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Introduction

1. Motivation

In many areas of the sciences as oceanography, electrical, engineering, geophysics, astronomy and

hydrology, spectral analysis �nds frequent and extensive use; it is a well established standard for use

in many areas. In fact it facilitates the exchange of ideas across a broad array of scienti�c projects. In

the 1960�s spectral analysis was designed to be applied primarily to processes with relatively simple

spectra. Thus, interest in spectral analysis to bidimensional processes has attracted considerable

interest among mathematicians, probabilists, and statisticians, as Priestly (1964), Whittle (1954),

Pierson and Tick (1957).

Spectral analysis for random �elds which is a natural extension for a times series, has grown

substantially over the last few years. Markov and Gibbs �elds are the most studied models in the

literature, with the main applications (see Guyon (1995)). For a random �elds, in many others

disciplines are non linear and may be non Gaussian and the second order statistics does not contain

any information about the nonlinearity. Recently, considerable attention has been paid to nonlinear

models in sever storms, earthquakes, spread of cancerous cells, regional economics, ecology.

The aim of our work is to contribute to the study of spectral analysis for random �elds through a

Fourier and Wavelet analysis based on probabilistic structures and statistical inference. This thesis

allows to review the current state of research for random �elds on some points not yet treated and

indispensable for understanding these �elds.

Fourier analysis is an established subject in the core of pure and applied mathematical analysis.

From this analysis and thorough the study probabilistic, we are interested in a class of nonlinear

�elds called spatial bilinear processes which the extension of popular BL models. We derive ne-

cessary and su¢ cient conditions for the stability, stationary, regularly and ergodic solutions for

some SBL models based on their associated transfer functions and we discover a group of Yule-

Walker -type di¤erence equations for third-order cumulant. therefore, several types of spatial linear
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models have been studied by several authors including Moor (1988), Gaetan and Guyon (2010),

Tjostheim (1978, 1983), Yao and Brockwell (2006), Guo and Billard (1998), Dimitriou (2009) and

the references therein.

Then, we obtain some asymptotic properties of spectral density estimation which is important

in many �elds including astronomy, meteorology, seismology, communication, economics, speech

analysis, medical imaging, radar, and underwater acoustics. One of the most pioneering work in

this �eld is due to Rosenblatt (1985). He proved that under strong mixing condition and the

summability condition of cumulants up to the eighth order the estimate of density spectral is

asymptotically normal, this work was generalized in various aspects. Bradley (1992), proved the

asymptotic normality of weakly dependent random �elds, Robinson (2006), shows that under some

circumstance the bias of the choice of kernel and bandwidth can be dominated by the edge e¤ect.

The spectral density estimation for random �elds was developed by many researches, including

Alekseev (1973, 1990), Crujeiras and Fernandez-Casal (2009), Yuan and Subba-Rao (1993). Rachdi

and Sabre (2008), are also interested in estimating the spectral density of the absolutely continuous

measure by using the double kernel method. According to our modest knowledge there is some

theoretical result on the estimation of the bispectral density and parameter for random �elds which

allows us to do a statistical inference study in particular, parameter estimation, despite the studies

that have been achieved in the time series (see Van ness (1966), Rosenblatt and Vann ness (1965),

Lii and Rosenblatt (1990), Glindemann et al. (1992), Berg and Politis (2009) and Terdik (1991)).

It is a fact that classical Fourier analysis assumes that signals are in�nite in time or periodic,

while many signals in practice are of short duration, and change substantially over their duration.

Also low frequency pieces tend to last for a long interval, whereas high frequencies occur in general

for a short moment only. For example, human speech signals are typical in this respect. Clearly

Fourier analysis is highly unstable with respect to perturbation, because of its global character.

Facing these problems, signal analysts turn to more sophisticated techniques which are a very

popular topic of conversations in many scienti�c and engineering gatherings these days, Wavelet

analysis. It is a particular time- or space-scale representation of signals that has found a wide range

of applications in physics, signal processing and applied mathematics in the last few years.

Similarly to the study of the �rst part based on probabilistic properties, we are interested in

Wavelet transform and random �eld in Zd which is the extending study to wavelet transform and

times series that is studied by Subba Rao and Indukumar (1996), Chiann (1998). In the literature,

Wavelet transform and random �eld in Rd is widely study by several authors (for example see
Antoine et al. (2004)), for instance Masry gives the second-order properties of the wavelet transform
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of second order random �elds in Rd (see Masry (1998)). However, spectral density which is the main
purpose of chapter 5 attracted Neumann who considers nonlinear wavelet estimators of the spectral

density of times series and has shown that optimality thresholded wavelet attains the minimax rate

of convergence (see Neumann (1996)), several authors are concerned by this research as Clouet et

al. (1995), Huang and Chen (2009), Failla et al. (2011).

2. Historical perspective

In 1807, Fourier�s e¤orts with frequency analysis lead to what we now know as Fourier Analysis.

His work is based on the fact that functions can be represented as the sum of sines and cosines.

Another contribution of Joseph Fourier�s was the Fourier Transform. It transforms a function that

depends on time into a new function, which depends on frequency.

The �rst mention of wavelets appeared in an appendix to the thesis of A. Haar (1909). One

property of the Haar wavelet is that it has compact support, which means that it vanishes outside of

a �nite interval. Unfortunately, Haar wavelets are not continuously di¤erentiable which is something

that limits their applications.

In the 1930s, several groups working independently researched the representation of functions

using scale -varying basis functions. By using a scale -varying basis function called the Haar

basis function Paul Levy, a physicist, investigated Brownian motion, a type of random signal. He

discovered that the scale-varying basis functions created by Haar (i.e. Haar wavelets) were a better

basis than the Fourier basis functions. Unlike the Haar basis function, which can be chopped up

into di¤erent intervals.

Between 1960 and 1980, mathematicians Guido Weiss and Ronald R. Coifman studied the

simplest elements of a function space, called atoms, with the goal of �nding the atoms for a common

function and �nding the �assembly rules�that allow the reconstruction of all the elements of the

function space using these atoms.

J. Morlet, a geophysical engineer, was faced with the problem of analyzing signals which have

very high frequency components with short time spans, and low frequency component with long

time spans. Short time Fourier transform (STFT) was able to analyze either high frequency com-

ponents using narrow windows, or low frequency components using wide windows, but not both.

He therefore came up with the ingenious idea of using a di¤erent window function for analyzing

di¤erent frequency bands. Furthermore, these window functions had compact support both in time

and in frequency. Due to the "small and oscillatory" nature of these window functions, Morlet
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named his basis functions as Wavelet of constant shape. Just like Fourier, Morlet faced much criti-

cism from his Colleagues. In 1980, looking for help to �nd a mathematically rigorous basis to his

approach, Morlet met A. Grossman, a theoretical physicist of quantum mechanics who helped him

to formalize the transformation and devise the inverse transformation (see Grossmann and Morlet

(1985)).

The next two important contributors to the �eld of wavelets are Yves Meyer and Stephane

Mallat; they realized that the multiresolution with wavelets was a di¤erent version of an approach

that has long been applied by electrical engineers and image processors. At the end of their research,

Multiresolution Analysis for wavelets was born. This idea of multiresolution analysis was a big step

in the research of wavelets.

While Mallat �rst worked on truncated versions of in�nite wavelets, Daubechies used the idea

of multiresolution analysis to create her own family of wavelets (see Mallat (2009)). These wavelets

were of course named the Daubechies Wavelets which satis�es a number of wavelet properties.

They have compact support, orthogonality, regularity, and continuity. Daubechies wavelets provide

the smallest support for the given number of vanishing moments (see Daubechies (1990). In 1989,

Coifman suggested to Daubechies that it might be worthwhile to construct orthogonal wavelet bases

with vanishing moments not only for the wavelet, but also for the scaling function. Daubechies

constructed the resulting wavelets in 1993 and named them coi�ets (see Daubechies (1990).

Around this time, wavelet analysis evolved from a mathematical curiosity to a major source of

new signal processing algorithms. The subject branched out to construct wavelet bases with very

speci�c properties, including orthogonal and biorthogonal wavelets, compactly supported, periodic

or interpolating wavelets, separable and non separable wavelets for multiple dimensions, multiwave-

lets, and wavelet packets, which are preferred by many researchers.

3. Thesis outline

In this thesis, we present the study of spectral analysis for random �elds based on two analyses:

Fourier analysis and wavelet analysis. This study contains the probabilistic structure and inference

statistical. The thesis is divided into �ve chapters:

Chapter 1: In this chapter, we present on L2 structure of bilinear models on Zd and the prob-
abilistic properties based on its associated transfer functions. In particular we describe the spatial

subdiagonal bilinear process with respect to its transfer functions, and we use this representation

to give su¢ cient and necessary conditions ensuring the existence of regular second order stationary
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and ergodic solutions for several subclass especially for SGARCH models. We also discuss the third

order probabilistic structure for the model and we discover a group of Yule-Walker-type di¤erence

equation for third-order cumulants.

Chapter 2: We consider the spectral density estimate based on class of strictly stationary
nonlinear spatial process and on class of nonlinear random �elds that satisfy the geometric-moment

contraction condition and we establish the asymptotic normality. Then we obtain the asymptotic

distribution of certain estimates of the bispectral density this estimate would have distribution

which tend to complex normal distributions under a uniform summability condition on the �rst

six cumulants and the strong mixing condition. We also propose an estimator of the fourth-order

cumulant spectral density and we demonstrate under the above conditions the asymptotic normality,

this latter study is generalized in p-order case.

Chapter 3: Treats the methods of parameter estimation based on a functional of the spectrum
and bispectrum for a random �eld depending on an unknown parameter �: The estimation of

the parameter of non Gaussian �elds constructed by the minimization of the functional and the

explicit expression for the asymptotic variance of the estimator calculate for both the cases when

the spectra are estimated by the peridogram and by the smoothed periodogram. The consistency

and asymptotic normality are proved.

Chapter 4: In this chapter we introduce notation and brie�y review for the multiresolution
analysis in Rd and we develop an alternative procedure in which a continuous random �elds is �rst

generated by interpolation of the discrete random �elds. We obtain explicit expressions for the

second and third order covariances between wavelet and scaling coe¢ cient of discrete random �elds

and the dependence structure between wavelet coe¢ cients is closely related to the dependence

of scaling coe¢ cients. Hence, the second order properties of the discrete wavelet transform are

determined.

Chapter 5: In this chapter we consider nonlinear wavelet estimators of the spectral density
random �elds and we obtain empirical wavelet coe¢ cients of the spectral density which are then

treated with the same shrinkage methods as Neumann, then we state the asymptotic normality. We

have shown also that optimality thresholded wavelet attains the minimax rate of convergence in a

large scale of Besov smoothness classes. In addition we propose a wavelet-thresholding estimator

of the bispectra and we show that this estimator reaches minimax rate on Sobolev spaces, which is

not attained by linear (kernel or spiline ) estimators.



Part I

Fourier Analysis
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Chapter 1

On L2 structure of bilinear models on Zd

1.1 Introduction

A process (X(t))t2Zd is called multidimensionally indexed (or spatial), when the variable t has sev-

eral components t1; t2; :::; td say. Multidimensionally indexed processes arise naturally in the study

of random �elds as well as in modeling some spatial data. Spatial data can be viewed either as

a set of time series collected simultaneously at a number of sites (locations) or as sets of spatial

data collected at several and di¤erent number of time points. For the statistical analysis, it is often

assumed that the spatial data under consideration as in environmental monitoring studies, met-

eorology, oceanography, geology, biology, among others, are linear and may be Gaussian. Recent

studies have shown that some crucial spatial data we come across as in digital image processing

are neither linear nor Gaussian as for instance, spatial data collected from satellites, sever storms,

earthquakes, spread of cancerous cells, regional economics, ecology and from multichannel EEG

digital signal processing. Hence, extending one-dimensional nonlinear time series models to mul-

tidimensional one, yields novel clutter models which are capable of taking into account the non

Gaussianity and spatiality dependence. However, the modeling of this type of data by a spatial

non-linear models has become an appealing and popular tool for investigating both spatiality and

non-Gaussianity patterns in time series analysis. Indeed, Amirmazlaghani and Amindavar (2007)

have used two dimensional GARCH model for wavelet coe¢ cients modeling to perform the image

denoising. In image anomaly detection, Noiboar and Cohen (2007) have proposed an approach

based on GARCH random �eld to distilling a small number of clustered pixels. Dai and Billard

(1998, 2003) have introduced a class of spatio-temporal bilinear models to model the spatial spread

of monthly surveillance data for mumps over 1971-1988 in twelve states of the U.S.A.

9
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The literature for linear spatial models is very widespread and includes for instance Moor (1988),

Gaetan and Guyon (2010), Tjostheim (1978, 1983), Yao and Brockwell (2006), Guo and Billard

(1998), Dimitriou (2009) and the references therein which concern some studies on probabilistic

structures and statistical inference. Unfortunately, only a few studies on the probabilistic structures

or in statistical inference of spatial nonlinear models were investigated.

Some notations and concepts are used throughout: for any positive integer d, set 0 = (0; :::; 0) be

the zeros vector of Zd, for any k = (k1; :::; kd) and l = (l1; :::; ld) belonging to Zd, we write k � l (resp.
k � l ) if and only if km � lm (resp. km < lm) for m = 1; :::; d. However, for p 2 Nd; the following
indexing subsets in Nd will be considered � [p] =

�
x 2 Nd / 0 � x � p

	
; � ]p] = � [p] n f0g(see

Dimitriou (2009) for an extensive discussion on the interest choice of the order in the lattice Zd)

and for any i = (i1; :::; id) 2 Zd and z = (z1; :::; zd) 2 Cd, write zi =
dY
j=1

z
ij
j .

In this chapter we present a powerful frame for the study of spatial nonlinear processes based

on its associated transfer functions. This approach allows us to distinguish between linear and

nonlinear and between regular and singular processes. We describe the spatial subdiagonal bilinear

process with respect to its transfer functions, we then use this representation to give su¢ cient and

necessary conditions ensuring the existence of regular second order stationary and ergodic solutions

for several subclass especially for SGARCH models. Our approach is based on the observation

that a number of SGARCH models can be written as a diagonal SBL models. This relationship

has already been observed by a number of authors (e.g., see Terdik (2000)). Then, we obtain the

autocovariance function and the spectral density function , and we derive the Yule-Walker-type

di¤erence equations for autocovariance by means of the spectral density function. Concerning the

second order probabilistic structure, the model is similar to an spatial ARMA model. Hence, we

discuss for the third order probabilistic structure and we discover a group of Yule-Walker-type

di¤erence equations for third-order cumulants.

1.2 The multidimensional Wiener-Itô representation

For any Gaussian white noise (e(t))t2Zd with mean 0 and variance �
2, we associate its spectral

representation (see [87]), i.e., e(t) =
Z
�

eit:�dZ (�) in which t:� =
Pd

i=1 �iti for any t = (t1; :::; td) 2

Zd, � = (�1; :::; �d) 2 � = [��; �[ � ::: � [��; �[, d�times and Z (:) is a Gaussian orthogonal

stochastic measure with E fdZ (�)g = 0 and spectral measure E
�
jdZ (�)j2

	
= dF (�) =

�2

(2�)d
d�

where d� means the Lebesgue measure on Rd. Consider the real Hilbert space H =L2 (�;B�,F )
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of the complex squared integrable functions f satisfying f(��) =f (�) for any � 2 �. For any
n � 1, we associated three real Hilbert spaces based on H, the �rst is Hn = H
n the n�fold tensor
product of H endowed by the inner product hfn; gni
 =

Z
�n
fn
�
�(n)

�
gn
�
�(n)

�
dF
�
�(n)

�
where

�(n) = (�1; :::;�n) 2 �n, fn
�
��(n)

�
= fn

�
�(n)

�
, kfnk2 < 1 and dF

�
�(n)

�
=
Yn

i=1
dF (�i). The

second one is bHn = H�n � Hn the n�fold symmetrized tensor product of H de�ned by fn 2 bHn if

and only if fn is invariant under permutation of their arguments i.e., fn
�
�(n)

�
= sym

�
fn
�
�(n)

�	
= 1

n!

P
p2P(n) fn

�
�(p(n))

�
where P(n) denotes the group of all permutation of the set f1; :::; ng

with an inner product hfn; gni� = n! hfn; gni
 for fn; gn 2 bHn. The third space is called Fock

space over H denoted by = (H) and de�ned by = (H) =
1M
n=0

bHn in which
M

denotes the direct

orthogonal sum, whose elements are f := (f0; f1; f2; :::) with fn 2 bHn, bH0 = H0 = R and satisfying
kfk2 =

X
n�0

kfnk2 < +1. The corresponding orthogonal decomposition is called Wiener�s chaos
decomposition.

Let= = = (e) := �
�
e(t); t 2 Zd

�
the ��algebra generated by all e(t); t 2 Zd, =t := � (e(s); s � t)

and L2 (=) be the real Hilbert space of L2�functional of e(t); t 2 Zd. It is well known (see Bibi
(2006) for further details) that L2 (=) is isometrically isomorphic to = (H), i.e., for any random
�eld (X(t))t2Zd of L2 (=) admits the so-called Wiener-Itô orthogonal representation

X(t) = f0 +
X
r�1

Z
�r
fr
�
�(r)

�
ei
Pr
j=1 t:�jdZ(�(r)); (1.2.1)

where f0 = E fX(t)g and dZ(�(r)) =
Yr

i=1
dZ (�i), fr2 bHr are uniquely determined and the

integrals are the so-called multiple Wiener-Itô stochastic integrals with respect to the Gaussian

stochastic measure Z: The following theorem gives some important properties related to Wiener-Itô

stochastic integrals which we shall apply throughout. For the proof we refer to Major (1981).

Theorem 1.1 1. [Itô�s formula ] The Itô�s formula state that

kY
i=1

hni(

Z
�

'i (�) dZ(�)) =

Z
�n

kY
i=1

niY
j=1

'i
�
�ni�1+j

�
dZ(�(n)) =

Z
�n

sym

(
nY
j=1

'j (�j)

)
dZ(�(n));

where ('i)1�i�k is an orthonormal system in H, n1; :::; nk are positive integers (n0 = 0) with
n = n1+ :::+nk and hj denotes the j� th Hermite polynomial with leading coe¢ cient 1, i.e.,

hj (x) = (�1)je
x2

2
dj

dxj
e�

x2

2 , x 2 R.
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2. [Diagram formula] For any f2H and fn2Hn we haveZ
�

f (�) dZ(�)

Z
�n
fn
�
�(n)

�
dZ(�(n))

=

Z
�n+1

fn
�
�(n)

�
f (�n+1) dZ(�(n+1)) +

nX
k=1

Z
�n�1

Z
�

fn
�
�(n)

�
f (�k)dF (�k) dZ(�(nnk));

where dZ(�(nnk)) :=
Qn
i=1;i6=k dZ (�i).

3.
h
Orthogonality of bHn spaces

i
For any fn2Hn and gm2Hm, we have

E

�Z
�n
fn
�
�(n)

�
dZ(�(n))

Z
�m

gm
�
�(m)

�
dZ(�(m))

�
= �mn n!

Z
�n
sym

�
fn
�
�(n)

�	
sym

�
gn
�
�(n)

�	
dF (�(n));

where �mn is the Kronecker symbol. This means that the spaces bHn are orthogonal.

Remark 1.1 Applying Itô�s formula, it is easily seen that any random �eld (X(t))t2Zd of L2 (=)
is =t (e)-measurable (or causal) i¤ the Fourier coe¢ cients with nonnegative indices of its trans-
fer functions are only nonzero, i.e., fr

�
�(r)

�
=

P
k1;k2;:::;kr�0

efr �k(r)� eiPr
i=1 ki:�i and efr �k(r)� =R

�r
fr
�
�(r)

�
e�i

Pr
i=1 ki:�idF (�(r)) where k(r) = (k1; ::: ;kr) 2

�
Zd
�r
with ki 2 Zd, i = 1; :::; r. Hence

the corresponding representation (1:2:1) will be referred to later as regular.

Remark 1.2 A necessary and su¢ cient condition that the random �eld (X(t))t2Zd of L2 (=) ad-
mits a regular solution given by (1:2:1), is that the transfer functions fr satis�es Szegö�s conditionR
�r
log
��fr ��(r)��� dZ(�(r)) > �1.

Example 1.1 A general class of nonlinear random �elds (X(t))t2Zd which admits a regular solution
are the Wiener �elds i.e.,

X(t) = g0 +

1X
r=1

X
k(r)2(Ndnf0g)

r

X
s(r)2(Nd�)

r

gk(r)
�
s(r)
� rY
j=1

h
kj
(e(t� sj)) ; (1.2.2)

for some stationary Gaussian random �eld (e(t))t2Zd where�
Nd�
�r
:=
�
s(r) 2

�
Nd
�r
: 0 � s1 � s2 � ::: � sr

	
and where the Volterra�s kernels gk(r)

�
s(r)
�
are

uniquely determined if there are assumed to be symmetric functions in their arguments. Hence, by

applying Itô�s formula, it is easily seen that X(t) admits a Wiener-Itô orthogonal representation

(1:2:1).
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1.3 Wiener-Itô solution for spatial subdiagonal bilinear ran-

dom �elds

The class of spatial Wiener�s models (1:2:2) can describe general non linear models with great

accuracy and can be enlarged to include the random �eld (X(t))t2Zd solving the following recursive

equation

X(t) = f(X(t� s); e(t� r);0 � s � P;0 � r � Q) + e(t); (1.3.1)

for some white noise �eld (e(t))t2Zd and polynomial function f . The main objective here is to

derive the system of transfer functions associated with (1:3:1) and thus we establish the necessary

and su¢ cient condition ensuring the existence of regular second order stationary solutions. For this

purpose we shall restrict ourself to the so-called spatial subdiagonal bilinear model. A R�valued
random �eld (X(t))t2Zd de�ned on a probability space (
;=; P ) is called spatial subdiagonal

bilinear process denoted by SBLd(p;q;P;Q) if it is solution of the following stochastic di¤erence

equation

X(t) =
X
i2�]p]

aiX(t� i) +
X
j2�[q]

bje(t� j) +
X
i2�]P]

X
;j2�[Q]

ci;jX(t� i� j)e (t� i) : (1.3.2)

In (1:3:2) (e(t))t2Zd is a Gaussian �eld white noise de�ned on the same probability (
;=; P ) with
zero mean and variance �2. The assumption of subdiagonality is technical because it is di¢ cult

to handle the product terms like X(t)e (t� i), i � 0. Noting that di¤erent SBLd representations
appear to depend on the lexicographic order chosen on Zd. De�ne the functions

�(�) = 1�
X
i2�]p]

aie
�ii:�;� (�) =

X
j2�[q]

bje
�ij:�;

	0 (�) =
X
i2�]P]

ci0e
�ii:�;	(�;�) =

X
i2�]P]

X
j2�[Q]

ci;je
�i(i+j):�e�ij:�:

We seek necessary and su¢ cient conditions ensuring the existence of regular second order stationary

solution of (1:3:2) in the Form (1:2:1). Throughout the paper, we shall assume the following

condition

Condition 1.1 all the characteristic roots of the polynomial �(z) = 1 �
P
i2�]p]

aiz
i are outside the

unit circle, in the sense that �(z) 6= 0 for jzij � 1; i = 1; :::; d.

Other conditions ensuring the existence of the roots of polynomial �(z) outside the circles jzij �
1; i = 1; :::; d, can be found in Tjostheim (1983) and in Yao and Brackwell (2006). For instance, a
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necessary and su¢ cient conditions for the equation �(z1; z2) = 1� a1z1 � a2z2 � a3z1z2 to have its
roots outside the circles jzij � 1; i = 1; 2 (see Basu and Reinsel (1992), Proposition 1) are (i) jaij < 1,
i = 1; 2; 3 (ii) (1 + a21 � a22 � a23)

2 � 4 (a1 + a2a3)
2 > 0 and (iii) 1� a22 > ja1 + a2a3j. In particular,

the special case where a3 = �a1a2, the above conditions reduce to jaij < 1, i = 1; 2. Noting

that a multivariable polynomial can be factored into factors which are themselves multivariable

polynomials but which cannot be further factored, and these irreducible polynomials are unique to

multiplicative constants.

Lemma 1.1 Assume that the SBLd Model (1:3:2) has regular second order stationary solution,
then the transfer functions of this solution are given by the symmetrization of the following functions

de�ned recursively by

fr
�
�(r)

�
:=

8>>>>>>>><>>>>>>>>:

�2
	0 (0)

� (0)
, if r = 0;

�� (�)

� (�)
, if r = 1;

	
�Pr�1

j=1 �j;�r

�
�
�Pr

j=1 �j

� fr�1
�
�(r�1)

�
, if r � 2;

(1.3.3)

with �� (�) = � (�) + f0	(0;�).

Proof. Assume that the SBLd Model (1:3:2) has a Wiener-Itô representation (1:2:1). Then by the
diagram formula (2:3), we get

X(t� i� j)e (t� i) =

 
f0 +

1X
r=1

Z
�r
fr
�
�(r)

�
ei
Pr
j=1(t�i�j):�jdZ

�
�(r)

�!Z
�

ei(t�i):�dZ (�)

= f0

Z
�

ei(t�i):�dZ (�) +
1X
r=1

Z
�r+1

fr
�
�(r)

�
ei
Pr+1
j=1(t�i):�j�

Pr
j=1 j:�jdZ

�
�(r+1)

�
+

�2

(2�)d

Z
�r�1

ei
Pr�1
j=1(t�i�j):�j

Z
�

fr (�r) e
�ij:�rd�rdZ

�
�(r�1)

�
:

Since a regular solution is independent of random �elds e (s), s � t and depends linearly on e (t),
then similar argument to Terdik (2000) show that 1

(2�)d

Z
�

fr (�r) e
�ij:�rd�r = 0 if j � 0 or j = 0 and

r > 1. Using (1:3:2), Condition 1.1 and the uniqueness of the symmetrized transfer functions we

get the recursion (1:3:3).
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Remark 1.3 It not di¢ cult to see that the symmetrized transfer functions are given by

sym
�
fr
�
�(r)

�	

: =

8>>>>>><>>>>>>:

�2
	0 (0)

� (0)
, if r = 0;

�� (�)

� (�)
, if r = 1;

��1
�Pr

j=1 �j

� P
j2�[Q]

e�i
Pr
j=1 j:�j

P
i2�]P]

ci;jsym
n
fr�1

�
�(r�1)

�
e�i

Pr�1
j=1 i:�j

o
, if r � 2:

Lemma 1.2 Under the conditions of Lemma 1.1, we have kfrk2 � r! ksym ffrgk2 � 2 kfrk2 for

any r � 1.

Proof. The proof is similar as that of Lemma 1 in Terdik and Subba Rao (1989).

We are now in a position to state our �rst result.

Theorem 1.2 A necessary and su¢ cient condition for the existence of regular second order sta-

tionary solution for SBLd(p;q;P;Q) model (1:3:2) is thatX
r�0

kfrk2 < +1 (1.3.4)

where the transfer functions fr
�
�(r)

�
are given by (1:3:3).

Proof. To prove Theorem 1.2, we use the Lemmas 1.1, 1.2 and the fact that V ar fX(t)g is �nite
if and only if the Condition (1:3:4) holds true.

Corollary 1.1 A simple su¢ cient condition for (1:3:4) is

�2

(2�)d

Z
�

���� 	(�;�)� (�+ �)

����2 d� =c < 1;� 2 �:
Proof. Consider the normZ

�r

��fr ��(r)���2 dF ��(r)�
=

Z
�r�1

(Z
�

���� 	(�;�)� (�+ �)

����2 dF (�)
)��fr�1 ��(r�2);�� �(r�2)���2 dF ��(r�2)� dF (�) ;
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where �(r) :=
Pr

i=1 �i. Now if there exist c such that
�2

(2�)d

Z
�

���� 	(�;�)� (�+ �)

����2 d� = c < 1 for any

� 2 �, thenZ
�r

��fr ��(r)���2 dF ��(r)� � c

Z
�r

��fr�1 ��(r�1)���2 dF ��(r�1)� � �2cr�1

(2�)d

Z
�

������ (�)� (�)

����2 d�;
so the Condition (1:3:4) holds true.

Corollary 1.2 [Diagonal models] Consider the model

X(t) =
X
i2�]p]

aiX(t� i) +
X
j2�[q]

bje(t� j) +
X
i2�]Q]

ciX(t� i)e (t� i) ; (1.3.5)

then a necessary and su¢ cient condition that the model (1:3:5) has a regular second order stationary

solution is that
�2

(2�)d

Z
�

����	0 (�)� (�)

����2 d� < 1:
Proof. It is easy to see that the transfer functions associated with the Model (1:3:5) are given by

f0 = �2
	0 (0)

� (0)
; f1 (�) =

�� (�)

� (�)
; fr
�
�(r)

�
=
	0

�Pr
j=1 �j

�
�
�Pr

j=1 �j

� fr�1
�
�(r�1)

�
; r � 2.

Hence, we obtain for r � 2 after repeated substitution

 
�2

(2�)d

!r Z
�r

��fr ��(r)���2 d�(r)= �2

(2�)d

Z
�

jf1 (�)j2 d�

8<: �2

(2�)d

Z
�

����	0 (�)� (�)

����2 d�
9=;
r�1

;

and the necessary and su¢ cient conditions follows from the convergence of the geometrical series.

Example 1.2 Consider the diagonal model

X (t) = a1X (t� e1) + a2X (t� e2)� a1a2X (t� 1) + cX (t� l) e (t� l) + e (t) ;

where e1 = (1; 0); e2 = (0; 1);1 = (1; 1); l = (l1; l2) and l1 � 1; l2 � 2. For this model, we assume

that max fja1j ; ja2jg < 1 that ensure that the roots of the polynomial �(z) are outside the unit



17

circles jzij � 1; i = 1; 2. From the Theorem 1.2, it follows that the transfer functions of a regular

stationary solution are

f0 =
c�2

�(0; 0)
;

f1 (�; �) =

�
1 + cf0e

�i(l1�+l2�
�

�(�; �)
;

fr
�
�(r); �(r)

�
=

ce�i
Pr
j=1(l1�j+l2�j)

�
�Pr

j=1 �j;
Pr

j=1 �j

�fr�1 ��(r�1); �(r�1)� ;
=

rY
s=1

�
1 + cf0e

�i(l1�+l2�
�

�
�Ps

j=1 �j;
Ps

j=1 �j

�cr�1e�i rP
j=2

(r�j+1)(l1�j+l2�j)�i(r�1)(l1�1+l2�1)
;

with �(�; �) =
�
1� a1e

�i�� (1� a2e
�i�). Hence, from Corollary 1.2, the necessary and su¢ cient

condition become a21 + a22 + �2c2 � a21a
2
2 < 1.

For spatial super-diagonal model in the sense of Hannan (1982) for which ci;j = 0 for i� j in

(1:3:2) their transfer functions (1:3:3) becomes quite simpler. Indeed,

fr
�
�(r)

�
=

8>>>>>>><>>>>>>>:

0, if r = 0;
�(�)

� (�)
, if r = 1;

	
�Pr�1

j=1 �j;�r

�
�
�Pr

j=1 �j

� fr�1
�
�(r�1)

�
, if r � 2;

so, we obtain fr
�
�(r)

�
=

rY
s=2

	
�Ps�1

j=1 �j;�s

�
�
�Ps

j=1 �j

� 	0 (�1) : It is evident that this gives an unique solution

of spatial super-diagonal model in the form (1:2:1) with f0 = 0. Indeed, using the last expression

of fr
�
�(r)

�
, the condition of stationarity is

1X
r=1

 
�2

(2�)d

!r Z
�r

��fr ��(r)���2 d�(r) < +1: (1.3.6)

The following theorem gives a simple su¢ cient condition for the existence of a regular second order

stationary solution
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Theorem 1.3 A su¢ cient condition for the spatial super-diagonal model to has a regular stationary
solution is that

�2

(2�)d

Z
�

���� 	(�;�)� (�+ �)

����2 d� � K < 1;� 2 �;

Proof. It is easy to see that the series (1:3:6) is dominated by a geometrically converged series.

Remark 1.4 Under the Conditions of Theorem 1.3, the Series (1:2:2) corresponding to the super-

diagonal model, converges a:s. Indeed, in this case X(t) =
X

r�1
�r (t) where

�r (t) =
P

k(r)2Nr

P
s(r)2(Zd�)

r

gk(r)
�
s(r)
� rY
j=1

e(t � sj). Then under the conditions of the Theorem 1.3, the

series
P
r�1

�r (t) converges a:s, since E fj�r (t)jg �
q
E
�
�2r (t)

	
and thus

P
r�1

E fj�r (t)jg is dominated

by a geometrically convergent series.

Remark 1.5 If the assumption that the model is super-diagonal is eliminated, then the results of
Theorem 1.3 still holds (see Terdik (2000)).

As already mentioned by Wang and Wei (2004), that it is rather di¢ cult to check the con-

dition (1:3:4) in Theorem 1.2 because the calculation of
R
�r

��fr ��(r)���2 dF (�(r)) is tedious when
r is too large. To remedy this di¢ culty, Wang and Wei (2004) introduce a separable subdiag-

onal model in the sense that 	(�;�) = 	1 (�+ �)	2 (�) where 	1 (�) =
P

i2�]Q]
c
(1)
i e�ii:� and

	2 (�) =
P

j2�[P]
c
(2)
j e�ij:� . In this case ci;j = c

(1)
i c

(2)
j with i 2 � ]Q], j 2 � [P] and the Equation (1:3:2)

become

X(t) =
X
i2�]p]

aiX(t� i) +
X
j2�[q]

bje(t� j) +
X
i2�]Q]

c
(1)
i e (t� i)

X
j2�[P]

c
(2)
j X(t� i� j); (1.3.7)

and hence f0 = �2c
(2)
0 �

�1 (0)	1 (0), 	0 (0) = c
(2)
0 	1 (0) and �� (�) = � (�)+ f0	2 (0)	1 (�). For

this class of models, we have

Theorem 1.4 A necessary and su¢ cient condition for the existence of regular second order sta-

tionary solution of the process (X(t))t2Zd generated by the separable SBLd(p;q;P;Q) model (1:3:7)

is that
�2

(2�)d

Z
�

����	1 (�)	2 (�)� (�)

����2 d� < 1:
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Proof. We use a similar approach to that used by Wang and Wei (2004), Theorem 1. Indeed, for

any r � 2 we haveZ
�r

��fr ��(r)���2 dF ��(r)�

=

Z
�r

�����
rY
l=1

��1

 
lX

j=1

�j

!
	

 
l�1X
j=1

�j;�l

!�����
2 ����1 (�1) �� (�1)�� dF ��(r)�

=

Z
�r

�����
rY
l=1

��1

 
lX

j=1

�j

!
	1

 
lX

j=1

�j

!
	2

 
l�1X
j=1

�j

!�����
2 ����1 (�1) �� (�1)�� dF ��(r)�

=

Z
�

����1 (�)	1 (�)��2 dF (�)
24Z
�

����1 (�)	1 (�)	2 (�)��2 dF (�)
35r�2

�
Z
�

����1 (�1) �� (�1)	2 (�)��2 dF (�) :
The result fellows by Theorem 1.2 if and only if

Z
�

j��1 (�)	1 (�)	2 (�)j2 dF (�) < 1:

Corollary 1.3 Consider the model

X(t) =
X
i2�]p]

aiX(t� i) +
X
j2�[q]

bje(t� j) +
X
j2�]P]

cjX(t� j� l)e(t� j); (1.3.8)

where l is a known vector of nonnegative integers. Then the necessary and su¢ cient condition for

the existence of regular second order stationary solution for (1:3:8) is that

�2

(2�)d

Z
�

����	1 (�)� (�)

����2 d� < 1; (1.3.9)

Proof. In this case, 	1 (�) =
P

i2�]Q]
cie

�i�:i, 	2 (�) = e�i�:l and 	0 (�) = 	1 (�) �0 (l). So the

necessary and su¢ cient condition for the regular second-order stationary solution reduce to (1:3:9).

Corollary 1.4 Consider the model

X(t) =
X
i2�]p]

aiX(t� i) +
X
j2�[q]

bje(t� j) +
X
j2�]P]

cjX(t� j� l)e(t� l); (1.3.10)
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where l is a known vector of nonnegative integers. Then the necessary and su¢ cient condition for

the existence of regular second order stationary solution for (1:3:10) is that

�2

(2�)d

Z
�

����	2 (�)� (�)

����2 d� < 1: (1.3.11)

Proof. In this case, 	1 (�) = e�il:� and 	2 (�) =
P

i2�]Q]
cie

�ii:�, so that the necessary and su¢ cient

condition for the regular second order stationary solution reduce to (1:3:11).

Remark 1.6 As already pointed by Wang and Wei (2004), the separable spatial models is a rather
general class of spatial bilinear models, it is includes several subclass of popular spatial models

specially the spatial GARCH models (c.f. Terdik (2000)).

Corollary 1.5 [The SGARCH] Consider the spatial GARCH (p;q) models de�ned by8<: X(t) = �(t)
p
h(t);

h(t) = c0 +
P
i2�]p]

ciX
2(t� i) +

P
j2�]q]

ajh(t� j); (1.3.12)

where (ci; i 2 � [p]) and (ai; i 2 � ]q]) are nonnegative constants with c0 > 0 and (�(t))t2Zd is a

Gaussian white noise �eld with zero mean and variance 1. Then the Model (1:3:12) has a regular

second order stationary solution if and only ifX
i2�]p]

ai +
X
j2�]q]

cj < 1:

Moreover

E fX(t)g = 0; Cov fX(t)X(s)g =

8>><>>:
0 if t 6= s;

a0�
t
s

 
1�

P
i2 �]p]

ai �
P
j2�]q]

cj

!�1
otherwise.

Proof. Since the second equation in (1:3:12) can be regarded as a special case of diagonal model
(1:3:5), then the proof follows thus from the Corollary 1.4 and the positivity of the coe¢ cients.

1.4 Covariance structure and spectral density function

We assume in this section, that the �eld process (X(t))t2Zd generated by (1:3:2) admits a regular

second order stationary solution, and obtain its covariance function and its spectral density function.
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For this purpose, we note that for any r � 2, the rth transfer function can be decomposed into

two orthogonal parts, i.e.,

fr
�
�(r)

�
=

24 rY
k=2

	
�Pk�1

j=1 �j;�k

�
�
�Pk

j=1 �j

�
35 �� (�1)
� (�1)

=

24 rY
k=3

	
�Pk�1

j=1 �j;�k

�
�
�Pk

j=1 �j

�
35� 	(�1;�2)
� (�1 + �2)

�� (�1)

� (�1)
� 	0 (�1 + �2)
� (�1 + �2)

�

+

24 rY
k=3

	
�Pk�1

j=1 �j;�k

�
�
�Pk

j=1 �j

�
35�	0 (�1 + �2)

� (�1 + �2)

�
= f (1)r

�
�(r)

�
+ f (2)r

�
�(r)

�
:

The following lemma is an extension of the result obtained by Wang and Wei (2004), Lemma 2.

Lemma 1.3 Let (X(t))t2Zd be a spatial second order stationary bilinear model satisfying (1:3:2)
and let C(h) := Cov fX(t)X(t+ h)g. Then for any h 2Zd

C(h) =
�2

(2�)d

Z
�

8<:
������ (�)� (�)

����2 + �2
����	0 (�)� (�)

����2 + �2

(2�)d

Z
�

����	(�;�� �)� (�)

����2W (�)d�
9=; e�ih:�d�; (1.4.1)

and the spatial spectral density function fX(�) is given by

fX(�) =
�2

(2�)d

"������(�)� (�)

����2 + �2
����	0 (�)� (�)

����2 + �2

(2�)d

Z
�

����	(�;�� �)� (�)

����2W (�) d�

#
;

where W (�) =
1X
j=0

Wj(�) with Wj(�) can be computed recursively by

Wj(�) :=

8>>><>>>:
������ (�)� (�)

����2 + �2
����	0 (�)� (�)

����2 , if j = 0;
�2

(2�)d

Z
�

����	(�;� � �)� (�)

����2Wj�1(�)d�, if j � 1:

The Lemma 1.3, shows that the second order properties of SBLd(p;q;P;Q) generated by the

di¤erence Equation (1:3:2) are similar to a linear spatial ARMA. More precisely, there exists an

uncorrelated sequence of random variables (�(t))t2Zd with zero mean and �nite variance such that
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the process (X(t))t2Zd satis�es the stochastic di¤erence equation �(B)X(t) = � (B) �(t). The

sequence (�(t))t2Zd is not Gaussian nor a martingale di¤erence sequence when the cij�s are not

equal to zero. We draw the conclusion that �rst and second order properties of superdiagonal

spatial bilinear model can not be distinguished from a linear spatial ARMA models. Speci�c tools

should be developed. We leave this important issue for future researches.

Some elegant expressions for spatial superdiagonal and separable subdiagonal bilinear models can

be derived.

Theorem 1.5 Let (X(t))t2Zd be a second order stationary spatial bilinear model satisfying (1:3:7).
Then

C(h) =
�2

(2�)d

Z
�

(������ (�)� (�)

����2 + ����	1 (�)� (�)

����2W
)
e�ih:�d�;

fX(�) =
�2

(2�)d

(������(�)� (�)

����2 + ����	1 (�)� (�)

����2W
)
;

where

W =
�2

(2�)d

Z
�

(������ (�)� (�)
	2 (�)

����2 + �c(2)0 �2
)

d�

1� S
; S =

�2

(2�)d

Z
�

����	(�;0)� (�)

����2 d�:
Proof. The proof follows essentially the same as Theorem 2 in Wang and Wei (2004).

Finally, we give the spectral densities for the models generated by (1:3:8) and (1:3:10).

Corollary 1.6 The spectral density function for the spatial model generated by (1:3:8) is given by

fX(�) =
�2

(2�)d

(������(�)� (�)

����2 + ����	1 (�)� (�)

����2W
)
;

where

W =
�2

(2�)d

Z
�

(
�l0 +

������ (�)� (�)

����2
)

d�

1� S
; S =

�2

(2�)d

Z
�

����	1 (�)� (�)

����2 d�:
Corollary 1.7 The spectral density function for the spatial model generated by (1:3:10) is given by

fX(�) =
�2

(2�)d

(������(�)� (�)

����2 + W

j�(�)j2

)
;

where

W =
�2

(2�)d

Z
�

(������ (�)� (�)

����2 + �2c20

)
d�

1� S
; S =

�2

(2�)d

Z
�

����	2 (�)� (�)

����2 d�:
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Example 1.3 Consider the super-diagonal process

X (t) = a1X(t� e1) + a2X (t� e2)� a1a2X (t� 1) + cX (t� 2) e (t� 1) + e (t) ; (1.4.2)

where (e(t))t2Z2 is a Gaussian white noise with zero mean and variance �
2 = 1 and Max fja1j ; ja2jg <

1: Then the Model (1:4:2) has a regular second order stationary solution if and only if

c2 < (1� a21) (1� a22). Under these conditions,

�(�; �) =
�
1� a1e

�i�� �1� a2e
�i�� ;�� (�; �) = 1;	1 (�; �) = ce�i(�+�);	2 (�; �) = e�i(�+�):

So

C(h; l) =
�2

ah�21 al�22

�
(h� 1)(l � 1) + c2�2(h+ 1)(l + 1)

a21a
2
2

�
�l0 + (1� a21)(1� a22)

��
;

fX (�; �) =
�2

(2�)2 j(1� a1e�i�) (1� a2e�i�)j2
n
1 + c2�2

�
�l0 + (1� a21)(1� a22)

� ��e�i(�+�)��2o :
1.4.1 Applications

Theorem 1.6 [ARMA representation] Assume that the �eld (X(t))t2Zd de�ned by (1:3:2) is sta-

tionary, there exists an uncorrelated sequence of random �elds (�(t))t2Zd with zero mean and �nite

variance such that

X(t) = a0 +
X
i2�]p]

aiX(t� i) +
X
j2�[q�]

b�j �(t� j); b�0 = b0 = 1; (1.4.3)

where the coe¢ cients
�
b�j ; j 2 � [q�]

�
are functions of (aj; j 2 �]p]), (bj; j 2 �jq]) and

(cji; j 2 �]Q]; i 2 �[P]). The �eld (�(t))t2Zd is not Gaussian nor a martingale di¤erence sequence
when the cij�s are not equal to zero.

Proof. The proof follows essentially the same as that of Theorem 2 in Bibi (2003).

The above theorem implies that the spectral density of the �eld (X(t))t2Zd is given by

f(�) =
�2

(2�)d

���e� (�)���2
j�(�)j2

; (1.4.4)

where e� (�) = P
j2�[q�]

b�j e
�ij:� such that

���e� (�)���2 = j� (�)j2+�2 j	0 (�)j2+ jD (�)j2 for some transfer
function D (�). Hence, the second order properties of every bilinear random �eld (X(t))t2Zd sat-

isfying the Equation (1:3:2) are similar to an ARMA (p;q�). So, one has to look to higher order

moments and higher-order cumulant spectra for further information on the process. The best linear

predictor of X(t+ h) given fX(s); s � tg where (X(t))t2Zd satis�es (1:4:3) is now given
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Theorem 1.7 Let (X(t))t2Zd be a stationary random �eld satisfying (1:4:3) and assume that the

polynomial e� (z) = P
j2�[q�]

b�jz
j 6= 0 for all z 2 Cd : jzij � 1, i = 1; :::; d. Let bXh(t) be the best linear

predictor of X(t+ h), 0 � h � 1 and h 6= 0 when fX(s); s � tg is given. Then

bXh(t) =

 
1� �(B)e� (B)

!
X(t+ h);

where B denotes the backward shift operator, i.e., BiX(t) = X(t � i) and �2� = V ar f�(t)g >
V ar fe(t)g = �2.

Proof. The �rst assertion rests standard. For the second we have from (1:4:4) and since �2 j	0 (�)j2+
jD (�)j2 > 0

E

��
X(t+ h)� bXh(t)

�2�
= �2� = exp

8<: 1

(2�)d

Z
�

log (2�)d f(�)d�

9=;
= �2 exp

8<: 1

(2�)d

Z
�

log(j� (�)j2 + �2 j	0 (�)j2 + jD (�)j2)d�

9=; > �2.

Hence the variance of the prediction error is always greater than the optimal prediction error

variance obtained from the bilinear �eld model.

1.5 Yule-Walker type di¤erence equations for SBLd(p;q;P;Q)

model

In order to understand the second-order probabilistic structure for spatial bilinear model better,

we can construct the Yule-Walker-type di¤erence equations for autocovariance functions which are

based on the spectral density function. We have �� (�) = � (�) + �	2 (0)	1 (�) and de�ne

dk =
1

(2�)d
R
�

�(�)

�(�)
eik:�d�; (1.5.1)

ek =
1

(2�)d
R
�

	1 (�)

� (�)
eik:�d�:
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Then

C(h)�
X
i2�]p]

aiC(h� i) =
R
�

�(��) fX(�)e�ih:�d� (1.5.2)

= �2f
X
j2�[q]

bjdj�h + �	2 (0)

24 X
i2�]Q]

c
(1)
i di�h +

X
j2�[q]

bjej�h

35
+[W + �2(	2 (0))

2]
X

m2�]Q]

c
(1)
i ei�hg:

Let q� = max(q;Q� 1) if c(2)0 = 0 and max(q;Q) otherwise. Obviously, if h � q�, then the

autocovariance functions satisfy the equation C(h) �
P
i2�]p]

aiC(h� i) = 0. The process (Y (t))t2Zd

obtained from (X(t))t2Zd by

Y (t) = X(t)�
X
i2�]p]

aiX(t� i); (1.5.3)

is second order stationary too. We consider the autocovariance function for (Y (t))t2Zd ; CY (h) :=

Cov fY (t)Y (t+ h)g (only the case of h � 0 is discussed here because of the symmetric relation

CY (�h) = CY (h)). We have CY (h) =
R
�

j�(�)j2 fX(�)e�ih:�d�; then

CY (h) =

8>>>>><>>>>>:
�2f
P

j2�[q] bjbj+h + �	2 (0)

" P
i2�]Q]

c
(1)
i bi+h +

P
j2�]q]

bjc
(1)
j+h

#
+[W + �2(	2 (0))

2]
P

i2�]Q]
c
(1)
i c

(1)
i+hg

; if h � 0;

0; if h � q�;

(1.5.4)

where c(1)i = 0 for i � Q and bj = 0 for j � q:
By (1:5:2) and (1:5:4), as far as the second-order structure is concerned, the SBLd(p;q;P;Q)

model is similar to spatial ARMA(p;q�) model.

For the two special cases given in section 1:3, for the spatial model generated by (1:3:8), We

have �� (�) = � (�) + �	1 (�). Then C(0) =
R
�

fX(�)d� = W � �2�0l : Therefore, using (1:5:2), we

get

C(h)�
X
i2�]p]

aiC(h� i) =

8>>>><>>>>:
�2[

P
j2�]q]

bjdj�h + �
P

i2�]Q]
cidi�h + �

P
m2�]Q]

bmem�k

+(C(0) + �2 + �2�0l )
P

i2�]Q]
ciei�h]

, if h � 0;

0, if h �max (q;Q� 1+�0l );
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where dk and ek are given in (1:5:1).

By (1:5:4), the autocovariance function for the process (Y (t))t2Zd ; derived by (1:5:3), are given

by

CY (h) =

8><>: �2

" P
j2�]q]

bjbj+h + �
P

i2�]Q]
cibi+h + �

P
j2�]q]

bjcj+h + (C(0) + �2 + �2�0l )
P

i2�]Q]
cici+h

#
, if h � 0;

0, if k �max (q;Q� 1+�0l );

where ci = 0; i � Q; and bj = 0; j � q:
In the case for the spatial model generated by (1:3:10), we have �� (�) = � (�) + �	2 (0) e�il:�

and let dk = 1
2�

R
�

eik:�

�(�)
d�: By (1:5:2), we have

C(h)�
X
i2�]p]

aiC(h� i) =

8>>>><>>>>:
�2[

P
j;i2�]q]

bjbidi�j�h + �	2 (0)
P
j2�]q]

bjdk�h�j

+�	2 (0)
P

j2�]Q]
bjdj�k�h + (W + �2(	2 (0))

2)�0k]
, if h � 0;

0, if h �max (q;k);

and the autocovariance functions for the process (Y (t))t2Zd are

CY (h) =

8<: �2[
P
j2�]q]

bjbj+h + �	2 (0) (bk�h + bk+h) + (W + �2(	2 (0))
2)�0h]; if h � 0;

0; if h � max(q;k):

where bj = 0 if j � q or j � 0:

1.5.1 The third-order probabilistic structure for the SBLd(p;q;P;Q)

model

Based on our analysis above, it is shown that the second-order probabilistic structure of the

SBLd(p;q;P;Q) model is similar to that of a spatial ARMA model. This means that the

SBLd(p;q;P;Q) model cannot be distinguished from the linear model only according to its autoco-

variance and spectral density. So we assume that SBLd(p;q;P;Q) model is third-order stationary

and we investigate its third-order cumulants

C3(s1; s2) = E f(X(t)� �) (X(t+ s1)� �) (X(t+ s2)� �)g ; and bispectral density f3(�1;�2) =
1

(2�)2d

P
s1;s2

C3(s1; s2)e
�i(s1:�1+s2�2). The approximate formulae to evaluate the third-order cumu-

lants is given in the following theorem.
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Theorem 1.8 Let (X(t))t2Zd be a stationary process generated by SBLd(p;q;P;Q) model (1:3:7).
Then

C3(s1; s2) =

 
�2

(2�)d

!2 R
�2
'(�1;�2)e

i(s1:�1+s2�2)d�1d�2;

where '(�(2)) = 6sym�(�1;�2;�3) and the function �(�1;�2;�3) is de�ned by

�(�1;�2;�3)

=
	1(�1)�

�(�2)

�(�1)�(�2)

������(�3)�(�3)

����2	2(��3)
+
	1(�1)	1(�2)

�(�1)�(�2)

������(�3)�(�3)

����2	2(��3)
"

�2

(2�)d
R
�

��(�)

� (��)	2 (�)
	 (� � �3; 0)
� (� � �3)

d�

#

+
	1(�1)	1(�2)�

�(�3)

�(�1)�(�2)�(�3)

"
�2

(2�)d
R
�

������(�)� (�)
	2 (�)

����2 	(� � �3; 0)� (� � �3)
d�

#

+
	1(�1)�

�(�2)

�(�1)�(�2)

����	1(�3)�(�3)

����2	2(��3)
"

�2

(2�)d
R
�

((c
(2)
0 )

2 +

������(�)� (�)
	2 (�)

����2)d�
#

+
	1(�1)	1(�2)	1(�3)

�(�1)�(�2)�(�3)

"
�2

(2�)d
R
�

(
(c
(2)
0 )

3

3
+

������(�)� (�)
	2 (�)

����2 �� (� � �3)� (� � �3)
	2 (� � �3))d�

#
:

Proof. The proof is similar as that of Theorem 3 in Wang and Wei (2004).

Furthermore, the bispectral density can also be approximated by f3(�1;�2) =
�

�2

(2�)d

�2
'(�1;�2)

where the function '(�1;�2) is de�ned in the above theorem.

Note that the third-order cumulants ful�ls the following symmetric relations:

C3(s1; s2) = C3(s2; s1) = C3(�s1; s2 � s1) = C3(s2 � s1;�s1) (1.5.5)

= C3(�s2; s1 � s2) = C3(s1 � s2;�s2):

Under the single additional assumption that q � Q, we discover a group of Yule Walker type
di¤erence equations for the third order cumulants. For the SBLd(p;q;P;Q) model, it is reasonable

since we are concerned with bilinear terms more than moving-average terms.

Remark 1.7 Undoubtedly, all of the Yule Walker type di¤erence equations for the third order
cumulants can be approximately derived from the bispectral density.

We only need to consider the case of s2� s1 � 0 to get the following result.
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Theorem 1.9 Let (X(t))t2Zd be a stationary process generated by SBLd(p;q;P;Q) model (1:3:7).
Then the third order cumulants satisfy the following di¤erence equation: if h = 0,

C3(k;Q+ k)�
X
i2�]p]

aiC3(k;Q+ k� i) =

8><>:
2�2c

(1)
Q

P
j2�]P]

c
(2)
j C(j);k = 0;

�2c
(1)
Q

P
j2�]P]

c
(2)
j C(k� j);k � 0;

and, if h � 0
C3(k;Q+ h+ k)�

X
i2�]p]

aiC3(k;Q+ h+ k) = 0;k � 0:

Proof. Firstly, centering all of the terms in (1:3:7), we get

X(t)�
X
i2�]p]

aiX(t�i) = �	0(0)�2+
X
j2�[Q]

b�j e(t�j)+
X
i2�]Q]

c
(1)
i e (t� i)

X
j2�[P]

c
(2)
j X(t�i� j); (1.5.6)

where

b�j =

(
bj + c

(1)
j �	2(0) for 1 � j � q;

c
(1)
j �	2(0) for q � j � Q:

Let X(t) = Z(t)+e(t). It is not di¢ cult to see that Z(t) is independent of e(t): From this, we mul-

tiply both sides of (1:5:6) by X(t�Q� h)X(t�Q� h� k) for all h;k � 0 and take expectation.
We compute all terms on the right-hand side,

If 0 � i � Q; then, for all h � 0;k � 0;

E fe(t� j)X(t�Q� h)X(t�Q� h� k)g = 0:

If 0 � i � Q; then, for all h � 0;k � 0;

E fX(t� i� j)e(t� j)X(t�Q� h)X(t�Q� h� k)g =
(

�2C(k), if j = 0;

0, if j � 0:

If h = 0;k = 0; then

E
�
X(t�Q� j)e(t�Q)X2(t�Q)

	
=

(
3�2C(0), if j = 0;

2�2C(j), if j � 0:

If h = 0;k � 0; then

E fX(t�Q� j)e(t�Q)X(t�Q)X(t�Q� k)g =
(

2�2C(k), if j = 0;

�2C(k� j), if j � 0:



29

If h � 0;k � 0; then

E fX(t�Q� j)e(t�Q)X(t�Q� h)X(t�Q� h� k)g =
(

�2C(k), if j = 0;

0, if j � 0:

We �nally obtain that for k � 0

C3(k;Q+ h+ k)�
X
i2�]p]

aiC3(k;Q+ h+ k� i)

=
X
i2�[p]

aiE fX(t� i)X(t�Q� h)X(t�Q� h� k)g

=

8<: �2(1 + �0l )c
(1)
Q

P
j2�[P]

c
(2)
j C(k� j), if h = 0;

0, if h � 0:

Those di¤erence equations can be used to identify the SBLd(p;q;P;Q) model.

From Theorem 1.9, we can easily derive the Yule Walker type di¤erence equations for the third

order cumulants for the two special cases as

Corollary 1.8 For the spatial model generated by (1:3:8), the third order cumulants satisfy the
following di¤erence equations: for h = 0;

C3(k;Q+ k)�
X
i2�]p]

aiC3(k;Q+ k� i) =
(

2�2cQC(k); k = 0;

�2cQC(k� l); k � 0;

and for h � 0;
C3(k;Q+ h+ k)�

X
i2�]p]

aiC3(k;Q+ h+ k� i) = 0; k � 0

Corollary 1.9 The third order cumulants of the process (X(t))t2Zd generated by the model (1:3:10)
satisfy the following di¤erence equations: for h = 0;

C3(k; l+ k)�
X
i2�]p]

aiC3(k; l+ k� i) =

8><>:
2�2

P
i2�]Q]

ciC(i); k = 0;

�2
P

i2�]Q]
ciC(k� i); k � 0;

and, if h � 0;
C3(k; l+ h+ k)�

X
i2�]p]

aiC3(k; l+ h+ k� i) = 0; k � 0:
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Example 1.4 Consider the spatial diagonal bilinear models

X(t) = �X(t� k)e(t� k) + e(t);

where k = (k1; k2); k1 � 1; k2 � 2;E fe (t)g = 0; �2 = 1; E fe4 (t)g = 3 and E fe6 (t)g = 15: We

have

� = E fX(t)g = �;

�2 = E
�
X2(t)

	
=
1 + 2�2

1� �2
;

var fX(t)g = E
�
(X(t)� �)2

	
=
1 + �2 + �4

1� �2
;

and

C(l) =

(
�2 if l = k;

0 if l 6= k:

Then

C3(s;h) =

8>>>>>>>>><>>>>>>>>>:

2�2(4 + 5�2)=(1� �2) if s = h = 0;

2�(1 + �2 + �4)=(1� �2) if s = h = k;

3�[1 + 6�2n1n2+1(1 + �2 + 2�4)]=(1� �2) if s = 0; hi = niki; i = 1; 2;

4�3(1 + 2�2 + 3�4)=(1� �2) if s = 0;h = k;

�3 if s = k;h = 2k;

0 otherwise.

and the bispectral density function

f3(�1;�2) =
1

(2�)4
fC3(0;0) + C3(k;k)[e

ik:(�1+�2) + e�ik:�1 + e�ik:�2 ]

+�3[cos(k:�1 + 2k:�2) + cos(2k:�1 + k:�2) + cos(k:�1 � k:�2)]
+4�3(1 + 2�2 + 3�4)=(1� �2)[eik:�1 + eik:�2 + e�ik:(�1+�2)]g:



Chapter 2

Higher-order spectral density estimation

2.1 Introduction

In recent years, spectral analysis based on higher order statistics has received great attention, and

constituted a signi�cant part of modern signal processing and digital image processing. It is used in

a variety of applications, e.g. sonar, radar, plasma physics, image reconstruction, array processing,

seismic data processing, harmonic retrieval, system identi�cation (see Li and Cheng (1998)).

Spectral density estimation is an important problem and there is a rich literature (see for example

Rosenblatt (1985), Guyon (1995), Yao and Brockwell (2006), Subba Rao and Gabr (1984)). If a

random �eld is Gaussian, then its statistical properties are completely determined by its second

order spectrum, otherwise we have to resort to higher order spectra. The idea of estimating the

second and higher order spectral density of a random �eld is readily extendible from times series

analysis (see Rosenblatt (1985)). However, the asymptotic cumulant properties of the spectral

estimates for random �elds have been given in Yuan and Subba Rao (1993) and Rosenblatt (1985).

In this chapter, we obtained asymptotic normality of spectral density for a class of spatial nonlinear

processes in section 3; section 4 is concerned with the asymptotic distribution of certain estimates

of the bispectral density, this estimate would have distribution which tend to complex normal

distributions under certain conditions. Estimator of the fourth-order cumulant spectral density is

proposed, this result is su¢ ciently complete to indicate what happens in general, study in section

5 and 6.

The following notation is used throughout. Let a = (a1; :::; ad) and b = (b1; :::; bd) two vectors

of non negative integers, we have a:b =a1b1 + ::: + adbd; a� b =(a1b1; :::; adbd) ; ab = (a1
b1
; :::; ad

bd
) if

b1; :::; bd 6= 0; a � b means that ai � bi; i = 1; :::d: The sample size is N = (N1; :::; Nd);i.e. we

31
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observe X(t); t =(t1; :::; td) for ti = 1; :::; Ni; i = 1; :::; d; but the number of observation is jNj =Qd
i=1Ni; jNj = (jN1j ; jN2j ; :::; jNdj): For brevity, we write t = 1; :::;N and N �! 1 means that

Ni �!1; i = 1; :::; d: Then de�ne the multi-index sum as
PN1

t1=1
:::
PNd

td=1
=
PN

t=1 :

2.2 Cumulant spectra and their estimates

The use of either nonparametric or parametric polyspectral methods need to calculate higher order

moments and cumulants which depend on lower-order product moments and the cumulant spectral

density agrees with the Fourier transform of the same order product moment.

Let (X(t))t2Zd be a weakly stationary real random �eld with a zero mean and �nite pth-order

moments on Zd; d � 2: For all t 2 Zd; we have

E fX (t)X (t+ h1) : : : X (t+ hp�1)g = mp(t; t+ h1; : : : ; t+ hp�1) (2.2.1)

= rp(h1; : : : ;hp�1);

and

cum fX (t) ; X (t+ h1) ; : : : ; X (t+ hp�1)g = Cp(h1; :::;hp�1):

Let � = f�1; :::; �kg be a partition of the set f0;h1; � � � ;hp�1g into k subsets where 0 � k � p�1:
Then

Cp(h1; :::;hp�1) =
X
�

(�1)m(�)�1 [m(�)� 1]!
m(�)Y
j=1

E

8<: Y
hu2�j

X (hu)

9=; ; (2.2.2)

where m(�) is the number of nonvacuous sets in the partition � and the outer sum is over all

partitions � of f0;h1; � � � ;hp�1g.
The pth order cumulant spectrum (or polyspectrum) is de�ned by

fp(�1; :::;�p�1) =
1

(2�)d(p�1)

X
h12Zd

:::
X

hp�12Zd
Cp(h1; :::;hp�1)e

�i
Pp�1
j=1 hj :�j ;

where h:� =
Pd

i=1 hi�i, � = (�1; :::; �d) 2 �;� = [��; �[� :::� [��; �[, d�times, provided thatX
hj2Zd

��Cp(h1; :::;hp�1)�� <1; j = 1; :::; p� 1;

where the pth order cumulant function of the random �elds satis�es the inverse relation

Cp(h1; : : : ;hp�1) =

Z
�

:::

Z
�

X
h12Zd

:::
X

hp�12Zd
ei
Pp�1
j=1 hj :�jfp(�1; :::;�p�1)d�1:::d�p�1:
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De�ne the moment estimate as

brp(h1; : : : ;hp�1) = jN� 2lNj�1 N�lNX
t=lN+1

X (t)X (t+ h1) :::X (t+ hp�1) ;
��hj�� � lN; j = 1; :::; p� 1:

(2.2.3)

and the cumulant estimate bCp(h1; : : : ;hp�1) are obtained by replacing the moment by their
estimates in (2:2:3) into formula (2:2:2).

The conventional estimate fpN(�1; :::;�p�1) of the pth order polyspectrum takes the form

fpN(�1; :::;�p�1) =
1

(2�)d(p�1)

X
jh1j�lN

:::
X

jhp�1j�lN
bCp(h1; :::;hp�1)w(bN�h1; :::; bN�hp�1)e�iPp�1

j=1 hj :�j ;

(2.2.4)

where bN is a vector of the bandwidth parameter, w(x1; :::;xp�1) is the weight function andbCp(h1; : : : ;hp�1) is a cumulant estimate of Cp(h1; :::;hp�1) based on a realization fX1; :::; XNg from
the process (X(t))t2Zd . Consider now the following condition

Condition 2.1 For an integer p � 2;

1. E
�
jX (t)j4p

	
<1:

2.
X
hj2Zd

��Cj(h1; : : : ;hj�1)�� jhjjq <1 for some q � 1; j = 1; :::4p:

3. the weight function w(x1; :::;xp�1) is of bounded support and continuous.

4. limhj=jhj j�!�
w(bN�h1;:::;bN�hp�1)�1

p�1Y
j=1

jhj jq jbNjq
= �(�) 6= 0 as bN �! 0 and j�(�)j <1:

5. N�bp�1N �!1; bN & 0 as N �!1:

6. The lag in (2:2:3) is lNi = O
�
b�1Ni
�
, and usually we take lNi = b�1Ni :

2.3 Spectral density estimate

A random �eld which is not linear is always non Gaussian and hence the analysis of its higher

order spectra can be used to study departure from linearity. But so far, no signi�cant e¤ort has

been made to investigate the sampling properties of the estimates of the second and higher order

spectra from random �elds which are nonlinear. In this section, we consider the spectral estimators
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based on a sample from a class of strictly stationary nonlinear spatial processes which include in

particular the spatial bilinear and spatial Volterra processes and non linear random �elds which

satisfy the geometric-moment contraction condition, and we establish the asymptotic normality of

the spectral density estimate.

2.3.1 Asymptotic normality of stationary nonlinear spatial processes

We have, instead limited ourselves to nonlinear processes (X(t))t2Zd which can be de�ned as

X (t) = e(t) +
X
r�0

Wr (t) ; t 2 Zd; (2.3.1)

where (e(t))t2Zd is an independly and identically distributed random �elds, Wr (t) (r � 1) is a

function fr(e (t� 1) ; :::; e (t� r� v)) of (e(t))t2Zd ;v is an arbitrary vector but all component are
a �xed integer � 0. We assume that E fe (t)g = 0; var fe (t)g = �2e (0 < �e <1); E fje (t)jpg <1
for some p � 2; E fWr (t)g = 0 (r � 0); and that there exists a vectors of sequence fgr; r � 1g of
real numbers such thatX

r�0
jrj3 jgrj <1 and E

�
jWr (t)j4

	
�M jgrj4 ; r � 1;

where M is denotes a �nite positive constant, independent of ri and ti; i = 1; :::; d:

Spatial bilinear processes

In two dimensions, we shall focus our attention on (SSBLd) models de�ned by matrix form as

X (t) = B(t)e (t) +A(t)X (t� e1) + B(t)X (t� e2) : (2.3.3)

where X (t) ; A(t); B(t) and e (t) are de�ned in the Appendix 2.1 and e1 = (1; 0) and e2 = (0; 1) :
Then, we can write (2:3:3) in representation form as

X (t) = e(t) +
1X
r�0

Wr (t) ;

where

Wr (t) = �TT r1;r2 (t)Be(t� r);

and � = (1; 0; :::; 0)0: It is also shown that

jWr (t)j �M(C (t)


T r1;r2�1 (t)

+D (t)

T r1�1;r2 (t)

) ke(t� r1)k1 ;

where C(t); D(t) and T r1;r2 (t) are de�ned in the Appendix 2.2, from which by a suitable choice of

fgr; (r � 0)g ; we can establish the conditions in (2:3:1) :



35

Spatial Volterra processes

Let (X(t))t2Z2 be de�ned by

X(t) =

qX
k=1

(X
(k)
Vk (u1; :::;uk)

kY
j=1

e(t� uj)
)
; (2.3.4)

where Vk (u1; :::;uk) are the kth-order Volterra kernels and
P

(k) is over all uj 2 S [0;1[, where
the coe¢ cients Vk are symmetric functions of their arguments, q is an arbitrary but �xed integer

� 2; and (e (t))t2Z2 is an i.i.d random �eld. Without any loss of generality, we can assume that in

relation (2:3:4).

Then we can write (X(t))t2Z2 in the form (2:3:1) with

Wr (t) =

qX
k=1

(X
(k)
V
(r)
k (u1; :::;uk)

k�1Y
j=1

e(t� uj)
)
;

where Wr (t) is a function of fe (t� 1) ; :::; e (t� r)g and
P

(k) is over all 0 � u1 � ::: � uk�1 � r,
and

E fWr (t)g �Mg4r where gr =
qX
k=1

�X
(k)

���V (r)
k (u1; :::;uk)

���� :
In fact, if we assume that E

�
je(1)j4q

	
<1; then E

�
(Wr (t))

4	 � E
�
je(1)j4q

	
g4r and we need

to specify that for r � 1;
P

r(r1r2)
3g4r <1.

Remark 2.1 Note that if in general, we can assume that relation (2:3:1) for d = 2 holds with

E fjWr (t)jpg � Mgpr for some p � 1 such that
P

r�1(r1r2)
2gr < 1; then one can show that the

right side of (2:3:1) converges a.s. This result follows from the fact that if we write

AN =

(�����X
r�N

Wr (t)

����� > �

)
;

where � is an arbitrary number > 0 then for N = (N1; N2)

P

 1[
N=m

AN

!
�

1X
N=m

p(AN)

� M

1X
N=m

1X
r=N

jrj2 gr
�

�! 0 as m �!1:
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Asymptotic normality

For the sake of simplicity, we restrict ourselves in this section to the study of the sampling properties

of fN(�) (i.e. p = 2) as

fN(�) =
1

(2�)2

X
jhj�lN

bC(h)w(bN � h) cos(h:�); (2.3.5)

where h:� =h1:�1 + h2:�2,w(bN � h) = w(bN1 :h1; bN2 :h2) for every (h � 0) and

bC(h) = jNj�1 N�hX
t=1

X(t)X(t+ h) and bC(h) = bC(�h); (2.3.6)

Remark 2.2 If E fX(t)g 6= 0 we replace X(t) by X(t)�X(t) where

X(t) = jNj�1
N�hX
t=1

X(t);

and the corresponding analysis of fN(�) remains unchanged, asymptotically.

Theorem 2.1 Let (X(t))t2Z2 be a nonlinear strictly stationary spatial processes satisfying the re-
lation (2:3:1) (d = 2), and w(x) is continuous function in [�1; 1]2 : Then

L
�
(jNj jbNj)1=2[fN(�)� E ffN(�)g]

�
! N (0; �2�) as N �!1; (2.3.7)

where

�2� = Kf 2(�);K =

Z
w2(x)dx if � 6= 0;��;

and

K = 2

Z
w2(x)dx if � = 0;��;

Corollary 2.1 Let the condition in Theorem 2.1 hold. Also let for some q > 0; kq > 0; limx�!0(1�
w(x))= jxjq = kq, and assume that

P1
h=1 jhj

p jC(h)j < 1 for some p > 0; if we choose w(x) �
jNj1=(2q+1) log(jNj); where p � q and w(x) � jNj1=(2p+1) when p < q; then

L
�
(jNj jbNj)1=2 (fN(�)�f(�))

�
! N (0; �2�) as N �!1;

where �2� is as de�ned in (2:3:7).

Corollary 2.2 Let fN(�) be as de�ned in (2:3:5) and let the condition of Theorem 2.1 and Corollary
2.1 hold. Then for any (�) and (�) where (�i 6= �i; i = 1; 2); then (jNj jbNj)1=2 [fN(�)�f(�)] and
(jNj jbNj)1=2 [fN(�)�f(�)] are asymptotically independent, with zero mean and asymptotic variances
�2� and �

2
� respectively.
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2.3.2 Asymptotic normality for random �elds under GMC condition

Most of the asymptotic results developed in the literature are for strong mixing random �elds

and random �elds with quite restrictive summability conditions on joint cumulants (see Rosenblatt

(1985)). Such conditions seem restrictive and they are not easily veri�able. In this fact, we employ

the GMC as an underlying assumption for our asymptotic theory of spectral density estimates.

Let (e(t))t2Zd be an i.i.d random �elds and let X(t) = G(:::; e(t� 1); e(t)); where G is a meas-

urable function such that (X(t))t2Zd is a proper random �eld. Then the process (X(t))t2Zd is causal

in the sense that it only depends on =t = (:::; e(t� 1); e(t)); not on the future innovations. To
establish an asymptotic theory for fN(�) de�ne as

fN(�) =
1

(2�)d

X
jhj�lN

bC(h)w(bN � h)e�ih:�; (2.3.8)

where bC(h) satis�ed (2:3:6) ; we shall adopt the geometric-moment contraction (GMC) condi-
tion. From a �nite realization fX (t) ; t = 1; :::;Ng of a random �elds (X (t))t2Zd , let X

0 (N) =

G f:::; e0(�1); e0(0); e(1); :::; e(N)g be a coupled version of X (N) and (e0 (t))t2Zd be an i.i.d copy of
(e (t))t2Zd : We say that X (N) is GMC(�); � > 0; if there exist C > 0 and 0 < � = �(�) < 1 such

that, for all N 2 Nd,
E
�
jX 0 (N)�X (N)j�

	
� C�jNj: (2.3.9)

Note that under GMC(2), jC(h)j = O(�jhj) for some � 2 (0; 1) and hence the spectral density

function is in�nitely many random di¤erentiable.

Lemma 2.1 Assume (2:3:9) with � = p for some p 2 N. Then there exists a constant C > 0 such

that for all 0 � t1 � ::: � tp�1;

jcum(X (0) ; X (t1) ; :::; X (tp�1))j � C�jtp�1j=[p(p�1)]:

Lemma 2.2 Let sN 2 Nd a vector of sequence satisfy sN � N and bNi = o(sNi); i = 1; :::; d and

Yu(�) =
1

(2�)d

X
jhj�lN

w(bN � h) cos(h:�)X(u)X(u+ h) : (2.3.10)

Then under GMC(4) we have





sNX
u=1

[Yu(�)� E fYu(�)g]






2

� jsNj jbNj�2:
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Theorem 2.2 Consider (X (t))t2Zd 2 L4+� for some � > 0 satis�es (2:3:9) ; bNi = o[(logNi)
2+8=�=Ni].

Then

(jNj jbNj)1=2[fN(�)� E ffN(�)g] �! N
�
0; �2(�)

�
(2.3.11)

where

�2(�) = f1 + �(2�1):::+ �(2�d)gf 2(�)
Z
W 2(�)d�

and

W (�) =
1

(2�)d

Z
w(x)e�ix:�dx

�(�) =

(
1; if � � 2�k;
0; otherwise.

2.4 Bispectral density estimates

In this section, we study the asymptotic distribution of certain estimates of the bispectrum. This

estimate would have distribution which tend to complex normal distributions under certain condi-

tions. The �rst condition involves a uniform summability condition on the �rst six cumulants of a

random �eld obtained from the original random �eld by projecting on a Borel �elds. The second

condition and much more intuitively meaningful, involves the strong mixing condition.

We de�ne the bispectral density function as

f3(�1;�2) =
1

(2�)2d

X
h1;h22Zd

C3(h1;h2)e
�i(h1:�1+h2:�2); (2.4.1)

C3(h1;h2) =

Z
�

Z
�

ei(h1:�1+h2:�2)f3(�1;�2)d�1d�2:

where C3(h1;h2) ful�ls the symmetry relation (1:5:5) :

It is easy to see that a natural estimate of f3(�1;�2) is not consistent. In order to solve this

problem, we have:
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De�nition 2.1 A real function w(x1;x2); is called a symmetric bispectral estimating kernel if1

(i) for any � > 0; there is an M1(�) such that for all M > M1 and uniformly in Ni > M;

jbNj2
XX

(h1;h2)2C0dM
w2(bN � h1; bN � h2) < �;

(ii) w(x1;x2) �M1 <1 for all �1 � x1;x2 � 1;

(iii) w(x1;x2) = w(x2;x1) = w(�x1;x2 � x1);

(iv) for any � > 0; there is an M2(�) such that for all M > M2 and uniformly in Ni > M; i =

1; :::; d; and in h1;

jbNj
X

jh2j�MlN

jw(h1; bN � h2)j < �;

(v) for all �xed numbers a and c, and any �xedM > 0, and for any � > 0 there is an N0(�;M; a; c)

such that for all N � N0;

jbNj2
������

X
jh1j;jh2j�MlN

w(bN � h1 + abN; bN � h2)w(bN � h1; bN � h2 + cbN)

�
X

jh1j;jh2j�MlN

w2(bN � h1; bN � h2)

������ < �;

and

jbNj

������
X

jh1j�MlN

w(bN � h1; abN)�
X

jh1j�MlN

w(bN � h1;0)

������ < �;

From the above de�nition we can de�ne the estimate f3N(�1;�2) based on bispectral estimating

kernel as follows:

f3N(�1;�2) =
1

(2�)2d

X
jh1j;jh2j�N

bC3(h1;h2)w(bN � h; bN � h2)e�i(h1:�1+h2:�2); (2.4.2)

where bC3(h1;h2) = 1

jNj
X
t2DN

X (t)X (t+ h1)X (t+ h2) ; (2.4.3)

and DNi =
h
�min

�
0; h

(1)
i ; h

(2)
i

�
; Ni �max

�
0; h

(1)
i ; h

(2)
i

�i
; and �

(1)
i , �

(2)
i ; i = 1; :::; d are on the

triangle with vertices (0; 0) ; (�; 0) ;
�
2�
3
; 2�
3

�
(see Terdik (2000)):

1 CM : the n-dimensional hypercube centered at the origin with sides of length 2M parallel to the n axes. The
dimension n, will be obvious from the context. Also let C 0M denote the complement of CM in Rn
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2.4.1 Asymptotic normality under a uniform summability of cumulants

condition

Let (e(t))t2Zd be an i.i.d random �eld, T be the back shift operator de�ned as T�1e(t) = e(t+ 1);

and de�ne a real strictly stationary random �eld (X(t))t2Zd as X (t) = G(T�1e(t)); t 2 Zd where
G is a Borel measurable function. Let

Xk (t) = E fX (t) je (t� k) ; :::; e (t+ k)g ;

whereXk (t) is the projection ofX (t) on to the Borel �ledBt+k
t�k generated by (e (t� k) ; :::; e (t+ k))

and de�ne

r(1;k)(h) = E fX (t)Xk (t+ h)g ;
r(k;k)(h) = E fXk (t)Xk (t+ h)g ;

...

r
(k;:::;k)
6 (h1; :::;h5) = E fXk (t)Xk (t+ h1) :::Xk (t+ h5)g :

and similarly de�ne C(1;k)(h); :::;C(k;:::;k)6 (h1; :::;h5):

Theorem 2.3 Let (X(t))t2Zd be a strictly stationary random �elds with E fX(t)g = 0; E fX12 (t)g <
1; cumulants up to sixth order absolutely summable and w(x1;x2) is a symmetric bispectral estim-

ating kernel. Then

jNj
1
2 jbNj [f3N(�1;�2)� E ff3N(�1;�2)g]

d�! X + iY;

where X and Y have zero mean, and the following variances:

i)

�2X = �2Y =
1

2

w2
(2�)d

f(�1)f(�2)f(�1 + �2);

if (�1;�2) lies inside the region one and not on its boundaries.

ii) and if we include the boundaries

�2X =
w1
(2�)d

f(�1)f(�2)f(�1 + �2)[8��1 + ��2 ] + A+B;

�2Y = A�B;



41

where

A =
1

2

w1
(2�)d

f(�1)f(�2)f(�1 + �2)[(1 + ��1��2)(1 + ��1+2�2�2� + �2�1+�2�2�) + 4��1 ];

B =
1

2

w2
(2�)d

f(�1)f(�2)f(�1 + �2)[5��1 + ��2(1 + ��1��)];

and

w1 = [

Z
w(0;x)dx]2; w2 =

Z Z
w(x1;x2)dx1dx2;

�x =

(
1; x = 0

0; otherwise

� = (�; :::; �); d� dimension.

2.4.2 Asymptotic normality under the strong mixing condition

Let (X(t))t2Zd be a real 6th-order weakly stationary random �eld, and S, S
0 be two sets of indices.

The Borel �elds B(S)= B(X (t) ; t 2 S) and B(S 0)= B(X (t) ; t 2 S 0) as usual are the �-�elds

generated by the random �eld X (t) : Consider the distance d(S; S 0) between the set of indices S

and S 0. The random �eld (X(t))t2Zd is said to be strong mixing if

sup
A2B(S);B2B(S0)

jP (AB)� P (A)P (B)j � '(d(S; S 0));

for any two sets of indices S and S 0 with ' a function such that '(d) �! 0 as d �!1:

Theorem 2.4 Let (X(t))t2Zd be a strong mixing weakly real random �eld with E fX(t)g = 0;

E fX12(t)g <1; cumulants up to sixth order absolutely summable, w(x1;x2)is a symmetric bispec-

tral estimating kernel, there is some � > 0 such that for �N; �N and ��n�
(j�Nj : j�Nj)1=2��

�2+�o�1 �NX
j=1

E

����U (N)j

���2+�� �! 0; (2.4.5)

where U (N)j de�ned by (2:7:25) : Then the result of Theorem 2:3 holds.

Remark 2.3 If (X(t))t2Zd be a stationary random �eld, then (2:4:5) becomesh
(j�Nj�=2 : j�Nj)1+�=2

i�1
E

����U (N)1

���2+�� �! 0:



42

2.5 The fourth-order cumulant spectral density estimation

Let f4(�1;�2;�3) the trispectral density function de�ned as

f4(�1;�2;�3) =
1

(2�)3d

X
h1;h2;h32Zd

C4(h1;h2;h3)e
�i
P3
j=1 hj :�j ; (2.5.1)

where

C4(h1;h2;h3) =

Z
�

Z
�

Z
�

ei(h1:�1+h2:�2+h3:�3)f4(�1;�2;�3)d�1d�2d�3:

We construct an estimate of the fourth-order cumulant as follows (see Rosenblatt (1985)):

bc4(h1;h2;h3) = br4(h1;h2;h3)� br(h1)br(h2 � h3)� br(h2)br(h1 � h3)� br(h3)br(h1 � h2); (2.5.2)

and we can shown that (2:5:2) is an asymptotically unbiased and consistent estimator of c4(h1;h2;h3):

Then we de�ne an estimator for (2:5:1) as

f4N(�1;�2;�3) =
1

(2�)3d

X
h1;h2;h3

bC4(h1;h2;h3)wN(h1;h2;h3)e�iP3
j=1 hj :�j ; (2.5.3)

where wN(h1;h2;h3) = w(bN � h1; bN � h2; bN � h3) and w(x1;x2;x3) = w1(x1)w2(x2)w3(x3) and

wi(x); i = 1; 2; 3 be a bounded continuous function de�ned on [�1; 1]d with wi(0) = 1:

2.5.1 Asymptotic properties under a uniform summability of cumulants

condition

Let

Y N
u (�1;�2;�3) =

X
s1;s2;s3

X (u)X (u+ s1)X (u+ s2)X (u+ s3)wN(s1; s2; s3)e
�i
P3
j=1 sj :�j ; (2.5.4)

and

g(�1;�2;�3) = jN�j�1
N�X
u=1

Y N
u (�1;�2;�3); (2.5.5)

where (�1;�2;�3) 2 �3;N� �!1; N�
i = o(Ni) as Ni �!1:

Consider � the collection of two partitions A and B de�ned as

A = f(u+ sj;v + hj); j = 0; :::; 3g;

B = f(u+ s0;u+ s1); (v + h0;v + h1); (u+ s2;v + h2); (u+ s3;v + h3)g;

where s0 = h0 = 0; and de�ne

D = fu;v; sj;hj;u;v = 1; :::;N�;
��sj�� ; ��hj�� � lN; j = 1; 2; 3g: (2.5.6)
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Lemma 2.3 Suppose that (X(t))t2Zd be a weakly stationary real random �eld with a zero mean and
cumulants up to eighth order absolutely summable. Then for all

varfg(�1;�2;�3)g � jN�j�2
X
�

X
D

C (�1) :::C (�4)wN(s1; s2; s3)wN(h1;h2;h3)e
�i
P3
j=1(sj�hj):�j ;

as N �!1:

Proof. The proof follows from Lemma 3.1 in Kim (1988).

By permuting the indice of h in A partition, and for a �xed ! 2 S4, where S4 is the permutation
group on four letters, let

�(!) = f(u+ sj;v + h!(j)); j = 0; :::; 3; s0 = h!(0) = 0g; (2.5.7)

then a direct calculation gives us

X
D

4Y
j=0

C(u� v + sj�h!(j))wN(s1; s2; s3)wN(h1;h2;h3)e�i
P3
j=1(sj�hj):�j (2.5.8)

� (2�)4d jN�j �A(�1;�2;�3; !)
jbN j3

;

where

�A(�1;�2;�3; !) =

8>>>>>><>>>>>>:

f(�1 + �2 + �3)f(�1)f(�2)f(�3)W1; if �l � �!(l)(l = 1; 2; 3)
f(�1 + �2 + �3)f(�1)f(�2)f(�3)W1; if !j(0) = 0 (j = 1; 2; 3)

and �1 + �2 + �3 + �j � 0;
�l � �!(l)(l 6= j; l = 1; 2; 3)

0 otherwise,

and

W1 =

Z Z Z
w2(x1;x2;x3)dx1dx2dx3:

Finally, de�ne

�A(�1;�2;�3) =
X
!2S4

�A(�1;�2;�3; !); (2.5.9)

We can realize by B partition, �(�; �) in the following way

�(�; �) = f(u+ s�(0) ;u+ s�(1)); (v + h�(0);v + h�(1)); (u+ s�(2);v + h�(2)); (u+ s�(3);v + h�(3))g;
(2.5.10)
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where (�; �) 2 S4 � S4: By a direct calculation we can show thatX
D

C(s�(0) � s�(1))C(h�(0) � h�(1))C(u� v + s�(2)�h�(2))C(u� v + s�(3) � h�(3))(2.5.11)

�wN(s1; s2; s3)wN(h1;h2;h3)e�i
P3
j=1(sj�hj):�j

� (2�)4d jN�j �B(�1;�2;�3; �; �)
jbN j3

;

where (�; �) 2 S4 � S4; (�1;�2;�3) 2 �3; and the values of �B(�1;�2;�3; �; �) are given similarly
in Table I in Kim (1988).

Let (�; �) �= (�0; �0) i¤ �(�; �) = �(�0; �0) (�= is an equivalence relation) and let G = S4 � S4 be
the collection of equivalence classes. As a consequence de�ne

�B(�1;�2;�3) =
X

(�;�)2G

�B(�1;�2;�3; �; �); (2.5.12)

where the summation is performed over any representative of each element in G:

De�ne br4(h1;h2;h3) = 1

jN�j
X
t2Dn

X (t)X (t+ h1)X (t+ h2)X (t+ h3) ; (2.5.13)

whereDni =
h
1�min(0; h(1)i ;h

(2)
i ;h

(3)
i ); :::; ni �max(0; h

(1)
i ;h

(2)
i ;h

(3)
i )
i
; ni = min(Ni; N

�
i ) andN

�
i �!

1; N�
i = o (Ni) as Ni �!1: By the absolute summability of cumulants up to 8th order, we obtain

E fbr4(r; s; t)g � r4(r; s; t) = O
�
jN�j�1

�
; E fbr(r)br(s� t)g = O

�
jNj�1

�
; r; s; t 2 Zd;

and

var fbr4(r; s; t)g = O
�
jN�j�1

�
; var fbr(r)br(s� t)g = O

�
jNj�1=2

�
;

where br(:) de�ne similarly as (2:3:6) : Indeed de�ne
bg1(�1;�2;�3) =

X
h1;h2;h3

br4(h1;h2;h3)wN(h1;h2;h3)e�iP3
j=1 hj :�j ;

bg2(�1;�2;�3) = �
X

h1;h2;h3

br2(h1)br2(h2 � h3)wN(h1;h2;h3)e�iP3
j=1 hj :�j ;

bg3(�1;�2;�3) = �
X

h1;h2;h3

br2(h2)br2(h1 � h3)wN(h1;h2;h3)e�iP3
j=1 hj :�j ;

bg4(�1;�2;�3) = �
X

h1;h2;h3

br2(h3)br2(h1 � h2)wN(h1;h2;h3)e�iP3
j=1 hj :�j ;
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then we can write (2:5:3) as

f4N(�1;�2;�3) =
1

(2�)3d

4X
j=1

bgj(�1;�2;�3); (�1;�2;�3) 2 �3: (2.5.14)

Lemma 2.4 Suppose that (X(t))t2Zd be a weakly stationary real random �eld with a zero mean and
cumulants up to eighth order absolutely summable. Then

varfbg1(�1;�2;�3)g � varfg(�1;�2;�3)g;

and

varfbgj(�1;�2;�3)g = o
�
jN�j�1 jbNj�3

�
; (j = 2; 3; 4) as N �!1

uniformly for all (�1;�2;�3) 2 �3:

Theorem 2.5 Suppose that (X(t))t2Zd be a weakly stationary real random �eld with a zero mean

and cumulants up to eighth order absolutely summable. Then, for all (�1;�2;�3) 2 �3

E ff4N(�1;�2;�3)g �! f4(�1;�2;�3) as N �!1;

and there exist bounded functions �A(�1;�2;�3) and �B(�1;�2;�3) de�ned on �3 so that

(2�)2dvarff4N(�1;�2;�3)g �
�(�1;�2;�3)

jN�j jbNj3
as N �!1;

where �(�1;�2;�3) = �A(�1;�2;�3) + �B(�1;�2;�3) and �B(�1;�2;�3) = 0 if (�1;�2;�3) 2 �3

have no submanifolds2.

Corollary 2.3 Under the conditions of Theorem 2.5, f4N(�1;�2;�3) is a consistent estimator of

f4(�1;�2;�3) for all (�1;�2;�3) 2 �3:

2.5.2 Asymptotic normality under the strong mixing condition

In this section, we obtained the asymptotic normality of fourth-order cumulant spectral density

estimates under the strong mixing condition for all frequencies including those lying on what have

been called submanifolds. This result is su¢ ciently complete to indicate what happens in general,

in the following section.

2 For (�1;�2;�3) 2 �3 a submanifold is de�ned to be any subset fj1; :::; jsg of f1; 2; 3g so that
Ps

k�1 �jk � 0 for
1 � s � 3; where x � y means xi = yi (mod 2�) ; i = 1; :::; d:
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Theorem 2.6 Let (X(t))t2Zd be a strictly stationary strong mixing random �eld with zero mean,

and assume that condition 2.1 is satis�ed for p = 4: Then

(jNj jbNj3)1=2 [f4N(�1;�2;�3)� E ff4N(�1;�2;�3)g] are jointly asymptotic normal with zero mean
and covariance given by

(2�)�2df (�1) f (�2) f (�3) f (�1 + �2 + �3)X
T

[�(�1 � �T1)�(�2 � �T2)�(�3 � �T3)

�
Z
w(x1;x2;x3)w(xT1 � xT4 ;xT2 � xT4 ;xT3 � xT4)dx1dx2dx3];

where the sum is over all 4! permutation T = (T1; T2; T3; T4) of (1; 2; 3; 4) with the convention that

�4 = ��1 � �2 � �3;�4 = ��1 � �2 � �3; x4 = 0; and

�(�) =

(
0 if �i 6= 2�k with k an integer ,i = 1; :::d
1 otherwise.

Remark 2.4 we can show that for a weight function w(x) satisfying 3� 4 in condition 2.1, there
exists a sequence of weight functions w(si)l satisfying 3 in condition 2.1 such that

NX
s=1

�s

p�1Y
l=1

w
(si)
l (j� hl)

u�! w(h1; :::;hp�1); as N �!1:

2.6 General p-order case

The asymptotic normality of the general p-order spectral density estimate under a limited number

of cumulant summability assumptions and the strong mixing condition for all frequencies have been

a submanifolds given in the following theorem

Theorem 2.7 Let (X(t))t2Zd be a strictly stationary strong mixing random �elds with zero mean,

and assume that condition 2.1 is satis�ed for p � 4: Then�
jNj jbNjp�1

�1=2
[fpN(�1; :::;�p�1)� E ffpN(�1; :::;�p�1)g] are asymptotically jointly normal with

zero mean and covariance of the submanifold is given by

(2�)d(2�p)(jNj jbNjp�1)�1
pY
j=1

f (�j)
X
T

p�1Y
j=1

[�(�j � �Tj)

�
Z
w(x1; :::;xp�1)w(xT1 � xTp ; :::;xTp�1 � xTp)dx1:::dxp�1];

where the sum is over all p! permutation T = (T1; :::; Tp) of (1; 2; :::; p) with the convention that

�p = �
Pp�1

j=1 �j;�p = �
Pp�1

j=1 �j; xp = 0; and � is the Kronecker delta function.
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2.7 Proof

Proof. Theorem 2.1

Write

TN = ��2
�
jNj
jbNj

��1=2 lNX
h=1

w(bN � h) cos(h:�)
N�hX
t=1

X(t)X(t+ h): (2.7.1)

Then it is easy to see that

L
�
(jNj jbNj)1=2 [fN(�)�E ffN(�)g]

�
�L(TN � E fTNg): (2.7.2)

Moreover, if we de�ne

YN (t) = ��2 jbNj1=2
lNX
h=1

w(bN � h) cos(h:�)[X(t)X(t+ h)� C(h)]; (2.7.3)

UN = ��2 jbNj1=2
lNX
h=1

w(bN � h) cos(h:�)
NX

t=N�h�1

[X(t)X(t+ h)� C(h)];

Then we can show that

E
�
U2N
	
�! 0; as N �!1:

Therefore, we conclude that

L(TN � E fTNg) � L
 
jNj�1=2

NX
t=1

YN(t)

!
:

From condition of Theorem 2.1 and lemma 1 in Chanda (2005), we show that

var

(
jNj�1=2

NX
t=1

YN (t)

)
�! �2�; (2.7.4)

where �2� is as de�ned in (2:3:7).

Write

Y m
N (t) = ��2 jbNj1=2

lNX
h=1

w(bN � h) cos(h:�)[Xm(t)Xm(t+ h)� Cm(h)]; (2.7.5)

where for m = (m1;m2);m = mN �! 1; but mN

bN
�! 0 as N �! 1; Xm(t) =

Pm
j=0Wj (t) and

Cm(h) = E fXm(t)Xm(t+ h)g. Write

TmN = jNj�1=2
NX
t=1

Y m
N (t);
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then

E fTN � TmN g � 2(var(S1) + var(S2)); (2.7.6)

where

S1 = ��2
�
jNj
jbNj

�1=2 NX
t=1

lNX
h=1

w(bN � h) cos(h:�)[Xm(t)X
�
m(t+ h)];

S2 = ��2
�
jNj
jbNj

�1=2 NX
t=1

lNX
h=1

w(bN � h) cos(h:�)[X�
m(t)Xm(t+ h)];

and

X�
m(t) = X(t)�Xm(t) =

X
j�m+1

Wj (t) ;

we can establish that var(S1) �! 0; var(S1) �! 0 as N �!1 (see Chanda (2005)): From (2:7:6),

we conclude that

L(TN � E fTNg) � L(TmN � E fTmN g); (2.7.7)

In other words,

lim
N�!1

var fTmN g = lim
N�!1

var fTNg = �2�;

First note that (Y m
N (t))t2Z2 is a jkNj �dependent strictly stationary random �elds: Choosing

the vector of sequences fpN;N � 1g of integers such that pN � 2kN �!1; pN
N
�! 0 and kN

pN
�! 0

as N �!1: Let N = pN � tN + rN; where tNi = [Ni=pNi] < Ni=pNi and 0 � rN � pN: Set

Zms;N =

s�pN�kNX
t=(s�1)�pN+1

Y m
N (t) ;1 � s � tN;

V m
s;N =

s�pNX
t=s�pN�kN+1

Y m
N (t) ;

and

RmN =

NX
t=pN�tN+1

Y m
N (t) :

Since N
pN
= tN +

rN
pN
� tN + 1; we have that tN �! 1 as N �! 1; pN � 2kN; fZms;N;1 � s � tNg

and fV m
s;N;1 � s � tNg are two i.i.d. sequences of random �elds. Moreover

var

(
jNj�1=2

tNX
s=1

V m
s;N

)
= jNj�1 jtNj var

�
V m
1;N

	
(2.7.8)

� M jNj�1 jtNj jkNj

� M jkNj
jpNj

�! 0 as N �!1:
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The �rst inequality is the direct consequence of the fact that

var
n
jkNj�1=2 V m

1;N

o
= var

(
jkNj�1=2

kNX
t=1

Y m
N (t)

)
�! �2� as N �!1:

Similarly we can show that

var
n
jNj�1=2RmN

o
�! 0 as N �!1; (2.7.9)

and that

var

(
jNj�1=2

tNX
s=1

Zms;N

)
= jNj�1 jkNj var

�
Zm1;N

	
(2.7.10)

= jNj�1 jtNj jnNj var
 
jnNj�1=2

nNX
t=1

Y m
N (t)

!
�! �2� as N �!1;

where we write nN = pN � kN �!1 as N �!1;

fjNj�1 jtNj jnNj = (1� jrNj = jNj) (1� jkNj = jpNj) �! 1 because rN
nN
� t�1N �! 0 and kN

pN
�! 0 as

N �! 1g Since fZms;N;1 � s � tNg is an i.i.d. sequence of random �elds, and (2:7:10) holds true,

we must have that

L
 
jNj�1=2

tNX
s=1

Zms;N

!
�! N (0; �2�) as N �!1;

then
tNX
s=1

�
Zms;N + V m

s;N

�
+RmN =

NX
t=1

Y m
N (t) ; [tN � (pN � kN) + tN � kN + rN = N]

and relations (2:7:8)� (2:7:10) hold. Therefore, we �nally conclude that

L
 
jNj�1=2

NX
t=1

Y m
N (t)

!
�! N (0; �2�) as N �!1; (2.7.11)

The result of Theorem 2.1 will now follow immediately from (2:7:2), (2:7:7) and (2:7:11).

Proof. Theorem 2.2

Let � = �(4); wh = w(bN�h) cos(h:�) and

hN(�) =
(jNj jbNj)�1=2

(2�)d

 
lNX
h=0

NX
u=N�h+1

X (u)X (u+ h)wh +
�1X

h=�lN

NX
u=N+h+1

X (u)X (u+ h)wh

!
:
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By the summability of cumulants of order 2 and 4, khN(�)k = (jNj jbNj)�1=2O(jbNj): Let gN(�) =PN
u=1 Yu(�): Then

(jNj jbNj)�1=2 [fN(�)� E ffN(�)g] =
gN(�)� E fgN(�)g

(jNj jbNj)1=2
+ hN(�)� E fhN(�)g : (2.7.12)

For h 2 Zd; let eX (h) = E fX (h) je (h� k+ 1) ; :::; e (h)g ; where ki = kNi = [c logNi] and c =

�8= log �: Let eYu := eYu(�) be the corresponding sum with X (h) replaced by eX (h). Observe thateX (n) and eX (m) are i.i.d if [ni�mi] � ki; i = 1; :::; d: and eYu and eYv are i.i.d if jui � vij � 2bNi+ki:
The independence plays an important role in establishing the asymptotic normality of egN(�) =PN

u=1
eYu(�): Then kgN(�)� egN(�)k = o(1) since


Yu(�)� eYu(�)


 � (2�)�d

X
h�bN

jwhj



X (u)X (u+ h)� eX (u) eX (u+ h)


 (2.7.13)

= O(jbNj �jaj=4):

Let

 Ni = Ni=(logNi)
2+8=�; pNi = [ 

2=3
Ni
b
1=3
Ni
] and qNi = [ 

1=3
Ni
b
2=3
Ni
]:

Then

pN; qN �! 1; qNi = o(pNi); i = 1; :::; d: (2.7.14)

2bNi + ki = o(qNi) and kNi = [Ni=(pNi + qNi)] �!1:

De�ne for 1 � r � kN � 1;

Lr = fj 2 Nd : (r� 1)� (pN + qN) + 1 � j � r�(pN + qN)� qNg;
Sr = fj 2 Nd : r� (pN + qN)� qN + 1 � j � r� (pN + qN)g;
SkN = fj 2 Nd : kN � (pN + qN)� qN + 1 � j � Ng;

and let Ur =
P

j2Lr
eYj and Vr = Pj2Sr

eYj: Observe that U1; :::; UkN and V1; :::; VkN�1 are i.i.d. By
Lemma 2.1 and 2.2, we have

kU1 � E fU1gk =







pNX
j=1

(Yj � E fY0g)





+O(jpNj




Y0 � eY0


 (2.7.15)

�
�
jpNj jbNj�2

�1=2
+O(jpNj jbNj �jaj=4)

�
�
jpNj jbNj�2

�1=2
:
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Similarly,

kV1 � E fV1gk �
�
jqNj jbNj�2

�1=2
+O(jqNj jbNj �jaj=4):

By (2:7:14) ;

var fV1 + :::+ VkNg = (jkNj � 1) kV1 � E fV1gk2 + kVkN � E fVkNgk
2

= O(jkNj jqNj jbNj) +O[(jpNj+ jqNj) jbNj]
= o(jNj jbNj):

From Theorem 3.1 in Shao and Wu (2007), we can prove that

(jNj jbNj)�1=2[egN(�)� E fegN(�)g] �! N
�
0; �2(�)

�
:

if

(jNj jbNj)�1=2
kNX
r=1

(Ur � E fU1g) �! N
�
0; �2(�)

�
; (2.7.16)

where kU1 � E(U1)k = o
�
(jNj jbNj)1=2k�1=�N

�
and � = 2+�=2: So (2:3:11) follows from (2:7:12) :

Proof. Theorem 2.3

De�ne

VN = jNj
1
2 jbNj [f3N(�1;�2)� E ff3N(�1;�2)g] ;

VNM =
h
jbNj =(2�)2d jNj1=2

i X
jh1j;jh2j�MlN

e�i(h1:�1+h2:�2)w(bN � h1; bN � h2) (2.7.17)

NX
t=1

[X (t)X (t+ h1)X (t+ h2)� r3(h1;h2)] ;

we can prove that for any � > 0; there is an M0(�) such that for all M > M0; Ni > M; i = 1; :::; d;

�2(VN � VNM) < �;

and if we replace the X (t) in VNM by Xk (t) to get V
(k)
NM ; we show that �

2(VNM � V
(k)
NM) can be

made smaller that any previously chosen � > 0 uniformly in N for k su¢ ciently large (M being

�xed) (c.f. Van ness (1966)).

Write

U
(R)
N = ReV

(k)
NM = jNj�1=2

NX
t=1

Y
(N;M)
k (t) ;

U
(I)
N = ImV

(k)
NM = jNj�1=2

NX
t=1

Z
(N;M)
k (t) ;
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where

Y
(N;M)
k (t) =

�
jbNj =(2�)2d

� X
h1;h2�MlN

cos(h1:�1 + h2:�2)w(bN � h1; bN � h2)

�[Xk (t)Xk (t+ h1)Xk (t+ h2)� r
(k;k;k)
3 (h1;h2)];

and Z(N;M)
k (t) is as above except with a sine instead of cosine. For any two real parameters �1 and

�2 we have

UN(�1; �2) = �1U
(R)
N + �2U

(I)
N ; (2.7.18)

with U (N;M)
k (t) = jNj�1=2 (�1Y (N;M)

k (t)+�2Z
(N;M)
k (t)): Note that the U (N;M)

k (t) is a 2M jANj+2 jkj
dependent random �elds. This prompts one to use the following lemma

Lemma 2.5 Let fVN (t)g a sequence of d(N)-dependent strictly stationary random �elds, and

a) d(N) �!1 as N!1;

b) d(N)=N �! 0 as N!1;

c) E
n
jVN (t)j2+�

o
<1; for some � > 0;

d) t(N) is an integer-valued function

1. t(N) �!1;

2. d(Ni) = o(t(N)); i = 1; :::; d;

3. t(N) = o(Ni); i = 1; :::; d:

e) for CN (:) the covariance of sequence VN (t) ;
P

jhj�t(N)d
Qd
i=1 jhijCN (h) = o(

P
jhj�t(N)d CN (h) t(N))

as N!1;

f) E
����Pt(N)d

t=1 VN (t)
���2+�� = jNj�=2 t(N)(Pd(N)

h=�d(N)CN (h))(1+�=2) �! 0 asN �!1; (i.e. t(N)d =

(t(N); :::; t(N)) d- dimension.

Then
PN

t=1 VN (t) is asymptotically normally distributed with zero mean and variance (2�)
d jNj fN(0);

where fN(�) is the spectral density of VN (t) :
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To apply this lemma to (2:7:18), put

VN (t) = U
(N;M)
k (t) ;

d(N) = 2MAN + 2k;

t(N) = M jANj2 ;
� = 2;

conditions (a), (b), and (d) of Lemma 2.5 are certainly satis�ed. Condition (c) is satis�ed since

there is a constant K so that

E
�
jVN (t)j4

	
�

�
jbNj4 = jNj2

� X
jh1j;:::;jh8j�MlN

jw(bN � h1; bN � h2):::w(bN � h7; bN � h8)j :K:E
�
X12 (t)

	
� 2: bw4:K:E �X12 (t)

	
=(jNj jbNj2)2

< 1:

Condition (e) involves

X
jhj�Ml2N

dY
i=1

jhijCN (h) =
X

jhj�Ml2N

CN (h)M jlNj2 (2.7.19)

= jNj
X

jhj�Ml2N

(
dY
i=1

jhij =M: jlNj2)CN (h) = jNj
X

jhj�Ml2N

CN (h) :

But

jNj
X

jhj�Ml2N

CN (h) = jNj
X

jhj�Ml2N

E fVN (0)VN (h)g (2.7.20)

=
�
jbNj2 =(2�)4d

� X
jhj�Ml2N

X
jh1j;jh2j�MlN

[�1 cos(h1:�1 + h2:�2) + �2 sin(�1:h1 + �2:h2)]

:w(bN � h1; bN � h2)
X

jh3j;jh4j�MlN

[�1 cos(h3:�1 + h4:�2) + �2 sin(h3:�1 + h4:�2)]

:w(bN � h3; bN � h4)[r6(h1;h2;h;h+ h3;h+ h4)� r3(h1;h2)r3(h3;h4)];

and this from earlier results converges absolutely uniformly inN. Therefore provided jNj fN(0) 6= 0
and since

Qd
i=1 jhij =M jlNj2 converges to zero, (2:7:19) tends to zero. Finally condition (f) leads to

E

8<: X
1�t�Ml2N

VN (t)

9=;
4

=M jNj jlNj2 (
X

jhj�Ml2N

CN (h))
2; (2.7.21)
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by (2:7:20) ; jNjM jlNj2 (
P

jhj�Ml2N
CN (h))

2 � jNj�1 jbNj�2. De�ne

Dj =

j�d(N)X
t=(j�1)�d(N)+1

VN (t) ;1 � j � 2u0;

where 2u0 �Ml2N=d (N) ; and

D2j+1 =

(
0 if j = 2u0 + 1; ;Ml2N = 2u0 � d (N) ;Pmin[Ml2N;(2u0+1)�d(N)]

2u0�d(N)+1 VN (t) if Ml2N � 2u0 � d (N) ;

and

D2j+2 =

(
0 if j = 2u0 + 2;Ml2N � (2u0 + 1)� d (N) ;P

1�t�MAN
VN (t) if Ml2N � (2u0 + 1)d (N) ;

then X
1�t�Ml2N

VN (t) =
X

1�j�u0+1

D2j�1 +
X

1�j�u0+1

D2j;

By Minkowski�s inequality we have24E
8<:( X

1�t�Ml2N

VN (t))
4

9=;
351=4 � "E(( X

1�j�u0+1

D2j�1)
4

)#1=4
+

"
E

(
(
X

1�j�u0+1

D2j)
4

)#1=4
:

(2.7.22)

From (2:7:21) and (2:7:22) and Lemma 4 in Van Ness (1966), that condition (f) satis�ed.

Lemma 2.5 states that

ReV
(k)
NM + i ImV

(k)
NM

d�! X
(k)
M + iY

(k)
M as N �!1;

where X(k)
M and Y (k)

M are jointly normal with zero mean and

E
n
(X

(k)
M )2

o
= �2kMR;

E
n
(Y

(k)
M )2

o
= �2kMI ;

E
n
(X

(k)
M Y

(k)
M )2

o
= rkM ;

as k �!1; �2kMR ! �2MR; �
2
kMI �! �2MI ; and rkM �! rM :We will be illustrated by just one such

calculation. Instead, the calculation of �2MR for the �rst of the �fteen terms as listed in Table III

in Rosenblatt and Van Ness (1965), we have 
jbNj2

(2�)4d

! X
jh1j;:::;jh4j�MlN

X
jyj�N

[(jNj � jyj)= jNj] cos(h1:�1 + h2:�2) cos(h3:�1 + h4:�2)

:w(bN � h1; bN � h2)w(bN � h3; bN � h4)r(h1)r(y � h2)r(h4 � h3):
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This behave like

f(0)
jbNj2

(2�)3d

X
jh1j;:::;jh4j�MlN

cos(h1:�1 + h2:�2) cos [h3:(�1 + �2) + h4:�2]

w(0; bN � h2)w(�bN � h3; 0)r(h1)r(h4);

using the modi�ed continuity conditions (see Van Ness (1966)), Using trigonometric identities we

have (i.e. M = [�M;M ]d)

f(0)

(2�)3d

X
jh1j;:::;jh4j�MlN

[cosh1:�1 cosh2:�2 � sinh1:�1 sinh2:�2)]

[cosh3:(�1 + �2) cosh4:�2 � sinh3:(�1 + �2) sinh4:�2]
jbNj2w(0; bN � h2)w(�bN � h3; 0)r(h1)r(h4)

�! f(0)

(2�)3d

�Z
M

w(0;h)dh

�2 X
jh1j;jh2j�1

[(cosh1:�1 cosh2:�2) :r(h1)r(h2)��1+�2��2

=
w1

(2�)d
f(0)f(�1)f(�2)��1+�2��2 :

Proof. Theorem 2.4

Let

VN(�1;�2) = jNj
1
2 jbNj [f3N(�1;�2)� E ff3N(�1;�2)g] ;

then

ReVN(�1;�2) = [jbNj =(2�)2d jNj1=2]
X

1�h1;h2;h3�N

cos[(h2 � h1):�1 + (h3 � h1):�2] (2.7.23)

w(bN � (h2 � h1); bN � (h3 � h1))[X (h1)X (h2)X (h3)� r3(h2 � h1;h3 � h1)];

and ImVN is as above except with a sine instead of cosine. Denote by [I1; I2; I3] the parallelepiped

of indices f(h(1)i ; h
(2)
i ; h

(3)
i )nh

(1)
i 2 I1; h

(2)
i 2 I2; h

(3)
i 2 I3g where I1; I2 and I3 are intervals. Next

choose vectors of sequences f�Ng; f�Ng and f
Ng of positive integers so that

1. �N � [�N + 
N] � N

2. �Ni ; �Ni ; 
Ni %1; i = 1; :::; d

3. 
Ni = o(�Ni)
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then it will be shown that we can replace the sum
P

1�h1;h2;h3�N in (2:7:23) by

�NX
j=1

X
dQ
i=1

�
B
(Ni)
ji

;B
(Ni)
ji

;B
(Ni)
ji

�; (2.7.24)

where B(Ni)
ji

= [(ji� 1)(bNi + 
Ni)+1; ji(bNi + 
Ni)� 
Ni ]; ji = 1; :::; �Ni ; i = 1; :::; d and still get the
same asymptotic distribution. Having done this, the sum (2:7:24) will be shown to asymptotically

normally distributed. Further, the domain summation- hypercube such that the main diagonal of

a cube with sides parallel to the x; y and z axes and of length Ni � 1; runs from the point (1; 1; 1)

to (Ni; Ni; Ni). Then the sum (2:7:24) is over �Ni smaller cubes whose main diagonals lie on the

above diagonal and whose sides are the length bNi � 1 and are parallel to chose of the large cube.
These smaller cubes are separated by a distance � 
Ni :

We begin the �rst step by noting that by the properties of w and the summability of the

cumulants

cov[VN(�1;�2); VN(�3;�4)] = [jbNj2 =(2�)4d]
X

jh1j;:::;jh4j;jyj�N
jNj�1CN(h1; :::;h4;y)

e�i(
P2
i=1 hi:�i�

P4
i=3 hi:�i):w(bN � h1; bN � h2)w(bN � h3; bN � h4)

:fm2(0;h1)m2(h2;y)m2(y + h3;y + h4)g15 +O(jbNj);

where CN(h1; :::;h4;y) =
dQ
i=1

CNi(h
(1)
i ; :::; h

(4)
i ; y), and CNi(h

(1)
i ; :::; h

(4)
i ; y) is de�ned similarly that

in Rosenblatt and Van Ness (1965). Also, 0 � CNi=Ni � 1; i = 1; :::; d and jNj�1CN(:) �! 1 as

N �!1. The �fteen terms which sum to give the expression fm2(0;h1)m2(h2;y)m2(y + h3;y +

h4)g15 is given similarly in table III in Rosenblatt and Van Ness (1965).

Lemma 2.6 If the hypothesis of Theorem 2.4 hold

i) 
N � bN �!1 as N �!1;

ii) �2N�
N
N

�! 0 as N �!1;

Then

�2[jbNj2 =(2�)2d jNj1=2](
X

jh1j;:::;jh3j�N

�
�NX
j=1

X
dQ
i=1

�
B
(Ni)
ji

;B
(Ni)
ji

;B
(Ni)
ji

�)e�i((h2�h1)�1+(h3�h1)�2)
:w(bN � (h2 � h1); bN � (h3 � h1))[X (h1)X (h2)X (h3)� r3(h2 � h1;h3 � h1)]

�! 0 as N �!1:



57

Proof. To proof this Lemma we use Lemma 1 in Van Ness (1966).
By lemma 2.6, it remains to be shown that the sums of the form (2:7:24) tend to a complex

normal distribution in distribution. To do this de�ne

U
(N)
j =

�
jbN j =(2�)2d

�X
dQ
i=1

�
B
(Ni)
ji

;B
(Ni)
ji

;B
(Ni)
ji

�f�1 cos[(h2 � h1)�1 + (h3 � h1)�2] (2.7.25)

+�2 sin[(h2 � h1)�1 + (h3 � h1)�2]g
:w((h2 � h1)� bN; (h3 � h1)� bN):[X (h1)X (h2)X (h3)� r3(h2 � h1;h3 � h1)];

where �1 and �2 are any two real parameters. By previous results we known that since bN��N �!
1;

lim
N�!1

var(U
(N)
j = j�Nj

1=2) = �2�;

for �2� = �1�
2
R+�2�

2
I where �

2
R and �

2
I are de�ned as the variances of the real and imaginary parts.

Then we show that
�NX
r=1

U (N)r = jNj1=2 �� �!
�NX
r=1

U (N)r =(j�Nj j�Nj)1=2��:

Set

Gr;N(x) = PfU (N)r =(j�Nj j�Nj)1=2�� � xg;

we see that the distribution we are interested in tends to the convolution

G1;N � ::: �G�N;N(x)

which tend to N (0; 1) (see Rosenblatt (1985)).
Proof. Theorem 2.5

Under the condition of Theorem 2.5, we can shown that

(2�)3d[f4(�1;�2;�3)� E ff4N(�1;�2;�3)g]
=

X
jh1j;jh2j;jh3j�lN

C4(h1;h2;h3)fwN(h1;h2;h3)� 1ge�i
P3
j=1 hj :�j

+
X

jh1j;jh2j;jh3j�lN

C4(h1;h2;h3)e
�i
P3
j=1 hj :�j +O

�
jN�j�1 jbNj�2

�
�! 0 as N �!1:

From lemmas 2.4 and 2.6, as well as (2:5:9) and (2:5:12). Moreover, by computing �B(�1;�2;�3; �; �);

we can show that �B(�1;�2;�3) > 0 if (�1;�2;�3) have submanifolds and that �B(�1;�2;�3) = 0

if (�1;�2;�3) have no submanifolds.
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Proof. Theorem 2.6

From (2:5:3) we have

f4N(�1;�2;�3) = hN(�)� hN(�1)gN(�3;�2)� hN(�2)gN(�1;�3)� hN(�3)gN(�2;�1);

where � = (�1;�2;�3)

hN(�) =
1

(2�)3d

X
h1;h2;h32Zd

br4(h1;h2;h3)wN(h1;h2;h3)e�iP3
j=1 hj :�j ;

hN(�i) =
1

(2�)3d

X
hi2Zd

br2(hi)wN(h1;h2;h3)e�iP3
j=1 hj :�j ; i = 1; 2; 3;

gN(�i;�j) =
1

(2�)3d

X
hi;hj2Zd

br2(hi � hj)wN(h1;h2;h3)e�iP3
j=1 hj :�j ; i; j = 1; 2; 3;

we will further let

ehN(�) = hN(�)� hN(�) = hN(�)� E fhN(�)g (respectively for hN(�i));egN(�i;�j) = gN(�i;�j)� gN(�i;�j) = gN(�i;�j)� E fgN(�i;�j)g ; i; j = 1; 2; 3:

Then

f4N(�1;�2;�3) = ehN(�)� ehN(�1)gN(�3;�2)� ehN(�2)gN(�1;�3)� ehN(�3)gN(�2;�1)(2.7.26)
�hN(�1)egN(�3;�2)� hN(�2)egN(�1;�3)� hN(�3)egN(�2;�1)�D1 +D2;

with

D1 = ehN(�1)egN(�3;�2) + ehN(�2)egN(�1;�3) + ehN(�3)egN(�2;�1);
D2 = ehN(�)� hN(�1)gN(�3;�2)� hN(�2)gN(�1;�3)� hN(�3)gN(�2;�1):

We can prove that in general (see Lii and Rosenblatt (1990)), for p � 2

hN(�) =

(
O(jbNj�p=2+1) if p even,
O(jbNj�(p�3)=2) if p odd,

(2.7.27)

var (hN(�)) = O
��
jNj jbNjp�1

��1�
;

respectively for hN(�i); and for p � 3; i; j = 1; 2; 3;

gN(�i;�j) =

(
O(jbNj�p=2+1) if p even,
O(jbNj(�p+1)=2) if p odd,

(2.7.28)
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var fgN(�i;�j)g = O
�
(jNj jbNjp)�1

�
:

Therefore, in (2:7:26) we have

var
nehN(�)o = O

��
jNj jbNj3

��1�
;

var
nehN(�i)o = O

�
(jNj jbNj)�1

�
;

hN(�i) = O(1); (2.7.29)

var fegN(�i;�j)g = O
��
jNj jbNj3

��1�
;

gN(�i;�j) = O
�
jbNj�1

�
:

Hence we see that in (2:7:26) the magnitude of the �rst seven terms are
�
jNj jbNj3

��1=2
each while

the magnitude of D1 is bounded in probability byh
(jNj jbNj)�1

�
jNj jbNj3

��1i1=2
=
�
jNj jbNj2

��1
= o

��
jNj jbNj3

��1�
:

The nonrandom part D2 is approximately E ff4N(�1;�2;�3)g because

jE ff4N(�1;�2;�3)g �D2j �
��E fhN(�1)gN(�3;�2)g � hN(�1)gN(�3;�2) + E fhN(�2)gN(�1;�3)g
� hN(�2)gN(�1;�3) + E fhN(�3)gN(�2;�1)g � hN(�3)gN(�2;�1)

��
� jcov fhN(�1); gN(�3;�2)gj+ jcov fhN(�2); gN(�1;�3)gj

+ jcov fhN(�3); gN(�2;�1)gj
= O

�
jNj jbNj2

��1
= o

��
jNj jbNj3

��1�
:

We have asymptotically,

f4N(�1;�2;�3)� E ff4N(�1;�2;�3)g �= ehN(�)� ehN(�1)gN(�3;�2)� ehN(�2)gN(�1;�3)
�ehN(�3)gN(�2;�1)� hN(�1)egN(�3;�2)
�hN(�2)egN(�1;�3)� hN(�3)egN(�2;�1);

we will show from Theorem 6 p 156 in Rosenblatt (1985), that any �xed �nite linear combinations

of terms of the form ehN(�); ehN(�:) and egN(�:;�:) with di¤erent weight functions, frequencies, and
real and imaginary parts is asymptotically normal with proper normalization, and the exact form

of the covariance is obtained in the same manner as Theorem 2 in Li and Rosenblatt (1990).
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Proof. Theorem 2.7

Consider that the weight function w(x) is a linear combination of product of functions of one

�eld, from (2:2:2) we have

fpN(�1; :::;�p�1) =
1

(2�)d(p�1)

X
jhjj�lN

24X
�

(�1)m(�)�1 [m(�)� 1]!
m(�)Y
j=1

br
0@ Y
hu2�j

X (t+ hu)

1A35(2.7.30)

�
p�1Y
j=1

wj(bN � hj)e�i
Pp�1
j=1 hj :�j ;

where

br
0@ Y
hu2�j

X (t+ hu)

1A = jN� 2lNj�1
N�lNX
t=lN+1

0@ Y
hu2�j

X (t+ hu)

1A ; jhuj � lN:

fpN(�1; :::;�p�1) =
X
�

(�1)m(�)�1 [m(�)� 1]! (2.7.31)

�

8><>:
X
jhjj�lN

m(�)Y
j=1

24 1

(2�)dm(�j)
br
0@ Y
hu2�j

X (t+ hu)

1A�Y
u

�
wu(bN � hu)e�ihu:�u

�35
9>=>;

=
X
�

(�1)m(�)�1 [m(�)� 1]!
m(�)X
j=1

g�j(�);

where wj � 1;�0 = h0 = 0;(2�)dm(�j) = (2�)dk;m(�j) is the number of nonzero elements in �j; and

g�j(�) =
1

(2�)dm(�j)

X
jhuj�lN

br
0@ Y
hu2�j

X (t+ hu)

1AY
u

�
wu(bN � hu)e�ihu:�u

�
;

equation (2:7:31) is the generalization of (4:4:2). Just as in (4:4:2), we write

fpN(�1; :::;�p�1) =
X
�

(�1)m(�)�1 [m(�)� 1]!
m(�)X
j=1

heg�j(�) + g�j(�)
i
; (2.7.32)

where eg�j(�) = g�j(�)� E
�
g�j(�)

	
and g�j(�) = E

�
g�j(�)

	
.

In the expansion of the product in (2:7:32), consider a generic term that has r1eg�s and r2g�s with
r1+r2 = m(�):Without loss of generality we consider the partition � = f�1; :::; �r1 ; �r1+1; :::; �r1+r2g
such that m(�i) = mi; i = 1; :::; r1 correspond to r1eg�s, m(�r1+i) = ki; i = 1; :::; r2 correspond to
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r2g�s with
P
mi +

P
ki = p: If 0 is in one of the �i�s, i = 1; :::; r1; say �1; then the magnitude of

the variance of this term is, from (2:7:27) and (2:7:28)

1

jNj jbNjm1�1

r1Y
j=2

�
1

jNj jbNjmj+1

� r2Y
j=1

 
1

jbNj[kj=2]

!

= jNj�r1 jbNj�1+[m1+:::+mr1�1+r1�1] jbNj�2
[[k1=2]+:::+[kr2=2]]

� jNj�r1 jbNj�p+1�r1 ;

where [x] is the largest integer less than or equal to x: We know that from (2:7:29) that the order

of magnitude of the variance when � has only one term is
�
jNj jbNjp�1

��1
. Hence

jNj�r1 jbNj�p+1�r1

jNj�1 jbNj�p+1
= jNj1�r1 jbNj�r1 �! 0:

If r1 � 2; similarly if 0 is in one of the �r1+i�s, i = 1; :::; r2; say �r1+1; then the magnitude of the
variance of this term is

r1Y
j=1

�
1

jNj jbNjmj+1

� 
1

jbNj[q1=2]�1

!2 r2Y
j=2

 
1

jbNj[q2=2]

!2
� jNj�r1 jbNj�p�r1+2 ;

and if r1 > 1

jNj�r1 jbNj�p�r1+2

jNj�1 jbNj�p+1
= jNj1�r1 jbNj�r1+1 �! 0:

Hence we only need to consider those terms when r1 = 1: Therefore, in terms of the random

part, (2:7:32) can be written as

fpN(�1; :::;�p�1) =
X
�

(�1)m(�)�1 [m(�)� 1]!

0B@m(�)X
j=1

eg�j(�)m(�)Y
l 6=j
l=1

g�l(�)

1CA :

An argument similar to that given in Theorem 6 p 156 in Rosenblatt (1985), we de�ne

Y
(N)
t =

X
uj ;pj

m(�)X
j=1

�pj jbNj
p�j=2 eg�j(�(uj); w(pj));
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where p�j is the exponent of bN in variance of S2 and S3 according to whether 0 is in �j or not, and

g�j(�
(uj);!(pj)) =

1

(2�)dm(�j)

X
jhuj�lN

24 Y
hu2�j

X
�
tj + h

(j)
u

�
� E

Y
hu2�j

X
�
tj + h

(j)
u

�35
�
Y
u

w(pj)u

�
bN � h(j)u

�24�uj cos
0@X
hu2�j

h(j)u :�
(j)
u

1A+ �uj sin

0@X
hu2�j

h(j)u :�
(j)
u

1A35 ;
which asymptotically normal with proper normalization.



Chapter 3

Non-Gaussian estimation

3.1 Introduction

The methods of parameter estimation which are the Gaussian estimates are usually based on either

the covariances as Yule-Walker equation or the spectrum (see Rosenblatt (1985)). The idea of non

Gaussian estimation for random �eld by using not only the spectrum but the bispectrum as well

is readily extendible from times series analysis (see Terdik (2000)). In this chapter, we consider

a functional of the spectrum and the bispectrum for random �elds depending on an unknown

parameter �; and we give explicit expression for the asymptotic variance of this estimator who

calculated for both the case when the spectra are estimated by the peridogram and by the smoothed

periodogram. The consistency and asymptotic normality are proved.

3.2 Estimating a parameter for non-Gaussian random �elds

Let (X(t))t2Zd be a weakly stationary random �eld with a zero mean and �nite p�th order moments
(p � 2) on Zd. we shall assume the following conditions.

Condition 3.1 Besides the stationarity of pth order, we shall assume that cumulant function of
p� th order of the random �eld depends on a real unknown parameter and

1X
h1;:::;hp�1

(1 + jhjj) jCP (h1; :::;hp�1; �)j <1; j = 1; 2; :::; p� 1:

63
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Thus the spectral densities

Sp(!1; :::;!p�1; �) =
1

(2�)d(p�1)

X
h12Zd

:::
X

hp�12Zd
Cp(h1; :::;hp�1; �)e

�i
Pp�1
j=1 hj!j ;

exist up to pth order, where ! = (!1; :::; !d) 2 � = [��; �[� :::� [��; �[, d�times.

Condition 3.2 The unknown parameter � belongs to a compact set � � Rd: Suppose also that the
spectrum S2(!; �) and the bispectrum S3(!1;!2; �) are twice continuously di¤erentiable with respect

to � 2 �: These derivatives are continuous and bounded above and suppose further that they are
bounded away from zero in modulus with respect to the frequencies of the sets �d1 and �

d
2 to be de�ned

below.

From a �nite realization fX(t); t = 1; :::;Ng; we can write

I2N(!) = (2�)�d jNj�1 dN(!)dN(!);
I3N(!1;!2) = (2�)�2d jNj�1 dN(!1)dN(!2)dN(!1 + !2);

at the standard Fourier frequencies, where

dN(!) =
NX
t=1

Xte
�it:!; t:! =

dX
i=1

ti!i;

is the (�nite) Fourier transform of the data.

We are going to apply some well known methods for the estimation of the spectral densities.

We shall deal with the discrete Fourier frequencies �k = (
k1
N1
; :::; kd

Nd
);i.e. ki = 1; :::; Ni; i = 1; :::; d:

Consider the following smoothed estimate for the spectral density

S2N(!) = jNj�1
X
k

W1N(!��k)I2N(�k);! 2 �; (3.2.1)

where the weightsW1N(!) are de�ned by a real valued, even weight functionW1(!) of �nite support

with
R
Rd
W1(!)d! =1; and

R
Rd
W 2
1 (!)d! = kW1k2 < 1; and W1N(!) = W1(

!
b1N
) jb1Nj�1 ; b1N �!

0;N�b1N �! 1 as N �! 1: It is easy to show that the �rst order moments of S2N(!) is (see

Brillinger (1965))

E fS2N(!)g=S2(!) +O(jb1Nj) +O(jNj�1 jb1Nj�1); (3.2.2)
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uniformly in !; if ! 6= 0mod(2�), and the covariance

Cov fS2N(!1);S2N(!2)g = jNj�1 [S4(!1;!2;�!2) +
kW1k2

jb1Nj
(S22(!1) (3.2.3)

+O(jb1Nj))(�!1�!2 + �!1+!2)] +O(jNj�2 jb1Nj�2);

uniformly in !1;!2; where

�! =

(
1 if !i�0mod(2�);
0 otherwise.

The method of smoothing the biperiodogram is analogue of the previous one. A consistent

estimate of the bispectrum is

S3N(!1;!2) = jNj�2
X
k

X
l

W2N(!1��k;!2��l)I3N(�k; �l); (3.2.4)

where (�k; �l) = (
k
N
; l
N
);k = (k1; :::; kd); and l = (l1; :::; ld) i.e. ki; li = 1; :::; Ni; are the Fourier fre-

quencies, !1;!22 �, the weights W2N(!) are de�ned by a non-negative symmetric weight function

W2(!1;!2) of �nite support with
R
Rd

R
Rd
W2(!1;!2)d!1d!2=1;

R
Rd

R
Rd
W 2
2 (!1;!2) = kW2k2 <1; and

W2N(!1;!2) = W2(
!1
b2N

; !2
b2N
) jb2Nj�2 ; b2N �! 0;N � b22N �! 1 as N �! 1; b1N � b2N and there

exists the limit limNi�!1
b1Ni
b2Ni

= �i; i = 1; :::; d:

The following expansion shows that the smoothed estimator is asymptotically unbiased

E fS3N(!1;!2)g=S3(!1;!2) +O(jb2Nj) +O(jNj�1 jb2Nj�1): (3.2.5)

Put !3 = �!1 �!2;�3 = ��1 � �2; the cross-covariance between the smoothed periodogram and

the biperiodogram is

Cov fS2N(�);S3N(!1;!2)g = jNj�1 fS5(�;�!1;�!2;��) (3.2.6)

+
W12(�)

jb2Nj

3X
k=1

S2(!k)S3(!k+1;!k+2)(��+!k + ���!k)

+
W20

jb2Nj

3X
k=1

[S2(!k)S3(�;0)+O(jb2Nj)]�!k+1g+O
�
(jNj jb1Nj)�2

�
;

where the constants W12 and W20 are de�ned by

W12(�) =

Z
Rd

Z
Rd

W1(!1)W2(�� !1;!2)d!1d!2;

W20 =

Z
Rd

W2(!1;�!1)d!1;
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and W12(�) = 0 if � = 0: The covariance according to the smoothed biperiodogram is

Cov fS3N(�1;�2);S3N(!1;!2)g (3.2.7)

= jNj�1 fS6(�1;�2�!1;�!2;�3)

+
W23

jb2Nj

"
3X

m;n=1

(S (2(�m)S4(�m+1;�m+2;�!n+1) +O(jb2Nj)) ��m�!n

+
3X

m;n=1

(S3(�m;�m+1)S3(�m+2;�!n+1) +O(jb2Nj))��m+�m+1�!n

#

+
W20

jb2Nj
[U(!;�)+U(�;!)] +

W 2
20

jb2Nj2

"
S2(0)

 
3X

m=1

(S2(�m)��m+1

!
 

3X
m=1

S2(!m)�!m+1

!
+O(jb2Nj)

3X
m;n=1

��m�!n

#

+
kW2k2

jB2Nj2
[S2(!1)S2(!2)S2(!1 + !2)+O(jb2Nj)]

�
3X

m=1

��1�!m(��2�!m+1 + ��2�!m+2)g+O(jNj�2 jb2Nj�2);

where U(!;�) = S4(!1;!2;!3)
3P

m=1

(S2(�m) +O(jb2Nj))��m+1, and

W23 =

Z
Rd

Z
Rd

Z
Rd

W2(�1;�2)W2(�1 + �2;!)d�1d�2d!;

Let us suppose that the spectrum and the bispectrum of the random �eld X (t) depend on a

parameter � which is not a multiplicative1 one. Put

F2N(�1k; �) =

�
S2(�1k; �)� S2N(�1k)

S2(�1k; �)

�2
;

F3N(�2m; �2l; �) =
jS3(�2m; a2l; �)� S3N(�2m; �2l)j

2

S2(�2m; �)S2(�2l; �)S2(�2m + �2l; �)
;

and de�ne

QN(�) =
p1 jb1Nj
�d1

X
�1k2�d1

F2N(�1k; �) +
q1 jb2Nj2

�d2

X
(�2m;�2l)2�d2

F3N(�2m; �2l; �); (3.2.8)

1 The parameter � is multiplicative if S2(w; c�) = cS2(w; �) and S3(w1;w2; c�) = cS3(w1;w2; �) for any positive
real number c.
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where �1 � [0; 1=2] is a �nite union of closed intervals, �2 be some �nite union compact domains
lying inside the open triangle � with vertices (0; 0); (�; 0); (2�

3
; 2�
3
) and the frequencies �1k are

equally spaced in � by bandwidth b1N as well as frequencies �2k by bandwidth b2N, p1 2 (0; 1); q1 =
1 � p1; and constants �

d
1; �

d
2 denote the d-dimensional product Lebesgue measure of �

d
1 and �

d
2,

respectively. A multiplicative parameter can not be estimated by minimization of (3:2:8) ; we

consider the estimate �N for the unknown parameters � obtained from minimization of the function

(3:2:8) :

Remark 3.1 The role of �1 and �2 is that both sums in (3:2:8) are averaged since the numbers of
terms are about to �d1

jb1Nj and
�d2

jb2Nj2
:

Denote �01 and �
0
2 the sets with origins �1 and �2, respectively, and with property that they are

invariant according to transformations

T1(!1;!2) = (!2;!1); T2(!1;!2) =(!1;1�!2 � !1);
T3(!1;!2) = (1� !1�!2;!2); T4(!1;!2) =(1� !1; 1� !2):

Actually �01 = �1[f! = 1� � j� 2�1g: For technical reasons we shall consider an equivalent form
of (3:2:8) as

QN(�) =
p jb1Nj
2d

X
�1k2�01

F2N(�1k; �) +
q jb2Nj2

12d

X
(�2m;�2l)2�02

F3N(�2m; �2l; �); (3.2.9)

where �01 = �
0
1 � :::� �0

1, �
0
2 = �

0
2 � :::� �0

2; d�times; p = p1
�d1
and q = q1

�d2
:

Remark 3.2 There will be some advantage of changing the domains of summations in (3:2:8) in to
the symmetric ones because the results of summations over set �02 of the expression of the complex

valued bispectrum will then be real.

Remark 3.3 For a Gaussian random �elds this method based on the �rst term of QN(�) for es-

timating parameters. When a process is non-Gaussian, we suggested applying both the second and

the third order periodogram in (3:2:8) (see Brillinger (1975)).

Let �0 be the true value of the parameter � 2 � and put

Q(�) = p

Z
�d1

F2(!; �0)d! + q

Z Z
�d2

F3(!1;!2; �0)d!1d!1; (3.2.10)
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where

F2(!; �0) =

�
S2(!; �)� S2(!; �0)

S2(!; �)

�2
;

F3(!1;!2; �0) =
jS3(!1;!2; �)� S3(!1;!2; �0)j2

S2(!1; �)S2(!2; �)S2(!1 + !2; �)
:

3.3 Consistency and asymptotic variance

In this section we shall give conditions under which QN(�)
p�! Q(�) and �N

p�! �0 as N �!1.

Lemma 3.1 Suppose that conditions 3.1�3.2 are satis�ed and jS3(!1;!2; �)j < 1: Let CN =

(CN1 ; :::; CNd); VN = (VN1 ; :::; VNd) are two vectors of sequences of positive integers where Ni =

1; 2; :::; CNi �! 0 and VNi is increasing. Then for any � > 0

sup
p=0;:::;VN

jS2N(CN � p)� S2(CN � p)j = op(jVNj� jb2Nj�1=2 jNj�1=2);

sup
q;p=0;:::;VN

jS3N(CN � q; CN � p)� S3(CN � q; CN � p)j = op(jVNj� jb2Nj�1 jNj�1=2):

Proof. The proof of this Lemma is similar as Lemma 98 in Terdik (1998).

Our theorem concerning the consistency is the following

Theorem 3.1 Suppose that (X (t))t2Zd satis�es conditions 3.1�3.2 with p � 2; jS3(!1;!2; �)j <1
and that both F2(!; �0) and F3(!1;!2; �0) have �nite total variations on �d1 and �d2, respectively.
Suppose moreover that Q(�) has a unique minimum at �0 and is continuous in �: Then

QN(�)
P�! Q(�) and �N

P�! �0 as N �!1;

where QN(�) and Q(�) are de�ne by (3:2:8) and (3:2:10), respectively. Moreover, �N is an asymp-

totically unbiased estimate of �0:



69

Proof. We have

QN(�)�Q(�) =
p jb1Nj
2d

X
�1k2�01

[F2N(�1k; �)�F2(�1k; �0)] +

+
p jb1Nj
2d

X
�1k2�01

F2(�1k; �0)� p

Z
�d1

F2(!; �0)d!

+
q jb2Nj2

12d

X
(�2m;�2l)2�02

[F3N(�2m; �2l; �)�F3(�2m; �2l; �0)]

+
q jb2Nj2

12d

X
(�2m;�2l)2�02

F3(�2m; �2l; �0)� q

Z Z
�d2

F3(!1;!2; �0)d!1d!1

= Q
(1)
N +Q

(2)
N +Q

(3)
N +Q

(4)
N :

From lemma 3.1 Q(2)N is O(jb1Nj) and Q(4)N is O(jb2Nj2): Consider

Q
(1)
N =

p jb1Nj
2d

X
�1k2�01

[S2(�1k; �0)� S2N(�1k)] [2S2(�1k; �)� S2N(�1k)� S2(�1k; �0)]

S22(�1k; �)
:

By lemma 3.1

sup
k
jS2(�1k; �0)� S2N(�1k)j = op

�
jb1Nj�� jb1Nj�1=2 jNj�1=2

�
;

for any � > 0; and under the condition of the theorem Q
(1)
N

P�! 0 as N �!1: The same argument

shows that Q(3)N
P�! 0 as N �!1: As the �nal step, we use lemma 1 from Brillinger (1975), which

contains general conditions for the consistency of an estimator based on some functional.

Under the regularity conditions above �N tends in probability to the true value �0; and for

Ni; i = 1; :::; d su¢ ciently large:

@

@�
QN(�)

����
�=�N

=
@

@�
QN(�)

����
�=�0

+
@2

@�2
QN (�)

����
�=��N

(�N � �0);

where k��N � �Nk < k�N � �0k : Since �N minimizes QN(�), it follows that @
@�
QN(�)

��
�=�N

= 0: Thus

�N � �0 = �
 
@2

@�2
QN(�)

����
�=��N

!�1 
@

@�
QN(�)

����
�=�0

!
: (3.3.1)

We obtain
@

@�
QN(�) =

p

2d�1
jb1Nj

X
�1k2�01

�
F1=2
2 (�1k; �)�F2(�1k; �)

�
A(�1k; �) (3.3.2)

+
q jb2Nj2

12d

X
(�2m;�2l)2�02

�
2F1=2

3 (�2m; �2l; �)B(�2m; �2l; �)�F3(�2m; �2l; �)C(�2m; �2l; �)
�
;
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where

A(�1k; �) =
@

@�
log(S2(�1k; �));

B(�2m; �2l; �) =
@

@�
S3(��2m;��2l; �);

C(�2m; �2l; �) =
@

@�
log(S2(�2m; �)S2(�2l; �)S2(�2m + �2l; �)):

Further algebra leads to the expression for the second derivative:

@2

@�2
QN(�) =

p

2d�1

(Z
�01

A(!; �)A0(!; �)d!

+

Z
�01

F1=2
2N (!; �) [A(!; �)� 3A(!; �)A0(!; �)] d!

�
Z
�01

F2N(!; �) [A(!; �)� 2A(!; �)A0(!; �)] d!
)

+
q

12d

(Z Z
�02

F3N(!1;!2; �) [C(!1;!2; �)� C(!1;!2; �)C
0(!1;!2; �)]

+2G3N(!1;!2; �) [B(!1;!2; �)� 2B(!1;!2; �)C 0(!1;!2; �)])d!1d!2

+

Z Z
�02

2��1(!1;!2; �)B(�!1;�!2; �)B0(�!1;�!2; �)d!1d!2

)
+O(jBNj);

where

A(!; �) =
@2

@�2
log(S2(!; �));

B(!1;!2; �) =
@2

@�2
S3(�!1;�!2; �);

C(!1;!2; �) =
@2

@�2
log(S2(!1; �)S2(!2; �)S2(!1 + !2; �));

G3N(!1;!2; �) =
S3(!1;!2; �)� S3N(!1;!2)

S2(!1; �)S2(!2; �)S2(!1 + !2; �)
;

�(!1;!2; �) =

3Y
k=1

S2(!k; �);!1 + !2 + !3 = 0:

Now we denote ( @
2

@�2
QN(�)

���
�=��N

) of (3:3:1) by �1=20 (�0); and we obtain the asymptotic variance for

the estimator �N:
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Lemma 3.2 Under the assumption of Theorem 3.1

lim
N!1

P (
@2

@�2
QN(�)

����
�=�N

) = �
1=2
0 (�0) (3.3.3)

=
p

2d�1

Z
�01

A(!; �)A0(!; �)d!

+
2q

12d

Z Z
�02

��1(!1;!2; �0)B(�!1;�!2; �0)B0(�!1;�!2; �0)d!1d!2:

Let us turn to ( @
@�
QN(�)

��
�=�0

) of the vector de�ned by �N��0. It in�uence the limiting behavior
of the estimator �N

Q1N(�0) =
p jb1Nj
2d�1

X
�1k2�01

F1=2
2N (�1k; �)A(�1k; �0)

+
2q jb2Nj2

12d

X
(�2m;�2l)2�02

G3N(�2m; �2l; �0)B(�2m; �2l; �0):

Denote the asymptotic variance of Q1N(�0) by

�1(�0) = lim
N!1

jNj var fQ1N(�0)g : (3.3.4)

Therefore the variance of Q1N(�0) will be given as

�1(�0) = �2(�0) + �3(�0) + 2�23(�0):

The asymptotic variance of the second order term �2(�0) has been given by

�2(�0) =
p2

22(d�1)

"Z Z
�01��01

S4(!;�;��; �0)
S2(!; �0)S2(�; �0)

A(!; �0)A
0(�; �0)d!d�

+ 2 kW1k2
Z
�01

A(!; �0)A
0(!; �0)d!

#
:
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From the application of the asymptotic covariance (3:2:7), the variance of the third order term is

�3(�0) =
4q2

122d

(Z Z Z Z
�02��02

��1(!1;!2; �0)�
�1(��1;��2; �0)S6(!1;!2;��1;��2;!3; �0)

B(!1;!2; �0)B
0 (��1;��2; �0) d!1d!2d�1d�2

+9W23

Z Z Z Z
�02��02

��1(�1;�2; �0)�
�1(�3;�!2; �0)S3(�1;�2; �0)S3(�3;�!2; �0)

B(�1;�2; �0)B
0(�3;�!2; �0)

+��1(!2 + �3;�!2; �0)��1(�1;�2; �0)S4(�1;�2;�!2; �0)S2(�3; �0)
�B(!2 + �3;�!2; �0)B0(�1;�2; �0)d�1d�2d!2

+6W20

Z Z Z
�021��02

��1(�1;�2; �0)�
�1(0;�!2; �0)S4(�1;�2; 0; �0)S2(!2; �0)

�B(�1;�2; �0)B0(0;�!2; �0)d�1d�2d!2

+9W 2
20S

�1
2 (0; �0)

Z
�01

S�22 (!1; �0)B(�!1;0; �0)B0(�!1;0; �0)d!1

+ 6 kW2k2
Z Z

�02

��1(!1;!2; �0)B(�!1;�!2; �0)B0(�!1;�!2; �0)d!1d!2

)
;

where set �021 is the orthogonal projection of �
0
2 onto [0; 2�]

d. The covariance between the second

and third order terms is

�23(�0) =
pq

2d�112d

(Z Z Z
�02��01

2��1(�!1;�!2; �0)S�12 (!; �0)S5(!;�!;�!1;�!2; �0)

B(�!1;�!2; �0)A0(!; �0)d!1d!2d!

+W12(�)

Z Z
�021��01

��1(�!1;�!2; �0)S3(�!1;�!2; �0)

B(�!1;�!2; �0)A(!1; �0)d!1d!2

+
W20

6

Z Z
�02��01

��1(�!1;0; �0)S3(!1;0; �0)B(�!1;0; �0)A0(!2; �0)d!1d!2

)
:

Consider the following functional (depending on the periodogram of the second and the third

orders of the smoothed periodograms) taken at Fourier frequencies �k; �l;k; l = 1; :::;N

RN(�0) =
p

2d�1 jNj
X
�k2�01

�
S2(�k; �0)� I2N(�k)

S2(�k; �0)

�
A(�k; �0)

+
2q

12d jNj2
X

(�k;�l)2�02

�
S3(�k; �l; �0)� I3N(�k; �l)

S3(�k; �l; �0)

�
B(�k; �l; �0):
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Lemma 3.3 Under the assumption of Theorem 3:1 the asymptotic variance

�R1(�0) = lim
N!1

jNj var fQ1N(�0)g ; (3.3.5)

of RN(�0) is given as the sum

�R1(�0) = �R2(�0) + �R3(�0) + 2�R23(�0):

Remark 3.4 The asymptotic variance �R1(�0) of RN(�0) is the same as �1(�0): Then �R2(�0);�R3(�0)
and �R23(�0) are the same as �2(�0);�3(�0) and �23(�0), respectively, where all constants depending

on the weight functions W 0s are changed to 1.

There is an interesting case concerning the statistic RN if one shows down the convergence by

bandwidth bN = b1N = b2N and considers the vector

R�N(�0) =
p jbNj1=2

2d�1

X
�k2�01

�
S2(�k; �0)� I2N(�k)

S2(�k; �0)

�
A(�k; �0)

+
2q jbNj1=2

12d jNj
X

(�k;�l)2�02

�
S3(�k; �l; �0)� I3N(�k; �l)

S3(�k; �l; �0)

�
B(�k; �l; �0):

Then the asymptotic variance �R�1(�0) of R
�
N(�0) is the same as �0(�0):

3.4 Asymptotic normality

Theorem 3.2 Suppose that conditions of Theorem 3:1 are satis�ed with p � 1. Then the estimator
�N de�ned by (3:2:8) is asymptotically Gaussian:p

jNj(�N � �0)
D�! N (O;�1(�0)��10 (�0)) as N �!1;

where �0(�0) is de�ned by (3:3:3) and �1(�0) by (3:3:4).

Proof. To prove Theorem 3.2, we use Theorem 3.1, lemmas 3.2, 3.3 and Slutsky�s argument.
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Chapter 4

Wavelets and random �elds

4.1 Introduction

Wavelets are mathematical functions that allow us divide data into di¤erent frequency components

and then study each component with a resolution appropriate for its overall scale. They have ad-

vantages over traditional Fourier methods in analyzing physical situations where the signal contains

discontinuities and sharp spikes. Wavelets were developed independently in the �elds of mathemat-

ics, quantum physics, electrical engineering, and seismic geology. Interchanges between these �elds

during the last forty years have led to many new wavelet applications such as image compression,

turbulence, human vision, radar, and earthquake prediction.

In recent years, wavelet methods are advocated as an alternative to Fourier methods for the

analysis of both deterministic and nondeterministic signals. It is generally believed that the wavelet

methods are more appropriate for the analysis of nonlinear and nonstationary signals. But, so far

the methods that have been proposed are restricted to the analysis of continuous random �elds. In

this chapter we develop an approach to deal with the discrete random �eld and wavelet transforms,

and then study the probabilistic structures.

4.2 Multiresolution analysis in Rd

Multiresolution analysis in Rd provides an e¢ cient framework for the decomposition of random
�elds. Recently, a considerable attention was given to the properties of the wavelet transform and

of the wavelet orthonormal representations of random �elds (see Antoine et al. (2004)).

75
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De�nition 4.1 A d-dimensional multiresolution analysis (MRA) is an increasing sequence of sub-

spaces fVjg � L2(R) de�ned for j 2 Z with

::: � V�1 � V0 � V1 � :::

together with a scaling function � 2 L2(R) such that

(i) [j2ZVj is dense in L2(R);\j2ZVj = f0g:

(ii) X(t) 2 Vj if and only if X(2jt) 2 V0:

(iii) X(t) 2 Vj if and only if X(t�2jk) 2 Vj.

De�nition 4.2 For any x = (x1; :::; xd) 2 Rd; a function �(x) 2 V0 which satis�es

�(x) =
X
k2Zd

hk2
d=2�(2x� k);

where

�(x) =
dY
i=1

�(xi); (4.2.1)

and

�(xi) =
X
ki2Z

hki
p
2�(2xi � ki);

is called a scaling function (or re�nable function). If f�(x � n)gn2Zd is an orthonormal system,
then � is called an orthonormal scaling function, and the wavelet function is given by

	u(x) =
X
k2Zd

g
(u)
k 2

d=2�(2x� k); u = 1; :::; 2d � 1;

where

g
(u)
k =

8>>><>>>:
gki

dY
i=1

hki when u 2 f1; :::; dg;Y
i2Au

gki
Y
i=2Au

hki when u 2 fd+ 1; :::; 2d � 1g;

where (Au)u2fd+1;:::;2d�1g forms the set of all non void subsets of f1; :::; dg of cardinality greater or
equal to 2.



77

Remark 4.1 We can proceed analogously to construct wavelets using products of one-dimensional

functions as

	u(x) =

8>>><>>>:
 (xi)

dY
i=1

�(xi) when u 2 f1; :::; dg;Y
i2Au

 (xi)
Y
i=2Au

�(xi) when u 2 fd+ 1; :::; 2d � 1g;
(4.2.2)

where

 (xi) =
X
ki2Z

gki
p
2�(2xi � ki):

Usual choice for a two-dimensional scaling function or wavelet is a product of two one-dimensional

functions as the following example

Example 4.1 The scaling function has the form

�(x; y) =
X

hkl2�(2x� k; 2y � l);

where

�(x; y) = �(x)�(y); (4.2.3)

and hkl = hkhl: Since �(x) and �(y) both satisfy the scaling equation

�(x) =
X

hk
p
2�(2x� k):

Thus two dimensional scaling equation is product of two one dimensional scaling equations.

However, unlike one-dimensional case, we have three rather than one basic wavelet. They are:

	(h)(x; y) = �(x) (y); (4.2.4)

	(v)(x; y) =  (x)�(y);

	(d)(x; y) =  (x) (y):

The generalization of the one-dimensional wavelet equation leads to the following relations:

	(h)(x; y) =
X

g
(h)
kl 2�(2x� k; 2y � l);

	(v)(x; y) =
X

g
(v)
kl 2�(2x� k; 2y � l);

	(d)(x; y) =
X

g
(d)
kl 2�(2x� k; 2y � l);

where g(h)kl = hkgl; g
(v)
kl = gkhl; g

(d)
kl = gkgl:
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Remark 4.2 In the wavelet literature, the reader may encounter an indexing of the multiresolution
subspaces, which is the reverse of that in de�nition 4:1

::: � V1 � V0 � V�1 � ::: (4.2.5)

This convention (both have advantages and inconveniences), sometimes called "Daubechies" con-

vention, as opposed to "Mallat�s" convention in (4:2:5), is almost equally often used. however, the

family f�j;k(t) = 2jd=2�(2jt1 � k1; :::; 2
jtd � kd);k 2 Zdg is a basis of Vj according to Mallat�s in-

dexing, while f�j;k(t) = 2�jd=2�(2�jt1 � k1; :::; 2
�jtd � kd);k 2 Zdg is a basis of Vj according to

Daubechies�s indexing.

The approximation of a function X(t) on to a subspace Vj is given in terms of scaling functions

as bXj(t) =
X
k2Zd

�j;k�j;k(t); (4.2.6)

where �j;k is the scaling coe¢ cient at resolution j and translation k and

�j;k(t) = 2
jd=2�(2jt1 � k1; :::; 2

jtd � kd): (4.2.7)

Therefore, a function X(t) 2 L2(Rd) can either be represented by a set of orthogonal scaling
functions as

X(t) = lim
X
k2Zd

�j;k�j;k(t):

De�nition 4.3 For each j 2 Z; the wavelet subspace Wj is de�ned by

Wj = spanf	j;k(x)gk2Zd :

Since fVj; j 2 Zg are the nest subspaces, we can represent the subspaces Vj�1 as a direct sum
of coarsely approximated subspaces Vj and its orthogonal complement subspaces Wj as

Vj = Vj�1 �Wj�1:
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The relationship between scaling and wavelet function spaces

This shows that the projection of a function X(t) on to subspaces Wj gives the detailed inform-

ation lost in approximating the function over the subspaces Vj. An orthonormal basis can now be

constructed for Wj subspaces. A collection of all such basis functions for subspaces
�
Wj; j 2 Zd

	
;

form a new orthogonal bases for L2(Rd):
Thus the same approximation in terms of basis function of Wj is given by

bXj(t) =
2d�1X
u=1

lX
j=�1

X
k2Zd

�j;k;u	j;k;u(t);

where �j;k;u is the wavelet coe¢ cient at resolution j and translation k and

	j;k;u(t) = 2
jd=2	u(2

jt1 � k1; :::; 2
jtd � kd), for any u 2 f1; :::; 2d � 1g; (4.2.8)

Any square integrable function X(t) 2 L2(Rd); it can be written in terms of scaling and wavelet
functions as

X(t) =
X
k2Zd

�j;k�j;k(t) +

2d�1X
u=1

lX
j=�1

X
k2Zd

�j;k;u	j;k;u(t); (4.2.9)

and the coe¢ cients f�j;kg and
�
�j;k;u

	
are the sequences that describe the signal while the basis

functions are �xed.

Remark 4.3 The basis functions can either be orthonormal or just linearly independent. When
these are orthonormal, they �t into a general multiresolution framework. In other words, the mul-

tiresolution analysis provides a method for constructing a set of orthonormal function which form

a bases for L2(Rd) space and satisfy the properties of a wavelet function. In this analysis functions
are approximated at di¤erent resolutions to give smoothed versions of a functions. The increment
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information lost while approximating a function at di¤erent lower resolutions can be studies using

wavelet coe¢ cient.

Example 4.2 Let �(x) an  (x) be the scaling and wavelet functions as associated with some MRA,
for each j; k; l;2 Z; de�ne

�j;k;l(x; y) = 2j�(2jx� k; 2jy � l);

	
(h)
j;k;l(x; y) = 2j	(h)(2jx� k; 2jy � l);

	
(v)
j;k;l(x; y) = 2j	(v)(2jx� k; 2jy � l);

	
(d)
j;k;l(x; y) = 2j	(d)(2jx� k; 2jy � l);

the collection f�j;k;l(x; y); j; k; l 2 Zg[
n
	
(u)
j;k;l(x; y); j; k; l 2 Z; u 2 fv; h; dg

o
is an orthonorrmal

basis on R2 satisfying (4:2:3) and (4:2:4). However, any function X(x; y) 2 L2(R2) can be written
in terms of scaling and wavelet as

X(x; y) =
X
k;l2Z

�j;k;l�j;k;l(x; y) +
X

u2fv;h;dg

lX
j�J=�1

X
k;l2Z

�
(u)
j;k;l	

(u)
j;k;l(x; y):

From Daubechies convention we can express any function �j;n(t) in the subspaces Vj as a linear

combination of the basis functions
�
�j�1;k(t);k 2 Zd

	
of Vj�1 as

�j;n(t) =
X
k2Zd

hk�2n�j�1;k(t); (4.2.10)

where hk�2n =
R
�j;n(t)�

�
j�1;k(t)dt and

P
k2Zd hk = 1: For a compact support wavelet basis, fhkg

is �nite length jNj (i.e. hk is nonzero in the interval 0 � k � N� 1 and zero outside the interval).
Since Wj is also a subspace of Vj�1, we can express any function 	j;n;u(t) in Wj subspaces as a

linear combination of the basis functions
�
�j�1;k(t);k 2 Zd

	
of Vj�1 as

	j;n;u(t) =
X
k2Zd

g
(u)
k�2n�j�1;k(t); u = 1; :::; 2

d � 1; (4.2.11)

where g(u)k�2n =
R
	j;n;u(t)�

�
j�1;k(t)dt; u = 1; :::; 2d � 1. Many choices of hk and g(u)k exist which

satisfy (4:2:10) and (4:2:11). One such choice is by choosing coe¢ cients
n
g
(u)
k ; u = 1; :::; 2d � 1

o
such that gki = (�1)kih1�ki : The relation between coe¢ cients that gives the information about
smoothed (scaling coe¢ cient) and detailed version (wavelet coe¢ cient ) of a function at di¤erent
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resolution can be obtained by permultilying the conjugates of (4:2:10) and (4:2:11) with X(t) and

integrating with respect to t: Therefore, we have

�j;n =
X
k2Zd

h�k�2n�j�1;k; (4.2.12)

�j;n;u =
X
k2Zd

g
(u)�
k�2n�j�1;k; for u = 1; :::; 2

d � 1;

thus

�j;n =
X
k2Zd

hn�2k�j+1;k +
2d�1X
u=1

X
k2Zd

g
(u)
n�2k�j+1;k;u:

Equation (4:2:12) indicate that all the scaling and wavelet coe¢ cient at resolution (j; j+1; j+2; ::::)

can be obtained from a set of coe¢ cient fhk�2ng which describe the wavelet basis and the initial
set of

�
�j�1;k;k 2 Zd

	
:

4.3 Random �elds

Random �elds have found numerous applications in diverse areas such as image processing (see

for example Jain (1981)), oceanography (see Sylvester (1974)), geology (see Harbaugh and Preston

(1968)), forestry (see Matern (1960)), turbulence (see Mandelbort (1975)), and geomorphology (see

Mandelbort (1975)). In previous section, a function X(t) is assumed to be an element of L2(Rd).
In the case of random �elds, all may not have sample paths on L2(Rd). however, if X(t; �) is a
measurable function de�ned on Rd�� (� is the sample space) and satis�es

R
E fX2(t; �)g dt <1;

then X(t; �) 2 L2(Rd) with probability 1 in �:
If X(t) is a continuous parameter random �elds and X(t) 2 L2(Rd), then we have the wavelet

and scaling representations as

X(t) =
2d�1X
u=1

lX
j=�1

X
k2Zd

�j;k;u	j;k;u(t);

and

X(t) = lim
X
k2Zd

�j;k�j;k(t);
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where �j;k;u and �j;k are the new random �elds de�ned as

�j;k =

Z
Rd
X(t)�j;k(t)dt;

�j;k;u =

Z
Rd
X(t)	j;k;u(t)dt:

In many practical situations it is required to analyses wavelet transforms of discrete parameter

random �elds, for example, in digital image processing. In the next, we develop an alternative

procedure in which a continuous random �elds is �rst generated by interpolation of the discrete

process under study that preserves stationarity, linearity and moments of the discrete process.

Let (X(n))n2Zd be a zero mean discrete parameter random �elds having �nite power spectrum

f(�); where � = (�1; :::; �d) 2 � = [��; �[ � ::: � [��; �[, d�times. We now construct a new

continuous parameter random �elds, (X(t))t2Rd as

X(t) =
X
n2Zd

X(n)
(t� n); (4.3.1)

where 
(:) belongs to a family of scaling functions.

Lemma 4.1 Let (X(n))n2Zd be a zero mean stationary discrete random �elds with spectral dens-

ity fd(�): Then the covariance Cc(t; s) for random �elds satis�es (4:3:1) and having �nite power

spectrum f c(�) is given by

Cc(t; s) =
X
l2Zd

Cd(l)
X
n2Zd


(t� n)
�(s� n� l);

where Cd(l) = E fX(n)X(l+ n)g, and

f c(�) = (2�)d j� (��)j2 fd(�); (4.3.2)

where � (�) is the Fourier transform of 
(t).

Proof. Straightforward and hence omitted.

Lemma 4.2 Let (X(t))t2Rd be a stationary continuous random �elds satis�es (4:3:1) and having

�nite power bispectrum f c(�1;�2): Then

E fX(t)X(t+ s)X(t+ r)g =
X
n2Zd

X
m2Zd

E fX(l)X(l+m)X(l+ n)g 1q
(2�)dZ

�

Z
�

� (�1) � (�2) � (��1 � �2)� ei[(n�r)�1+(n�r+s�m)�2d�1d�2;
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and

f c(�1;�2) =

�q
(2�)d

�3
� (��1) � (��2) � (�1 + �2) fd(�1;�2); (4.3.3)

where fd(�1;�2) is bispectral density of the discrete random �elds.

Proposition 4.1 From (4:3:2) and (4:3:3), we have

- (X(t))t2Rd is second order stationary whenever (X(n))n2Zd is second order stationary.

- (X(t))t2Rd is third order stationary whenever (X(n))n2Zd is third order stationary.

- If (X(n))n2Zd is Gaussian fd(�1;�2) = 0 and hence f c(�1;�2) = 0: (Gaussianity of X(n)n2Zd

implies Gaussianity of (X(t))t2Rd):

- If (X(n))n2Zd is linear random �elds, then (X(t))t2Rd is linear random �elds.

Example 4.3 let 
(t) =
Qd
i=1

sin(�:ti)
(�:ti)

, we have

X(t) =
X
n2Zd

X(n)
dY
i=1

sin[�:(ti � ni)]

[�:(ti � ni)]
; (4.3.4)

For this choice of 
(:); we observe the following

- � (�) = (2�)�d=2 :

- Cc(� ) =
P

l2Zd C
d(l)[

Qd
i=1

sin[�:(� i�li)]
[�:(� i�li)] ] and hence , f

c(�) = fd(�):

- E fX(t)X(t+ s)X(t+ r)g =
P

m2Zd
P

n2Zd E fX(l)X(l+m)X(l+ n)ghQd
i=1

sin�:(ri�ni)
�:(ri�ni)

i hQd
i=1

sin�:(ri�ni+mi�si)
�:(ri�ni+mi�si)

i
and hence f c(�1;�2) =fd(�1;�2):

The above relation show that the covariance functions of the continuous and discrete processes

are related and the spectra ( power spectrum and bispectrum) of continuous and discrete random

�elds are identical in the range.

Remark 4.4 1) Since for only 
(t) =
Qd
i=1

sin[�:(ti�ni)]
[�:(ti�ni)] ;� (�) = (2�)

�d=2 ; it is evident from (4:3:2)

and (4:3:3) that for any other choice of scaling function 
(t); the spectral density function and the

bispectral density function of continuous and discrete random �elds are not identical, although they

preserve the two important properties of linearity and stationarity.

2) Any choice of scaling function other than 
(t) =
Qd
i=1

sin[�:(ti�ni)]
[�:(ti�ni)] result in a continuous

random �elds which does not have the same properties as that of the discrete random �eld under

study. This indicates that the use of discrete random �eld itself as an initial set of scaling coe¢ cients

to compute wavelet transform may not be an optimum procedure.
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Wavelet representation of discrete random �elds

Let (X(t))t2Rd be a continuous random �elds constructed from a discrete random �led having zero

mean and �nite power, and let
�
	j;k;u(t); u = 1; :::; 2

d � 1;k 2 Zd; j 2 Z
	
and

�
�j;k(t);k 2 Zd

	
be

multiresolution wavelet and scaling orthonormal bases. Further, let us assume X(t) 2 V0; then

from (4:2:6), we have

X(t) =
X
k2Zd

�0;k�0;k(t);

where �0;k denote the scaling coe¢ cient at zeroth resolution, given by

�0;k =

Z
Rd
X(t)�0;k(t)dt:

Substituting for X(t) in terms of X(n) by using (4:3:4), and rearranging, we obtain

�0;k =
X
n2Zd

X(n)bk�n; (4.3.5)

where the sequence (bm) is computed as

bm = (2�)
d=2

Z
�

e�(��)eim:�d�; (4.3.6)

with e�(�) indicating the Fourier transform of �(t).

The relation given by (4:3:5) shows how amenable it is to theoretically analyse a discrete random

�eld when these processes can be represented by expressions in closed form. The random �eld (bm)

can be precomputed for any particular wavelet transform and used in the analysis of discrete random

�eld. For orthonormal multiresolution scaling functions, e�(�) is given by
e�J(�) = 1

(2�)
d
2

JY
j=1

1

2
d
2

X
m2Zd

hme
�i2�jm:�; (4.3.7)

when j =1; e�J(�) = e�(�): However, for large values of J , e�J(�) � e�(�).
4.4 Covariances structure

4.4.1 Second order covariances

The second order properties of wavelet coe¢ cients for continuous and discrete parameter random

processes have been studied in Dijkerman and Mazumdar (1994), Mary (1993), Tew�k (1992) and
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Subba Rao and Indukumar (1996). However, in this section, we obtain explicit expressions for the

second order covariances of discrete random �elds.

The following lemma is an extension of the result obtained by Subba Rao and Indukumar (1996)

in one dimensional framework.

Lemma 4.3 Let (X(n))n2Zd be a stationary zero mean discrete random �elds belongs to V0 space

and let C(l) =: Cov fX (n)X (n+ l)g the covariance of the discrete random �eld. Then the covari-
ance of scaling coe¢ cient at Zeroth resolution Cs0(l) =: E

�
�0;k�

�
0;k+l

	
is

Cs0(l) =
X
m2Zd

X
n2Zd

bmb
�
nC(l+m� n); (4.4.1)

where bm de�ned by (4:3:6).

Proof. Straightforward and hence omitted

Example 4.4 Consider the spatial AR(1; 1) process

X (t) = a1X (t� e1) + a2X (t� e2)� a1a2X (t� 1) + e (t) ; (4.4.2)

where (e(t))t2Z2 is a Gaussian white noise with zero mean and variance �
2 = 1 and Max fja1j ; ja2jg <

1: Then the Model (4:4:2) has a regular second order stationary solution if 0 < (1� a21) (1� a22).

Under these conditions,

C(h1; h2) =
(a1 + a2 � a1a2)

jh1j+jh2j

(1� a21)(1� a22)
;

and covariance of scaling coe¢ cients at zeroth resolution is given by

Cs0(h1; h2) =
X

m1;m22Z

X
n1;n22Z

bm1;m2b
�
n1;n2

(a1 + a2 � a1a2)
jh1+m1�n1j+jh2+m2�n2j

(1� a21)(1� a22)
:

Equation (4:4:1) measures the linear relationship at the zeroth resolution, and since the coe¢ -

cients at di¤erent resolutions are related, we can evaluate covariances at lower resolutions as follows.

We know from (4:2:12) that the scaling coe¢ cients and the wavelet coe¢ cient at zeroth resolution

and the next lower resolution are related by the following lemma

Lemma 4.4 Let �1;k and �1;k;u are the scaling and the wavelet coe¢ cients at the �rst resolution
de�ned by

�1;k =
X
k2Zd

hm�0;m+2k; (4.4.3)

�1;k;u =
X
k2Zd

g(u)m �0;m+2k for u = 1; :::; 2d � 1:
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Then the covariance of the scaling and the wavelet coe¢ cient satisfying (4:4:3) is

Cs1(l) =
X
m2Zd

X
n2Zd

hmh
�
nC

s
0(n�m+2l); (4.4.4)

Cw1;u(l) =
X
m2Zd

X
n2Zd

g(u)m g(u)�n Cs0(n�m+2l) for u = 1; :::; 2d � 1:

Proof. Straightforward and hence omitted

Corollary 4.1 Let �r;k and �r;k;u are the scaling and the wavelet coe¢ cients at the rth resolution
given by the recursion formula given by (4:4:3). Then the covariance function at lower resolutions

of the scaling and the wavelet coe¢ cients are

Csr (l) =
X
m2Zd

X
n2Zd

hmh
�
nC

s
r�1(n�m+2l); (4.4.5)

Cwr;u(l) =
X
m2Zd

X
n2Zd

g(u)m g(u)�n Csr�1(n�m+2l) for u = 1; :::; 2d � 1:

Remark 4.5 For any rth resolution, we can write (4:4:5) as

Csr (l) =

�����X
m2Zd

hm�2k

�����
2r

Cs0(l);

Cwr;u(l) =

�����X
m2Zd

g
(u)
m�2k

�����
2r

Cs0(l) for u = 1; :::; 2
d � 1:

Example 4.5 Consider the 2�D harmonic process as

X (t) = A cos(!:t+ �); for t 2 Z2; (4.4.6)

where ! 2 [��; �[2 and the Phase � 2 [��; �[: Then

C(l) =
A2

2
cos(!:l); where l 2 Z2;

and covariance of scaling coe¢ cients at rth resolution is given by

Csr (l) =
A2

2

�����X
m2Z2

bme
i(!:m)

�����
2 �����X
m2Z2

hme
i(!:m)

�����
2r

cos[2r(!:l)];
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and for the wavelet functions as

Cwr;u(l) =
A2

2

�����X
m2Z2

bme
i(!:m)

�����
2 �����X
m2Z2

hme
i(!:m)

�����
2(r�1)

:

�����X
m2Z2

g(u)m ei(!:m)

�����
2

cos[2r(!:l)]; u = fh; v; dg;

where

g(h)m = hm1gm2 ; g
(v)
m = gm1hm2 ; g

(d)
m = gm1gm2 :

4.4.2 Third order covariances

It is clear from (4:4:1) that the scaling and wavelet covariance for any two di¤erent stationary

spatial processes having the same covariance cannot be distinguished. For example SARMA(p;q)

processes and SBLd(p;q;P;Q) have the same covariance structure (chap 1). This shows that linear

and nonlinear processes cannot be identi�ed using second order statistics. This makes it necessary

to study higher order statistics in wavelet analysis.

In this section, we develop expression for the third order covariances between wavelet and scaling

coe¢ cient for discrete random �elds.

Lemma 4.5 Let (X(n))n2Zd be a zero mean discrete random �elds belongs to V0 space then third

order covariance of scaling coe¢ cient at Zeroth resolution which related to third order covariance

of the discrete random �eld as

E f�0;k�0;k+p�0;k+qg =
X
l2Zd

X
m2Zd

X
n2Zd

E fX(l)X(l+m)X(l+ n)g bk�lbk+p�l�mbk+q�l�n; (4.4.7)

where X
l2Zd

bk�lbk+p�l�mbk+q�l�n =
1q
(2�)d

Z
�

Z
�

e� (��1) e� (��2) e� (�1 + �2) (4.4.8)

ei[(n�q):�1+(p�m�q+n):�2]d�1d�2:

Proof. Straightforward and hence omitted

Remark 4.6 Note that (4:4:8) is independent of k and l, indicating that E f�0;k�0;k+p�0;k+qg
independent of k. This implies that the random �elds (�0;k) is a third order stationary whenever

(X(n))n2Zd is a third order stationary random �elds.
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Corollary 4.2 Let �0;k the scaling coe¢ cient at Zero resolution satisfying (4:3:5). Then the third
order covariance of scaling and wavelet coe¢ cients at rth resolution is given by

E f�r;k�r;k+j�r;k+lg =
X
m2Zd

X
n2Zd

X
p2Zd

hmhnhpE f�r�1;m+2k�r�1;n+2j�r�1;p+2lg ; (4.4.9)

E
�
�r;k;u�r;k+j;u�r;k+l;u

	
=

X
m2Zd

X
n2Zd

X
p2Zd

g(u)m g(u)n g(u)p E f�r�1;m+2k�r�1;n+2j�r�1;p+2lg ;

for u = 1; :::; 2d � 1:

Remark 4.7 From the relation between scaling and wavelet coe¢ cient, we can write (4:4:9) as

E f�r;k�r;k+j�r;k+lg =

�����X
m2Zd

hm�2k

�����
r �����X
n2Zd

hn�2j

�����
r
������
X
p2Zd

hp�2l

������
r

E f�0;k�0;k+j�0;k+lg ;

E
�
�r;k;u�r;k+j;u�r;k+l;u

	
=

�����X
m2Zd

g
(u)
m�2k

�����
r �����X
n2Zd

g
(u)
n�2j

�����
r
������
X
p2Zd

g
(u)
p�2l

������
r

E f�0;k�0;k+j�0;k+lg ;

for u = 1; :::; 2d � 1:

4.4.3 Dependence structure in terms of cumulants

The dependence structure of Gaussian random �elds is entirely characterized by the covariance.

When the normality assumption no longer holds, higher order cumulants are necessary. The cov-

ariance and spectral properties of the wavelet transform and discrete wavelet coe¢ cient for random

�elds have been extensively studied in the past (see Masry (1998)). In this section, we obtain a new

expression for cumulant of the scaling coe¢ cient, and the dependence structure between wavelet

coe¢ cients is closely related to the dependence of scaling coe¢ cients. Hence, to explain how to

obtain the joint cumulants of the scaling coe¢ cients from the joint cumulants of random �elds, we

have

Proposition 4.2 Let (�0;k)t2Zd be the scaling coe¢ cient at Zero resolution satis�es (4:3:5), and
suppose that joint cumulants of (X(n))n2Zd of order s exist. Then

Cum (�0;k1 ; :::; �0;ks) =
X
n12Zd

:::
X
ns2Zd

sY
i=1

bki�niCum(X(n1); :::; X(ns)):
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Corollary 4.3 Let (�1;k) and (�1;k;u) are the scaling and wavelet coe¢ cients at the �rst resolution
satis�es (4:2:12). Then

Cum(�1;k) =
X
m12Zd

:::
X
ms2Zd

sY
i=1

hmi
Cum(�0;m+2k);

Cum(�1;k;u) =
X
m12Zd

:::
X
ms2Zd

sY
i=1

g(u)mi
Cum(�0;m+2k) for u = 1; :::; 2d � 1;

where

Cum(�1;k) = Cum(�1;k1 ; :::; �1;ks);

Cum(�1;k;u) = Cum
�
�1;k1;u; ; :::; �1;ks;u

�
:

Corollary 4.4 Let (�r;k) and (�r;k;u) are the scaling and wavelet coe¢ cients at the rth resolution
satis�es (4:2:12). Then

Cumr(�r;k) =
X
m12Zd

:::
X
ms2Zd

sY
i=1

hmi
Cumr�1(�r�1;m+2k);

Cumr(�r;m;u) =
X
m12Zd

:::
X
ms2Zd

sY
i=1

g(u)mi
Cumr�1(�r�1;m+2k) for u = 1; :::; 2d � 1:

4.5 The discrete wavelet transform

Let (X (n))n2Zd be a zero mean discrete stationary random �elds, we de�ne the discrete wavelet

transform with respect to 	 as

dj;k(n) = 2
�jd=2

N�1X
n=0

X (n)	(2�jn� k); (4.5.1)

Condition 4.1 Let C(l) be a covariance function of a random �elds (X (n))n2Zd satis�esX
l2Zd

[1 + jlj] jC(l)j <1;

We have E fdj;k(n)g = 0 and

var fdj;k(n)g = 2dj
N�1X
n=0

N�1X
m=0

C (n�m)	(2�jn� k)	(2�jm� k)

= 2dj
N�1X

l=�N+1

C (l) e	(jlj);
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where e	(jlj) = N�1�jljX
n=0

	(2�jn� k)	(2�jn+ jlj � k):

If Condition 4:1 holds, then

var fdj;k(n)g �! �j;k(n) as N �!1;

where

�j;k(n) = 2
dj
X
l2Zd

C (l) e	1 (jlj) ; (4.5.2)

is the wavelet spectrum of (X (n))n2Zd and

e	1 (jlj) = 1X
n=0

	(2�jn� k)	(2�jn+ jlj � k);

is called the wavelet autocorrelation function, at (j;k).

Theorem 4.1 Let (X (n))n2Zd be a zero mean discrete stationary random �elds, with covariance

function satis�es Condition 4:1. Then �j;k(n) is bounded and non-negative.

Proof. The proof follows from similar arguments as Theorem 1 in Chiann and Morettin (1998).

Theorem 4.2 Let (X (n))n2Zd be a zero mean discrete stationary random �elds, with covariance

function C (l) satis�es Condition 4:1, and let

�(j1;j2);(k1;k2)(n) = 2
d(j1+j2)=2

X
l2Zd

1X
n=0


 (l)	(2�j1n� k1+ jlj Ifu�0g)	(2�j2n� k2+ jlj Ifu�0g);

for (j1; j2) 2 Z2; (k1;k2) 2 Z2d , the covariance of the wavelet transform with respect to 	: Then,

i) E fdj1;k1(n)dj2;k2(n)g �! �(j1;j2);(k1;k2)(n) as N �!1;

ii) If j1 = j2;k1 = k2; then �(j1;j2);(k1;k2)(n) = �j;k(n);

iii) E fdj1;k1(n)dj2;k2(n)g = O (1) as N �!1:

Proof. The proof is similar as that in Theorem 2 in Chiann and Morettin (1998).
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Theorem 4.3 Let (X (n))n2Zd is a second order stationary random �elds with zero mean and the

covariance function C (l) 6= 0 for jlj � L; L �� N: If 	(n) has support [K1; K2] ; where K1 �
0; K2 � 0; then

E fdj1;k1(n)dj2;k2(n)g = 0;

for jk1 � k2j � K2 �K1 + (2
jL) ; j = 1; :::;M and k = 0; 1; :::; (2M�j � 1):

Proof. The proof is similar as that in Theorem 3 in Chiann and Morettin (1998).

De�nition 4.4 A real-valued second-order random �eld (X(n))n2Zd is said to be weakly homogen-

eous if

i) m(n) = E fX(n)g for all n 2 Zd:

ii) C(n+ u;m+ u) = C(n;m) for all u 2 Zd:

We assume that C(l) is continuous and has the spectral representation

C(l) =

Z
�

eil:�dF (�);

where dF (�) is a �nite measure on �:

Theorem 4.4 Assume that 	(n) 2 L(Rd): The random �elds (dj;k(n))n2Zd ; are jointly weakly

homogeneous with zero means and covariance/ cross-covariance functions

Cdj;k(l) = E
�
dj;k(n)d

�
j;k(n+ l)

	
;

Cdj1;k1 ;dj2;k2 (l) = E
�
dj1;k1(n)d

�
j2;k2

(n+ l)
	
;

having the spectral representations

Cdj;k(l) = 2dj
N�1X

l=�N�1

Z
�

e	(jlj)eil:�dFx(�);
Cdj1;k1 ;dj2;k2 (l) = 2d(j1+j2)=2

N�1X
l=�N�1

Z
�

e	(0)eil:�dFX(�);
where e	(:) is the Fourier transform of e	(:) and

e	(jlj) =

N�1�jljX
n=0

	(2jn� k)	(2jn+ jlj � k);

e	(0) =

N�1�jljX
n=0

	(2j1n� k1)	(2j2n� k2):

Proof. The proof follows from Theorem 2.1 in Masry (1998).
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Remark 4.8 By the above Theorem, the wavelet transform
�
dj;k(n);n 2 Zd

	
is a weakly homogen-

ous random �eld with spectral measure

dFd(�) = 2
dj

N�1X
l=�N�1

e	(jlj)dFX(�);
In particular, if the input random �eld (X (n))n2Zd possesses a spectral density fX (�), then so does

the wavelet transform and

fd (�) = 2
dj

N�1X
l=�N�1

e	(jlj)fX (�) :
Theorem 4.5 Let (X(n))n2Zd be a zero mean stationary discrete random �elds belongs to V0 space
with covariance function C(l) and �0;k the scaling coe¢ cient at Zero resolution satisfying (4:3:5).

Then the discrete random �eld (�0;k)k2Zd is weakly homogenous with zero mean and covariance

function Cs0(l) having the spectral representation as

Cs0(l) =
X
m2Zd

X
n2Zd

Z
�

���e�(�)���2 ei(l+m�n):�dFX(�):
Proof. The proof follows from Theorem 2.3 in Masry (1998).



Chapter 5

Wavelet spectral and bispectral density
estimation

5.1 Introduction

Wavelet density estimation of times series has been well developed theoretically and has found

many applications in vast areas of applied sciences. However, in signal processing, the spectral

density is an appropriate tool for the description of second-order statistics. It is well known that it

characterizes completely stationary signals which have Gaussian distributions. If the signal under

study is non-Gaussian, or of it is the results of nonlinear dynamics, knowledge of the mean value

and the spectral density is not su¢ cient to fully characterize the signal (see for example Nikias and

Petropulu (1993)). Unlike spectral density, the bispectral density has received special attention in

the literature (see Swami et al. (1997)).

Some of the techniques are extendible to random �elds with varying degree of success, and there

remain to be solved many inherent problems that are not present in the times series case. In this

chapter, we consider the theoretical aspects of wavelet spectral and bispectral density for random

�elds.

5.2 Nonlinear wavelet spectral density estimation

In this section, we obtain empirical versions of the coe¢ cients of f which are treated with the same

methods as Neumann (1996), and we drive the uniform estimates of the cumulants of the empirical

wavelet coe¢ cients. These results allow us to conclude the risk equivalence between all monotone
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estimators based on the empirical coe¢ cients. We shown that the optimality thresholded wavelet

attain the minimax rate of convergence in a large scale of Besov smoothness classes. Finally, we

discuss a possibility to adapt the smoothing parameters involved in the procedure.

5.2.1 Cumulant of the empirical wavelet coe¢ cients

Let (X(t))t2Z2 be a stationary random �elds with zero mean and the spectral density

f (!) =
1

(2�)2

X
h2Z2

C(h)e�ih:!; (5.2.1)

and consider an orthonormal-wavelet basis of L2(R2); associated to the following scaling and wavelet
functions:

e�j;k(t) = 2j�(2jt1 � k1; 2
jt2 � k2);e	j;k;u(t) = 2j	u(2

jt1 � k1; 2
jt2 � k2), for any u 2 f1; 2; 3g:

It is easy to see that with �j = f1; :::; 2jg2;

�j;k(t) =
X
n2Z2

(2�)�1 e�j;k((2�)�1 t+ n);
and

	j;k;u(t) =
X
n2Z2

(2�)�1 e	j;k;u((2�)�1 t+ n);
is an orthonormal basis of eL2(�2) (i.e. �2 = [��; �[ � [��; �[). For f 2 eL2(�2) we have the
representation

f(!) =
X
k2�l

�l;k�l;k(!) +
3X
u=1

X
j�l

X
k2�j

�j;k;u	j;k;u(!); (5.2.3)

where �l;k =
R
�2
f(!)�l;k(!)d! and �j;k;u =

R
�2
f(!)	j;k;u(!)d!.

From the sample observation fX(t); t = 1; :::;Ng the tapered periodogram

IN (!) =
1

(2�)2H
(N)
2

jdN(!)j2 ; (5.2.2)

where dN(!) =
PN�1

t=0 h( t
N
)Xte

�it:!; H
(N)
2 =

PN
t=1 h

2( t
N
); is asymptotically unbiased for f (!)

under quite general assumptions (i.e. for N =(N;N) we obtain H(N)
2 � N2H), however it is not a

consistent estimator of f (!) (i.e. IN (!) � 0 if H(N)
2 = 0): Therefore, there is some hope that one

can obtain via smoothing estimators that are consistent under certain smoothness conditions on f:
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Under the following assumptions we can derive appropriate estimates for bias and variance of

the empirical coe¢ cients de�ned as

e�l;k =

Z
�2

�l;k(!)IN (!) d!; (5.2.4)

e�j;k;u =

Z
�2

	j;k;u(!)IN (!) d!:

Condition 5.1 The taper function h is of bounded variation and satis�es H =
R
h2(x)dx > 0:

Condition 5.2 8k � 2; there exists C > 0 and 
 � 0 such that

sup
1�t1�1

8<: X
t2;:::;tp�1

jcum(X (t1) ; :::X (tp�1) ; X (tp))j

9=; � Ck(p!)
+1:

Condition 5.3 f is of �nite total variation over �2; kfk1 < D; 8D > 0:

Condition 5.4 - �(t) and 	u(t) are in Cr; for any r > m:

-
R
�(t)dt = 1 and

R
	u(t) jtjk dt = 1; for 0 � k � r:(i.e. jtj = t1t2):

- C = max
�


e�




L1
;



f	u




L1

�
and D = max

�


 e�0



L1
;



 e	0u




L1

�
are �nite,

and max
�
k�j;kk1 ; k	j;k;uk1

�
� A2j=2:

These assumptions are widely satis�ed. In particular for Daubechies�s wavelets with support

2M; the last assumption is satis�ed with A = 2M max
�


e�




1
;



e	u




1

�
:

Remark 5.1 Note that the regularity r of the scaling function �(t) and the wavelet 	u(t) has tom
be chosen higher than the assumed smoothness m of the spectral density in order to make the optimal

rate of convergence of the estimators possible.

Lemma 5.1 For N =(N;N) ; let j � � ;k 2 �j; u 2 f1; 2; 3g ; e�j;k;u de�ned by (5:2:4) satisfying
conditions 5.1 through 5.4. Then

E
ne�j;k;uo = �j;k;u +O(2j=2+1N�2 logN);

V ar
ne�j;k;uo � CN�22�j; C > 0:

Proposition 5.1 Let j � � ; such that 2j � CN2(1��)and � > 0;k 2 �j; u 2 f1; 2; 3g ;
N =(N;N) ; e�j;k;u de�ned by (5:2:4) satisfying conditions 5.1 through 5.4. Then there exists a

constant C > 0 such that���Cum(e�j;k;u)��� � Cn(p!)2+2
N�2(2j=2+1N�2 logN)p�2:

Proof. the proof is similarly as that in Proposition 3.1 in Neumann (1996).
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5.2.2 Asymptotic normality of the empirical wavelet coe¢ cients

We say that a function f 2 L2 (�2) belongs to the two dimensional Besov ball Bmp;q(M) if and only
if there exists a constant M� (depending on M), such that the associated wavelet coe¢ cient of f

satisfy

2�(1=2�1=p)

 X
k2��

j��;kjp
!1=p

+

0B@ 3X
u=1

1X
j=�

0B@2j(m+1=2�1=p)
0@X
k2�j

���j;k;u��p
1A1=p

1CA
q1CA

1=q

�M� <1;

Besov balls are able to model di¤erent kind of smoothness features in a function. For a particular

choice of parameters m; p and q, they contain the Hölder and Sobolev ball (see for example Mal-

lat (2009) and Meyer (1992)). Details and results on wavelets and Besov balls in nonparametric

estimation can be found in Härdle et al. (1998).

On the other hand, We have for any ball F in a Besov space Bmp;q that

sup
f2F
f
X
j>J

X
k2�j

�2j;k;ug = O(2�2J(m+1=2�1=(p^2))); (5.2.5)

if 2�J = O(N�4=3) then

sup
f2F
f
X
j>J

X
k2�j

�2j;k;ug = O(N�4m=(2m+1));

we restrict our considerations in this section to coe¢ cient with indices (j;k) from a set

J = J (N) = f(j;k)n2j � CN2(1��);k 2 �j; C <1; 0 < � � 1=3g:

Let �2j;k;u denote the variance of the coe¢ cients e�j;k;u; then by lemma 5.1 we obtain that
sup
j;k
f�j;k;ug = O(N�1); (5.2.6)

and by proposition 5.1 ���Cum(e�j;k;u=�j;k;u��� � (p!)2+2
Cp(2N�� log(N))p�2; (5.2.7)

holds uniformly in (j;k) 2 J 0 where J 0= J 0 (N) = f(j;k) 2 J =�j;k � C0N
�1g for some �xed

C0 > 0.

Theorem 5.1 Let e�j;k;u de�ned by (5:2:4) satisfying conditions 5.1 through 5.4. Then
P (
���e�j;k;u � �j;k;u

��� =�j;k;u � x)

1� �(x) �! 1;
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holds uniformly in (j;k) 2 J 0;�1 < x � "
,where "
 = o("1=(3+4
)) and " = 2N�(logN)�1; and

�(x) be the cumulative distribution function of the standard normal distribution N (0; 1):

Proof. Using Proposition 5.1 and Lemma 3.1 and Theorem 4.1 in Neuman (1996).

Let

�N = maxf max
(j;k)2J

(�j;k;u) ; C0N
�1g;

and let �j;k;u � N(0; �2N � �2j;k;u) be independent of e�j;k;u: Then the new random �eld e�j;k;u + �j;k;u
has the same mean and the same p-order cumulants for p � 3 as e�j;k;u, whereas its variance is equal
to �2N � N�2. Therefore, we can derive in complete analogy to Theorem 5.1 the following result.

Corollary 5.1 Assume e�j;k;u de�ned by (5:2:4) satisfying condition of Theorem 5.1. Then

P (
���(e�j;k;u + �j;k;u)� �j;k;u

��� =�j;k;u � x)

1� �(x) �! 1:

5.2.3 Derivation of thresholding schemes

Let

�(h)(e�j;k;u; �) = e�j;k;u1(je�j;k;uj��); (5.2.9)

�(s)(e�j;k;u; �) = sgn
�e�j;k;u� (���e�j;k;u���� �)+; (5.2.10)

where these two nonlinear procedures on the empirical coe¢ cients are usually called hard and

soft thersholding, respectively. We consider as approximating models for our empirical wavelet

coe¢ cients

�j;k;u = �j;k;u + �j;k;u"j;k;u; (5.2.11)

and

�j;k;u = �j;k;u + (�j;k;u _ �N)"j;k;u; (5.2.12)

where "j;k;u � N (0; 1). Then we have the following basic result for monotone coordinate wise
estimators.

Theorem 5.2 Let �j;k = �j;k;N be monotone non decreasing functions with

�j;k(y) � jyj ; (5.2.13)

and assume that Conditions 5.1 through 5.4 holds. Then, for 0 < p0 <1;
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i)
P

(j;k)2J o E

�����j;k(e�j;k;u)� �j;k;u

���p0� = (1+o(1))P(j;k)2J o E
n���j;k(�j;k;u)� �j;k;u

��p0o+O(N�p0):

ii)
P

(j;k)2J E

�����j;k(e�j;k;u)� �j;k;u

���p0� � (2+o(1))P(j;k)2J E
n���j;k(�j;k;u)� �j;k;u

��p0o+O(N�p0):

Proof.

i) Since �j;k is monotone, there exists a constant 
j;k such that

�j;k(y) � �j;k;u; if y > 
j;k;

�j;k(y) � �j;k;u; if y < 
j;k;

(we assume �j;k(e�j;k;u) � �j;k;u) Now we split up

E

�����j;k(e�j;k;u)� �j;k;u

���p0� = E

�
1(
j;k�e�j;k;u<�j;k;u+�j;k;u"
)

����j;k(e�j;k;u)� �j;k;u

���p0�(5.2.14)
+E

�
1(�j;k;u��j;k;u"
�e�j;k;u<
j;k)

����j;k(e�j;k;u)� �j;k;u

���p0�
+E

�
1(je�j;k;u��j;k;uj��j;k;u"
)

����j;k(e�j;k;u)� �j;k;u

���p0�
= R1 +R2 +R3:

According to the assertion of Theorem 5.1 there exist C(l)N ; C
(h)
N both tending to 1 asN �!1;

such that���C(l)N ��� (1� �(x)) � �P (���e�j;k;u � �j;k;u

��� =�j;k;u � x
�
�
���C(h)N

��� (1� �(x)) ; 8x � "
:

Since
���j;k(y)� �j;k;u

�� is monotone nondecreasing for y � 
j;k, we obtain by integration by

parts that

R1 = �
Z h

1(
j;k�x<�j;k;u+�j;k;u"
)
���j;k(x)� �j;k;u

��p0i dP (e�j;k;u � x) (5.2.15)

= P (e�j;k;u � x)d
h
1(
j;k�x<�j;k;u+�j;k;u"
)

���j;k(x)� �j;k;u
��p0i

+P (e�j;k;u � 
j;k)
���j;k(
j;k)� �j;k;u

��p0
�

���C(h)N

��� �Z p(�j;k;u � x)d
h
1(
j;k�x<�j;k;u+�j;k;u"
)

���j;k(x)� �j;k;u
��p0i

+ P (�j;k;u � 
j;k)
���j;k(x)� �j;k;u

��p0o
=

���C(h)N

���E n1(
j;k��j;k;u<�j;k;u+�j;k;u"
) ���j;k(�j;k;u)� �j;k;u
��p0o ;
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holds uniformly in (j;k) 2 J o: Analogously we get

R2 �
���C(h)N

���E n1(
j;k��j;k;u<�j;k;u+�j;k;u"
) ���j;k(�j;k;u)� �j;k;u
��p0o :

Using Proposition 5.1 we obtain, for arbitrary even p, that

E
n
(e�j;k;u � �j;k;u)

p
o
= O

0BB@ pX
r=1

Y
i1+:::ir=p
ij�1

���cumij(
e�j;k;u)���

1CCA (5.2.16)

= O
�
N�p� :

Further we have, with "
 = N2� for some � > 0; that

P (
���e�j;k;u � �j;k;u

��� � �j;k;u"
) � C(1� �("
)) = O
�
N�2�� ;

for arbitrary � < 1; which implies by
����j;k(e�j;k;u)� �j;k;u

��� � ���e�j;k;u � �j;k;u

��� + 2 ���j;k;u�� and
the Cauchy-Schawrz inequality that

R3 �
r
P (
���e�j;k;u � �j;k;u

��� � �j;k;u"
)

s
E

�����j;k(e�j;k;u)� �j;k;u

���2p0� = O
�
N�p0�2

�
; (5.2.17)

by (5:2:14) and (5:2:15) through (5:2:17) we conclude that

E

�����j;k(e�j;k;u)� �j;k;u

���p0� � (jCN1j _ jCN2 j)E
n���j;k(�j;k;u)� �j;k;u

��p0o+O
�
N�p0�2

�
:

A lower bound can be proved analogously.

ii) Let �j;k;u � N(0; �2N � �2j;k;u) be independent of e�j;k;u: Then
E

�����j;k(e�j;k;u)� �j;k;u

���p0� = E
n
1(e�j;k;u�
j;k)

���j;k(
j;k)� �j;k;u
��p0o

+E
n
1(e�j;k;u<
j;k)

���j;k(
j;k)� �j;k;u
��p0o

= 2E

�
1(e�j;k;u�
j;k;�j;k;u�0)

����j;k(e�j;k;u)� �j;k;u

���p0�
+2E

�
1(e�j;k;u<
j;k;�j;k;u�0)

����j;k(e�j;k;u)� �j;k;u

���p0�
� 2E

�����j;k(e�j;k;u + �j;k;u)� �j;k;u

���p0� ;
which yields (ii) due to Corollary 2.1.
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Remark 5.2 From the above theorem we can obtain risk properties of thresholded wavelet estim-

ators. Since the estimators (5:2:9) and (5:2:10) obey the assumption (5:2:13), we can immediately

derive due to Theorem 5.1 the risk equivalence of our spectral density estimators to analogous es-

timators in the much simpler models (5:2:11) and (5:2:12).

Let �(:) denote either the hard-threshold rule �(h) de�ned by (5:2:9) or the soft-threshold rule

�(s) given by (5:2:10). Then we can state the following assertion.

Corollary 5.2 Let e�j;k;u de�ned by (5:2:4) and assume Conditions 5.1 through 5.4 holds. Then,
for nonrandom thresholds �j;k;u

i)
P

(j;k)2J o E

��
�(:)(e�j;k;u; �j;k;u)� �j;k;u

�2�
= (1+o(1))

P
(j;k)2J o E

�����(:)(�j;k;u; �j;k;u)� �j;k;u

���2�+
O(N�2):

ii)
P

(j;k)2J E

��
�(:)(e�j;k;u; �j;k;u)� �j;k;u

�2�
� (2+o(1))

P
(j;k)2J E

n���j;k(�j;k;u; �j;k;u)� �j;k;u
��2o+

O(N�2):

Let us now assume that the spectral density f(!) lies in a set of the following type:

F = F(C) =

8<:f(!) =X
k2�l

�l;k�l;k(!) +
3X
u=1

X
j�l

X
k2�j

�j;k;u	j;k;u(!)

������ k�km;p;q � C

9=; ; (5.2.18)

where

k�km;p;q =

0B@ 3X
u=1

X
j�l

0B@2js
0@X
k2�j

���j;k;u��p
1A1=p

1CA
q1CA

1=q

; (5.2.19)

with s = m+1=2� 1=p: It is known that this norm is essentially equivalent to the norm in the two
dimensional Besov ball Bmp;q(M); if the basis functions �l;k(!) and 	j;k;u(!) satisfy condition 5.4.

Moreover, we see by the relation Bmp;1 �Wm
p � Bmp;1, that smoothness classes from the scale of two

dimensional Sobolev spacesWm
p are also covered by our results.

Let bf o(!) =X
k2�l

e�l;k�l;k(!) + 3X
u=1

X
j�l

X
k2�j

�(:)(e�j;k;u; �oj)	j;k;u(!); (5.2.20)

be the estimator with optimal (nonrandom) thresholds �oj = �oj(N;F) and let

bf(!) =X
k2�l

e�l;k�l;k(!) + 3X
u=1

X
j�l

X
k2�j

�(:)(e�j;k;u; �j;k;u)	j;k;u(!); (5.2.21)

be an estimate with individual thresholds, which satisfy the following minimal conditions.
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Condition 5.5 Let ' denotes the standard normal density, then

i)
P

(j;k)2J

�
�j;k;u

(�j;k;u_�N) + 1
�
'
�

�j;k;u
(�j;k;u_�N)

�
= O(N2=(2m+1)):

ii) max(j;k)2J f�j;k;ug = O(
q

2 logN
N2 ):

We can see by Neumann (1996), that for hard or soft thresholded estimators based on observations

according to (5:2:12) the following relation holds:

E

��
�(:)(�j;k;u; �)� �j;k;u

�2�
� C

�
(�2j;k;u _ �2N)

�
�

(�j;k;u _ �N)
+ 1

�
'

�

(�j;k;u _ �N)
(5.2.22)

+ min
(j;k)2J

�
�2; �2j;k;u

��
;

uniformly in � � 0:

From Condition 5.5 we have two particular thresholding schemes de�ned as

�j;k;u = (�j;k;u _ �N)
p
2 log (]J ); (5.2.23)

and

�j;k;u = (�j;k;u _ �N)
p
2 log((]J ) =2l): (5.2.24)

Now it can be easily shown that both of the proposed thresholding schemes lead to a rate

(2 logN=N2)
2m=(2m+1) for the risk of the estimators bf:

Theorem 5.3 Let bf; bf o be an estimators with individual, optimal thresholds respectively satisfying
Conditions 5.1 through 5.4. Then

i) supf2F

�
E

�


 bf o � f



2
L2(�2)

��
= O(N�4m=(2m+1)):

ii) if additionally Condition 5.5 is satis�ed, then

supf2F

�
E

�


 bf � f



2
L2(�2)

��
= O((2 logN=N2)

2m=(2m+1)
):

Proof. From Corollary 5.2, we show thatX
(j;k)2J

E

��
�(:)(�j;k;u; �j;k;u)� �j;k;u

�2�
+
X

(j;k)=2J

�2j;k;u; (5.2.25)
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where �j;k;u is given by (5:2:12).

By (5:2:5) ; the estimate the second term of (5:2:25) is

sup
f2F

8<: X
(j;k)2J

�2j;k;u

9=; = O
�
N4(��1)(m+1=2�1=(p^2))� (5.2.26)

= O
�
N�4m(2m+1)� :

Further, by (5:2:22) the estimate for the �rst terms of (5:2:25):X
(j;k)2J

E

��
�(:)(�j;k;u; �j;k;u)� �j;k;u

�2�
(5.2.27)

� C
X

(j;k)2J

�
(�j;k;u _ �N)2

�
�j;k;u

�j;k;u _ �N
+ 1

�
'

�
�j;k;u

�j;k;u _ �N

�
+min

�
�2j;k;u; �

2
j;k;u

��
:

i) Choose an integer j0 such that 2j0 � N2=(2m+1), and let

�j;k;u =

(
0; if j � j0;

(�j;k;u _ �N)
p
K(j � j0), if j > j0;

for any �xed K > log 4: ThenX
(j;k)2J

�
(�j;k;u _ �N)2

�
�j;k;u

�j;k;u _ �N
+ 1

�
'

�
�j;k;u

�j;k;u _ �N

��
(5.2.28)

= O(2j0N�2) +
X
j>j0

O
�
N�22j

p
K(j � j0)e

�K(j�j0)=2
�

= O
�
N�4m=(2m+1)�+O

 
N�4m=(2m+1)

X
j>j0

p
K(j � j0)2

(j�j0)(1�K= log 4)

!
= O

�
N�4m=(2m+1)� ;

with ep = minfp; 2g; we obtain by Jensen�s inequality 
2�j
X
k

���j;k;u��ep
!1=ep

�
 
2�j
X
k

���j;k;u��p
!1=p

+O
�
2�j(m+1=2)

�
;

which implies thatX
k

min
�
�2j;k;u; �

2
j;k;u

	
� �2�epj;k;u

X
k

���j;k;u��ep
= O

�
N�(2�ep)((j � j0)

(2�ep)=22�j(m+1=2�1=ep)ep�
= O

�
N�4m=(2m+1)(j � j0)

(2�ep)=22�(j�j0)(m+1=2�1=ep)ep� ;
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hold uniformly in f 2 F ; j > j0: Hence,

sup
f2F

(X
j>j0

X
k

min
�
�2j;k;u; �

2
j;k;u

	)
= O

�
N�4m=(2m+1)� ; (5.2.29)

ii) We have, according to Condition 5.5 (i), thatX
(j;k)2J

�
(�j;k;u _ �N)2

�
�j;k;u

�j;k;u _ �N
+ 1

�
'

�
�j;k;u

�j;k;u _ �N

��
= O

�
N�4m=(2m+1)� : (5.2.30)

Let j� be such that 2j� = (N2=2 logN)
1=(2m+1)

: Then we obtain, analogously to the above

calculations, thatX
j�j�

X
k

min
�
�2j;k;u; �

2
j;k;u

	
= O

�
2j�N�22 logN

�
= O

��
2 logN=N2

�2m=(2m+1)�
;

and

X
j>j�

X
k

min
�
�2j;k;u; �

2
j;k;u

	
= O

 �
2 logN=N2

�(2�ep)=2X
j>j�

X
k

���j;k;u��ep
!

(5.2.31)

= O
��
2 logN=N2

�(2�ep)=2
2�j�(m+1=2�1=ep)ep�

= O
��
2 logN=N2

�(2�ep)=2
2j� (logN=N)ep=2�

= O
��
2 logN=N2

�2m=(2m+1)�
:

5.2.4 Adaptive threshold choice

Although the results of Theorem 5.3 are certainly of some theoretical interest, in particular they

are not helpful for practical application. The optimal as well as the long-threshlods depend on a

priory assumptions on the set F , or on f itself via the variances of the empirical wavelet coe¢ cients,
respectively (see Neumann (1996)).

To make the method applicable, it is necessary to �nd some completely data-driven rule for the

thresholds, which works well over an as wide as possible range of smoothness classes. In analogy to

(5:2:23) and (5:2:24) we obtain adaptive thresholds as

b�j;k;u = b�j;k;up2 log (]J ); (5.2.32)
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and b�j;k;u = b�j;k;up2 log((]J ) =2l); (5.2.33)

where b�2j;k;u as an estimate of varne�j;k;uo for all levels j = j(N) with 2j � 1: A su¢ cient condition

for random thresholds, which ensures the desired rate for the estimator, is the following one.

Condition 5.6 i)
P

(j;k)2J P
�b�j;k;u < j�Nj (�j;k;u _ �N)p2 log (C (]J ))� = O(N2�) for any C >

0; � < 1
2m+1

and �N �! 1:

ii)
P

(j;k)2J P
�b�j;k;u < DN�1p2 logN

�
= O(N�4m=(2m+1)) for any D <1:

Let ef(!) = Z
�2

jbNj�1w(! � �=bN)IN(�)d�;

be a kernel estimator with nonrandom bandwidth bN based on the tapered periodogram IN(�):

Lemma 5.2 Assume Conditions 5.1 through 5.4 holds and let ef(!) � C > 0 for all ! 2 �2: Then

i) if m > 1=p and bN = O(N1��) for any � > 0; then

P
�
jbNj f (!) � ef(!) � D for all ! 2 �2

�
= 1�O

�
N�4� ;

holds uniformly in F for some �N �! 1 and D <1:

ii) if bN = O(N ��1) and b�1N = O(N1��) for any � < 1
2m+1

and � > 0; then

a)
P

(j;k)2J P
� ef(!) � jbNj f (!)� = O (N2�) ; for any ! 2 supp(	j;k;u)

b) P
� ef(!) > D

�
= O (N�4) holds uniformly in F for ! 2 �2; bN �! 1 and D <1:

Proof. the proof is similarly as that in Neumann (1996).
The performance of the resulting estimator

bbf(!) =X
k2�l

e�l;k�l;k(!) + 3X
u=1

X
j�l

X
k2�j

�(:)(e�j;k;u; b�j;k;u)	j;k;u(!);
is described in the following theorem

Theorem 5.4 Assume the Conditions 5.1 through 5.4 and 5.6 holds. Then

sup
f2F

 
E

(



bbf � f





2
L2(�2)

)!
= O(

�
2 logN=N2

�2m=(2m+1)
):
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Proof. Using the monotonicity of �(:)(e�j;k;u; :) in the second argument we get, with �
(l)
j;k;u =

j�Nj (�j;k;u _ �N)
p
2 log (C (]J )) and �(h)j;k;u = DN�1p2 logN; that�

�(:)(e�j;k;u; b�j;k;u)� �j;k;u

�2

�

8>>>><>>>>:

�e�j;k;u � �j;k;u

�2
+
�
�(:)(e�j;k;u; �(l)j;k;u)� �j;k;u

�2
; if b�j;k;u < �

(l)
j;k;u;�

�(:)(e�j;k;u; �(l)j;k;u)� �j;k;u

�2
+
�
�(:)(e�j;k;u; �(h)j;k;u)� �j;k;u

�2
; if �(l)j;k;u < b�j;k;u < �

(h)
j;k;u;�

�(:)(e�j;k;u; �(h)j;k;u)� �j;k;u

�2
+
�
�j;k;u

�2
; if b�j;k;u > �

(h)
j;k;u;

which implies

E

(



bbf � f





2
L2(�2)

)
�

X
k

E
�
(e�l;k � �l;k)

2	+ X
(j;k)2J

E

��
�(:)(e�j;k;u; �(l)j;k;u)� �j;k;u

�2�

+
X

(j;k)2J

E

��
�(:)(e�j;k;u; �(h)j;k;u)� �j;k;u

�2�

+
X

(j;k)2J

E

�
1�b�j;k;u<�(l)j;k;u�

�e�j;k;u � �j;k;u

��2
+
X

(j;k)2J

P
�b�j;k;u > �

(h)
j;k;u

�
�2j;k;u +

X
(j;k)=2J

�2j;k;u

= T1 + :::+ T6:

Since both thresholding schemes,
�
�
(l)
j;k;u

�
and

�
�
(h)
j;k;u

�
; satisfy Condition 5.5, we obtain by (ii)

of Theorem 5.3 that

T1 + T2 + T3 + T6 = O(
�
2 logN=N2

�2m=(2m+1)
):

Using Hölder�s inequality we obtain by (5:2:16) that

T4 <
X

(j;k)2J

�
P
�b�j;k;u > �

(l)
j;k;u

��1��
E

����e�j;k;u � �j;k;u

���2=���
= O(N�2)

X
(j;k)2J

�
P
�b�j;k;u > �

(l)
j;k;u

��1��
= O(N�2)

X
(j;k)2J

�
P
�b�j;k;u > �

(l)
j;k;u

��1��
(]J )�

= O(N�2N2�(1��)N2�)

= O(N�4m=(2m+1));
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holds, if 0 < � � (1=(2m+ 1)� �) = (1� �) : Finally, we obviously have that

T5 = O(N�4m=(2m+1)):

5.3 Wavelet-thresholding for bispectrum estimation

In this section we propose a wavelet-thresholding estimator of the bispectra for a wide class of

stationary random �elds. Like one dimensional case, we show that this estimator reaches minimax

rate on Sobolev spaces, which is not attained by linear (kernel or spiline ) estimators whenever a

certain amount of inhomogeneity in the smoothness of the bispectrum is present.

5.3.1 Wavelet estimator

Let (X(t))t2Z2 be a stationary random �elds with bispectrum de�ned as

f3(!1;!2) =
1

(2�)4

X
h1;h22Z2

C3(h1;h2)e
�i(h1:!1+h2:!2); (5.3.1)

A naive estimator of f3(!1;!2) is the tapered biperiodogram:

IN(!1;!2) =
1

(2�)4HT
3

dN(!1)dN(!2)dN(�!1 � !2); (5.3.2)

where HT
3 =

PN�1
t=0

Q3
i=1 hi(

t
N
); hi; i = 1; 2; 3; are the taper functions. It is well known that, under

quite general assumptions, IN(!1;!2) is asymptotically unbiased for f3(!1;!2) and that the use of

a smooth data tapers hi; 1 � i � 3, reduces the �nite sample bias of the biperiodogram. However
the biperiodogram is anticonsistent: this variance is proportional to the sample size N = (N;N).

In order to ensure consistency, kernel methods use adequate Kernels with well chosen bandwidth to

smooth the biperiodogram. Alternatively, we attempt to construct wavelet-thresholding estimator

of the bispectrum, which outperform linear traditional ones.

More precisely, we will consider the following model:

IN(!1;!2) = f3(!1;!2) + eN(!1;!2): (5.3.3)

Unlike the traditional one dimensional model in wavelet estimation the errors, eN in this model is

not Gaussian nor i.i.d.
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For f3 2 eL2(�4) we have the representation
f3(!1;!2) =

X
(k1;k2)2�2l

�l;k1;k2�l;k1;k2(!1;!2) +
7X
u=1

X
j�l

X
(k1;k2)2�2j

�j;k1;k2;u	j;k1;k2;u(!1;!2):

In this section, we show that wavelet-thresholding estimators of bispectra f3(!1;!2), attain

near-optimal minimax rate of convergence in the two dimensional Sobolev ball

Wm;p(C) =

(
kfkLp(�2) +





�mf�xm1






Lp(�4)

+





�mf�xm2






Lp(�4)

� C

)
:

Such an estimator is obtained by using a four-dimensional wavelet decomposition of the tapered

biperiodogram, threshold the obtained empirical wavelet coe¢ cients and then reconstruct the es-

timator from the thresholded coe¢ cients.

The empirical wavelet-coe¢ cient of the bispectra are:

e�l;k1;k2 =

Z
�2

Z
�2

IN(!1;!2)�l;k1;k2(!1;!2)d!1d!2;

e�j;k1;k2;u =

Z
�2

Z
�2

IN(!1;!2)	j;k1;k2;u(!1;!2)d!1d!2:

So the wavelet estimator is

bf3(!1;!2) = X
(k1;k2)2�2l

e�l;k1;k2�l;k1;k2(!1;!2) + 7X
u=1

X
j�l

X
(k1;k2)2�2j

�(e�j;k1;k2;u;�N)	j;k1;k2;u(!1;!2);
where �(:) denotes soft or hard-thresholding and the threshold value �N > 0:

Further, we denote by 
j;k1;k2 one of the coe¢ cients �j;k1;k2, �j;k1;k2;u; by e
j;k1;k2 one of the
coe¢ cients e�j;k1;k2 ; e�j;k1;k2;u and the variance of these components will be denoted by �j;k1;k2 ; and
by 'j;k1;k2 the associated wavelet basis function. We denote also by 


r;i
j;k1;k2

the real and imaginary

parts of 
j;k1;k2 and similarly for e
r;ij;k1;k2 : The variance of these components will be denoted bye�r;ij;k1;k2 :
5.3.2 The minimaxity of the estimator

Let

J� : = J � (N) = fl � j; 2j � N1��; � > 0g:
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where (1� �) r(m; p) � m
m+1

; r(m; p) = m+ 1 + 2ep and ep = min(p; 2):
By Conditions 5.1-5.4 the problem in model (5:3:3) is transferred to the following Gaussian

regression

�r;ij;k1;k2 = 
r;ij;k1;k2 + e�r;ij;k1;k2"j;k1;k2 ; j 2 J�;k1;k2 2 �2j ; (5.3.4)

where "j;k1;k2 � N (0; 1) are i.i.d. The near-minimaxity of the estimator is based on estimation of
the third order cumulants (the empirical wavelet coe¢ cients of the biperiodogram). Thus, similar

results have been obtained for the estimation of spectrum.

Proposition 5.2 For any � > 0; let J�;� = fl � j; 2j � N1��; 2j � N2�g and assume Conditions
5.1 through 5.4 holds. Then�����cum

 e
r;ij;k1;k2 � 
r;ij;k1;k2e�r;ij;k1;k2
!����� � (p!)3+3
 (K1N)

�2�(p�2) ;

for appropriate K1 and � > 0; p � 3:

Proof. the proof is similarly as that in Theorem 1 in Touati and Pesquet (2002).

Theorem 5.5 Suppose that Conditions 5.1 through 5.4 holds and the threshold satis�es

e�r;ij;k1;k2 [2 log(] (J�))]1=2 � �Nj;k1;k2 � KN�1
p
2 log(N);

on J�, where K is a constant. Then,

sup
f32Wm;p(C)

�
E

�


 bf3 � f3




2
L2(�4)

��
= O

 �
2 ln(N)

N2

� m
m+1

!
:

Proof. Using Proposition 5.2 and Theorem 1 in Touati and Pesquet (2002).

5.3.3 Further improvement of the estimator

The estimator bf3 reaches the desired near-optimal rate �2 log(N)N2

� m
m+1

; but there are two obvious

possibilities to improve it further for �nite sample sizes.

First, in contrast to the usual kernel estimator of f3, wavelet estimators are not translation-

invariant. If we shift the biperiodogram by a certain amount (s1; s2) ; apply non linear thresholding

and shift the estimate back by (s1; s2), this new estimator bf (s1;s2)3 will di¤er from the unsifted variantbf3 in most cases. The only shift lengths which do not alter the estimator bf3 are multiples of the
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shift length of the wavelet basis at the coarsest scale, i.e. (2�)4

2l
. On the other hand, there is no

reason to assume that any of the possible shifts are always superior to the other ones. To weaken

the e¤ect of not being stationary wavelet transform and de�ne, with shifts si;j = (si; sj) where

si =
i(2�)4

2lI
; i = 0; :::; I � 1; the new estimator

bf �3 (!1;!2) = 1

I2

I�1X
i;j=0

bf (si;j)3 (!1;!2);

then, we obtain by Jensen�s inequality that




 bf �3 � f3




2
Lp(�4)

� 1

I2

I�1X
i;j=0




 bf �3 � f3




2
Lp(�4)

; (5.3.5)

where strict inequality holds if bf (si;j)3 6= bf(si0 ;j0)3 for any (i; j) 6= (i0; j0) : In particular bf �3 also satisfy
the result in theorem 5.5. Moreover, in view of the possibly strict inequality in (5:3:5) we hope to

get a signi�cant improvement for �nite sample sizes.

Secondly, note that the bispectrum f3 satis�es the symmetries below, whereas they are not

satis�ed by bf �3 if compactly supported wavelets di¤erent from the Haar wavelets are used

f3(!1;!2) = f3(�!1;�!2) = f3(!2;!1) = f3(�(!1 + !2);!2); (5.3.6)

In order to construct an estimator which satis�es the symmetries above we take the mean of eight

symmetric nearly optimal estimators:

bf ��3 (!1;!2) =
1

8
[ bf �3 (!1;!2) + bf �3 (!2;!1) + bf �3 (�!1;�!2) + bf �3 (�!2;�!1)
+ bf �3 (�(!1 + !2);!1) + bf �3 (�(!1 + !2);!2)
+ bf �3 (!1 + !2;�!1) + bf �3 (!1 + !2;�!2)]:

Hence, we have again by Jensen�s inequality, and the fact that f3 satis�es (5:3:6), that the new

estimator bf ��3 satis�es 


 bf ��3 � f3




2
L2(�4)

�



 bf �3 � f3




2
L2(�4)

;

where strict inequality holds if two of the eight estimators above are di¤erent.



Conclusion

In accordance with the stated objectives in the introduction, the study that we have conducted in

this thesis has allowed us to contribute in enriching the approach of spectral analysis for random

�elds for a domain that was widely required in all types of applications in physics, array processing,

seismic data processing and from multichannel EEG digital signal processing. This approach which

was also the extension of spectral analysis of time series, has been studied by several authors

including Rosenblatt, Guyon, Robinson and more.

This work is based on two types of analysis: Fourier analysis (Part I) and wavelet analysis

(Part II). It is helpful to recall that we are interested in the structures probabilistic and inference

statistics for random �elds. Previously (Part I), we had to treat models which are capable of taking

into account the non Gaussianity and spatiality dependence, and more speci�cally we describe the

spatial subdiagonal bilinear process with respect to its transfer functions, and we give conditions

ensuring the existence of regular second order stationary and ergodic solutions. Then we consider

the third order structure and Yule-Walker equations (chapter 1).

In addition we presented (Chapter 2) estimation of spectral density for nonlinear models and

upon which our study is to answer one of the basic problems of the analysis of this models is

that the information contained in the spectrum is insu¢ cient. We have considered the bispectral

and trispectral density estimate and we have studied the asymptotic normality, then we have pro-

posed the higher order spectral density estimation. This study was strengthened by the parameter

estimation which is based on a functional of the spectrum and bispectrum, in Chapter 3.

During the last decade, wavelet analysis has expanded in di¤erent �elds of science. In order to

be applied this analysis to the discrete random �elds taking into account the mathematical aspect

of our study, we have developed an approach to treat the wavelet transform; it also seems important

to study its structure and probabilistic inference. Finally, in addition to theoretical developments

that we have proposed in this thesis, an interesting future research direction would be to develop

this study in many �elds and under several conditions especially applied to di¤erent �elds of science

110



111

which should deserve attention.



Appendix 2.1

Let X = [X(i; j)] be an (p1 + 1)(p2 + 1) matrix of observation on spatial series in plane

X =

0BBBB@
X(i; j) X(i; j � 1) � � � X(i; j � p2)

X(i� 1; j) X(i� 1; j � 1) � � � X(i� 1; j � p2)
...

...
...

X(i� p1; j) X(i� p1; j � 1) � � � X(i� p1; j � p2)

1CCCCA :

We let X(i; j) = vec(X)0 denote the P � 1 vectorisation of the matrix X with P = (p1+1)(p2+1).
Then

X(i; j) =
h
X i(i; j) X i�1(i; j) � � � X i�p1(i; j)

i0
where X i�k(i; j) = (X(i� k; j); X(i� k; j � 1); :::; X(i� k; j � p2))0; k = 0; :::; p1: These imply that
in two dimensions, SSBLd(p;q;P;Q) models (1:3:2) can write in matrix form as

X(i; j) = A1X(i� 1; j) + A2X(i; j � 1) +Be(i; j)

+

Q1X
k1=1

Q2X
k2=0

h
C
(1)
k1k2

X(i; j � 1) +D(1)
k1k2

X(i� 1; j)
i
ei�k1;j�k2

+

Q2X
k2=1

h
C
(2)
0k2
X(i; j � 1) +D(2)

0k2
X(i� 1; j)

i
ei;j�k2

where X(i � 1; j) =
h
X i�1(i; j) � � � X i�p1(i; j) 0

i0
; X(i; j � 1) =

h
Xj�1(i; j) 0 � � � 0

i0
and

A1 =

266664
�1 �2 � � � �p1 0

1 0 0
...

. . .
...

...

0 � � � 0 1 0

377775
(p1+1)�(p1+1)

; A2 =

266664
�0 0 � � � 0
0 0 0
...

. . .
...

0 � � � 0 0

377775
(p1+1)�(p1+1)

;
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�0 =

266664
a01 a02 � � � a0p2 0

1 0 0
...

. . .
...

...

0 � � � 0 1 0

377775
(p2+1)�(p2+1)

;�k =

266664
ak0 a01 � � � akp2

0 0 0
...

. . .
...

0 � � � 0 0

377775
(p2+1)�(p2+1)

;

k = 1; :::; p1

0 =

2664
0 � � � 0
...
. . .

...

0 � � � 0

3775
(p2+1)�(p2+1)

;1 =

2664
1 � � � 1
...
. . .

...

1 � � � 1

3775
(p2+1)�(p2+1)

and

B =

266664
B0 B1 � � � Bp1

0 0 0
...

. . .
...

0 � � � 0 0

377775
(p1+1)�(p1+1)

;

B0 =

266664
1 b01 � � � b0p2

0 0 0
...

. . .
...

0 � � � 0 0

377775
(p2+1)�(p2+1)

; Bk =

266664
bk0 b01 � � � bkp2

0 0 0
...

. . .
...

0 � � � 0 0

377775
(p2+1)�(p2+1)

; k = 1; :::; p1

C
(1)
k1k2

=

266664
�
(k1k2)
0 0 � � � 0

0 0
...

. . .
...

0 � � � 0

377775
(p1+1)�(p1+1)

; C
(2)
0k2
=

266664
�
(0k2)
0 0 � � � 0

0 0
...

. . .
...

0 � � � 0

377775
(p1+1)�(p1+1)

;

�
(k1k2)
0 =

266664
c
(k1k2)
01 � � � c

(k1k2)
0p2

0

0 � � � 0 0
...

. . .
...

0 � � � 0 0

377775
(p2+1)�(p2+1)

;�
(0k2)
0 =

266664
c
(0k2)
01 � � � c

(0k2)
0p2

0

0 � � � 0 0
...

. . .
...

0 � � � 0 0

377775
(p2+1)�(p2+1)

;
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and

D
(1)
k1k2

=

266664
�
(k1k2)
1 �

(k1k2)
2 � � � �

(k1k2)
p1 0

0 0 0
...

. . .
...

...

0 � � � 0 0 0

377775
(p1+1)�(p1+1)

;

D
(2)
0k2

=

266664
�
(0k2)
1 �

(0k2)
2 � � � �

(0k2)
p1 0

0 0 0
...

. . .
...

...

0 � � � 0 0 0

377775
(p1+1)�(p1+1)

;

�
(k1k2)
i =

266664
c
(k1k2)
i0 c

(k1k2)
i1 � � � c

(k1k2)
ip2

0 0 0
...

. . .
...

0 � � � 0 0

377775
(p2+1)�(p2+1)

;

�
(0k2)
i =

266664
c
(0k2)
i0 c

(0k2)
i1 � � � c

(0k2)
ip2

0 0 0
...

. . .
...

0 � � � 0 0

377775
(p2+1)�(p2+1)

;

i = 1; :::; p1; and we can write in the form

X (t) = B(t)e (t) +A(t)X (t� e1) + B(t)X (t� e2) :

i.e.

X(i; j) = B(i; j)e(i; j) +A(i; j)X(i� 1; j) + B(i; j)X(i; j � 1)

where

A(t) =

"
A1 +

Q2X
k2=1

C
(1)
0k2
ei;j�k2 +

Q1X
k1=1

Q2X
k2=0

C
(2)
k1k2

ei�k1;j�k2

#

B(t) =

"
A2 +

Q2X
k2=1

D
(1)
0k2
ei;j�k2 +

Q1X
k1=1

Q2X
k2=0

D
(2)
k1k2

ei�k1;j�k2

#



Appendix 2.2

Theorem 5.6 Let (e (t))t2Z2 be a strictly stationary ergodic random �eld and let (X (t))t2Z2 be as

de�ned in (4:4:2) : Assume that A(t) and B(t) are spectral radius diagonable matrices with
kP�1A(t)Pk1 = C (t) ; kP�1B(t)Pk1 = D (t). Assume further that

supE flog (C (t))g < 0 and supE flog (D (t))g < 0:

Then for every t = (i; j) 2 Z2 and r = (r1; r2)X
r1+r2�1

T r1;r2 (i; j)Be(i� r1; j � r2);

converges absolutely a.s., where the transition matrix T r1;r2(i; j) is de�ned as follows:

1. T 0;1 (i; j) = A (i; j) and T 1;0 (i; j) = B (i; j)

2. T r1;r2 (i; j) = A (i; j)T r1;r2�1 (i; j � 1) + B (i; j)T r1�1;r2 (i� 1; j)

3. T 0;0 (i; j) = Id�d; and

4. T�r1;r2 (i; j) = T r1;�r2 (i; j) = Od�d:

Further, if

X (i; j) =
1X

r1+r2=0

T r1;r2 (i; j)Be(i� r1; j � r2); (2.3.3)

then (X (t))t2Z2 is a strictly stationary process satisfying (4:4:2) : Conversely, if (X (t))t2Z2 is

a strictly stationary process satisfying (4:4:2) ; for some strictly stationary and ergodic sequence

(e (t))t2Z2 with supE flog (C (t))g < 0 and supE flog (D (t))g < 0: Then X (i; j) ; satisfying (4:4:2) :

Proof. The proof is similar as that of Theorem 2 in Chanda (1991).
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Abstract 

 

This thesis is devoted mainly to the study of spectral analysis of random fields, which  

based on the Fourier analysis and wavelet analysis. Among the numerous random fields in the 

literature, we have chosen to explore a particular class of models which are capable of taking into 

account the non Gaussianity character and spatiality behavior. Principally we study the L₂-

structure of some SBL models and we establish the spectral density estimation, then we obtained 

the bispectral and higher order spectral density estimation in which these results can be used to 

discriminate between linear and nonlinear models. 

We show also that the estimator of the parameter obtained as minimum of a particular 

quadratic form which depends on the second and third spectra is consistent and asymptotically 

normal under certain assumptions. 

However, In the second part of this thesis, we are interested to examine the fundamental 

concepts needed in the study of  the wavelet transform and random fields. Finally, we consider 

the nonlinear wavelet estimators of the spectral density and we continued investing in estimation 

by proposing wavelet-thresholding estimator of the bispectrum.  
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  صــــالملخ 
 

 فورييه أساسا على تحليل، والذي يرتبط عشوائيةلا للحقول التحليل الطيفي دراسة أساسا إلى ھذه ا	طروحة تكرس

من  فئة معينة  المقترحـــة في المجــــال ، اخترنا تقصي العشوائية   العديد  من  الحقول من بين. المويجاتتحليل و

،  المكاني والسلوك  non gaussianité) ( غير جوسيانيال الطابع بعين ا<عتبارا	خذ  التي ھي قادرة على النماذج

 تقدير م الحصول عليث ، الطيفية الكثافة تقديركذا  و   SBL بعض النماذجل ا<حتمالي ھيكلة السادرحيث نقوم أساسا ب

  .وغير الخطية النماذج الخطية التمييز بين فيخدامھم والتي يمكن استالكثافة الطيفية الثنائية  و من الدرجة العليا 

 شكللالحد ا	دنى  من خSل   الحصول عليه تم  الذي تغيرلما ريقدت أنب في ھذه ا	طروحة  أيضا نعرضكما 

 في ظل افتراضاتطبيعي  بشكل مقارب ثابت و ،الثنائية والثSثية طيافا	 عتمد علىذي يال الدرجة الثانية و من خاص

  .معينة

 المويجات تحويل دراسة الSزمة في المفاھيم ا	ساسية لدراسة ھذه ا	طروحة الجزء الثاني من في مھتموننحن 

 دراسة الاصلنا و و  لمويجاتبطريقة ا لكثافة الطيفيةل  خطيةر غيال  راتيدتق في ا	خير نرى، حيث عشوائيةال حقولالو

 . لكثافة الطيفية الثنائيةل  لعتبةا تقديرباقتراح 

 

: الكـلمـــــات المفتاحيـــــة  

 فورييه تحليل -

 المويجات تحليل -

 عشوائية حقول -

 الكثافة الطيفية -

  SBL النماذج -

  

 



 

Résumé 

       Cette thèse est consacrée essentiellement à l'étude de la densité spectrale dans les champs 

aléatoires non linéaires, qui basé à l'analyse de Fourier et l'analyse en ondelettes. Parmi les 

nombreux domaines aléatoires dans la littérature, nous avons choisi d'explorer une classe 

particulière de modèles qui sont capables de prendre en compte le caractère de non gaussianité et 

le comportement de spatialité. Principalement nous avons étudié la structure- L₂ de certains 

modèles SBL et nous avons établi  l'estimation de la densité spectrale, alors la fonction de la 

densité bispectrale et la densité spectrale d'ordre supérieur sont obtenues dans lesquels ces 

résultats peuvent être utilisés pour distinguer entre les modèles linéaires et les modèles non 

linéaires. 

Nous avons également montré que l'estimateur du paramètre obtenu en moins d'une forme 

particulièrement  quadratique qui dépend du spectre de deuxième et troisième ordre est consistent  

et asymptotiquement normal sous certaines hypothèses. 

Cependant, dans la deuxième partie de cette thèse, nous nous intéressons à examiner les 

concepts fondamentaux nécessaires à l’étude de la transformée en ondelettes et les champs 

aléatoires. Enfin, nous avons considéré  les estimateurs  non linéaires de la densité spectrale  par  

méthode  d’ondelettes,  et nous avons continué l’ investissement dans l’estimation en proposant 

l’estimateur de seuillage du bispectre par la même méthode.  

Mots clés  

− L’analyse de Fourier 

− L’analyse  en ondelettes 

− Champs aléatoires 

− La densité spectrale 

− Les modèles SBL   

 

 

 


