)

|2α+ 3γ2|

)
, Kq(h) = e(2α+γ2)|h|Kq(0).



3.3 Second-order properties of (X(t))t≥0 and (X2(t))t≥0 49

Its transfer functions associated with Itô-Wiener representation are given by the symmetrization
of the following functions

f [2](λ(r)) =


β2

|2α+ γ2|
if r = 0

2r
(
γf [2](λ(r−1)) + βf(λ(r−1))

)
iλ(r) − (2α+ γ2)

if r ≥ 1

Example 3.3.9. If γ(t) = 0, the process (X(t))t≥0 is solution of the linear SDE (3.3.1) and the
quadratic process (q(t))t≥0 satisfies the following SDE, dq(t) =

(
2α(t)q(t) + 2µ(t)X(t) + β2(t)

)
dt+

2β(t)X(t)dw(t). It follows from theorem 3.3.6 that the quadratic process (q(t))t≥0 is second or-
der stationary if and only if either it is deterministic with q(0) = m2(0) a.e., and 2α(t)m2(0) +
2µ(t)m1(0) + β2(t) = 2β(t)m1(0) = 0 a.e., or there exist some constants α, µ and β such that
α(t) = α , µ(t) = µ , β(t) = β and 2αm2(0) + 2µm1(0) + β2 = 0 and hence αKq(0) + µm3(0)−
µm1(0)m2(0) + β2m2(0) = 0. Under the above conditions the covariance function of the process
(q(t))t≥0 is given by

Kq(t, s) = e2α(t−s)Kq(0) +
4µKX(0)m1(0)

α

(
e2α(t−s) − eα(t−s)

)
, t ≥ s

where Kq(0) =
µ(m3(0)−m1(0)m2(0)) + β2m2(0)

|α|
, (α < 0). On the other hand (X(t))t≥0

admits the Wiener-Itô representation, i.e., X(t) = ft(0) +
∫
R ft(λ)eitλdZ(λ), with ft(0) = −µ

α
,

ft(λ) =
β

iλ− α
(see corollary 3.2.1 ) and the quadratic process (q(t))t≥0 has the following spectral

representation

q(t) = f
[2]
t (0) +

∫
R
f

[2]
t (λ)eitλdZ(λ) +

1

2

∫
R2

f
[2]
t (λ(2))e

itλ(2)dZ(λ(2)),

where m2(t) = f
[2]
t (0) and the evolutionary symmetrized transfer functions f [2]

t (λ(r)), for r =
0, 1, 2 of the quadratic process (q(t))t≥0 are given by the following differential equations

f
[2](1)
t (λ(r)) =


2
(
α(t)f

[2]
t (0) + µ(t)ft(0)

)
+ β2(t) if r = 0

(2α(t)− iλ1) f
[2]
t (λ1) + 2 (µ(t)ft(λ1) + β(t)ft(0)) if r = 1(

2α(t)− iλ(2)

)
f

[2]
t (λ(2)) + 4β(t)ft(λ1) if r = 2.

In particular, when (X(t))t≥0 is time-invariant, we have

f [2](0) =
2µ2 − αβ2

2α2
, f [2](λ1) =

2µβ

α(α− iλ1)
and f [2](λ(2)) =

4β2

(α− iλ1)(2α− iλ(2))
.

Moreover, if X(0) is normally distributed with mean m1(0) and variance KX(0) =
β2

2|α|
, then the

process (q(t))t≥0 is strict stationary and its distribution has the form
β2

2|α|
χ(1) +2m1(0)U+m2

1(0)

where U  N
(

0,
β2

2|α|

)
and χ(1) is the chi-squared distribution with 1 degree of freedom.
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3.4 Taylor’s property of COBL(1, 1) process

In this section we consider the time-invariant version of SDE (3.1.1) with γ 6= 0, µ 6= 0 and γβ+
µ = 0 ( see Example 3.3.8 ). In order to ensure the second-order stationarity of both processes
(X(t))t≥0 and (q(t))t≥0, and to give conditions ensuring the inequality ρX(h) > ρX2(h), h ∈ R
(called Taylor’s property), where ρX(h) and ρX2(h) denote, respectively, the autocorrelations
of the processes (X(t))t≥0 and

(
X2(t)

)
t≥0

, we shall assume that the condition (3.3.6) holds
true. Noting here that this property was studied by Goncalves et. al. [29] for some discrete-time
bilinear models. It follows from the previous section that ρX(h) = eα|h| and ρX2(h) = e(2α+γ2)|h|,
∀h ∈ R. So, the Taylor’s property is present for values of α in the interval ]−∞,−γ2[, for a fixed
γ. In Fig1 below, we can see that the Taylor’s property is not present because α 6∈]−∞,−γ2[,
for α = −3, γ = −2, but in Fig2 , for −3 ≤ α ≤ −1.5 and fixed γ = 1, α ∈] −∞,−γ2[ which
implies the Taylor’s property is achieved.

Figure 3.1: (a) :The plot of ρX(h) and ρX2(h), (b) :The plot of ρX(h)− ρX2(h)

Now, we analyze the relationship between the Taylor’s property and leptokurtosis of the cor-
responding time-invariant COBL(1, 1) process. First recall that the kurtosis of a process X is

defined by Kur(X) =
E
{

(X(t)−m1(0))4
}

K2
X(0)

for our model, the kurtosis is given by

Kur(X) =
m4(0)− 4m3(0)m1(0) + 6m2(0)m2

1(0)− 3m4
1(0)

K2
X(0)

with m1(0) = −µ
α
, KX(0) =

(αβ − µγ)2

α2|2α+ γ2|
, so the kurtosis increases and the Taylor’s property

holds when α ∈ [−2,−γ2[, but when α ∈ [−γ2,−γ2

2 [, the Taylor’s property is not occurs and
the kurtosis is a decreasing function of α. In particular for E {X} = 0 i.e., µ = 0, the kurtosis
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Figure 3.2: (a) :The plot of ρX(h) and ρX2(h), (b) :The plot of ρX(h)− ρX2(h)

reduces to Kur(X) = 6
(5η − 11)

(η − 3)(η − 4)
+ 3 > 3 where η = 1− 2α

γ2
and hence the condition (3.3.6)

imply that η > 4.

3.5 Conclusion

In this chapter, we have studied some properties of continuous-time bilinear processes in both
domain, frequency and time domain. The transfer functions of the bilinear process which is given
by SDE with time-varying coefficients are computed by A. Bibi and F. Merahi [11], a similar
result are given here for the quadratic process. In order to analyze the Taylor property of the
process, we need to compute the covariance function of the quadratic process, for this purpose
we have studied the second order properties of this quadratic process and we calculated its
second order moments. For the particular case in example 3.3.8 when γ 6= 0, µ 6= 0, 2α+ γ2 and
γβ+µ = 0, we observe that the existence of Taylor property depends on the values of α and γ2, i.e.
in this case the bilinear process have the Taylor property only if α < −γ2, and the leptokurtosis
induce the Taylor property. In general, when γβ + µ 6= 0, we can conclude that all parameters
affect on the Taylor property, it means if α < −γ2 and (γβ + µ) (CX(0, 0) + 2K(0)m1(0)) > 0,
the Taylor property holds.
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Chapter 4

Moment method estimation of
first-order continuous-time bilinear
processes4

4. Ce chapitre est accepté par : Communications in Statistics - Simulation and Computation.

Abstract

In the present chapter, we propose an estimation method of the first order continuous-time bilin-
ear (COBL) process based on Euler-Maruyama discretization of the Itô solution asociated with
the stochastic differerential equation (SDE) defining the process, and we suggest a standard
moment method (MM) estimates of the unknown parameters involving in COBL process. So,
some relationships linking the parameters and the theoretical moments of the process and its
quadratic version are given. These relationships we allow to construct two algorithms to esti-
mate the parameters based on MM . Using the fact that the incremented processes are strongly
mixing with exponential rate whenever certain conditions are fulfilled, we show that the resulting
estimators are strongly consistent and asymptotically normal. The theory can be applied to the
COGARCH(1, 1), Gaussian Ornstein-Uhlenbeck (OU) models and among other specifications.
Finite sample properties are also considered throught Monte-Carlo experimencts. In end, this
algorithm is then used to model the exchanges rate of the Algerian Dinar against the US-dollar
and against the single European currency.

4.1 Introduction

Stochastic differential equations (SDE) plays an important role in various field such as in con-
trol, financial engineering, biology and among others. So, several authors have been studied the
probabilistic and statistical structure of linear and nonlinear SDE (see for instance Brockwell et
al. [14], [15], [16], Kluppelberg et al. [42], Le Breton and Musiela [45], Iglòi and Terdik [38] and
Subba Rao and Terdik [62] and the reference therein). Of course, these SDE depends on some
unknown parameters, and however a growing literature on different methods have been proposed
for their identification. For an in-depth detailed mathematical inference we refer the interested
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reader to the nomography by Prakasa Rao [58]. Recently, discretization methods becomes an
appealing tool for the parameters estimation and continue to gain popularity especially in diffu-
sion processes. Indeed, based on a general quasi-likelihood distribution Aït Sahalia [1] proposed
a class of discretized quasi-maximum likelihood estimator (QMLE) for stationary diffusion pro-
cess and compared their asymptotic efficiency with different QM distribution assumptions (see
also Tsai an Chan [67] for further discussions). The no tractability of QMLE conducting how-
ever Haug et al. [32] to suggest method of moment (MM) for estimating the continuous-time
GARCH(1, 1) based on Euler-Maruyama discretization and established their asymptotic prop-
erties. Kallsen et al. [39] established the consistency and the asymptotic normality of MM for
estimating the time-changed Lévy models.

In this chapter, we consider a first-order continuous-time bilinear process (often called Black-
Scholes Model) governed by the following SDE

dX(t) = (αX(t) + µ)dt+ (γX(t) + β) dW (t), t ≥ 0, X(0) = X0, (4.1.1)

denoted hereafter COBL (1, 1) in wherein (W (t))t≥0 is a real standard Brownian motion defined
on some basic filtered probability space (Ω,A, (At)t≥0 P ), the initial stateX(0) = X0 is a random
variable, defined on (Ω,A, P ) independent of W with E {X(0)} = mX and V ar {X(0)} = K (0)
and the parameters of interest are gathered in vector θ = (α, µ, γ, β)′ ∈ R4. The SDE (4.1.1)
was introduced firstly in control theory literature by Mohler [52] and has been widely applied in
engineering and finance (see for instance Rémillar [59] and the reference therein). It is worth
noting the SDE (4.1.1) encompasses many commonly used models in the literature. Some
specific examples among others are:

1. COGARCH(1, 1): This classes of processes is defined as an SDE by dX (t) = σ (t) dB1(t)
where (σ (t))t≥0 the volatility process, satisfies dσ2 (t) =

(
µ− ασ2 (t)

)
dt+ γσ2 (t) dB2 (t),

t > 0, B1 and B2 are independent Brownian motions and µ > 0, α ≥ 0 and γ ≥ 0. So, the
volatility equation can be regarded as a particular case of (4.1.1) by assuming β = 0. (see
Haug et al. [32] and the reference therein).

2. CARMA(1, 0) or CAR(1): This classes of SDE may be obtained by assuming γ = 0. (see
Brockwell [15]).

3. Gaussian Ornstein-Uhlenbeck (OU) process: The GaussianOU process is defined as dX(t) =
(µ− αX(t)) dt+βdW (t), with β > 0. So it can be obtained from (4.1.1) by assuming γ =
0. (see Brockwell [15]).

4. Geometric Brownian motion (GBM): This class of processes is defined as a R−valued
solution process (X(t))t≥0 of dX(t) = αX(t)dt+γX(t)dW (t), t ≥ 0. So it can be obtained
from (4.1.1) by assuming β = µ = 0 (see ∅ksendal [7]).

An outline of the chapter can be given as follows. In the next section we investigate the stationar-
ity and moments properties of the COBL(1, 1), its quadratic and their discretized schemes. The
obtained results we allow to construct two methods of moment estimation which are described
in section 3. Section 4 deals with the asymptotic properties of the proposal methods, while the
finite sample properties are evaluated in Section 5 by means of Monte Carlo simulations followed
by an application to model the exchanges rate of the Algerian Dinar against the US-dollar and
against the single European currency. Section 6 concludes the chapter. Finally, Appendix A
collects the main proofs of our theoretical results.
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4.2 Moment properties of COBL(1, 1), its quadratic and their dis-
cretized schemes

The existence and the uniqueness of the solution process (X(t))t≥0 of SDE (4.1.1) is ensured
by general results on stochastic differential equations (see, e.g; [49], Ch.4 ). In order to ensure
the stationarity of the solution process, we require that the parameters α and γ subject to the
following condition (see Le Breton and Musiela [45], Lemma 2.3 and Lemma 2.4)

A1. 2α+ γ2 < 0

So, by the Itô formula (see e.g., [3], Theorem 8.4.2) the solution process (X(t))t≥0 of equation
(4.1.1) is given by

X(t) = Φ(t)

X(0) + (µ− γβ)

t∫
0

Φ−1(s)ds+ β

t∫
0

Φ−1(s)dW (s)

 (4.2.1)

where Φ(t) = exp
{(
α− 1

2γ
2
)
t+ γW (t)

}
its mean function is Ψ (t) = exp {αt}, t ≥ 0, yielding

under the condition A1., that the solution process (X(t))t≥0 is strictly stationary with

mX = E {X(t)} = −µ
α
,

KX(0) = V ar {X(t)} =
−(αβ − µγ)2

α2 (2α+ γ2)
,

KX(h) = Cov(X(t), X(t+ h)) = KX(0)eα|h|, h 6= 0

Remark 4.2.1. It is worth noting that if µγ = αβ, Equation (4.1.1) has only a degenerate
solution given by X(t) = −β/γ = −µ/α, even, if β = 0, the solution process (4.2.1) is neither a
standardized diffusion process nor a martingale. Moreover, if γ = 0 and β 6= 0, the solution pro-
cess (4.2.1) provides a Gaussian OU process. So if we are interested in stationary non Gaussian
solution of (4.1.1), it is necessary to assume that µ2 + β2 > 0 and γ 6= 0.

Remark 4.2.2. Le Breton and Musiela [45] have showed that under the condition A1., the
second-order structure the solution process (4.2.1) is similar to an CAR(1) process, and hence
there exists some real Brownian motion (W ∗ (t))t≥0 uncorrelated with X(0) such that (X (t))t≥0

admits the following representation

dX(t) = (αX(t) + µ)dt+
(
γ2KX(0) + (γmX + β)2

)1/2
dW ∗(t)

Remark 4.2.3. For any t ≥ 0, let −ξ(t) =
(
α− 1

2γ
2
)
t+γW (t) and η(t) = (µ− γβ) t+βW (t),

then the solution process (4.2.1) may be rewritten as

X(t) = e−ξ(t)

X(0) +

t∫
0

eξ(s)dη(s)

 , t ≥ 0.

that is the solution process of the celebrated generalized OU (GOU) process defined by dX(t) =
−ξ(t)X(t)dt+ dη(t), t ≥ 0, X(0) = X0.
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In the sequel, we shall assume without the loss of generality that

A2. γβ + µ = 0, γ 6= 0

The Assumption A2., is quite technical, it means that the parameter β may be expressed via µ
and γ. Otherwise, it can be assumed that β = 0, because this assumption can be fulfilled by the
following transformation Y (t) =

µ

γµ− αβ
(β + γX(t)) .

4.2.1 Quadratic process

The quadratic process
(
X2(t)

)
t≥0

is denoted hereafter (q(t))t≥0 and satisfy the following SDE

dq(t) =
((

2α+ γ2
)
q(t) + 2 (γβ + µ)X(t) + β2

)
dt+ 2 (γq(t) + βX(t)) dW (t), (4.2.2)

Proposition 4.2.4. Under the conditions A1. and A2., the covariance function of the process
(q(t))t≥0 is given for any h ≥ 0 by

Kq(h) = Kq(0)e(2α+γ2)h. (4.2.3)

so Kq(h)→ 0 at an exponential rate as h→ +∞, and hence (q(t))t≥0 has a short term memory
property.

4.2.2 Discretized schemes

In this subsection, we consider the Euler-Maruyama discretization, for this purpose, let the
incremented process X(r)(t) = X(t) −X(t − r) for any t ≥ r > 0 and let

(
X

(r)
j

)
j∈N

describes

an equidistant sequence of the process (X(t))t≥0 associated with X(r)(t), t ≥ r ≥ 0, i.e.,

X
(r)
j = X(r)(rj) (4.2.4)

=

∫ jr

(j−1)r
((αX(s) + µ)ds+ (γX(s) + β) dW (s))

= α
(r)
j X

(r)
j−1 + e

(r)
j

where (see remark 4.2.3) α(r)
j = exp {− (ξ(jr)− ξ((j − 1)r))} and e

(r)
j = exp {−ξ(jr)}

jr∫
(j−1)r

e−ξ(u)dη(u)

. So, Equation (4.2.4) is an AR(1) form with martingale error in particular for OU process

with µ = 0, we have E
{
e

(r)
j

}
= 0 and V ar

{
e

(r)
j

}
=

β2

2α

(
1− e−2αr

)
. Also

(
q

(r)
j

)
j∈N

de-

scribes an equidistant sequence of the quadratic process (q(t))t≥0 associated with the process
q(r)(t) = q(t)− q(t− r), t ≥ r ≥ 0.

Proposition 4.2.5. Let (X(t))t≥0 be the stationary solution process of SDE (4.1.1) with in-
cremented process

(
X(r)(t)

)
t≥0

. Then under the condition A1., E
{
X2(t)

}
< ∞ for all t, and
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for any h ≥ r > 0 we have

m
(r)
X = E

{
X(r)(t)

}
= 0,

K
(r)
X (0) = E

{(
X(r)(t)

)2
}

= 2 (1− eαr)KX(0) (4.2.5)

K
(r)
X (h) = Cov(X(r)(t), X(r)(t+ h)) =

(
2− e−αr − eαr

)
eαhKX(0), ∀h > r ≥ 0, (4.2.6)

Furthermore, E
{
X4(t)

}
<∞ for all t ≥ 0, and for every h ≥ r > 0, we have

m(r)
q = E

{
q(r)(t)

}
= 0,

K(r)
q (0) = E

{(
q(r)(t)

)2
}

= 2
(

1− e(2α+γ2)r
)
Kq(0), (4.2.7)

K(r)
q (h) = Cov(q(r)(t), q(r)(t+ h)) = Kq(0)

(
2− e−(2α+γ2)r − e(2α+γ2)r

)
e(2α+γ2)h (4.2.8)

Remark 4.2.6. From the expressions (4.2.5) and (4.2.6), the covariance function of the process
(X(r)(t))t≥0 can be formed into the form

K
(r)
X (h) =

(2− e−αr − eαr)
2 (1− eαr)

K
(r)
X (0) eαh, for any h ≥ r > 0. (4.2.9)

On the other hand, from the expressions (4.2.7), (4.2.8) and (4.2.9), the covariance function of
the process (q(r)(t))t≥0 may be rewritten as

K(r)
q (h) =

(
2− e−(2α+γ2)r − e(2α+γ2)r

)
2
(
1− e(2α+γ2)r

) K(r)
q (0) e(2α+γ2)h, ∀h ≥ r > 0.

Now, for any integers τ ≥ r > 0, we denote by R
(r)
X (τ) = Cov(X

(r)
j , X

(r)
j+τ ) (resp. R

(r)
q (τ) =

Cov(q
(r)
j , q

(r)
j+τ )) the covariance function of discretized process

(
X

(r)
j

)
j∈N

(resp.
(
q

(r)
j

)
j∈N

)

and by ρ(r)
X (τ) = Corr(X

(r)
j , X

(r)
j+τ ) (resp. ρ

(r)
q (τ) = Corr(q

(r)
j , q

(r)
j+τ )) the correlation function

of
(
X

(r)
j

)
j∈N

(rep.
(
q

(r)
j

)
j∈N

). Then the above quantities are summarized in the following

proposition.

Proposition 4.2.7. Let
(
X

(r)
j

)
j∈N

(resp.
(
q

(r)
j

)
j∈N

) be the discretized process of be the sta-

tionary solution process (X(t))t≥0 (resp. (q(t))t≥0) of the SDE (4.1.1) (resp. of SDE (4.2.2)).
Then under the condition A1., we have for all τ ≥ r > 0

R
(r)
X (0) = E

{(
X(r)(t)

)2
}
,

ρ
(r)
X (τ) =

(2− e−αr − eαr)
2 (1− eαr)

eατ ,∀τ ≥ r > 0

R(r)
q (0) = E

{(
q(r)(t)

)2
}
,

ρ(r)
q (τ) =

(
2− e−(2α+γ2)r − e(2α+γ2)r

)
2
(
1− e(2α+γ2)r

) e(2α+γ2)τ , ∀τ ≥ r > 0
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Proof. Straightforward and hence omitted.

Corollary 4.2.1. Under the condition of the proposition 4.2.7 the process
(
X

(r)
j

)
j∈N

(resp.(
q

(r)
j

)
j∈N

) has for each r > 0 the correlation structure of an ARMA(1, 1) process.

Remark 4.2.8. It is worth noting that the quantities ρ(r)
X (τ) and ρ(r)

q (τ) are defined only for
τ ≥ r > 0, and hence their values at τ = 0 are different from 1.

Example 4.2.9. [OU process] We consider the diffusion equation dX(t) = −αX(t)dt + βdW (t) ,

α, β > 0. The incremented process is given by X(r) (t) = (e−αr − 1)X (t− r) + βeα(r−t)
t∫

t−r
eαsdW (s)

. So, the second-order properties of X(r) (t) and q(r) (t) are summarized in the following table

Variance Covariance
X(r) (t) 2 (1− e−αr)KX (0) KX (0) (2− e−αr − eαr) e−αh, h ≥ r > 0

q(r) (t) 2
(
1− e−2αr

)
Kq (0) Kq (0)

(
2− e−2αr − e2αr

)
e−2αh, h ≥ r > 0

Table(1): Second-order properties X(r) (t) and q(r) (t) associated with OU process

4.3 Method of moment estimation

There is an extensive literature devoted to the problem of estimating the unknown parameters
in SDE. In most application the observations are equally discretized (financial mathematics and
econometrics models). The first paper to deal with parametric estimation from a discretized
stationary and ergodic process is due to Dacunha-Castelle et al. [19]. This technique allows the
econometricians and/or statisticians to consider a lot of parametric methods commonly used in
literature of discrete-time series models, for instance generalized method of moment (GMM)
(e.g., Chan et al. [18] and the references therein). In what follows, we suppose that we can only
observe the process at fixed, equally spaced sampling times. Let r > 0 be the sampling interval
andX = {X (r) , ..., X (nr)} the observations from a second-order stationary COBL(1, 1) and we
estimate θ = (α, µ, γ, β)′ using the method of moment based on X and its asymptotic properties
described in the remainder of the paper.

4.3.1 First method of moment estimation

We first identify the vector θ via the moments of the process
(
X

(r)
t

)
t∈N

and its quadratic version(
q

(r)
t

)
t∈N

as follows

Lemma 4.3.1. Consider the case r = 1, then under the conditions A1., and A2., the parameters
α, µ, γ and β are uniquely determined by

α = log

(
1−

R
(1)
X (0)

2KX(0)

)
, µ = −αmX , γ2 = δ − 2α and β = −µ

γ
where δ = log

(
1− R

(1)
q (0)

2Kq(0)

)
.

(4.3.1)
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Remark 4.3.2. From the expressions of α and δ, we remark that the parameter vector θ =

(α, µ, γ, β)′ is a continuous function of the the moments mX , R
(1)
X (0), KX(0) and the parameter

δ. Hence, by continuity, consistency of the moments will immediately imply consistency of the
corresponding plug-in estimates θ = (α, β, γ, µ)′.

Now, define the mapping J0 : R2
+ × R× R2

+ −→ R∗− × R× R+ by

J0(KX(0), R
(1)
X (0),mX ,Kq(0), R(1)

q (0)) (4.3.2)

=

(
log

(
1−

R
(1)
X (0)

2KX(0)

)
,−mX log

(
1−

R
(1)
X (0)

2KX(0)

)
, log

(
1− R

(1)
q (0)

2Kq(0)

)
− 2log

(
1−

R
(1)
X (0)

2KX(0)

))′
.

Then the estimator
(
α̂, µ̂, γ̂2

)′ of (α, µ, γ2
)′ by the method of moment (MM) is thus(

α̂, µ̂, γ̂2
)′

= J0(K̂X(0), R̂
(1)
X (0), m̂X , K̂q(0), R̂(1)

q (0)),

in which the quantities with hats in J0 are the empirical estimates of the corresponding quantity
based on

(
X

(1)
j

)
1≤j≤n

,
(
q

(1)
j

)
1≤j≤n

, (X(j))1≤j≤n and (q(j))1≤j≤n. In order to make the notation

shorter, we have suppress the dependence of empirical estimators on the size n.
Now we turn to the second step which is the estimation of the parameters based on the

correlations. We need the following lemma

Lemma 4.3.3. Under the assumptions of the Theorem 4.3.1, the correlation functions of the
discrete-time processes

(
X

(1)
j

)
j∈N

and its quadratic version
(
q

(1)
j

)
j∈N

are given respectively for

any τ ∈ N∗, by
ρ

(1)
X (τ) = k (α) eατ and ρ(1)

q (τ) = k (δ) eδτ (4.3.3)

where k is the function defined by k(x) =
(2− e−x − ex)

2 (1− ex)
.

Remark 4.3.4. It follow from the lemma (4.3.3) that the estimators of k(α) and k(δ) may be
deduced from the estimators of α and δ, i.e.,

k̂(α) =

(
2− e−α̂ − eα̂

)
2
(
1− eα̂

) and k̂(δ) =

(
2− e−δ̂ − eδ̂

)
2
(

1− eδ̂
) .

Now, since the correlation functions ρ(1)
X (τ) and ρ(1)

q (τ) depends respectively on the parameters
α and δ then we can follow the following algorithm to estimate these parameters

Algorithm 1

Step1 Calculate the empirical means m̂X =
1

n

∑n
j=1X(j) and m̂q =

1

n

∑n
j=1 q(j) of mX and mq

respectively.

Step2 Calculate the empirical variances K̂X(0) =
1

n

∑n
j=1 (X(j)− m̂X)

2 , K̂q(0) =
1

n

∑n
j=1 (q(j)− m̂q)

2

of KX(0) and Kq(0) respectively.
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Step3 Calculate the empirical variances for discretized versions R̂(1)
X (0) =

1

n

∑n
j=1

(
X

(1)
j

)2
and

R̂
(1)
q (0) =

1

n

∑n
j=1

(
q

(1)
j

)2
.

Step4 Define the mapping J1, J2 : R2
+ × R∗− −→ R∗− × R∗ by

J1(R
(1)
X (0),KX(0), α) =


(
log

(
1−

R
(1)
X (0)

2KX(0)

)
, k(α)

)′
if α < 0,

(0, 0) otherwise.

J2(R(1)
q (0),Kq(0), δ) =


(
log

(
1− R

(1)
q (0)

2Kq(0)

)
, k(δ)

)′
, if δ < 0,

(0, 0) , otherwise .

Then the MM estimators of (α, k(α))′ and of (δ, k(δ))′ are given by

(α̂, k(α̂))
′

= J1(R̂
(1)
X (0), K̂X(0), α̂) and

(
δ̂, k(δ̂)

)′
= J2(R̂(1)

q (0), K̂q(0), δ̂)

.

Step5 Defining the mapping S1, S2 : R2
+ −→ R∗− × R∗ as a function of R̂(1)

X (0), K̂X(0) and
R̂

(1)
q (0), K̂q(0) respectively such that

(α̂, k(α̂)) = S1

(
R̂

(1)
X (0), K̂X(0)

)
and

(
δ̂, k(δ̂)

)
= S2

(
R̂(1)
q (0), K̂q(0)

)
.

4.3.2 Second method of moment estimation

We shall note k+ (.) = |k (.)|, ρ(1)+
X (τ) =

∣∣∣ρ(1)
X (τ)

∣∣∣ , ρ(1)+
q (τ) =

∣∣∣ρ(1)
q (τ)

∣∣∣ , R(1)+
X (τ) =

∣∣∣R(1)
X (τ)

∣∣∣,
R

(1)+
q (τ) =

∣∣∣R(1)
q (τ)

∣∣∣ for τ = 1, 2, ..., d and let R̂
(1)+

X =
(
R̂

(1)+
X (0), R̂

(1)+
X (1), ..., R̂

(1)+
X (d)

)′
, ρ̂(1)+

X
=(

ρ̂
(1)+
X (1), ρ̂

(1)+
X (2), ..., ρ̂

(1)+
X (d)

)′
. The estimation of α, δ, k (α) and k (δ) may be achieved ac-

cording to the following algorithm.

Algorithm 2

Step1 Calculate the empirical means m̂X and m̂q of mX and mq as in Algorithm 1.

Step2 Calculate the empirical variances K̂X(0), K̂q(0) of KX(0) and for Kq(0) as in Algorithm 1.

Step3 Calculate the empirical variances R̂(1)
X (0), R̂(1)

q (0) of R(1)
X (0) and for R(1)

q (0) associated

for discretized versions and for fixed d ≥ 2, let R̂
(1)

X =
(
R̂

(1)
X (0), R̂

(1)
X (1), ..., R̂

(1)
X (d)

)T
,

R̂
(1)

q =
(
R̂

(1)
q (0), R̂

(1)
q (1), ..., R̂

(1)
q (d)

)T
where R̂(1)

X (h) =
1

n

∑n−h
j=1 X

(1)
j+hX

(1)
j , and R̂(1)

q (h) =

1

n

∑n−h
j=1 q

(1)
j+hq

(1)
j , h = 0, 1, ..., d.
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Step4 Compute the empirical autocorrelations ρ̂(1)
X (h) =

R̂
(1)
X (h)

R̂
(1)
X (0)

and ρ̂
(1)
q (h) =

R̂
(1)
q (h)

R̂
(1)
q (0)

, h =

1, ..., d and set ρ̂(1)
X

=
(
ρ̂

(1)
X (1), ρ̂

(1)
X (2), ..., ρ̂

(1)
X (d)

)T
and ρ̂(1)

q
=
(
ρ̂

(1)
q (1), ρ̂

(1)
q (2), ..., ρ̂

(1)
q (d)

)T
.

Step5 Let R̂
(1)+

X =
(
R̂

(1)+
X (0), R̂

(1)+
X (1), ..., R̂

(1)+
X (d)

)′
where R̂(1)+

X (τ) =
∣∣∣R̂(1)

X (τ)
∣∣∣ for τ = 0, 1, ..., d.

Step6 Let R̂
(1)+

q =
(
R̂

(1)+
q (0), R̂

(1)+
q (1), ..., R̂

(1)+
q (d)

)′
where R̂(1)+

q (τ) =
∣∣∣R̂(1)

q (τ)
∣∣∣ for τ = 0, 1, ..., d.

Step7 Let ρ̂(1)+
X

=
(
ρ̂

(1)+
X (1), ρ̂

(1)+
X (2), ..., ρ̂

(1)+
X (d)

)′
where ρ̂(1)+

X (τ) =
∣∣∣ρ̂(1)
X (τ)

∣∣∣ for τ = 1, ..., d.

Step8 Let ρ̂(1)+
q

=
(
ρ̂

(1)+
q (1), ρ̂

(1)+
q (2), ..., ρ̂

(1)+
q (d)

)′
where ρ̂(1)+

q (τ) =
∣∣∣ρ̂(1)
q (τ)

∣∣∣ for τ = 1, ..., d.

Step9 For fixed d ≥ 2, define the two mapping H+
1 and H+

2 : Rd+ × R∗+ × R∗− −→ R+ by

H+
1 (ρ̂(1)+

X
, k+(α), α) =

d∑
τ=1

(
log(ρ̂

(1)+
X (τ))− log(k+(α))− ατ

)2
,

H+
2 (ρ̂(1)+

q
, k+(δ), δ) =

d∑
τ=1

(
log(ρ̂(1)+

q (τ))− log(k+(δ))− δτ
)2
.

and consider the least squares estimators(
α̃, k̃+(α)

)
= Arg min

(k+(α),α)
H+

1 (ρ̂(1)+
X

, k+(α), α) ,
(
δ̃, k̃+(δ)

)
= Arg min

(k+(δ),δ)
H+

2 (ρ̂(1)+
q

, k+(δ), δ),

their minimum are achieved for

α̃? =

d∑
τ=1

(
log
(
ρ̂

(1)+
X (τ)

)
− log

(
ρ̂

(1)+
X

))
(τ − x)

d∑
τ=1

(τ − x)
2

, δ̃? =

d∑
τ=1

(
log
(
ρ̂

(1)+
q (τ)

)
− log

(
ρ̂

(1)+
q

))
(τ − x)

d∑
τ=1

(τ − x)
2

,

and
k̃+(α) = exp

{
log
(
ρ̂

(1)+
X

)
− xα̃?

}
, k̃+(δ) = exp

{
log
(
ρ̂

(1)+
q

)
− xδ̃?

}
where x =

(d+ 1)

2
and where log

(
ρ̂(1)+
.

)
=

1

d

d∑
τ=1

log
(
ρ̂(1)+
. (τ)

)
. Notice that α̃? and

δ̃? may be positive, so we define the estimators of α and δ by this second method by
α̃ = Min {α̃?, 0} and δ̃ = Min

{
δ̃?, 0

}
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Step10 Define the mapping S+
1 , S

+
2 : Rd+1

+ −→ R?− as a functions of R̂
(1)+

X and of R̂
(1)+

q such that

α̃ = S+
1

(
R̂

(1)+

X

)
, δ̃ = S+

2

(
R̂

(1)+

q

)
. It follows from algorithm 1 that the estimate

(
α̃, µ̃, γ̃2

)
are given by(

α̃, µ̃, γ̃2
)

=
(
S+

1

(
R̂

(1)+

X

)
,−m̂XS

+
1

(
R̂

(1)+

X

)
, S+

2

(
R̂

(1)+

q

)
− 2S+

1

(
R̂

(1)+

X

))
.

4.4 Asymptotic properties of the MM estimation

Let (X(t))t≥0 be the strictly stationary bilinear process driven by the SDE (4.1.1) subject the
condition A1.

4.4.1 Strong consistency

As already observed that Equation (4.1.1) may be regarded as a diffusion GOU process (see
remark 4.2.3), then it follows from Oesook [54] that (X(t))t≥0 is exponentially β−mixing process
and hence α-mixing with an exponential decreasing rate. Since α−mixing is invariant under con-
tinuous transformations, then the process (q(t))t≥0 is α-mixing and for every r > 0, the processes(
X

(r)
t

)
t∈N

,
(
q

(r)
t

)
t∈N

are also strictly stationary, ergodic and α−mixing with an exponential de-
creasing rate. So, since the estimators in algorithms 1 and 2 are continuously differentiable
functions of empirical moments, then the strongly consistency and asymptotic normality will
follow from ergodicity of the processes

(
X

(r)
t

)
t∈N

and
(
q

(r)
t

)
t∈N

. In particular as n −→∞

K̂X(0)
a.s−→ KX(0) , R̂(1)

X (0)
a.s−→ R

(1)
X (0) , m̂X

a.s−→ mX and K̂q(0)
a.s−→ Kq(0) , R̂(1)

q (0)
a.s−→ R(1)

q (0)

This implies the strong consistency of the estimators J0(K̂X(0), R̂
(1)
X (0), m̂X , K̂q(0), R̂

(1)
q (0)) and

J
(
m̂X , R̂

(1)

X , R̂
(1)

q

)
where the mapping J0 is defined by (4.3.2) and J defined as

J
(
mX , R

(1)
X , R(1)

q

)
=
(
S+

1

(
R

(1)+
X

)
,−mXS

+
1

(
R

(1)+
X

)
, S+

2

(
R(1)+
q

)
− 2S+

1

(
R

(1)+
X

))
.

This finding we allow to

Theorem 4.4.1. Under the condition A1 and A2, the moment methods given in algorithms 1
and 2 are strongly consistent.

4.4.2 Asymptotic normality of the estimator (α̂, µ̂, γ̂2)′

Hereafter, we consider the following condition

A3. There exists a positive constant λ > 0 such that E
{
X8+λ

1

}
<∞.

Proposition 4.4.2. Under the conditions A1−A3, we have as n −→∞,

√
n

( (
K̂X(0), R̂

(1)
X (0), m̂X , K̂q(0), R̂

(1)
q (0)

)′
−
(
KX(0), R

(1)
X (0),mX ,Kq(0), R(1)

q (0)
)′) D
 N (0,Σ)

(4.4.1)
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where the entries of the asymptotic variance−covariance matrix Σ are given by

Σ1,1 = V ar
{

(X(1)− m̂X)2
}

+ 2
∞∑
i=1

Cov
(
(X (1)− m̂X)2, (X (i+ 1))− m̂X)2

)
,

Σ2,2 = R
(1)
X (0) + 2

∞∑
i=1

Cov
(
X

(1)
1 , X

(1)
i+1

)
;

Σ3,3 = RX(0) + 2
∞∑
i=1

Cov (X (1) , X(i+ 1))

Σ4,4 = V ar
{

(q(1)− m̂q)
2
}

+ 2
∞∑
i=1

Cov
(
(q(1)− m̂q)

2, (q(i+ 1)− m̂q)
2
)

Σ5,5 = R(1)
q (0) + 2

∞∑
i=1

Cov
(
q

(1)
1 , q

(1)
i+1

)
and

Σ1,2 =

∞∑
i=0

2δ{i≥1}
{
Cov

(
(X(1)− m̂X)2, X

(1)
i+1

)
+ Cov

(
X

(1)
1 , (X(i+ 1)− m̂X)2

)}
Σ1,3 =

∞∑
i=0

2δ{i≥1}
{
Cov

(
(X(1)− m̂X)2, X(i+ 1)

)
+ Cov

(
X(1), (X(i+ 1)− m̂X)2

)}
Σ1,4 =

∞∑
i=0

2δ{i≥1}
{
Cov

(
(X(1)− m̂X)2, (q(i+ 1)− m̂q)

2
)

+ Cov
(
(q(1)− m̂q)

2, (X(i+ 1)− m̂X)2
)}

Σ1,5 =

∞∑
i=0

2δ{i≥1}
{
Cov

(
(X(1)− m̂X)2, q

(1)
i+1

)
+ Cov

(
q

(1)
1 , (X(i+ 1)− m̂X)2

)}
and

Σ2,3 =

∞∑
i=0

2δ{i≥1}
{
Cov

(
X

(1)
1 , X(i+ 1)

)
+ Cov

(
X(1), X

(1)
i+1

)}
,

Σ2,4 =
∞∑
i=0

2δ{i≥1}
{
Cov

(
X

(1)
1 , (q(i+ 1)− m̂q)

2
)

+ Cov
(

(q(1)− m̂q)
2, X

(1)
i+1

)}
Σ2,5 =

∞∑
i=0

2δ{i≥1}
{
Cov

(
X

(1)
1 , q

(1)
i+1

)
+ Cov

(
q

(1)
1 , X

(1)
i+1

)}
Σ3,4 =

∞∑
i=0

2δ{i≥1}
{
Cov

(
X(1), (q(i+ 1)− m̂q)

2
)

+ Cov
(
(q(1)− m̂q)

2, X(i+ 1)
)}

Σ3,5 =
∞∑
i=0

2δ{i≥1}
{
Cov

(
X(1), q

(1)
i+1

)
+ Cov

(
q

(1)
1 , X(i+ 1)

)}
Σ4,5 =

∞∑
i=0

2δ{i≥1}
{
Cov

(
(q(1)− m̂q)

2, q
(1)
i+1

)
+ Cov

(
q

(1)
1 , (q(i+ 1)− m̂q)

2
)}

.

in which δ∆ is the indicator function of the set ∆.



4.4 Asymptotic properties of the MM estimation 64

Now, we consider moments vector U =
(
KX(0), R

(1)
X (0),mX ,Kq(0), R

(1)
q (0)

)′
associated with

parameter vector V =
(
α, µ, γ2

)′ their true values are indicated by U0 and V 0 respectively. Then
the asymptotic normality of our estimates is given by the following theorem

Theorem 4.4.3. Let V̂ =
(
α̂, µ̂, γ̂2

)′
be the vector of estimates of V =

(
α, µ, γ2

)′, then under

the conditions A1.−A3., we have as n −→∞, almost surely V̂ → V 0.and
√
n
(
V̂ − V 0

)
D−→ N

(
0, JΣJ ′

)
, (4.4.2)

where J =
∂J0 (U)

∂U
and Σ is as in Proposition 4.4.2.

4.4.3 Asymptotic normality of the estimator (α̃, µ̃, γ̃2)′

By an analogously way as the previous subsection, we study the asymptotic properties estimators
(α̃, µ̃, γ̃2)′. Applying the central limit theorem for strongly mixing processes to obtain asymptotic
normality of the empirical estimates.

Proposition 4.4.4. Under the conditions A1.−A3., we have as n −→∞,

√
n

((
m̂X , R̂

(1)′
X , R̂

(1)′
q

)′
−
(
mX , R

(1)′
X , R(1)′

q

)′) D−→ N (0,Λ) , (4.4.3)

where the covariance Λ has the components

Λ(k, j) =



Cov
(
X

(1)
1 X

(1)
j−1, X

(1)
1 X

(1)
k−1

)
+ 2

∞∑
i=1

Cov
(
X

(1)
1 X

(1)
j−1, X

(1)
i+1X

(1)
k+i−1

)
, if 2 ≤ k, j ≤ d+ 2

Cov
(
q

(1)
1 q

(1)
j−d−2, q

(1)
1 q

(1)
k−d−2

)
+ 2

∞∑
i=1

Cov
(
q

(1)
1 q

(1)
j−d−2, q

(1)
i+1q

(1)
k+j−d−2

)
, if d+ 3 ≤ k, j ≤ 2d+ 3

2Cov
(
X

(1)
1 X

(1)
j−1, q

(1)
1 q

(1)
k−d−2

)
+ 2

∞∑
i=1

Cov
(
X

(1)
1 X

(1)
j−1, q

(1)
i+1q

(1)
k+i−d−2

)
, if 2 ≤ j ≤ d+ 2, d+ 3 ≤ k ≤ 2d+ 3

2
∞∑
i=1

Cov
(
q

(1)
1 q

(1)
j−d−2, X

(1)
i+1X

(1)
k+i−1

)
, if d+ 3 ≤ j ≤ d+ 2, d ≤ k ≤ d+ 2

Λ(1, j) =


Cov

(
X(1), X

(1)
1 X

(1)
j−1

)
+ 2

∞∑
i=1

{
Cov

(
X(1), X

(1)
i+1X

(1)
j+i−1

)
+ Cov

(
X

(1)
1 X

(1)
j−1, X(i+ 1)

)}
, if 2 ≤ j ≤ d+ 2

Cov
(
X(1), q

(1)
1 q

(1)
j−d−2

)
+ 2

∞∑
i=1

{
Cov

(
X(1), q

(1)
i+1q

(1)
j+i−d−2

)
+ Cov

(
q

(1)
1 q

(1)
j−d−2, X(i+ 1)

)}
, if

d+ 3 ≤ j ≤ 2d+ 3

and Λ(1, 1) = Cov(X(1), X(1)) + 2
∞∑
i=1

Cov(X(i), X(i+ 1)).

By applying the delta method ( see Theorem 3.1 van der Vaart [68] ), we obtain

Corollary 4.4.1. Under the same conditions of Proposition 4.4.4, we have
√
n
(
ρ̂(1)
X
− ρ(1)

X

)
D
 N (0,Σ) and

√
n
(
ρ̂(1)
q
− ρ(1)

q

)
D
 N (0,Σ) .

Now, we consider the true moments U =
(
mX , R

(1)′
X , R

(1)′
q

)′
corresponding to the true parameter

vector V =
(
α, µ, γ2

)′ are indicated by U0 and V 0 respectively. Then the asymptotic normality
of our estimates is given by the following theorem
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Theorem 4.4.5. Let Ṽ be the estimates vector of V by the second method of moment, then
under the same conditions of proposition 4.4.4, almost surely Ṽ → V 0 as n −→∞ and

√
n
(
Ṽ − V 0

)
D−→ N

(
0, IΛI ′

)
where I =

∂J (U)

∂U
and Λ is as in Proposition 4.4.4.

4.5 Monte Carlo experiments

We provide in this section some simulations results for the moment method illustrated by Algo-
rithms 4.3.1 and 4.3.2 and their asymptotic behavior given in the above section for estimating
the unknown vector θ = (α, µ, γ, β) involved in the model. For this purpose, we simulated 500
independent trajectories from a second-order stationary series according to COBL(1, 1) of length
n ∈ {5000, 10000, 20000, 50000} with standard Brownian motion. The graphic of trajectories of
X(t), q(t) and their discretized schemes are presented in Fig.1 according to the parameters vec-
tor θ0 = (α0, µ0, γ0, β0) subjected to conditions A1.−A3 listed table (2) below. The results of
simulation experiments for estimating the vector θ0 by the first and second method of moment
described by Algorithms 4.3.1 and 4.3.2 are reported in table (2) in which we have indicated in
the first column the length n of the series, the number d of lags used by the second method, the
second and the third columns indicates the vector θ and its true values θ0 to be estimated and
the column “Mean” correspond to the average of the parameters estimates over the 500 repeti-
tions. In order to show the performance of MM , we have reported (results between bracket)
the root-mean square errors (RMSE) of each algorithm. Figure 2, shows the box plot summary
of the statistical properties of each estimates. On the other hand, the asymptotic distribution of
estimated density by the two methods corresponding to each parameter are shown in Figure 3.

Fig1. The trajectories of X(t), q(t) and their discretized schemes
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(
n
d

)
Parameters

θ
True values

θ0

Means(
θ̂, θ̃
)

(
5000
d = 32

) 
α
µ
γ2

|β|



−0.5
0.01
0.01
0.1



−0.6949 (0.0257)
0.0138 (0.0021)
0.0749 (0.0596)
0.0822 (0.1271)

−0.6947 (0.0271)
0.0140 (0.0021)
0.0690 (0.0573)
0.0795 (0.0674)


(

10000
d = 35

) 
α
µ
γ2

|β|



−0.5
0.01
0.01
0.1



−0.6937 (0.0169)
0.0138 (0.0015)
0.0524 (0.0427)
0.0964 (0.1091)

−0.6933 (0.0180)
0.0139 (0.0015)
0.0529 (0.0383)
0.0886 (0.0782)


(

20000
d = 40

) 
α
µ
γ2

|β|



−0.5
0.01
0.01
0.1



−0.6931 (0.0127)
0.0139 (0.0011)
0.0418 (0.0327)
0.1063 (0.1118)

−0.6936 (0.0126)
0.0139 (0.0010)
0.0420 (0.0329)
0.1138 (0.3112)


(

50000
d = 40

) 
α
µ
γ2

|β|



−0.5
0.01
0.01
0.1



−0.6927 (0.0080)
0.0138 (0.0007)
0.0353 (0.0245)
0.1015 (0.0749)

−0.6932 (0.0080)
0.0138 (0.0007)
0.0349 (0.0235)
0.1165 (0.2057)


Table(2).The results of simulation by the first and second method of moments

The box plots summary of θ̂n and θ̃n are showed in the following

Fig2. The box plot summary of θ̂n (left box) and of θ̃n (right box).

The plots of asymptotic density of each parameters in θ according to two method are sum-
marized in the following figure
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Fig3. The distribution of
√
n
(
θ̂n − θ0

)
(solid line) and of

√
n
(
θ̃n − θ0

)
(dotted line).

A few comments are in order. First, regarding the results of table (2) it seems that in general
the results of the first method is more performed than the second one. This is due undoubtedly
to the narrow dependency of the lag d in autocorrelation functions involving in algorithm 4.3.2.
In contrast to the asymptotic densities in figure Fig3 are in concordance with the theoretical
results.

4.6 Application to exchange rate modeling

We apply our method to two foreign exchanges rate series of Algerian Dinar against U.S. Dollar
noted Y (t) and against the EURO noted Z(t). This data consist of daily prices from January
3, 2000 to September 29, 2011. After removing the days when the market was closed (weekends,
holidays,...), we provides 3056 observations for each series. Some descriptive statistics of such
series are summarized in following table

The series mean Std. Dev Median Max Min Skewness Kurtosis
(Y (t)) 73.4511 4.2424 73.1261 81.2819 60.3453 −0.6005 3.7642
(Z(t)) 88.6118 11.5755 91.0995 109.0699 67.2039 −0.5181 2.1330

Table3: Descriptive statistics of the series (Y (t))t≥1 and (Z(t))t≥1
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The plot of series (Y (t))t≥1 and (Z(t))t≥1 are reported in Fig 4

Fig4. The graphics of the series (Y (t)) and (Z(t)) .

Using surrogate data test for nonlinearity, it can be showed that the series (Y (t))t≥1 and (Z(t))t≥1

are non linear, so we propose to mode them by an COBL(1, 1). The parameters corresponding
to the fiited models gathered in following table

Parameters α µ γ β

(Yt)t≥0 0.0014 0.1013 0.0362 −2.8024

(Zt)t≥0 0.0008 0.0692 0.0256 −2.6982

Table4: Parameters of adjusted COBL (1, 1)

The descriptive statistics of fitted trajectories according to the Table4 are summarized in Table5

The series mean Std. Dev Median Max Min Skewness Kurtosis(
Ỹ (t)

)
74.4587 1.2698 74.6736 76.3603 68.9355 −0.7795 3.2848(

Z̃(t)
)

91.5503 4.9783 92.6145 99.2591 70.0438 −1.0607 4.3296

Table 5: Descriptive statistics of the series
(
Ỹ (t)

)
t≥1

and
(
Z̃(t)

)
t≥1

The results in Table 5 of fitted data according COBL(1, 1) model reveal a noticeable resemblance
with the results of the brut series displayed in Table3 and hence the capability of COBL(1, 1)
to model this data is then justified.

4.7 Conclusion

In this chapter, we have presented two methods of moment estimation for continuous-time bilinear
process generated by some diffusion equation. The first method described by algorithm 4.3.1 is
based on the second order moments of the process, its quadratic version and their associated
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incremented processes of order 1. In the second method, the estimator described by algorithm
4.3.2 is based on the autocorrelation functions of the discretized schemes. Contrary to the
uncomputability of QMLE and/or the inconsistency of direct inference based on a discretized
version of the diffusion process, the main advantage of MM estimator lies in its consistency
and its explicitly form. Finally, we investigated the empirical study of our estimators via monte
Carlo simulation and an application to model the exchanges rate of the Algerian Dinar against
the US-dollar and against the single European currency, in order to highlight the theoretical
results. It is however interesting to extend the method for general models using the generalized
method of moments (GMM). We leave this important issue for future researches.

4.8 Appendix

Proof of Proposition 4.2.4. Under A2, Equation (4.2.2) becomes

dq(t) =
(
β2 +

(
2α+ γ2

)
q(t)

)
dt+ 2 (γq(t) + βX(t)) dW (t),

and under the condition A1 we have
dE {q(t)}

dt
= 0 and from (4.2.2) we obtain

E {q(t)} = mq = − β2

2α+ γ2
, ∀t ≥ 0,

dE {q(t)q(s)} = (2α+ γ2)E {q(t)q(s)} dt+ β2E {q(s)} dt
= (2α+ γ2)E {q(t)q(s)} dt+ β2mqdt, ∀t ≥ s ≥ 0,

so, we get

E {q(t)q(s)} = e(2α+γ2)(t−s)
{
E
{
q2(s)

}
+ β2mq

∫ t

s
e(2α+γ2)(s−u)du

}
= e(2α+γ2)(t−s)

{
E
{
q2(s)

}
+ β2mq

(
− 1

2α+ γ2

)[
e(2α+γ2)(s−t) − 1

]}
= e(2α+γ2)(t−s)

{
E
{
q2(s)

}
+mq

(
− β2

2α+ γ2

)[
e(2α+γ2)(s−t) − 1

]}
= e(2α+γ2)(t−s)

{
E
{
q2(s)

}
+m2

q

[
e(2α+γ2)(s−t) − 1

]}
= e(2α+γ2)(t−s)

{
E
{
q2
}
−m2

q +m2
qe

(2α+γ2)(s−t)
}

= e(2α+γ2)(t−s) {E {q2
}
−m2

q

}
+m2

q

= e(2α+γ2)(t−s)Kq(0) +m2
q .

Since mq = − β2

2α+ γ2
and Kq(0) = V ar {q(t)} = E

{
q2 (t)

}
−m2

q , then we have E {q(t)q(s)} −

m2
q = e(2α+γ2)(t−s)Kq(0) and using the identity Cov(q(t), q(s)) = E {q(t)q(s)}−E {q(t)}E {q(s)} =

E {q(t)q(s)} −m2
q , we obtain

Kq(t, s) = e(2α+γ2)(t−s)Kq(0)

Kq(t, s) = Kq(t− s) = e(2α+γ2)(t−s)Kq(0), ∀t ≥ s
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due to the second-order stationarity of q(t). �
Proof of Proposition 4.2.5. Due to the second-order stationary solution, we haveE

{
X(r)(t)

}
=

E {X(t)−X(t− r)} = E {X(t)}−E {X(t− r)} = 0, so the variance and covariance function of
the process X(r) (t) can be computed for all h ≥ r > 0, as follows

K
(r)
X (0) = 2 (1− eαr)KX(0),

K
(r)
X (h) = E {(X(t)−X(t− r)) (X(t+ h)−X(t+ h− r))}

= E {X(t)X(t+ h)} − E {X(t)X(t+ h− r)} − E {X(t− r)X(t+ h)}+ E {X(t− r)X(t+ h− r)}
= 2KX(0)eαh −KX(0)eα(h−r) −KX(0)eα(h+r)

=
(
2− e−αr − eαr

)
eαhKX(0), ∀h ≥ r > 0,

By the same manner we obtain the moments of the process
(
q(r)(t)

)
t≥0

. Indeed, first, it is clear
that E

{
q(r)(t)

}
= E {q(t)− q(t− r)} = E {q(t)} − E {q(t− r)} = 0, and

K(r)
q (0) = E

{
(q(t)− q(t− r))2

}
= E

{
q2(t)

}
− 2E {q(t)q(t− r)}+ E

{
q2(t− r)

}
= 2Kq(0)− 2Kq(0)e(2α+γ2)r

= 2
(

1− e(2α+γ2)r
)
Kq(0)

Moreover, we have for any h ≥ r > 0,

K(r)
q (h) = E {(q(t)− q(t− r)) (q(t+ h)− q(t+ h− r))}

= E {q(t)q(t+ h)} − E {q(t)q(t+ h− r)} − E {q(t− r)q(t+ h)}+ E {q(t− r)q(t+ h− r)}

= Kq(0)
(

2− e−(2α+γ2)r − e(2α+γ2)r
)
e(2α+γ2)h, h ≥ r > 0. �

Proof of Corollary 4.2.1. From the proposition 4.2.7 we get
ρ

(r)
X (τ)

ρ
(r)
X (1)

=
R

(r)
X (τ)

R
(r)
X (1)

=
K

(r)
X (τ)

K
(r)
X (1)

=

eα(τ−1), τ ≥ 1, so, ρ(r)
X (τ) = eα(τ−1)ρ

(r)
X (1). Hence, following Brockwell and Davis [16] page 112,

we identify eα as the root ϕ of AR(1) part and the root φ of MA part may be identified as
ρ

(r)
X (1) = (1 + φϕ) (φ+ ϕ) /

(
1 + 2φϕ+ φ2

)
. The same arguments for the process

(
q

(r)
j

)
j∈N

Proof of Lemma 4.3.1. Under the conditions of Lemma 4.3.1, it follows by the proposition

4.2.5 thatR(1)
X (0) = 2 (1− eα)KX(0) andR(1)

q (0) = 2
(
1− eδ

)
Kq(0), so α = log

(
1−

R
(1)
X (0)

2KX(0)

)
,

δ = log

(
1− R

(1)
q (0)

2Kq(0)

)
where δ = 2α + γ2. Moreover, since mX = −µ

α
then β and µ can be

deduced. �
Proof of Lemma 4.3.3. Under the assumptions of the Theorem 4.3.1 we obtain from Propo-
sition 4.2.5 and Remark 4.2.6 for any τ ≥ 1,

ρ
(1)
X (τ) =

(2− e−α − eα)

2 (1− eα)
eατ and ρ(1)

q (τ) =

(
2− e−(2α+γ2) − e(2α+γ2)

)
2
(
1− e(2α+γ2)

) e(2α+γ2)τ
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Setting k(x) =
(2− e−x − ex)

2 (1− ex)
, so after some simple calculus the results follow. �

Proof of Proposition 4.4.2. We first show that the vector
(
K̂?
X(0), R̂

(1)
X (0), m̂X , K̂

?
q (0), R̂

(1)
q (0)

)′
where K̂?

X(0) =
1

n

n∑
i=1

(X(i)−mX)2 and K̂?
q (0) =

1

n

n∑
i=1

(q(i)−mq)
2 satisfies the proposition

4.4.2. For this purpose, denote Xi := ((X(i) − mX)2, X
(1)
i , X(i), (q(i) − mq)

2, q
(1)
i )

′ and by
Cramér-Wold device, we have to show that as n −→∞,

√
n

(
1

n

n∑
i=1

λ
′
Xi − λ

′
(
KX(0), R

(1)
X (0),mX ,Kq(0), R(1)

q (0)
)′)

D
 N

(
0, λ

′
Σλ
)
, (4.8.1)

for all vectors λ= (λ1, ..., λ5)
′ ∈ R5 such that λ′Σλ > 0. Since the strong mixing is preserved

under linear transformations as well as its rate of convergence, then the sequences
(
λ′Xi

)
i∈N

is strongly mixing with exponentially decaying rate. So, under A3., the central limit theorem
for strongly mixing processes is applicable ( see Theorem 18.5.3, Ibragimov and Linnik [37]).
Therefore, n −→∞,

√
n

(
1

n

n∑
i=1

λ
′
Xi − λ

′
(
KX(0), R

(1)
X (0),mX ,Kq(0), R(1)

q (0)
)′)

D−→ N
(
0, σ2

)
,

where

σ2 = V ar
{
λ
′
X1

}
+ 2

∞∑
i=1

Cov
(
λ
′
X1, λ

′
Xi+1

)
. (4.8.2)

Evaluating (4.8.2) and rearranging with respect to λ, we can shows that σ2 = λ
′
Σλ. Moreover,

since
√
n

(
1

n

n∑
i=1

λ
′
Xi − λ

′
(
K̂X(0), R̂

(1)
X (0), m̂X , K̂q(0), R̂(1)

q (0)
)′)

,

converges in probability to 0 as n −→∞ for every λ∈ R5 such that λ ′Σλ > 0, ( see the proof of
Proposition 7.3.4, Brockwell and Davis [16]), it follows that (K̂X(0), R̂

(1)
X (0), m̂X , K̂q(0), R̂

(1)
q (0))′

have the same asymptotic behavior as
(
K̂?
X(0), R̂

(1)
X (0), m̂X , K̂

?
q (0), R̂

(1)
q (0)

)′
. �

Proof of Theorem 4.4.3. Since the mapping J0 is continuous in U , The strong consistency of
V̂ follows immediately from Theorem 4.4.1. Moreover, since Û is asymptotically normal and J0

is differentiable at U0, then the asymptotic normality of V̂ follows from proposition 4.4.2 and by
application of delta method.�
Proof of Proposition 4.4.4. We will first focus on the asymptotic behavior of the vector(
m̂X , R̂

(1)′
X , R̂

(1)′
q

)′
. Denote

Y i :=
(
X(i), (X

(1)
i )2, X

(1)
i X

(1)
i+1, ..., X

(1)
i X

(1)
i+d, (q

(1)
i )2, q

(1)
i q

(1)
i+1, ..., q

(1)
i q

(1)
i+d

)′
.

then, by the Cramér-Wold, we have to show that as n −→∞,

√
n

(
1

n

n∑
i=1

λ
′
Y i − λ

′
(
mX , R

(1)
X , R(1)

q

))
D
 N

(
0, λ

′
Λλ
)
, (4.8.3)
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for all vectors λ= (λ1, ..., λ2d+3)
′ ∈ R2d+3 such that λ′Λλ > 0. Similar arguments as in proof of

proposition 4.4.2, we have as n −→∞,

√
n

(
1

n

n∑
i=1

λ
′
Y i − λ

′
(
mX , R

(1)
X , R(1)

q

))
D
 N

(
0, ν2

)
,

with ν2 = V ar
{
λ
′
Y 1

}
+ 2

∑∞
i=1Cov

(
λ
′
Y 1, λ

′
Y i+1

)
. By evaluating the above expression and

rearranging with respect to λ we obtain ν2 = λ
′
Λ λ. �

Proof of Theorem 4.4.5. Since the mapping J is continuous in U, The strong consistency of
Ṽ follows immediately from theorem (4.4.1). The fact that Ũ is asymptotically normal and J is
differentiable at U 0, then the asymptotic normality of Ṽ follows from (4.4.3) and the application
of delta method. �



Chapter 5

Frequency-domain estimation of
continuous-time bilinear processes5

5. Ce chapitre est soumis dans le journal : Communication in Statistics- Theory and Methods.

Abstract

In this chapter, we study in frequency domain some probabilistic and statistical properties of
continuous-time version of the well known bilinear processes driven by a standard Brownian
motion. This class of processes which encompasses many commonly used processes in literature,
were defined as a nonlinear stochastic differential equation which has raised considerable interest
in the last few years. So, the L2−structure of the process is studied and its covariance function is
given. These structures we lead to study the strong consistency and asymptotic normality of the
Whittle estimate of the unknown parameters involved in the process. Finite sample properties
are also considered through Monte Carlo experiments.

5.1 Introduction

Discrete-time series analysis has been well developed within the framework of linear and/or
Gaussian models. Unfortunately these hypothesis lead to models that fail to capture certain
phenomena commonly observed in practice such as limit cycles, self-excitation, asymmetric dis-
tribution, leptokurtosis and sudden jumping behavior. So, in recent times we have become more
aware of the fact that there are many datasets that cannot be modeled as discrete-time linear
models. Wegman et al. [69] provide a rich source of examples emanating from the oceano-
graphic and meteorological sciences which are clearly non-linear. To model such series, one of
the classes of non-linear models which has attracted considerably the attention of statistician
and/or econometricians is the classes of discrete-time bilinear processes, introduced by Granger
and Andersen [30]. The version of continuous-time of these processes have been widely studied
and considered by several authors in time series analysis and in theory of stochastic differential
equations. For instance, Le Breton and Musiela [45] and Bibi and Merahi [11] have considered
the processes (X(t))t≥0 generated by the following time-varying stochastic differential equation

73
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(SDE)

dX(t) = (α(t)X(t) + µ(t)) dt+ (γ(t)X(t) + β(t)) dw(t), t ≥ 0, X(0) = X0 (5.1.1)
= µt (X (t)) dt+ σt (X(t)) dw(t), t ≥ 0, X(0) = X0

denoted hereafter COBL (1, 1) (called some time Black-Scholes models) in which µt (x) = α(t)x+
µ(t) and σt (x) = γ(t)x+β(t) which represents respectively the drift and the diffusion, (w(t))t≥0

is a standard Brownian motion in R defined on some basic filtered space (Ω,A, (At)t≥0 , P ) with

spectral representation w(t) =
∫
R
eitλ − 1

iλ
dZ(λ), where Z(λ) is an orthogonal complex-valued

stochastic measure on R with zero mean, E
{
|dZ(λ)|2

}
= dF (λ) =

dλ

2π
and uniquely determined

by Z([a, b[) =
1

2π

∫
R
e−iλa − e−iλb

iλ
dw (λ), for all −∞ < a < b < +∞. The SDE (5.1.1) is

called time-invariant if there exists some constants α, µ, γ and β such that for all t, α(t) = α,
µ(t) = µ, γ(t) = γ and β(t) = β. The initial state X(0) is a random variable defined on (Ω,A, P )
supposed to be not dependent on w such that E {X(0)} = mX(0) and V ar {X(0)} = KX(0).
The parameters α(t), µ(t), γ(t) and β(t) are measurable deterministic functions and subject to
the following assumption:

Assumption 2. α(t), µ(t), γ(t) and β(t) are differentiable functions such that ∀T > 0,
∫ T

0 |α(t)| dt
<∞,

∫ T
0 |µ(t)| dt <∞,

∫ T
0 |γ(t)|2 dt <∞ and

∫ T
0 |β(t)|2 dt <∞.

The SDE (5.1.1) encompasses many commonly used models in the literature. Some specific
examples among others are:

1. COGARCH(1, 1): This classes of processes is defined as a SDE by dX (t) = σ (t) dB1(t)
with dσ2 (t) =

(
µ (t)− α (t)σ2 (t)

)
dt + γ (t)σ2 (t) dB2 (t), t > 0 where B1 and B2 are

independent Brownian motions and µ (t) > 0, α (t) ≥ 0 and γ (t) ≥ 0. So, the stochastic
volatility equation can be regarded as a particular case of (5.1.1) by assuming constant the
function β(t) = 0 for all t. (see Kluppelberg et al. [42] and the reference therein).

2. CAR(1): This classes of SDE may be obtained by assuming γ (t) = 0 for all t. (see
Brockwell [15] and the reference therein)

3. Gaussian Ornstein-Uhlenbeck (GOU) process: The GOU process is defined as dX(t) =
(µ (t)− α (t)X(t)) dt+ β (t) dw(t), with β (t) > 0 for all t ≥ 0. So it can be obtained from
(5.1.1) by assuming γ(t) = 0 for all t. (see Brockwell [15] and the reference therein).

4. Geometric Brownian motion (GBM): This class of processes is defined as a R−valued
solution process (X(t))t≥0 of dX(t) = α (t)X(t)dt + γ (t)X(t)dw(t), t ≥ 0. So it can be
obtained from (5.1.1) by assuming β(t) = µ (t) = 0 for all t. (see ∅ksendal [7] and the
reference therein).

The existence of solution process of SDE (5.1.1), was investigated by several authors, for instance
among others, Le Breton and Musiela [45], Bibi and Merahi [11].

In this chapter, we shall investigate some probabilistic and statistical properties of second-
order solution process of equation (5.1.1) which are also regular (or causal), i.e.,X(t) is σ {w(s), s ≤ t}
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−measurable. For this purpose, let Lr (F ) be the real Hilbert space of complex valued functions
ft
(
λ(r)

)
defined on Rr such that ft(−λ(r)) = ft(λ(r)) with a inner product

〈ft, gt〉F = r!

∫
Rr
Sym

{
ft(λ(r))

}
Sym

{
gs(λ(r))

}
dF (λ(r)),

where λ(r) = (λ1, ..., λr) ∈ Rr, Sym
{
ft(λ(r))

}
=

1

r!

∑
π∈P ft

(
λπ(1),, ..., λπ(r)

)
∈Lr (F ) where P

denotes the group of all permutations of the set {1, ..., r} and dF (λ(r)) =
r∏
i=1

dF (λi). It is well

known that if (X(t))t≥0 is second-order and causal process (see Major [50] for further discussions)
then it admits the so-called Wiener-Itô representation, i.e.,

X(t) = ft(0) +
∑

r≥1

1

r!

∫
Rr
eitλ(r)ft(λ(r))dZ(λ(r)), (5.1.2)

where λ(r) =
∑r

i=1 λi and the integrals are multiple Wiener-Itô stochastic integrals with respect
to the stochastic measure dZ (λ), ft(0) = E{X(t)}, dZ(λ(r)) =

∏r
i=1 dZ(λi) and ft(λ(r)) are

referred as the r − th evolutionary transfer functions of (X(t))t≥0, uniquely determined up to
symmetrization and fulfill the condition∑

r≥0

1

r!

∫
Rr

∣∣ft(λ(r))
∣∣2 dF (λ(r)) <∞ for all t. (5.1.3)

so V ar(X(t)) < +∞ , and the symmetrization of ft(.) simplify some combinatorial reasoning.
As a property of the representation (5.1.2) is that for any ft(λ(n)) and fs(λ(m)), we have

E

{∫
Rn

ft(λ(n))dZ(λ(n))

∫
Rm

fs(λ(m))dZ(λ(m))

}
= δmn n!

∫
Rn

Sym
{
ft(λ(n))

}
Sym

{
fs(λ(n))

}
dF (λ(n))

where δmn is the delta function. Another property linked with (5.1.2) is the diagram formula
which state that∫

R
ft(λ)dZ(λ)

∫
Rn
gs
(
λ(n)

)
dZ(λ(n))

=

∫
Rn+1

gs
(
λ(n)

)
ft (λn+1) dZ(λ(n+1)) +

∑n

k=1

∫
Rn−1

∫
R
gs
(
λ(n)

)
ft (λk)dF (λk) dZ(λ(n\k))

where Z(dλ(n\k)) = Z (dλ1) ...Z (dλk−1) .Z (dλk+1) ...Z (dλn).
The main aim of the chapter is to use the transfer functions approach associated with the

solution process of (5.1.1) to establish some characterizations and second-order properties for
a such process. So, in section 2 we summarize some of the basic probabilistic properties of
COBL (1, 1) including the conditions ensuring the existence of the process (X(t))t≥0 using its
Wiener-Itô representation and L2−structure of SDE (5.1.1) based on the associated transfer
functions. After a short remainder of the Whittle estimation procedure, we formulate and discuss
in section 3 our main results on the asymptotic behavior of the Whittle estimator when the
coefficients are constant.
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5.2 Second-order properties of COBL (1, 1)

The existence and uniqueness of the solution process of SDE (5.1.1) in time domain is ensured
by the general results on SDE and under the Assumption 2, since the drift and the diffusion
are Lipschitz with linear growth, i.e., |µt (x)− µt (y)| ≤ sup

t
|α(t)| |x− y| and |σt (x)− σt (y)| ≤

sup
t
|γ(t)| |x− y|, so the Itô solution is given by

X(t) = Φ(t)

{
X(0) +

∫ t

0
Φ−1(s) (µ(s)− γ (s)β (s)) ds+

∫ t

0
Φ−1(s)β (s) dw(s)

}
, a.e., (5.2.1)

where Φ(t) = exp
{∫ t

0

(
α(s)− 1

2γ
2 (s)

)
ds+

∫ t
0 γ (s) dw (s)

}
. In time-invariant case the solution

reduces

X(t) = Φ(t)

{
X(0) + (µ− γβ)

∫ t

0
Φ−1(s)ds+ β

∫ t

0
Φ−1(s)dw(s)

}
, (5.2.2)

with Φ(t) = exp
{(
α− 1

2γ
2
)
t+ γw (t)

}
. The process (5.2.2) constitute a unique, stationary

and ergodic solution to the time-invariant version of (5.1.1) if and only if the function g(y) =

1
σ2(y)

exp

{
2
y∫
1

µ(x)

σ2 (x)
dx

}
is integrable on [0,+∞] (see Kutoyants [43], page 1). Moreover, (5.2.2)

can be rewritten as

X(t) = e−ξ(t)
{
X(0) +

∫ t

0
eξ(s)dη(s)

}
, t ≥ 0 (5.2.3)

where −ξ(t) =
(
α− 1

2γ
2
)
t+ γW (t) and η(t) = (µ− γβ) t+ βW (t), that is the solution process

of celebrated generalized OU process defined by dX(t) = −ξ(t)X(t)dt+dη(t), t ≥ 0, X(0) = X0.

Remark 5.2.1. Note that, the solution (5.2.1) is Markovian whenever β (t) 6= 0 for all t, other-
wise the solution process is neither a Markov process nor a martingale.

Remark 5.2.2. When γ (t) = 0, α (t) < 0 and β (t) 6= 0, this provides a second-order solution
processes for GOU or for CAR(1) equations. So, if we are interested in second-order non-
Gaussian solution, it is necessary to assume that everywhere µ2 (t) + β2 (t) > 0, γ (t) 6= 0 and
not only α (t) < 0 but 2α (t) + γ2 (t) < 0 as well.

Remark 5.2.3. It is worth noting that the condition γ(t)µ(t) 6= α(t)β(t) for all t, must be hold,

otherwise the equation (5.1.1) has only a degenerate solution,i.e., X(t) = − β(t)

γ (t)
= −µ (t)

α (t)
.

The solution based on Wiener-Irô representation (5.1.2) is discussed along the rest of the section.
For this purpose, we recalling the following two theorems due to Bibi and Merahi [11].

Theorem 5.2.4. Assume that everywhere

2α (t) + γ2 (t) < 0, (5.2.4)

then the process (X(t))t≥0 generated by the SDE (5.1.1) has a regular second-order solution
given by the Wiener-Itô representation (5.1.2). The evolutionary symmetrized transfer functions
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ft(λ(r)), (t, r) ∈ R+ × N of this solution are given by the symmetrization of the following differ-
ential equations

f
(1)
t (λ(r)) =

{
α(t)ft(0) + µ(t), if r = 0(
α(t)− iλ(r)

)
ft(λ(r)) + r

(
γ(t)ft(λ(r−1)) + δ{r=1}β(t)

)
, if r ≥ 1

(5.2.5)

where the superscript (j) denotes j−fold differentiation with respect to t.

Proof. See Bibi and Merahi [11].

Remark 5.2.5. The existence and uniqueness of the evolutionary symmetrized transfer functions
f t(λ(r)), (t, r) ∈ R×N given by (5.2.5) is ensured by general results on linear ordinary differential
equations (see, e.g., [40], ch. 1), i.e.,

ft(λ(r)) =


ϕt (0)

(
f0(0) +

t∫
0

ϕ−1
s (0)µ(s)ds

)
if r = 0

ϕt

(
λ(r)

)(
f0(λ(r)) + r

t∫
0

ϕ−1
s

(
λ(r)

) (
γ(s)fs(λ(r−1)) + δ{r=1}β(s)

)
ds

)
if r ≥ 1

(5.2.6)

where ϕt
(
λ(r)

)
= exp

{
t∫

0

(
α(s)− iλ(r)

)
ds

}
.

Corollary 5.2.1. Assume that α(t), µ(t), β(t) and γ(t) are constants, then the transfer functions

f(λ(r)) for all r ∈ N reduces to f(λ(r)) = −µ
α
δ{r=0} + r

(
iλ(r) − α

)−1 (
γf(λ(r−1)) + δ{r=1}β

)
for any r ≥ 0, or also f(λ(r)) = γr−1r!

(
β − µ

α
γ
) r∏
j=1

(
iλ(j) − α

)−1
, and hence the symmetrized

version can be rewritten as

Sym
{
f(λ(r))

}
= (µγ − αβ) γr−1

∫ +∞

0
exp {αλ}

∏r

j=1

1− exp {−iλλj}
iλj

dλ.

Proof. Straightforward and hence omitted.

In theorem 5.2.4and remark 5.2.5 a recursive formula is derived for the evolutionary transfer
functions of regular solution of COBL(1, 1). Condition (5.2.4) give sufficient condition for that
these transfer functions determine a solution process given by the Wiener-Itô representation
(5.1.2) for equation (5.1.1). In this section we examine the second-order properties of such the
solution process.

Theorem 5.2.6. Under the condition (5.2.4), the mean, variance and covariance functions for
COBL (1, 1) are given respectively by the expressions

mX(t) = ϕt(0)

(
f0(0) +

∫ t

0
ϕ−1
s (0)µ(s)ds

)
. (5.2.7)

KX(t) = φt (0)

(
KX(0) +

∫ t

0
φ−1
s (0) (γ(s)fs(0) + β(s))2 ds

)
. (5.2.8)

KX(t, s) = ϕt(0)ϕ−1
s (0)KX(s), t ≥ s ≥ 0. (5.2.9)
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Before proving the above theorem, we have to prove the following lemma

Lemma 5.2.7. Consider the process COBL(1, 1) having a Wiener-Itô representation (5.1.2),
then dCov (Y (t), Y (t)) = Cov (dY (t), dY (t)) where

Y (t) =
∑
r≥1

1

r!

∫
Rr

(
f0(λ(r)) + r

∫ t

0
ϕ−1
s

(
λ(r)

) (
γ(s)fs(λ(r−1)) + δ{r=1}β(s)

)
ds

)
dZ(λ(r)).

(5.2.10)

Proof. By equation (5.2.10), we have

dY (t) =
∑
r≥1

1

r!

∫
Rr

rϕ−1
t

(
λ(r)

) (
γ(t)ft(λ(r−1)) + δ{r=1}β(t)

)
dtdZ(λ(r))

, so

Cov (dY (t), dY (t))

=

∫
R
|ϕ−1
t (λ1) |2(γ(t)ft(0) + β(t))2dF (λ1)dt+

∑
r≥2

1

(r!)2

∫
Rr

r2|ϕ−1
s

(
λ(r)

)
|2|γ(t)ft(λ(r−1))|2dF (λ(r))dt

= ϕ−2
t (0)(γ(t)ft(0) + β(t))2dt+ ϕ−2

t (0)γ2(t)
∑

r≥2

r2

(r!)2

∫
Rr

|ft(λ(r−1))|2dF (λ(r))dt

= ϕ−2
t (0)(γ(t)ft(0) + β(t))2dt+ ϕ−2

t (0)γ2(t)
∑

r≥2

r2

(r!)2

∫
Rr

|ft(λ(r−1))|2dF (λ(r))dt

= ϕ−2
t (0)(γ(t)ft(0) + β(t))2dt+ ϕ−2

t (0)γ2(t)
∑

r≥2

r2

(r!)2

∫
Rr

|ft(λ(r−1))|2dF (λ(r))dt

= ϕ−2
t (0)(γ(t)ft(0) + β(t))2dt+ γ2(t)ϕ−2

t (0)
∑

r≥2

1

((r − 1)!)2

∫
Rr−1

|ft(λ(r−1))|2dF (λ(r−1))dt

∫
R
dF (λr)

= ϕ−2
t (0)(γ(t)ft(0) + β(t))2dt+ γ2(t)ϕ−2

t (0)
∑

r≥1

1

(r!)2

∫
Rr

|ft(λ(r))|2dF (λ(r))dt

= ϕ−2
t (0)(γ(t)ft(0) + β(t))2dt+ γ2(t)ϕ−2

t (0)Cov(X(t), X(t))

= ϕ−2
t (0)(γ(t)ft(0) + β(t))2dt+ γ2(t)Cov(Y (t), Y (t))dt

The expression of dCov (Y (t), Y (t)) may be achieved upon observation that Y (t) can be rewritten
as follow :

Y (t)

=

∫
R

{
f0(λ) +

∫ t

0
ϕ−1
s (λ) (γ(s)fs(0) + β(s)) ds

}
dZ(λ)

+
∑

r≥2

1

r!

∫
Rr

(
f0(λ(r)) + r

∫ t

0
ϕ−1
s

(
λ(r)

)
γ(s)fs(λ(r−1))ds

)
dZ(λ(r))

=

∫ t

0

{∫
R
ϕ−1
s (λ) dZ(λ)

}
(γ(s)fs(0) + β(s)) ds+

∑
r≥1

1

r!

∫
Rr
f0(λ(r))dZ(λ(r))

+

∫ t

0

{∑
r≥2

1

(r − 1)!

∫
Rr
ϕ−1
s

(
λ(r)

)
fs(λ(r−1))dZ(λ(r))

}
γ(s)ds.
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Then we have
Cov (Y (t), Y (t))

=
∑
r≥1

1

r!

∫
Rr

|f0(λ(r))|2dZ(λ(r)) +

t∫
0

ϕ−2
s (0) (γ(s)fs(0) + β(s))

2
ds

+

t∫
0

γ2(s)ϕ−2
s (0)

∑
r≥1

1

(r!)2

∫
Rr

|fs(λ(r))|2dF (λ(r))

 ds

=
∑
r≥1

1

r!

∫
Rr

|f0(λ(r))|2dZ(λ(r)) +

t∫
0

ϕ−2
s (0) (γ(s)fs(0) + β(s))

2
ds+

t∫
0

γ2(s)ϕ−2
s (0)Cov (X(s), X(s)) ds.

And hence

dCov (Y (t), Y (t)) = ϕ−2
t (0) (γ(t)ft(0) + β(t))2 dt+ +γ2(t)ϕ−2

t (0)Cov (X(t), X(t)) dt

= ϕ−2
t (0) (γ(t)ft(0) + β(t))2 dt+ γ2(t)Cov (Y (t), Y (t)) dt.

Proof of Theorem 5.2.6. Since E {X(t)} = ft(0), then the expression of mX(t) in (5.2.7)
follows immediately from (5.2.6). To show (5.2.8) and (5.2.9), let X(t) − ft(0) = ϕt (0)Y (t)
where the process (Y (t))t≥0 is given by (5.2.10). Then KX(t) = ϕ2

t (0)Cov (Y (t), Y (t)) and

dKX(t) = 2α(t)ϕ2
t (0)Cov (Y (t), Y (t)) dt+ ϕ2

t (0)dCov (Y (t), Y (t))

Moreover, by lemma 5.2.7 we obtain

ϕ2
t (0)Cov (dY (t), dY (t)) = |β(t) + γ(t)ft(0)|2 dt+ γ2(t)KX(t)dt

and thus
dKX(t) =

[
2α(t) + γ2(t)

]
KX(t)dt+ [γ(t)ft(0) + β(t)]2 dt,

its solution is given by

KX(t) = φt (0)

KX(0) +

t∫
0

φ−1
s (0) [γ(s)fs(0) + β(s)]2 ds

 ,

Since dKX(t, s) = α(t)ϕt(0)ϕs(0)E {Y (t)Y (s)} dt, t ≥ s andKX(t, s) = ϕt(0)ϕs(0)E {Y (t)Y (s)}
then (5.2.8) follows �

Corollary 5.2.2. In time-invariant case and under the condition (5.2.4), we have the following

results mX(0) = −µ
α
, KX(0) =

(αβ − µγ)2

α2 |2α+ γ2|
, KX(h) = KX(0)eα|h|, h ∈ R and the corresponding

spectral density is

f (λ) =
−αKX(0)

π (α2 + λ2)
(5.2.11)

.

Remark 5.2.8. Le Breton and Musiela [45] have showed that there exists a wide-sense Brow-
nian motion process (w∗(t))t≥0 uncorrelated with X(0) such that (X(t))t≥0 admits the linear
representation

dX(t) = (α(t)X(t) + µ(t)) dt+ ξ (t) dw∗(t) (5.2.12)
where ξ2 (t) = γ2 (t)KX(t) + (γ (t)mX(t) + β (t))2 .
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5.3 Whittle estimator

5.3.1 An overview

In this section we consider the time-invariant version which depends on four parameters µ, α, β
and γ gathered in vector θ = (θ1, θ2, θ3, θ4)′ = (µ, α, β, γ)′, its true value denoted by θ0 is
unknown and therefore it must be estimated. For the purpose estimation, we assume ob-
served the time-invariant COBL(1, 1) process at discrete time XN = {X (t1) , ..., X (tN )} with
t1 < t2 < ... < tN . Because the theory of statistical inference for an alternative class of
continuous time processes is now well documented and comprehensively developed by several
authors (see for instance Kutoyants [43] and the reference therein). The traditional approaches
of estimating the parameter θ0 based on (XN )N≥1 are first, a time-domain approach (including
among others, GMM, contrast function, least squares, QML, ...) and second, frequency do-
main approach. A time-domain approach is to use the Kalman-filter to calculate the conditional

log-likelihood lθ(X (ti) |X (ti−1)) and solve max
θ

N∑
i=1

lθ(X (ti) |X (ti−1)). For a frequency domain

approach, a sample estimate f̂N (λ) of spectral density is needed, and then by minimizing some

objective function, e.g., minθ

+∞∫
−∞

{
log fθ (λ) + f̂N (λ)

fθ(λ)

}
dλ an estimator is obtained. Solving this

optimization problem yields the so-called Whittle estimator. However, for the case of equally
spaced observations, i.e., ti = i∆, i ∈ N and for some sampling interval ∆ = ∆(N) > 0 the FFT
(or periodogram) is an efficient tool of getting an asymptotically unbiased estimate of the spectral
density function fθ (λ) of a strictly stationary process whenever ∆→ 0 (see Florens [27] for fur-
ther discussion), contrary to irregularly spaced observations the problem is not so simple and/or
∆ 9 0 leads to inconsistency. Therefore, in the sequel, we shall assume that the time-invariant
COBL(1, 1) process is centred and observed at equally spaced-time and we associate with the
unique solution process of SDE (5.1.1) the process (X (t∆) , t ∈ N) with ∆ is small enough which
inherits the Markovian structure of the former, as well as stationarity and ergodicity. Hence,
the periodogram of XN = (X (t∆) , 1 ≤ t ≤ N)′ is defined as f̂∆

N (λ) = f̂N (λ) = |IN (λ)|2, where

IN (λ) = I∆
N (λ) = 1√

N

N∑
t=1

X (t∆) eiλt, and for computational purpose, the periodogram is eval-

uated at some Fourier frequencies λj = 2πj
N , j ∈

{
− [N−1]

2 , ..., [N ]
2

}
. To obtain an approximate

quasi-likelihood function, we consider that the discrete observation is obtained from a discretiza-
tion of the time-invariant version of (5.1.1), as for example the Euler schema is given by.

X((t+ 1)∆) = X(t∆) + µ (X (∆t)) ∆ + σ (X(t∆)) (w((t+ 1)∆)− w(t∆))

while the exact discretization of (5.1.1) is given by

X((t+ 1)∆) = X(t∆) + (1− α ((t+ 1) ∆))X (t∆) + exp {−ξ((t+ 1) ∆)} e ((t+ 1) ∆) (5.3.1)

where (see expression (5.2.3)) α ((t+ 1) ∆) = e−(ξ((n+1)∆)−ξ(n∆)) and e ((t+ 1) ∆) =
(t+1)∆∫
t∆

e−ξ(u)dη(u).

It is worth noting that when γ = 0 (OU process) the diffusion function however is indepen-
dent of X (t) and e (t) becomes a Gaussian process with zero mean and variance equal to



5.3 Whittle estimator 81

1
2|α|

(
1− e−2|α|∆) and independent of X(t) and therefore the likelihood obtained from the above

discretization schemes are the same up to a reparametrization. The quasi-likelihood function of
the parameter vector θ0 based on the observation vector XN is given by

LN (θ) = (2π)−N/2 (det (R∆ (θ)))−1/2 exp

{
−1

2
X ′NR

−1
∆ (θ)XN

}
, (5.3.2)

where R∆ (θ) is an N × N Toplitz matrix with (j, k) − th entries is R∆ (j, k) = R∆ (|k − j|) =

Cov {X (j∆) , X (k∆)}, j, k = 1, ..., N , its empirical estimate is R̂N (h) = 1
N

N−|h|∑
k=1

X (k∆)X ((k + h) ∆).

So by taking logarithm in (5.3.2) we obtain up to a constant, the log quasi-likelihood function

lN (θ) = −1

2
log det (R∆ (θ))− 1

2
X ′NR

−1
∆ (θ)XN (5.3.3)

Since the sequence (IN (λj))1≤j≤N is approximately non correlated with covariance matrix diag(
fθ (λj) ,1≤j≤N

)
, thus if U denotes the unitary matrix operator that transforms {X (∆) , ..., X (N∆)}

to {IN (λ1) , ..., IN (λN )} then UR∆ (θ)U∗ is approximately a diagonal matrix with fθ (λj) , j =

1, ..., N on the diagonal. Hence an approximation for lN (θ) is now − 1
2

N∑
j=1

{
log fθ (λj) + f−1

θ (λj) f̂N (λj)
}

for N large enough. Therefore, Whittle estimator of θ0 is defined as θ̂N = Argmin
θ∈Θ

Q̂N (θ) where

Q̂N (θ) is the objective function defined by

Q̂N (θ) =

π∫
−π

(
log fθ (λ) + f−1

θ (λ) f̂N (λ)
)
dλ, (5.3.4)

which is similar to the Kullbach-Leibler criterion.

Remark 5.3.1. An approximation of the objective function Q̂N (θ) may be given by replacing

the integral
π∫
−π

in (5.3.4) by a Riemann sum evaluated at the Fourier frequencies i.e.,

Q̃N (θ) =
1

N

N∑
j=1

(
log fθ (λj) + f−1

θ (λj) f̂N (λj)
)
.

The Whittle estimator is one of the standard estimator for ARMA processes which is ex-
tremely flexible under various modifications of ARMA models. For instance, the Whittle esti-
mator also works with infinite variance of innovation process and hence may be extended to long
memory models. The applicability of Whittle estimator criterion Q̂N (θ) to non linear processes
was considered by several authors. Dzhaparidze and Yaglon [26] have suggested the following
conditions for discrete, strictly stationary, non-Gaussian and mixing processes (X (t))t
(a) : (X (t))t has finite absolute moments of all order, i.e., E

{∣∣Xk (t)
∣∣} < +∞, k = 1, 2, ..

(b) :
∑
t1≥0

...
∑

tk−1≥0

|C (t1, ..., tk−1)| < +∞, k = 2, 3, ..

where C (t1, ..., tk−1) denotes the kth−order cumulant of the process. Brillinger [12], has replaced
the condition (b) by
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(c) :
∑
t1≥0

...
∑

tk−1≥0

|tjC (t1, ..., tk−1)| < +∞, k = 2, 3, ..

The condition (c) is a mixing condition which measures the asymptotic independence between
the values of the process, which is much easier to verify than others conditions that measures
the mixing (for instance β−mixing coefficient). Note here, that under the condition (5.2.4) and
using the representation (5.2.12) it can be shown that the SDE (5.1.1) is exponentially ergodic
and holds the exponentially β−mixing properties. Now we are ready to formulate the main
results on the asymptotic behavior of the Whittle estimator for COBL(1, 1). We start with the
consistency.

5.3.2 Consistency

The weak consistency of the Whittle estimator is generally considered in the literature. For an
in-depth detailed mathematical framework on the subject we refer the reader to Dzhaparidze
and Yaglon [26] and the references therein. To study the strong consistency of θ̂N , we consider
the following regularities assumptions

A0. θ0 ∈ Θ and Θ is a compact subset of R4.

A1. The function fϑ (λ) is strictly positive

A2. inf
θ∈Θ

+π∫
−π

fθ0 (λ) f−1
θ (λ) dλ = 1

The compactness of Θ in Assumption A0., is often imposed in order that several results from
real analysis can be used. A sufficient condition for that A1. holds is that the condition (5.2.4)
hold true, (see Subba Rao and Terdik [62]), while A2. in imposed for identification purpose.

Theorem 5.3.2. Under Assumptions A0.,−A2., almost surely θ̂N → θ0 as N →∞.

To prove the Theorem 5.3.2, we introduce the criterion Q (θ) =
π∫
−π

(
log fθ (λ) + f−1

θ (λ) fθ0 (λ)
)
dλ

and the perturbed spectral density of f−1
θ (λ) defined by ϕθ,δ (λ) =

(
fθ (λ) + δ

)−1 for some δ > 0.
Also for any integrable function gθ (λ) on [−π, π], we associated its Fourier coefficient ĝt (θ) =
π∫
−π

gθ (λ) eitλdλ and the corresponding trunked Cesaro sum gM (θ, λ) =
1

M

M∑
u=−M

(
1− |u|

M

)
ĝu (θ) e−iuλ.

So, if gθ (λ) = gθ (−λ), then lim
M→+∞

sup
λ

∣∣gθ (λ)− gM (θ, λ)
∣∣ = 0, moreover, if gθ (λ) is continuous

uniformly in λ, then lim
M→+∞

sup
λ,θ

∣∣gθ (λ)− gM (θ, λ)
∣∣ = 0. First, we establish the following lemma

Lemma 5.3.3. almost surely lim
N→∞

sup
θ0∈Θ

∣∣∣Q̂N (θ)−Q (θ)
∣∣∣ = 0.

Proof. It is sufficient to prove that lim
N→∞

sup
θ0∈Θ

π∫
−π

f−1
θ (λ) f̂N (λ) dλ =

π∫
−π

f−1
θ (λ) fθ0 (λ) dλ. Indeed,

let f−1
M (θ, µ), µ ∈ [−π, π] be the Cesaro sum associated with the Fourier coefficients of f−1

θ (λ).
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Then, it is not difficult to see that for N , M large enough, and by the ergodic theorem, there
exist ε > 0 such that, almost surely∣∣∣∣∣∣

π∫
−π

f−1
θ (λ) f̂N (λ) dλ−

π∫
−π

f−1
M (θ, λ) f̂N (λ) dλ

∣∣∣∣∣∣ ≤ εR∆ (0) ,

and as N → +∞
π∫
−π

f−1
M (θ, µ) f̂N (λ) dλ =

π∫
−π

{
M∑

u=−M

(
1− |u|

M

)
f̂−1
u (θ) e−iλuf̂N (λ)

}
dλ→

M∑
u=−M

(
1− |u|

M

)
f̂−1
u (θ)R∆ (u)

=

M∑
u=−M

(
1− |u|

M

)
f̂−1
u (θ)

π∫
−π

fθ0 (λ) e−iλudλ =

π∫
−π

f−1
M (θ, µ) fθ0 (λ) dλ→

π∫
−π

f−1
θ (λ) fθ0 (λ) dλ, as M → +∞

and the result follows as ε→ 0. �

Proof of Theorem 5.4.4. Suppose θ̂N is not strongly consistent for θ0, then by the compactness
of Θ, there is a subsequence θ̂N(n) converging to some ϑ ∈ Θ and ϑ 6= θ0. Thus

lim inf
n→∞

Q̂N(n)

(
θ̂N(n)

)
≥ sup

δ>0

lim inf
n→∞


π∫
−π

(
log f

θ̂N(n)
(λ) + ϕN(n),δ (λ) f̂N (λ)

)
dλ


 ,

=

π∫
−π

log fϑ (λ) dλ+ sup
δ>0


π∫
−π

fθ0 (λ)ϕϑ,δ (λ) dλ


→

π∫
−π

log fϑ (λ) dλ+

π∫
−π

fθ0 (λ) f−1
ϑ (λ) dλ a.s. as δ → 0

so by A2., we have
π∫
−π

log fϑ (λ) dλ +

π∫
−π

fθ0 (λ) f−1
ϑ (λ) dλ >

π∫
−π

log fϑ (λ) dλ for ϑ 6= θ0, thus

lim inf
n→∞

Q̂N(n)

(
θ̂N(n)

)
>

π∫
−π

log fϑ (λ) dλ. But Q̂N(n)

(
θ̂N(n)

)
≤ Q̂N(n) (θ) for any θ ∈ Θ and

therefore

lim sup
n→∞

Q̂N(n)

(
θ̂N(n)

)
≤ inf

θ∈Θ
lim sup

n→∞
Q̂N(n)

(
θ̂N(n)

)
= inf

θ∈Θ
Q̂ (θ) =

π∫
−π

log fϑ (λ) dλ.

Hence, the contradiction lim sup
n→∞

Q̂N(n)

(
θ̂N(n)

)
≤

π∫
−π

log fθ0 (λ) dλ < lim inf
n→∞

Q̂N(n)

(
θ̂N(n)

)
,

a.s.�
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5.3.3 Asymptotic normality

To show the asymptotic normality of θ̂N ,we define the k−th order cumulant spectral density
(when exists) associated with the discretized version (X (∆t))t∈Z, i.e.,

fθ (λ1, ..., λk−1) =
1

(2π)k−1

∑
s1,...,sk−1∈Z

C∆ (s1, ...., sk−1) exp

{
−i
∑k−1

j=1
λjsj

}
,

where
∑k

j=1
λj = 0 [mod 2π] and consider the following additional assumptions

A3. θ0 ∈ Θ̊, with Θ̊ denotes the interior of Θ.

A4. (X(t))t≥0 is strictly stationary with E
{
X4(t)

}
< +∞

A5. the functions fϑ (λ) and of f−1
ϑ (λ) are squared integrable on [−π, π], bounded and contin-

uous of all
(
λ, θ′

)
∈ [−π, π]×Θ.

A6. The functions θ →
π∫
−π

log fθ (λ) dλ and θ →
π∫
−π

fθ0 (λ) f−1
θ (λ) dλ are twice continuously

differentiable under the integral sign with respect to θ.

The principal well known results that we use for establish the asymptotic normality are summa-
rized in the following Lemma due to Hannan [35]

Lemma 5.3.4. Under the assumption A5, A6 we have

1. RN (u) =
√
N
(
R̂N (u)−R∆ (u)

)
has an asymptotic Gaussian joint distribution with 0

mean and joint asymptotic covariance

lim
N→∞

NCov (RN (u) , RN (v)) =

∫ π

−π
f2
θ (λ) eiλ(u−v)dλ+

∫ π

−π
f2
θ (λ) eiλ(u+v)dλ

+

∫ π

−π

∫ π

−π
fθ (λ,−w,w) ei(λu+wv)dλdw.

2. For any continuous function φ let H (φ) =

π∫
−π

φ(λ)fθ (λ) dλ and ĤN (φ) =

π∫
−π

φ(λ)f̂N (λ) dλ

Then ĤN (φ) → H (φ), a.s. as N → ∞ , moreover lim
N→+∞

NCov
(
ĤN (φ1) , Ĥ (φ2)

)
=

Σ (θ0) where

Σ (θ) = 2π

∫ π

−π
φ1 (λ)φ2 (λ) f2

θ (λ) dλ+ 2π

∫ π

−π
φ1 (λ)φ2 (−λ) f2

θ (λ) dλ

+ 2π

∫ π

−π

∫ π

−π
φ1 (λ)φ2 (−w) fθ (λ,−w,w) dλdw.

The second main result of the chapter is the following



5.3 Whittle estimator 85

Theorem 5.3.5. Under the conditions A0.−A6.,
√
N
(
θ̂N − θ0

)
is asymptotically

N
(
O, J−1 (θ0)V (θ0)J−1 (θ0)

)
distributed where J (θ0) and V (θ0) are 4× 4−matrices with (i, j)−entries are given by

J (i,j) (θ0) =
1

2π

π∫
−π

f−2
θ0

(λ)
∂

∂θi
fθ (λ)

∂

∂θj
fθ (λ) dλ,

V (i,j)(θ0) =
1

π

π∫
−π

f2
θ0

(λ)
∂

∂θj
f−1
θ (λ)

∂

∂θi
f−1
θ (λ) dλ+

1

2π

π∫
−π

π∫
−π

∂

∂θj
fθ (λ1)

∂

∂θi
fθ (λ2) fθ0 (−λ1, λ2,−λ2) dλ1dλ2.

The proof of theorem 5.3.5 rest classically on a Taylor series expansion of the score vector around
θ0 , we have

O =
√
N
∂Q̂N

(
θ̂N

)
∂θ

=
√
N
∂Q̂N (θ0)

∂θ
+
∂2Q̂N

(
θ̃
)

∂θ∂θ′
√
N
(
θ̂N − θ0

)
+ o(1),

where θ̃ is on the line segment joining θ0 and θ̂N and o(1) represents a random variable which
tends to zero almost surely and N → +∞. First, under the condition A6. the first and second
partial derivative of the objective function (5.3.4) are

∂Q̂N (θ)

∂θj
=

π∫
−π

f−1
θ (λ)

∂

∂θj
fθ (λ) dλ−

π∫
−π

f−2
θ (λ)

∂

∂θj
fθ (λ) f̂N (λ) dλ (5.3.5)

=

π∫
−π

F
(j)
θ (λ)

(
f̂N (λ)− fθ (λ)

)
dλ, with F (j)

θ (λ) = f−2
θ (λ)

∂

∂θj
fθ (λ) .

∂Q̂N (θ)

∂θi∂θj
=

π∫
−π

f−1
θ (λ)

∂2

∂θi∂θj
fθ (λ) dλ−

π∫
−π

f−2
θ (λ)

∂

∂θi
fθ (λ)

∂

∂θj
fθ (λ) dλ+

π∫
−π

∂2

∂θi∂θj
f−1
θ (λ) f̂N (λ) dλ.

We will show some intermediate results summarized in the following lemma and hence theorem
5.3.5 will straightforwardly follow.

Lemma 5.3.6. Under the conditions A0.,-A6. we have

1. lim
N→∞

V ar

{√
N

∫ π

−π

(
Fj,M (θ, λ)

(
f̂N (λ)− E

{
f̂N (λ)

}))
dλ

}
= 0 where Fj,M (θ, λ) = F

(j)
M (θ, λ)

−F (j)
θ (λ) with F (j)

M (θ, λ) is the Cesaro’s sum associated with F (j)
θ (λ) .

2. TN =
√
N

(
∂Q̂N (θ)

∂θ
− E

{
∂Q̂N (θ)

∂θ

})
 N (O, V (θ0)) with V (θ0) is positive definite

matrix and
√
NE

{
∂Q̂N (θ)

∂θ

}
→ O

3. almost surely
∂2Q̂N (θ)

∂θ∂θ′
→ J (θ0) as N → +∞ and J (θ0) is positive definite matrix.
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Proof. To prove 1, we first observe that since F (j)
θ (λ) is continuous for all λ, then we have for

all ε > 0, there is an M > 0 such that max
a,b

sup
λ
|Fj,M (θ0, λ)| < ε. Moreover, by assertion 2 in

Lemma 5.3.4 we have as N → +∞

V ar

{√
N

∫ π

−π
Fj,M (θ, λ)

(
f̂N (λ)− E

{
f̂N (λ)

})
dλ

}
≤
∫ π

−π
|Fj,M (θ, λ)|2 f2 (λ) dλ+

∫ π

−π
Fj,M (θ, λ)F j,M (θ,−λ) f2 (λ) dλ

+

∫ π

−π

∫ π

−π
Fj,M (θ, λ)F j,M (θ,−µ) f (λ, µ,−µ) dλdµ

and the result follow since Fj,M (θ, λ) → 0 as M → +∞. The assertion 2., may be proved by
expressing TN as function of RN (.) (or some approximations). Indeed, from (5.3.5) and by A5.,
we have

√
N
∂Q̂N (θ)

∂θ
=
√
N

∫ π

−π

(
F

(j)
θ (λ)

(
f̂N (λ)− E

{
f̂N (λ)

}))
dλ+

√
N

∫ π

−π

(
F

(j)
θ (λ)

(
E
{
f̂N (λ)

}
− fθ (λ)

))
dλ

=
√
N

∫ π

−π

(
F

(j)
θ (λ)

(
f̂N (λ)− E

{
f̂N (λ)

}))
dλ+O(N1/2−α)

=
√
N

∫ π

−π

(
F

(j)
M (θ, λ)

(
f̂N (λ)− E

{
f̂N (λ)

}))
dλ+O(N1/2−α)

+
√
N

∫ π

−π

((
F

(j)
θ (λ)− F (j)

M (θ, λ)
)(

f̂N (λ)− E
{
f̂N (λ)

}))
dλ.

So the second point of this assertion follows. Since the last term of the above equality tends to 0

as N → +∞ by assertion 1. By Bernstein’s lemma the asymptotic distribution of
√
N
∂Q̂N (θ)

∂θ

is the same as of
√
N

∫ π

−π
F

(j)
M (θ, λ)

(
f̂N (λ)− E

{
f̂N (λ)

})
dλ. On the other hand,

√
N

∫ π

−π

(
F

(j)
M (θ, λ)

(
f̂N (λ)− E

{
f̂N (λ)

}))
dλ

=
∑
|u|≤M−1

(
1− |u|

M

)√
N

{
R̂N (−u)−

(
1− |u|

M

)
R∆ (−u)

}
F̂ (j) (u)

=
∑
|u|≤M−1

(
1− |u|

M

)
F̂ (j) (u)RN (u) + o(1)

The result follow by assertion 1 in Lemma 5.3.4. The last assertion follow from the convergence

of
π∫
−π

∂2

∂θi∂θj
f−1
θ (λ) f̂N (λ) dλ to

π∫
−π

∂2

∂θi∂θj
f−1
θ (λ) fθ (λ) dλ (see the second assertion of lemma 5.3.4,

with hθ (λ) = ∂2

∂θi∂θj
f−1
θ (λ)) �

5.4 Monte Carlo experiments

We provide in this section some simulations results for the Whittle estimator and their asymptotic
behavior given in the above section for estimating the unknown vector θ = (α, µ, γ, β) involved
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in the model. For this purpose, we simulated 500 independent trajectories from a second-
order stationary series according to COBL(1, 1) of length n ∈ {1000, 1500, 2000} with standard
Brownian motion. The results of simulation experiments for estimating the vector θ0 are reported
in tables below in which we have indicated in the line “Mean of” correspond to the average
of the parameters estimates over the 500 repetitions. In order to show the performance of such
method, we have reported (results between bracket) the root-mean square errors (RMSE) of
each estimates. Note that the choice of parameters values must be satisfied the condition (5.2.4) .

5.4.1 GOU

The first design of our experiment consists to estimate the parameter of the Gaussian Ornstein-
Uhlenbeck (GOU) process, i.e.,

dX(t) = (µ− αX(t)) dt+ βdw(t) (5.4.1)

in which α > 0 and β2 > 0. Moreover, from equation (5.3.1), we obtain

X((t+ 1)∆)− µ

α
= e−α∆

(
X (t∆)− µ

α

)
+ β

√
1− e−2α∆

2α
e ((t+ 1)∆)

where e is a Gaussian white noise independent of X. We deduce that E {X} =
µ

α
, V ar {X} =

β2

2α

(
1 + e−α∆

)
, Cov (X((t+ 1)∆), X(t∆)) = e−α∆V ar {X} and hence fθ (λ) =

β2
(
1− e−2α∆

)
2α |1− e−iλ−α∆|2

that is independent of µ and thus may be considered as a nuisance parameter. So the vector θ
that we must estimate by Whittle method is θ = (α, β)′ The results of simulation of such model
are reported in the following table

length 1000 1500 2000

mean of θ̂n =

(
α̂n
β̂n

) (
2.037 (0.0370)
1.494 (0.0053)

) (
2.028 (0.0204)
1.494 (0.0055)

) (
2.018 (0.085)
1.496 (0.003)

)
design(1): α = 2 and β = 1.5

mean of θ̂n =

(
α̂n
β̂n

) (
1.516 (0.0610)
0.499 (0.0010)

) (
1.512 (0.0104)
0.498 (0.0012)

) (
1.508 (0.0081)
0.499 (0.0003)

)
design(2): α = 1.5 and β = 0.5

mean of θ̂n =

(
α̂n
β̂n

) (
1.008 (0.0070)
0.998 (0.0018)

) (
1.006 (0.0061)
0.998 (0.0020)

) (
1.004 (0.0030)
0.998 (0.0014)

)
design(3): α = 1.0 and β = 1.0

mean of θ̂n =

(
α̂n
β̂n

) (
0.756 (0.0065)
0.997 (0.0021)

) (
0.754 (0.0045)
0.998 (0.0020)

) (
0.753 (0.0029)
0.998 (0.0015)

)
design(4): α = 0.75 and β = 1.0

Table(1): The results of simulation by the Whittle estimator of GOU(1)
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On the other hand, the asymptotic distribution of estimated density are shown in Figure 1
followed by the box plot summary of the statistical properties of each estimates.

Fig1. Top panal: The asymptotic distribution of
√
n
(
θ̂n − θ0

)
. Bottom panal: box plot summary

for GOU(1)

5.4.2 COBL(1,1)

In the second design, we consider the COBL(1, 1) generated by the following SDE

dX(t) = (αX(t) + µ) dt+ (γX(t) + β) dw(t), t ≥ 0, X(0) = X0 (5.4.2)

in which, it can be assumed that β = 0, otherwise the transformation Y (t) =
µ

γµ− αβ
(γX(t) + β)

can be fulfilled in (5.4.2). So the vector θ that we must estimate is thus θ = (α, γ, µ)′. The
CARMA representation (5.2.12) becomes dX(t) = (αX(t) + µ) dt+ξdw?(t), ξ2 = γ2

(
KX(0) +m2

X

)
.

The Euler discretization yields

X(t+ h)−X(t) = (αX(t) + µ)h+ ξ(w?(t+ h)− w?(t))

while the exact discretization is given by

X(t+ ∆)−X(t) = −µ
α

(
1− eα∆

)
−
(
1− eα∆

)
X(t) + ζeαt

t+∆∫
t

e−αsdw?(s)

so we obtain

X((t+ 1)∆) +
µ

α
= eα∆

(
X (t∆) +

µ

α

)
+ ζ

√
1− e2α∆

−2α
e((t+ 1)∆) (5.4.3)
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where e is a Gaussian white noise independent of X. Equation (5.4.3) means that the exact dis-
cretization of COBL(1, 1) is an AR(1) model with coefficient eα∆ > 0, so we have E {X} = −µ

α
,

V ar {X} =
ζ2

−2α
, Cov(X((t+1)∆), X(t∆)) = eα∆V ar {X} and hence fθ (λ) =

ζ2
(
e2α∆ − 1

)
2α |1− e−iλ+α∆|2

.

The results of simulation of COBL(1, 1) are reported in the following table

length 1000 1500 2000

mean of θ̂n =

 α̂n
γ̂n
µ̂n

  −2.601 (0.111)
1.561 (0.301)
1.081 (0.008)

  −2.572 (0.071)
1.541 (0.210)
1.013 (0.002)

  −2.543 (0.049)
1.506 (0.281)
1.011 (0.001)


design(1): α = −2.5 , γ = 1.5 and µ = 1

mean of θ̂n =

 α̂n
γ̂n
µ̂n

  −0.143 (0.125)
0.623 (0.127)
0.475 (0.011)

  −0.146 (0.075)
0.542 (0.023)
0.481 (0.071)

  −0.152 (0.055)
0.502 (0.012)
0.048 (0.011)


design(2): α = −1.5 , γ = 0.5 and µ = 0.5

mean of θ̂n =

 α̂n
γ̂n
µ̂n

  −0.985 (0.143)
1.015 (0.073)
0.915 (0.212)

  −0.947 (0.107)
1.005 (0.041)
0.965 (0.017)

  −0.978 (0.021)
0.975 (0.012)
0.981 (0.051)


design(3): α = −1.0 , γ = 1.0 and µ = 1.0

mean of θ̂n =

 α̂n
γ̂n
µ̂n

  −1.352 (0.151)
0.952 (0.021)
0.743 (0.024)

  −1.219 (0.041)
0.972 (0.071)
0.747 (0.012)

  −1.230 (0.060)
0.975 (0.017)
0.746 (0.025)


design(4): α = −1.25 , γ = 1.0 and µ = 0.75

Table(2): The results of simulation by the Whittle estimator of COBL(1,1)

The plots of asymptotic density and their box plots of each parameters in θ according to first
design are summarized in the following figure
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Fig2. Top panal: The asymptotic distribution of
√
n
(
θ̂n − θ0

)
. Bottom panal: box plot summary for

GOU(1)

5.5 Concluding remarks

In this chapter, we have presented the Whittle’s estimator for continuous-time bilinear (COBL)
process generated by some diffusion equation. The method described in section 5.3 is based
on the CARMA representation of the COBL process. So, we have analyzed the asymptotic
properties of such method. We have showed that this method is consistency and asymptotically
normal under some regularity condition. Finally, we investigated the empirical study of our
estimators via monte Carlo simulation in order to highlight the theoretical results. It is however
interesting to extend the method for general models, we leave this important issue for future
researches.



Chapter 6

GMM estimation of continuous-time
bilinear processes6

6. Ce chapitre est soumis dans le journal : Electronic Journal of Applied Statistical Analysis.

Abstract

This chapter examines the moments properties in frequency domain of the class of first order
continuous-time bilinear processes (COBL(1, 1)) with time-varying coefficients. So, we used the
associated transfer functions to study the structure of second-order of the process and its powers.
In time-invariant case, an expression of the moments of any order are showed and the continuous-
time AR (CAR) representation of COBL(1, 1) is given as well as some moments properties of
special cases. Based on these results we are able to examine the statistical properties such that
we develop an estimation method of the process via the so-called generalized method of moments
(GMM) illustrated by a Monte Carlo study and applied to modelling two foreign exchange rates
of Algerian Dinar against U.S.-Dollar (USD/DZD) and against the single European currency
Euro (EUR/DZD).

6.1 Introduction

One of the major difficulties that arises in the statistical analysis of linear and/or non linear
stochastic differential equations (SDE) and thus poses a challenge to statisticians and econome-
tricians for some time, is certainly their identifications. So, in financial application, estimation
methods have usually carried by some discretization schema and hence various techniques are
adapted. Indeed, Kallsen and Muhle-Karbe [39], and Haug et al. [32] have proposed an asymp-
totic inference of moments method (MM) for discretized continuous GARCH process, Bibi and
Merahi [10] have proposed a MM for estimating the parameters of continuous-time bilinear
processes, Chan et al. [18] investigated an empirical comparison of generalized method of mo-
ment (GMM) of several discretized diffusions processes. Broze et al. [17] studies the effect of
discretization schema on the consistency of the direct inference based on likelihood, Hyndman
[34] and Guyon and Souchet [31] extended the so-called Yule-Walker estimator for a discretized
version of an CAR(p). The Levinson-Durbin-type algorithms for continuous-time autoregressive
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models was studied by Pham and Le Breton [56]. For in deep lecture we advised interested read-
ers to see Kessler [41] end the reference therein and to monographs by Rao [58] and Kutoyants
[43].

In this chapter we consider the class of continuous-time bilinear processes (X(t))t∈R+ (COBL for
short) generated by the following time-varying stochastic differential equation (SDE)

dX(t) = (α(t)X(t) + µ(t)) dt+ (γ(t)X(t) + β(t)) dW (t), X(0) = X0, (6.1.1)
= µt (X(t)) dt+ σt (X(t)) dW (t)

where µt (x) = α(t)x+µ(t) and σt (x) = γ(t)x+β(t) which represents the drift and the diffusion
functions, (W (t))t≥0 is a standard Brownian motion in R defined on some basic filtered space

(Ω,A, (At)t≥0 , P ) with spectral representation W (t) =
∫
R
eitλ − 1

iλ
dZ(λ), where Z(λ) is an or-

thogonal complex-valued stochastic measure on R with zero mean, E
{
|dZ(λ)|2

}
= dF (λ) =

dλ

2π

and uniquely determined by Z([a, b[) =
1

2π

∫
R
e−iλa − e−iλb

iλ
dW (λ), for all −∞ < a < b < +∞,

the initial state X(0) is a random variable, defined on (Ω,A, P ), independent of W such that
E {X(0)} = m1(0) and V ar {X(0)} = R1(0). Special cases of this process are the Brownian
motion with drift (α(t) = 0 and γ(t) = 0 ), the Gaussian Ornstein-Uhlenbeck (GOU) process
(γ(t) = 0 ) and the volatility of the COGARCH(1, 1) process defined by dX(t) = σ (t) dW1(t)
where dσ2 (t) =

(
µ (t)− α (t)σ2 (t)

)
dt + γ (t)σ2 (t) dW2(t) in which µ (t) > 0,α(t), γ (t) ≥ 0 for

all t ≥ 0 andW1(t) anW2(t) are independent Bm independent of (X(0), σ (0)). The SDE (6.1.1)
is called time-invariant if there exists some constants α, µ, γ and β such that for all t, α(t) = α,
µ(t) = µ, γ(t) = γ and β(t) = β. The main aim here is focused firstly on the conditions ensuring
the existence of the processes (X(t))t∈R+ and its powers (Xk(t))t∈R+ , k ≥ 2, using the transfer
functions associated with the model. Secondly, we extend the generalized method of moments
(GMM) for a discretized time-invariant version of SDE (6.1.1) and hence an estimates of the
parameters involving in the model is ready for study their asymptotic properties. To ensure the
existence and uniqueness of the solution process (X(t))t≥0 of equation (6.1.1) we assume that
the parameters α(t), µ(t), γ(t) and β(t) are measurable deterministic functions and subject to
the following assumption:

Assumption 3. α(t), µ(t), γ(t) and β(t) are differentiable functions such that ∀T > 0,∫ T

0
|α(t)| dt <∞,

∫ T

0
|µ(t)| dt <∞,

∫ T

0
|γ(t)|2 dt <∞ and

∫ T

0
|β(t)|2 dt <∞.

The remainder of this chapter is structured as follows. Section 2 outlines the Wienet-Itô spec-
tral representation for general non linear SDE, in particular the recursive evolutionary transfer
functions of SDE (6.1.1) are given and hence the associated spectral representation of (X(t))t≥0

and its powers is showed. Section 3, investigated the moments properties of (X(t))t≥0 and its
powers and an explicit formula for time-invariant version are derived. Section 4, is dedicated
for the estimate of time invariant SDE (6.1.1) via generalized moments method (GMM), so its
consistency and asymptotic normality are studied. Numerical illustrations are given in Section 5
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6.2 Wiener-Itô representation

The existence and uniqueness of the solution process of SDE (6.1.1) in time domain is en-
sured by the general results on SDE and under the Assumption 3. Moreover, since the drift
and the diffusion are Lipschitz with linear growth, i.e., |µt (x)− µt (y)| ≤ sup

t
|α(t)| |x− y| and

|σt (x)− σt (y)| ≤ sup
t
|γ(t)| |x− y|, then the Itô solution is given by (see Le Breton and Musiela

[45] and Bibi and Merahi [11].)

X(t) = Φ(t)

{
X(0) +

∫ t

0
Φ−1(s) (µ(s)− γ (s)β (s)) ds+

∫ t

0
Φ−1(s)β (s) dW (s)

}
, a.e., (6.2.1)

where the process (Φ(t))t≥0 is given by Φ(t) = exp
{∫ t

0

(
α(s)− 1

2γ
2 (s)

)
ds+

∫ t
0 γ (s) dW (s)

}
its

mean function is Ψ(t) = exp
{∫ t

0 α(s)ds
}
. In time-invariant case (Φ(t))t≥0 reduces to Φ(t) =

exp {−ξ(t)} where −ξ(t) =
(
α− 1

2γ
2
)
t + γW (t) and then the solution process (6.2.1) reduces

to

X(t) = e−ξ(t)

X(0) +

t∫
0

eξ(s)dη(s)

 , t ≥ 0. (6.2.2)

with η(t) = (µ− γβ) t + βW (t), that is the solution process of the celebrated generalized OU .
So, by Itô formula, we obtain dX(t) = −ξ(t)X(t)dt+ dη(t), t ≥ 0, X(0) = X0. Hence the above
equation can be considered as a random coefficient time-continuous autoregressive (CRCA)
representation of SDE (6.1.1). The autoregressive coefficient is obviously the random variable
−ξ(t).

In the first part of this chapter, we shall investigate in frequency domain, some probabilis-
tic and statistical properties of second-order solution process of equation (6.1.1) which are also
regular (or causal), i.e., X(t) is σ {W (s), s ≤ t}−measurable, such solution were given by Iglói
and Terdik [38] for time-invariant version of SDE (6.1.1). For this purpose, let = = =(W ) :=
σ(W (t), t ≥ 0) (resp. =t := σ(W (s) , s ≤ t)) be the σ-algebra generated by (W (t))t≥0 (resp.
generated by W (s) up to time t) and let L2(=) = L2(C,=, P ) be the Hilbert space of nonlinear
L2−functional of (W (t))t≥0. It is well known that any second-order regular process (X(t))t≥0

(i.e., X(t) is =t−measurable) admits the so-called Wiener-Itô orthogonal (or also chaotic ) rep-
resentation (see for instance Major [50]), i.e.,

X(t) = gt(0) +
∑
r≥1

1

r!

∫
Rr

gt(λ(r))e
itλ(r)dZ(λ(r)), (6.2.3)

wherein gt(0) = E {X(t)}, λ(r) = (λ1, ..., λr) ∈ Rr, λ(r) =
r∑
i=1

λi with λ(0) = λ(0) = 0, and the

integrals in (6.2.3) are the multiple Wiener-Itô stochastic integrals with respect to the stochastic

measure dZ
(
λ(r)

)
=

r∏
i=1

dZ(λi) and
(
gt(λ(r))

)
r≥0

are referred as the r− th evolutionary transfer

functions uniquely determined up to symmetrization and gt(λ(r)) ∈ L2 (G) = L2 (Cn, BCn , G) for
all t ≥ 0, i.e.,

∑
r≥0

1
r! ‖gt‖

2 < ∞ for all t, where ‖gt‖2 =
∫
Rr

∣∣gt(λ(r))
∣∣2 dG(λ(r)) with dG(λ(r)) =
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1

(2π)r
dλ(r) and dλ(r) =

r∏
i=1

dλi. As a property of the representation (6.2.3) is that for any ft(λ(n))

and fs(λ(m)), we have

E

{∫
Rn

ft(λ(n))dZ(λ(n))

∫
Rm

fs(λ(m))dZ(λ(m))

}
= δmn n!

∫
Rn

Sym
{
ft(λ(n))

}
Sym

{
fs(λ(n))

}
dF (λ(n))

(6.2.4)
where δmn is the delta function and Sym

{
ft(λ(n))

}
= 1
n!

∑
π∈Π(n)

ft
(
λπ(n)

)
where Π (n) denotes

the group of all permutation of the set {1, ..., n}. Another property linked with (6.2.3) is the
diagram formula which state that∫

R
ft(λ)dZ(λ)

∫
Rn
gs
(
λ(n)

)
dZ(λ(n)) (6.2.5)

=

∫
Rn+1

gs
(
λ(n)

)
ft (λn+1) dZ(λ(n+1)) +

n∑
k=1

∫
Rn−1

∫
R
gs
(
λ(n)

)
ft (λk)dF (λk) dZ(λ(n\k))

where dZ(λ(n\k)) =
n∏

i=1,i 6=k
dZ (λi). The following theorem due to Bibi and Merahi [11], give a

recursive evolutionary transfer functions associated to the second-order regular solution of SDE
(6.1.1).

Theorem 6.2.1. Assume that everywhere

2α (t) + γ2 (t) < 0, (6.2.6)

then the process (X(t))t≥0 generated by the SDE (6.1.1) has a regular second-order solution given
by the series (6.2.3) where the evolutionary symmetrized transfer functions of this solution are
given by the symmetrization of the solution of the following first-order differential equation

g
[1](1)
t (λ(r)) =

{
α(t)g

[1]
t (0) + µ(t), if r = 0(

α(t)− iλ(r)

)
g

[1]
t (λ(r)) + r

(
γ(t)g

[1]
t (λ(r−1)) + δ{r=1}β(t)

)
, if r ≥ 1

(6.2.7)

where g[1]
t (0) = E {X(t)} and the superscript (j) denotes j−fold differentiation with respect to t.

Remark 6.2.2. The existence and uniqueness of the evolutionary transfer functions g[1]
t (λ(r)), (t, r)

∈ R× N of (6.2.7) are ensured by general results on linear ordinary differential equations, so,

g
[1]
t (λ(r)) =


ϕ1 (t)

(
g

[1]
0 (0) +

t∫
0

ϕ−1
1 (s)µ(s)ds

)
if r = 0

ϕ1,t

(
λ(r)

)(
g

[1]
0 (λ(r)) + r

t∫
0

ϕ−1
1,s

(
λ(r)

)(
γ(s)g

[1]
s (λ(r−1)) + δ{r=1}β(s)

)
ds

)
if r ≥ 1

(6.2.8)

where ϕ1,t

(
λ(r)

)
= exp

{
t∫

0

(
α(s)− iλ(r)

)
ds

}
and ϕ1 (t) = ϕ1,t (0).

In time-invariant case we shall assume through the paper that

α, µ, γ, β ∈ R, γ 6= 0, αβ 6= µγ, 2α+ γ2 < 0. (6.2.9)

The condition αβ 6= µγ is imposed otherwise the time-invariant version of (6.1.1) has only a

degenerated solution given by X(t) = −β
γ

= −µ
α
.
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Example 6.2.3. In time-invariant version and under the condition 6.2.9, the transfer functions
g[1](λ(r)) for all r ∈ N are given by

g[1](λ(r))) =

 −
µ

α
, r = 0(

iλ(r) − α
)−1 (

rγg[1](λ(r−1)) + δ{r=1}β
)
, r ≥ 1

or equivalently g[1](λ(r)) = γr−1r!
(
β − µ

α
γ
) r∏

j=1

(
iλ(j) − α

)−1
and the symmetrized version

can be rewritten as

Sym
{
g[1](λ(r))

}
= (µγ − αβ) γr−1

+∞∫
0

exp {αλ}
r∏
j=1

1− exp {−iλλj}
iλj

dλ.

and hence

m1 = −µ
α
, R1(τ) = Cov(X(t), X(t+ τ)) = R1(0)eα|τ |, where R1(0) =

|αβ − µγ|2

α2 |2α+ γ2|
. (6.2.10)

Hence, the second-order properties for time-invariant versions of the nested models can be easily
deduced.

6.2.1 Wiener-Itô representation for
(
Xk(t)

)
t≥0

In this subsection, we examine the structure of the process
(
Xk(t)

)
t≥0

, ∀k ≥ 2 in which the
condition

2α(t) + (2k − 1)γ2(t) < 0, a.e., for all t ≥ 0 (6.2.11)

is imposed. The following lemma give Wiener-Itô representation of
(
Xk(t)

)
t≥0

.

Lemma 6.2.4. Suppose that the solution process of SDE (6.1.1) is regular. Then under the
condition (6.2.11), the process

(
Xk(t)

)
t≥0

is regular and has a Wiener-Itô representation, i.e.,

Xk(t) = g
[k]
t (0) +

∑
r≥1

1

r!

∫
Rr
eitλ(r)g

[k]
t (λ(r))dZ(λ(r)),

where the transfer functions g[k]
t (λ(r)), r ≥ 0 satisfying the following first-order differential equa-

tion

g
[k](1)
t (λ(r)) (6.2.12)

=



k
(
α (t) + 1

2γ
2(t)(k − 1)

)
g

[k]
t (0) + k (γ(t)β(t)(k − 1) + µ(t)) g

[k−1]
t (0)

+ 1
2β

2(t)k(k − 1)g
[k−2]
t (0) , if r = 0(

k
(
α (t) + 1

2γ
2(t)(k − 1)

)
− iλ(r)

)
g

[k]
t (λ(r)) + k (γ(t)β(t)(k − 1) + µ(t)) g

[k−1]
t

(
λ(r)

)
)

+ 1
2β

2(t)k(k − 1)g
[k−2]
t

(
λ(r)

)
+ kr

(
γ(t)g

[k]
t (λ(r−1)) + β(t)g

[k−1]
t (λ(r−1))

)
, r ≥ 1
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Proof. The proof follows upon the observation that by applying the Itô’s formulae for f(x) = xk

for any integer k ≥ 2, then the process
(
Xk (t)

)
t≥0

satisfying the following stochastic differential
equation

dXk(t) =

(
k(α(t) +

1

2
γ2(t)(k − 1))Xk(t) + k (µ(t) + γ(t)β(t)(k − 1))Xk−1(t) +

1

2
β2(t)k(k − 1)Xk−2(t)

)
dt

+ k
(
γ(t)Xk(t) + β(t)Xk−1(t)

)
dW (t), a.e.,

So, using the diagram formula (6.2.5) the result follows.

Remark 6.2.5. The existence and uniqueness of the evolutionary symmetrized transfer func-
tions g[2]

t (λ(r)), (t, r) ∈ R × N given by (6.2.12) is ensured by general results on linear ordinary
differential equations (see, e.g., [40], chap. 1) so, the evolutionary transfer functions g[k]

t are
given recursively by

g
[k]
t (λ(r)) =


ϕk,t (0)

(
g

[k]
0 (0) +

t∫
0

ϕ−1
k,s (0)µ

[k]
s (0)ds

)
if r = 0

ϕk,t

(
λ(r)

)(
g

[k]
0 (λ(r)) +

t∫
0

ϕ−1
k,s

(
λ(r)

)
µ

[k]
s (λ(r))ds

)
if r ≥ 1

(6.2.13)

in which ϕk,t

(
λ(r)

)
= exp

{
t∫

0

(
k
(
α (s) + 1

2γ
2(s)(k − 1)

)
− iλ(r)

)
ds

}
, g[k]

t (0) = mk(t) = E
{
Xk(t)

}
, t ≥

0, and

µ
[k]
t (λ(r)) =


2 (γ(t)β(t) + µ(t)) g

[1]
t

(
λ(r)

)
+ β2(t)δ{r=0} + 2r

(
γ(t)g

[2]
t (λ(r−1)) + β(t)g

[1]
t (λ(r−1))

)
, k = 2

k ((k − 1)γ(t)β(t) + µ(t)) g
[k−1]
t

(
λ(r)

)
+ 1

2k(k − 1)β2(t)g
[k−2]
t

(
λ(r)

)
+kr

(
γ(t)g

[k]
t (λ(r−1)) + β(t)g

[k−1]
t (λ(r−1))

)
, k ≥ 3

6.3 Moments properties of
(
Xk (t)

)
t≥0

Since (6.1.1) is non linear with deterministic coefficients, the solution process (6.2.3) is non
Gaussian in general, its first and second moment however are insufficient and hence the resort
to higher order moments for the identification purpose is therefore necessary. In this section, we
examine the moments properties of the process

(
Xk(t)

)
t≥0

,∀k ≥ 2.

Theorem 6.3.1. Let (X(t))t≥0 be the solution process of SDE (6.1.1), then under the condition
(6.2.11), the mean mk(t) variance Rk(t) and covariance functions Rk(t, s) of

(
Xk(t)

)
t≥0

, k ≥ 2
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are given respectively for all t ≥ s ≥ 0 by

mk(t) = ϕk(t)ϕ−1
k (s){mk(s) (6.3.1)

+ k

∫ t

s

ϕk(s)ϕ−1
k (u)

(
(µ(u) + (k − 1)γ(u)β(u))mk−1(u) +

1

2
β2(u)(k − 1)mk−2(u)

)
du}

Rk(t) = φk(t)φ−1
k (s)Rk(s) +

∫ t

s

φk(t)φ−1
k (u)[γ2(u)m2

k(u) + 2k (µ(u) + (2k − 1)γ(u)β(u))m2k−1(u)

(6.3.2)

− 2k (µ(u) + (k − 1)γ(u)β(u))mk(u)mk−1(u) + k(2k − 1)β2(u)m2k−2(u)− k(k − 1)β2(u)mk(u)mk−2(u)]du,

Rk(t, s) = ϕk(t)ϕ−1
k (s){Rk(s) + k

∫ t

s

ϕk(s)ϕ−1
k (u)((µ(u) + γ(u)β(u)(k − 1))Cov

(
Xk−1(u), Xk(s)

)
(6.3.3)

+
1

2
β2(u)(k − 1)Cov

(
(Xk−2(u), Xk(s)

)
)du}

where ϕk(t) = exp

{
k
∫ t

0

(
α(u) +

1

2
γ2(u)(k − 1)

)
du

}
and φk(t) = exp

{
k
∫ t

0

(
2α(u) + (2k − 1)γ2(u)

)
du
}
.

Proof. The fact that g[k]
t (0) = mk(t), then from (6.2.12) we can obtain the following ordinary

differential equation

m
(1)
k (t) = k

(
α (t) +

1

2
γ2(t)(k − 1)

)
mk(t) + k (γ(t)β(t)(k − 1) + µ(t))mk−1(t) +

1

2
β2(t)k(k− 1)mk−2(t),

(6.3.4)
and the expression (6.3.1) is obtained by solving the above differential equation. To prove (6.3.2)

we have V ar
{
Xk(t)

}
= Rk(t) = E

{
X2k(t)

}
−
(
E
{
Xk(t)

})2 with E
{
Xk(t)

}
= mk(t) = g

[k]
t (0)

and E
{
X2k(t)

}
= m2k(t) = g

[2k]
t (0),∀t ≥ 0 which implies Rk(t) = g

[2k]
t (0)−

(
g

[k]
t (0)

)2
, then by

differentiating with respect to t and from the formula (6.2.12) in which we substitute respectively
dg

[k]
t (0)

dt
,
dg

[2k]
t (0)

dt
we find

dRk(t)

dt
=
dg

[2k]
t (0)

dt
− 2g

[k]
t (0)

dg
[k]
t (0)

dt

= k
(
2α(t) + γ2(t)(2k − 1)

)(
g

[2k]
t (0)−

(
g

[k]
t (0)

)2
)

+ 2k (γ(t)β(t)(2k − 1) + µ(t)) g
[2k−1]
t (0)

− 2k (γ(t)β(t)(k − 1) + µ(t)) g
[k]
t (0)g

[k−1]
t (0) + β2(t)k(2k − 1)g

[2k−2]
t (0)− β2(t)k(k − 1)g

[k]
t (0)g

[k−2]
t (0)

= k
(
2α(t) + γ2(t)(2k − 1)

)
Rk(t) + 2k (γ(t)β(t)(2k − 1) + µ(t))m2k−1(t)

− 2k (γ(t)β(t)(k − 1) + µ(t))mk(t)mk−1(t) + β2(t)k(2k − 1)m2k−2(t)− β2(t)k(k − 1)mk(t)mk−2(t).

Therefore the expression (6.3.2) is ensured by applying the general results on linear ordinary
differential equations. It remains to prove (6.3.3), then we have for all t ≥ s

Rk(t, s) = Cov(Xk(t), Xk(s)) =
∑
r≥1

1

(r!)2
E

{∫
Rr

g
[k]
t

(
λ(r)

)
eitλ(r)dZ(λ(r))

∫
Rr

g
[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}
.
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By differentiating with respect to t and the use of the formula (6.2.12) we obtain

dRk(t, s)

dt

=
∑
r≥1

1

(r!)2
E


∫
Rr

d
(
g

[k]
t

(
λ(r)

)
eitλ(r)

)
dt

dZ(λ(r))

∫
Rr

g
[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))


=
∑
r≥1

1

(r!)2
E

{∫
Rr

(
k

(
α(t) +

1

2
(k − 1)γ2(t)

)
g

[k]
t

(
λ(r)

)
+ µ

[k]
t

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr

g
[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}
,

Now apply the property of orthogonality (6.2.4) to get

dRk(t, s)

dt
=

= k

(
α(t) +

1

2
(k − 1)γ2(t)

)∑
r≥1

1

(r!)2
E

{∫
Rr

(
g

[k]
t

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr

g
[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}

+ k ((k − 1)γ(t)β(t) + µ(t))
∑
r≥1

1

(r!)2
E

{∫
Rr

(
g

[k−1]
t

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr

g
[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}

+
1

2
k(k − 1)β2(t)

∑
r≥1

1

(r!)2
E

{∫
Rr

(
g

[k−2]
t

(
λ(r)

))
eitλ(r)dZ(λ(r))

∫
Rr

g
[k]
s

(
λ(r)

)
eisλ(r)dZ(λ(r))

}
,

which implies

dRk(t, s)

dt

= k

(
α(t) +

1

2
(k − 1)γ2(t)

)
Rk(t, s) + k ((k − 1)γ(t)β(t) + µ(t))Cov(Xk−1(t), Xk(s))

+
1

2
k(k − 1)β2(t)Cov(Xk−2(t), Xk(s)), t ≥ s,

and the expression (6.3.2) is now obtained by solving the above ordinary differential equation.
�

In time-invariant case, we have

Theorem 6.3.2. Consider the time-invariant of SDE (6.1.1), then under the condition (6.2.11)
the moments up to the order k of the process solution are given by the following expressions

1. If β 6= 0, we have

m1 = −µ
α
,

m2 =
2(γβ + µ)µ− αβ2

α(2α+ γ2)
,

m3 =
(2γβ + µ)

(
2(γβ + µ)µ− αβ2

)
− µβ2(2α+ γ2)

α(2α+ γ2)(α+ γ2)

m4 = −2(3γβ + µ)

(2α+ 3γ2)
m3 −

3β2

(2α+ 3γ2)
m2
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2. If β = 0, then mk = (−1)k
∏k
j=1

µ

α+ 1
2(j − 1)γ2

for all k ≥ 0.

Proof. 1. If β 6= 0, then since g[k]
t (0) = mk(t), for k ≥ 1, thus from (6.2.7) we obtainm(1)

1 (t) =
α(t)m1(t)+µ(t). In time-invariant case and under the condition (6.2.11), the process X(t)
is second order stationary, its moments are independent of t, so m1(t) = m1 which implies
αm1 + µ = 0 and m1 = −µ

α
. For the same raison and from the expression (6.2.12) we can

obtain a difference equation for all k ≥ 2 as follow(
α+

1

2
(k − 1)γ2

)
mk + ((k − 1)γβ + µ)mk−1 +

1

2
(k − 1)β2mk−2 = 0, (6.3.5)

hence, m2 = −2 (µ+ γβ)

2α+ γ2
m1 −

β2

2α+ γ2
. The expressions for m3 and m4 maybe obtained

from (6.3.4).

2. If β = 0, then in time-invariant case we obtain the difference equation (6.3.5) becomes as(
α+ 1

2(k − 1)γ2
)
mk + µmk−1 = 0 which implies

mk = − µ(
α+ 1

2(k − 1)γ2
)mk−1,∀k ≥ 1

with m0 = 1 and hence mk = (−1)k
∏k
j=1

µ

α+ 1
2(j − 1)γ2

,∀k ≥ 0 and the proof of the

theorem is complete.�

Example 6.3.3. Table(1) illustrated some finite-order moment for the GOU process defined by
dX(t) = (µ− αX(t)) dt+ βdW (t) with α > 0 and β 6= 0

m1 m2 m3 m4 Kurtosis Skewness

µ

α

2µ2 + αβ2

2α2

µ
(
2µ2 + 3αβ2

)
2α3

4µ4 + 10αβ2µ2 + 3α2β4

4α4
−12µ2

αβ2
−
(

2

α

) 3
2
(
µ

β

)3

Table(1): First finite-order moment of GOU process

Remark 6.3.4. By equations (6.2.10) and Table (1) the parameters µ, α, β and γ can be expressed
as function of the finite moment of the process. Indeed,

1. For GOU process, we have

α = − log

(∣∣∣∣R1(1)

R1(0)

∣∣∣∣) , µ = m1α and β2 = − 12αm2
1

Kurtosis (X)

2. For COBL(1, 1) and when β = 0 we obtain

α = log

(∣∣∣∣R1(1)

R1(0)

∣∣∣∣) , µ = −m1α and γ2 =
−2αV ar(X)

V ar(X) +m2
1

These relationship can be used for estimating the process by the moment method (MM).
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6.4 GMM estimation

In what follows, we focus on estimating of the unknown parameters of time-invariant version.
For this purpose we shall assume that β = 0 in SDE (6.1.1) i.e.,

dX(t) = (αX(t) + µ) dt+ γX(t) dW (t) (6.4.1)

this assumption can be fulfilled by the transformation Y (t) =
µ

(γµ− αβ)
(β+ γX(t)). So, the

parameters of interest are gathered in the vector θ = (µ, α, γ)′ ∈ R3, its true values denoted by
θ0 = (µ0, α0, γ0)′ belonging to an Euclidean compact permissible parameter subspace Θ of R3.
In statistical literature of continuous-time models, several technique of estimation were proposed
(interested readers are advised to see the monographs by Bergstrom [6], Rao [58] and Kutoyants
[43] and the references therein). However, in recent years, a number of diffusion processes which
have a similar second-order properties to that of a CARMA processes have been estimated via
some discretization schema and hence adaptive methods related to discrete-time linear models
are however applied. So, for the SDE (6.4.1), the Euler-Maruyama scheme yields

X(t+ ∆) = X(t) +

t+∆∫
t

(αX(s) + µ) ds+ γ

t+∆∫
t

X(s) dW (s)

where ∆ is some small enough constant sampling interval, hence an approximation of discrete-
time version of SDE (6.4.1) is given by

X(t+ 1) = X(t) + (αX(t) + µ) ∆ + η (t+ 1) (6.4.2)

in which (η (t+ 1))t≥0 is a some white noise with E {η (t+ 1) |It} = 0 and V ar {η (t+ 1) |It} =

γ2X2(t)∆ and It denotes the information available up a time t, and hence (6.4.2) can be viewed
as an AR(1) model with heteroskedasticity. This finding leads us to estimate the vector θ0 of
the process in discrete time using the Generalized Method of Moments (GMM) due to Hansen
[33]. For this purpose, we use the orthogonality conditions given by the vector Eθ0

{
g
t
(θ0)

}
= O

equation where

g
t
(θ) =

 η (t+ 1)
η2 (t+ 1)− γ2X2(t)∆(

η2 (t+ 1)− γ2X2(t)∆
)
X(t)

 .

A GMM estimator of θ0 is defined as any measurable solution θ̂n of

θ̂n = Argmin
θ∈Θ

{
Q̂n = ĝ′

n
(θ)Wnĝn (θ)

}
,

where ĝn (θ) = 1
n

n∑
t=1

g
t
(θ) and Wn is a sequence of positive definite weighting matrices. Under

the condition (6.2.11) for each θ ∈ Θ, the process
(
g
t
(θ)
)
t∈Z

is stationary, ergodic and such

that
∥∥∥Eθ0 {gt (θ)

}∥∥∥ < +∞ for any θ ∈ Θ and hence, almost surely ĝn (θ) → Eθ0

{
g

0
(θ)
}

as
n → +∞. To analyze the large sample properties of the proposed estimator, it is necessary to
impose the following regularity conditions on the process (X(t))t∈Z, on the matrix Wn and on
the parameter space Θ.
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A1. The sequence of matrices (Wn) converges in probability to a non random positive definite
matrix W .

A2. The matrix Eθ0

{
∂g′

t
(θ0)

∂θ

}
WEθ0

{
∂g

t
(θ0)

∂θ

}
is a finite non singular matrix of constants.

A3. The parameter θ0 is in the interior of Θ.

We are now in a position to state the following results.

Theorem 6.4.1. Beside the assumption (6.2.11), under the conditions A1−A3, θ̃n converges in
probability to θ0.

Proof. From the first-order conditions (organized as column vector) for the minimization of
Q̂n(θ) we have

∂ĝ′
n
(θ̂n)

∂θ
Wnĝn(θ̂n) = O. (6.4.3)

Taking the first-order Taylor-series expansion of the score vector ĝn (θ) around θ0, we obtain

ĝn

(
θ̂n

)
= ĝ

n
(θ0)−

∂ĝ
n
(θ∗)

∂θ

(
θ̂n − θ0

)
where θ∗ is an intermediate point on the line segment join-

ing θ̂n and θ0. Substituting for ĝn
(
θ̂n

)
into (6.4.3) yields

∂ĝ′
n
(θ̂n)

∂θ
Wn

{
ĝ
n

(θ0)−
∂ĝ

n
(θ∗)

∂θ

(
θ̂n − θ0

)}
= O . Rearranging the above expression gives almost surely

θ̃n − θ0 =

{
∂ĝ′

n
(θ̃n)

∂θ
Wn

∂ĝ
n
(θ∗)

∂θ

}−1
∂ĝ′

n
(θn)

∂θ
Wnĝn (θ0) .

Since the process (X(t))t≥0 , is an ergodic process, then under the conditions A1.−A3., we have

p lim
n→∞

∂ĝ
n
(θ̂n)

∂θ
Wn = B = Eθ0

{
∂g(θ0)

∂θ

}
W ,

p lim
n→∞

∂ĝ′
n
(θ̂n)

∂θ
Wn

∂ĝ
n
(θ∗)

∂θ
= A = Eθ0

{
∂g′

t
(θ0)

∂θ

}
WEθ0

{
∂g

t
(θ0)

∂θ

}
Hence from Slutsky’s and the dominated convergence theorem, it follows that

p lim
n→∞

{
∂ĝ′

n
(θ̂n)

∂θ
Wn

∂ĝ
n
(θ∗)

∂θ

}−1
∂ĝ′

n
(θ̂n)

∂θ
Wn = A−1B′

is finite, and since p lim
n→∞

ĝ
n

(θ0) = O, the weak consistency of θ̃n follows. �

Theorem 6.4.2. Under the conditions of theorem 6.4.1, we have
√
n
(
θ̂n − θ0

)
 N (O,Σ (θ0))

where

Σ (θ0) = A−1Eθ0

{
∂g′(θ0)

∂θ

}
WΣasWEθ0

{
∂g(θ0)

∂θ

}
A′−1

with Σas = lim
n→+∈

V ar
{√

nĝ
n

(θ)
}
.
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Proof. The proof rests classically on a Taylor-series expansion of the score vector ĝn (θ) around
θ0. Thus, by the same argument used in Theorem 6.4.1, we have{

∂ĝ′(θ̂n)

∂θ
Wn

∂ĝ(θ̂∗)

∂θ

}(
θ̂n − θ0

)
=
∂ĝ′(θ̂n)

∂θ
Wnĝn(θ0). (6.4.4)

On the other hand, for any λ∈ R3, the sequence
{
λ′ĝ

n
(θ) , It

}
t
is a square integrable martingale

difference. The central limit theorem of Billingsley [13] and the Wold-Cramer device show that
′ĝ
n

(θ) N(O,Σas). Moreover; by (6.4.4) we have the following limits

A = p lim
n→∞

∂ĝ′(θ̂n)

∂θ
Wn

∂ĝ(θ̂∗)

∂θ
,B = p lim

n→∞

∂ĝ′(θ̂n)

∂θ
Wn

so the result simply follows from Slutsky’s theorem. �

We now discuss the optimal choice of the weighting matrix W which matters for asymptotic
efficiency. It is clear that the asymptotic variance of θ̂n depends on Wn via W . When appropri-
ately choosing W , it is possible to minimize the asymptotic variance of θ̂n. Then the minimum
variance that can be achieved is whenW = Σ−1

as . In this particular case, the asymptotic variance

of θ̂n is

{
Eθ0

{
∂g′

θ0

∂θ

}
Σ−1
as Eθ0

{
∂gθ0
∂θ

}}−1

and nQn(θ) has an asymptotic chi-square distribu-

tion with appropriate degrees of freedom. One can note that this choice is only sufficient for
efficiency. Hence, estimating the matrix Σas by a consistent estimator Σ̂asn is crucial since: i)
it is the optimal weighting matrix of GMM ; ii) it is a part of the construction of θ̂n and its
asymptotic variance (needed to construct confidence intervals and to make statistical tests based
on θ̂n). In practice, the Newey-West estimator can be used V̂n = Ω̂n(0) + 2

∑q
j=1K

(
j
q

)
Ω̂n(j)

where Ω̂n(j) = n−1
∑n

t=K+1W tW
′
t−j with W t − 1

n

∑n
t=K+1 gt

(
θ̂n

)
. The truncated lag q needs

to go to infinity at some appropriate rate with respect to the sample, and the kernel weight
K(.) is assumed to belong to K where K = {k : R → [−1, 1] | k(0) = 1, k(x) = k(−x), ∀x ∈
R,
∫
|k(x)|dx <∞, and k is continuous but at some countable points}. Examples of such kernel

weights are given in table(2) below

Names Expressions Names Expressions

Truncated kT (x) =

{
1 if | x| ≤ 1,
0 otherwise,

Parzen kP (x) =

 1− 6x2 + 6|x|3 if |x| ≤ 1/2,
2(1− |x|)3 if 1/2 < |x| ≤ 1,
0 otherwise

Bartlett kB(x) =

{
1− |x| if |x| ≤ 1,
0 otherwise,

Tukey-Hanning kH(x) =

{
(1 + cosπx)/2 if |x| ≤ 1,
0 otherwise,

Table(2): Example of kernel weights

It can be shown that Bartlett and Parzen kernels all product positive semi-definite estimates of
V while this is not necessarily the case for truncated and Tukey-Hanning kernels.

6.5 Empirical evidence

6.5.1 Simulation study

In this subsection we give some numerical illustration of the use of the GMM method described
in previous section in order to underline its interest in statistical inference of continuous-time
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models. We simulated n = 500 independent trajectories via some specifications of COBL (1, 1)
model with length N ∈ {1000, 2000}driven by a standard Bm distribution and vector of pa-
rameters θ described in the bottom of each table below. The vector θ is chosen to satisfied
the second order stationarity and existence of moments up to fourth order. For the purpose of
illustration, we consider the following models

Model (1) : dX(t) = (αX(t) + µ) dt+ βdW (t)

Model (2) : dX(t) = (αX(t) + µ) dt+ βX(t)dW (t)

their vector of parameters θ= (µ, α, β)′ is estimated by the GMM algorithm noted θ̂g and as
a parameter of configuration we estimate θ by the moment method noted θ̂M . Both methods
have been executed under the MATLAB′8 using ”fminsearch.m” as a minimizer function. In
Tables below, the column “Mean” correspond to the average of the parameters estimates over
the n = 500 simulations. In order to show the performance of (G)MM , we have reported in
each table the root mean squared error (RMSE) (results between brackets)

Model(1)

The results of estimating the Model(1) are summarized in the following table

N = 1000 N = 2000 N = 1000 N = 2000

θ̂
Mean

GMM MM
Mean

GMM MM
Mean

GMM MM
Mean

GMM MM

µ̂
0.2556

(0.0352)
0.2538

(0.0402)
0.2516

(0.0183)
0.2569

(0.0271)
2.0475

(0.0374)
2.0042

(0.0271)
2.0031

(0.0344)
2.0200

(0.0331)

α̂
−1.5338
(0.0287)

−1.5391
(0.0302)

−1.5218
(0.0325)

−1.5310
(0.0210)

−0.5304
(0.0862)

−0.5151
(0.0672)

−0.5003
(0.0802)

−0.5031
(0.0770)

β̂
0.7462

(0.0101)
0.7493

(0.0213)
0.7450

(0.1022)
0.7492

(0.0151)
−1.4903
(0.0441)

−1.5359
(0.0451)

−1.4947
(0.0345)

−1.4947
(0.0345)

Design(1): θ = (0.25,−1.5, 0.75)′ Design(2): θ = (2.0,−0.5,−1.5)′

Table(3): (G)MM estimation of Model(1)
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The plots of asymptotic density of each component of θ̂ according to two methods are summarized
in the following figure

Fig1. Top panels: the asymptotic distribution of
√
n(θ̂G(i)− θ(i)) (resp.

√
n(θ̂M (i)− θ(i))). Bottom

panels: Box plot summary of θ̂G(i) (resp, θ̂M (i)) i = 1, ..., 3, according to the first design of table(3)

Model(2)

For the second model, we illustrated the results of its estimation in the following table

N = 1000 N = 2000 N = 1000 N = 2000

θ̂
Mean

GMM MM
Mean

GMM MM
Mean

GMM MM
Mean

GMM MM

µ̂
0.2520

(0.0192)
0.2532

(0.0187)
0.2501

(0.0172)
0.2506

(0.0162)
0.5026

(0.0171)
0.5060

(0.0191)
0.5038

(0.0143)
0.5021

(0.0201)

α̂
−1.4879
(0.0307)

−1.5352
(0.0452)

−1.5080
(0.0217)

−1.5064
(0.0251)

−1.5724
(0.0161)

−1.5307
(0.0142)

−1.5058
(0.0201)

−1.5072
(0.0162)

β̂
0.7537

(0.0121)
0.7449

(0.0157)
0.7449

(0.0157)
0.7512

(0.0609)
−0.50139
(0.0201)

−0.4946
(0.0211)

−0.4982
(0.0125)

−0.4920
(0.0302)

Design(1): θ = (0.25,−1.5, 0.75)′ Design(2): θ = (0.5,−1.5,−0.5)′

Table(4): (G)MM estimation of Model(2)
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The plots of asymptotic density of each parameters in θ̂ according to two methods are summa-
rized in the following figure

Fig2. Top panels: the asymptotic distribution of
√
n(θ̂G(i)− θ(i)) (resp.

√
n(θ̂M (i)− θ(i))). Bottom

panels: Box plot summary of θ̂G(i) (resp, θ̂M (i)) i = 1, ..., 3, according to design of table(4)

Now, a few comments are in order. Inspection of Table(3) reveals that the results of GMM
and of MM methods are reasonably close on each other and also for their RMSE with sone
non significant deviation. These observations maybe seen regarding the plots of asymptotic
distributions of their estimates and their elementary statistics summarized in box plots which
represents a strong similarities,. This finding is however violated in Table(4). Indeed, In spite of
its well estimate of the true values of unknown parameters, there are some difference regarding
the plots presented in Fig2. It is clear that the asymptotic variances of µ̂g and of α̂g are smaller
than of µ̂m and of α̂m, contrary to that of β̂ Moreover, it can be seen from the their box plots,
that the elementary statistics of two methods represents a significant dissimilarities.

6.5.2 Real data analysis

In this subsection, the proposed method is now investigated to real financial time series. So we ap-
ply the method to two foreign exchange rates of Algerian Dinar against U.S.-Dollar (USD/DZD)
and against the single European currency Euro (EUR/DZD), noted respectively

(
yd (t)

)
and

(ye(t)) from January 3, 2000 to September 29, 2011. After removing the days when the market
was closed (weekends, holidays,...), we provides 3055 observations of each series supposed to be
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uniformly distributed on 611 weeks. Table(5) below

Series means Std.Dev Median Skewness Kurtosis J. Bera
ye(t) 88.61 11.57 91.09 −0.51 2.13 232.46
yd(t) 73.45 4.24 73.12 −0.60 3.76 258.00

Table(5): Descriptive statistics of the series (ye(t))t≥1,
(
yd(t)

)
t≥1

provides descriptive statistics of such series, as a first finding, it is seen from the Jarque-Bera
normality test that the series yd (t) and ye(t) are not normally distributed, this excludes its
modelling by a GOU model. Moreover the sample partial autocorrelation function figure Fig3a

Fig3a. The PACF of (ye (t)) and
(
yd(t)

)
of the prices series (ye (t)) and

(
yd(t)

)
indicate that a discrete bilinear model with appropriates

coefficients would well describe the series
(
yd (t)

)
and (ye(t)). For it, the (G)MM estimates

followed by their RMSE (results between bracket) of the series of prices (ye(t))t≥1 and
(
yd(t)

)
t≥1

noted hereafter (ŷe(t))t≥1 and
(
ŷd(t)

)
t≥1

via model(2) are given in Table (6)

MM GMM

θ µ α β µ α β

ŷeg(t)
17.2911
(0.0307)

−0.1952
(0.0101)

0.0807
(0.0812)

17.4418
(0.0725)

−0.2125
(0.0613)

0.0771
(0.0621)

ŷdg(t)
25.3216
(0.0501)

−0.3447
(0.0817)

0.0479
(0.1002)

24.1221
(0.1320)

−1.0447
(0.1522)

0.0378
(0.0204)

Table(6): The (G)MM estimates of (ye(t))t≥1,
(
yd(t)

)
t≥1
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The graphics of original series ye(t) and yd(t) stacked on their estimates series ŷe(t) and ŷd(t)
are shown the following figures below. For the first series

Fig4. Trajectory of model(2) fitted to the price
of EUR/DZD via GMM method

Fig5. Trajectory of model(2) fitted to the price of
EUR/DZD via MM method

For the second one

Fig5. Trajectory of model(2) fitted to the
price of USD/DZD via GMM method

Fig6. Trajectory of model(2) fitted to the price of
USD/DZD via MM method

It is clear, regarding the figures Fig3, Fig4, Fig5 and Fig6 that the plots of of original series
ye(t) and yd(t) display a very similar pattern with respect to their estimates ŷe(t) and ŷd(t) via
methods of GMM and MM .
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6.6 Summary

In this chapter, the estimation of the unknown parameters in COBL process has been presented
by two alternative approaches. The chapter has shown that the GMM and MM estimating
procedures are provided an efficient approach for estimating a discretized version of such models
This methods are highlighted by a Monte Carlo study and an application to the foreign exchange
rates of Algerian Dinar against U.S.-Dollar (USD/DZD) and against the single European cur-
rency Euro (EUR/DZD). The results of simulation and/or of the application shows the interest
of the proposal methods whether their asymptotic properties or in modelling the real data.



Chapter 7

Yule-Walker type estimator of
first-order bilinear differential model for
stochastic processes7

7. Ce chapitre est soumis dans le journal : Statistical Method and Applications.

Abstract

This chapter, studies in time domain, some class of diffusion processes generated by a first order
continuous-time bilinear stochastic processes (COBL(1, 1)) with time-varying coefficients. So,
we used the Itô formula approach for examining the L2−structure of the process and its powers.
In time-invariant case, an expression of the moments of any order are given and the linear rep-
resentation of such process is given as well as moments properties of some specifications. Based
on these results we are able to examine the statistical properties as well as develop an estimation
method of the process via the so-called Yule-Walker (YW ) type algorithm which relate with the
unknown coefficients of CAR representation. The method is illustrated by a Monte Carlo study
and applied to modelling the electricity consumption sampled each 15mn in Algeria.

7.1 Introduction

In this chapter we consider the class of diffusion processes (X(t))t≥0 generated by the following
time-varying stochastic differential equation (SDE)

dX(t) = (α(t)X(t) + µ (t)) dt+ (γ(t)X(t) + β(t)) dw(t), X(0) = X0, (7.1.1)
= µt (X (t)) dt+ σt (X(t)) dw(t), t ≥ 0, X(0) = X0

noted hereafter COBL (1, 1) in which µt (x) = α(t)x + µ(t) and σt (x) = γ(t)x + β(t) which
represents respectively the drift and the diffusion functions, (w(t))t≥0 is a standard real Brownian
motion (Bm) defined on some filtered probability space (Ω,A, (At)t≥0 , P ) and the initial state
X(0) is a random variable, defined on (Ω,A, P ), independent of w such that E {X(0)} = m1(0)
and V ar {X(0)} = R1(0). Special cases of this process are the Brownian motion with drift

109
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(α(t) = 0 and γ(t) = 0 ), the Gaussian Ornstein-Uhlenbeck (GOU) process (γ(t) = 0 ) and
the volatility of the COGARCH(1, 1) process defined by dX(t) = σ (t) dw1(t) where dσ2 (t) =(
µ (t)− α (t)σ2 (t)

)
dt + γ (t)σ2 (t) dw2(t) in which µ (t) > 0, α(t), γ (t) ≥ 0 for all t ≥ 0 and

w1(t) an w2(t) are independent Bm independent of (X(0), σ (0)) (see for instance Kluppelberg
et al. [42]). The SDE (7.1.1) is called time-invariant if there exists some constants α, µ, γ and
β such that for all t, α(t) = α, µ(t) = µ, γ(t) = γ and β(t) = β. To ensure the existence
and uniqueness of the solution process (X(t))t≥0 of equation (7.1.1) we shall assume that the
parameters α(t), µ(t), γ(t) and β(t) are measurable deterministic functions and subject to the
following assumption

Assumption 4. α(t), µ(t), γ(t) and β(t) are differentiable functions such that for any T > 0∫ T

0
|α(t)| dt <∞,

∫ T

0
|µ(t)| dt <∞,

∫ T

0
|γ(t)|2 dt <∞ and

∫ T

0
| β(t)|2 dt <∞.

The existence and uniqueness of the Itô solution process (X(t))t≥0 of equation (7.1.1) in time
domain is however ensured by the general results on SDE and under the Assumption 4 since
the drift and the diffusion functions are Lipschitz with linear growth, i.e., |µt (x)− µt (y)| ≤
sup
t
|α(t)| |x− y| and |σt (x)− σt (y)| ≤ sup

t
|γ(t)| |x− y| so, a such solution is given by

X(t) = Φ(t)

X(0) +

t∫
0

Φ−1(s) (µ(s)− γ (s)β (s)) ds+

t∫
0

Φ−1(s)β (s) dw(s)

 , a.e., (7.1.2)

where the process Φ(t) is defined by Φ(t) = exp

{
t∫

0

(
α(s)− 1

2γ
2 (s)

)
ds+

t∫
0

γ (s) dw (s)

}
. The

solution (7.1.2) is however Markovian when β (t) 6= 0 for all t , otherwise it is neither a Markov
process nor a martingale. A wide literature is available now on the probabilistic properties and on
statistical inference and their asymptotic properties of SDE (7.1.1) driven by a Brownian and/or
fractional Brownian motion (see for instance Kutoyants [43] and the references therein). Without
doubt, the discretization schema remain the cornerstone of such developments. So, in recent
years, a number of methods already developed in linear case are explored for SDE (7.1.1). Indeed,
Kallsen and Muhle-Karbe [39], and Haug et al. [32] have proposed an asymptotic inference of
moments method (MM) for discretized continuous GARCH process, Bibi and Merahi [10] have
explored a MM for estimating the parameters of continuous-time bilinear processes, Chan et
al. [18] investigated an empirical comparison of generalized method of moment (GMM) of
several discretized diffusions processes. Broze et al. [17] studies the effect of discretization
schema on the consistency of the direct inference based on likelihood, Hyndman [34] and Guyon
and Souchet [61] extended the so-called Yule-Walker estimator for a discretized version of an
CAR(p). The Levinson-Durbin-type algorithms for continuous-time autoregressive models was
studied by Pham and Le Breton [56]. Nevertheless, some procedures or methods developed in
linear cases are not yet explored (or not adapted) for the SDE (7.1.1) to our best knowledge.

The main aim of the chapter is twofold, the first one is dedicated to study the second-order
properties of the processes (X(t))t≥0 and its powers using the Itô approach. The second aim is to
explore the Yulker-Walter (YW ) algorithm for estimating the time-invariant version of (7.1.1).
So, In the next section we give the conditions ensuring of stability of the SDE (7.1.1) based
on the Itô formula, then we give an expression of its moments of higher order in time-invariant
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case. After a general description of Yulker-Walter (YW ) method for CAR(p) process, presented
in section 3, we extend the approach for a discretized time-invariant version of SDE (7.1.1).
In order to show the quality of YW algorithm for COBL(1, 1) model we present in section
4 a Monte Carlo simulations. Our results are also exploited for modelling of mean electricity
consumption sampled each 15mn in Algeria. We give a summary of the chapter in Section 5.

7.2 Second-order properties of (X(t))t≥0 and its powers

In this section we give conditions that assure the existence of finite moments of the process
(X(t))t≥0 and of its powers up to any fixed order k, and we show how they can be calculated
using an iterative procedure for time-invariant specification.

7.2.1 Moments properties of (X(t))t≥0

Assume that everywhere
2α (t) + γ2 (t) < 0. (7.2.1)

The moments properties of the process (X(t))t≥0 is described in the following theorem.

Theorem 7.2.1. Under the condition (7.2.1), the mean function m1(t) = E {X(t)}, the variance
R1(t) and the covariance function R1(t, s) = E {(X(t)−m1(t))(X(s)−m1(s))} , t ≥ s for the
process (X(t))t≥0 generated by the SDE (7.1.1) are given respectively by

m1(t) = ϕ1(t)

(
m1(0) +

∫ t

0
ϕ−1

1 (s)µ(s)ds

)
. (7.2.2)

R1(t) = φ1 (t)

R1(0) +

t∫
0

φ−1
1 (s) (γ(s)m1(s) + β(s))2 ds

 , (7.2.3)

R1(t, s) = ϕ1(t)ϕ−1
1 (s)R1(s), t ≥ s ≥ 0, . (7.2.4)

where for any positive integer k,

φk(t) = exp

{
k

∫ t

0

(
2α(u) + (2k − 1)γ2(u)

)
du

}
and ϕk(t) = exp

{∫ t

0

(
α(t)k +

1

2
γ2(t)k(k − 1)

)
du

}
so ϕ1(t) becomes the mean function of the process (Φ(t))t≥0 in (7.1.2) .

Proof. The expression (7.2.2) follows immediately from the SDE (7.1.1). To derive the equation
(7.2.3) we apply Itô formula to SDE (7.1.1), with f(x) = x2, so

dX2(t) =
(
a2(t)X2(t) + b2(t)X(t) + c2(t)

)
dt+ 2

(
γ(t)X2(t) + β(t)X(t)

)
dW (t), (7.2.5)

where
a2(t) = 2α(t) + γ2(t), b2(t) = 2 (µ(t) + γ(t)β(t)) , c2(t) = β2(t). (7.2.6)

and hence, Equation (7.2.5) can be written as

X2(t) = X2
0 +

∫ t

0

(
a2(s)X2(s) + b2(s)X(s) + c2(s)

)
ds+ 2

∫ t

0

(
γ(s)X2(s) + β(s)X(s)

)
dW (s).

(7.2.7)
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Let m2(t) = E
{
X2(t)

}
and taking the expectation each side of (7.2.7), then

m2(t) = m2(0) +

∫ t

0
(a2(s)m2(s) + b2(s)m1(s) + c2(s)) ds. (7.2.8)

Differentiating with respect to t we obtain

dm2(t)

dt
= a2(t)m2(t) + b2(t)m1(t) + c2(t), t ≥ 0, (7.2.9)

since R1(t) = m2(t)−m2
1(t), then we dR1(t)

dt = dm2(t)
dt − 2m1(t)dm1(t)

dt . Using (7.2.2), (7.2.9) and
the fact that m2(t) = R1(t) +m2

1(t) we obtain the following differential equation

dR1(t)

dt
= a2(t)R1(t) + (a2(t)− 2α(t))m2

1(t) + (b2(t)− 2µ(t))m1(t) + c2(t).

By general results of linear ordinary differential equations (see, e.g., [40], chap. 1) we obtain

R1(t) = φ1 (t)

R1(0) +

t∫
0

φ−1
1 (s) [γ(s)m1(s) + β(s)]2 ds


and the expression (7.2.3) follows. To prove (7.2.4), we have by SDE (7.1.1), dE {X(t)X(s)} =
α(t)E {X(t)X(s)} dt+ µ(t)E {X(s)} dt, so E {X(t)X(s)} = R1(t, s) +m1(t)m1(s) and hence

dR1(t, s) +ms(t)dm1(t) = α(t)R1(t, s)dt+ [α(t)m1(t) + µ(t)] dtm1(s).

Using the expression (7.2.2) we get dR1(t, s) + m1(s)dm1(t) = α(t)R1(t, s)dt + dm1(t)m1(s)
which implies dR1(t, s) = α(t)R1(t, s)dt, and by general results on linear ordinary differential
equations (see, e.g., [40], chap. 1) the expression (7.2.4) holds true. �

Corollary 7.2.1. In time-invariant case and under the condition (7.2.1), we have the following
results

m1(0) = −µ
α
, R1(0) =

(αβ − µγ)2

α2 |2α+ γ2|
, R1(h) = R1(0)eα|h|, h ∈ R. (7.2.10)

from which the parameters of certain specifications can be deduced as functions of the empirical
moments.

7.2.2 Moments properties of
(
Xk(t)

)
t≥0

Now, we examine the second order properties of the process
(
Xk(t)

)
t≥0

for any integer k ≥ 2 in
which the condition

2α(t) + (2k − 1)γ2(t) < 0, for all t ≥ 0, (7.2.11)

must be imposed.

Theorem 7.2.2. Consider the process
(
Xk(t)

)
t≥0

, k ≥ 2, then under the condition (7.2.11), the
mean, covariance and variance functions are given respectively by

mk(t) = ϕk(t)ϕ−1
k (s) (7.2.12)

×
{
mk(s) + k

∫ t

s

ϕk(s)ϕ−1
k (u)

(
(µ(u) + (k − 1)γ(u)β(u))mk−1(u) +

1

2
β2(u)(k − 1)mk−2(u)

)
du

}
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Rk(t, s) (7.2.13)

= ϕk(t)ϕ−1
k (s){Rk(s) + k

∫ t

s

ϕk(s)ϕ−1
k (u)

[
(µ(u) + γ(u)β(u)(k − 1))Cov(Xk−1(u), Xk(s))

]
+

1

2
β2(u)(k − 1)Cov

(
Xk−2(u), Xk(s)

)
du}, t ≥ s

Rk(t) = φk(t)φ−1
k (s)Rk(s)+ (7.2.14)∫ t

s

φk(t)φ−1
k (u)[γ2(u)m2

k(u) + 2k (µ(u) + (2k − 1)γ(u)β(u))m2k−1(u)

− 2k (µ(u) + (k − 1)γ(u)β(u))mk(u)mk−1(u) + k(2k − 1)β2(u)m2k−2(u)− k(k − 1)β2(u)mk(u)mk−2(u)]du,

Proof. Set mk(t) = E
{
Xk(t)

}
, k ≥ 2 and by applying the Itô formula to SDE (7.1.1) for

f(x) = xk, we get

dXk(t) =
(
ak(t)X

k(t) + bk(t)X
k−1(t) + ck(t)X

k−2(t)
)
dt+

(
γ(t)kXk(t) + β(t)kXk−1(t)

)
dw(t),

(7.2.15)
with

ak(t) = α(t)k+
1

2
γ2(t)k(k−1), bk(t) = µ(t)k+γ(t)β(t)k(k−1), ck(t) =

1

2
β2(t)k(k−1). (7.2.16)

We can write (7.2.15) as

Xk(t) = Xk(0) +

∫ t

0

(
ak(t)Xk(s) + bk(t)Xk−1(s) + ck(t)Xk−2(s)

)
ds

+

∫ t

0

(
γ(t)kXk(s) + β(t)kXk−1(s)

)
dw(s). (7.2.17)

Therefore, taking the expected value of each side of (7.2.17), if we put mk(t) = E
{
Xk(t)

}
we

find

mk(t) = mk(0) +

∫ t

0
(ak(s)mk(s) + bk(s)mk−1(s) + ck(s)mk−2(s)) ds. (7.2.18)

Differentiating with respect to t we obtain

dmk(t)

dt
= ak(t)mk(t) + bk(t)mk−1(t) + ck(t)mk−2(t), k ≥ 2, t > 0 (7.2.19)

mk(0) = E
{
Xk(0)

}
, k ≥ 2,m0(t) = 1, ∀t ≥ 0. (7.2.20)

By solving the above of differential equations for any k ≥ 2 the formula (7.2.12) follows. Since

Rk(t) = m2k(t) − (mk(t))
2, then by differentiating Rk(t) with respect to t we find

dRk(t)

dt
=

dm2k(t)

dt
− 2mk(t)

dmk(t)

dt
and use (7.2.19) for k ≥ 2 and the fact that m2k(t) = Rk(t) +m2

k(t)

we obtain the following differential equation

dRk(t)

dt
= a2k(t)Rk(t) + (a2k(t)− 2ak(t))m

2
k(t) + b2k(t)m2k−1(t)

− 2bk(t)mk(t)mk−1(t) + c2k(t)m2k−2(t)− 2ck(t)mk(t)mk−2(t),
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where from (7.2.16) the coefficients of the above equation can be given as

a2k(t) = 2α(t)k + γ2(t)k(2k − 1),

ak(t) = α(t)k +
1

2
γ2(t)k(k − 1),

b2k(t) = 2 (µ(t)k + γ(t)β(t)k(2k − 1)) ,

bk(t) = (µ(t)k + γ(t)β(t)k(k − 1)) ,

c2k(t) = β2(t)k(2k − 1),

2ck(t) = β2(t)k(k − 1).

By general results on linear ordinary differential equations the expression (7.2.14) follows. To
prove the formula (7.2.13), we observe that for any t ≥ s

dE
{
Xk(t)Xk(s)

}
= ak(t)E

{
Xk(t)Xk(s)

}
dt+ bk(t)E

{
Xk−1(t)Xk(s)

}
dt+ ck(t)E

{
Xk−2(t)Xk(s)

}
dt

By general results on linear ordinary differential equations we obtain

E
{
Xk(t)Xk(s)

}
= ϕk(t)ϕ

−1
k (s)

×
{
E
{
X2k(s)

}
+

∫ t

s
ϕk(s)ϕ

−1
k (u)

[
bk(u)E

{
Xk−1(u)Xk(s)

}
+ ck(u)E

{
Xk−2(u)Xk(s)

}]
du

}
.

Since E
{
X2k(s)

}
= Rk(s) +m2

k(s) and

E
{
Xk(t)Xk(s)

}
= Cov(Xk(t), Xk(s)) + E

{
Xk(t)

}
E
{
Xk(s)

}
= Rk(t, s) +mk(t)mk(s)

E
{
Xk−1(u)Xk(s)

}
= Cov

(
Xk−1(u), Xk(s)

)
+mk−1(s)mk(s), E

{
Xk−2(u)Xk(s)

}
= Cov

(
Xk−2(u), Xk(s)

)
+mk−2(s)mk(s)

then, using the formula (7.2.12) we obtain

Rk(t, s) +mk(t)mk(s)

= ϕk(t)ϕ−1
k (s)

{
Rk(s) +

∫ t

s

ϕk(s)ϕ−1
k (u)

(
bk(u)Cov

(
Xk−1(u), Xk(s)

)
+ ck(u)Cov

(
Xk−2(u), Xk(s)

))
du

}
+ ϕk(t)ϕ−1

k (s)

{
mk(s) +

∫ t

s

φ(s)φ−1(u) (bk(u)mk−1(u) + ck(u)mk−2(u)) du

}
m2(s)

= ϕk(t)ϕ−1
k (s)

{
Rk(s) +

∫ t

s

ϕk(s)ϕ−1
k (u)

(
bk(u)Cov

(
Xk−1(u), Xk(s)

)
+ ck(u)Cov

(
Xk−2(u), Xk(s)

))
du

}
+mk(t)mk(s),

which implies

Rk(t, s)

= ϕk(t)ϕ
−1
k (s){Rk(s) + k

∫ t

s
ϕk(s)ϕ

−1
k (u)((µ(u) + γ(u)β(u)(k − 1))Cov

(
Xk−1(u), Xk(s)

)
+

1

2
β2(u)(k − 1)Cov

(
Xk−2(u), Xk(s)

)
)du},

and the expression (7.2.13) holds. �
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In time-invariant case and under the condition (7.2.11), we can computing the moments of
order k of the SDE (7.1.1). Indeed,

Theorem 7.2.3. Assume that the parameters of the SDE (7.1.1) are constant and satisfying
the condition (7.2.11) , then the moments of order k are given by

1. If β 6= 0, then m1(0) = − b1
a1
,m2(0) = − b2

a2
m1(0)− c2

a2
,m3 = − b3

a3
m2 −

c3

a3
m1 and ∀k ≥ 2

mk(0) = (−1)k+1

(
a3m3(0) + b3m2(0)

a3

)
k−2∏
j=2

bj+2

aj+2

 ∑
(k−4,2)

Zi+(−1)km2(0)


k−2∏
j=1

bj+2

aj+2

 ∑
(k−3,1)

Zi

where the parameters ak, bk, ck are given by the equations (7.2.16), Zk = −ck+2ak+1

bk+2bk+1
,

k ≥ 2 and ∑
(k−4,2)

Zi =
1∑

d1,...,dk−4=0
di+1di=0

i=1,...,k−5

k−4∏
i=1

Zdii+2

∑
(k−3,1)

Zi =
1∑

d1,...,dk−3=0
di+1di=0

i=1,...,k−4

k−3∏
i=1

Zdii+1,k ≥ 2

with the convenient
∑

(0,k)

Zi =
∑

(−1,k)

Zi = 1,
∑

(−2,k)

Zi = 0,∀k ∈ N,
∑m−n

j=m xj = 0 and
∏m−n
j=m xj =

1, ∀m,n ∈ N..

2. If β = 0, we obtain mk(0) = (−1)k
∏k
j=1

(
bj
aj

)
, ∀k ≥ 1.

Proof. To prove Theorem 7.2.3, we use the same approach as Popenda [57]. Indeed

1. If β 6= 0 , and under the condition (7.2.11), the process Xk(t) is second order stationary,
then the moments are independent of t, it means mk(t) = mk(0) for all k ≥ 1 which implies
from the ordinary equation (7.2.19)

akmk(0) + bkmk−1(0) + ckmk−2(0) = 0, (7.2.21)

where the parameters ak, bk and ck are given by the equations (7.2.16), in particular for

k = 1, m1(0) = − b1
a1

and for k = 2 we have m2(0) = − b2
a2
m1(0) − c2

a2
. Now, since the

equation (7.2.21) is a linear homogeneous second order equation its general solution is thus
given by

mk(0) = (−1)kM1
c3

a3


k−2∏
j=2

bj+2

aj+2

 ∑
(k−4,2)

Zi + (−1)kM2


k−2∏
j=1

bj+2

aj+2

 ∑
(k−3,1)

Zi

= (−1)kM1
c3

a3


k−2∏
j=2

bj+2

aj+2

 ∑
(k−4,2)

Zi + (−1)kM2


k−2∏
j=1

bj+2

aj+2

 ∑
(k−3,1)

Zi, k ≥ 2,

where Zn = −cn+2an+1

bn+2bn+1
, n ≥ 2, and the constantsM1 andM2 can be given asM2 = m2(0)

and M1 = −a3m3(0) + b3m2(0)

c3
.



7.3 Yule-Walker estimates 116

2. If β = 0 , the parameter ck = 0 for all k ≥ 1, then in time-invariant case we obtain the

difference equation akmk(0) + bkmk−1(0) = 0 which implies mk(0) = − bk
ak
mk−1(0),∀k ≥ 1

and the result holds. �

Example 7.2.4. The following table illustrate some finite-order moments for the COBL(1, 1)
process

β m1 m2 m3 m4

β 6= 0 −µ
α

−2(γβ + µ)

(2α+ γ2)
m1 −

β2

(2α+ γ2)
− γβ + µ

(α+ γ2)
m2 −

β2

(α+ γ2)
m1 −2(3γβ + µ)

(2α+ 3γ2)
m3 −

3β2

(2α+ 3γ2)
m2

β = 0 −µ
α

2µ2

α(2α+ γ2)
− 2µ3

α(2α+ γ2)(α+ γ2)

4µ4

α(2α+ γ2)(α+ γ2)(2α+ 3γ2)
Table(1): The first forth-order moments of COBL(1, 1)

Example 7.2.5. The following table illustrated some finite-order moments for the GOU process
defined by dX(t) = (µ− αX(t))dt+ βdW (t) with α > 0 and β 6= 0,

m1 m2 m3 m4 Kurtosis Skewness

µ

α

2µ2 + αβ2

2α2

µ
(
2µ2 + 3αβ2

)
2α3

4µ4 + 12αβ2µ2 + 3α2β4

4α4
−12µ2

αβ2
−
(

2

α

) 3
2
(
µ

β

)3

Table(2): First forth order moment of GOU process

This moments maybe used for identifying the process GOU .

7.3 Yule-Walker estimates

7.3.1 An overview

Let (X(t))t∈R be a time invariant CAR(p), i.e.,

X(p)(t) + αp−1X
(p−1)(t) + ...+ α0X(t) = σw(t), (7.3.1)

where (w(t))t∈R denotes a standard Bm. It is well known (see for instence Hyndman [34]) that
if (X(t))t∈R is second-order stationary, then the Yule-Walker estimates of CAR(p) is carried out
on the derivative autocovariance function (DACF ) Dj,k(h) defined by

Dj,k(h) = Cov(X(j)(t+ h), X(k)(t)), 0 ≤ j, k ≤ p− 1. (7.3.2)

which are closely related to the autocovariance function (ACF ), i.e., R1(h) = Cov(X(t+h), X(t))
according to the following equations

Dj,k(h) = (−1)kR
(j+k)
1 (h), h ≥ 0 and 0 ≤ j, k ≤ p− 1, (7.3.3)

and Dj,k(−h) = (−1)jR
(j+k)
1 (h), where R(j+k)

1 (h) denotes the (j+k)−th derivative of the ACF .
This result can be extended to Dj,p(h) which is defined by the Itô integral

Dj,p(h) = lim
T→∞

1

T

∫ T

0
X(j)(t+ h)dX(p−1)(t), (7.3.4)
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where the limit exists in the sense of mean-square convergence. Hence,Dj,p(h) = (−1)pR
(j+p)
1 (h), 0 ≤

j ≤ p−2, h 6= 0, Dp−1,p(h) = (−1)pR
(2p−1)
1 (h) and Dp−1,p(0) = −σ

2

2
. The so-called Yule-Walker

equations for CAR(p) processes is then obtained by multiplying both sides of Equation (7.3.1)
by X(j)(t+ h) and taking expectations to get

α0Dj,0(h) + α1Dj,1(h) + ...+ αp−1Dj,p−1(h) +Dj,p(h) = 0, j = 0, 1, ..., p− 1. (7.3.5)

So, by replacing X(j)(t) by X(t − j) and letting h = 0, we obtain the traditional discrete-time
Yule- Walker equations. The Yule- Walker equations (7.3.5) can be written in the matrix form

Γp(h)α+ Dp(h) = 0, (7.3.6)

where Γp(h) is matrix of variance-covariance of the vector
(
X(t), X(1)(t), ..., X(p−1)(t)

)′, i.e.,
Γp(h) = [Di,j(h)]0≤i,j≤p−1, Dp(h) = (D0,p(h), D1,p(h), ..., Dp−1,p(h))

′ h ≥ 0 and α= (α0, α1, ..., αp−1)
′

. As already pointed by Hyndman [34] that Γp(0) non-singular, and thus we have

α = −Γ−1
p (0)Dp(0). (7.3.7)

which is analogue to the Yule-Walker method for estimating a discrete-time autoregressive mod-
els. In end, the Yule-Walker estimator of α is obtained by replacing the covariances by their
sample estimates and hence

α̂ = −Γ̂−1
p (0)D̂p(0), (7.3.8)

in which the elements of Γ̂p(0) are the sample estimates of D̂j,k(0) that are given by

D̃j,k(0) =
1

T

∫ T

0
X(j)(t)X(k)(t)dt, 0 ≤ j, k ≤ p− 1, (7.3.9)

and the elements of the vector D̂p(0) are given by the sample estimates

D̃j,p(0) =
1

T

∫ T

0
X(j)(t)dX(p−1)(t), 0 ≤ j ≤ p− 1, (7.3.10)

which converges in probability to Dj,k(0) as T → ∞ ( see Yaglom [70], pp. 231-33 ). Finally,
the estimate of σ2 is thus

σ̂2 = −2D̂p−1,p(0). (7.3.11)

Remark 7.3.1. Hyndman [34] has showed that the Yule-Walker estimates satisfy the least squares
criteria for all order p. Moreover he has showed that the asymptotic distribution of the Yule-
Walker estimators for α̂ coincide with that of Maximum Likelihood estimator.

Remark 7.3.2. In discrete-time Yule-Walker estimators for CAR(p), Souchet and Guyon [61]
have proved the weak consistency of α̂ and of σ̂2, their asymptotic normality and their efficiency.
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7.3.2 Extension to COBL(1, 1) processes

In time−invariant version of the SDE (7.1.1) and under the condition (7.2.11), Lebreton and
Musiela in [45] have showed that there exists a wide-sense Bm process (w∗(t))t≥0 uncorrelated
with X(0) such that (X(t))t≥0 admits the following CAR(1) representation

dX(t) = (αX(t) + µ)dt+ σ∗dw∗(t), (7.3.12)

where σ∗2 = γ2R1(0) + (γm1(0) + β)2. In the sequel, we shall assume β = 0 (this assumption
can be fulfilled by the transformation Y (t) =

µ

(γµ− αβ)
(β+ γX(t))) and µ 6= 0, then by (7.2.10)

and the results in Table (1) of example 7.2.4, we have

m1(0) = −µ
α
,m2(0) =

2µ2

α (2α+ γ2)
, R1(0) =

µ2γ2

α2|2α+ γ2|
, R1(h) = R1(0)eα|h|., σ∗2 = γ2m2(0),

(7.3.13)
In order to apply the Yule-Walker method for estimating the vector α=

(
α, µ, γ2

)′ of parameters
of this model, we define

D0,0(h) = R1(h) = Cov (X(t+ h), X(t)) , D0,1(h) = lim
T→∞

1

T

∫ T

0
(X(t+ h)−m1(0)) dX(t),

(7.3.14)
where the limit exists in L2−sense. Then it follows that for h 6= 0, D0,1(h) = −R(1)

1 (h), and
since R1(h) is not differentiable at h = 0, D0,1(0) is computed using Itô formula so we obtain

D0,1(0) = −σ
∗2

2
which is the right derivative of −D0,0(h) at h = 0 (see Doob [24], 1953, p. 544).

The Yule-Walker equations for the above CAR(1) process (7.3.12) is

D0,1(h) = αD0,0(h), ∀h ≥ 0, (7.3.15)

so for h = 0 we have α =
D0,1(0)

D0,0(0)
, Now, we assume that we are able to observe between the

times 0 and T a time-invariant sample function (X(t))t≥0 of the solution process SDE (7.1.1),
then D0,0(0) and D0,1(0) may be estimated by the sample covariances

D̂0,0(0) = lim
T→∞

1

T

∫ T

0
(X(t)− m̂1(0))2 dt and D̂0,1(0) = lim

T→∞

1

T

∫ T

0
(X(t)− m̂1(0)) dX(t),

(7.3.16)

where m̂1(0) =
1

T

∫ T
0 X(t)dt is the estimate of the mean m1(0) which is strongly consistent and

asymptotically normal, and that D̂0,0(0) → D0,0(0) and D̂0,1(0) → D0,1(0) in probability. (see
Yaglom [70], pp. 231-33). Moreover, since the asymptotic properties of Yule-Walker estimators
coincide with those obtained by of maximum likelihood estimators, then by the close analogy
between the continuous-time Yule-Walker estimators and the discrete-time one, the Yule-Walker
estimator of the parameters α, µ, σ∗ and γ2 are now gathered in the following proposition

Proposition 7.3.3. Consider the time−invariant version of the SDE (7.1.1) with CAR(1)
representation (7.3.12). Then, the estimators of α,µ, σ∗, and |γ| are given respectively by

α̂ =
D̂0,1(0)

D̂0,0(0)
,µ̂ = −m̂1(0)α̂, σ̂∗ =

√
−2α̂D̂0,0(0)and |γ̂| =

√√√√ −2α̂D̂0,0(0)

D̂0,0(0) + m̂2
1(0)

. (7.3.17)
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Proof. The estimator of µ follows immediately from the mean of the process X(t) and the Yule-
Walker estimator of the parameter α maybe deducted from (7.3.15). The estimator of σ2 is then
given by σ̂∗

2
= −2α̂D̂0,0(0). Since R̂1(0) = D̂0,0(0) we can obtain an estimate |γ̂| for |γ| using

the relationships in (7.3.13) and the last expression of σ̂∗
2
. �

Note

In practice, the observations are collected at discrete times, so, to use the above estimators it
is necessary to derive a discretized version of SDE (7.1.1). For this purpose, suppose that the
data are observed at times 0 = t1 < t2 < ... < tn = T and let ∆i = ti+1 − ti and ∆ = sup

i
∆i.

Then, for ∆ small enough, it seems reasonable to estimate D0,0(0) and D0,1(0) by the numerical
integrals

D̃0,0(0) =
1

T

n−1∑
i=0

(X(ti)− m̃1(0))2 ∆i, and D̃0,1(0) =
1

T

n−1∑
i=0

(X(ti)− m̃1(0)) (X(ti+1)−X(ti)) .

where m̃1(0) =
1

T

∑n−1
i=0 X(ti)∆i. Now, define a discrete form of the Yule-Walker estimators

by replacing D̂0,0(0), D̂0,1(0) by D̃0,0(0) and D̃0,1(0) respectively in (7.3.17), it follows that the
estimators of the parameters α,µ,σ∗ and |γ| in discrete form are given respectively by

α̃ =
D̃0,1(0)

D̃0,0(0)
, µ̃ = −m̃1(0)α̃, σ̃∗ =

√
−2α̃D̃0,0(0) and |γ̃| =

√√√√ −2α̃D̃0,0(0)

D̃0,0(0) + m̃2
1(0)

.

and their asymptotic properties can be easily deduced.

7.4 Some Monte Carlo results

We provide in this section some simulations results for the Yule-Walker estimator and their
asymptotic behavior already discussed in previous section for estimating the unknown vector
θ = (α, µ, β) involved in the model. The true values of θ is denoted with θ0 is chosen to
satisfy the condition (7.2.1). For this purpose, we simulated 500 independent trajectories from
a second-order stationary series according to the SDE (7.1.1) of length n ∈ {1000, 2000, 3000}
with standard Bm. The results of simulation experiments for estimating the vector θ are reported
in tables below in which the line “Mean of ” correspond to the average of the parameters estimates
over the 500 repetitions. In order to show the performance of the method compared with the
MLE method, we have reported (results between bracket) the root-mean square errors (RMSE)
of each estimates. The study of changes in parameter values with sampling interval ∆ is also
fruitfully used for the robustness of estimates an for the optimal choice of ∆. So, we have reported
the variation of Yule-Walker estimates with sampling interval of each experiment.

7.4.1 GOU

The first design of our experiment consists to estimate the parameter of the Gaussian Ornstein-
Uhlenbeck (GOU) process, i.e.,

dX(t) = (µ− αX(t)) dt+ βdw(t), (7.4.1)
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in which α > 0 and β 6= 0. Its exact discretization based on Itô solution is given by

X((t+ 1)∆)− µ

α
= e−α∆

(
X (t∆)− µ

α

)
+ β

√
1− e−2α∆

2α
e ((t+ 1)∆)

where (e (t))t is a Gaussian white noise independent of (X (t))t, and the vector θ of interest

is however θ = (α, β, µ)′. So, E {X} =
µ

α
, V ar {X} =

β2

2α
, Cov(X((t + 1)∆), X(t∆)) =

e−α∆V ar {X}. The results of simulation of such model are reported in Table(3)
Length 1000 2000 3000

Method YW ML YW ML YW ML
Mean(α̃) 2.1820 2.3882 2.0931 2.1953 2.0541 2.1196
(RMSE) (0.7044) (0.7393) (0.4448) (0.4493) (0.3499) (0.3628)

Mean(β̃) 1.4958 1.4988 1.5005 1.5019 1.5044 1.5049
(RMSE) (0.0431) (0.0420) (0.0287) (0.0284) (0.0214) (0.0214)

Mean(µ̃) 1.0625 1.2228 1.0314 1.1072 1.0191 1.0699
(RMSE) (0.5332) (0.6587) (0.3828) (0.4296) (0.3115) (0.3393)

design(1): α = 2.0 , β = 1.5 and µ = 1.0

Mean(α̃) 1.6133 1.7403 1.5725 1.6479 1.5481 1.6000
(RMSE) (0.4548) (0.4943) (0.3369) (0.3440) (0.2808) (0.2910)

Mean(β̃) 0.6460 0.6332 0.5781 0.5758 0.5544 0.5538
(RMSE) (0.0171) (0.0245) (0.0107) (0.0127) (0.0078) (0.0084)

Mean(µ̃) 2.0240 2.3109 2.0323 2.1938 2.0226 2.1342
(RMSE) (0.6088) (0.6342) (0.4551) (0.4537) (0.3826) (0.3912)

design(2): α = 1.5 , β = 0.5 and µ = 2.0

Mean(α̃) 1.1838 1.4081 1.0885 1.1935 1.0537 1.1221
(RMSE) (0.5440) (0.6127) (0.3417) (0.3530) (0.2591) (0.2784)

Mean(β̃) 0.9873 0.9910 0.9942 0.9958 0.9987 0.9991
(RMSE) (0.0456) (0.0447) (0.0250) (0.0257) (0.0173) (0.0176)

Mean(µ̃) 0.5508 0.7124 0.5256 0.6002 0.5154 0.5667
(RMSE) (0.3690) (0.5271) (0.2602) (0.3161) (0.2107) (0.2483)

design(3): α = 1.0 , β = 1.0 and µ = 0.5

Mean(α̃) 0.9016 1.1261 0.8290 0.9362 0.8000 0.8684
(RMSE) (0.4549) (0.5388) (0.2974) (0.3288) (0.2293) (0.2513)

Mean(β̃) 1.0503 1.0363 1.0260 1.0235 1.0200 1.0187
(RMSE) (0.0558) (0.0706) (0.0290) (0.0316) (0.0202) (0.0216)

Mean(µ̃) -1.0589 -1.3955 -1.0305 -1.2182 -1.0180 -1.1427
(RMSE) (0.6416) (0.7296) (0.4322) (0.4785) (0.3504) (0.3793)

design(4): α = 0.75 , β = 1.0 and µ = −1.0

Table(3): The results of simulation by the Yule-Walker estimator and MLE for GOU.
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The empirical densities of each parameters according to two methods for GOU model followed
by their box plot summary of the statistical properties of each estimates are shown in Figure(1)

Fig(1). The plots of empirical densities of each parameters according to two methods for GOU model

The variation of the Yule-Walker estimator for GOU model with the sampling interval are shown
in figure (2)

Fig(2). Variation of θ with sampling interval according to the four designs in Table(3)
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7.4.2 COBL(1,1)

In the second design, we consider the COBL(1, 1) generated by the following SDE

dX(t) = (αX(t) + µ) dt+ γX(t)dw(t), t ≥ 0, X(0) = X0 (7.4.2)

The vector θ of interest is thus θ = (α, γ, µ)′. The CARMA representation (7.3.12) becomes
dX(t) = (αX(t) + µ) dt+ ξdw∗(t) where ξ2 = γ2

(
R1(0) +m2

1

)
. The Euler discretization yields

X(t+ ∆)−X(t) = (αX(t) + µ) ∆ + ξ(w∗(t+ ∆)− w∗(t))

while the exact discretization is given by

X(t+ ∆)−X(t) = −µ
α

(
1− eα∆

)
−
(
1− eα∆

)
X(t) + ζeαt

t+∆∫
t

e−αsdw∗(s)

so we obtain

X((t+ 1)∆) +
µ

α
= eα∆

(
X (t∆) +

µ

α

)
+ ζ

√
1− e2α∆

−2α
e((t+ 1)∆) , (7.4.3)

(e (t))t is a Gaussian white noise independent of (X (t))t. Equation (7.4.3) means that the exact
discretization of COBL(1, 1) is an AR(1) model with coefficient eα∆ > 0, so we have E {X} =

−µ
α
, V ar {X} =

ζ2

−2α
, Cov(X((t + 1)∆), X(t∆)) = eα∆V ar {X}. The results of simulation of

COBL(1, 1) are reported in the following table
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Length 1000 2000 3000

Method YW ML YW ML YW ML
Mean(α̃) -2.6791 -2.8777 -2.5958 -2.6963 -2.5549 -2.6192
(RMSE) (0.7614) (0.7858) (0.4836) (0.4859) (0.3855) (0.3957)

Mean(µ̃) 1.0444 1.1651 1.0235 1.0832 1.0134 1.0529
(RMSE) (0.3697) (0.4153) (0.2562) (0.2716) (0.2075) (0.2184)

Mean(γ̃) 1.5767 1.5777 1.5447 1.5456 1.5292 1.5296
(RMSE) (0.2477) (0.2386) (0.1706) (0.1672) (0.1348) (0.1330)

design(1): α = −2.5 µ = 1.0 and γ = 1.5

Mean(α̃) -1.6404 -1.7991 -1.5807 -1.6672 -1.5511 -1.6092
(RMSE) (0.5245) (0.5661) (0.3631) (0.3695) (0.2935) (0.3057)

Mean(µ̃) 0.5155 0.5973 0.5111 0.5551 0.5069 0.5369
(RMSE) (0.1769) (0.1863) (0.1246) (0.1249) (0.1019) (0.1053)

Mean(γ̃) 0.6118 0.6029 0.5566 0.5551 0.5383 0.5378
(RMSE) (0.0686) (0.0499) (0.0427) (0.0356) (0.0326) (0.0288)

design(2): α = −1.5 , µ = 0.5 and γ = 0.5

Mean(α̃) -1.1803 -1.3998 -1.0879 -1.1915 -1.0536 -1.1213
(RMSE) (0.5353) (0.6021) (0.3387) (0.3499) (0.2580) (0.2770)

Mean(µ̃) 1.0925 1.3991 1.0466 1.1930 1.0278 1.1281
(RMSE) (0.6346) (0.8310) (0.4354) (0.5002) (0.3482) (0.3985)

Mean(γ̃) 1.1314 1.1276 1.0664 1.0661 1.0427 1.0424
(RMSE) (0.2910) (0.2696) (0.1908) (0.1833) (0.1518) (0.1479)

design(3): α = −1.0 , µ = 1.0 and γ = 1.0

Mean(α̃) -1.4279 -1.6370 -1.3382 -1.4394 -1.3034 -1.3695
(RMSE) (0.5751) (0.6307) (0.3663) (0.3746) (0.2829) (0.2998)

Mean(µ̃) 0.8048 0.9843 0.7776 0.8651 0.7663 0.8257
(RMSE) (0.3924) (0.4733) (0.2673) (0.2921) (0.2138) (0.2354)

Mean(γ̃) 1.1138 1.1100 1.0582 1.0578 1.0373 1.0371
(RMSE) (0.2487) (0.2292) (0.1645) (0.1575) (0.1281) (0.1245)

design(4):α = −1.25 , µ = 0.75 and γ = 1.0
Table(4): The results of simulation by the Yule-Walker estimator and MLE of COBL(1,1).

The plots of asymptotic density, box plots of each parameters in θ are summarized in the following
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figure

Fig(3). The plots of empirical densities of each parameters according to two methods for COBL(1, 1)

The variation of the Yule-Walker estimator for COBL(1, 1) model with the sampling interval
are shown in figure (4)

Fig(4). Variation of θ with sampling interval according to the four designs in Table(4)
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7.4.3 Discussion

Now, a few comments are in order. Inspection of Table(3) reveals that the results of Yule-Walker
and of MLE methods are reasonably close on each other and also for their RMSE with sone
non significant deviation. It is also observed that the RMSE of the estimates β̂ in four designs
is more important than the others parameters. These observations maybe seen regarding the
plots of empirical densities of their estimates and their elementary statistics summarized in box
plots of the two methods which represents a strong similarities. Regarding now the variation
of θ̂ with sampling interval for GOU model, it is worth noting that with exception of some
variations observed at the neighborhood of origin, the estimates remains unchanged during their
trajectories and confused with its true values. This finding maybe interpreted by the robustness
of the Yule-Walker method. For the experiment of the COBLmodel, it is observed that generally
the results reported in Table (4) are in accordance with the asymptotic theory. Moreover, the
values of the estimates and their RMSE are very close one from the other except that values
of RMSE of γ̂ in design(2) are more important compared with others parameters. The plot
of empirical densities of the estimated parameters and their box plots shows a strong similarity
between the Yule-Walker estimates and MLE one. In end the analyze of the variation of θ̂ with
the sampling interval is the same as for GOU model.

7.5 Application to real data

The proposed method is now applied for real data which consist the evolution of average Algerian
electricity consumption each 15mn noted (y(t)) throughout the month of September 2001, with
length n = 2880 observations, Some descriptive statistics of such series are given in table (5)

mean Std.Dev Median Max Min Skewness Kurtosis J. Bera
10−3 ∗ y(t) 3.1791 0.4801 3.1770 4.4200 2.3460 0.4714 2.5413 0.00010

Table (5): Descriptive statistics of the series (y(t))t≥1

Its graphic is reported in figure Fig(5)

Fig(5) The graphic of original series.
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A first preliminary examination based on the structure of (partial) autocorrelation functions
figures displayed in Fig (6) and the J. Bera test reported in Table (5) shows that a discrete
nonlinear model with appropriate parameters would well describe the series (y(t)).

Fig(6). The ACF and PACF function of the series y(t)

For this purpose, we propose a COBL(1, 1) model for medelling this series. The parameters
corresponding to the fitted according to (7.3.12) model are gathered in following table

θ α µ γ

10−3 ∗ YW method −0.0015 4.6387 0.0003

10−3 ∗ML method −0.0013 4.0356 0.0002

Table (6): Parameters of adjusted series according to COBL (1, 1)

The descriptive statistics of fitted series according to the Table (6) are summarized in the fol-
lowing table

The series mean Std.Dev Median Max Min Skewness Kurtosis
10−3 ∗ ŷYW (t) 3.0908 0.4452 3.0404 4.6524 2.1627 0.6297 3.1363

10−3 ∗ ŷML(t) 0.9500 0.4244 2.8996 4.3863 2.0871 0.5681 3.0014

Table (7) : Descriptive statistics of the series (ŷYW (t))t≥1 and (ŷML(t))t≥1

The results in Table (7) of fitted series according to (7.3.12) model, reveal a noticeable resem-
blance with the results of the original series displayed in Table (5). Moreover, the graphics
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stacking of the series (ŷYW (t))t≥1 and (ŷML(t))t≥1 are shown the following figures below

Fig(7). Plot of fitted series.

7.6 Conclusion

In first part of this chapter, we have studied the higher-order moments of a diffusion process
with time-varying coefficients via Itô formula. In particular, in time-invariant case, an explicit
expression of the moments for any order are given. In the second part, we have proposed the
Yulk-Walter type estimator for estimating a such processes. The method proposed is based on
the CARMA representation. Finally, we investigated the empirical study of our estimators via
monte Carlo simulation in order to highlight the theoretical results. The method is also applied
to modelling the electricity consumption sampled each 15mn in Algeria.
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ABST RACT

In this thesis, we are studying a class of continuous-time bilinear processes (COBL(1, 1))
generated by some stochastic differential equations where we have investigate some probabilistic
properties and statistical inference. We use Itô approach for studying the L2 structure of the
COBL(1, 1) process and its powers for any order with time varying coefficients. Furthermore we
prove that these results can be obtained by using the transfer functions approach, moreover, by
the spectral representation of the process, we give also conditions for the stability of moments,
in particular the moments of the quadratic process provide us to checking the presence of the so
called Taylor property for COBL(1, 1) process. In a second part of this thesis, we use the results
of the first part and we propose some methods of estimation for involving unknown parameters,
so, we starting by the moments method (MM) to estimate the parameters by two methods,
taking into consideration the relation that exists between the moments of the process and its
quadratic version and those associate with the incremented processes where we have showed
that the resulting estimators are strongly consistent and asymptotically normal under certain
conditions. Using the linear representation of COBL(1, 1) process, we are able to propose three
other methods, one is in frequency domain and the rest are in time domain and we prove the
asymptotic properties of the proposed estimators. Simulation studies are presented in order to
illustrate the performances of the different estimators, furthermore, this methods are used to
model some real data such as the exchanges rate of the Algerian Dinar against the US-dollar
and against the single European currency and the electricity consumption sampled each 15mn
in Algeria.

Keywords: Continuous-time bilinear processes, Spectral representation, Itô’s solution, Sta-
tionarity, long memory property, Taylor effect, Quadratic processes, (G)MM estimation, Yule-
Walker estimates, Maximum Likelihood estimates, Strong consistency, Asymptotic Normality.
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RÉSUMÉ

Dans cette thèse, nous étudions une classe d’équations différentielles stochastiques non linéaires
(COBL (1,1)) où nous étudions ses propriétés probabilistes et leur inférence statistique. Ainsi,
nous utilisons l’approche d’Itô pour étudier la structure L2 du processus COBL(1, 1) à coeffi-
cients dépendent du temps et ses puissances pour tout ordre. Plus précisément, en utilisant la
représentation spectrale du processus, nous donnons des conditions de stabilité des moments, en
particulier les moments du processus quadratique. Nous étudions également la présence de la
propriété de Taylor pour cette classe de processus. Dans la deuxième partie de la thèse, nous util-
isons les résultats de la première partie pour proposer des méthodes d’estimation des paramètres
des paramètres inconnus impliqués dans le modèle COBL(1, 1). A cet effet, nous commençons
par la méthode des moments (MM) pour estimer les paramètres par deux méthodes en consid-
érant d’une part la relation qui existe entre les moments du processus et sa version quadratique
et d’autre part avec les moment des processus des incréments associés, les estimateurs proposés
sont fortement consistants et asymptotiquement normaux sous certaines conditions imposé es.
En utilisant la représentation linéaire du processus COBL (1,1), nous proposons cependant trois
autres méthodes d’estimations, l’un dans le domaine fréquentiel et les autres sont dans le domaine
temporel et nous prouvons la consistance forte et la normalité asymptotique des estimateurs que
nous introduisons. Des études de simulation sont présentées afin d’illustrer les performances des
différents estimateurs étudiés. De plus, ces méthodes sont utilisées pour modéliser des données
réelles telles que le taux de changes du Dinar algérien par rapport au dollar US et par rapport
à la monnaie unique européenne et à la consommation algérienne de l’électricité échantillonnée
chaque 15mn.

Mots clés: Processus bilinéaire à temps continu, Représentation spectrale, Solution de Itô,
Stationnarité, Propriété de longue mémoire, Propriété de Taylor, Processus quadratique, Esti-
mation GMM, Estimations de maximum vraisemblance, Consistance forte, Normalité Asympto-
tique.



ص  ملخَّ
 المعادلة هي التي و العشوائية التفاضلية المعادلات من فئة بدراسة قمنا الأطروحة، هذه في    

ية ثنائية العشوائية التفاضلية ِّ
 
ستدلالوالإ  الإحتمالية خصائصها بدراسة قمنا حيث الخط  

  وائيالعش النمط هذال الدرجة الثانية بنية لدراسة إيتو مقاربة باستعمال قمنا .ئيصاحالإ 

رة معاملات مع ِّ
من مع متغي   منهجية يقطر  عن عليها الحصول  يمكن النتائج هذه أن لنا وتبين ، الز 

وال ة، الد  دي  رد 
 
مط هذال الطيفي التمثيل باستخدام أخرى  وبعبارة  الت   أيضا نعطي العشوائي، للن 

مط سيما ولا ، العزوم استقرار شروط ربيعي العشوائي عزوم الن 
 
لتحققا لنا توفر التي و الت  

ية وجود من سبة تايلور   خاص 
 
ة ثنائي عشوائي لنمط بالن ي 

 
   الرسالة من الثاني الجزء في .الخط

مط لهذا التقدير طرق  بعض لاقتراح الأول  الجزء نتائج استخدمنا  معاملات ىعل ينطوي  الذي  الن 

 الاعتبار نبعي أخذنا إذا بطريقتين المعاملات لتقدير العزوم بطريقة بدأنا لذلك ، معلومة غير

مط عزوم بين قائمةال العلاقة ة ثنائي الن  يَّ
 
 ،ادات المرفقالزي نمط عزوم مع التربيعي ونمطه الخط

ز الناتجين المقدرين ة بالكفاءة تتمي  قارب و القوي 
بيعي الت 

 
. المفروضة روطالش بعض ظل في الط

ة نتيجة ل مهم 
 
مثيل في تتمث ي الت 

 
مط الخط ية ثنائية العشوائي للن  ِّ

 
 ثلاث لاقتراح تأستخدم الخط

رات
ر ، أخرى  مقد  دي المجال في واحد مقد  رد 

 
رين الت

 إثباتب وقمنا الزمني، المجال في آخرين ومقد 

قارب
بيعي الت 

 
رات لهذه الط ِّ

ي المقد  منا  .بتقديمها قمنا الت   مختلف أداء يحلتوض محاكاة دراسة وقد 

 اتالبيان بعض لنمذجة الأساليب هذه تستخدم ذلك، على وعلاوة المدروسين، المقدرين

 الأوروبية لةالعم مقابل و الأمريكي الدولار مقابل الجزائري  للدينار التبادل سعر مثل الحقيقية

نات الموحدة   .الجزائر في دقيقة 51 كل الكهرباء استهلاك وعي 

ية ثنائي العشوائي النمط: الكلمات المفتاحية         ِّ
 
ة  بأزمنة الخط  حل طيفي، لتمثي ،مستمر 

ة  إيتو، رمق ،تربيعي عشوائي نمط تايلور، خاصية طويلة، ذاكرة خاصية ،الإستقراري   العزوم د 

م ة  الكفاءة ،الأقص ى الإحتمال تقدير ،المعم  قارب ،القوي 
بيعي الت 

 
الط  
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