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Introduction

1. Motivation

In many areas of the sciences as oceanography, electrical, engineering, geophysics, astronomy and
hydrology, spectral analysis finds frequent and extensive use; it is a well established standard for use
in many areas. In fact it facilitates the exchange of ideas across a broad array of scientific projects. In
the 1960’s spectral analysis was designed to be applied primarily to processes with relatively simple
spectra. Thus, interest in spectral analysis to bidimensional processes has attracted considerable
interest among mathematicians, probabilists, and statisticians, as Priestly (1964), Whittle (1954),
Pierson and Tick (1957).

Spectral analysis for random fields which is a natural extension for a times series, has grown
substantially over the last few years. Markov and Gibbs fields are the most studied models in the
literature, with the main applications (see Guyon (1995)). For a random fields, in many others
disciplines are non linear and may be non Gaussian and the second order statistics does not contain
any information about the nonlinearity. Recently, considerable attention has been paid to nonlinear
models in sever storms, earthquakes, spread of cancerous cells, regional economics, ecology.

The aim of our work is to contribute to the study of spectral analysis for random fields through a
Fourier and Wavelet analysis based on probabilistic structures and statistical inference. This thesis
allows to review the current state of research for random fields on some points not yet treated and
indispensable for understanding these fields.

Fourier analysis is an established subject in the core of pure and applied mathematical analysis.
From this analysis and thorough the study probabilistic, we are interested in a class of nonlinear
fields called spatial bilinear processes which the extension of popular BL models. We derive ne-
cessary and sufficient conditions for the stability, stationary, regularly and ergodic solutions for
some SBL models based on their associated transfer functions and we discover a group of Yule-

Walker -type difference equations for third-order cumulant. therefore, several types of spatial linear



models have been studied by several authors including Moor (1988), Gaetan and Guyon (2010),
Tjostheim (1978, 1983), Yao and Brockwell (2006), Guo and Billard (1998), Dimitriou (2009) and

the references therein.

Then, we obtain some asymptotic properties of spectral density estimation which is important
in many fields including astronomy, meteorology, seismology, communication, economics, speech
analysis, medical imaging, radar, and underwater acoustics. One of the most pioneering work in
this field is due to Rosenblatt (1985). He proved that under strong mixing condition and the
summability condition of cumulants up to the eighth order the estimate of density spectral is
asymptotically normal, this work was generalized in various aspects. Bradley (1992), proved the
asymptotic normality of weakly dependent random fields, Robinson (2006), shows that under some
circumstance the bias of the choice of kernel and bandwidth can be dominated by the edge effect.
The spectral density estimation for random fields was developed by many researches, including
Alekseev (1973, 1990), Crujeiras and Fernandez-Casal (2009), Yuan and Subba-Rao (1993). Rachdi
and Sabre (2008), are also interested in estimating the spectral density of the absolutely continuous
measure by using the double kernel method. According to our modest knowledge there is some
theoretical result on the estimation of the bispectral density and parameter for random fields which
allows us to do a statistical inference study in particular, parameter estimation, despite the studies
that have been achieved in the time series (see Van ness (1966), Rosenblatt and Vann ness (1965),

Lii and Rosenblatt (1990), Glindemann et al. (1992), Berg and Politis (2009) and Terdik (1991)).

It is a fact that classical Fourier analysis assumes that signals are infinite in time or periodic,
while many signals in practice are of short duration, and change substantially over their duration.
Also low frequency pieces tend to last for a long interval, whereas high frequencies occur in general
for a short moment only. For example, human speech signals are typical in this respect. Clearly
Fourier analysis is highly unstable with respect to perturbation, because of its global character.
Facing these problems, signal analysts turn to more sophisticated techniques which are a very
popular topic of conversations in many scientific and engineering gatherings these days, Wavelet
analysis. It is a particular time- or space-scale representation of signals that has found a wide range

of applications in physics, signal processing and applied mathematics in the last few years.

Similarly to the study of the first part based on probabilistic properties, we are interested in
Wavelet transform and random field in Z? which is the extending study to wavelet transform and
times series that is studied by Subba Rao and Indukumar (1996), Chiann (1998). In the literature,
Wavelet transform and random field in R? is widely study by several authors (for example see

Antoine et al. (2004)), for instance Masry gives the second-order properties of the wavelet transform



of second order random fields in R? (see Masry (1998)). However, spectral density which is the main
purpose of chapter 5 attracted Neumann who considers nonlinear wavelet estimators of the spectral
density of times series and has shown that optimality thresholded wavelet attains the minimax rate
of convergence (see Neumann (1996)), several authors are concerned by this research as Clouet et
al. (1995), Huang and Chen (2009), Failla et al. (2011).

2. Historical perspective

In 1807, Fourier’s efforts with frequency analysis lead to what we now know as Fourier Analysis.
His work is based on the fact that functions can be represented as the sum of sines and cosines.
Another contribution of Joseph Fourier’s was the Fourier Transform. It transforms a function that
depends on time into a new function, which depends on frequency.

The first mention of wavelets appeared in an appendix to the thesis of A. Haar (1909). One
property of the Haar wavelet is that it has compact support, which means that it vanishes outside of
a finite interval. Unfortunately, Haar wavelets are not continuously differentiable which is something
that limits their applications.

In the 1930s, several groups working independently researched the representation of functions
using scale -varying basis functions. By using a scale -varying basis function called the Haar
basis function Paul Levy, a physicist, investigated Brownian motion, a type of random signal. He
discovered that the scale-varying basis functions created by Haar (i.e. Haar wavelets) were a better
basis than the Fourier basis functions. Unlike the Haar basis function, which can be chopped up
into different intervals.

Between 1960 and 1980, mathematicians Guido Weiss and Ronald R. Coifman studied the
simplest elements of a function space, called atoms, with the goal of finding the atoms for a common
function and finding the “assembly rules” that allow the reconstruction of all the elements of the
function space using these atoms.

J. Morlet, a geophysical engineer, was faced with the problem of analyzing signals which have
very high frequency components with short time spans, and low frequency component with long
time spans. Short time Fourier transform (STFT) was able to analyze either high frequency com-
ponents using narrow windows, or low frequency components using wide windows, but not both.
He therefore came up with the ingenious idea of using a different window function for analyzing
different frequency bands. Furthermore, these window functions had compact support both in time

and in frequency. Due to the "small and oscillatory" nature of these window functions, Morlet



named his basis functions as Wavelet of constant shape. Just like Fourier, Morlet faced much criti-
cism from his Colleagues. In 1980, looking for help to find a mathematically rigorous basis to his
approach, Morlet met A. Grossman, a theoretical physicist of quantum mechanics who helped him
to formalize the transformation and devise the inverse transformation (see Grossmann and Morlet
(1985)).

The next two important contributors to the field of wavelets are Yves Meyer and Stephane
Mallat; they realized that the multiresolution with wavelets was a different version of an approach
that has long been applied by electrical engineers and image processors. At the end of their research,
Multiresolution Analysis for wavelets was born. This idea of multiresolution analysis was a big step
in the research of wavelets.

While Mallat first worked on truncated versions of infinite wavelets, Daubechies used the idea
of multiresolution analysis to create her own family of wavelets (see Mallat (2009)). These wavelets
were of course named the Daubechies Wavelets which satisfies a number of wavelet properties.
They have compact support, orthogonality, regularity, and continuity. Daubechies wavelets provide
the smallest support for the given number of vanishing moments (see Daubechies (1990). In 1989,
Coifman suggested to Daubechies that it might be worthwhile to construct orthogonal wavelet bases
with vanishing moments not only for the wavelet, but also for the scaling function. Daubechies
constructed the resulting wavelets in 1993 and named them coiflets (see Daubechies (1990).

Around this time, wavelet analysis evolved from a mathematical curiosity to a major source of
new signal processing algorithms. The subject branched out to construct wavelet bases with very
specific properties, including orthogonal and biorthogonal wavelets, compactly supported, periodic
or interpolating wavelets, separable and non separable wavelets for multiple dimensions, multiwave-

lets, and wavelet packets, which are preferred by many researchers.

3. Thesis outline

In this thesis, we present the study of spectral analysis for random fields based on two analyses:
Fourier analysis and wavelet analysis. This study contains the probabilistic structure and inference
statistical. The thesis is divided into five chapters:

Chapter 1: In this chapter, we present on L, structure of bilinear models on Z¢ and the prob-
abilistic properties based on its associated transfer functions. In particular we describe the spatial
subdiagonal bilinear process with respect to its transfer functions, and we use this representation

to give sufficient and necessary conditions ensuring the existence of regular second order stationary



and ergodic solutions for several subclass especially for SGARC H models. We also discuss the third
order probabilistic structure for the model and we discover a group of Yule-Walker-type difference
equation for third-order cumulants.

Chapter 2: We consider the spectral density estimate based on class of strictly stationary
nonlinear spatial process and on class of nonlinear random fields that satisfy the geometric-moment
contraction condition and we establish the asymptotic normality. Then we obtain the asymptotic
distribution of certain estimates of the bispectral density this estimate would have distribution
which tend to complex normal distributions under a uniform summability condition on the first
six cumulants and the strong mixing condition. We also propose an estimator of the fourth-order
cumulant spectral density and we demonstrate under the above conditions the asymptotic normality,
this latter study is generalized in p-order case.

Chapter 3: Treats the methods of parameter estimation based on a functional of the spectrum
and bispectrum for a random field depending on an unknown parameter #. The estimation of
the parameter of non Gaussian fields constructed by the minimization of the functional and the
explicit expression for the asymptotic variance of the estimator calculate for both the cases when
the spectra are estimated by the peridogram and by the smoothed periodogram. The consistency
and asymptotic normality are proved.

Chapter 4: In this chapter we introduce notation and briefly review for the multiresolution
analysis in R and we develop an alternative procedure in which a continuous random fields is first
generated by interpolation of the discrete random fields. We obtain explicit expressions for the
second and third order covariances between wavelet and scaling coefficient of discrete random fields
and the dependence structure between wavelet coefficients is closely related to the dependence
of scaling coefficients. Hence, the second order properties of the discrete wavelet transform are
determined.

Chapter 5: In this chapter we consider nonlinear wavelet estimators of the spectral density
random fields and we obtain empirical wavelet coefficients of the spectral density which are then
treated with the same shrinkage methods as Neumann, then we state the asymptotic normality. We
have shown also that optimality thresholded wavelet attains the minimax rate of convergence in a
large scale of Besov smoothness classes. In addition we propose a wavelet-thresholding estimator
of the bispectra and we show that this estimator reaches minimax rate on Sobolev spaces, which is

not attained by linear (kernel or spiline ) estimators.
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Fourier Analysis



Chapter 1

On Lo structure of bilinear models on 74

1.1 Introduction

A process (X (t)),czq is called multidimensionally indexed (or spatial), when the variable t has sev-
eral components tq, ts, ..., ty say. Multidimensionally indexed processes arise naturally in the study
of random fields as well as in modeling some spatial data. Spatial data can be viewed either as
a set of time series collected simultaneously at a number of sites (locations) or as sets of spatial
data collected at several and different number of time points. For the statistical analysis, it is often
assumed that the spatial data under consideration as in environmental monitoring studies, met-
eorology, oceanography, geology, biology, among others, are linear and may be Gaussian. Recent
studies have shown that some crucial spatial data we come across as in digital image processing
are neither linear nor Gaussian as for instance, spatial data collected from satellites, sever storms,
earthquakes, spread of cancerous cells, regional economics, ecology and from multichannel FEG
digital signal processing. Hence, extending one-dimensional nonlinear time series models to mul-
tidimensional one, yields novel clutter models which are capable of taking into account the non
Gaussianity and spatiality dependence. However, the modeling of this type of data by a spatial
non-linear models has become an appealing and popular tool for investigating both spatiality and
non-Gaussianity patterns in time series analysis. Indeed, Amirmazlaghani and Amindavar (2007)
have used two dimensional GARC H model for wavelet coefficients modeling to perform the image
denoising. In image anomaly detection, Noiboar and Cohen (2007) have proposed an approach
based on GARCH random field to distilling a small number of clustered pixels. Dai and Billard
(1998, 2003) have introduced a class of spatio-temporal bilinear models to model the spatial spread

of monthly surveillance data for mumps over 1971-1988 in twelve states of the U.S.A.
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The literature for linear spatial models is very widespread and includes for instance Moor (1988),
Gaetan and Guyon (2010), Tjostheim (1978, 1983), Yao and Brockwell (2006), Guo and Billard
(1998), Dimitriou (2009) and the references therein which concern some studies on probabilistic
structures and statistical inference. Unfortunately, only a few studies on the probabilistic structures
or in statistical inference of spatial nonlinear models were investigated.

Some notations and concepts are used throughout: for any positive integer d, set 0 = (0, ..., 0) be
the zeros vector of Z%, for any k = (ky, ..., kq) and 1 = (1, ..., l;) belonging to Z4, we write k < 1 (resp.
k < 1) if and only if k,,, < I, (resp. ky, < l,,,) for m = 1,...,d. However, for p € N¢, the following
indexing subsets in N¢ will be considered I'[p] = {x e N* /0 <x =< p}, I'|p] = I'[p]\ {0} (see

Dimitriou (2009) for an extensive discussion on the interest choice of the order in the lattice Z?)
d

and for any i = (iy,...,iq) € Z% and z = (21, ..., z4) € C?, write z' = Hz;j‘

In this chapter we present a powerful frame for the study of sp;;ilal nonlinear processes based
on its associated transfer functions. This approach allows us to distinguish between linear and
nonlinear and between regular and singular processes. We describe the spatial subdiagonal bilinear
process with respect to its transfer functions, we then use this representation to give sufficient and
necessary conditions ensuring the existence of regular second order stationary and ergodic solutions
for several subclass especially for SGARCH models. Our approach is based on the observation
that a number of SGARC H models can be written as a diagonal SBL models. This relationship
has already been observed by a number of authors (e.g., see Terdik (2000)). Then, we obtain the
autocovariance function and the spectral density function , and we derive the Yule-Walker-type
difference equations for autocovariance by means of the spectral density function. Concerning the
second order probabilistic structure, the model is similar to an spatial ARM A model. Hence, we
discuss for the third order probabilistic structure and we discover a group of Yule-Walker-type

difference equations for third-order cumulants.

1.2 The multidimensional Wiener-It6 representation

2

For any Gaussian white noise (e(t)), ;s with mean 0 and variance o*, we associate its spectral

representation (see [87]), i.e., e(t) = /eit')‘dZ (A) in which t.A = 2% A, for any t = (t1,...,t4) €

™

73 X = M,y \g) € = [—m, 7 X ... X [-7, 7], d—times and Z (.) is a Gaussian orthogonal
2

stochastic measure with E {dZ (A)} = 0 and spectral measure E {|dZ ()\)|2} =dF(\) = (20 )dd)\
m

where dA means the Lebesgue measure on RY. Consider the real Hilbert space H =Ly (7,B,F)
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of the complex squared integrable functions f satisfying f(—X) =f(A) for any XA € w. For any
n > 1, we associated three real Hilbert spaces based on H, the first is ‘H, H®” the n—fold tensor

product of H endowed by the inner product (fy,gn)g / fn Jn n))dF ()\ n)) where

Am) = Aty An) € T o (=Am) = fo ), 1full® < 00 and dF (A ) = Hj dF (\;). The
second one is H,, = H®" C H,, the n—fold symmetrized tensor product of H defined by f, € H, if
and only if f, is invariant under permutation of their arguments i.e., f, ()\(n)) = sym { fn ()\(n))}
= 2 > pep(n) Jn (A@p(n))) Where 77( ) denotes the group of all permutation of the set {1,...,n}
with an inner product (fu,gn)e = 1! {fn, 9n)g for fu, 9. € H,. The third space is called Fock

space over H denoted by I (H) and defined by S (H) = @ﬁn in which @ denotes the direct
n=0
orthogonal sum, whose elements are f := (fo, f1, fo,...) with f,, € H,,, Ho = Ho = R and satisfying

I£I1° = Zn>0 | full> < +00. The corresponding orthogonal decomposition is called Wiener’s chaos
decomposition.

Let S = S (e) := o (e(t), t € Z?) the o —algebra generated by all e(t), t € Z¢, Sy := o (e(s),s X t)
and Ly (3) be the real Hilbert space of Ly—functional of e(t),t € Z%. It is well known (see Bibi
(2006) for further details) that Lo () is isometrically isomorphic to  (H), i.e., for any random
field (X (t)),czq of Ly (3) admits the so-called Wiener-It6 orthogonal representation

f0+z ) e =1t dZ (M), (1.2.1)

r>1

where fo = E{X(t)} and dZ(Aq)) = Hll dZ (N\;), f.€H, are uniquely determined and the
integrals are the so-called multiple Wiener-Itd stochastic integrals with respect to the Gaussian
stochastic measure Z. The following theorem gives some important properties related to Wiener-1t6

stochastic integrals which we shall apply throughout. For the proof we refer to Major (1981).

Theorem 1.1 1. [It6’s formula | The It6’s formula state that

f[hm(/%- (M) d /HH% niats) AZ(Awy) /sym{H% }dZ Aom).

e n =1 j=1

where (p;),<;<), 18 an orthonormal system in H, ni,...,ny are positive integers (ng = 0) with

n =mni+...+ng and h; denotes the j —th Hermite polynomial with leading coefficient 1, i.e.,

22

g2 d?
hj(z) = (—1)3672 dxje’T, x € R.
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2. [Diagram formula|] For any feH and f,€H, we have

[0 a2 [ 5 () Z0)

3

= / A Q) f Q) dZ(A ) + / / o (Amy) FR)AE (Ae) dZ A

k=1

where dZ(Am\r)) 1= H?:Li#: dZ ().

3. [Orthogonality of ﬁn spaces} For any f,€H,, and g,,€H,,, we have

E { /7r o (Aw) dZ(A) /7r gm (Am) dZ(Nm))}

= oyl /7r Csym {fo (Aw) } sym {0 (Aew) FF ),

where 6, is the Kronecker symbol. This means that the spaces ﬁn are orthogonal.

Remark 1.1 Applying Ito’s formula, it is easily seen that any random field (X (t));cza of Lo ()
is S (€)-measurable (or causal) iff the Fourier coefficients with nonnegative indices of its trans-

fer functions are only nonzero, i.e., f, ()\(r)) = - Zk <oﬁ (k(r)) elizi kA gnd fr (k(r)) =
1,K2,... s

S fr (}\(r)) e‘izzzlki')‘idF()\(,«)) where Ky = (kq, ... , k) € (Zd)r withk; € Z%, i =1,...,r. Hence

the corresponding representation (1.2.1) will be referred to later as regqular.

Remark 1.2 A necessary and sufficient condition that the random field (X (t)),czq of L2 () ad-

mits a regular solution given by (1.2.1), is that the transfer functions f, satisfies Szeqd’s condition
[ log|fr (Aw) | dZ(Awy) > —o0.

Example 1.1 A general class of nonlinear random fields (X (t)),.;a which admits a regular solution
are the Wiener fields i.e.,

XO)=g0+>, 2. D 9k (50) [T, (et =5y, (12.2)

=1 k(e (NA\{0})" 5y ENL)"

for some stationary Gaussian random field (e(t)),.,. where
(N‘i)r = {S(T) € (Nd)T 0 <81 <s9<..< ST} and where the Volterra’s kernels Ik, (s(r)) are
uniquely determined if there are assumed to be symmetric functions in their arguments. Hence, by

applying Ito’s formula, it is easily seen that X (t) admits a Wiener-Ité orthogonal representation
(1.2.1).
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1.3 Wiener-It6 solution for spatial subdiagonal bilinear ran-
dom fields

The class of spatial Wiener’s models (1.2.2) can describe general non linear models with great
accuracy and can be enlarged to include the random field (X(t)); ;. solving the following recursive
equation

X(t)=f(X(t—s),e(t—1),0<s=<P,0<1r=<Q)+e(t), (1.3.1)

for some white noise field (e(t));.,« and polynomial function f. The main objective here is to
derive the system of transfer functions associated with (1.3.1) and thus we establish the necessary
and sufficient condition ensuring the existence of regular second order stationary solutions. For this
purpose we shall restrict ourself to the so-called spatial subdiagonal bilinear model. A R—valued
random field (X(t));.;« defined on a probability space (£2, 3, P) is called spatial subdiagonal
bilinear process denoted by SBLy(p,q, P, Q) if it is solution of the following stochastic difference

equation

X(t) = ZaXt—l Zbet—J Z ch (t—i—jle(t—1i). (1.3.2)

ielp] J€T[q] ielP] jel Q]

In (1.3.2) (e(t))seza is a Gaussian field white noise defined on the same probability (€2,<S, P) with
zero mean and variance o2.
to handle the product terms like X (t)e (t —1i), i = 0. Noting that different SBL, representations

appear to depend on the lexicographic order chosen on Z?. Define the functions

OA) = 1- Z aze” A D (X)) = z:b,e—z‘j)\7

The assumption of subdiagonality is technical because it is difficult

iel'|p] j€T[q]
\IIO (}\) = Z Cio€ —ii.A \If A H Z Z Cl,J i(i+j). —zj.u'
iel'P] ielPljer[qQ]

We seek necessary and sufficient conditions ensuring the existence of regular second order stationary
solution of (1.3.2) in the Form (1.2.1). Throughout the paper, we shall assume the following

condition

Condition 1.1 all the characteristic roots of the polynomial © (z) =1 — > a;z' are outside the
iel'p]
unit circle, in the sense that © (z) # 0 for |z;| < 1,i=1,...,d.

Other conditions ensuring the existence of the roots of polynomial © (z) outside the circles |z;| <
1,7 =1,...,d, can be found in Tjostheim (1983) and in Yao and Brackwell (2006). For instance, a
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necessary and sufficient conditions for the equation O (z1, 25) = 1 — a121 — ag2y — agz122 to have its
roots outside the circles |z;| < 1,7 = 1,2 (see Basu and Reinsel (1992), Proposition 1) are (i) |a;| < 1,
i=1,2,3 (i) (1+a®—a2—a2)® —4 (a1 + azas)® > 0 and (iii) 1 — a2 > |ay + agas|. In particular,
the special case where a3 = —ajas, the above conditions reduce to |a;| < 1, ¢ = 1,2. Noting
that a multivariable polynomial can be factored into factors which are themselves multivariable
polynomials but which cannot be further factored, and these irreducible polynomials are unique to

multiplicative constants.

Lemma 1.1 Assume that the SBL,; Model (1.3.2) has regular second order stationary solution,
then the transfer functions of this solution are given by the symmetrization of the following functions

defined recursively by

5 0)’ ifr=20,
il (AS ifr=1
fr(Ap) =9 ©(N)° ’ (1.3.3)

(
T:i Jr N
\Pé%zj;j) ) ot Agm)  ifr > 2,

with & (A) = & (A) + fo (0, ).

Proof. Assume that the SBL; Model (1.3.2) has a Wiener-1to6 representation (1.2.1). Then by the

diagram formula (2.3), we get

X(t —1i —j)e (t — i) = (fo + Z/ fr‘ ()\(7" lzj 1 (t—i=j). JdZ ()\ )) /ei(ti).}\dZ (A)
_— / i=)Ag7 (X) + Z / £ (A) € SEAEDAT05% 47 (X 1)
r+1

+(20' )d/ e Z; %(t i—j).A; /fr (A’!‘) Z‘j)‘rdATdZ (A(r_l)) .
i qr—1 -

Since a regular solution is independent of random fields e (s), s = t and depends linearly on e (t),
then similar argument to Terdik (2000) show that ﬁ / fr(A) e A dX\. =0ifj = 0orj=0and

r > 1. Using (1.3.2), Condition 1.1 and the uniqueness of the symmetrized transfer functions we

get the recursion (1.3.3).
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Remark 1.3 It not difficult to see that the symmetrized transfer functions are given by

sym{ fr () }
( o2 Yo (0)
= Ll ((9}‘%0)2']”7“ =1
a CY A

et <Z;:1 )\j> > e 1 2i=1dN > ajsym {fr_l (A(T,l)) e’ Z;:i'}‘j} L ifr > 2.

JETQ] icT|P)

»if r=0,

\

Lemma 1.2 Under the conditions of Lemma 1.1, we have || f.||* < r!||sym {f.}II> < 2||f.||> for
any r > 1.

Proof. The proof is similar as that of Lemma 1 in Terdik and Subba Rao (1989).

We are now in a position to state our first result.

Theorem 1.2 A necessary and sufficient condition for the existence of reqular second order sta-
tionary solution for SBL4(p,q, P, Q) model (1.3.2) is that

S AP < 400 (1.3.4)

r>0

where the transfer functions f, (A(T)) are given by (1.3.3).

Proof. To prove Theorem 1.2, we use the Lemmas 1.1, 1.2 and the fact that Var {X(t)} is finite
if and only if the Condition (1.3.4) holds true.

Corollary 1.1 A simple sufficient condition for (1.3.4) is

<2i>d / ‘ S

™

2
dpu =c <1, em.

Proof. Consider the norm

/\fr (A [ dF (A)

- LA

(A, @)
O X+ p)

dF (W} [t Ao A = Rio2)) [ dF (M) dF (N),
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2

— U (A
where Ay == Y_I_; A;. Now if there exist ¢ such that (2(;2)01/7, @(g\ :2) dp = ¢ < 1 for any
A € m, then
9 9 0.207“71 q)* (A) 2
(A | dE (A@gy) < 1 (A dF (A1) < dA,
/|f( o) dF (A) C[\f t Aen)[FdF (Ap) (%)d/ﬂ N

so the Condition (1.3.4) holds true.

Corollary 1.2 [Diagonal models] Consider the model

X(t)= > aX(t—1)+ > bet—j)+ Y aX(t—iet—1i), (1.3.5)

iclp) j€rq] i€l Q]

then a necessary and sufficient condition that the model (1.3.5) has a regular second order stationary
0'2 / ' \:[/0 (A)
(2m)* O (A)

Proof. It is easy to see that the transfer functions associated with the Model (1.3.5) are given by

solution s that ,

dX\ < 1.

o <E;:1 )‘j>
© <Z§:1 Aj)

T, (0)
6 (0)

" (A)
16N

foZU2

7f1 (A) = 7f7“ (A(r)) = fr—l ()‘(rfl)) 7> 2.

Hence, we obtain for r > 2 after repeated substitution

o2\ 2 _0_2 2 o’ Yo (A)
((szl) / - (o)l d)“”_(gmd/ S (27r>d/ ‘ CIey

and the necessary and sufficient conditions follows from the convergence of the geometrical series.

r—1

2
axy

Example 1.2 Consider the diagonal model
Xt)=a X(t—e)+aX(t—e)—a1aX(t—1)+cX(t—De(t—1)+e(t),

where e; = (1,0),e = (0,1),1 = (1,1),1 = (l1,03) and l; > 1,1y > 2. For this model, we assume
that max {|a;|,|az|} < 1 that ensure that the roots of the polynomial © (z) are outside the unit
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circles |z;| < 1,4 = 1,2. From the Theorem 1.2, it follows that the transfer functions of a regular

stationary solution are

2

co
o= 35 (0,0)’
(1 +Cf0€7i(l1)\+l2:u')
A p—
J1 ( ,M) =) ()\’ N) )
—i 7y (A +Hap,;)
ce  ~i
fr (/\(r)a :u(r)) = fT—l ()\(T_l)’ 'u(T_l)) ’
) (22:1 )\ja 22:1 Mj)

b
s—1 0 (Zj‘:l )‘j7 Zj’:l lLL])

T
—i 3 (r—j+1) (LA +Hap; ) —i(r—1) (LA +lapy)
CT—le j=2
Y

with © (A, p) = (1 — ale_i’\) (1 — age™™). Hence, from Corollary 1.2, the necessary and sufficient

condition become a3 + a3 + o*c® — a3aj < 1.

For spatial super-diagonal model in the sense of Hannan (1982) for which ¢;; = 0 for i< j in

(1.3.2) their transfer functions (1.3.3) becomes quite simpler. Indeed,

;

0, if r =0,
d(A) ..
@(A),lfr—l,

FROITY wsaa)

© (Z;:1 )‘j>

frfl ()\('r—l)) ) if r > 27

row (Zj;i >‘j> As)
=2 © <Z§:1 Aj )

of spatial super-diagonal model in the form (1.2.1) with f; = 0. Indeed, using the last expression

S0, we obtain f, (/\(,,)) = Uy (A1) . It is evident that this gives an unique solution

of f,. ()\(T)), the condition of stationarity is

> <(207r>d> /\fr () [*dAg) < +o0. (1.3.6)

r=1

T

The following theorem gives a simple sufficient condition for the existence of a regular second order

stationary solution
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Theorem 1.3 A sufficient condition for the spatial super-diagonal model to has a regular stationary

(2m)? /‘ >\+u

Proof. It is easy to see that the series (1.3.6) is dominated by a geometrically converged series.

solution s that

dA§K<1,u€7r,

Remark 1.4 Under the Conditions of Theorem 1.3, the Series (1.2.2) corresponding to the super-
diagonal model, converges a.s. Indeed, in this case X (t) = Z . &, (t) where

T

E.(t)= > > 9k, (8m) He(t —s;). Then under the conditions of the Theorem 1.3, the

k) eN" s e(Zd)" j=1
series > &, (t) converges a.s, since E{|¢, (t)|} < +/E{& (t)} and thus Y E{|¢, (t)|} is dominated
r>1 r>1

by a geometrically convergent series.

Remark 1.5 If the assumption that the model is super-diagonal is eliminated, then the results of
Theorem 1.8 still holds (see Terdik (2000)).

As already mentioned by Wang and Wei (2004), that it is rather difficult to check the con-
dition (1.3.4) in Theorem 1.2 because the calculation of [ |f, ()\(T))FdF (A@r)) is tedious when

r is too large. To remedy this difficulty, Wang and Wei (2004) introduce a separable subdiag-
onal model in the sense that W (A, pu) = Uy (A + p) ¥y (A) where Uy (A) = > ci(l)e_’“‘ and

ielQ]
Uy (A= c§2)e_ij'>‘ . In this case ¢;; = ci(l)céz) with i € I']Q], j € ' [P] and the Equation (1.3.2)
Jjel[P]
become
X(t) =Y aXt—i)+ Y bet—j)+ > qlet—1i) > VX (t—i-j), (1.3.7)
ielp] J€T[q] ieT]Q] JeT[P]

and hence f, = 02c{071 (0) Uy (0), ¥y (0) = ) ¥y (0) and &* (A) = & () + foU5 (0) ¥y (A). For

this class of models, we have

Theorem 1.4 A necessary and sufficient condition for the existence of reqular second order sta-
tionary solution of the process (X (t));cqa generated by the separable SBL4(p, q, P, Q) model (1.3.7)

18 that
0'2 \111 ()\) \112 (A) 2
(27)" ﬂ/‘ o dX < 1.
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Proof. We use a similar approach to that used by Wang and Wei (2004), Theorem 1. Indeed, for

any r > 2 we have

J'fr (A" dF (M)
= / H@ (ZA)\IJ (lz_i)\j,Al) 2

) @ (A)|dF (M)

- /H@ (Z)\j) (i)\]>%<2>\]> (A1) @ ()] dF (Ap)
- /|@ 1(>\)|2dF(}\) /]@‘1(>\)\111(A)\112(>\)}2dF(>\)

™

< [ 107 ) @ () wa )P ()

The result fellows by Theorem 1.2 if and only if / 1O L (A) Ty (A) Ty (NP dF () < 1.

Corollary 1.3 Consider the model
ZaXt—l ije(t—J ZCJ (t—j—De(t —3j), (1.3.8)
ielp] Jel(q] Jerp|

where 1 is a known vector of nonnegative integers. Then the necessary and sufficient condition for

the existence of reqular second order stationary solution for (1.3.8) is that
o2 / ‘\Ifl (A ]?
@2n)*) 10

Proof. In this case, ¥; (A) = > e ™ WUy (A) = e and ¥y (A) = ¥y (A)do (1). So the
iel]Q]
necessary and sufficient condition for the regular second-order stationary solution reduce to (1.3.9).

dX <1, (1.3.9)

Corollary 1.4 Consider the model

X(t):ZaXt—l Zbet—J ZCJ (t—j—De(t—-1), (1.3.10)
]

ielp Jj€r'(d] JeTP]
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where 1 is a known vector of nonnegative integers. Then the necessary and sufficient condition for

the existence of reqular second order stationary solution for (1.3.10) is that
0'2 / ' ‘1’2 (A)
(2m)* ©(A)

Proof. In this case, ¥; (A) = e 4 and Uy (A) = > e %, so that the necessary and sufficient
ierQ
condition for the regular second order stationary solution reduce to (1.3.11).

2
dX < 1. (1.3.11)

Remark 1.6 As already pointed by Wang and Wei (2004), the separable spatial models is a rather
general class of spatial bilinear models, it is includes several subclass of popular spatial models
specially the spatial GARC'H models (c.f. Terdik (2000)).

Corollary 1.5 [The SGARCH| Consider the spatial GARCH (p,q) models defined by

X(t) = n(t)\/h(t),
h(t) =co+ X aX2(t—i)+ X azh(t —j), (1.3.12)

ielp] j€ellq]

where (c;,i € I'[p]) and (a;,i € I']q]) are nonnegative constants with co > 0 and (9(t))icpa s @
Gaussian white noise field with zero mean and variance 1. Then the Model (1.3.12) has a regular

second order stationary solution if and only if
Z ai + Z g <1
ielp] Jjelql

Moreover
0ift#s,
-1
E{X(t)} =0,Cov{X(t)X(s)} = 06" (1_ S g - Y CJ.) otherwise.

ie I'lp] jellq]

Proof. Since the second equation in (1.3.12) can be regarded as a special case of diagonal model
(1.3.5), then the proof follows thus from the Corollary 1.4 and the positivity of the coefficients.

1.4 Covariance structure and spectral density function

We assume in this section, that the field process (X(t)),.;.« generated by (1.3.2) admits a regular

second order stationary solution, and obtain its covariance function and its spectral density function.
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For this purpose, we note that for any r > 2, the rth transfer function can be decomposed into

two orthogonal parts, i.e.,

B Zk YDV " (A1)
fr(Aw) = g 6<>(Zj1 Aj>> o (A1)
[ P EEAA) ] i) 0 Bt x)
- |l @(2;1 Aj> [9(A1+>\2) (A1)  O(A+ )

k=3

r Q(Zk 1)\j,/\k> U, ()\1+)\2)
' [’E’ @(zjzl)‘j) ] [®(A1+)‘2)]

= O Aw) + 12 (Am)-

The following lemma is an extension of the result obtained by Wang and Wei (2004), Lemma 2.

Lemma 1.3 Let (X(t)),czq be a spatial second order stationary bilinear model satisfying (1.3.2)
and let C(h) := Cov {X(t)X (t +h)}. Then for any h €Z¢

O(h)<2f>d/{'g<(:>)2 (2n) /’ “ .

and the spatial spectral density function fx () is given by
2 N 0_2 /
(27T)d ™

where W(0) = Z W;(0) with W;(0) can be computed recursively by
=0

o (A
O (A

+ o2

W(o)de} e MAdN, (1.4.1)

2
g

(2"

2| Yo (A)
o

T(O.x-06)

(0) d0] ,

2

6)
(a

2| o (0)

©(0) |,
)\0)\

7Zf]:07

o~ i

W (A i > 1

The Lemma 1.3, shows that the second order properties of SBL4(p,q,P,Q) generated by the
difference Equation (1.3.2) are similar to a linear spatial ARM A. More precisely, there exists an

uncorrelated sequence of random variables (£(t)),.;« With zero mean and finite variance such that
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the process (X(t));czq satisfies the stochastic difference equation © (B) X(t) = A (B){(t). The
sequence (§(t));cze is not Gaussian nor a martingale difference sequence when the ¢j’s are not
equal to zero. We draw the conclusion that first and second order properties of superdiagonal
spatial bilinear model can not be distinguished from a linear spatial ARM A models. Specific tools
should be developed. We leave this important issue for future researches.

Some elegant expressions for spatial superdiagonal and separable subdiagonal bilinear models can
be derived.

Theorem 1.5 Let (X (t)), ;4 be a second order stationary spatial bilinear model satisfying (1.3.7).

Then
)= (207r2)dﬁ/ {‘g&) s QW}“M‘”’
sov = o le] Jes v
where
e {‘g&) v (A)r * (C‘(’Q))Q} 1255 i L) w0

Proof. The proof follows essentially the same as Theorem 2 in Wang and Wei (2004).
Finally, we give the spectral densities for the models generated by (1.3.8) and (1.3.10).

Corollary 1.6 The spectral density function for the spatial model generated by (1.3.8) is given by

o fle P e ()P
fX“)(w{‘@w ‘@(A) W}’
where
o K SN0Vl BO N v, (0)]?
W‘<zw>d/,,{5°+‘@<x> }1—S’S‘<zﬂ>d/,, e |

Corollary 1.7 The spectral density function for the spatial model generated by (1.3.10) is given by

o2 ’c1>*(>\)2+ w
2m)* |19 (N) ERNEE

fx(X) =

where
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Example 1.3 Consider the super-diagonal process
Xt)=a1 X(t—e1)+aX(t—e) —a1axX(t—1)+cX(t—2)e(t—1)+e(t), (1.4.2)

where (e(t)) .
1. Then the Model (1.4.2) has a regular second order stationary solution if and only if

22 18 a Gaussian white noise with zero mean and variance o = 1 and Maz {|a1|, |az|} <

2 < (1 —a?) (1 —a2). Under these conditions,

O\ 1) = (1 —are™) (1 —age™™®) & (\, ) = 1,0 (A, ) = ce O Wy (A, ) = e~ O,

So
Clh,1l) = #{m—n(zq)ﬁaw@gg(l“) [5},+(1—a§)<1—a3)}},
fx () = - {1420 [0+ (1= ad)(1 = ad)] e O}

(2m)2|(1 = are™?) (1 — age™™))|

1.4.1 Applications

Theorem 1.6 [ARM A representation] Assume that the field (X (t)),c,qa defined by (1.3.2) is sta-
tionary, there exists an uncorrelated sequence of random fields (&(t)),cpa with zero mean and finite
variance such that
X(t)=ao+ > aX(t—i)+ > bt —j), by =1bo=1, (1.4.3)
iel'p] Jjer(a*]
where the coefficients (b}‘,j el [q*]) are functions of (a;,j € I'|p]), (b;,j € I'|ld]) and
(cii,j € T1Ql,i € T'[P]). The field (£(t))cpa 95 not Gaussian nor a martingale difference sequence

when the c;;’s are not equal to zero.

Proof. The proof follows essentially the same as that of Theorem 2 in Bibi (2003).
The above theorem implies that the spectral density of the field (X(t)),.,4 is given by

JA) =— = (1.4.4)

where ®(A) = 3 bye~" such that )&) A = DN +02|To (N)]*+|D (X[ for some transfer

jel'la’]
function D (X). Hence, the second order properties of every bilinear random field (X (t)), ;. sat-

‘2
isfying the Equation (1.3.2) are similar to an ARM A (p,q*). So, one has to look to higher order

moments and higher-order cumulant spectra for further information on the process. The best linear
predictor of X (t 4+ h) given {X(s),s < t} where (X (t)),.q satisfies (1.4.3) is now given
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Theorem 1.7 Let (X(t)),czq be a stationary random field satisfying (1.4.3) and assume that the

polynomial ® (z) = 3 bizd #0 forallz € C*: || <1,i=1,..d. Let Xn(t) be the best linear
jel'la’]
predictor of X(t +h), 0 <h <1 and h # 0 when {X(s),s <Xt} is given. Then

)= (1. 2®
Xh(t)_<1 5(B)>X(t—|—h),

where B denotes the backward shift operator, i.e., B'X(t) = X(t — i) and 07 = Var{{(t)} >
Var{e(t)} = o2

Proof. The first assertion rests standard. For the second we have from (1.4.4) and since o2 | ¥ (X)]*+
ID(A)? >0

E { (X(t +h) — )?h(t)>2} = of=exp (271r)d 7T/log 2m)" F(X)dA

= oZexp (271T)d/10g(|<1>()\)|2+02|\110()\)|2+|D()\)|2)d>\ > o2,

™

Hence the variance of the prediction error is always greater than the optimal prediction error

variance obtained from the bilinear field model.

1.5 Yule-Walker type difference equations for SBL,(p,q, P, Q)

model

In order to understand the second-order probabilistic structure for spatial bilinear model better,

we can construct the Yule-Walker-type difference equations for autocovariance functions which are
based on the spectral density function. We have ®* (X) = ® (A) + p¥y (0) ¥, (A) and define

_ 1 (A e
de = (27T)d7{@()‘)6 AdX, (1.5.1)
1 U (A)

% = ool em
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Then

Ch)— > aCh—i) = [O(=A) fx(A)e ™ dA (1.5.2)

ielp]

0'2{ Z bjdj_h—i—ﬂ\lfg (O) Z Ci 1 h+ Z bGJ h

jeT[q] iel'Q] jeTq]

HW + 22(92(0))%] Y efVein}.

melQ]

Let g* = max(q,Q — 1) if c((f) = 0 and max(q, Q) otherwise. Obviously, if h > q*, then the

autocovariance functions satisfy the equation C'(h) — % a;C(h —1i) = 0. The process (Y (t)),czq
ielp]

obtained from (X(t)); ., by
Y(t ZaX (t — i), (1.5.3)

is second order stationary too. We consider the autocovariance function for (Y'(t));.,q,Cy(h) :=
Cov{Y(t)Y(t +h)} (only the case of h = 0 is discussed here because of the symmetric relation

Cy(—h) = Cy(h)). We have Cy(h f O (A (A)e"™AdN, then
(
o { D seriq bibn + p¥2 (0) | 30 Abin+ X bjcﬁ)h
i€r|QJ Jjerq] ,if h = 0,
Cr(h) = HW 4 202 (0)7] % dVel) (154
i€l Q]
0, if h > q",

\

where ci(l) =0fori> Q and b; =0 for j > q.

By (1.5.2) and (1.5.4), as far as the second-order structure is concerned, the SBL,(p,q,P, Q)
model is similar to spatial ARM A(p, q*) model.

For the two special cases given in section 1.3, for the spatial model generated by (1.3.8), We
have ®* (X)) = ® (A) + p¥; (A). Then C(0 ffX JdX = W — 3260, Therefore, using (1.5.2), we

get
0'2[ Z bjdj,h +u Z Cidi,h + W Z bmem,k
Jj€T]q] ierQ] mel]Q] ifh>=0
C(h) = > aCh—1i) = +(C(0) + pi2 +0260) 3 cieinl 7
iel'p] ielQ

0, if h = max (q, Q — 1+67),
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where di and ey are given in (1.5.1).

By (1.5.4), the autocovariance function for the process (Y'(t)),.;a , derived by (1.5.3), are given

o? Z bjbj+h + n Z Cibjan + 1 Z bjCj+h + (C(O) -+ Mz + 0'2(5?) Z CiCitn | , if h > 0,
Cy(h) = jeTlq] €T Q) jerl Q)

0, if k = max (q, Q — 1+67),

where ¢; = 0,i > Q, and b; =0,j > q.
In the case for the spatial model generated by (1.3.10), we have ®* (X) = ® (A) + u¥y (0) e

ik. A

and let dy = 5- [§55dA. By (1.5.2), we have

o)

o?[ 32 bibidijon + p¥2(0) > bjdin-j

J,i€Tq] jelq] fh>0
Ch) = Y aClhi—i) =3 +p0(0) ¥ bydssen + (W + p2(Wo (0)2)00)
icTp] jer|qQ]
0, if h > max (q, k),

and the autocovariance functions for the process (Y (t)),cz« are

0 5 ybyn + 105 (0) (b + bsn) + (W + 2(W (0))°)62), if b= 0,
Cy(h) = j€Tq]
0, if h > max(q, k).

where b; =0 if j > q or j < 0.

1.5.1 The third-order probabilistic structure for the SBL,(p,q,P,Q)

model

Based on our analysis above, it is shown that the second-order probabilistic structure of the
SBL4(P,q, P, Q) model is similar to that of a spatial ARM A model. This means that the
SBL4(p,q, P, Q) model cannot be distinguished from the linear model only according to its autoco-
variance and spectral density. So we assume that SBL,(p, q, P, Q) model is third-order stationary
and we investigate its third-order cumulants

C5(s1,8,) = E{(X(t) — p) (X(t+s1) — p) (X(t +s2) — )}, and bispectral density f3(A1,A2) =
W D s1s, C3(s1, s, )e st Ats222) - The approximate formulae to evaluate the third-order cumu-

lants is given in the following theorem.
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Theorem 1.8 Let (X (t)), 4 be a stationary process generated by SBL4(p,q, P, Q) model (1.3.7).

Then
2

2
o
Cs(s1,8,) = ( o) ) fQ (A1, Ag)elErrts2dalgn, dx,

where (X)) = 65symd(A, Ao, Az) and the function ¢p(A1, Ag, A3) is defined by

6(A1, Aa, Ag) 2
© oo (6| MOV
qfégiigw(o\;) @*((;\\;)) EREN [(;;d / 5;(_00)) v, (6) % de}
\Dé)(():\ll))@(&g)>@(£>3) [(2(;2)%{ Z*((g)) 0| %w]
+%E;\3@(( >) &3)) Ua(=As) (2‘;2)d7[(( é”)%'?ég;%w) 2)49]
ﬂé(&))@(&z))@(x(?f) [@i)d,{ ( (Ci))g " ‘ 2((33 v (o) %\P (6~ A@)d@] .

Proof. The proof is similar as that of Theorem 3 in Wang and Wei (2004).

2
Furthermore, the bispectral density can also be approximated by f3(A1, A2) = (%) ©(A1, A2)
where the function ¢(Aq, A2) is defined in the above theorem.

Note that the third-order cumulants fulfils the following symmetric relations:

Cs3(s1,85) = C3(sg,8;) = C3(—s1,85 —s1) = C3(82 — 81, —S1) (1.5.5)

= 03(—S2751 — Sg) = Cg(Sl — So, —Sg).

Under the single additional assumption that q < Q, we discover a group of Yule Walker type
difference equations for the third order cumulants. For the SBLy(p, q, P, Q) model, it is reasonable

since we are concerned with bilinear terms more than moving-average terms.

Remark 1.7 Undoubtedly, all of the Yule Walker type difference equations for the third order

cumulants can be approrimately derived from the bispectral density.

We only need to consider the case of s>~ s; = 0 to get the following result.
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Theorem 1.9 Let (X (t)), 4 be a stationary process generated by SBL4(p,q, P, Q) model (1.3.7).
Then the third order cumulants satisfy the following difference equation: if h = 0,

200 > 62)0()

O3k, Q+k) — ) a0k, Q+k—1i) = ? jére
al ) iezl“};:] 5 ) 0268) > C§2)C(k i), k>0,
Jer|P]
and, if h = 0

C3(k,Q+h+k)— > a:C3(k,Q+h+k) =0k = 0.

iel'|p]

Proof. Firstly, centering all of the terms in (1.3.7), we get

X(t)- Z a; X (t—i) = —¥p(0)o*+ Z bie(t—j)+ Z Z DX (t—i—3j), (1.5.6)
ielp] JerQ] ier'Q] Jer(P]
where

T g uE(0) forq 22 Q.
Let X(t) = Z(t)+e(t). It is not difficult to see that Z(t) is independent of e(t). From this, we mul-
tiply both sides of (1.5.6) by X(t — Q —h)X(t — Q —h — k) for all h, k > 0 and take expectation.
We compute all terms on the right-hand side,
If 0 <i=<Q, then, for all h = 0,k > 0,

b= {b+c p¥s(0) for 1 <j < q,

E{e(t—j)Xt-Q—-h)X(t—-Q—-h-k)} =0.
If 0 <i=< Q, then, for all h = 0,k > 0,

o?C(k), if j=0,

E{X(t—i—j)e(t—j)X(t—Q—h)X(t—Q—h—k)}={ 0 e

Ifh =0k =0, then

302C(0), if j =0,

E{X(t - Q—Jje(t - QX*(t - Q)} = { 20°C(j), if j - 0.

If h=0,k > 0, then

202C k), if j =0,

E{X(6=Qe(t = QX (t - QX (£ Q—k)} - { D) 1o
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If h > 0,k = 0, then

o?C(k),if j =0,

E{X(t=Q—je(t - QX(t - Q-h)X(t-Q-h L)} = { N

We finally obtain that for k = 0

C3(k,Q+h+k)— > a;C3(k,Q+h+k—1)

ieTp]
= Y aE{X(t-1)X(t-Q-hX(t-Q-h-k)}
iel'[p]
o*(1+8)cy 3 a0k —j),ifh=0,
0, if h > 0.

Those difference equations can be used to identify the SBL,(p, q, P, Q) model.
From Theorem 1.9, we can easily derive the Yule Walker type difference equations for the third

order cumulants for the two special cases as

Corollary 1.8 For the spatial model generated by (1.3.8), the third order cumulants satisfy the

following difference equations: for h =0,

Cs3(k,Q+ k) — Z a;C3(k,Q +k —i) =

ielp]

20%cqC(k), k =0,
o?cqC(k —1), k> 0,

and for h > 0,
C3(k,Q+h+k)— > a:C3(k,Q+h+k—i)=0, k=0

iel'p]

Corollary 1.9 The third order cumulants of the process (X (t)), 4 generated by the model (1.3.10)
satisfy the following difference equations: for h = 0,

202 3 ¢O(i), k =0,

Ok, 1+k) — > a3k, 1+k —i) = ierQ)
s ) ie;] 3 R S 6C(k —1), k = 0,
i ierQ

and, if h = 0,
Cs(k,1+h+k)— > a;Cs(k,1+h+k—i)=0, k= 0.

iel'|p]
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Example 1.4 Consider the spatial diagonal bilinear models
X(t) =8X(t —k)e(t — k) + e(t),

where k = (ky,ka), k1 > 1,ky > 2,E{e(t)} = 0,02 = 1,E{e*(t)} = 3 and E{c5(t)} = 15. We
have

po= E{X(t)} =0,

1+ 242
= B{X0} =T
1 2 4
var (X(0) = E{0x0) -2} =2
and , |
c ={ S
0if1+#k.
Then
( 28%(4 + 58%) /(1 — 8?) ifs=h=0,
268(1+ 8%+ B8Y /(1 — %) ifs=h=Xk,
36[1 + 6822t (1 4+ g2 4 28%)]/(1 — %) if s = 0, hy = ngks,i = 1,2,
03(Sah) = 3 2 4 2 .
46°(1+ 26+ 35%)/(1 — %) ifs=0,h=Xk,
53 if s = k,h = 2k,
\ 0 otherwise.
and the bispectral density function
AW = s (Ca(0,0) 4 Cul AN 4 o e

+3%[cos(k. Ay + 2k.Xg) + cos(2k. A1 + k. Ag) + cos(k.A; — k. Ay)]
+453<1 + 252 + 364)/(1 . 62)[€ik.)\1 + eik.)\z + e_ik'()‘l+>‘2)]}_



Chapter 2

Higher-order spectral density estimation

2.1 Introduction

In recent years, spectral analysis based on higher order statistics has received great attention, and
constituted a significant part of modern signal processing and digital image processing. It is used in
a variety of applications, e.g. sonar, radar, plasma physics, image reconstruction, array processing,
seismic data processing, harmonic retrieval, system identification (see Li and Cheng (1998)).

Spectral density estimation is an important problem and there is a rich literature (see for example
Rosenblatt (1985), Guyon (1995), Yao and Brockwell (2006), Subba Rao and Gabr (1984)). If a
random field is Gaussian, then its statistical properties are completely determined by its second
order spectrum, otherwise we have to resort to higher order spectra. The idea of estimating the
second and higher order spectral density of a random field is readily extendible from times series
analysis (see Rosenblatt (1985)). However, the asymptotic cumulant properties of the spectral
estimates for random fields have been given in Yuan and Subba Rao (1993) and Rosenblatt (1985).
In this chapter, we obtained asymptotic normality of spectral density for a class of spatial nonlinear
processes in section 3; section 4 is concerned with the asymptotic distribution of certain estimates
of the bispectral density, this estimate would have distribution which tend to complex normal
distributions under certain conditions. Estimator of the fourth-order cumulant spectral density is
proposed, this result is sufficiently complete to indicate what happens in general, study in section
5 and 6.

The following notation is used throughout. Let a = (aq,...,a4) and b = (by, ..., by) two vectors

aqd

of non negative integers, we have a.b =a;b; + ... + agbg,a ® b = (a1by, ..., aqbq) , & = (Z—;, - E) if

bi,...,bqa # 0,2 < b means that a; < b;,i = 1,...d. The sample size is N = (Ny,..., Ny),i.e. we

31
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observe X (t),t =(t1,...,tq) for t; = 1,....N;;i = 1,...,d, but the number of observation is |N| =
H?Zl N;, IN| = (| V1], |No], ..., |Ny|). For brevity, we write t = 1,..., N and N — oo means that
N; — 00,i =1, ...,d. Then define the multi-index sum as Zt L th L= Zil )

2.2 Cumulant spectra and their estimates

The use of either nonparametric or parametric polyspectral methods need to calculate higher order
moments and cumulants which depend on lower-order product moments and the cumulant spectral
density agrees with the Fourier transform of the same order product moment.

Let (X(t)),czqa be a weakly stationary real random field with a zero mean and finite pth-order

moments on Z%, d > 2. For all t € Z?, we have

E{X ()X (t+hy)... X (t+h, )} = my(t,t+h,,....t+h ) (2.2.1)
= ’I“p(hl,... h_),

) Hip—1

and
cum{X (t), X (t+hy),...., X (t+ hp_l)} = Cp(hl, ...,hp_l).

Let v = {v1, ...,v4} be a partition of the set {0,hy,--- ,h, ,} into k subsets where 0 < k < p—1.
Then

m(v)
Cplhy, . b, ) => ()" m@) -1 [T ES ] X (ha) ¢, (2.2.2)
v j=1 hu€v;
where m(v) is the number of nonvacuous sets in the partition v and the outer sum is over all
partitions v of {0,hy,--- ,h, ;}.
The pth order cumulant spectrum (or polyspectrum) is defined by

oAt A1) = = > Z Cy(hy,...h _,)e iS5t

where h A =7 hidi, A= (A1, ..., \g) € 7,70 = [—7, 7 X ... X [=7, 7[, d—times, provided that
> |Co(hy, by, ) <00 =1,..,p— 1,
hjEZd

where the pth order cumulant function of the random fields satisfies the inverse relation

b [ X5 SR g

hi€Z¢  h, €Zd
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Define the moment estimate as

N-In
Py, by ) =[N =25 Y X ()X (t+h) .. X (6+h,), b <Inj=1..p— 1L
t=In—+1
(2.2.3)
and the cumulant estimate @,(hl, ...,h,_;) are obtained by replacing the moment by their

estimates in (2.2.3) into formula (2.2.2).
The conventional estimate f,n(A1, ..., A,—1) of the pth order polyspectrum takes the form

1

Fon(AL o Ap1) = oD S Y Gohy by )wbNGhy, . by, e E A
by [=IN b, | <in
(2.2.4)
where by is a vector of the bandwidth parameter, w(x;, ..., x,_1) is the weight function and
ép(hl, ...,h, ;) is a cumulant estimate of Cy(hy, ..., h, ) based on a realization { Xy, ..., Xx} from

the process (X (t));czqa. Consider now the following condition

Condition 2.1 For an integer p > 2,

~

CE{IX )7} < oo

NS

) Z ‘Cj(hl, o ,hj_l)‘ Ih;|? < oo for some ¢ >1,j=1,..4p.
hjEZd

3. the weight function w(Xy, ...,X,—1) is of bounded support and continuous.

4. limp, /jn,|—0 by, bnOhp-1) 71 a(f) #0 as by — 0 and |a(0)] < oco.

p—1
| CORNE
j=1

5 NOW, " — 00, by \, 0 as N — o0.

6. The lag in (2.2.3) is Iy, = O (by!), and usually we take Iy, = by’

2.3 Spectral density estimate

A random field which is not linear is always non Gaussian and hence the analysis of its higher
order spectra can be used to study departure from linearity. But so far, no significant effort has
been made to investigate the sampling properties of the estimates of the second and higher order

spectra from random fields which are nonlinear. In this section, we consider the spectral estimators
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based on a sample from a class of strictly stationary nonlinear spatial processes which include in
particular the spatial bilinear and spatial Volterra processes and non linear random fields which
satisfy the geometric-moment contraction condition, and we establish the asymptotic normality of

the spectral density estimate.

2.3.1 Asymptotic normality of stationary nonlinear spatial processes

We have, instead limited ourselves to nonlinear processes (X (t)),.,« which can be defined as

t)+ Y Wi(t),t ez, (2.3.1)

r-0
where (e(t));c;« is an independly and identically distributed random fields, W, (t) (r = 1) is a
function fi(e(t —1),....,e(t —r —Vv)) of (e(t)),czq,V is an arbitrary vector but all component are
a fixed integer > 0. We assume that £ {e (t)} = 0,var {e (t)} = 0% (0 < 0. < ), E{|e (t)["} < 0
for some p > 2, E{W, (t)} =0 (r > 0), and that there exists a vectors of sequence {g.,r = 1} of
real numbers such that

> [rf [ge| < 00 and E{|W; (t)['} < Mg[*,r =1,

r>-0

where M is denotes a finite positive constant, independent of r; and ¢;,7 =1, ...,d.

Spatial bilinear processes

In two dimensions, we shall focus our attention on (SSBL,) models defined by matrix form as

X (t) = B(t)e (t) + A(t) X (t —e1) + B(t) X (t —ey). (2.3.3)

where X (t), A(t),

B(t (t) are defined in the Appendix 2.1 and e; = (1,0) and e; = (0,1).
Then, we can write

de
.3) in representation form as

t)+iWr (t)

r>0

) an
(2.3

where
Wy (t) = 07T (t) Be(t — 1),
and n = (1,0, ...,0)". It is also shown that
(We (8)] < M(C () [|[ T2 ()| + D (8) | 77712 (1)) lle(t — 1) -

where C(t), D(t) and 177" (t) are defined in the Appendix 2.2, from which by a suitable choice of
{gr, (r = 0)} , we can establish the conditions in (2.3.1) .
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Spatial Volterra processes

Let (X(t))¢cz2 be defined by

X(t) = {Z(k) Vi (ay, .oup) [ [ et - uj)} , (2.3.4)

where Vj (ui, ..., u;) are the kth-order Volterra kernels and } ) is over all u; € 5[0, oof, where
the coefficients V}, are symmetric functions of their arguments, ¢ is an arbitrary but fixed integer
> 2, and (e (t));cz2 is an i.i.d random field. Without any loss of generality, we can assume that in
relation (2.3.4).

Then we can write (X (t)),cz in the form (2.3.1) with

W, (t) :Z{ * V;C(r) (ul,...,uk)l:[e(t—uj)},

k=1 j=1

where W, (t) is a function of {e(t —1),...,e(t —r)} and } ) isoverall 0 <u; = ... 2wy =T,

and
q

E{W, (t)} < Mg; where g, = Z {Z(k) ‘Vk(r) (uy, ,uk)’} .

k=1

In fact, if we assume that E {|e(1)|4q} < 00, then E {(W, (t))4} <E {|e(1)\4q} g} and we need
to specify that for r = 1, _(r172)3gs < co.

Remark 2.1 Note that if in general, we can assume that relation (2.3.1) for d = 2 holds with
E{[W: (t)]’} < MgE for some p > 1 such that Y-, (r172)*ge < 00, then one can show that the
right side of (2.3.1) converges a.s. This result follows from the fact that if we write

AN:{ZWr(t) >6}7

r~N
where € is an arbitrary number > 0 then for N = (Ny, Ny)

P(G AN) < ip(AN)

N=m N=m

Mii@—ﬂ) as m — 0Q.

N=m r=N

IN
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Asymptotic normality

For the sake of simplicity, we restrict ourselves in this section to the study of the sampling properties
of fn(A) (ie. p=2) as

( w(bny @ h) cos(h.A), (2.3.5)
\h|<l

where h.XA =h1. A1 + ho. do,w(bny ® h) = w(by, .hy, by, .hs) for every (h = 0) and
= IN|! Z X(t)X (t +h) and C(h) = C(=h), (2.3.6)

Remark 2.2 If E{X(t)} # 0 we replace X (t) by X (t) — X (t) where

X = [N Y X(t)

and the corresponding analysis of fx(X) remains unchanged, asymptotically.

Theorem 2.1 Let (X(t)),c52 be a nonlinear strictly stationary spatial processes satisfying the re-
lation (2.3.1) (d = 2), and w(x) is continuous function in [—1,1)°. Then

L ((INFox )2 [fn(X) = E{fu(M)}]) = N(0,03) as N — oo, (2.3.7)

where
o3 = Kf*(\),K = / x)dx if A # 0, £,
and

K= 2/w2(x)dx if A =0, +m,

Corollary 2.1 Let the condition in Theorem 2.1 hold. Also let for some g > 0,k, > 0,limy_ (1 —
w(x))/ |x|* = ky, and assume that Y . | |h[”|C(h)| < co for some p > 0, if we choose w(x) ~
IN|Y @) 10g(IN), where p > q and w(x) ~ |N|Y™ when p < q, then

£ ((IN1on))"* (I (W) =F(N)) = N(0,0%) as N — o,
where o3 is as defined in (2.3.7).

Corollary 2.2 Let fn(A) be as defined in (2.3.5) and let the condition of Theorem 2.1 and Corollary
2.1 hold. Then for any (X) and (v) where (\; # vi,i = 1,2), then (IN||bn])"? [fn(A)—F(N)] and
(IN] \bN])I/ 2 [fx(v)—f(v)] are asymptotically independent, with zero mean and asymptotic variances

2 2 -
oy and o, respectively.
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2.3.2 Asymptotic normality for random fields under GMC condition

Most of the asymptotic results developed in the literature are for strong mixing random fields
and random fields with quite restrictive summability conditions on joint cumulants (see Rosenblatt
(1985)). Such conditions seem restrictive and they are not easily verifiable. In this fact, we employ
the GMC as an underlying assumption for our asymptotic theory of spectral density estimates.
Let (e(t))ycze be an i.i.d random fields and let X (t) = G(...,e(t — 1),e(t)), where G is a meas-
urable function such that (X (t)), ;. is a proper random field. Then the process (X (t))czq is causal
in the sense that it only depends on ¢ = (...,e(t — 1),e(t)), not on the future innovations. To

establish an asymptotic theory for fx(A) define as

NN =5 > Clh)yw(by © h)e ™, (2.3.8)

|h|=Xin

where a(h) satisfied (2.3.6), we shall adopt the geometric-moment contraction (GMC) condi-
tion. From a finite realization {X (t),t = 1,...,N} of a random fields (X (t)), 54, let X' (N) =
G{...,e¢/(=1),€'(0),e(1),...,e(N)} be a coupled version of X (N) and (€' (t)),,« be an i.i.d copy of
(e(t))seza - We say that X (N) is GMC(a), o > 0, if there exist C' > 0 and 0 < p = p(a) < 1 such
that, for all N € N¢,

E{|X'(N) - X (N)["} < CpN. (2.3.9)

Note that under GMC(2), |C(h)| = O(p/®!) for some p € (0,1) and hence the spectral density

function is infinitely many random differentiable.

Lemma 2.1 Assume (2.3.9) with a = p for some p € N. Then there exists a constant C > 0 such
that for all 0 <t <X ... 2 t,_4,

lcum (X (0), X (t1), ..., X (t,_1))| < Cpltv—1l/IPe=1)],
Lemma 2.2 Let sy € N¢ a vector of sequence satisfy sy < N and by, = o(sy,),i = 1,...,d and

Ya(A) = g > w(bn ® h)cos(h.A)X (u)X (u+h). (2.3.10)

|h|<in

Then under GMC(4) we have

SN 2

D Ya() = E{Ya(N)}]

u=1

~ |SN| |bN| 0'2.
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Theorem 2.2 Consider (X (t))gcze € L for some § > 0 satisfies (2.3.9) , by, = o[(log N;)**/° /N;].

Then
(IN| a2 [ (A) = E{fn(A)}] — N (0,0%(N)) (2.3.11)
where
PON) = {L+9(20). + AL [ Wia)da
and )
W(a) = @) /w(x)e"x'o‘dx
B 1, if A = 27k,
1A) = { 0,  otheruise.

2.4 Bispectral density estimates

In this section, we study the asymptotic distribution of certain estimates of the bispectrum. This
estimate would have distribution which tend to complex normal distributions under certain condi-
tions. The first condition involves a uniform summability condition on the first six cumulants of a
random field obtained from the original random field by projecting on a Borel fields. The second
condition and much more intuitively meaningful, involves the strong mixing condition.

We define the bispectral density function as

1
(27T)2d

fg(Al, Ag) = Z Cg(hl, h2)€7i(h1)‘1+h2)\2), (241)

hy,hoeZ4

Ci(hy, hy) :/

™

/ 6i<h1'>\1+h2')\2)f3<)‘17 )\Q)dAld)\Q

where C3(hy, hy) fulfils the symmetry relation (1.5.5).
It is easy to see that a natural estimate of f3(A1, A2) is not consistent. In order to solve this

problem, we have:
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Definition 2.1 A real function w(xi,X3), is called a symmetric bispectral estimating kernel ift

(i) for any e > 0, there is an M (€) such that for all M > My and uniformly in N; > M,

[2Nl& Zzhl ec'd w?(bny ® hy, by ® hy) <,

(11) w(x1,%X3) < My < oo for all —0o < x1,X2 < 00,
(111) w(xX1,X,) = w(Xg,X;) = w(—X1,Xy — X1),

(iv) for any € > 0, there is an Ms(e) such that for all M > My and uniformly in N; > M,i =
1,...,d, and in hy,
bl D Jw(hy, by ©hy)| <,
[hy|-Min
(v) for all fized numbers a and ¢, and any fired M > 0, and for any € > 0 there is an No(e, M, a, )
such that for all N > Np,

|bN|2 Z w(bny © hy + abn, bn © ho)w(bx © hy, bn © hy + ¢bn)

[hy |,|hy = Min

- Z w*(by ® hy, by © hy)| <,

[hy|,/hy |2 Min

and
bnl| > wbn©hyabn) — Y w(bn ©hy,0)] <,
[hy |=Min |hy |[XMin

From the above definition we can define the estimate fsn(A1, A2) based on bispectral estimating

kernel as follows:

fan(A, Az) = L Z Cs(hy, ho)w(bny ® h, by ® hy)e (R1-Arthede) (2.4.2)
|hy[,|hy[ =N
where
Cs(hy, hy) = S Z X (t)X (t+h)) X (t+hy), (2.4.3)
teDn

and Dy, = [—mln (O g h(2)) N; — max <0 B h(Q)ﬂ, and /\51), /\52),2' = 1,...,d are on the

P A P A

triangle with vertices (0,0), (,0), (3%, &) (see Terdik (2000)).

L Cyr : the n-dimensional hypercube centered at the origin with sides of length 2M parallel to the n axes. The
dimension n, will be obvious from the context. Also let C; denote the complement of Cps in Ry,
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2.4.1 Asymptotic normality under a uniform summability of cumulants
condition

Let (e(t))yczq be an i.i.d random field, T be the back shift operator defined as T~ 'e(t) = e(t + 1),

and define a real strictly stationary random field (X (t)), 54 as X (t) = G(T'e(t)),t € Z? where

(G is a Borel measurable function. Let
Xie(6) = E{X (8) e (6 K)o e (64K},

where Xy (t) is the projection of X (t) on to the Borel filed Bf'f generated by (e (t — k) , ..., e (t + k))
and define

r®m) = E{X(t)Xc(t+h)},
r&0h) = E{X(t) X (t+h)},

Theorem 2.3 Let (X (t)),.zq be a strictly stationary random fields with E{X (t)} = 0, E{X" (t)} <
00, cumulants up to sizth order absolutely summable and w(x1,X2) is a symmetric bispectral estim-

ating kernel. Then
1 .
NP [bre| [fan (A A2) — B { fane (A1, Ao)}] =5 X 43,

where X and Y have zero mean, and the following variances:

i)

1 w
2 _ 2 2
X =y = 2 (2m)d

if (A1, Aa) lies inside the region one and not on its boundaries.

F)fF(A2) f( AL+ Ag),

ii) and if we include the boundaries

% = (;l)df(M)f(Az)f(M + A2)[80x, + On,] + A+ B,
A

_B’

Oy =



41

A = S fA)S(A2) f (AL 4 A2)[(1 4 0x,-x,) (1 + Oy v2no—2m + O2xi1a0-2x) + 40a,],

B = o WS (A + A)[56s, + 63, (14 0x,s)]

w = /U) 0 X dX , Wy = // Xl,Xg XmdX27

)
{ 0, otherwise

x = (m,..,m),d— dimension.

2.4.2 Asymptotic normality under the strong mixing condition

Let (X (t)),cze be a real 6th-order weakly stationary random field, and S, 5" be two sets of indices.
The Borel fields B(S)=B(X (t),t € 5) and B(S")=B(X (t),t € §’) as usual are the o-fields
generated by the random field X (t). Consider the distance d(S,S’) between the set of indices S
and S’. The random field (X(t)), ;. is said to be strong mixing if

sup  |P(AB) — P(A)P(B)| < ¢(d(5, 5")),

A€eB(S),BeB(S)

for any two sets of indices S and S” with ¢ a function such that ¢(d) — 0 as d — oc.

Theorem 2.4 Let (X(t));cpa be a strong mizing weakly real random field with E{X(t)} = 0,
E{X2(t)} < oo, cumulants up to sizth order absolutely summable, w(Xy,Xz)is a symmetric bispec-

tral estimating kernel, there is some 6 > 0 such that for an, fx and oy

{[(IaN|-|6N| )20 M} ZE{‘ (M}—%), (2.4.5)

where UJ.(N) defined by (2.7.25) . Then the result of Theorem 2.3 holds.

Remark 2.3 If (X(t));czq be a stationary random field, then (2.4.5) becomes

(ol 5] B { o} —o.
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2.5 The fourth-order cumulant spectral density estimation

Let fi(A1, A2, A3) the trispectral density function defined as
fan e ) = g > Cu(hy hy hg)em 2=, (2.5.1)
h]_,hg,h3€Zd

where

C’4(hl: h27 h3) - /

™

/ / e/t Aitha Aaths As) £ (X)) Mg, Ag)dA1dAzdAs.
We construct an estimate of the fourth-order cumulant as follows (see Rosenblatt (1985)):
¢y(hy, he, hy) = 74(hy, he, hy) — 7(hy)7(hy — hs) — 7(hy)r(hy — hs) — 7(hs)7(h; — hy), (2.5.2)

and we can shown that (2.5.2) is an asymptotically unbiased and consistent estimator of ¢4(hy, ha, hy).
Then we define an estimator for (2.5.1) as
1

f4N(A1, )\2, Ag) - (27r)3d Z 64(1’11, hg, hg)lUN(hl, h2’ hg)e_i 22:1 hj-)\j, (253)
hj,h h3

where wn(hy, he, h3) = w(bny @ hy, by © hy, by © h3) and w(xy, X2, X3) = w1 (x1)wa(x2)ws(x3) and

w;(x),i = 1,2,3 be a bounded continuous function defined on [—1,1]* with w;(0) = 1.

2.5.1 Asymptotic properties under a uniform summability of cumulants

condition
Let
YNALALA) = D X (0) X (u+51) X (u+82) X (u+85) wn(sy,s2,85)e Zm15%, (2.5.4)
S1,82,83
and
N*

9L Az, Az) = [N TVN(AL Ao, Ag), (2.5.5)

u=1
where (A1, Ao, A3) € 73 N* — oo, N} = o(NN;) as N; — oo.
Consider v the collection of two partitions A and B defined as
A={(u+sj,v+h;),j=0,..3}
B={(u+sp,u+s;),(v+hy,v+h)) (a+sy,v+h,) (u+s3v+h,},

where sg = hg = 0, and define

D={u,v,s;;h;uv=1 . N"

r= 77

§j}7 hj‘ 2N, j= 17273} (256)
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Lemma 2.3 Suppose that (X (t)),czq be a weakly stationary real random field with a zero mean and

cumulants up to eighth order absolutely summable. Then for all

var{g(A1, Az, As)} ~ [N*| Z Z C (v1)...C (va) wn (s, s2,83)wn(hy, by, h3)€7i2?=1(sj7h")'>‘j;
v D
as N — oo.

Proof. The proof follows from Lemma 3.1 in Kim (1988).
By permuting the indice of h in A partition, and for a fixed w € Sy, where Sy is the permutation

group on four letters, let
I/(C«J) == {(u + Sj, vV + hw(]))y] - O) ceey 3a S = hw(O) = 0}7 (257)

then a direct calculation gives us

4
Z H C(ll -V + sj—hw(j))wN(sl, So, s3)wN(h1, hg, hg)e_i Zg:l(sj_hj))\j (258)

D j=0
(27r)4d |N*| /UA(Alv AQa A?n (JJ)
1% 7
where
( AL+ A+ X3)f( A1) f(A) f( X)W, if N = /\w(z)(l =1,2,3)
TN+ X2+ A3) f( A1) f(X2) f(Ag)W, if w;j(0)=0 (j =1,2,3)
VA(AL, A2, Az, w) = and A; + Ao + A3+ A; =0,
)\l = )\w(l)(l # jal = 17273)
. 0 otherwise,
and
Wi = ///w2(x1,x2,x3)dx1dX2dx3.
Finally, define
UA(Al,AQ,Ag) = Z UA<A17A27A37M)7 (259)

WESY

We can realize by B partition, v(«, ) in the following way

v(a, B) ={(u+sag,u+s,, ), (v+hgo),v+hgq)), (0+sae),v+hge) (ut+ss), v+hgs)t,

(2.5.10)

(1)
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where (o, ) € Sy x Sy. By a direct calculation we can show that
D ClSag = Sa)C () — haa)C(u = v + sa@)—hge))C (1 — v + Sas) — hy(s(2.5.11)
D

XwN(S17 S2’ S3)’L{]N(:If]_17 ].’127 h3)€—’L Z?:l(sj_h]’)-kj
(2m)* IN*| vp (A1, Az, As, @, )
1%

)

where (a, 8) € Sy X S4, (A1, A2, A3) € 73, and the values of vg(A1, A2, A3, a, 3) are given similarly
in Table I in Kim (1988).
Let (o, 8) = (o, 8) iff v(a, B) = v(a/, 8') (¥ is an equivalence relation) and let G = Sy x Sy be

the collection of equivalence classes. As a consequence define

UB(A1, Az, Az) = Z UB(A1, A2, Az, v, ), (2.5.12)
(a,B)e@

where the summation is performed over any representative of each element in G.
Define

72(hy, hy, hy) = |ZX X (t+hy) X (t +hy) X (t + hy), (2.5.13)

teDn

) 1 Y Y 1 Y

where D,,, [1 — min(0 S h(2 h ) ..y ; — max(0 hY 2),hz(~3))} ,n; = min(N;, Nf) and N} —

00, N = 0(N;) as N; — 00. By the absolute summability of cumulants up to 8th order, we obtain
E{ry(r,s,t)} —ry4(r,s,t) =0 (|N*|_1) JE{r(e)r(s—t)} =0 (|N|_1) .r,s,t ez

and
var {?4(1', S,t)} =0 (|N*|_1) ,var {?(r)?(s _ t)} =0 (|N|_1/2) 7

where 77(.) define similarly as (2.3.6) . Indeed define

(A9, Xg) = Z 7a(hy, hy, hy)wn(hy, hy, hy)e™ i1 by A;
hj,ho hg
G2(A1; Aoy Az) = — Z 72(h1)72(hy — hg)wn (hy, hy, hg)e_i23:1 by A;
hy,hs,hs
G3(A1, A, A3) = — Z 72(hy)7s(h; — hs)wy(hy, hy, hg)e—z‘zﬁzlhj A
hi,ha,h3
/g\4(A17 AQ) AS) == - Z ?Q(hg)?z(hl — hQ)wN(hl, 1’127 h3)6_i2?:1 hj >‘J

h; ,hj hs
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then we can write (2.5.3) as

1

4
(27)3d Zgj()‘l» A2, A3), (A1, Az, A3) € e, (2.5.14)

j=1

f4N(A17 AQ? A3) -

Lemma 2.4 Suppose that (X (t)),czq be a weakly stationary real random field with a zero mean and

cumulants up to eighth order absolutely summable. Then
UCLT‘{/g\l (Al, AQ, Ag)} ~ Ua'r{g()\l, )\2, )\3)},

and
var{g;(A1, A2, A3)} =0 (|N*F1 \bN|73) , (1=2,3,4) as N — o0
uniformly for all (A1, Az, A3) € 7.

Theorem 2.5 Suppose that (X (t)),czq be a weakly stationary real random field with a zero mean

and cumulants up to eighth order absolutely summable. Then, for all (A1, A2, X3) € 73
E{fan(A1, A2, A3)} — fa(A1, A2, A3) as N — oo,

and there exist bounded functions va(A1, A2, A3) and vg(A1, A2, A3) defined on w3 so that

(QW)QdUGT{f4N(/\1, A2, /\3)} ~ 1}()\1’—)\2’);3) as N — oo,
IN*| |bn]
where ’U()\l,}\g,}\g) = ’UA()\l,)\g,)\g) + UB(Al,AQ,Ag) and ’UB()\l,)\g,)\g) =0 Zf ()\1,)\2,)\3) € ’Tl'3

have no submanifolds®.

Corollary 2.3 Under the conditions of Theorem 2.5, fin(A1, A2, A3) is a consistent estimator of
f4()\1, )\2, )\3) fOT’ all ()\1, )\2, )\3) € 7'('3.

2.5.2 Asymptotic normality under the strong mixing condition

In this section, we obtained the asymptotic normality of fourth-order cumulant spectral density
estimates under the strong mixing condition for all frequencies including those lying on what have
been called submanifolds. This result is sufficiently complete to indicate what happens in general,

in the following section.

2 For (A1, A2, A3) € w3 a submanifold is defined to be any subset {j1,....js} of {1,2,3} so that Y7 |, Xj, = 0 for
1< s <3, where x =y means x; = y; (mod 27) ,i =1,...,d.
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Theorem 2.6 Let (X(t)),c5q be a strictly stationary strong mizing random field with zero mean,
and assume that condition 2.1 is satisfied for p = 4. Then
(IN] [bn]*) 2 [fan (A1s A2, As) — E { fan(A1, Az, A3)}] are jointly asymptotic normal with zero mean

and covariance given by

2m) 72 f () S (1) f (tag) f (1ay + pro + pi3)
> (s = Ar)n(ps — A )n(ps — Az

T
X /w(xl,xg,xg)w(le — X1,, X, — X7y, X7 — X7, )dX1dX0dX3),
where the sum is over all 4! permutation T = (11, T, T5,Ty) of (1,2,3,4) with the convention that
Py = —y — Py — Mg, Ay = —A1 — Aa — A3, X4 = 0, and
0 if \i # 27k with k an integer i =1, ...d
n(A) = .
1 otherwise.
Remark 2.4 we can show that for a weight function w(x) satisfying 3 — 4 in condition 2.1, there

(si)

exists a sequence of weight functions w, " satisfying 3 in condition 2.1 such that

ZaSle( joh) - wy, .. h, ), as N — oo.

s=1

2.6 General p-order case

The asymptotic normality of the general p-order spectral density estimate under a limited number
of cumulant summability assumptions and the strong mixing condition for all frequencies have been

a submanifolds given in the following theorem

Theorem 2.7 Let (X(t)),czq be a strictly stationary strong mizing random fields with zero mean,
and assume that condition 2.1 is satisfied for p > 4. Then

(IN] |bN|p*1)1/2 [fon(A1s oo, A1) — E{fun(A1, -, Ap—1) }] are asymptotically jointly normal with
zero mean and covariance of the submanifold is given by

(2m)"P) (N o) Hf VS [T, — Ar,)

T j=1
X /w(xl,...,xp1)w(XT1 — X7, . X, — X7, )dX;...dX, 1],

where the sum is over all p! permutatz'on T = (11, ....T,) of (1,2,...,p) with the convention that

= - Z?;i Aj, 1, = Zp | 1y, X, = 0, and 0 is the Kronecker delta function.



2.7 Proof

Proof. Theorem 2.1
Write

-1/2 In N-h
Tn=7"2 (m) Z w(bn © h) cos(h.A) Z X(t)X(t+h).

’bN’ h=1 t=1

Then it is easy to see that
£ ((N] o) [N =B { (A1) R£(T — E {Te}).

Moreover, if we define

Y () = 772 |bn |2 i w(by ® h) cos(h.A)[X (t)X (t +h) — C(h)],
Un = 72 |bn|? ZN: w(bn ®h)cos(hA) D [X(6)X(t+h) - C(h)],

Then we can show that
E{Uli} — 0, as N — oo.

Therefore, we conclude that

L(Tx—E{Tn})~ L (erW imt)) .

From condition of Theorem 2.1 and lemma 1 in Chanda (2005), we show that

N
var {|N|1/2 Z Y~ (t)} — 03,
t=1

where 03 is as defined in (2.3.7).

Write
VI () = 72 b |2 XN: w(bxy ® h) cos(h.A)[Xm (t) X (t +h) — Cr ()],

h=1

47

(2.7.1)

(2.7.2)

(2.7.3)

(2.7.4)

(2.7.5)

where for m = (mq,mp),m = my — o0, but & — 0 as N — 00, Xpn(t) = > im0 Wi (t) and

Cm(h) = E {Xm(t) Xm(t + h)}. Write

N
T = N7 v,
t=1
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then
E{Tn — T} < 2(var(Sy) + var(Ss)), (2.7.6)
where
|N‘ 1/2 N IN
S, =2 (—> D ) w(bn © h) cos(h.X) [ X (6) X5, (t + ),
bl t=1 h=1
|N| 1/2 N IN
Sy =712 (—> > ) w(bn © h) cos(h.A)[X, (6) X (t + ),
bl t=1 h=1
and

Xn(t) = X(t) = Xm(t) = Y Wj(t)

jrmt1
we can establish that var(S;) — 0,var(S;) — 0 as N — oo (see Chanda (2005)). From (2.7.6),
we conclude that

L(ITn — E{Tn}) = L(IN — E{TIR'}), (2.7.7)

In other words,
Nlim var {IN'} = Nlim var {In} = o3,

First note that (YN (t)),cz2 is a |kn| —dependent strictly stationary random fields. Choosing
the vector of sequences {pn; N = 1} of integers such that pn = 2kx — 00, B — 0 and z’j_z — 0
as N — oo. Let N = pn © tN + 7w, Where tn, = [N;/pni] < Ni/pni and 0 < rN < pN. Set

SOpPN—kN

Z= Y. YR(t),1=s=tn,
t=(s—1)Opn+1

sOPN

ViR= X W),
t=sOpNn—kn+1

and
N

RE= > Y1),

t=pNnOIN+1
Since % :tN—l—;—z < tn + 1, we have that ity — 00 as N — o0, pn = 2kN,{Z;‘N;1 =< s <IN}

and {Vs“f\T7 1 <s < tn} are two i.i.d. sequences of random fields. Moreover

tN
ar{|N|1/QZv;1:I} = NI [tn| var {7} (2.7.8)

s=1

IA

M |IN|™ [tn| [ x|
M |kn|

—0as N — 0.
|pN|

IN
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The first inequality is the direct consequence of the fact that

kn
var {|]€N|71/2 Vle} = var {|/<:1\1|1/22:Y1{In (t)} — 03 as N — oo.

t=1

Similarly we can show that

var {\N]_1/2 Rﬁ} — 0 as N — o0, (2.7.9)
and that
t
N| /2 NZm = IN|"'k zm 2.7.1
ar S IN[TV2Y "zt = NI [ var { 2} (2.7.10)
s=1

nN
= N in| [nn]| var (!nN|_1/2ZY1{T“ (t))

t=1
— 03 as N — oo,

where we write ny = pn — kv — 00 as N — oo,
{IN|""tn| Inn] = (1 = |rne| /IN]) (1 = |kn]| / [pn]) — 1 because < tn — 0 and ]]j—z — 0 as
N — oo} Since {Z]; 1 ='s X in} is an i.i.d. sequence of random fields, and (2.7.10) holds true,

we must have that

tN
c (rN\W Zz;?N) — N(0,03) a5 N — oo,

s=1
then
In
Z(Z;HN‘F )+RN_ZYN Jtin © (pn — kN) + 1IN @ kN + v = N]
s=1 t=1

and relations (2.7.8) — (2.7.10) hold. Therefore, we finally conclude that
N
L (erl/? PR (t)) — N(0,03) as N — oo, (2.7.11)
t=1
The result of Theorem 2.1 will now follow immediately from (2.7.2), (2.7.7) and (2.7.11).

Proof. Theorem 2.2
Let p = p(4), wn, = w(bn®h) cos(h.A) and

-1/2 [ I~ -1 N
hn(A) = (|N”bN| (Z Z Xuthw,+ > Y X(u)X(u+h)wh>.

h=0u=N-h+1 h=—In u=N+h+1
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By the summability of cumulants of order 2 and 4, ||Ax(A)|| = (IN] |bx|)"Y20(|bn]). Let gn(A) =
SN, Yu(A). Then

gn(A) = E{gn(N)}

(N i) [ (A) = B ()] = P o

+hn(N) — E{hn(N)}.  (2.7.12)

For h € 2% let X (h) = E{X (h)|e(h—k+1),...e(h)}, where k; = ky, = [clog N;] and ¢ =
—8/1og p. Let Yy := Yo(A) be the corresponding sum with X (h) replaced by X (h). Observe that
X (n) and X (m) are i.i.d if [n;—m;] > k;;i =1, ...,d. and Y, and Y, are i.i.d if lu; — v;| > 2by, + k;.
The independence plays an important role in establishing the asymptotic normality of gn(A) =

SN | Yu(A). Then [lgn(A) — Gn(A)]| = o(1) since

yu(,\)—f/u(,\)H < (zw)—dz|wh|HX(u)X(u+h)—)?(u)X(Hh)H (2.7.13)

h=bn
= O(|bn| p7%).
Let
'QZ)NZ. = Nz/(log Ni>2+8/5>p]\h = [ ?\é?)b}\é:’)] and an; = [ }\égb%?’]
Then
PN,AN — 00,qn, = o(pn,),i =1, ...,d. (2.7.14)
2bn, + ki = o(qn,) and kn; = [N;/(pn; + qn;)] — oo.

Define for 1 <r < kn — 1,

L, = {jENd3(r—l)Q(pN‘HIN)‘i‘lﬁj5r@(pN+QN)—QN};
S = {JeN":rO(pn+an) —gn+1 = <10 (pn +an)},
Siw = €N knO (pn+an) —an+1 <j <N},

and let U, = ZjeLrYJ' and V, = Zjesr Y;. Observe that Uy, ..., Uy and Vi, ..., Vi -1 are iid. By

Lemma 2.1 and 2.2, we have

PN
2= BUH = |5 05— B (%)) | + Olln 4o~ | 2715)
j=1
~ (ol o] 02) "7 + O(Ipx] || /%)

~ (|pN| |bn | 02)1/2 )
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Similarly,
1/2 a
IVa = E{VA} ~ (lanl ol 0%) "7 4+ Ollan] one] o#/%).
By (2.7.14)

var {Vi+ ..+ Vixd = (Jkn| = D)V = BV + Vi — B {Vin HI?

= O(lkn| [gn | [on]) + Ol(Ipn] + lgn]) [on]]
= o(IN| [bn]).

From Theorem 3.1 in Shao and Wu (2007), we can prove that
(INT1on]) ™2 [gn(X) = E{gn(M)}H — N (0,0%(N)).

if
kN
(IN[ o) 2> " (U = E{T1}) — N (0,0°(N)) (2.7.16)
r=1
where [|Uy — E(U,)|| = o ((|N\ |bN|)1/2k;;,1/T) and 7 = 2+8/2. So (2.3.11) follows from (2.7.12)
Proof. Theorem 2.3

Define
Vi = N2 o] [fan(Ar, A2) — B {fan (A1, A2)}]

Vi = |:|bN‘ /(271')2d |N|1/2:| Z e—i(hl.)\1+h2.)\2)w(bN ® hl, bn © hQ) (2717)

[hy |,|hy| 2 Min
D X (t) X (t+hy) X (t + hy) — r3(hy, hy)],

we can prove that for any € > 0, there is an My(€) such that for all M > My, N; > M,i =1, ..., d;
OZ(VN — VNM) < €,

and if we replace the X (t) in Vnas by Xk (t) to get Vl\%\}, we show that o?(Vna — Vl\(rlﬁ&) can be
made smaller that any previously chosen € > 0 uniformly in N for k sufficiently large (M being
fixed) (c.f. Van ness (1966)).

Write

N
US) = ReVy = INI723 "y (),

t=1

N
UN = Im V) = IN|72S T Z0M (g
t=1
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where

Yk(N,M) (t) _ (|bN| /(27T)2d) Z COS(hl.)\l + hg.)\g)IU(bN ®hy, by ©® hg)

hthleN

X [Xic (6) Xic (6 + hy) Xic (6 + ho) — 7<% (. ),

and Zl((N’M) (t) is as above except with a sine instead of cosine. For any two real parameters x; and

Ko We have

UN(KZl, :‘12) = IilUl(\IR) + HQUI(\TI), (2718)

with U™ (8) = [N] Y2 (k.Y ™ (6) 412 280™ (1)), Note that the U™ (t) is a 2M [An|+2 K|

dependent random fields. This prompts one to use the following lemma

Lemma 2.5 Let {Vx (t)} a sequence of d(N)-dependent strictly stationary random fields, and
a) d(N) — o0 as N — o0,

b) d(N)/N — 0 as N — oo,

c) E {|VN (t)|2+6} < 00, for some 6 > 0,

d) t(N) is an integer-valued function

1. t(N) — o0,
2. d(N;) = o(t(N)),i =1,...,d,
3. t(N) =0o(V;),i =1,....d.

e) for Cn (.) the covariance of sequence Vi (t) , 3 n <y, [T, || Cn (h) = 0(2_ nj<t(nv), O (h) E(N))
as N — o0,

) 5 { S v 0| IN NS ) O ) (14/2) — 0 05N — oc, i 1(N)s =
(t(N),...,t(N)) d- dimension.

Then Y"1, Vx (t) is asymptotically normally distributed with zero mean and variance (27)* |N| fx(0),
where fx(A) is the spectral density of Vn (t) .
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To apply this lemma to (2.7.18), put

Vn(t) = USM (),
N) = 2MAy + 2k,
N) = M|An|?,

5 = 2,

~

(
(

conditions (a), (b), and (d) of Lemma 2.5 are certainly satisfied. Condition (c) is satisfied since

there is a constant K so that

E{W®)'} < (bnl"/INP) > [w(bn @ hy, by © hy)...w(by @ hy, by © hg)| K.E {X*2(t)}

‘bllv""'hSIleN
< 20" K.E{X"(t)} /(N| |bn]*)?

< 0.

Condition (e) involves

) H\h\CN /Y On () MinP (2.7.19)

[h|<MiE =1 |h|<M12,
d
= IN| > (JTInil /M. inl?)COn (h) /IN] ) O (h)
[h|<MZ =1 |h|<Mi%

But

> COn(h) = IN| > E{Vx(0)V(h)} (2.7.20)

| <M, b <M,

= (bnf*/2m)*) > > [mrcos(hyAg +hyAg) + Ao sin(Arhy + Aphy)]

[h|<MIZ by ||y |2 Min

wbnx ©hybx ©hg) > [krcos(hy.Ar +haAg) + kpsin(hs Ay + hyXs)]

|h3|7‘b4|leN
w(bn © hg, by © hy)[rg(hy, hy,h, h + hg, h 4+ hy) — r3(hy hy)rs(hs, hy)],

and this from earlier results converges absolutely uniformly in N. Therefore provided |N| fx(0) # 0
and since Hf:l |hi| /M |In|? converges to zero, (2.7.19) tends to zero. Finally condition (f) leads to
4

Eq Y Wn(t)p /MINIINP( D On(h)? (2.7.21)

1=t<MI% |h|<MI%
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by (2.7.20) , [N| M |i|” (Zjj<arz, Orv () ~ [N| 7" |ong| . Define

JOd(N)
t=(j—1)©d(N)+1

where 2uy < MI1%/d (N), and

D 0 if j=2uy+1,, MI% =2uy ®d(N),
2j+1 — min[M2;,(2u .
’ S N Il (8 it M2, = 2uy © d (N,
and
b { 0 if § = 2ug + 2, M1 =< (2ug + 1) ® d(N),

2j+2 —

! letjMAN Vn (t) if MZN = (2up +1)d(N),
then

Z W (t) = Z Dos 1 + Z Doj,

1=<t=<MI% 1xj=uo+1 1xj=up+1

By Minkowski’s inequality we have

1/4 14
> W) < E{( > D2j1)4} +

1=t<MI13 1=xj=uo+1

1/4
E{( Z Dzj)‘*}] .

(2.7.22)
From (2.7.21) and (2.7.22) and Lemma 4 in Van Ness (1966), that condition (f) satisfied.
Lemma 2.5 states that

Re V& +iIm V%), -5 X1 1y (¥ as N — o0,
where X](\l/;) and YJ\(/}( ) are jointly normal with zero mean and
E{(x{P?} = ot
K {(YJ\(/}())2} = Ok
E {(Xz(\lf)yz&))?} = TkM,

as k — 00, 0er — Ors Oonr — Oagrs and rer — 7. We will be illustrated by just one such
calculation. Instead, the calculation of 0%, for the first of the fifteen terms as listed in Table III
in Rosenblatt and Van Ness (1965), we have

b |2
< | N)Ld) Z Z (IN| = |¥])/ IN|] cos(hi. A1 + ha.Ag) cos(hg. A + hy. o)
hy|,..

(27
g XM |y | <N

'LU(bN ® hl, bN ® hg)w(bN ® hg, bN ® h4)7“(h1)7“(y — hg)T’(h4 — h3)
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This behave like

b 2
7(0) o > cos(hy A +hyXg) cos [hy.(Ar + Ao) +hy g

( )3d
[hyl,...,[hy [ X Min
w(0, bny ® hy)w(—bn ® h3, 0)r(hy)r(hy),

using the modified continuity conditions (see Van Ness (1966)), Using trigonometric identities we
have (i.e. M = [—M, M]%)

0
(g( ):Zd Z [coshy.Aj coshg. Ay — sinh;. A; sinhy. Ag)]
T by ey <M
[coshs. (A1 + Az) coshy. Ay — sinhs.(A; + Ag) sin hy. g

|bN|2 U}(O, bN © hg)’LU(—bN © h37 O)T(hl)r(h‘l)

A (/M w(0, h)dh> Z [(coshy. Ay coshy.Az) .7 (hy)r(h2)dx, 2,0,

(27T)3d
|bl HQQBOO
= ot OO a0,

Proof. Theorem 2.4

Let
Va(Ar, Ao) = N2 o] [fan (A, o) = B {fan(An, X)}],
then
Re VN(Al, Ag) = HbN| /(27T)2d |N|1/2] Z COS[(hQ - hl).Al + (hg - hl))\g] (2723)

1=h;,hz,h3=N

w(bny © (hg —hy),bn © (hg — hy))[X (hy) X (hy) X (h;) — r3(hy — hy, hy — hy)],

and Im Vy is as above except with a sine instead of cosine. Denote by [I4, I3, I3] the parallelepiped
of indices {(h(l) h? h(?’))\hgl) € Il,hz(?) € Ig,h§3) € I3} where I, I, and I3 are intervals. Next

i 2% Y

choose vectors of sequences {an}, {fn} and {yn} of positive integers so that
2, aNi?ﬁNi77Ni oo i =1,..,d

3. I, = 0(51\@)
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then it will be shown that we can replace the sum >, p 1 ;. _n in (2.7.23) by

ZZ { (50 )} (2.7.24)

where B](-Z,M) = [(ji = 1)(bn, +7n,) + 1, Ji(bN, +7N,) —Yn,)sJi = 1, an,, i = 1, ..., d and still get the
same asymptotic distribution. Having done this, the sum (2.7.24) will be shown to asymptotically
normally distributed. Further, the domain summation- hypercube such that the main diagonal of
a cube with sides parallel to the z,y and z axes and of length N; — 1, runs from the point (1, 1,1)
to (NV;, N;, N;). Then the sum (2.7.24) is over ay, smaller cubes whose main diagonals lie on the
above diagonal and whose sides are the length by, — 1 and are parallel to chose of the large cube.
These smaller cubes are separated by a distance ~ ..

We begin the first step by noting that by the properties of w and the summability of the

cumulants

COU[VN(Al,Ag),VN()\g,)q)] = [|bN|2/(27T>4d] Z |N|71 CN(hl,...,h4,y)

by ... hy] [y | <N
671(25:1 hi.)\rZ?:?, hi.)\i)_w(bN ® hl, bN ® hg)w(bN ® h3, bN ® h4)
Am2(0,hy)ma(hy, y)ma(y + hs,y + hy) }15 + O(|bn]),

Lh y), and Cy, RV, ..., n®

1 YA 1 ?

where C(hy, ..., hy,y) = HC’ (hY

[

y) is defined similarly that

in Rosenblatt and Van Ness (1965). Also, 0 < Cy,/N; < 1,i =1,...,d and |[N| ™" Cn(.) — 1 as
N — oo. The fifteen terms which sum to give the expression {msy(0, h;)my(hy, y)ma(y + hs,y +
hy)}15 is given similarly in table IIT in Rosenblatt and Van Ness (1965).

Lemma 2.6 If the hypothesis of Theorem 2.4 hold

i) \w O by — 00 as N — oo,

©
ii) ok IMIN 0 as N — oo,

Then

o[lbnl? /(27 N2 Y ZZ [ (Ni)})ei((lmhl)u1+(h3h1)u2)
i=1

fhyl..[hg =N j=1 B

U}(bN @ (hg — h1>, bN @ (hg — hl))[X (hl) X (hQ) X <h3) — T3(h2 — hl, h3 — hl)]

— 0 as N — o0.
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Proof. To proof this Lemma we use Lemma 1 in Van Ness (1966).
By lemma 2.6, it remains to be shown that the sums of the form (2.7.24) tend to a complex

normal distribution in distribution. To do this define

UJ(N) = (lbw| /(2m)%) Zﬁ [B(N) ) B ~; )} {k1 cos[(hy — hy)p; + (hs — hy)p,] (2.7.25)

=1l 7 Ji

+rgsin[(he — hy)py + (hs hl),u2]}
w((hy —hy) ©bn, (hs — hy) © bn).[X (hy) X (hy) X (h3) — r3(hy — hy, hy — hy)],

where x; and k9 are any two real parameters. By previous results we known that since by © S —
00,

Jim_var(U/ 55]7?) = 6%,

for 03 = K10% + Koo? where 0% and o7 are defined as the variances of the real and imaginary parts.
Then we show that
ZU JIN"2 oy — ZU(N (Jan] [Bx)! 20

r=1
Set

Grn(z) = P{UMN /(lan| 18x) 205 < a3,

we see that the distribution we are interested in tends to the convolution
GinN * .o % Gop N (T)

which tend to N(0,1) (see Rosenblatt (1985)).
Proof. Theorem 2.5

Under the condition of Theorem 2.5, we can shown that

(27)*[fa(X: Ao, Aa) = B {fan (A1, A, Ag))]
= S Culhy, by, hy) {wn(hy, by, hy) — 1} Simmd

by |, by, /b <N

+ Y Ci(hy by hy)e SN 1O (N7 o] 7?)
[hy |,[hy|,[hs|~In
— 0as N — o0.

From lemmas 2.4 and 2.6, as well as (2.5.9) and (2.5.12). Moreover, by computing vg(A1, Ag, Az, @, ),
we can show that vp(A1, A2, Ag) > 0 if (A1, Ag, A3) have submanifolds and that vg(A1, A2, A3) =0
if (A1, A2, A3) have no submanifolds.
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Proof. Theorem 2.6
From (2.5.3) we have

f4N()\1, Az, >\3) = hN(A) - hN(>\1)gN(>\3, >\2) - hN(>‘2)gN()\17 >\3) - hN(AS)gN()\% >\1),

where A = (Al, AQ, Ag)

hn(A) = 2 S" Fa(hy, hy, ha)wn(hy, by, hy)e Zm
h; ho haeZd

1 ~ i3 e -
AN = g O (i hy)e Tt <103

hiGZd
1 - ZiSS3 hoas - .
gN(Ai’ )‘j) — W Z 712(hi — hj)wN(hl, h2, h3)6 >i-1 h]'AJ’Z,j = 1, 2, 3,
h; h; €74

we will further let

hn(A) = hn(A) = hn(A) = hn(A) — E {hn(A)} (respectively for hn(As)),
IN(AL ) = gn(A Ay) = In( i Aj) = gn( A Ay) — E{gn(Ai, Ag) i, = 1,2, 3.

Then

finOAL A2, A3) = () — An(A)Tn (A3, A2) — i (A2)Gne (A1, Az) — B (X3)Tn (A2, A1)(2.7.26)
—hn(A)gn(As, A2) — hn(A2)dn (AL, Az) — hn(As)gn(Ag, A1) — D1 + D2,

with

D1 = hn(A)n(As Az) + hn(A2)dn(Ar, As) + hn(As)gn (A2, Ar),
D2 = hn(A) = An(A)Tn(Az, A2) — i (A2)Gn (A1, Az) — e (A3)Tn (A2, A).

We can prove that in general (see Lii and Rosenblatt (1990)), for p > 2

— O(|bn| 7/*™) if p even,
in(A) = (I N‘_(p_g) /Z P (2.7.27)

O(|bn| ) if p odd,

-1
var (hne()) = O (NI o) ")
respectively for An(A;), and for p > 3, 4,5 =1,2,3,
_ O(|bx|"/*™) if p even,

Ais Aj) = _ 2.7.28
gN( J) { O(|bN|( p+1)/2> lprdd, ( )
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var {gn (A A)} = O ((N] |ewf) ")
Therefore, in (2.7.26) we have

var {ﬁN(A)} =0 ((’N‘ ‘bN,S)A) )
var {%N()\Z)} =0 ((|N| |bN|)71> )
Tin(A) = O(1), (2.7.29)
var {gn(Ai, A)} = O <(|N| |bN|3)_1) ’
N ) = O(lbwl ™).

Hence we see that in (2.7.26) the magnitude of the first seven terms are (|N| |bN\3)71/2 each while

the magnitude of D1 is bounded in probability by

(INT 1o )™ = o (INT o) ).

The nonrandom part D2 is approximately E { fan(A1, A2, A3)} because

1/2

[N o)™ (IN] o) ]

|E{fin(A1, A2, A3)} — D2| < |E{hn(A1)gn(Az, A2)} — An(A1)Gn(As, A2) + B {hn(A2)gn (A1, Az)}
— hn(A2)gn (AL, As) + E {hn(As)gn (A2, A1)} — hn(As)Tn (A2, Ar)|
|cov {hn(A1), g (A3, A2) | + [cov {hn(A2), gn (A1, As) ]

+ [cov {hn(A3), gn (A2, A1)}

— O (IN|bn]?) "

~ ((|N| |bN|3)‘1) .

IN

We have asymptotically,

Jin(A1, A2, Az) — E{fun(A1, Ao, Ag)} = ’}VLN(A) — %N(Al)gN(A& A2) — %N(A2)§N()\1, A3)
—hn(A3)Tn (A2 A1) — i (A1) ( Az, As)
—hn(A2)gn (A1, As) — hine(As)gn (A2, Av),

we will show from Theorem 6 p 156 in Rosenblatt (1985), that any fixed finite linear combinations
of terms of the form An(A), An(X.) and gn(A, X.) with different weight functions, frequencies, and
real and imaginary parts is asymptotically normal with proper normalization, and the exact form

of the covariance is obtained in the same manner as Theorem 2 in Li and Rosenblatt (1990).
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Proof. Theorem 2.7
Consider that the weight function w(x) is a linear combination of product of functions of one
field, from (2.2.2) we have

m(v)
(AL o Apl1) = W S DS E O ) — 1 T T X (6 + huy2f]30)

|hj|le v 7j=1 h, u€Vj
p—1 .
x [T wi(bn @ hye 2=
j=1
where
N-in
IT x@t+h) | =N=2i"" > | ] X(t+ha) |, h,]=<Ix
huer t:lN+1 hUEVj
(AL, A1) = Z (_1)m(y)71 [m(v) — 1]! (2.7.31)
m(v)
—ihy Ay
X Z H 27rdm”J HXt+h xH(wu(bNQhu)e )
|, |=in 771 h,ev; u
m(u

where w; = 1, A\g = hy = 0,(27) ") = (27)% m(v;) is the number of nonzero elements in v;, and

v, ()\> W Z a H X (t -+ hu) H [wu(bN ® hu>67ihu.>\u] ’

equation (2.7.31) is the generalization of (4.4.2). Just as in (4.4.2), we write

3

~

(v
v ) = Y17 o) = 10 [, (80 +3, )] 27.:32)

v 7=1

Where gyj (A) = ng (A) - E {ng (A)} a‘nd gl/j (A) = E {ng (A)}'
In the expansion of the product in (2.7.32), consider a generic term that has r1g’s and ryg’s with

r1+712 = m(v). Without loss of generality we consider the partition v = {vy, ..., vy i Vrj i1,y ooy Vg }

such that m(v;) = m;,i = 1,...,7 correspond to r1g’s, m(vy, i) = ki@ = 1,...,75 correspond to
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rog’s with > m; + > k; = p. If 0 is in one of the v;’s, i = 1,...,71, say vy, then the magnitude of
the variance of this term is, from (2.7.27) and (2.7.28)

1 1—1[( 1 )1—2[ 1
IN] [bre|™ IN| bre|™ ) 3\ [ |52

=2 i=1

= |N|—r1 |bN|—1+[m1+...+mr1—1+r1—1] |bN|—2[[k1/2]+“‘+[k"2/2]]

<IN o] TP

where [z] is the largest integer less than or equal to . We know that from (2.7.29) that the order

: : : 1y -1
of magnitude of the variance when v has only one term is (|N]||bn|” 1) . Hence

NI o

NI~ o] 7

— [N fo] 0.

If ry > 2, similarly if 0 is in one of the v, ;’s, @ = 1, ..., 73, say v,, 41, then the magnitude of the

T1 2 T2 2
H ( 1 ) 1 H 1
: IN| |bN|mJ+1 ’bN’[ql/ﬂ—l e ‘bN’[qz/ﬂ

7j=1
<IN o

variance of this term is

and if r{ > 1
IN| ™" [on | P

NI fone|

= [N o 0

Hence we only need to consider those terms when r; = 1. Therefore, in terms of the random

part, (2.7.32) can be written as

m(v) m(v)
Fon (A, A1) = > (=1 m(v) — 1]! Z 3, N I 7.,

1]
=1

v

An argument similar to that given in Theorem 6 p 156 in Rosenblatt (1985), we define

m(v)
Y =370 by ol G, (A, ),

uj,pj j=1
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where p} is the exponent of by in variance of Sy and S3 according to whether 0 is in v; or not, and

_ ws : 1
gyj()\( ])’w(p])) — W Z H X(tj J _E H X +h(]

|h,|=In | huer; hyev;

wagpﬂ (bn © b)) Qv COS thf).Ag) + 3, sin Zhgj).)\fj) :

huel’j huel/]'

which asymptotically normal with proper normalization.



Chapter 3

Non-Gaussian estimation

3.1 Introduction

The methods of parameter estimation which are the Gaussian estimates are usually based on either
the covariances as Yule-Walker equation or the spectrum (see Rosenblatt (1985)). The idea of non
Gaussian estimation for random field by using not only the spectrum but the bispectrum as well
is readily extendible from times series analysis (see Terdik (2000)). In this chapter, we consider
a functional of the spectrum and the bispectrum for random fields depending on an unknown
parameter 0, and we give explicit expression for the asymptotic variance of this estimator who
calculated for both the case when the spectra are estimated by the peridogram and by the smoothed

periodogram. The consistency and asymptotic normality are proved.

3.2 Estimating a parameter for non-Gaussian random fields

Let (X(t));czq be a weakly stationary random field with a zero mean and finite p—th order moments

(p > 2) on Z“. we shall assume the following conditions.

Condition 3.1 Besides the stationarity of p'" order, we shall assume that cumulant function of

p — th order of the random field depends on a real unknown parameter and

o0

Z (1 + |hj|) |CP(h17 "'7hp—1a9)| < OO,j = 1727 P L.

h]_,...,h:,,,l

63
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Thus the spectral densities

P=lp .
Sp("‘)la"'awp*l;e): d(p— 1) Z Z C hl,... p— 1,9) —i2 o1 hy 7,

hi€Z¢  h, €74

exist up to p'* order, where w = (w1, ...,wy) € ™ = [—m, 7| X ... X [-7, 7, d—times.

Condition 3.2 The unknown parameter 6 belongs to a compact set © C R%. Suppose also that the
spectrum Ss(w, 0) and the bispectrum Ss3(w1,ws, 0) are twice continuously differentiable with respect
to 8 € O. These derivatives are continuous and bounded above and suppose further that they are
bounded away from zero in modulus with respect to the frequencies of the sets A% and A to be defined

below.

From a finite realization {X(t),t = 1,...,N}, we can write

Ln(w) = (2m) 7N dy(w)dn(w),
In(wi,ws) = (21) 24 N| ™ dn(w: )dn (w2)dn (@ + wo),

at the standard Fourier frequencies, where

N d
dn(w) = ZXte’it"", tw = Ztiwi,
t=1 i=1

is the (finite) Fourier transform of the data.

We are going to apply some well known methods for the estimation of the spectral densities.
We shall deal with the discrete Fourier frequencies 1, = ( 113/11 N kayie k=1, ,Nyi=1,..,d.
Consider the following smoothed estimate for the spectral density

Son(w) =NIT D Win(w—pm) Ion (), w € (3:2.1)

where the weights Win(w) are defined by a real valued, even weight function W;(w) of finite support
with [ W(w)dw =1, and f W2(w)dw = |Wy|*> < oo, and Win(w) = Wi (32) lbin| ", bin —

R4
0,NObin — o0 as N — oo. It is easy to show that the first order moments of Son(w) is (see

Brillinger (1965))

E{Sin(w)} =83(w) + O(|bu]) + O(IN| " [bine] ), (3.2.2)
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uniformly in w, if w # 0mod(27), and the covariance

Cov {SQN(wl),SQN(wQ)} = |N|_1 [84(w1,w2, —(.dg) + ||W1|| (Sg(ah) (323)

|b1n|
O(Ib1n])) (Besy s + Gy 1) + O(N| 2 [bane| ),
uniformly in w;, ws, where
. { 1 if w;=0 mod(2r),
0 otherwise.
The method of smoothing the biperiodogram is analogue of the previous one. A consistent

estimate of the bispectrum is

San(w,w2) = N2> >~ Won(wr— i, wa—n) Tan (i, 1), (3.2.4)
k 1

where (p, i) = (&, %)k = (k1, ..., kq), and 1 = (4, ..., lg) i.e. ki, l; = 1,..., N;, are the Fourier fre-
quencies, wy, w,€ m, the weights Won(w) are defined by a non-negative symmetric weight function

Wa(w1,ws) of finite support with [ [ Wy(wy, ws)dwidws=1, [ [ Wi (w1, ws) = |[Wa|* < oo, and
RY R Rd Rd

Won(wq, wsy) = WQ(bm, 0 ©2.Y | hon| 7% bon — O, N ® bin — 00 as N — 00, bin = bon and there
exists the limit limpy, o b;? =p,t=1,..d.

The following expansion shows that the smoothed estimator is asymptotically unbiased
E {53N<w1, w2)} :Sg(wl, wz) + O(|b2N|) + O(|N|71 |b2N|71). (325)

Put w3 = —w; — wy, A3 = —A; — Ay, the cross-covariance between the smoothed periodogram and

the biperiodogram is

Cov {SQN()\),SgN(wl, w2)} = |N|71 {55()\ —Wq, — Wy, —)\) (326)
1%
+ |;22N| 252 Wk ) S3(Wh1, Wht2) (Oatwr + Or—w;)
W20

| Z [S2(wi) S3(A,0)+O(Jban )]0, } + O ((IN] [bin]) ™ )

|sz
where the constants Wi, and Wy, are defined by
Wia(p) = //Wl(wl)Wg(p O wy, ws)dwdws,
Rd R4

Wy = /Wz(wl,—wl)dwl,
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and Wis(p) = 0 if p = 0. The covariance according to the smoothed biperiodogram is

Cov {S3n (A1, Ay), 53N (w1, wsy) } (3.2.7)
= NI {S6( A, Ap—w, —ws, Ag)
W, 3
|62:’| [ Z (S (2<)\m)54(>\m+1, A2, _‘-‘-’n+1) + O(|sz|)) 5>\m—wn

m,n=1

_|_

3
Z (S3(Ams A1) 93 (A2, —Wny1) + O(|52N|))5>\m+z\m+1—wn]

+|Z§)| [U(w, \)+U (A w)] + | 2N| [SQ( )(Z(SQ()\m)gAmH>
<Z Sz(wm)dme) + O(|ban]) Z 5Am5wn]
+:g;”|2 [Sa(w1)S2(ws) G2 (Wi + wa)+O(|ban|)]

3
X Z 5)\1_‘4-’711 (5)\2—wm+1 + 5>\2—wm+2)} + O(|N‘_2 |b2N|_2>7

m=1

3
where U(w, A) = Sy(w1,wa,ws) > (S2(Am) + O(|ban))x,,. 1., and
m=1
Wy — / / / Wa(Ar A)Wa(Ar + Ao, w)d A dAgdw,
Rd Rd R4
Let us suppose that the spectrum and the bispectrum of the random field X (t) depend on a

parameter # which is not a multiplicative! one. Put

S2(:u1ka 0) — S2N(M1k) ) ?
S2(:“1k> 0) ’

|S3<:U’2m7 Qay, ‘9) - S3N(M2m7 M21)’2
Sa(Hom: 0)S2 (g1, 0)S2(om + oy, 0)

Fon (b, 0) = (

:F3N(H'2ma Koy, 9) =

and define

b bon|?
QN( p1| 1N| Z ng 1k7 QI| 2N| Z f3N(M2m7/J’2170)7 (328)

ﬁl d 6(21 d
Bk EAT (Mom o) EAG

I The parameter 6 is multiplicative if So(w,c) = cSa(w,0) and Ss(w1, wa,cl) = cS3(wy, wo,0) for any positive
real number c.
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where A; C [0,1/2] is a finite union of closed intervals, Ay be some finite union compact domains

lying inside the open triangle A with vertices (0,0), (,0), (3, %") and the frequencies s, are
equally spaced in 7 by bandwidth b;n as well as frequencies ji,, by bandwidth bon, p1 € (0,1),¢1 =
1 — p1, and constants 6‘11, 53 denote the d-dimensional product Lebesgue measure of A{ and A4,
respectively. A multiplicative parameter can not be estimated by minimization of (3.2.8), we

consider the estimate fn for the unknown parameters 6 obtained from minimization of the function

(3.2.8).

Remark 3.1 The role of 3, and B is that both sums in (3.2.8) are averaged since the numbers of

terms are about to ‘ﬁ ;‘ and

|b2 |2

Denote A and A), the sets with origins A; and A,, respectively, and with property that they are

invariant according to transformations

Z(wth) - (w27w1)7 75(““7""2) :(wlvl_w2 —(.c)1)7

T3(wi,wy) = (1 -wi—wy,wsi), Ty(wi,wy) =(1—wi,1—wsy).

Actually A} = AjU{w =1 — A |X €A, }. For technical reasons we shall consider an equivalent form
of (3.2.8) as

p‘blN‘ (]|52N|2
QN( Z ‘FQN p“lk’ 19d Z f3N(:u2m7 Har, 0)7 (329)
P €AY (Mo to1) EAY

where A] = A} x ... x A}, Ay, = A, x ... x Ay, d—times, p—p1 andq—g,l.

2

Remark 3.2 There will be some advantage of changing the domains of summations in (3.2.8) in to
the symmetric ones because the results of summations over set A}, of the expression of the complex

valued bispectrum will then be real.

Remark 3.3 For a Gaussian random fields this method based on the first term of Qn(0) for es-
timating parameters. When a process is non-Gaussian, we suggested applying both the second and
the third order periodogram in (3.2.8) (see Brillinger (1975)).

Let 0y be the true value of the parameter § € © and put

Q(@) =P fg((.d, QO)dw + Q/ fg(wl, Wwa, 00)dw1dw1, (3210)
Af A3
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where

Sy(w, B) — Sy(w, Bp)\>
Sg(w,e) ’
|53(w1,w2,6) - 53(w1,w2790)|2
52("‘)17 9)52((.02, (9)52((.01 + W2, 9)

Fz(wyeo)

-7:3(4017602,30) =

3.3 Consistency and asymptotic variance
In this section we shall give conditions under which Qn(6) = Q(f) and O —= 6y as N — co.
Lemma 3.1 Suppose that conditions 3.1—3.2 are satisfied and |S3(wy,ws,0)| < oco. Let Cn =

(Cnyy s Ony), Ve = (Vg -, Vivy) are two wvectors of sequences of positive integers where N; =

1,2,..., Cn, — 0 and Vy;, is increasing. Then for any € > 0

sup  [San(Cn ©P) — Sa(Cn O D) = op(|Vn| [bane] ™2 IN|7H/2),
p:O """" VN
W [Sin(Cn © 6, On ©p) = S5(Cx 0 a4, On )| = oyl Vil oo ™ NI
q,p=0,..., N

Proof. The proof of this Lemma is similar as Lemma 98 in Terdik (1998).

Our theorem concerning the consistency is the following

Theorem 3.1 Suppose that (X (t))ieza satisfies conditions 3.1— 3.2 with p > 2, |S3(w1, w,, )] < 0o
and that both Fo(w,0y) and Fz(wy,ws, bp) have finite total variations on A{ and A4, respectively.

Suppose moreover that Q(0) has a unique minimum at 0y and is continuous in 6. Then
On(0) 5 Q(0) and O - 05 as N — o,

where Qn(0) and Q(0) are define by (3.2.8) and (3.2.10), respectively. Moreover, On is an asymp-

totically unbiased estimate of 6.
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Proof. We have
on®) - Q) = PN S (e 6) — Pl 0)] +

2d
H1k€EAY
p b
| 1N| > Falpi bo) — / Fa(w, bp)d
B1k€EAY

2
qlb
+ ’1;1;’ Z [«7:3N(M2ma Moy, 9) - «7:3(ﬂ2m7M21> 90)]

(Homsto1) EAL

2
q|b
+ |1;1;'| > -7:3<,u2m7,u21700)_Q/ Fa(wr, wa, fo)dwsdw,
(Bom o) EAG A3

= Qv+ QN +oN + oy
From lemma 3.1 Qg) is O(|bin]|) and Ql(é) is O(|ban|?). Consider

@ _ Plbin| [S2(H11; o) — San (fr1x)] [252(p1e, 0) — San(pqxc) — S2(pyx, 00)]
O ="%0 2 S2(fin 0 |
2 2(M1k7 )

€AY
By lemma 3.1
. —€ —1/2 —-1/2
sup |5 (s, 00) — Son(pa)] = 0, ([ban| a2 N %)

for any € > 0, and under the condition of the theorem Ql(\lI) %, 0 as N — oco. The same argument
shows that Ql(\?) L, 0as N — oco. As the final step, we use lemma 1 from Brillinger (1975), which
contains general conditions for the consistency of an estimator based on some functional.

Under the regularity conditions above fn tends in probability to the true value 6y, and for

N;,i =1,....d sufficiently large:

Do) = Zan)] + 20w On-t0

0N = —UN —UN N — Uo),

00 o—o, 00 oo O0? o0,

where |05 — On|| < ||On — Go]| . Since O minimizes Qn(0), it follows that %QN(Q)IHZQN = 0. Thus
tm—to=— Lo ) [Zew® (3.3.1)
A 6% " 0=0% a0~ 6=t0 ) o

We obtain

0

%QN(H) = 2d 1 b1 | Z < 1/2 (115, 0 FQ(Mlka9)> A, ) (3.3.2)

Hi €AY

2
qlb
+ |1;1d\T| Z (2f§/2(ﬂ2m7#217Q)B(MZm"um’0) - f3(ﬂ2m7M2179)0(M2m7M2179)> )

(Homstor) EAY
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where

0
A(“lkae) = %log(SZ(lulbe))?
0
B(M2m>ﬂ2179) = %S3<_M2m>_lu2179)7
0
C (o, oy, 0) = %log(SZ(:UZm?e)Sz(IUQI?9)52(M2m+1U’21?9)>'

Further algebra leads to the expression for the second derivative:

82
@QN(H) = % {/, A(w, 0)A'(w, 0)dw

+ [ Fl(w,0) [Aw,§) — 3A(w, ) A'(w, §)] dw

- Fon(w, 0) [A(w, 0) — 2A(w, 0)A'(w, 0)] dw}

—i—% {/ -7:3N(w1,w2,9) [C<w1;w27‘9) - C(‘-‘lew%e)cl(wlaw%eﬂ
A/

—|—293N wl, wa, 9) [B(Wl, Wa, 9) — 23((4)1, Wwa, Q)Cl(wl, Wwa, 6)])d601d£02

// 2l (w1, we, 0) B(—w1, —ws, 0) B (—wy, —wg,H)dwldwg} + O(|Bnl),

where
o2
Alw,0) = o log(S2(w, 9)),
o2
B(‘-‘-’hw%g) = wSZS(_wh_vaQ)a
o2
C(wl,wg,H) = 892 log(52<w1,9)52((.02,49)32((4)1—f-(.«Jg,Q)),

53(0017002, 9) - S?,N(wlan)
Sa(w1, 0)Sa(wz, 0) Sz (w1 + ws, 0)’

g3N(w17w270) =

3
F(wl,wQ,G) = HSg(wk,G),w1+w2+w3:0.

Now we denote (g—:gQN(H)‘ ) of (3.3.1) by 23/2(90), and we obtain the asymptotic variance for
=03
the estimator On. N
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Lemma 3.2 Under the assumption of Theorem 3.1

) = %(60) (3.3.5)

82
lim P(— 0
m P(5a@n(®)|

N—oo

p /
= F/ Alw,0)A'(w, 0)dw

12d// w1,w2790) (—w1, —wa, ) B'(—w1, —ws, ) dw:dws.

Let us turn to (5Qn(6) 5,) Of the vector defined by 6 — 0. It influence the limiting behavior

o=
of the estimator On

p|bin]
Qin(0o) = 2d11? Z ]'—211<12 (1116, ) Al 11, Oo)

HiEAY

2q |52N|2
+ 194 Z G3N (Ham» Hars 00) B(Ham, tar; 00)-
(Hom o)) EAG

Denote the asymptotic variance of Q1n(0g) by
¥1(0p) = l\%linoo IN|var {Qin(0o)} - (3.3.4)
Therefore the variance of Q1n(fp) will be given as
Y1(6) = X2(6o) + X3(6o) + 2X95(00)-

The asymptotic variance of the second order term Y5(y) has been given by

. 54 w )\ -A 90) ’
22(90) = 22(d ) [/// N 52 90 82(A QO)A(W,Q())A (A780)d(.t)d)\

+2WAl* [ A(w,f0) A (w, ) dw

Ay
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From the application of the asymptotic covariance (3.2.7), the variance of the third order term is

Y3(00) = 22d {////, N “Hwr, wa, 00) T (= A1, =2, 00) Ss(w1, wa, = A1, — A2, ws, o)
X
B wl,wQ,HO B/ )\1, )\2,00) dwldw2d)\1d)\2

+9W23//// A17A2>90> (A37 _w2760)53(A17A2790)83<A37 _w2790)
! ><A/

B(>\17>\2,90 BI(>\3, w2,90)

+F_ (w2 + A37 —Ws, 90) B (Ala AZ) 90)54()\17 >\27 —Wa, 90)S2<A37 00)

XB (.«JQ + A3, —Wwsy, Qo)B/(Al, AQ, Qo)dA dAQdeg

+6Wao / // 1AL A, 00)T (0, —w3, 00)Sa(A1, Az, 0,00) Sa (w2, 0)
! XA/

XB(Al, AQ, 90) (0, —Wwa9, HO)dAldAdeQ

+9WQOS ( 00)/ 8_2((.01,00)B<—wl,0760>B/(—wl,0,90)dwl

A / / Ywr, ws, Bo) B(— wl,—wz,e())B'(—wl,—w2,90>dw1dw2},

where set A’ is the orthogonal projection of A% onto [0,27]¢. The covariance between the second
21 g proj 2

and third order terms is

Yo3(0o) = 2d-119d 112d {/// —w, ~Wws,00) 55 (W, 00)95(w, —w, —w1, —ws, b)
/XA/
B( wi, w2,00 (w 90)d(—01d0)2dw

+Wia(p // —Ww1, —Wws, ) S3(—w1, —wa, b))
/ ><1&/
B( Wi, wg,Ho)A(wl,Qo)dwlde

WZO// wl,O 90)33(001,0 90) ( wl,O,HO)A’(wg,HO)dwldwg}.
/XA/

Consider the following functional (depending on the periodogram of the second and the third

orders of the smoothed periodograms) taken at Fourier frequencies p, 4y, k,1=1,....;N

Sa (e, Oo) I2N(Mk)1
Al 0
SN ZA[ Solineb) | e

2q [53(Mk7 Hy, 00) - I3N(uka :ul):|
n 3 B, 1, 0o).
124|N* 4 Ss (1t 1,00) et o)
B k1) EAG

RN<90) —
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Lemma 3.3 Under the assumption of Theorem 3.1 the asymptotic variance
RCIES Jim INJvar {Qin(6o)} (3.3.5)
of Rn(0o) is given as the sum
Yr, (00) = X, (00) + Xr,y(00) + 28, (00).

Remark 3.4 The asymptotic variance Xg,(0o) of Rx(6o) is the same as X1(6y). Then Xg,(00), Xrs(0o)
and Xg,,(00) are the same as 3o(6p), X3(0o) and X93(0y), respectively, where all constants depending

on the weight functions W's are changed to 1.

There is an interesting case concerning the statistic Ry if one shows down the convergence by

bandwidth by = biny = ban and considers the vector

RT\I(GO) _ p‘bN’1/2 Z |:52(Mk,¢90)—12N(Nk):| A(uk,eo)

d—1
2 Y SQ(Mkaeo)
2q [bn| ' [Sz(uk, 1, 00) — [3N<ukvﬂl):|
+— B I 79 .
124 |N]| Ss(fyes i, 0o) (i o)

(k1) EAG

Then the asymptotic variance Xg: (0o) of Ry(6o) is the same as 3o (6y).

3.4 Asymptotic normality

Theorem 3.2 Suppose that conditions of Theorem 3.1 are satisfied with p > 1. Then the estimator
On defined by (3.2.8) is asymptotically Gaussian:

VIN[(Ox — o) -2 N(O, £1(60)Z5 () as N — oo,
where Yo(00) is defined by (3.3.3) and X1(0y) by (3.3.4).

Proof. To prove Theorem 3.2, we use Theorem 3.1, lemmas 3.2, 3.3 and Slutsky’s argument.
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Chapter 4

Wavelets and random fields

4.1 Introduction

Wavelets are mathematical functions that allow us divide data into different frequency components
and then study each component with a resolution appropriate for its overall scale. They have ad-
vantages over traditional Fourier methods in analyzing physical situations where the signal contains
discontinuities and sharp spikes. Wavelets were developed independently in the fields of mathemat-
ics, quantum physics, electrical engineering, and seismic geology. Interchanges between these fields
during the last forty years have led to many new wavelet applications such as image compression,
turbulence, human vision, radar, and earthquake prediction.

In recent years, wavelet methods are advocated as an alternative to Fourier methods for the
analysis of both deterministic and nondeterministic signals. It is generally believed that the wavelet
methods are more appropriate for the analysis of nonlinear and nonstationary signals. But, so far
the methods that have been proposed are restricted to the analysis of continuous random fields. In
this chapter we develop an approach to deal with the discrete random field and wavelet transforms,

and then study the probabilistic structures.

4.2 Multiresolution analysis in R?

Multiresolution analysis in R? provides an efficient framework for the decomposition of random
fields. Recently, a considerable attention was given to the properties of the wavelet transform and

of the wavelet orthonormal representations of random fields (see Antoine et al. (2004)).

[6)
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Definition 4.1 A d-dimensional multiresolution analysis (MRA) is an increasing sequence of sub-
spaces {V;} C L*(R) defined for j € Z with

LCcVaiocVycVvi .

together with a scaling function ¢ € L*(R) such that

(i) UjezV; is dense in L*(R),N;ezV; = {0}.

(ii) X(t) € V; if and only if X(27t) € V.

(ili) X(t) € V; if and only if X (t—27k) € V.

Definition 4.2 For any x = (1, ..., 74) € R%, a function ®(x) € Vi which satisfies
O(x) = > m2"’®(2x — k),

kezd

where
o(x) = [J o(). (4.2.1)

and

oxs) = Y b V20(2a; — ki),

ki€Z
is called a scaling function (or refinable function). If {®(x — n)},cze is an orthonormal system,

then ® is called an orthonormal scaling function, and the wavelet function is given by
T, (x) = Y gl"22d(2x — k), u=1,..,2° - 1,
kezd

where

d
Ik Hhki when ue {l,...,d},
i=1
H Gk, H hy, whenu € {d+1,...,2% — 1},
€A, igA,

where (Au)uE{dJrl 7777 0a_1y forms the set of all non void subsets of {1,...,d} of cardinality greater or

equal to 2.
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Remark 4.1 We can proceed analogously to construct wavelets using products of one-dimensional

functions as

() [ [ o) when we{l,..,d},
U,(x) = i=1 (4.2.2)
H (x;) H ¢(z;) when u € {d+1,...,2¢ — 1},
i€ Ay, ig Ay

where

V(@) = Y g6 V2021 — k).

ki €Z

Usual choice for a two-dimensional scaling function or wavelet is a product of two one-dimensional

functions as the following example

Example 4.1 The scaling function has the form

O(z,y) = hu2®(2x — k, 2y — 1),
where
(z,y) = o(7)d(y), (4.2.3)
and hyy = hihy. Since ¢(z) and ¢(y) both satisfy the scaling equation

$(a) =Y hiv26(2x — k).

Thus two dimensional scaling equation is product of two one dimensional scaling equations.

However, unlike one-dimensional case, we have three rather than one basic wavelet. They are:

() = @(x)e(y), (4-2.4)
VO (z,y) = Y(2)d(y),
VD(z,y) = Y(@)(y).

The generalization of the one-dimensional wavelet equation leads to the following relations:

W (zy) = Zg,ﬁ?b@(?x —k,2y —1),
O (z,y) = Zg,(;;)%b@x —k,2y —1),

where g;ﬁ?) = hiq, gfﬁf) = grhu, gfj) = Gri-
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Remark 4.2 In the wavelet literature, the reader may encounter an indexing of the multiresolution

subspaces, which is the reverse of that in definition 4.1
LcVicWwcV,C.. (4.2.5)

This convention (both have advantages and inconveniences), sometimes called "Daubechies” con-
vention, as opposed to "Mallat’s" convention in (4.2.5), is almost equally often used. however, the
family {®;1(t) = 292¢(27t; — ky, ..., 2t4 — ka),k € Z} is a basis of V; according to Mallat’s in-
dexing, while {®;1(t) = 27792¢(279t; — ky,...,27ty — kg),k € Z9} is a basis of V; according to

Daubechies’s indexing.

The approximation of a function X (t) on to a subspace V; is given in terms of scaling functions

X;(t) = > ajad;x(t), (4.2.6)

kczd

where «; x is the scaling coefficient at resolution j and translation k and
O;uc(t) = 272020ty — ky, .., 2084 — ka). (4.2.7)

Therefore, a function X (t) € L?(R?) can either be represented by a set of orthogonal scaling

functions as

X(t) =lm > ;u®;(t).

keczd

Definition 4.3 For each j € Z, the wavelet subspace W; is defined by
W; = span{¥;x(x) brez.

Since {V;,j € Z} are the nest subspaces, we can represent the subspaces V,_; as a direct sum

of coarsely approximated subspaces V; and its orthogonal complement subspaces W; as

Vi=Via® W,
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V=B, =V, & W, & W,

=V B,

The relationship between scaling and wavelet function spaces

This shows that the projection of a function X (t) on to subspaces W; gives the detailed inform-
ation lost in approximating the function over the subspaces V;. An orthonormal basis can now be
constructed for W; subspaces. A collection of all such basis functions for subspaces {Wj, j € Zd} ,

form a new orthogonal bases for L?(R?).

Thus the same approximation in terms of basis function of W; is given by

2a-1

)?j(t) = Z Z Z 6j7k7quj,k,u(t)a

u=1 j=—00 kezd

where 3, , is the wavelet coefficient at resolution j and translation k and
Upen(t) = 2920, (204, — Ky, ..., 20tg — kg), for any u € {1,...,27 — 1}, (4.2.8)

Any square integrable function X (t) € L?(IR?), it can be written in terms of scaling and wavelet

functions as

2d_1 ]
Xt) =3 au@u®) + > ST Y B Vinalt), (4.2.9)
kezd u=1 j=—o0 keZd

and the coefficients {o; x} and { I6; j,k,u} are the sequences that describe the signal while the basis

functions are fixed.

Remark 4.3 The basis functions can either be orthonormal or just linearly independent. When
these are orthonormal, they fit into a general multiresolution framework. In other words, the mul-
tiresolution analysis provides a method for constructing a set of orthonormal function which form
a bases for L*(R?) space and satisfy the properties of a wavelet function. In this analysis functions

are approximated at different resolutions to give smoothed versions of a functions. The increment
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information lost while approximating a function at different lower resolutions can be studies using

wavelet coefficient.

Example 4.2 Let ¢(x) an ) (x) be the scaling and wavelet functions as associated with some MRA,
for each j, k,l, € Z, define

\Ilgh,il(:c, y) = 2j\IJ(h)(2j:U — K, 27y —1),
(0,9) = 2O =2y - 1),
(r,y) = 20D (g —k, 20y —1),

the collection {®; i (z,y),7,k,1 € Z} U {\Ifﬁl(x,y),j,k,l € Z,u € {v,h, d}} is an orthonorrmal
basis on R? satisfying (4.2.3) and (4.2.4). However, any function X (z,y) € L*(R?) can be written

in terms of scaling and wavelet as

= > @ik y) + Y Z > B W (2,y).

k,l€Z ue{v,h,d} j>J=—o00 k,I€Z

From Daubechies convention we can express any function ®;,(t) in the subspaces V; as a linear
combination of the basis functions {<I>j_1,k(t); k e Zd} of V;_; as

6) = 3 I on®; 1alt), (4.2.10)

keczd

where hy_on = [ ®;n(t)®5_;, (t)dt and Y-, 4 luc = 1. For a compact support wavelet basis, {h}
is finite length |N| (i.e. hy is nonzero in the interval 0 < k < N — 1 and zero outside the interval).
Since W; is also a subspace of V,_;, we can express any function ¥;, ,(t) in W; subspaces as a

linear combination of the basis functions {<I>j_17k(t); k e Zd} of V;_; as

Tinal(t) = Y gi0n®jn(t)u=1,....,2° — 1, (4.2.11)
keZd

where gl(:i)zn = [ Unu(t)®s ,\ (t)dt,u = 1,..,2¢ — 1. Many choices of hy and gl((u) exist which
satisfy (4.2.10) and (4.2.11). One such choice is by choosing coefficients {gl({u),u =1,..,2%— 1}

such that g, = (—l)kihl_ki. The relation between coefficients that gives the information about

smoothed (scaling coefficient) and detailed version (wavelet coefficient ) of a function at different
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resolution can be obtained by permultilying the conjugates of (4.2.10) and (4.2.11) with X (t) and

integrating with respect to t. Therefore, we have

_ *
Qjn = E P an®j 1k, (4.2.12)
kezd
_ E: (u)* _ d
6j7nvu - Ik-on¥j—1k, for u = ]-7 cey 2¢ — 17
kezd
thus
2d_1
_ (u)
Qjpn = E hn—okvj11x + E E gn_2k6j+1,k,u'
kezd u=1 kezd

Equation (4.2.12) indicate that all the scaling and wavelet coefficient at resolution (7, 7+1,j+2, ....)
can be obtained from a set of coefficient {hy_2,} which describe the wavelet basis and the initial
set of {a;_1x;k € Z}.

4.3 Random fields

Random fields have found numerous applications in diverse areas such as image processing (see
for example Jain (1981)), oceanography (see Sylvester (1974)), geology (see Harbaugh and Preston
(1968)), forestry (see Matern (1960)), turbulence (see Mandelbort (1975)), and geomorphology (see
Mandelbort (1975)). In previous section, a function X (t) is assumed to be an element of L?(R?).
In the case of random fields, all may not have sample paths on L?(RY). however, if X(t,¢€) is a
measurable function defined on R? x A (A is the sample space) and satisfies [ E{X?(t,€)} dt < oo,
then X (t,€) € L?(RY) with probability 1 in A.

If X(t) is a continuous parameter random fields and X (t) € L?(R?), then we have the wavelet

and scaling representations as

d_q

X(t) = Z Z Z Bj,k,quj:k,u(t)v

u=1 j=—o0 keZd

N

and

X(t) =lm > a;.®x(t),

keczd
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where 3 ,, and a;x are the new random fields defined as
;g = X(t)(pj’k(t)dt?
R4
S = | XOUnu(O)dt
R

In many practical situations it is required to analyses wavelet transforms of discrete parameter
random fields, for example, in digital image processing. In the next, we develop an alternative
procedure in which a continuous random fields is first generated by interpolation of the discrete
process under study that preserves stationarity, linearity and moments of the discrete process.

Let (X(n)),cz« be a zero mean discrete parameter random fields having finite power spectrum
f(A), where XA = (A\1,...,\q) € ™ = [-7, 7] X ... X [—7, 7], d—times. We now construct a new

continuous parameter random fields, (X (t)),cpa as
X(t) =) X(n)y(t—m), (4.3.1)
nezd
where 7(.) belongs to a family of scaling functions.
Lemma 4.1 Let (X (n)), ;4 be a zero mean stationary discrete random fields with spectral dens-

ity f4(X). Then the covariance C°(t,s) for random fields satisfies (4.3.1) and having finite power
spectrum f€(X) is given by

C*(t,5) = 32 CU) 3 A(t —n)y*(s —n 1),

1ez4 ncZzd

where C4(1) = E{X(n)X(1+n)}, and

FE) =o)L (=) 1), (4.3.2)
where I' (X) is the Fourier transform of y(t).
Proof. Straightforward and hence omitted.

Lemma 4.2 Let (X (t)),cga be a stationary continuous random fields satisfies (4.3.1) and having
finite power bispectrum f¢(A1, A2). Then
1

E{X®X(t+s)X(t+r)} = > Y E{XO)X(1+m)X1+n)}

nezZd mezd (27T)d

/ / T (AT (M) T (=Ap — Ay) x el mAtm=rds—miXe gy gy,
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and 5
feAL A) = ( (27T)d> L (=A) T (=X2) T (A1 + X2) f1(A, Xa), (4.3.3)
where f4(X1, A2) is bispectral density of the discrete random fields.

Proposition 4.1 From (4.3.2) and (4.3.3), we have

(X (t))epa s second order stationary whenever (X (1)), c,a is second order stationary.

- (X(t))iepa s third order stationary whenever (X (n)), c,a is third order stationary.

If (X(n)),czq s Gaussian f*(A1,A2) =0 and hence f¢(A,A2) = 0. (Gaussianity of X (n),cza

implies Gaussianity of (X (t)),cpa)-

If (X(n)) ez 5 linear random fields, then (X (t)),cga is linear random fields.

Example 4.3 let v(t) = H?Zl Sizflt)i), we have

d

=3 X HST tt__ngi)], (4.3.4)

nezd 1=1

For this choice of v(.), we observe the following
-T(N\) = (2r) %2,
- CO(r) = Free CU Ty B and hence , F2(A) = FI(A).

- E{XA)Xt+s)X(t+1)}=> 17> neze E{XDXA+m)X(1+n)}
[T, 2plend | T, santoneimeso | and hence f2(Ar, Ao) =f*(Ar, Ao).

w.(rifni) W.(rifnﬂrmifsi)

The above relation show that the covariance functions of the continuous and discrete processes
are related and the spectra ( power spectrum and bispectrum) of continuous and discrete random

fields are identical in the range.

Remark 4.4 1) Since for only v(t) = H?Zl %, T'(A) = (27)" Y%, it is evident from (4.3.2)
and (4.3.3) that for any other choice of scaling function v(t), the spectral density function and the
bispectral density function of continuous and discrete random fields are not identical, although they
preserve the two important properties of linearity and stationarity.

2) Any choice of scaling function other than ~(t) = H?Zl % result in a continuous
random fields which does not have the same properties as that of the discrete random field under
study. This indicates that the use of discrete random field itself as an initial set of scaling coefficients

to compute wavelet transform may not be an optimum procedure.
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Wavelet representation of discrete random fields

Let (X(t));cra be a continuous random fields constructed from a discrete random filed having zero
mean and finite power, and let {¥;x.(t),u=1,...,2" =1,k € Z%,j € Z} and {®;x(t);k € Z} be
multiresolution wavelet and scaling orthonormal bases. Further, let us assume X(t) € Vp, then
from (4.2.6), we have

X(t) = Z a0k Pox(t),

keZzd

where ok denote the scaling coefficient at zeroth resolution, given by
ok = X(t)@o#(t)dt
Rd
Substituting for X (t) in terms of X (n) by using (4.3.4), and rearranging, we obtain
Qo = Z X(n)bk_n, (435)
nezd

where the sequence (by,) is computed as
ben = (27)"/? / (=)™ AN, (4.3.6)

with ®(\) indicating the Fourier transform of ®(t).

The relation given by (4.3.5) shows how amenable it is to theoretically analyse a discrete random
field when these processes can be represented by expressions in closed form. The random field (by,)
can be precomputed for any particular wavelet transform and used in the analysis of discrete random
field. For orthonormal multiresolution scaling functions, Zﬁ(}\) is given by

(5J<A) = !
(2m

J

1 —i2 7 m.

7 157 2 e, (4.3.7)
j=1 mecZd

when j = 0o, ® () = ®(X). However, for large values of J, () = ®(X).

4.4 Covariances structure

4.4.1 Second order covariances

The second order properties of wavelet coefficients for continuous and discrete parameter random
processes have been studied in Dijkerman and Mazumdar (1994), Mary (1993), Tewfik (1992) and
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Subba Rao and Indukumar (1996). However, in this section, we obtain explicit expressions for the
second order covariances of discrete random fields.
The following lemma is an extension of the result obtained by Subba Rao and Indukumar (1996)

in one dimensional framework.

Lemma 4.3 Let (X(n)), . be a stationary zero mean discrete random fields belongs to Vo space
and let C(1) =: Cov{X (n) X (n + 1)} the covariance of the discrete random field. Then the covari-
ance of scaling coefficient at Zeroth resolution C§(1) =: E {O‘O,kaakﬂ} is

= > ) bwbiC(1+m—n), (4.4.1)

mecZd nezd

where by, defined by (4.3.6).
Proof. Straightforward and hence omitted
Example 4.4 Consider the spatial AR(1,1) process
Xt)=a1 X(t—e))+axX(t—ey) —araxX (t—1)+e(t), (4.4.2)

where (e(t))ycz2 is a Gaussian white noise with zero mean and variance o> = 1 and Maz {|a1| , |az|} <
1. Then the Model (4.4.2) has a reqular second order stationary solution if 0 < (1 —a?) (1 — a3).
Under these conditions,

(CLl + as — aqa )‘hﬂﬂh?l

1-ai)1—a3)
and covariance of scaling coefficients at zeroth resolution is given by

C(hl, hz) -

|[h1+m1—n1|+|h2+ma—n2

(a1 + ag — ajag)
Coltte) = 3 2, bumabiun, 1 —a)

mi1,m2€Z n1 na2€L 2

Equation (4.4.1) measures the linear relationship at the zeroth resolution, and since the coeffi-
cients at different resolutions are related, we can evaluate covariances at lower resolutions as follows.
We know from (4.2.12) that the scaling coefficients and the wavelet coefficient at zeroth resolution

and the next lower resolution are related by the following lemma

Lemma 4.4 Let ayx and 3y, are the scaling and the wavelet coefficients at the first resolution
defined by

A1k = th@o,mwk, (4-4~3)

kezd

Brxu = Z g,(ff)ao,m”k foru=1,..2%—1.
kezd
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Then the covariance of the scaling and the wavelet coefficient satisfying (4.4.3) is

Ci) = Y > hmhiCi(n —m+21), (4.4.4)

mecZd nezd

cy.(l) = Z Z gWglw*Cs(n — m+21) foru=1,...,2% — 1.

meZd nezd

Proof. Straightforward and hence omitted

Corollary 4.1 Let a,.x and 3

given by the recursion formula given by (4.4.3). Then the covariance function at lower resolutions

rku @r€ the scaling and the wavelet coefficients at the rth resolution

of the scaling and the wavelet coefficients are

C:) = Y > hmhiCiy(n—m+2l), (4.4.5)
mecZ4 nezd

C:,)u(l) = Z Z gm *Cf (0 —m+2l) foru=1,. 2 —1.
meZ4 neZd

Remark 4.5 For any rth resolution, we can write (4.4.5) as

2r
C;() = | hmea| Cy(D),
mecZ4
2
cr.() = Z gfﬁ),zk Cs() foru=1,...,2% — 1.
mezZd

Example 4.5 Consider the 2 — D harmonic process as
X (t) = Acos(wt +0), fort e Z? (4.4.6)
where w € [—7,7[* and the Phase 0 € [—m,n[. Then
A2

cQl) = 5 cos(w.l), wherel¢€ 7?2,

and covariance of scaling coefficients at rth resolution is given by

2
Z bmei(um) Z hmei(w.m)

meZ2 meZ2

cos[2"(w.1)],
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and for the wavelet functions as

A 2(r—1)
» A i(w.m) i(w.m)
o 5 Z bm€ Z hme
me7Z2 meZ2
2
Z g(“) i(w.m) COS[QT(W.I)],U = {]’L,U,d},
meZ2

where

(d)

G = Ny Gz 02 = Gy Panzs 92 = Gy Gomo -

4.4.2 Third order covariances

It is clear from (4.4.1) that the scaling and wavelet covariance for any two different stationary
spatial processes having the same covariance cannot be distinguished. For example SARM A(p, q)
processes and SBLy(p, q, P, Q) have the same covariance structure (chap 1). This shows that linear
and nonlinear processes cannot be identified using second order statistics. This makes it necessary
to study higher order statistics in wavelet analysis.

In this section, we develop expression for the third order covariances between wavelet and scaling

coefficient for discrete random fields.

Lemma 4.5 Let (X(n)), ;. be a zero mean discrete random fields belongs to Vo space then third
order covariance of scaling coefficient at Zeroth resolution which related to third order covariance

of the discrete random field as

E {Oéo,kOé(]’k_,_pOéo’k_;_q} = Z Z Z E {X(I)X(l + m)X(l + Il)} bk—lbk+p—l—mbk+q—1—n; (447)

1€Z4 meZ4 neZd

where

Zbk—lbk+p—l—mbk+q—l—n = ! //5(—A1)§>(—A2)5(A1+)\2) (4-4-8)

lezd (2W)d

6z’[(n—q) A1+ (p—m—qg+n).Ag] d)\l d}\z .

Proof. Straightforward and hence omitted

Remark 4.6 Note that (4.4.8) is independent of k and 1, indicating that E {cx00k+p®0x+q}
independent of k. This implies that the random fields (k) is a third order stationary whenever

(X(n))peza is a third order stationary random fields.
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Corollary 4.2 Let agyx the scaling coefficient at Zero resolution satisfying (4.3.5). Then the third

order covariance of scaling and wavelet coefficients at rth resolution is given by

E{ar,kar,k+jar,k+l} = Z Z Z hmhnhpE {ar—1,m+2k05r—1,n+2j04r—17p+21}7 (44’9)

meZ? neZd peZd

E{ﬁr,k,uﬁr,k—i—j,uﬁr,k—&—l,u} = Z Z Z gﬁff)gr(lu)gl(pu)E{Oér—1,m+2k04r—1,n+2j06r-1,p+21},

meZ4 neZd pezd

foru = 1,..,2%—1.

Remark 4.7 From the relation between scaling and wavelet coefficient, we can write (4.4.9) as

T

T T
EA{o, ko xii0rxnt = E P —2x E hn—23 E hp—a1] E {00 xaox+j00x+1},
meZd neZd pezd
T T r
_ E ' (u) § (u) § (u)
E {Br,k,uﬂr,k—ﬁ-j,uﬁr,k-l—l,u} - Im—2k gn—2j gp—zl E {ao,ka(],k—i-jaO,k—H} )
meZd neZd pezd

foru = 1,..2¢—1.

4.4.3 Dependence structure in terms of cumulants

The dependence structure of Gaussian random fields is entirely characterized by the covariance.
When the normality assumption no longer holds, higher order cumulants are necessary. The cov-
ariance and spectral properties of the wavelet transform and discrete wavelet coefficient for random
fields have been extensively studied in the past (see Masry (1998)). In this section, we obtain a new
expression for cumulant of the scaling coefficient, and the dependence structure between wavelet
coefficients is closely related to the dependence of scaling coefficients. Hence, to explain how to
obtain the joint cumulants of the scaling coefficients from the joint cumulants of random fields, we

have

Proposition 4.2 Let (aok), ;4 be the scaling coefficient at Zero resolution satisfies (4.3.5), and

tez
suppose that joint cumulants of (X(n)), ., of order s exist. Then

Cum (Ao - Qoge) = D o O | [ b, Cum(X (1), ..., X (n,)).

ni€Z¢ ngezd i=1
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Corollary 4.3 Let (a1x) and (B,,) are the scaling and wavelet coefficients at the first resolution
satisfies (4.2.12). Then

Cum(aix) = Z Z HhmiC’um(ag,mHk),

mi€Zd mgeZd i=1

Cum(Bix.) = Z Z Hgﬁﬁ?C’um(ao,mHk) foru=1,..,2%—1,

mi€Z4 mgeZd i=1

where

Cum(%) = Oum<a17k17 R3] a17ks)7
Cum(ﬁl,k,u) = Cum (Bl,kl,w PRARS) Bl,ks,u) .

Corollary 4.4 Let (a,x) and (B,),) are the scaling and wavelet coefficients at the rth resolution
satisfies (4.2.12). Then

Cum, (o) = Z Z Hhmicumr—l(ar—l,m—FQk)a

m;€Z¢ mgeZd i=1

Cumr(ﬁr,m,u) = Z Z Hg(U)Oumr 1 ar—17m+2k) fOT' U = 17 '-'72d -1

mi €74 czd i=1

4.5 The discrete wavelet transform

Let (X (n)),cze be a zero mean discrete stationary random fields, we define the discrete wavelet

transform with respect to ¥ as
djs(n) =272 " X (n) ¥(27n — k), (4.5.1)

Condition 4.1 Let C(1) be a covariance function of a random fields (X (n)), ., satisfies

Y L+em] <,

lez?
We have E {d;x(n)} =0 and
~1N-1
var {djx(n)} = 2% Z Z C(n—-m)¥27n—-k)¥27m—k)
n=0 m=0

= Z C (1) u(|1)),

—N+1
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where
(1)) = U(279n —k)¥(27n+ 1] — k).
If Condition 4.1 holds, then
var {djx(n)} — 1;)(n) as N — oo,
where

() =29 C (1) Ty (1), (4.5.2)

lez?

is the wavelet spectrum of (X (n)), .. and
s (1) E:W2Jn— T(277n+ 1] — k),
is called the wavelet autocorrelation function, at (j, k).

Theorem 4.1 Let (X (n)), 54 be a zero mean discrete stationary random fields, with covariance

function satisfies Condition 4.1. Then n;,(n) is bounded and non-negative.
Proof. The proof follows from similar arguments as Theorem 1 in Chiann and Morettin (1998).

Theorem 4.2 Let (X (n)), 54 be a zero mean discrete stationary random fields, with covariance
function C (1) satisfies Condition 4.1, and let

Mo (erdea) (@) = 270922 % 5N 7 (1) W (2770 — Kyt U Tpur0)) ¥ (27720 = Ko+ [1] Tuzoy),

lez4 n=0

for (j1,j2) € 72, (k1,ks) € Z*? | the covariance of the wavelet transform with respect to W. Then,

i) E{dj 1 (0)djy 10 (0)} — 00, i)k ke) (R) @8 N — 00,
i) If j1 = ja, k1 = ko, then 1, ) 1 k) (1) = 7 (10),

111) E{dj1,k1< ) J25 kz( )} O( ) as N — oo.

Proof. The proof is similar as that in Theorem 2 in Chiann and Morettin (1998).
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Theorem 4.3 Let (X (n)), 54 95 a second order stationary random fields with zero mean and the
covariance function C (1) # 0 for |1l < L, L << N. If U (n) has support [K1, Ks|, where K; >
0,K5 >0, then

E{dj, ki (0)djy 1, (n) } =0,
for |k; —kg| = Ko — K1 + (2L),j=1,...M and k= 0,1, ..., (2" —1).
Proof. The proof is similar as that in Theorem 3 in Chiann and Morettin (1998).

Definition 4.4 A real-valued second-order random field (X(n)),c,q is said to be weakly homogen-

eous if
i) m(n) = E{X(n)} for all n € Z%.
ii) C(n+u,m+u) = C(n,m) for all u € Z<.
We assume that C(1) is continuous and has the spectral representation
C(l) = / MM dF(X),
where dF'(A) is a finite measure on .

Theorem 4.4 Assume that ¥ (n) € L(RY). The random fields (d;x(n))
homogeneous with zero means and covariance/ cross-covariance functions
Ca, (1) = E{djx(n)d, (n+1)},
Odjlvkl g kg (l) = B {djlzkl (n)d;2,k2 (Il + l>} ’

having the spectral representations

nezd » are jointly weakly

Co ) = 20 3 [ B NE ),

N-1
I=—N-1"T

N-1
Cyy iy iy (1) = 2005223 [ @(0)e™dFx(N),

J1.k1>
I=—N-1"7

where W(.) is the Fourier transform of ¥(.) and

N-1-]

() = > ¥n-k)U(n+l]-k),
N-1—[1

T0) = > U(2'n-—k)¥(2”n k).

Proof. The proof follows from Theorem 2.1 in Masry (1998).
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Remark 4.8 By the above Theorem, the wavelet transform {dmk(n), ne Zd} s a weakly homogen-
ous random field with spectral measure

N-1
AFsA) =27 ) W(L)dFx(N)
1=—N-1
In particular, if the input random field (X (n)), 4 possesses a spectral density fx (X), then so does

the wavelet transform and
N-1

fa) =293 (L) fx (A).
1=—N-1
Theorem 4.5 Let (X(n)), 4 be a zero mean stationary discrete random fields belongs to Vg space
with covariance function C(1) and apx the scaling coefficient at Zero resolution satisfying (4.3.5).
Then the discrete random field (o x)ycza 95 weakly homogenous with zero mean and covariance

function C§(1) having the spectral representation as

SUED D RT ey

meZd nezd ¥ ™

2 .
ez(l—i-m—n).)\dFX (A) ]

Proof. The proof follows from Theorem 2.3 in Masry (1998).



Chapter 5

Wavelet spectral and bispectral density

estimation

5.1 Introduction

Wavelet density estimation of times series has been well developed theoretically and has found
many applications in vast areas of applied sciences. However, in signal processing, the spectral
density is an appropriate tool for the description of second-order statistics. It is well known that it
characterizes completely stationary signals which have Gaussian distributions. If the signal under
study is non-Gaussian, or of it is the results of nonlinear dynamics, knowledge of the mean value
and the spectral density is not sufficient to fully characterize the signal (see for example Nikias and
Petropulu (1993)). Unlike spectral density, the bispectral density has received special attention in
the literature (see Swami et al. (1997)).

Some of the techniques are extendible to random fields with varying degree of success, and there
remain to be solved many inherent problems that are not present in the times series case. In this
chapter, we consider the theoretical aspects of wavelet spectral and bispectral density for random
fields.

5.2 Nonlinear wavelet spectral density estimation

In this section, we obtain empirical versions of the coefficients of f which are treated with the same
methods as Neumann (1996), and we drive the uniform estimates of the cumulants of the empirical

wavelet coefficients. These results allow us to conclude the risk equivalence between all monotone

93



94

estimators based on the empirical coefficients. We shown that the optimality thresholded wavelet
attain the minimax rate of convergence in a large scale of Besov smoothness classes. Finally, we

discuss a possibility to adapt the smoothing parameters involved in the procedure.

5.2.1 Cumulant of the empirical wavelet coefficients

Let (X(t));cz2 be a stationary random fields with zero mean and the spectral density

f(w) = > Chye ™, (5.2.1)

and consider an orthonormal-wavelet basis of L?(IR?), associated to the following scaling and wavelet

functions:

D, (t) = 2O(2t, — ky, Pty — k),

Uira(t) = 270, (27t — ky, 27ty — ky), for any u € {1,2,3}.
It is easy to see that with A; = {1,...,2/}?,

Oixl(t) = D (2m) 7" dj((2m) "t +m),

nez?
and
Vja(t) = Y (2m) 7 Uypeu((2m) 't +m),
nez?
is an orthonormal basis of L2(my) (i.e. my = [—m, @[ x [-m,@[). For f € L2(m;) we have the
representation

Fw) =) one®iu(@) + D> ) > B Pinul(w), (5.2.3)

keA, u=1 j>I keA;

where a;) = fm f(w)®(w)dw and (3, , = fm f(w) e (w)dw.
From the sample observation {X (t),t = 1,...,N} the tapered periodogram

1 2
In(W) = —— ldn(w) 5.2.2
() = g (o) (522
where dy(w) = g h(%)Xte_it"",HéN) = Yo, h3(&), is asymptotically unbiased for f (w)

under quite general assumptions (i.e. for N = (N, N) we obtain H2(N) ~ N%H), however it is not a
consistent estimator of f (w) (i.e. In (w) =0 if HQ(N) = 0). Therefore, there is some hope that one

can obtain via smoothing estimators that are consistent under certain smoothness conditions on f.
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Under the following assumptions we can derive appropriate estimates for bias and variance of

the empirical coefficients defined as

ahk = / ‘I)l’k(W)IN (w) dw, (524)

Birn = / Vs () Iy () deo.
Condition 5.1 The taper function h is of bounded variation and satisfies H = [ h*(x)dx > 0.
Condition 5.2 Vk > 2, there exists C' > 0 and v > 0 such that
sup tzt lcum(X (t1),...X (tp_1), X (t,))] p < CF(p!)7 L.
Condition 5.3 fis of finite total variation over ms, || f||,, < D, VD > 0.

Condition 5.4 - ®(t) and V,(t) are in C", for any r > m.

- [O(t)dt =1 and [W,(t)]t|" dt =1, for 0 < k < r.(i.e. [t| = tyty).

- (' =max (Hé’ o v, 1) and D = max (HCI:’
L L
and max (|| Qx| . [Vl ) < A2972.

v,

, ) are finite,
Lt Lt

These assumptions are widely satisfied. In particular for Daubechies’s wavelets with support
2M, the last assumption is satisfied with A = 2M max (’ (5“ , \Tlu ) .

Remark 5.1 Note that the reqularity v of the scaling function ®(t) and the wavelet W, (t) has tom

be chosen higher than the assumed smoothness m of the spectral density in order to make the optimal

rate of convergence of the estimators possible.

Lemma 5.1 For N=(N,N), let j > 7,k € Aj,u € {1,2,3},5
conditions 5.1 through 5.4. Then

E {Ej,k,u} = ﬁj,km + O(2j/2+1N72 log N)’

Var {E]ku} < CN 2277 C > 0.

defined by (5.2.4) satisfying

j7k7u

Proposition 5.1 Let j > 7, such that 27 < CN*'=%and o > 0,k € Aj,u € {1,2,3},
N =(N,N) ’Ej,k7u defined by (5.2.4) satisfying conditions 5.1 through 5.4. Then there exists a

constant C' > 0 such that

Cum(B, )

Proof. the proof is similarly as that in Proposition 3.1 in Neumann (1996).

< Cn(p!)2+27N72(2j/2+1N72 lOg N)p72.
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5.2.2 Asymptotic normality of the empirical wavelet coefficients

We say that a function f € Ly (72) belongs to the two dimensional Besov ball B} (M) if and only
if there exists a constant M, (depending on M), such that the associated wavelet coefficient of f

satisfy

1/p q\ 1/q

1/p 3 o0
7(1/2—1/p) (Z o, k|p> + ZZ 9i(m+1/2-1/p) Z |5j7k,u}p < M, < oo,

keA u=1 j=r keA;

Besov balls are able to model different kind of smoothness features in a function. For a particular
choice of parameters m,p and ¢, they contain the Holder and Sobolev ball (see for example Mal-
lat (2009) and Meyer (1992)). Details and results on wavelets and Besov balls in nonparametric
estimation can be found in Hérdle et al. (1998).

On the other hand, We have for any ball F in a Besov space B}, that

Sup{z D B} = 0@ 2R Er)), (5.2.5)

J>J keA;
if 27/ = O(N~%/3) then
sup{y | D Blx,}t = O(N /),

FEF 55T keh;

we restrict our considerations in this section to coefficient with indices (j, k) from a set
J=JN)={(,k)\2 <ON?I kecA;,C<o00,0<a<1/3)

Let 0%, denote the variance of the coefficients 3 then by lemma 5.1 we obtain that

7. k,us
sup{ojx.} = O(N71), (5.2.6)
ik
and by proposition 5.1
Cum(B3c.0/ x| < (p)*77CP(2N " log(N))"~?, (5.2.7)

holds uniformly in (j, k) € J° where J°= J° (N) = {(j, k) € J/ojx > CoN~'} for some fixed
C() > 0.

Theorem 5.1 Let 3 defined by (5.2.4) satisfying conditions 5.1 through 5.4. Then

j7k7u

P( Bj,k,u - Bj,k,u /Jj,k,u > I)
1—®(2)

_>17
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holds uniformly in (j,k) € J°, —oo < x < &,,where &, = o(e¥/®*4)) and ¢ = 2N*(log N)~!, and

®(x) be the cumulative distribution function of the standard normal distribution N (0,1).

Proof. Using Proposition 5.1 and Lemma 3.1 and Theorem 4.1 in Neuman (1996).
Let

= max (o), CoN"'},
ON maX{(jyk)ej( ika) > Co ¥

and let 0y, ~ N(0,0% — o2 be independent ofB
7,K, N 7. ku

has the same mean and the same p-order cumulants for p > 3 as B

ik Then the new random field Bj’kﬂ + 0, xu

jxu» Whereas its variance is equal

to 0% < N~2. Therefore, we can derive in complete analogy to Theorem 5.1 the following result.

Corollary 5.1 Assume 5 defined by (5.2.4) satisfying condition of Theorem 5.1. Then

j7k7u

P( (Bj,k,u + Oixn) = Bjxu| /Tiku = )

() — 1L
5.2.3 Derivation of thresholding schemes
Let
o™ (Bj,k,uv A) = Ej,k,u1(|5j’k7u|2)\)v (5.2.9)
0 (B aes A) = s (Bj,k,u) (11| — Nts (5.2.10)

where these two nonlinear procedures on the empirical coefficients are usually called hard and
soft thersholding, respectively. We consider as approximating models for our empirical wavelet

coefficients
Cixu = Biku T Tjkuiku (5.2.11)

and
Zj7k,u = Bj,km + (O-j7k,u \ O-N)gj,k,uu (5212)

where €k, ~ N(0,1). Then we have the following basic result for monotone coordinate wise

estimators.

Theorem 5.2 Let §;x = 6k~ be monotone non decreasing functions with

dx(y) < Iyl (5.2.13)

and assume that Conditions 5.1 through 5.4 holds. Then, for 0 < p' < oo,



) e £ {

ii) Z(j,k)EJE{

Proof.
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5j7k(Bj,k,u) — Bjxu ’ } = (1+0(1)) Z(j,k)e]o E {|5j,k(Cj,k,u) - 6j,k,u‘p/}+O(N7p/)‘

0iacBsea) = Bacu| } < @+0(1) Spages B {105x(Cacnd) = Bucul” } +ONT).

i) Since §;y is monotone, there exists a constant 7, such that

i) > Bixw iy >700

6 b
dik(y) < ﬁj,k,u? ify < ik

(we assume 0;x(8,1.) > Bjx.) Now we split up

A

355, xcu)

- ﬁj,k,u

5j,k (Bj,k,u) - ﬁj,k,u

pl(}.2.14)

- P’
0ix(Birn) = Bjxu }

)

g El1
B (75,685 k,u<Bjk,utj,k,usy)

E<1 =
+ (B x,u=5,1,u8v<Bjk,u<Vjx)

+E {1(|Ej,k,uIBj,k,u|>Uj,k,u€W) 6j’k(5j7k’U) - Bj,k,u
- Rl + RQ + Rg.

According to the assertion of Theorem 5.1 there exist C’l(\ll), Cl(\? ) both tending to 1 as N — oo,

such that

Q| (1= (@) < (P([B e — B

[0 > x) < (q&?’( (1-®(z)), Vo < e,

Since |5j,k(y) - Bj7k7u| is monotone nondecreasing for y > ,,, we obtain by integration by

parts that

Ry

+P(ﬁj,k,u

IN

_/ [1(’Yj,ka<5j,k,u+Uj,k,u€v) |5j,k(*r> - Bj,k,u‘p] dp(ﬁj,k,u > CL’) (5'2'15)

p’}

’Yj,k) ‘5j,k(7j,k) - 5j,k,u
h /
‘01(\1)‘ { / P(Cpeu = 2)d [1(vj,k§x<6j,k,u+aj,k,usv> |0 () — Bj,kﬂL‘p]
PG = 730 [5x(@) = Bcl” }

(h) 4
‘CN ‘ E {1(’Yj,kggj,km</Bj,k,u+o-jyk»U5’Y) |6jvk(cj7k,u) B 6j7k,u’ } ’

P(ﬁj,k,u Z ];)d [1(’Y]‘,kﬁl’<5j,k,u+0j,k,u6'y) |5j,k(x) - Bj,k,u

/

p
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holds uniformly in (j,k) € J°. Analogously we get

p’}'

(h)
Ry < )CN ’E {1(’7j,k§§j,k,u<:8j,k,u+‘7j,k,uew) |6jvk(Cj’k,U> B Bjak’“

Using Proposition 5.1 we obtain, for arbitrary even p, that

K {(ﬁj,k,u - Bj,k,u)p} = Z H ‘Cumzj j, kﬂt) (5.2.16)
r=1di1+...ip=p
ij>1
= O(N7?).
Further we have, with e, = N2 for some v > 0, that
P(1B;100 = Bixca| = Tigeuey) < C(1—B(z,)) = O (N7,
(5]ku)_ jku ‘@jku— jku +2}6j7k’u‘ and

the Cauchy-Schawrz mequahty that

Rs < \/P( > aj,k,uav)\/E {

by (5.2.14) and (5.2.15) through (5.2.17) we conclude that

A

A lower bound can be proved analogously.

ﬁj,k,u - ﬁj,k,u 5j7k (ﬁj,k,u) - ﬁj,k,u

Zp,} -0 (N*p’*) . (5.2.17)

6j,k<Bj,k,u>—ﬁj,k,up} < (IO, V 1) B {103Caend) = Bl } + 0 (N7772)).

ii) Let 0jxu ~ N(0,0% — 07y,) be independent of 31w Then

A

7.k,u

5j,k(§j,k,u) - 5j,k,u

g
) |5j,k(7j,k) - 6j7kv“|p,}

ik(Birn) = Bixu

p/
} = F {1(51',1«,142’71'#) |6j’k(7j’k) B 6j’k’u

B1e,u<7j,k

= 2B { 1(Bj,k,u27j,k79j,k,u20)

2k { 1(5j,k,u<7j,k79j,k,u20)

< 25

which yields (ii) due to Corollary 2.1.

)

~ p/
6j7k (Bj,k,u) - Bj,k,u }

pl
9

5]‘71( (ﬁj,k,u + gj,k,u) - ﬁj,k,u
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Remark 5.2 From the above theorem we can obtain risk properties of thresholded wavelet estim-
ators. Since the estimators (5.2.9) and (5.2.10) obey the assumption (5.2.13), we can immediately
deriwe due to Theorem 5.1 the risk equivalence of our spectral density estimators to analogous es-

timators in the much simpler models (5.2.11) and (5.2.12).

Let 6 denote either the hard-threshold rule 6% defined by (5.2.9) or the soft-threshold rule
5 given by (5.2.10). Then we can state the following assertion.

Corollary 5.2 Let B

iku defined by (5.2.4) and assume Conditions 5.1 through 5.4 holds. Then,

for nonrandom thresholds Ak .,
2
}+

~ 2
) Yjages B { (393 s Adsea) = B } = (1+0(1)) Z e B { 169G e Mise) = B
2}+

O(N-2).

~ 2 _
1) Sisoes B { (00 Binar ) = Fiae) '} < 24000 T E {5 i) = By
O(N-2).

Let us now assume that the spectral density f(w) lies in a set of the following type:

F=F(C)=4 [@) = @)+ > > > Bien¥ina(@)| llall,,, <Cp. (5.2.18)

keA; u=1 j>I keA;
where
1/p q\ 1/q
Ha”mpq ZZ 2]5 Z }ﬂjku‘p ’ (5219)
u=1 j>I keA;

with s = m+1/2—1/p. It is known that this norm is essentially equivalent to the norm in the two
dimensional Besov ball B}, (M), if the basis functions @,y (w) and ¥ ,(w) satisfy condition 5.4.
Moreover, we see by the relation B, € W C B, that smoothness classes from the scale of two

dimensional Sobolev spaces W' are also covered by our results.
Let

Z QJ) = Z &l,kq)lk —|— ZZ Z (S( jku? jo jk,u(w)> (5220)

kel u=1 j>I keA;
be the estimator with optimal (nonrandom) thresholds A} = A\7(N, ) and let

(JJ) = Z &l,kq)lk —|— ZZ Z 5 jkua jk,u)qu,k,u<w>7 (5221)

keA, u=1 j>I kA,

be an estimate with individual thresholds, which satisfy the following minimal conditions.
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Condition 5.5 Let ¢ denotes the standard normal density, then

Ajide.u Ajku 2/(2m+1
l) Z(Jk)ej < U]k:\/UN) + 1) (2 <U"kaq—f\/0'1\])) O(N /(2m+ ))

ii) max(es{Njxa}t = O/ 285).

We can see by Neumann (1996), that for hard or soft thresholded estimators based on observations

according to (5.2.12) the following relation holds:

_ 2 A A
B{ (G2} = fhv (o ai)or 2
{(9Carh) = i Vo) (- yamy 1) P55 2)
. 2 2
+ min_ (A ,ﬁj,k,u)},
uniformly in A > 0.
From Condition 5.5 we have two particular thresholding schemes defined as

Aika = (Tjau V on)y/2log (17), (5.2.23)

and

Nixw = (Tjaen V on)y/2log((1T) /2. (5.2.24)

Now it can be easily shown that both of the proposed thresholding schemes lead to a rate
(2log N/N2)2m/(2m+1) for the risk of the estimators f.

Theorem 5.3 Let ]/f\, J?O be an estimators with individual, optimal thresholds respectively satisfying
Conditions 5.1 through 5.4. Then

i) supfef( { }) = OQ(N—4m/@m+1)),

ii) if additionally Condition 5.5 is satisfied, then

o (o1

Proof. From Corollary 5.2, we show that

Z E { (5() (Zj,k,u? )\j,k,u) - 6j,k,u>2} + Z ﬁ?’,k,u? (5225)
U K)¢ET

keg

-1];

Lo(ma)

( )}) = O((21og N/N2)>™/ Gty
Lo(ma



102

where (., is given by (5.2.12).

By (5.2.5), the estimate the second term of (5.2.25) is
?ug Z ﬂjzku = 0 (N4(0<—1)(m+1/2—1/(m2))) (5.2.26)
€

= O (NAmlmtD).
Further, by (5.2.22) the estimate for the first terms of (5.2.25):

> B (0 hinn) = )} (5.227)

(kg
ik Ak
< C Oixu VO 2<$+1> (¢>—l—minﬁ oA u}
szej{ e ) Tjku vV ON 7\ Von (s Aen)
i) Choose an integer jy such that 270 < N2/m+1) and let
A o 07 1fj S jO;
'7k7u - . . . . .
’ (Tjcu V on) /K (G — Jo), if 5 > Jo,
for any fixed K > log4. Then

> (G Vox)? <& + 1> © (&ﬂ (5.2.28)

(GK)ET OjkuV ON OikuV ON
= 2JON + Z O ( N—297 (] —Jo)e~ K(j Jo)/2)
J>Jo
= 0O (N—4m/(2m+l)) + 0] < —4m/(2m+1) Z j _ ] 2(j—jo)(1—K/10g4)>
J>Jo

= 0O (N74m/(2m+1)) :

with p = min{p, 2}, we obtain by Jensen’s inequality
1/p

1/p
(Tj > ‘@pk,u’ﬁ) = (Tj > |5j,k,u‘p> +0 (277
k k
which implies that

Zmln{ﬁ]kw Niut < Afk”uZ\ﬁmkf

- o(N ( P ((f — jo) @ PH2gdm+1/2-L/PP)

N

= O (NI @R (f _ o)@-P/ 29—l m /2= URP)
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hold uniformly in f € F,j > jo. Hence,

Sup {Z > min {5, A ku}} O (N—4m/Gmib) | (5.2.29)

fer Jj>jo k

ii) We have, according to Condition 5.5 (i), that

Ak Ak _
eV 2 gk 1 _ku ) ) — O (NTE/@mt)Y (5.9 30
> (oo (25 1) ¢ (72205)) oo o2

(4.k)eg

Let j, be such that 29+ = (N?/2log N )1/ @m+1)  Then we obtain, analogously to the above

calculations, that

Zme {Bjku,)\jku} = O(2*"N*2logN)

J<Jx

= 0((210g N/,

and

szln{ﬁ]ku7 Jku} = 0O

J>Jx

(2log /M) TS ﬁj,kﬁu}f") (5.2.31)

J>je k

VR

(2log N/N?) " gristmii/2-1/op)

0

9 2-p/2 . 7/2

= 0((2log N/N?)" """ 27 (log N/N) )
0

/N 7 N 7N

(210g N/N?) Y.

5.2.4 Adaptive threshold choice

Although the results of Theorem 5.3 are certainly of some theoretical interest, in particular they
are not helpful for practical application. The optimal as well as the long-threshlods depend on a
priory assumptions on the set F, or on f itself via the variances of the empirical wavelet coefficients,
respectively (see Neumann (1996)).

To make the method applicable, it is necessary to find some completely data-driven rule for the
thresholds, which works well over an as wide as possible range of smoothness classes. In analogy to
(5.2.23) and (5.2.24) we obtain adaptive thresholds as

~

Nk = Ojscu/ 2l0g (1), (5.2.32)
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and

Nisw = 0jxur/2l0g((87) /21), (5.2.33)

where 52 } for all levels j = j(IN) with 27 > 1. A sufficient condition

7.k,u
for random thresholds, which ensures the desired rate for the estimator, is the following one.

as an estimate of var {Bj K

Condition 5.6 i) > cs P <Xj,k,u < |lan| (ojku V on)y/2log (C (ﬂj))) O(N?*") for any C >

0,v < Wlﬂ and an — 1.
i) >k ( iku < DN71y/2log N) = O(N—4m/Cm+1)) for any D < oo.
Let

= [ Il (e = Ao (NN
be a kernel estimator with nonrandom i)andwidth bn based on the tapered periodogram Ing(A).
Lemma 5.2 Assume Conditions 5.1 through 5.4 holds and let f(w) >C >0 for all w € my. Then
i) if m > 1/p and by = O(N'=°) for any 6 > 0, then
P <|bN| f(w) < flw) <D forallw e 7r2> =1-0(N™),

holds uniformly in F for some any — 1 and D < 0.

ii) if by = O(N"71) and by' = O(N'™°%) for any v < s and 6 > 0, then

2) Yer P (F6) < bnl @) = O (N), for any w € supp(¥;u.)
b) P (f(w) > D) = O (N™*) holds uniformly in F for w € w9, by — 1 and D < oo.

Proof. the proof is similarly as that in Neumann (1996).

The performance of the resulting estimator

Z Py (w) + ZZ Z o) Bk Jk,u)\l’j,k,u<w)7

kel u=1 j>I keA;

Hs))

is described in the following theorem

Theorem 5.4 Assume the Conditions 5.1 through 5.4 and 5.6 holds. Then

~ 2
sup | B = O((2log N/N2)2m/(2m+1)).
feF Lo(72)
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Proof. Using the monotonicity of (5(')(@’1(7”, .) in the second argument we get, with )\%u =
lan| (0ku V on)y/210g (C (27)) and A} = DN1/2Tog N, that

(5(') (B M) — 5j,k,u> 2

~ 2 O3 ) 2
(ﬁj,k,u - ﬁj,k,u) + <5 . <6j,k,u7 )\j,k,u) - 6j,k,u> ) if )\j k,u < )\] k,u’
~ 2 ~
S <5() <6j,k,u7 )\EZL u) - 6j,k,u> + <6() (6j,k,u7 )\ﬁz,u) - ﬁj,k,u) ) 1f )‘j k,u < )\] k,u < )\J k,u’
~ 2 9 .
(6() (Bj,k,u? )\ghlz u) - Bj,k,u) + (ﬂj,k,u) ) lf )\j,k U )\yi( w?

which implies

2
} S Z E {(al,k — Oél7k>2} + Z E { <5(.)<Bj,k,u7 )‘%,u) - ﬁj,k,u>2}
Lo(72)

” (Res
. n h 2
+ Y B { (69 B acae X) = B }
GReT
B 2
3 {1 (e )
GRes
+ Z P Xjxu> /\(ku> Jk“+ Z Bﬂk“
(GRes (lIET
_= Tl + + T6-

Since both thresholding schemes, (Agliu) and ()\Jhlz u) , satisfy Condition 5.5, we obtain by (ii)
of Theorem 5.3 that
o7 2m/(2m+1)

Using Holder’s inequality we obtain by (5.2.16) that

T, < Z (P (Xxku > Aglku»l_aE (

(U k)eJ

= 0N > (P (s > Ak o

(keg

)
_ ) S (P (s> Aglku))l 6

(4. k)eT
— O(N_2N2V(1_5)N25)
— O(N74m/(2m+1))’

/8j7k7u - /8]7k7u

2/6)‘S
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holds, if 0 < 0 < (1/(2m + 1) —v) /(1 — v). Finally, we obviously have that

T5 — O(N—4m/(2m+1))‘

5.3 Wavelet-thresholding for bispectrum estimation

In this section we propose a wavelet-thresholding estimator of the bispectra for a wide class of
stationary random fields. Like one dimensional case, we show that this estimator reaches minimax
rate on Sobolev spaces, which is not attained by linear (kernel or spiline ) estimators whenever a

certain amount of inhomogeneity in the smoothness of the bispectrum is present.

5.3.1 Wavelet estimator

Let (X(t))scz2 be a stationary random fields with bispectrum defined as
1

(2"

f3(wi,wq) = Z Cs(hy, hy)ei(hrwithaws) (5.3.1)

hy,hy€Z?

A naive estimator of f3(w;,ws) is the tapered biperiodogram:

1
In(wi,wy) = ————dn(w)dn(ws)dn(—w1 — ws), 5.3.2
N(w1, ws) o T N(w1)dn(wa)dn(—w — wy) (5.3.2)
where HI = T;Ol H?:l hi(ﬁ), h;,i =1,2,3, are the taper functions. It is well known that, under

quite general assumptions, In(w1,ws2) is asymptotically unbiased for f3(w;,ws) and that the use of
a smooth data tapers h;, 1 < ¢ < 3, reduces the finite sample bias of the biperiodogram. However
the biperiodogram is anticonsistent: this variance is proportional to the sample size N = (N, N).
In order to ensure consistency, kernel methods use adequate Kernels with well chosen bandwidth to
smooth the biperiodogram. Alternatively, we attempt to construct wavelet-thresholding estimator
of the bispectrum, which outperform linear traditional ones.

More precisely, we will consider the following model:

In(wi, w2) = f3(wi,w2) + ex(wr, wo). (5.3.3)

Unlike the traditional one dimensional model in wavelet estimation the errors, en in this model is

not Gaussian nor i.i.d.
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For f; € L2(m,) we have the representation

7
f3(wr,w2) = Z al,kl,kzq)l,kl,kg(wl,wz)‘|’ZZ Z Bj,khk%quj,kl,kz,u(wlyw2)-

(k1,k2)EA? u=1 j>l (ki,ko)€A?

In this section, we show that wavelet-thresholding estimators of bispectra f3(w;,ws), attain

near-optimal minimax rate of convergence in the two dimensional Sobolev ball

< c} |
Lp(ﬂ'4)

Such an estimator is obtained by using a four-dimensional wavelet decomposition of the tapered

"t

m
oy

0"t
ox

W, (C) = {HfHLp(ﬂz) n \

Lp(m4) ’

biperiodogram, threshold the obtained empirical wavelet coefficients and then reconstruct the es-
timator from the thresholded coefficients.

The empirical wavelet-coefficient of the bispectra are:

ALk ks = //IN(wth)CI)l,kl,kg(wlawz)dwldw%
o J o

Bikikon = //IN(whw2)‘1’j,k1,k2,u(w1,w2)dw1dw2-
o J o

So the wavelet estimator is

7
fa(wr, wy) = Z ey ey Pty o (W1, W2) ZZ Z jkl,kz,w)\N)‘I’j,kl,kz,u(w17w2);

(k1,ko)EA? u=1 j>I (k17k2)€A2

where 6(.) denotes soft or hard-thresholding and the threshold value AN > 0.
Further, we denote by 7,y x, one of the coefficients a;x, x,, Bk, ko> PY Vjks ko On€ Of the

coefficients &, x,, 3, and the variance of these components will be denoted by 0k, k,, and

ko,u
by ¥k, x, the associated wavelet basis function. We denote also by V;il,kg the real and imaginary

parts of 7, i, and similarly for ﬁ;ﬁlkz The variance of these components will be denoted by

~T,0

T ki ko

5.3.2 The minimaxity of the estimator

Let
Ts:=Ts(N)={1<j2 <N >0}
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where (1 —6)r(m,p) > 25, r(m,p) =m + 1+ % and p = min(p, 2).
By Conditions 5.1-5.4 the problem in model (5.3.3) is transferred to the following Gaussian

regression

: 2
ggj(l,kz = fyj,kl ko _'_ U] 1(1 k2€]7k17k27j € ‘767 kl? k2 € A]’ (534)

where €k, k, ~ N(0,1) are i.i.d. The near-minimaxity of the estimator is based on estimation of
the third order cumulants (the empirical wavelet coefficients of the biperiodogram). Thus, similar

results have been obtained for the estimation of spectrum.

Proposition 5.2 For any p > 0, let J5, = {l < j,29 < N'7°,27 > N?¢} and assume Conditions
5.1 through 5.4 holds. Then

ff?rz ,yr,i
7k 7k '7k 7k
cum 7,K1,ka 7,k1,ka
5_/7’2
j7k17k2

for appropriate K1 and > 0, p > 3.

< (p )3+3v (K N) 2p(p—2) :

Proof. the proof is similarly as that in Theorem 1 in Touati and Pesquet (2002).
Theorem 5.5 Suppose that Conditions 5.1 through 5.4 holds and the threshold satisfies

5;:;;171(2 [2 lOg(Jj (%))]1/2 < AJ ki,ko < KN_l 210g(]\[)7

;(m}) -0 ((mfl\g\])) M) |

Proof. Using Proposition 5.2 and Theorem 1 in Touati and Pesquet (2002).

on Js, where K is a constant. Then,

sup (E { ’ £
f3€Wm p(C)

fs— I3

5.3.3 Further improvement of the estimator

2log(N) )>r but there are two obvious

The estimator fg reaches the desired near-optimal rate ( A3

possibilities to improve it further for finite sample sizes.
First, in contrast to the usual kernel estimator of f3, wavelet estimators are not translation-
invariant. If we shift the biperiodogram by a certain amount (s1, $2), apply non linear thresholding

’\(51782)

and shift the estimate back by (s1, s2), this new estimator will differ from the unsifted variant

f3 in most cases. The only shift lengths which do not alter the estimator f3 are multiples of the
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shift length of the wavelet basis at the coarsest scale, i.e. (22%)4 On the other hand, there is no

reason to assume that any of the possible shifts are always superior to the other ones. To weaken

the effect of not being stationary wavelet transform and define, with shifts s;; = (s;,s;) where

S = (gff) ,t=0,...,] — 1, the new estimator

-1

. 1 o

f3(wi,w2) = 7 Z £ (w1, wo),
i,j=0

then, we obtain by Jensen’s inequality that

where strict inequality holds if ﬁsi’f ) =+ ﬂ(si"j/) for any (i,7) # (¢',j") . In particular ﬁ: also satisfy

: (5.3.5)

Ly(myg)

<52 |-

-

Lp T4)

the result in theorem 5.5. Moreover, in view of the possibly strict inequality in (5.3.5) we hope to
get a significant improvement for finite sample sizes.
Secondly, note that the bispectrum f; satisfies the symmetries below, whereas they are not

satisfied by f;’f if compactly supported wavelets different from the Haar wavelets are used

fa(wi,wa) = f3(~wi, —ws2) = f3(wa, w1) = f3(— (w1 + w2),ws), (5.3.6)

In order to construct an estimator which satisfies the symmetries above we take the mean of eight

symmetric nearly optimal estimators:

%[J?ék(wh wa) + J??f(w% w) + ﬁ,"(—wh —wy) + ﬁf(—wm —w1)
+J?§(—(w1 + ws), w) + J/C;f(—(wl + wy), wa)

+f3 (w1 + wy, —w1) + fi (w1 + wa, —w2)].

J?ék*(wlywz) =

Hence, we have again by Jensen’s inequality, and the fact that f3 satisfies (5.3.6), that the new

estimator f;* satisfies

= g -1,

where strict inequality holds if two of the eight estimators above are different.

L2(my) L2(7r4)



Conclusion

In accordance with the stated objectives in the introduction, the study that we have conducted in
this thesis has allowed us to contribute in enriching the approach of spectral analysis for random
fields for a domain that was widely required in all types of applications in physics, array processing,
seismic data processing and from multichannel EEG digital signal processing. This approach which
was also the extension of spectral analysis of time series, has been studied by several authors

including Rosenblatt, Guyon, Robinson and more.

This work is based on two types of analysis: Fourier analysis (Part I) and wavelet analysis
(Part II). It is helpful to recall that we are interested in the structures probabilistic and inference
statistics for random fields. Previously (Part I), we had to treat models which are capable of taking
into account the non Gaussianity and spatiality dependence, and more specifically we describe the
spatial subdiagonal bilinear process with respect to its transfer functions, and we give conditions
ensuring the existence of regular second order stationary and ergodic solutions. Then we consider

the third order structure and Yule-Walker equations (chapter 1).

In addition we presented (Chapter 2) estimation of spectral density for nonlinear models and
upon which our study is to answer one of the basic problems of the analysis of this models is
that the information contained in the spectrum is insufficient. We have considered the bispectral
and trispectral density estimate and we have studied the asymptotic normality, then we have pro-
posed the higher order spectral density estimation. This study was strengthened by the parameter

estimation which is based on a functional of the spectrum and bispectrum, in Chapter 3.

During the last decade, wavelet analysis has expanded in different fields of science. In order to
be applied this analysis to the discrete random fields taking into account the mathematical aspect
of our study, we have developed an approach to treat the wavelet transform; it also seems important
to study its structure and probabilistic inference. Finally, in addition to theoretical developments
that we have proposed in this thesis, an interesting future research direction would be to develop

this study in many fields and under several conditions especially applied to different fields of science

110
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which should deserve attention.



Appendix 2.1

Let X = [X(4,)] be an (p; + 1)(p2 + 1) matrix of observation on spatial series in plane

| Xi-1h) Xi-1i-D e Xi-10-p)

We let X (i, j) = vec(X)" denote the P x 1 vectorisation of the matrix X with P = (p; +1)(p2 + 1).
Then
!
XG.) = | X(0) Xia() 0 X (d) |

where X, ,.(i,j) = (X(i—k,j),X(i—k,j—1),...X(@E—Fk,j—p2)),k=0,...,p1. These imply that

in two dimensions, SSBL4(p,q, P, Q) models (1.3.2) can write in matrix form as

X(i,j) = AX(i—1,j)+ A X(i,j — 1) + Be(i, j)
Q1 Q2
+ Z Z [Ckl) X(,j—1)+ Dlgi)k'QX(Z - 1,]')} €iky,j—ko

kl 1 k2=0

S (CRX(0j = 1)+ DEX( —1,5)] €1y

ko=1
/ /

where X (i — 1,7) = [gi,l(i,j) e Xy, (i, 4) Q] X, —1) = {iﬂ(i,j) 0 Q]
and

ry Iy r,, 0 I'y O 0

1 0 0 0 0 0

Alz . ’AQZ ;
0 0 1 0 0 0

(p1+1)x(p1+1) o 0 (P1+1)x(p1+1)
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Qo1 Qo2 * Qopy 0 aro Qo1 - Qkp
1 0 0 0 0 0
1—‘0 = . 7Fk - )
L0 0 0 s 0 o 0 0 e
k = 17 y P1
0 0 1 1
0 .- 1 ...
L (p241) x (p2+1) (p2+1)x (p2+1)
and
B, B B,,
0O O 0
B = ,
0 0 (P1+1)x(p1+1)
L bor -+ bop, bro bo1 -+ Dip,
0 O 0 0 0 0
BOZ i . X ,Bk: . . . ,k’:l,...,pl
0 0 0 (p2+1)x (p2+1) 0 - 0 0 (p2+1)x (p2+1)
k) g ... 0 20 9 ... 0
0 0 0 0
1 2
C’gl?‘” - : S ’Oék)? - : - ’
0 (p1+1)x (p1+1) o - O 1 pstyximen)
AR o L g
S e |
0 0 0 0

(p2+1)x (p2+1) o 0 (p2+1)x (p2+1)



and

(1)
Dk,

II(k1k2)

II(Ukz)

0 0 0
0 0 0 (p1+1)x(p1+1)
HEOICQ) HgOkQ) . Hgi’@) 0
0 0 0
0 0 0 (p1+1)x(p1+1)
D g
0 0 0
- 0 o 0 0 (p2+1) X (p2+1)
Egkz) Cg?kz) L 05252)
0 0 0
- 0 o 0 (p2+1) X (p2+1)

1=1,...,p1, and we can write in the form

1.e.

X(i,j) = B(i

where

X (t) = B(t)e (t) + A(t) X (t —e1) + B(t) X (t —ey).

Q1 Q2

A +ZCéi Cigta T Y Y ChokyCichiiota

k2 1 k?1 1](:2 0
Q1 Q2

|

1 2)
Az + Z D) ek, + > > DR ik k2]

ko=1 k1=1 ko=0
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Appendix 2.2

Theorem 5.6 Let (e (t)), ;2 be a strictly stationary ergodic random field and let (X (t)),cz2 e as
defined in (4.4.2) . Assume that A(t) and B(t) are spectral radius diagonable matrices with
|PTAR) P, =C(t),||P*B(t)P|, = D(t). Assume further that

sup E {log (C (t))} < 0 and sup E {log (D (t))} <O0.

Then for every t = (i,j) € Z? and v = (ry,73)

> T (i) Beli— 11 j = 12),

ri+re>1

converges absolutely a.s., where the transition matriz T2 (i, j) is defined as follows:
1. T (i,5) = A(i,7) and T (i,5) = B (i,7)
2. T2 (i 5) = A(i,7) T (4,5 — 1) + B (i, ) T 42 (i — 1, 5)
3. T (4,7) = Iyxa, and
4. T (i, §) =T (i, §) = Odxa-

Further, if

o0

X(i,4)= > T (i,j)Be(i —r1,j —ra), (2.3.3)

r1+r2=0
then (X (t))ycz2 @5 a strictly stationary process satisfying (4.4.2). Conversely, if (X (t))ycz2 s
a strictly stationary process satisfying (4.4.2), for some strictly stationary and ergodic sequence
(e(t))seze withsup E {log (C (t))} < 0 andsup E {log (D (t))} < 0. Then X (i, ), satisfying (4.4.2) .

Proof. The proof is similar as that of Theorem 2 in Chanda (1991).
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Abstract

This thesis is devoted mainly to the study of spectral analysis of random fields, which
based on the Fourier analysis and wavelet analysis. Among the numerous random fields in the
literature, we have chosen to explore a particular class of models which are capable of taking into
account the non Gaussianity character and spatiality behavior. Principally we study the L,-
structure of some SBL models and we establish the spectral density estimation, then we obtained
the bispectral and higher order spectral density estimation in which these results can be used to

discriminate between linear and nonlinear models.

We show aso that the estimator of the parameter obtained as minimum of a particular
quadratic form which depends on the second and third spectra is consistent and asymptotically

normal under certain assumptions.

However, In the second part of this thesis, we are interested to examine the fundamental
concepts needed in the study of the wavelet transform and random fields. Finally, we consider
the nonlinear wavelet estimators of the spectral density and we continued investing in estimation

by proposing wavel et-thresholding estimator of the bispectrum.

Keywords:

— Fourier anaysis

- Wavdet analysis
— Random fields

— Spectra density

- SBL models
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Résumé

Cette these est consacrée essentiellement a I'étude de la densité spectrale dans les champs
aléatoires non linéaires, qui basé a l'analyse de Fourier et I'analyse en ondelettes. Parmi les
nombreux domaines aléatoires dans la littérature, nous avons choisi d'explorer une classe
particuliere de modeles qui sont capables de prendre en compte le caractére de non gaussianité et
le comportement de spatialité. Principalement nous avons étudié la structure- L, de certains
modeles SBL et nous avons établi |'estimation de la densité spectrale, alors la fonction de la
densité bispectrale et la densité spectrale d'ordre supérieur sont obtenues dans lesquels ces
résultats peuvent étre utilisés pour distinguer entre les modéles linéaires et les modeles non

linéaires.

Nous avons également montré que |'estimateur du paramétre obtenu en moins d'une forme
particulierement quadratique qui dépend du spectre de deuxiéme et troisieme ordre est consistent

et asymptotiguement normal sous certaines hypothéses.

Cependant, dans la deuxieme partie de cette thése, nous nous intéressons a examiner les
concepts fondamentaux nécessaires a I'étude de la transformée en ondelettes et les champs
aléatoires. Enfin, nous avons considéré les estimateurs non linéaires de la densité spectrale par
méthode d ondelettes, et nous avons continué I’ investissement dans I’ estimation en proposant

I’ estimateur de seuillage du bispectre par |la méme méthode.
Mots clés

— L’analyse de Fourier

— L’analyse en ondelettes
— Champs aléatoires

— Ladensité spectrale

— Lesmodeles SBL



