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UNIVERSITÉ CONSTANTINE 1
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General introduction

The subject of fractional calculus is, in a certain sense, as old as classical calculus

[64] as we know it today: Its origins date back to the end of the seventeenth cen-

tury, also the time when Newton and Leibniz developed the theory of differential

and integral calculus. Namely, Leibniz introduced the symbol
dnf

dtn
to denote the

nth derivative of a function f in a letter to de l’Hospital (with the assumption

that n ∈ N), de l’Hospital replied: “What does
dnf

dtn
mean if n = 1

2
?”

Leibniz wrote prophetically, “Thus it follows that d
1
2x will be equal to x 2

√
dx : x,

an apparent paradox, from which one day useful consequences will be drawn.”

The fact that de l’Hospital specifically asked for n = 1
2

(i.e. a fraction or rational

number), gave rise to the name of this part of mathematics. But it was not until

the first half of the 19th century that the theory of generalized operators achieved

a level in its development suitable as a point of departure for the modern mathe-

matician. By then the theory had been extended to include operators Dα, where

α could be rational or irrational, positive or negative, real or complex. Thus the

name fractional calculus became somewhat of a misnomer. A better description

might be differentiation and integration to an arbitrary order. However, we shall

adhere to tradition and refer to this theory as the fractional calculus. It was Li-

ouville [47] who expanded functions in series of exponentials and defined the αth

derivative of such a series by operating term-by-term as though α were a positive

integer. Riemann [63] proposed a different definition that involved a definite in-

tegral and was applicable to power series with non-integer exponents. Evidently

it was Grünwald and Krug who first unified the results of Liouville and Riemann.

Grünwald [33], disturbed by the restrictions of Liouville’s approach, adopted as

his starting point the definition of a derivative as the limit of a difference quo-

tient and arrived at definite-integral formulas for the αth derivative. Krug [40],

working through Cauchy’s integral formula for ordinary derivatives, showed that

Riemann’s definite integral had to be interpreted as having a finite lower limit

4



General introduction 5

while Liouville’s definition, in which no distinguishable lower limit appeared, cor-

responded to a lower limit −∞. These theoretical beginnings was accomplished

by a parallel development of the applications of the fractional calculus to various

problems. The first of these was the discovery by Abel [5] in 1823 that the solution

of the integral equation for the tautochrone could be accomplished via an integral

transform, which, benefits from being written as a semi-derivative. An important

next step in the application of fractional derivatives was the operational calcu-

lus of Heaviside, developed to solve certain problems of electromagnetic theory.

Namely Heaviside [37] introduced fractional differentiation in his investigation of

transmission line theory; and this concept has been extended by Gemant [32] for

use in problems of elasticity.

Although the birthday of fractional calculus date back to the end of the seven-

teenth century and the first steps of the theory itself and some applications traced

back to the first half of the nineteenth century, the subject only really came to life

over the last few decades. A particular feature is that fractional derivatives provide

an excellent instrument for the description of memory and hereditary properties of

various materials and processes. This is the main advantage of fractional models in

comparison with classical integer-order models, in which such effects are in fact ne-

glected, another feature is that engineers and scientists have developed new models

that involve fractional differential equations in mechanics (theory of viscoelasticity

and viscoplasticity), bio-chemistry (modelling of polymers and proteins), electri-

cal engineering (transmission of ultrasound waves), medicine (modelling of human

tissue under mechanical loads), etc. The first book which was entirely devoted to

a systematic presentation of the ideas, methods and applications of the fractional

calculus is the book written by K. U. Oldharn and J. Spanier [60].

The first conference devoted to the topic of fractional calculus took place in 1974,

in New Haven, USA. Circumstances have changed considerably since then. in

the last decades the general interest in such a tool has experienced a continuing

growth and at present many conferences, symposia, workshops, or special sessions

are found, as well as papers and special issues in recognized journals, devoted to

the theoretical and application aspects of fractional calculus.

On the other hand, in recent years, many scientists have become aware of the

potential use of chaotic dynamics in engineering applications, such as electrical

engineering, information processing, secure communications, etc...
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With the development of the fractional-order algorithm, the dynamics of fractional-

order systems have received much attention. Studying chaos in fractional-order

dynamical systems is an interesting topic as well. It is well known that chaos

cannot occur in continuous integer order systems of total order less than three due

to the Poincaré-Bendixon theorem. It has been shown that many fractional-order

dynamical systems behave chaotically with total order less then three. The thesis

consists of two parts.

The first part is devoted to the fractional calculus and it contains two chapters

(chapter 1 and chapter 2).

In chapter 1 some preliminary concepts are introduced, including the Laplace

transform and their basic properties, special functions (the gamma and the beta

function, the Mitag-Leffler function) which play the most important role in the

theory of fractional derivatives and fractional differential equations.

In chapter 2 three approaches (Riemann-Liouville, Grünwald-Litnicov and Caputo

approaches) to the generalization of the notions of derivation and integration are

considered. In the end of this chapter some methods of treatment of the fractional

differential equations are introduced including numerical algorithm. The second

part is devoted to the concept of fractional-order dynamical systems and applica-

tions, it is divided into two chapters (chapter 3 and chapter 4).

In chapter 3 a generalization of notion of dynamical systems (Fractional-order

dynamical systems) is considered including stability theory, periodic solutions, Bi-

furcations and chaos, it is shown that all most classical criterion and tools for the

study of dynamical systems have been reformulated in a general sitting and used

for the study of fractional-order dynamical systems.

In chapter 4 we present our three papers [1–3] given as applications of the mathe-

matical tools introduced in the previous chapters. The thesis is ended by a general

conclusion and perspectives.

More than 80 references are listed and cited in this thesis, even if it cannot be a

complete bibliography for this area of interest. We can find many other references

related to this topic.



Part I

Fractional calculus
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Chapter 1

Preliminaries

In this chapter we, briefly, introduce some necessary but relatively simple math-

ematical tools that will arise in the study of the concepts of fractional calculus.

These are the Laplace transform, the Gamma function, the Beta function and the

Mittag-Leffler Function.

1.1 The Laplace transform

“What we know is not much. What we do not know is immense.”

Pierre-Simon Laplace

The Laplace transform is a powerful tool that we shall exploit in our investigation

of fractional differential equations. Our purpose in this section is to present the

definition and some basic properties of the Laplace transform then we derive some

transforms and inverse transforms of functions that arise frequently in this study.

We denote the Laplace transform of a function f(t) by the symbol L{f(t)}, or

when convenient, by F (s). More detailed information may be found in [29, 30].

The Laplace transform of a function f(t) of a real variable t ∈ R+ is formally

defined by

L{f(t)}(s) = F (s) =

∫ ∞
0

e−stf(t)dt, (s ∈ C). (1.1)

If the integral in (1.1) is convergent at s0 ∈ C, then it converges absolutely for

s ∈ C such that Re(s) > Re(s0).

8



Chapter 1. Preliminaries 9

The inverse Laplace transform is given for t ∈ R+ by the formula

L−1{g(s)}(t) =
1

2πi

∫ γ+i∞

γ−i∞
estg(s)ds, (γ = Re(s0)). (1.2)

Obviously, L and L−1 are linear integral operators. The direct and the inverse

Laplace transforms are inverse to each other for “sufficiently good” functions f

and g

L−1L{f} = f and LL−1{g} = g.

1.1.1 Existence conditions for the Laplace transform

Theorem 1.1.

Let f be a continuous or piecewise continuous function in every finite interval

(0, T ). If f(t) is of exponential order eat, then the Laplace transform of f(t) exists

for all s such that Re(s) > a.

Proof.

Suppose that f , is of exponential order eat, then there exists a positive constant

K such that for all t > T

|f(t)| 6 Keat.

We have

∫ ∞
0

e−stf(t)dt

 ≤
∫∞

0
e−st|f(t)|dt,

≤ K
∫∞

0
e−t(s−a)dt =

K

s− a
,

for Re(s) > a.

This complete the proof.



Chapter 1. Preliminaries 10

1.1.2 Basic properties of the Laplace transform

a) Heavisides first shifting property

Theorem 1.2.

For a real constant a we have

L{e−atf(t)}(s) = F (s+ a)

where F (s) = L{f(t)}(s).

Proof.

By definition we have

L{e−atf(t)}(s) =

∫ ∞
0

e−(s+a)tf(t)dt = F (s+ a).

b) Scaling property

For a constant a 6= 0, we have

L{f(at)}(s) =
1

|a|
F
(s
a

)
.

c) The Laplace transform of derivatives

To find the Laplace transform of a derivative, we integrate the expression (1.1) by

parts. Then, we obtain∫ ∞
0

e−stf(t)dt =

[
−f(t)e−st

s

]∞
0

+
1

s

∫ ∞
0

e−stf ′(t)dt.

Evaluating the limits and multiplying by s gives the following

sL{f(t)}(s) = f(0) + L{f ′(t)}(s).

This gives the Laplace transform of f ′(t) as follows

L{f ′(t)}(s) = sL{f(t)}(s)− f(0).
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This can be continued for higher order derivatives (replacing f(t) by f ′(t) in the

above equation ) and gives the following expression for the Laplace transform of

the nth derivative of f(t).

L{f (n)(t)}(s) = snL{f(t)}(s)−
n∑
k=1

sn−kf (k−1)(0). (1.3)

d) Convolution Property

If L{f(t)}(s) = F (s) and L{g(t)}(s) = G(s), then

L{f(t) ∗ g(t)}(s) = F (s)G(s). (1.4)

Or, equivalently,

L−1{F (s)G(s)} = f(t) ∗ g(t),

where f(t) ∗ g(t) is the convolution of f(t) and g(t) defined by the integral

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ)dτ.

1.1.3 The Laplace transform of some usual functions

1. L{1}(s) =
∫∞

0
e−stdt =

1

s
,

2. L{eat}(s) =
∫∞

0
e−(s−a)tdt =

1

s− a
, for s > a

3. L{sin(at)}(s) =
∫∞

0
e−st sin(at)dt =

a

s2 + a2
,

4. L{cos(at)}(s) =
∫∞

0
e−st cos(at)dt =

s

s2 + a2
,

5. L{tn}(s) =
∫∞

0
tne−stdt =

n!

sn+1
.

1.2 Special functions

In this section, we deal with definitions and some basic properties of the special

functions (Gamma, Beta and Mittag-Leffler) these later are essential elements in

our coming chapters.
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1.2.1 Gamma function

One of the important basic functions of the fractional calculus is the Euler’s

Gamma function, which generalizes the factorial n!, and allows n to take also

non-integer and even complex values.

This function plays an important role in the theory of differ-integration. A com-

prehensive definition of Γ(x) is that provided by the Euler limit [60]

Γ(x) = LimN→∞[
N !Nx

x[x+ 1][x+ 2]...[x+N ]
],

But the so-called Euler integral definition:

Γ(x) =

∫ ∞
0

tx−1e−tdt (x > 0), (1.5)

is often more useful, although it is restricted to positive values of x. An integration

by parts applied to the definition (1.5) leads to the recurrence relationship

Γ(x+ 1) = xΓ(x).

Since Γ(1) = 1, this recurrence shows that for a positive integer n, we have

Γ(n+ 1) = nΓ(n) = n[n− 1]Γ(n− 1) = ... = n[n− 1]...2.1.Γ(1) = n!.

Rewritten as

Γ(x− 1) =
Γ(x)

x− 1
. x− 1 > 0

Using this relation, the Euler Gamma function is extended to negative arguments

for which definition (1.5) is inapplicable. The graph of the gamma function is

shown in Figure(1.1).

1.2.2 Beta function

The function that is closely related to the gamma function is the complete beta

function B(x, y). For positive values of the two parameters, x and y, this function

is defined by the Beta integral:

B(x, y) =

∫ 1

0

tx−1[1− t]y−1dt. (x > 0, y > 0) (1.6)
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Figure 1.1: Graphical representation of Euler Gamma function

The beta function B(x, y) is symmetric with respect to its arguments x and y,

that is, B(x, y) = B(y, x).

This follows from (1.6) by the change of variables 1− t = u, that is

B(x, y) =

∫ 1

0

uy−1[1− u]x−1du = B(y, x).

Using the Laplace transform, we can prove that this function is connected with

the Gamma function by the relation

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (x, y /∈ Z−0 )

Clearly this relationship extended the beta function to negative non-integer argu-

ments for which the definition (1.6) is inapplicable.

With help of the Beta function we can establish the following two important rela-

tionships for the Gamma function. The first one is

Γ(x)Γ(1− x) =
π

sin(πx)
, (0 < x < 1),

for example Γ(
1

2
) =
√
π.

The second one is the Legendre formula

Γ(x)Γ(x+
1

2
) =
√
π22x−1Γ(2x), (2x /∈ Z−0 ).
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1.2.3 Mittag-Leffler function

“The mathematicians best work is art, a high perfect art, as daring as the most

secret dreams of imagination, clear and limpid. Mathematical genius and artistic

genius touch one another.”

Gosta Mittag-Leffler

The exponential function ez, plays a very important role in the theory of integer-

order differential equations. Its one-parameter generalization, is the Mittag-Leffler

function defined by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, (z ∈ C; α > 0). (1.7)

This function was introduced by Mittag-Leffler [53, 54], and studied also by Wiman

[80].

Eα(z) is an entire function of z. In particular we have

E1(z) = ez and E2(z) = cosh(
√
z).

Graphical representations of this function for some values of α are shown in fig-

ure(1.2)

Now we shall give some informations about the asymptotic behaviour of this func-

tion [26].

Theorem 1.3.

Let α > 0, r > 0, ϕ ∈ [−π, π], then the following statements hold

a) limr→∞Eα(reiϕ) = 0 if |ϕ| > απ/2.

b) limr→∞|Eα(reiϕ)| =∞ |ϕ| < απ/2.

c) Eα(reiϕ) remains bounded for r →∞ if |ϕ| = απ/2.

The following theorem describe the interconnection between the one-parameter

Mittag-Leffler function and the Laplace transform operation.

Theorem 1.4.

Let α > 0, λ ∈ C and define x(t) = E−α(λtα), then the Laplace transform of x is

given by

Lx(s) =
sα−1

sα + λ
(λ ∈ C; Re(s) > 0; |λs−α| < 1). (1.8)
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Figure 1.2: Graphical representation of the one parameter Mittag-Lefller func-
tion for some value of α.

Proof.

Writing down the series expansion of x(t) in powers of tα gives

x(t) = Eα(−λtα) =
∞∑
k=0

(−λtα)k

Γ (αk + 1)
.

Applying the Laplace transform in a term-wise manner yields

Lx(s) =
∞∑
k=0

L (−λtα)k

Γ (αk + 1)
,

=
1

s

∞∑
k=0

(−λs−α)
k
,

=
sα−1

sα + λ
.

Differentiating (1.8) n times with respect to λ leads to the following relation

L[tαnE(n)(−λtα)](s) =
n!sα−1

(sα + λ)n+1
, (λ ∈ C; Re(s) > 0; |λs−α| < 1). (1.9)
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Now, let us introduce an important theorem called “Final value theorem” which

gives information about the asymptotic behaviour of the function f(t) directly

from his Laplace’s transform F (s).

Theorem 1.5. (Final value theorem)

Let F (s) be the Laplace transform of the function f(t). If all poles of sF (s) are

in the open left-half plane, then

lim
t→∞

f(t) = lim
s→0

sF (s).

Using theorems (1.4 and 1.5) we obtain a statement on the asymptotic behaviour

of the function x(t) = Eα(−λtα) as its argument tends to infinity:

Theorem 1.6.

Let α > 0, r > 0, ϕ ∈ [−π, π] and λ = r exp(iϕ). Define x(t) = Eα(−λtα). Then,

the following two statements hold

a) limt→∞ x(t) = 0 if |ϕ| < απ/2,

b) x(t) is unbounded as t→∞ if |ϕ| > απ/2.

The two-parameter Mittag-Leffler function Eα,β(z), generalizing the one in (1.7),

is defined by the series expansion [62]

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, (z ∈ C; α > 0, β > 0). (1.10)

When β = 1, Eα,β(z) coincides with Eα(z)

Eα,1(z) = Eα(z).

From the definition (1.10) we can get

E1,1(z) =
∞∑
k=0

zk

Γ(k + 1)
=
∞∑
k=0

zk

k!
= ez,

E1,2(z) =
∞∑
k=0

zk

Γ(k + 2)
=
∞∑
k=0

zk

(k + 1)!
=

1

z

∞∑
k=0

zk+1

(k + 1)!
=
ez − 1

z
.
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The hyperbolic sine and cosine are also particular cases of the two-parameter

Mittag-Leffler function:

E2,1(z2) =
∞∑
k=0

z2k

Γ(2k + 1)
=
∞∑
k=0

z2k

(2k)!
= cosh(z),

E2,2(z2) =
∞∑
k=0

z2k

Γ(2k + 2)
=

1

z

∞∑
k=0

z2k+1

(2k + 1)!
=

sinh(z)

z
.

The Mittag-Leffler function satisfies the following differentiation formulas(
d

dz

)n
[zβ−1En,β(λzn)] = zβ−n−1En,β−n(λzn) (n ∈ N; λ ∈ C).



Chapter 2

Fractional integrals and fractional

derivatives

In his discovery of calculus, Leibniz first introduced the idea of a symbolic method

and used the symbol
dny

dxn
= Dny for the nth derivative, where n is a non-negative

integer. L’Hospital asked Leibniz about the possibility that n be a fraction. ’What

if n = 1
2
?’ Leibniz replied: ’It will lead to a paradox.’ But he added prophetically,

’From this apparent paradox, one day useful consequences will be drawn ’.

From this brief historical introduction we can say that fractional calculus grows

out of the classical definitions of the integral and derivative operators, in much the

same way fractional exponents is an outgrowth of exponents with integer value.

The meaning of integer exponents is a repeated multiplication of a numerical

value, this concept can clearly become confused when considering exponents of

non integer value, it is the notation that makes the jump seem obvious. While

one can not imagine the multiplication of a quantity a fractional number of times,

there seems no practical restriction to placing a non-integer into the exponential

position. Similarly, the common formulation for the fractional integral (derivative)

can be derived directly from a traditional expression of the repeated integration

(differentiation) of a function, and provides an interpolation between integer-order

integrals (derivatives).

There are several types of fractional integrals and fractional derivatives. In this

chapter we give definitions and some basic properties of three different types (the

choice has been reduced to those definitions which are related to applications).

18
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2.1 Riemann-Liouville fractional integral

2.1.1 Definition

According to Riemann-Liouville approach the notion of fractional integral of order

α(α > 0) is a natural consequence of the well known formula (usually attributed

to Cauchy) that reduces the calculation of the n-fold integral of a function f(t) to

a single integral of convolution type.

We begin by a review of the n-fold integral of a function f assumed to be continuous

on the interval [a, b], where b > x.

First recalling that if G(x, t) is jointly continuous on [a, b]× [a, b], then we have

∫ x

a

dx1

∫ x1

a

G(x1, t)dt =

∫ x

a

dt

∫ x

t

G(x1, t)dx1. (2.1)

In particular when G(x, t) is a function of a variable t only, that is if G(x, t) ≡ f(t)

then (2.1) can be written as∫ x

a

dx1

∫ x1

a

f(t)dt =

∫ x

a

f(t)dt

∫ x

t

dx1,

=

∫ x

a

(x− t)f(t)dt,

this is the formula of two-fold integral reduced to a single integral. Similar com-

putation gives the following formula of 3-fold integral reduced to a single integral

∫ x

a

dx1

∫ x1

a

dx2

∫ x2

a

f(t)dt =

∫ x

a

(x− t)2

2
f(t)dt.

By induction we deduce the Cauchy formula of n-fold integral

Jna f(x) = aD
−n
x f(x) =

∫ x

a

dx1

∫ x1

a

dx2...

∫ xn−1

a

f(t)dt,

=
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt. x > a, n ∈ N∗
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Using the Gamma function this formula can be rewritten as

Jna f(x) = aD
−n
x f(x) =

1

Γ(n)

∫ x

a

(x− t)n−1f(t)dt. x > a, n ∈ N∗ (2.2)

Since the gamma function is an analytic expansion of the factorial for all positive

real values (section 1.2.1), one can replace n by a real positive number α, in (2.1.1),

then one defines the Riemann-Liouville fractional integral of order α > 0 as follows

Jαa f(x) = RL
a D−αx f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a, α > 0. (2.3)

Example 2.1.

Let f(x) = (x− a)β for a fixed β > −1 and α > 0, we have

Jαa f(x) =
1

Γ(α)

∫ x

a

(x− a)β(x− t)α−1dt.

Using the substitution t = a+ s(x− a) and the Beta function we get

Jαa f(x) =
1

Γ(α)
(x− a)α+β

∫ 1

0

sβ(1− s)α−1ds

=
Γ(β + 1)

Γ(α + β + 1)
(x− a)α+β.

Theorem 2.1.

Let f ∈ L1[a, b] and α > 0, then the integral Jαa f(x) exists for almost every

x ∈ [a, b]. Moreover, the function Jαa f itself is also an element of L1[a, b].

Proof. We have

Jαa f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt =

∫ +∞

−∞
Φ1(x− t)Φ2(t)dt.

where

Φ1(u) =

{
uα−1 for 0 < u ≤ b− a,
0 else,
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and

Φ2(u) =

{
f(u) for a ≤ u ≤ b,

0 else.

Clearly Φ1, Φ2 ∈ L1(R), and thus the desired result follows.

2.1.2 Some basic properties

• If f is a continuous function for x ≥ a then, we have [62]

lim
α→0

Jαa f(x) = f(x), (2.4)

so we can put

J0
af(x) = f(x).

• Let f be a continuous function for x ≥ a, we have

Jαa
(
Jβa f(x)

)
= Jα+β

a f(x). (2.5)

In fact we have

Jαa
(
Jβa f(x)

)
=

1

Γ(α)

∫ x

a

(x− t)α−1 Jβa f(t)dt,

=
1

Γ(α)Γ(β)

∫ x

a

(x− t)α−1dt

∫ t

a

(t− s)β−1f(s)ds,

=
1

Γ(α)Γ(β)

∫ x

a

f(s)ds

∫ x

s

(x− t)α−1(t− s)β−1dt,

=
1

Γ(α + β)

∫ x

a

(x− s)α+β−1f(s)ds,

= Jα+β
a (f(x)) .

where the integral∫ x

s

(x− t)α−1(t− s)β−1dt = (x− s)α+β−1

∫ 1

0

(1− y)α−1yβ−1dy,

= B(α, β)((x− s)α+β−1,

=
Γ(α)Γ(β)

Γ(α + β)
(x− s)α+β−1,

is evaluated using the substitution

t = s+ y(x− s),
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and the definition of the beta function.

• If F (s) is the Laplace transform of the function f(x) then the Laplace trans-

form of the Riemann-Liouville fractional integral Jαa f(x) is given by

L(Jαa f(x))(s) =
F (s)

sα
. (2.6)

For the proof of (2.6) we introduce the following causal function

Φα(t) =
tα−1
+

Γ(α)
, α > 0,

where the suffix + is just denoting that the function is vanishing for t < 0.

Clearly this function is locally absolutely integrable in R+, and the Laplace

transform of Φα(t) is given by

L(Φα(t)) =
1

sα
.

Notice that the Riemann-Liouville fractional integral of f(t) could be ex-

pressed as the convolution of the two functions Φα(t) and f(t) namely

Jαa f(x) =

∫ x

a

(x− t)α−1

Γ(α)
f(t)dt,

=

∫ x

a

Φα(x− t)f(t)dt,

= Φα(t) ∗ f(t).

Based on the convolution property of the Laplace transform (1.4), one deduce

that

L(Jαa f(x)) =L(Φα(t))L(f(t)),

=
F (s)

sα
. (2.7)
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2.2 Riemann-Liouville fractional derivatives

2.2.1 Definition

After shedding light on some basic properties of the Riemann-Liouville integral

operators. Now we come to the corresponding differential operators. First, we

recall the following identity which holds for a function f having a continuous nth

derivative on the interval [a, b]

Dnf = DmJm−nf, (2.8)

where n, m ∈ N, such that m > n.

Now suppose that n is not an integer. In view of previous sections the right-hand

side of (2.8) is meaningful. Hence, we come to the following definition of the

Riemann-Liouville fractional differential operator.

Definition 2.2.

Let α ∈ R+ and m = dαe (the smallest integer that exceeds α).

The operator RL
a D

α
t defined by

RL
a D

α
t f = DmJm−αa f, (2.9)

is called the Riemann-Liouville fractional differential operator of order α.

Equivalently, we have

RL
a D

α
t f(t) =

{
1

Γ(m−α)
dm

dtm

∫ t
a
(t− s)m−α−1f(s)ds, m− 1 < α < m

dm

dtm
f(t). α = m

For α = 0 we set RL
a D

0
t = I, the identity operator, and whenever α ∈ N the new

operator RL
a D

α
t coincides with the classical differential operator Dα.

Remark 2.3.

The Riemann-Liouville fractional operator, is not local.
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Example 2.2.

Let f(t) = c, then

RL
a D

α
t f(t) = Dm(Jm−αa f(t)),

=
c

Γ(m− α)
Dm(

∫ t

a

(t− s)m−α−1ds),

=
c(t− a)−α

Γ(1− α)
.

Example 2.3.

Let f(t) = (t− a)β for a fixed β > −1 and α > 0. Then, in view of example (2.1),

we have

RL
a D

α
t f(t) = Dm(Jm−αa f(t)), m = dαe

=
Γ(β + 1)

Γ(m− α + β + 1)
Dm(x− t)m−α+β.

One can distinguish two cases. Namely: If (α− β) ∈ N, then the right-hand side

is the m-th derivative of a polynomial of degree m− (α− β), this implies that

RL
a D

α
t f(t) = 0.

But if (α− β) /∈ N, then

RL
a D

α
t f(t) =

Γ(β + 1)

Γ(β − α + 1)
(t− s)β−α.

2.2.2 Some basic properties

The law of exponents

In section (2.1.2), we have proved the rule of composition for Riemann-Liouville

fractional integrals. That is if f is a continuous function for x ≥ a and α > 0, β >

0, then

Jαa
(
Jβa f(x)

)
= Jα+β

a f(x). (2.10)

However, this rule may not be generalized to the case of fractional derivatives

without imposing some additional restrictions on f . To show that (2.10) does not

necessarily hold for all α and β when replacing Jαa and Jβa by RL
a D

α
t and RL

a D
β
t ,

let introduce the following example
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Let f(t) = t
1
2 , α = 1

2
and β = 3

2
then

RL
0 D

α
t (f(t)) =

1

2

√
π,

RL
0 D

β
t (f(t)) = 0,

RL
0 D

α
t ( RL

0 D
β
t (f(t))) = 0,

RL
0 D

β
t ( RL

0 D
α
t (f(t))) = −1

4
t−

3
2 ,

RL
0 D

α+β
t (f(t)) = −1

4
t−

3
2 .

Obviously in this example we have

RL
0 D

α
t ( RL

0 D
β
t (f(t))) 6= RL

0 D
α+β
t (f(t)).

In the following we shall state, precisely, some conditions under which the law of

exponents holds.

• Composition with integer-order derivatives.

The composition of Riemann-Liouville fractional derivatives with integer or-

der derivatives appears in many applied problems, so it is convenient to in-

troduce it here. Let us consider the n-th derivative of the Riemann Liouville

fractional derivative of real order α, we have

Dn( RL
a D

α
t f(t)) =

1

Γ(m− α)
Dn+m

(∫ t

a

(t− s)m−α−1f(s)ds

)
,

=
1

Γ(n+m− (n+ α))
Dn+m

(∫ t

a

(t− s)n+m−(n+α)−1f(s)ds

)
,

= RL
a D

n+α
t f(t).

To consider the fractional derivatives of the n-th integer derivative we recall

the following relationships

aD
−n
t f (n)(t) =

1

(n− 1)!

t∫
a

(t− s)n−1f (n)(s)ds,

= f(t)−
n−1∑
j=0

f (j)(a)(x− a)j

Γ(j + 1)
,
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and
RL
a D

α
t g(t) = RL

a D
α+n
t

(
aD
−n
t g(t)

)
.

Using the above relations we obtain

RL
a D

α
t (f (n)(t)) = RL

a D
α+n
t

(
aD
−n
t f (n)(t)

)
,

= RL
a D

α+n
t

(
f(t)−

n−1∑
j=0

f (j)(a)(t− a)j

Γ(j + 1)

)
,

= RL
a D

α+n
t f(t)−

n−1∑
j=0

f (j)(a)(t− a)j−n−α

Γ(j − n− α + 1)
.

From this results we see that the Riemann-Liouville fractional operator
RL
a D

α
t commutes with the integer operator Dn only if f j vanishes in the

lower terminal a for all j = 0, 1, 2, ..., n− 1.

• Composition with fractional-order Derivatives.

Now, let us consider the composition of two fractional Riemann-Liouville

operators RL
a D

α
t and RL

a D
β
t , we put m = dαe and n = dβe then

RL
a D

α
t ( RL

a D
β
t f(t)) = Dm

(
RL
a D

−(m−α)
t

(
RL
a D

β
t f(t)

))
,

= Dm
(
RL
a D

α+β−m
t f(t)

−
n∑
j=1

[
RL
a D

β−j
t f(t)

]
t=a

(t− a)m−α−j

Γ(m− α− j + 1)

)
,

= RL
a D

α+β
t f(t)−

n∑
j=1

[
RL
a D

β−j
t f(t)

]
t=a

(t− a)−α−j

Γ(−α− j + 1)
,

(2.11)

and

RL
a D

β
t ( RL

a D
α
t f(t)) = RL

a D
β+α
t f(t)−

m∑
j=1

[
RL
a D

α−j
t f(t)

]
t=a

(t− a)−β−j

Γ(−β − j + 1)
.

(2.12)

From this relationships we deduce that in general case the Riemann-Liouville

fractional operators RL
a D

α
t and RL

a D
β
t do not commute, except for the case

α = β. When α 6= β it commutes only if both sums in the right-hand sides
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of (2.11) and (2.12) vanish, that is if

f j(a) = 0, for all j = 0, 1, 2, ...,max(n− 1,m− 1).

The Laplace transform In order to evaluate the Laplace transform of the

Riemann-Liouville fractional derivative RL
0 D

α
t f(t) we write it in the form:

RL
0 D

α
t f(t) = g(m)(t),

where

g(t) = RL
0 D

−(m−α)
t f(x) =

1

Γ(m− α)

t∫
0

(t− s)m−α−1f(s)ds. m = dαe

Using the notation L(f(x))(s) = F (s), L(g(x))(s) = G(s) and the formula for

the Laplace transform of integer-order derivative (1.3) we get

L
{
RL
0 D

α
t f(x)

}
(s) = smG(s)−

m−1∑
k=0

skg(m−k−1)(0). (2.13)

G(s) can be evaluated by the formula of the Laplace transform of the Riemann-

Liouville fractional integral (2.7) namely

G(s) = s−(m−α)F (s). (2.14)

On the other hand, we have

g(m−k−1)(t) =
dm−k−1

dtm−k−1
RL
0 D

−(m−α)
t f(t) = RL

0 D
α−k−1
t f(t). (2.15)

Substituting (2.14) and (2.15) into (2.13), then we obtain the formula for the

Laplace transform of the Riemann-Liouville fractional derivative

L
{
RL
0 D

α
t f(t)

}
(s) = sαF (s)−

m−1∑
k=0

sk
[
RL
0 D

α−k−1
t f(t)

]
t=0

. (2.16)

The practical application of this Laplace transform is limited by the absence of

physical interpretation of the limit values of fractional derivative at the lower

terminal t = 0, [62].
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2.3 Grünwald-Letnikov fractional derivative

2.3.1 Definition

As presented above, the Riemann-Liouville formulation approaches the problem

of fractional calculus from the repeated integral, but the Grünwald-Letnikov for-

mulation approaches the problem from the derivative side by observing that the

derivative of integer order m and the m-fold integral are two notions closer to each

other than one usually assumes, namely they are particular cases of the following

general expression

aD
p
t f(t) = lim

h→ 0

nh = t− a

h−p
n∑
k=0

(−1)k

(
p

k

)
f(t− kh), (2.17)

where (
p

k

)
=
p(p− 1)(p− 2)...(p− k + 1)

k!
,

are the binomial coefficients.

The expression (2.17) represents the derivative of order m if p = m and the m-fold

integral if p = −m, this expression is used to define a fractional derivative and

fractional integral by directly replacing p ∈ N in (2.17), by an arbitrary real α,

provided that the binomial coefficient can be understood as using the Gamma

function in place of the standard factorial. Also, the upper limit of the summation

goes to infinity as
t− a
h

.

We end up with the generalized form of the Grünwald-Letnikov fractional deriva-

tive

GL
a D

α
t f(t) = lim

h→0
h−α

t−a
h∑

k=0

(−1)k
(

Γ(α + 1)

k!Γ(α− k + 1)

)
f(t− kh). (2.18)

It is conceivable, that like the definition of Riemann-Liouville for the fractional

integral may be used to define the fractional derivative, the above form of the

G-L derivative could be altered for use in an alternate definition of the fractional

integral. The most natural alteration of this form is to consider the G-L derivative
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for negative α. But in (2.17), there is a problem that

(
−p
k

)
is not defined using

factorials. We have(
−p
k

)
=
−p(−p− 1)(−p− 2)...(−p− k + 1)

k!
,

= (−1)k
(p+ k − 1)!

(p− 1)!k!
. (2.19)

The factorial in (2.19) may be generalized for negative real, using the Gamma

function, thus (
−p
k

)
= (−1)k

Γ(p+ k)

Γ(p)k!
. (2.20)

Now we can rewrite (2.18) for −α, and this leads to the G-L fractional integral

GL
a D

−α
t f(t) = lim

h→0
hα

t−a
h∑

k=0

(
Γ(α + k)

k!Γ(α)

)
f(t− kh). (2.21)

2.3.2 Link to the Riemann-Liouville approach

If we assume that the derivatives f (k)(t), (k = 1, 2, ...,m) are continuous in the

interval [a, T ] and m is an integer such that m > α, we can rewrite (2.18) as follows

GL
a D

α
t f(t) =

m−1∑
k=0

f (k)(a)(t− a)k−α

Γ(k − α + 1)
+

1

Γ(m− α)

t∫
a

(t− s)m−α−1f (m)(s)ds. (2.22)

Also, the right hand side of (2.22) can be written as

dm

dtm


m−1∑
k=0

f (k)(a)(t− a)m−α+k

Γ(m− α + k + 1)
+

1

Γ(2m− α)

t∫
a

(t− s)2m−α−1f (m)(s)ds

 , (2.23)

and after m integration by part, we obtain the expression of the Riemann-Liouville

derivative
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dm

dtm

 1

Γ(m− α)

t∫
a

(t− s)m−α−1f(t)dt

 =
dm

dtm

{
RL
a D

−(m−α)
t f(t)

}
,

= RL
a D

α
t f(t). (2.24)

So, under the above assumptions we have

RL
a D

α
t f(t) = GL

a D
α
t f(t).

Therefore, the properties that we have seen in the Riemann-Liouville definition for

the fractional derivative remain valid for the Grünwald-Letnikov definition, under

a suitable assumptions.

Remark 2.4.

The Riemann-Liouville definition of the fractional integral and derivative is suit-

able to find the analytic solution for relatively simple functions. Conversely, the

Grünwald-Letnikov definition is adopted for numerical computations.

2.4 Caputo fractional derivative

2.4.1 Definition

As it is mentioned in section (2.2), the Laplace transform of the Riemann-Liouville

fractional derivative include the limit values of fractional derivative at the lower

terminal t = 0, so the initial conditions required for the solution of fractional order

differential equations are themselves of a non-integer order. Also, the fractional

derivative of a constant is not a 0.

In the mathematical sense, when solving non-integer order differential equations,

it is possible to use this definition given the proper initial conditions as it happens.

However in the physical world, these properties of the RL definition presents, a

serious problem. Today, we are well versed with the interpretation of the physical

world in the equations of integer order, and we do not have a practical knowledge

of the world in a fractional order. Our mathematical tools go in excess of practical

limitations of our comprehension.
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The Italian mathematician Caputo proposed a solution to this conflict in 1967, [17].

By introducing a new definition, in which he attempts to find a link between what

is possible and what is practical. The aim of the slight modification of the concept

of fractional derivative is to allow the use of integer order initial conditions in the

solution of fractional differential equations. In addition, the Caputo derivative of a

constant is 0, as we will see below. In order to achieve this goal, Caputo proposes

the same operations as in Riemann-Liouville definition but in the reverse order,

namely to get the Riemann-Liouville derivative of order α > 0, of a function f ,

first one must integrate f by the fractional order m − α, after that, differentiate

the resulting function by the integer order m. While in the Caputo approach,

first one must differentiate f by the integer order m, then integrate f (m) by the

fractional order m− α.

Definition 2.5.

Let α ≥ 0, and m = dαe. Then, we define the Caputo’s fractional operator C
aD

α
t

by

C
aD

α
t f(t) = Jm−αa

dm

dtm
f(t),

=
1

Γ(m− α)

t∫
a

(t− s)m−α−1f (m)(s)ds,

whenever
dm

dsm
f ∈ L1[a, b].

Remark 2.6.

As in the case of the Riemann-Liouville operators, we see that the Caputo deriva-

tives are not local either.

2.4.2 Some basic properties

1. Linearity

Let λ, γ ∈ R. From the definition of C
aD

α
t it follows directly that

C
aD

α
t (λf(t) + γg(t)) = λ C

aD
α
t (f(t)) + γ C

aD
α
t (g(t)).

2. Interpolation

When α ∈ N, we have m = α, then the definition (2.5) implies that

C
aD

α
t f = J0

a

dm

dtm
f =

dm

dtm
f.
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This means that: similarly to the Riemann-Liouville and Grünwald-Litnikove

approaches, the Caputo approach provides also an interpolation between

integer-order derivatives.

3. Composition

Let n ∈ N and m = dαe, we have

c
aD

α
t (caD

m
t f(t)) = c

aD
α+n
t f(t).

Namely

c
aD

α
t (aD

n
t f(t)) = aD

−(m−α)
t aD

m
t (aD

n
t f(t)),

= aD
−(m−α)
t aD

m+n
t f(t),

= aD
−(m+n−(α+n))
t aD

m+n
t f(t),

= c
aD

α+n
t f(t).

4. Laplace transform

We begin by writing the derivative in the form:

C
0D

α
t f(t) = Jm−αg(t),

where

g(x) = f (m)(x), m = dαe.

Using the formula for the Laplace transform of Riemann-Liouville fractional

integral (2.7), and the formula for the Laplace transform of integer-order

derivative (1.3) we get

L
{
C
0D

α
t f(t)

}
(s) = S−(m−α)G(s) = sαF (s)−

m−1∑
k=0

sα−k−1f (k)(0). (2.25)

Clearly, the Laplace transform of the Caputo fractional derivative involves

the values of f(x) and its derivatives at the lower terminal x = 0, for which a

certain physical interpretation exists, so we expect that the fractional Caputo

derivative can be useful for solving applied problems.
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2.4.3 Link to the Riemann-Liouville approach

Let α > 0 and f a function having a continuous derivatives f (k)(t), (k =

1, 2, ...,m) in the interval [a, T ], where m = dαe, then from (2.24) we have

RL
a D

α
t f(t) =

m−1∑
k=0

f (k)(a)(t− a)k−α

Γ(k − α + 1)
+

1

Γ(m− α)

t∫
a

(t− s)m−α−1f (m)(s)ds,

=
m−1∑
k=0

f (k)(a)(t− a)k−α

Γ(k − α + 1)
+ C

aD
α
t f(t). (2.26)

Clearly if f (k)(a) = 0, (k = 0, 1, 2, ...,m− 1) then

RL
a D

α
t f(t) = C

aD
α
t f(t).

2.5 Fractional differential equations

This section will be devoted to the study of Caputo’s fractional differential equa-

tions. In the first subsection we aboard the existence and uniqueness questions for

the initial value problems with a most general class of fractional equations, then

in the second subsection we move to the analytical resolution of linear equations.

Whereas in the third subsection we shall deal with numerical resolution.

2.5.1 Initial value problems

We begin with initial value problem of the form{
c
0D

α
t x(t) = f(t, x),

xk(0) = x
(k)
0 , k = 0, 1, 2, ...,m− 1

(2.27)

where as usual we have set m = dαe.
The existence and uniqueness theory for such equations have been presented in

[26].

Theorem 2.7.

Let α > 0 and m = dαe.
Moreover, let x0

0, x
1
0, ..., x

m−1
0 ∈ R, K > 0 and T ∗ > 0.
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Define

G =

{
(t, x) : t ∈ [0, T ∗] , |x−

m−1∑
k=0

tkx
(k)
0 /k!|≤ K

}
,

and let the function f : G→ R be continuous.

Furthermore, define M = sup(t,z)∈G|f(t, z)| and

T =

{
T ∗ if M = 0,

min
{
T ∗, (KΓ (α + 1)/M)1/α

}
else.

(2.28)

Then, there exists a function x ∈ C [0, T ] solving the initial value problem (2.27).

Theorem 2.8.

Let α > 0 and m = dαe.
Moreover, let x0

0, x
1
0, ..., x

m−1
0 ∈ R, K > 0 and T ∗ > 0.

Define G as in theorem (2.7) , and let the function f : G→ R be continuous and

satisfying a Lipschitz condition with respect to the second variable, i.e;

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2|, (2.29)

with some constant L > 0. Then define T as in theorem (2.7), there exists a

uniquely defined function x ∈ C [0, T ] solving the initial value problem (2.27).

Corollary 2.9.

Assumes the hypotheses of the theorem (2.7 and 2.8), except that the set G, i.e;

the domain of definition of the function f is now taken to be G = R2.

Moreover, we assume that f is continuous and that there exist constants c1 ≥
0, c2 ≥ 0 and 0 ≤ µ < 1 such that

|f(t, x)| ≤ c1 + c2|x|µ for all (t, x) ∈ G.

Then, there exists a uniquely function x ∈ C [0,∞), solving the initial value prob-

lem (2.27).

For the proof of theorem (2.7 and 2.8 ) one can refer to [26](chapter 6).

Remark 2.10.

- In real applications, we have usually 0 < α ≤ 1. In this case, the set G defined

in the theorem (2.7) is just the simple rectangle

G = [0, T ]×
[
x

(0)
0 −K, x

(0)
0 +K

]
.
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-For simplicity of the presentation we only treat the scalar case here. However,

all the results in this section can be extended to vector-valued functions x (i.e.

systems of equations) without any problems.

It is well know that if

f : [0, a]× [b, c]→ R,

is a continuous function and satisfy a Lipschitz condition with respect to the second

variable and y, z are two solutions of the differential equation of order 1

dx(t)

dt
= f(t, x),

subject to the initial conditions y(0) = y0, z(0) = z0 where y0 6= z0. Then, for all t

where both y(t) and z(t) exist, we have y(t) 6= z(t). But a similar statement does

not hold for equations of higher order, for example the equation

d2x

dt2
= −x(t),

has solutions x1(t) = 0, x2(t) = cos t and x3(t) = sin t clearly the graphs of these

solutions cross each other. Similar effects arise for fractional equations and we

have the following result

Theorem 2.11.

Let 0 < α < 1 and assume that f : [0, a]× [b, c]→ R, is a continuous function and

satisfy the Lipschitz condition (2.29) with respect to the second variable and y, z

are two solutions of the fractional differential equation of order α

C
0D

α
t x(t) = f(t, x),

subject to the initial conditions y(0) = y0, z(0) = z0 where y0 6= z0. Then, for all

t where both y(t) and z(t) exist, we have y(t) 6= z(t).

2.5.2 Initial value problems for linear equations

It is a common observation in many areas of mathematics that the linearity as-

sumption allows to derive more precise statements. So, in this section we restrict

our attention to linear fractional differential equations which are very important

in many applications. Explicit expressions for solutions of such equations can be

obtained and used for the study of stability property.
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2.5.2.1 One dimensional case

For simplicity, we begin by the scalar (one dimensional) case

Theorem 2.12.

Let α > 0 and m = dαe, λ ∈ R and q ∈ C[0, T ]. The solution of the initial value

problem {
C
0D

α
t x (t) = λx (t) + q (t) ,

x(k) (0) = x
(k)
0 , k = 0, 1, ...m− 1,

(2.30)

is given by

x(t) =
m−1∑
k=0

x
(k)
0 uk(t) + x̃(t), (2.31)

with

x̃(t) =


Jα0 q(t), ifλ = 0,

1
λ

t∫
0

q(t− τ)u′0(τ)dτ ifλ 6= 0,
(2.32)

where uk(t) = Jk0 eα(t), k = 0, 1, ...m− 1 and eα(t) = Eα(λtα).

Remark 2.13.

In the special case 0 < α < 1, the solution is given by

x(t) = x
(0)
0 Eα(λtα) + α

t∫
0

q(t− τ)τα−1E ′α(λτα)dτ,

= x
(0)
0 Eα(λtα) + α

t∫
0

(t− τ)α−1E ′α(λ(t− τ)α)q(τ)dτ.

In the limit case α→ 1− we obtain the classical formula

x(t) = x
(0)
0 eλt +

t∫
0

eλ(t−τ)q(τ)dτ.

Proof. (Theorem (2.12)).

In the case λ = 0, we have eα(t) = Eα(0) = 1. Then, uk(t) = tk/k!, for every k.

Thus, the direct differentiation of a given x(t) affirms the claim.

In the case λ 6= 0, the proof will be divided into two facts:

The first is that the functions uk satisfy the homogeneous differential equation

C
0D

α
t uk = λuk (k = 0, 1, ...,m− 1),
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with initial conditions u
(j)
k (0) = δkj (Kronecker’s delta) for j, k = 0, 1, ...,m− 1.

The second fact is that the function x̃ is a solution of (2.30).

Then the proof will be achieved by the superposition principal.

a) we have

eα(t) =
∞∑
j=0

λjtαj

Γ (1 + jα)
.

Then

uk(t) = Jk0 eα(t) =
∞∑
j=0

λjtαj+k

Γ (1 + jα + k)
, (2.33)

applying the operator C
0D

α
t to both sides of (2.33) yields

C
0D

α
t uk(t) =

∞∑
j=1

λjtα(j−1)+k

Γ (1 + (j − 1)α + k)
,

=
∞∑
j=0

λj+1tαj+k

Γ (1 + jα + k)
,

= λ
∞∑
j=0

λjtαj+k

Γ (1 + jα + k)
,

= λuk(t).

Moreover, for j = k, we have

u
(k)
k (0) = DkJk0 eα(0) = 1.

For j < k, we have

u
(j)
k (0) = DjJk0 eα(0) = Jk−j0 eα(0) =

1

Γ(k − j)

0∫
0

(0− τ)k−j−1eα(τ)dτ = 0.

And for j > k, we have

u
(j)
k (0) = DjJk0 eα(0) = Dj−k

0 eα(0) = 0,

since

Dj−k
0 eα(t) = Dj−k

0

∞∑
l=0

λltlα

Γ (1 + lα)
,

=
∞∑
l=1

λltlα+k−j

Γ (1 + lα + k − j)
.
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b)We have

x̃(t) =
1

λ

t∫
0

q(t− τ)u′0(τ)dτ =
1

λ

t∫
0

q(t− τ)e′α(τ)dτ =
1

λ

t∫
0

q(τ)e′α(t− τ)dτ.

Since q is continuous and e′α is at least improperly integrable, then the integral

exists and it is a continuous function of t, thus x̃(0) = 0. Using the well know

rules for differentiation of parameter integrals we obtain

Dx̃(t) =
1

λ

t∫
0

q(τ)e′′α(t− τ)dτ +
1

λ
q(t)e′α(0)

=
1

λ

t∫
0

q(τ)e′′α(t− τ)dτ

because e′α(0) = 0, this formula can be generalized for (k = 0, 1, ...,m − 1) as

follows

Dkx̃(t) =
1

λ

t∫
0

q(τ)e(k+1)
α (t− τ)dτ,

then Dkx̃(0) = 0 for (k = 0, 1, ...,m−1). Thus x̃ Fulfills the required homogeneous

initial conditions. Now, it remains to show that x̃ solves the non-homogeneous

differential equation. We have

e′α(t) = λαtα−1E ′α(λtα) = λαtα−1
∞∑
j=1

j(λtα)j−1

Γ (1 + jα)
,

= λtα−1
∞∑
j=1

(λtα)j−1

Γ (jα)
=
∞∑
j=1

λjtjα−1

Γ (jα)
,

then

x̃(t) =
1

λ

t∫
0

q(τ)e′α(t− τ)dτ =
1

λ

t∫
0

q(τ)
∞∑
j=1

λj(t− τ)jα−1

Γ (jα)
dτ,

=
∞∑
j=1

λj−1

Γ (jα)

t∫
0

q(τ)(t− τ)jα−1dτ =
∞∑
j=1

λj−1J jα0 q(t) .

Thus

C
0D

α
t x̃(t) =

∞∑
j=1

λj−1 C
0D

α
t J

jα
0 q(t) =

∞∑
j=1

λj−1J
(j−1)α
0 q(t),

=
∞∑
j=0

λjJ
(j)α
0 q(t) = q(t) +

∞∑
j=1

λjJ jα0 q(t) = q(t) + λx̃(t).
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Notice here that in view of the convergence property of the series expansion for

e′α and the continuity of q, the interchange between summation and integration is

possible.

2.5.2.2 Multidimensional case

First, let us give the general solution for the commensurate fractional order linear

homogeneous system

C
0 D

α
t X(t) = AX(t), 0 < t ≤ a, (2.34)

where X ∈ Rn, a > 0, and A ∈ Rn × Rn. To derive this general solution the

author of [57], proceeds by analogy with treatment of homogeneous integer order

linear systems with constant coefficients where the exponential function Exp(t) is

replaced by the Mittag-Leffler function Eα(tα). Hence, we seek solutions of the

form

X(t) = uEα(λtα), (2.35)

the constant λ and the vector u are to be determined. Substituting (2.35) in (2.34)

gives

uλEα(λtα) = AuEα(λtα). (2.36)

Thus

(A− λI)u = 0, (2.37)

because Eα(λtα) 6= 0. Therefore, the vector X in (2.35) is a solution of the system

(2.34) on condition that λ is an eigenvalue and u an associated eigenvector of the

matrix A. Now, if all k-fold eigenvalues of A have k eigenvectors, then we know

that the set of all these eigenvectors is linearly independent and thus it forms a

basis of Cn. Hence, the following result holds.

Theorem 2.14.

Let λ1, ..., λn be the eigenvalues of the matrix A and u(1), ..., u(n) be the correspond-

ing eigenvectors. Then, the general solution of the fractional differential equation

(2.34)is given by

X(t) =
n∑
k=1

Cku
(k)Eα(λkt

α), (2.38)

with certain constants Ck ∈ C.
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Example 2.4.

Let us consider the system

C
0 D

α
t X(t) = AX(t),

where 0 < α < 1 and A =

(
2 −1

4 −3

)
.

The eigenvalues of the matrix A are λ1 = 1 and λ2 = −2 and their corresponding

eigenvectors are u(1) = [1, 1]T and u(2) = [1, 4]T respectively. Thus, the general

solution of the given system is

X(t) = c1

(
1

1

)
Eα(tα) + c2

(
1

4

)
Eα(−2tα),

where c1 and c2 are arbitrary constants.

Remark 2.15.

If the matrix A has a repeated eigenvalue λ, of algebraic multiplicity k and geo-

metric multiplicity m (i.e: with m linearly independent eigenvectors u(1), ..., u(m)),

then we envisage two cases.

a) If m = k, then

X(1) = u(1)Eα(λtα), ..., X(k) = u(k)Eα(λtα),

are k linearly independent solutions of the homogeneous system (2.34).

b) If m < k, then, the theorem (2.14) is not applicable and we must resort to a

different representation of the general solution.

Definition 2.16.

Let λ be an eigenvalue of multiplicity k, of the n×n matrix A. Then for i = 1, ..., k,

any nonzero solution v of

(A− λI)iv = 0 with (A− λI)i−1v 6= 0,

is called a generalized eigenvector of order i, of the matrix A. The set of generalized

eigenvectors v(1), ..., v(k) is linearly independent and is called a Jordan chain.

Notice that an ordinary eigenvector u can be considered as a generalised eigen-

vector of order 1. The generalized eigenvectors v(1), ..., v(k) can be determined by

solving the following successive sequence of linear equations, in which v(r) is known

and v(r+1) is unknown:
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(A− λI)v(1) = 0,

(A− λI)v(2) = v(1),

(A− λI)v(3) = v(2),

. . .

(A− λI)v(k) = v(k−1).

In the case (b) of remark (2.15) the generalized eigenvalues will be useful for

creating the fundamental set of solutions of the homogeneous system (2.34) as

shown in the following theorem.

Theorem 2.17.

For each k-fold eigenvalue λ, of the matrix A we have k linearly independent

solutions X(1), ..., X(k) of the homogeneous linear system (2.34) which can be rep-

resented in the form

X(l)(t) =
l−1∑
s=0

v(s+1)t(l−1−s)αE(l−1−s)
α (λtα), l = 1, ..., k. (2.39)

The combination of these solutions for all eigenvalues leads to n linearly indepen-

dent solutions of the system (2.34).

Remark 2.18.

Let X(t) = [x1(t), x2(t), ..., xn(t)]T be the solution of the initial value problem,

consisting of the homogeneous system (2.34) and the initial condition X(0) = X0.

Then, the initial value problem for the non-homogeneous fractional order system

{
C
0 D

α
t X(t) = AX(t) +B(t), 0 < t ≤ a,

X(0) = X0,

where

B(t) = [b1(t), b2(t), ..., bn(t)]T ,

has the solution

Y (t) = [y1(t), y2(t), ..., yn(t)]T ,
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such that

yi(t) = xi(t) +

t∫
0

xi(τ − t)bi(τ)dτ.

2.5.3 Numerical algorithms for fractional equations

Two sets of the numerical methods have been mainly used in the literature, to

solve fractional-order differential equations, namely, the frequency-domain meth-

ods [67] and the time-domain methods [24, 25, 27]

The frequency-domain methods have been primarily most frequently used to in-

vestigate chaos in fractional order systems [35, 42]. Unfortunately, it has been

shown that these approaches are not always reliable for detecting chaos in such

systems [70, 72]. Therefore, a great deal of effort has been recently expended over

the last years in attempting to find robust and stable numerical as well as analyt-

ical time-domain methods for solving fractional differential equations of physical

interest. The Adomian decomposition method [4], homotopy perturbation method

[59], homotopy analysis method [15], differential transform method [55] and varia-

tional iteration method [58] are relatively new approaches to provide an analytical

approximate solution to linear and nonlinear fractional differential equations.

An efficient method for solving fractional differential equations in term of Ca-

puto type fractional derivative, is the predictor-corrector scheme or more precisely,

PECE (Predict, Evaluate, Correct, Evaluate) [27, 28], which represents a gener-

alization of Adams-Bashforth-Moulton algorithm. This method is described as

follows. Let consider the following fractional order initial value problem

{
C
0 D

α
t x = f(t, x), 0 ≤ t ≤ T,

x(k)(0) = xk0, k = 0, 1, 2, ..., dαe − 1
(2.40)

which is equivalent to the Volterra integral equation

x(t) =
n−1∑
k=0

xk0
tk

k!
+

1

Γ(α)

t∫
0

(t− τ)(α−1)f(τ, x(τ))dτ. (2.41)

Set h = T/N and tj = jh, (j = 0, 1, 2, ..., N) with T being the upper bound of the

interval on which we are looking for the solution. Then, the corrector formula for

equation (2.41) is given by



Chapter 2. Fractional integrals and fractional derivatives 43

xh(tn+1) =

dαe−1∑
k=0

xk0
tkn+1

k!
+

hα

Γ(α + 2)
f(tn+1, x

p
h(tn+1))+

hα

Γ(α + 2)

n∑
j=0

aj,n+1f(tj, xh(tj)),

(2.42)

where

aj,n+1 =

{
nα+1 − (n− α)(n+ 1)α, j = 0

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, 1 ≤ j ≤ n.
(2.43)

By using a one-step Adams-Bashforth rule instead of a one-step Adams-Moulton

rule, the predictor xph(tn+1) is given by

xph(tn+1) =
n−1∑
k=0

xk0
tkn+1

k!
+

1

Γ(α)

n∑
j=0

bj,n+1f(tj, xh(tj)), (2.44)

where

bj,n+1 =
hα

α
((n− j + 1)α − (n− j)α), 0 ≤ j ≤ n. (2.45)

The error estimate of this method is

ε = max
0≤j≤n

|x(tj)− xh(tj)| = O(hp), (2.46)

where p = min(2, 1 + α).

Now, the basic algorithm for the fractional Adams-Bashforth-Moulton method is

completely described.

For numerical resolution of fractional differential equations in term of Riemann-

Liouville derivative we adopt the algorithm derived from the GrünwaldLetnikov

definition (2.18). This approach is based on the fact that for a wide class of

functions, two definitions GL (2.18) and RL (2.9) are equivalent. The relation

for the explicit numerical approximation of the αth derivative at the points kh

(k = 1, 2, ...) has the following form

RL
0 D

α
t x(kh) ≈ 1

hα

k∑
j=0

(−1)j

(
α

j

)
x((k − j)h), (2.47)
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where h is the time step of the calculation and (−1)j

(
α

j

)
= Cα

j , (j = 0, 1, ...)

are binomial coefficients. For their calculation we can use the following expression

Cα
0 = 1, Cα

j = (
j − α− 1

j
)Cα

j−1. (2.48)

The described numerical method is a so-called Power Series Expansion (PSE) of

a generating function.

For t� a the number of addends in the fractional-derivative approximation (2.42)

(2.47) becomes enormously large. However, it follows from the expression for the

coefficients in the Grünwald-Letnikov definition (2.17) that for large t the role of

the history of behaviour of the function f(t) near the lower terminal t = a can

be neglected under certain assumption. Those observations lead Podlubny [62],

to the formulation of the short memory principle which mean taking into account

the behaviour of f(t) only in the short interval [t − L, t], where L is the memory

length

aD
α
t f(t) ≈ t−LD

α
t f(t), (t > a+ L). (2.49)

Clearly, the fractional derivative with lower limit a is approximated by the frac-

tional derivative with moving lower limit t− L, therefore the number of addends

in (2.49) is always less than L/h.

If f(t) ≤M for all t ∈ [a, b] then the error of approximation is given by [62]

∆(t) = | aD
α
t f(t)− t−LD

α
t f(t)| ≤ M

Lα|Γ(1− α)|
, (a+ L ≤ t). (2.50)

Thus, in order to obtain a good approximation (i.e; ∆(t) ≤ ε) we must choose the

memory length L which satisfies

L ≥
(

M

ε|Γ(1− α)|

)1/α

. (2.51)
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Chapter 3

Fractional-order dynamical

systems

Fractional systems, can be considered as a generalization of integer order systems

[51, 60]. In this chapter we will focus our attention on the qualitative study

(stability theory, periodic behavior, bifurcation and chaos) of a fractional-order

dynamical system given in the following form

C
0 D

α
t x = f(t, x), (3.1)

where x ∈ Rn, f is defined on a suitable subset U ⊂ Rn+1 and α = [α1, α2, ..., αn]T

are the fractional orders, 0 ≤ αi ≤ 1, (i = 1, 2, ..., n) ( we adopt this restriction

of fractional order α because fractional equations in this range require only one

initial condition to guarantee the uniqueness of the solution). When α1 = α2 =

... = αn, the system (3.1) is called a commensurate order system, otherwise it is

an incommensurate order system. If f depends explicitly on t then (3.1) is called

non-autonomous system otherwise it is called autonomous system. The constant

a is an equilibrium point of the Caputo fractional dynamical system (3.1), if and

only if f(t, a) = 0, for all t.

3.1 Stability theory of fractional systems

A well known and important area of research in theory of dynamical system is

the stability theory, the stability of fractional system is different from that in the

integer one. When talking about stability, one is interested in the behaviour of

46
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solutions of (3.1) for t → ∞. Therefore we will only consider problems whose

solutions x exist on [0,∞). Moreover, some additional assumptions are required

in this section. The first assumption is that f is defined on a set G = [0,∞)×{w ∈
Rn : ‖w‖ < W} with some 0 < W ≤ ∞. The norm of G may be an arbitrary

norm on Rn. The second assumption is that f is continuous on its domain of

definition and that it satisfies a Lipschitz condition there. This asserts that the

initial value problem consisting of (3.1) and the initial condition x(0) = x0 has a

unique solution on the interval [0, b) with some b ≤ ∞ if ‖x0‖ ≤ W . And finally

we assume that the function x(t) = 0 is a solution of (3.1) for t ≥ 0. Under these

assumptions we may formulate the followings main concepts.

Definition 3.1.

Under the hypothesis mentioned above, The solution x(t) = 0 of the system (3.1)

is said to be

- Stable if: for any ε > 0 there exists some δ > 0 such that the solution of the

initial value problem consisting of (3.1) and the initial condition x(0) = x0 satisfies

‖x(t)‖ < ε for all t ≥ 0 whenever ‖x0‖ < δ.

- Asymptotically stable if: it is stable and there exists some γ > 0 such that

limt→∞ x(t) = 0 whenever ‖x0‖ < γ.

Remark 3.2.

A solution y of the differential equation C
0 D

α
t x = g(t, x) is said to be (asymptot-

ically) stable if and only if the zero solution of C
0 D

α
t z = f(t, z) with f(t, z) =

g(t, z + y(t))− g(t, y(t)) is (asymptotically) stable.

Definition 3.3. (Exponential stability).

The solution x(t) = 0 of the system (3.1) is said to be (locally) exponentially

stable if there exist two real constants α, λ > 0 such that

‖x(t)‖ ≤ α‖x(t0)‖e−λt for all t > t0, (3.2)

whenever ‖x(t0)‖ < δ. It is said to be globally exponentially stable if (3.2) holds

for any x(t0) ∈ Rn.

A generalization of exponential stability is the Mittag-Leffler stability which is

more useful for fractional system.

Definition 3.4. (Mittag-Leffler stability).

The solution x(t) = 0 of (3.1) is said to be Mittag-Leffler stable if

‖x(t)‖ ≤ {m[x(t0)]Eα(−λ(t− t0)α)}b,
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where t0 is the initial time, α ∈ (0, 1) the fractional order, λ > 0, b > 0, m(0) = 0,

m(x) > 0 and m(x) is locally Lipschitz on x ∈ B ⊂ Rn with constant Lipschitz

m0.

Definition 3.5. (Generalized Mittag-Leffler stability).

The solution x(t) = 0 of (3.1) is said to be generalized Mittag-Leffler stable if

‖x(t)‖ ≤ {m[x(t0)](t− t0)−γEα,1−γ(−λ(t− t0)α)}b,

where t0 is the initial time, α ∈ (0, 1) the fractional order, −α < γ 6 1−α, λ > 0,

b > 0, m(0) = 0, m(x) > 0 and m(x) is locally Lipschitz on x ∈ B ⊂ Rn with

constant Lipschitz m0.

Notice here that the Mittag-Leffler stability and Generalized Mittag-Leffler stabil-

ity imply asymptotic stability.

As mentioned in [48], the stabilities of fractional-order systems are not of expo-

nential type. Thus, a new definition called power law stability t−β was introduced

in [61], which is a special case of the Mittag-Leffler stability [46] and it is defined

as follows.

Definition 3.6. (Power law stability t−β).

The trajectory x(t) = 0 of the system (3.1) is t−β asymptotically stable if there is

a positive real β such that:

∀‖x(t)‖ with t ≤ t0,∃N(x(t)), such that ∀t ≥ t0, ‖x(t)‖ ≤ Nt−β.

We begin our analysis by the linear time invariant (LTI) systems.

3.1.1 Stability of fractional LTI systems

Stability of linear fractional order systems, which is of main interest in control

theory, has been thoroughly investigated where necessary and sufficient conditions

have been derived. In 1996, Matignon [48], have been introduced the stability

properties of n-dimensiona linear fractional order systems from a point of view of

control. In [23], Deng et al. studied the stability of n-dimensional linear fractional

differential equation with time delays. An interesting difference between stable

integer-order system and a stable fractional-order system is that the last one may

have roots in right half of the complex plane.
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Theorem 3.7.

Consider the N-dimensional linear differential system with fractional commensu-

rate order α
C
0 D

α
t X = AX, (3.3)

where A is an arbitrary constant N ×N matrix.

a) The system (3.3) is asymptotically stable if and only if |arg(spec(A))| > απ/2.

In this case the components of the state decay towards 0 like t−α.

b)The system (3.3) is stable if and only if |arg(spec(A))| ≥ απ/2 and all eigenval-

ues with |arg(λ)| = απ/2 have a geometric multiplicity that coincides with their

algebraic multiplicity.

The fact that the components of x(t) slowly decay towards 0 following t−α leads

to fractional systems, sometimes, being called long memory systems.

In the limit case α → 1 we recover the well known classical result [19], that the

eigenvalues must have negative real parts in case (a) and non-positive real parts

and a full set of eigenvectors if the real parts are zero for case (b).

Proof.

If the matrixA is diagonalisable then according to theorem (2.14) and remark(2.15)

the general solution is given by

X(t) =
n∑
k=1

Cku
(k)Eα(λkt

α), (3.4)

and by theorem (1.4) its Laplace transform is

X(s) =
n∑
k=1

Cku
(k) sα−1

sα − λk
. (3.5)

If A is not diagonalisable then according to theorem (2.17), the general solution

can be given by a linear combination of a fundamental solutions given by

X(j,l)(t) =
l−1∑
i=0

v(j,i+1)t(l−1−i)αE(l−1−i)
α (λjt

α), l = 1, ..., kj j = 1, ...,m. (3.6)
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where kj is the multiplicity of eigenvalue λj and
m∑
j=1

kj = n.

Taking into account the relation (1.9) and applying Laplace transform to both

sides of (3.6) yields

X(j,l)(s) =
l−1∑
i=0

v(j,i+1) (l − i− 1)!sα−1

(sα − λj)l−i
, l = 1, ..., kj j = 1, ...,m. (3.7)

Now, if all eigenvalues lie in the region |arg(λ
1
α )| > π

2
; (i.e |arg(λ)| > απ/2), then

using (3.5), (3.7) and the final value theorem (1.5) we get

lim
t→∞

X(t) = lim
s→0

sX(s) = 0.

If there is some eigenvalues lie in the region |arg(λ)| < απ/2, then from theo-

rem(3.18) we have

lim
t→∞
|Eα(λtα)| =∞

Thus from (3.4) and (3.6), X(t) is unbounded.

Therefore, the system (3.3) is asymptotically stable if and only if all eigenvalues

lie in the region |arg(λ)| > απ/2.

Next we consider the stability of incommensurate rational order system [23].

Corollary 3.8.

Suppose that α1 6= α2 6= ... 6= αn and all αi’s are rational numbers between 0 and

1, and suppose that m is the lowest common multiple of the denominators ui of

αi, (i = 1, ..., n) where αi =
vi
ui
, vi, ui ∈ Z+ for i = 1, ..., n, and setting γ =

1

m
then system (3.3) is asymptotically stable if:

|arg(λ)| > γ
π

2
(3.8)

for all roots λ of the following characteristic equation

det(diag([λmα1 , ..., λmαn ])− A) = 0. (3.9)

The characteristic equation of (3.3) is of fractional powers of s, this corollary tells

that in case of rational orders the characteristics equation can be transformed to

an integer-order polynomial equation.
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Proof.

The application of the Laplace transform to both sides of (3.3) gives the equation

(diag([sα1 , ..., sαn ])− A)X(s) = (sα1−1x1(0), ..., sαn−1xn(0))T , (3.10)

multiplying s on both sides of (3.10) gives

(diag([sα1 , ..., sαn ])− A)sX(s) = (sα1x1(0), ..., sαnxn(0))T , (3.11)

which does not have an unique solution sX(s) only when

det(diag([sα1 , ..., sαn ])− A) = 0. (3.12)

Denoting s = λ
1
γ = λm and subtracting in (3.12) yields the equation (3.9). If all

roots of the equation (3.12) lie in open left half complex plane, Re(s) < 0 (i.e

|arg(s)| > π

2
wich imply |arg(λ)| > γ

π

2
), then we consider (3.11) in Re(s) ≥ 0.

In this restricted area, (3.11) has a unique solution sX(s) = (sX1(s), ..., sXn(s)).

So, we have

lim
s→0,Re(s)≥0

sXi(s) = 0, i = 1, ..., n.

Using the final-value theorem of Laplace transform, we get

lim
t→∞

xi(t) = lim
s→0,Re(s)≥0

sXi(s) = 0, i = 1, ..., n.

This complete the proof.

Theorem 3.3, remain valid [56], in the case 1 < α < 2.

3.1.2 Stability of fractional nonlinear systems

Let consider the commensurate fractional-order nonlinear autonomous system

given by

C
0 D

α
t x = f(x) (3.13)

where x ∈ Rn, f is defined on a suitable subset U ⊂ Rn. According to stability

theorem defined in [71] and [2], an equilibrium point x̃ of system (3.13) is locally
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Figure 3.1: Stability region for fractional-order systems

asymptotically stable for a given α in (0, 2) if all the eigenvalues λi, (i = 1, 2, ..., n)

of the Jacobian matrix J =
∂f

∂x
|x=x̃ satisfy the condition

|arg(λi)| > α
π

2
, i = 1, 2, ..., n. (3.14)

Remark 3.9.

The given theoretical results make clear that the stability condition for fractional-

order systems differs from the well-known condition for integer order systems. In

particular, the left half-plane (stable region) for integer-order systems maps into

the angular sector |arg(spec(J))| > απ/2 in the case of fractional-order systems,

indicating that the stable region becomes larger and larger when the value of

fractional-order α is decreased

Fig.3.1 shows stable and unstable regions of the complex plane, for 0 < α < 2.

Now, let consider the incommensurate fractional order system α1 6= α2 6= ... 6= αn

and suppose that m is the LCM of the denominators ui of αi, (i = 1, ..., n) where

αi =
vi
ui
, vi, ui ∈ Z+ for i = 1, ..., n, then the system (3.13) is asymptotically stable

if:

|arg(λ)| > π

2m
,

for all roots λ of the following equation

det(diag([λmα1 , ..., λmαn ])− J) = 0.
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3.1.3 Some Routh-Hurwitz conditions for fractional sys-

tems

Routh-Hurwitz criterion is a powerful tool used for the stability analysis of some

parameter dynamical systems, because it provides an opportunity to study the

stability of such parameter system without the need to set its control parame-

ters, therefore we can identify the stability region in the parameter space, this

technique is extensively used in the area of control and synchronization. Some

Routh-Hurwitz stability conditions are generalized to the fractional order case in

[7], and largely used in field of control and synchronization [3, 49]. Consider the

commensurate system
C
0 D

α
t x = f(x, µ), (3.15)

where x ∈ Rn is the state space vector, µ ∈ Rm is the parameter vector and f is

defined on a suitable subset U ⊂ Rn × Rm. An interesting question arises when

analysing the condition (3.14 ), namely, what are the conditions on µ, that all the

roots of the polynomial equation

P (λ) = λn + a1(µ)λn−1 + ...+ an−1(µ)λ+ an(µ) = 0, (3.16)

satisfy (3.14) where all the coefficients in (3.16) are real?

For α = 1 the answer is given by the classical Routh-Hurwitz criterion [52] that is

a1 > 0 ,

∣∣∣∣∣ a1 1

a3 a2

∣∣∣∣∣ > 0 ,

∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣ > 0,

...
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∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 ... 0

a3 a2 a1 1 0...0

a5 a4 a3 ... 1 0...0

. . . . .

0 0 0 ... an

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

For α ∈ (0, 1) the classical Routh-Hurwitz conditions are sufficient but not neces-

sary, therefore we need a new version of this criterion that will be adopted in the

last case.

Definition 3.10.

The discriminant D(P ) of a polynomial P (λ) is defined by

D(P ) = (−1)n(n−1)/2R(P, P ′),

where P ′ is the derivative of P and R(P, P ′) is the (2n − 1) × (2n − 1) resultant

of P (λ) and its derivative P ′(λ), given as follows

R(P, P ′) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 ... an 0 ... 0

0 1 a1 ... an 0... 0

. . . . . . .

0 ... 0 1 a1 ... an

n (n− 1)a1 ... an−1 0 ... 0

0 n (n− 1)a1 ... an−1 0... 0

. . . . . . .

0 ... 0 n (n− 1)a1 ... an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
For n = 3, we have

D(p) = 18a1a2a3 + (a1a2)2 − 4a3(a1)3 − 4(a2)3 − 27(a3)2.

Noting that if D(P ) > 0 (< 0), there is an even (odd) number of pairs of complex

roots for the equation P (λ) = 0.

For n = 3, D(P ) > 0 implies that all the roots are real, and D(P ) < 0 implies

that there is only one real root and one pair of complex conjugate roots.

Proposition 3.11.

1) For n = 1, the condition for (3.14) is a1 > 0.

2) For n = 2:
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-If D(p) ≥ 0, the condition for (3.14) is a1 > 0 and a2 > 0.

-If D(p) < 0, the condition for (3.14) is

∣∣∣∣tan−1

(√
4a2−(a1)2

a1

)∣∣∣∣ > απ
2
.

3) For n = 3:

- When D(p) > 0, the necessary and sufficient conditions of (3.14) are the classical

Routh-Hurwitz conditions given by a1 > 0, a3 > 0 and a1a2 > a3.

- When D(p) < 0, we distinct the three following cases

a) If a1 > 0, a2 > 0, a3 > 0 and α < 2
3

then (3.14) is satisfied.

b) If a1 < 0, a2 < 0 and α > 2
3

then all roots of P (λ) = 0 satisfies |arg(λ)| < απ
2
.

c) If a1 > 0, a2 > 0 and a1a2 = a3 then (3.14) is satisfied for all α ∈ [0, 1).

4) For general n > 1, the necessary and sufficient condition for (3.14) is

∞∫
0

dz

P (z)

∣∣∣∣
C2

+

0∫
−∞

dz

P (z)

∣∣∣∣
C1

= 0,

where C1 is the curve

z = x(1− i tanαπ/2),

and C2 is the curve

z = x(1 + i tanαπ/2).

Proof.

1)For n = 1, we have P (λ) = λ+ a1 which posses a single real root λ = −a1 then

(3.14) is satisfied if and only if a1 > 0.

2)For n = 2, we have

P (λ) = λ2 + a1λ+ a2,

its roots are given by

λ± =
−a1 ±

√
(a1)2 − 4a2

2
.

-If D(p) ≥ 0, λ± are real and (3.14) will be converted to classical Routh-Hurwitz

conditions, namely a1 > 0, a2 > 0.

-If D(p) < 0, λ± are complex conjugates and the condition (3.14) is equivalent to∣∣∣∣∣tan−1

(√
4a2 − (a1)2

a1

)∣∣∣∣∣ > α
π

2
.



Chapter 3. Fractional-order dynamical systems 56

3)For n = 3, we have:

-When D(p) > 0 then all the roots of P (λ) = 0 are real. Thus, the classical

Routh-Hurwitz conditions are equivalents to (3.14).

-When D(p) < 0, the roots of P (λ) = 0 are one real λ0 = −b and a complex

conjugate pair λ± = β ± iγ. Hence,

P (λ) = (λ+ b)(λ− β − iγ)(λ− β + iγ),

and its coefficients are

a1 = b− 2β, a2 = β2 + γ2 − 2bβ, a3 = b(β2 + γ2).

a)

a3 > 0 imply b > 0,

a1 > 0 imply b > 2β,

and

a2 > 0 imply
β2

cos2(θ)
> 2bβ > 4β2

thus

θ >
π

3

where θ = |arg(λ)|, so if α <
2

3
then (3.14) is satisfied.

b)

a1 < 0 imply b < 2β

and

a2 < 0 imply
β2

cos2(θ)
< 2bβ < 4β2

thus

θ <
π

3

so if α >
2

3
then

|arg(λ)| < α
π

2
.
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c)

a1a2 = a3 imply β(β2 + γ2) + b2β = 2bβ2

thus

β = 0 or β2 + γ2 + b2 = 2bβ.

The last equality is not valid if both a1 > 0 and a2 > 0 thus

min
λ
|arg(λ)| = π

2
.

Therefore (3.14) is satisfied for all α ∈ [0, 1).

4) For general n > 1 if P (z) has no roots in the region

|arg(λ)| < α
π

2
,

then the function
1

P (z)
will be analytic in this region. Using Cauchy theorem

∮
C

f(z)dz = 0,

for all f(z) analytic within and on C, and the fact that P (z) is polynomial of

degree > 1 this completes the proof

Corollary 3.12.

For general n > 1, a necessary condition for (3.14) is an > 0.

Proof.

For general n > 1, we have

P (λ) = [
∏
i

(λ+ bi)][
∏
j

(λ2 − 2βjλ+ β2
j + γ2

j )]

then

an = [
∏
i

bi][
∏
j

(β2
j + γ2

j )].

So if an ≤ 0, there exists at last i0 such that (bi0 ≤ 0). Hence, there exists at last

a positive real rout (−bi0 ≥ 0) of P (λ) = 0. Thus, minλ|arg(λ)| = 0. Therefore,

for all α ∈ [0, 1) (3.14) is not satisfied. Hence, the necessary condition for (3.14)
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is an > 0.

3.1.4 Lyapunov direct method for fractional system

Lyapunov direct method is used for studying both local and global stability of the

corresponding systems. In this section we discus the extension of Lyapunov direct

method for fractional-order nonlinear systems which leads to the Mittag-Leffler

stability [20, 45].

Theorem 3.13.

Let x = 0 be an equilibrium point for the system

C
0 D

α
t x(t) = f(t, x), α ∈ [0, 1), (3.17)

and D ⊂ Rn be a domain containing the origin.

Let V (t, x(t)) : [0,∞)×D→ R be a continuously differentiable function and locally

Lipschitz with respect to x such that

α1‖x‖a ≤ V (t, x(t)) ≤ α2‖x‖ab, (3.18)

C
0 D

β
t V (t, x(t)) ≤ −α3‖x‖ab, (3.19)

where t ≥ 0, x ∈ D, β ∈ [0, 1), α1, α2, α3, a and b are arbitrary positive constants.

Then, x = 0 is Mittag-Leffler stable.

If the assumptions hold globally on Rn. Then, x = 0 is globally Mittag-Leffler

stable.

The following theorem gives a generalized fractional Lyapunov direct method.

Theorem 3.14.

Let x = 0 be an equilibrium point for the system (3.17) and D ⊂ Rn be a domain

containing the origin.
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Let V (t, x(t)) : [0,∞)×D→ R be a continuously differentiable function and locally

Lipschitz with respect to x such that

α1‖x‖a ≤ V (t, x(t)) ≤ α2
C
0 D

−η
t ‖x‖ab, (3.20)

C
0 D

β
t V (t, x(t)) ≤ −α3‖x‖ab, (3.21)

where t ≥ 0, x ∈ D, β ∈ [0, 1), η 6= β, η > 0, |β − η| < 1, α1, α2, α3, a and b are

arbitrary positive constants. Then, x = 0 is asymptotically stable.

Now we apply the class-K functions to the analysis of fractional Lyapunov direct

method.

Definition 3.15.

A continuous function α : [0, t)→ [0,∞) is said to belong to class-K if it is strictly

increasing and α(0) = 0.

Lemma 3.16. (Fractional comparison principle)

Assume that C
0 D

α
t x(t) ≥ C

0 D
α
t y(t) and x(0) = y(0), for α ∈ (0, 1). So x(t) ≥ y(t).

Theorem 3.17.

Let x = 0 be an equilibrium point for the system (3.17). Assume that there exists

a Lyapunov function V (t, x(t)). and a class-K functions αi(i = 1, 2, 3 satisfying

α1(‖x‖) ≤ V (t, x(t)) ≤ α2(‖x‖), (3.22)

C
0 D

β
t V (t, x(t)) ≤ −α3(‖x‖), (3.23)

where β ∈ [0, 1). Then x = 0 is asymptotically stable.

Example 3.1.

Let consider the fractional system

C
0 D

α
t |x(t)| = −|x(t)|, (3.24)

where α ∈ (0, 1). We choose the Lipschitz function V (t, x) = |x| as a Lyapunov

candidate and α1 = α2 = a = b = 1, α3 = −1. Then, α1|x(t)|a ≤ V (t, x) ≤
α2|x(t)|ab and C

0 D
α
t V (t, x) ≤ −|x(t)|. Applying theorem (3.13) gives the Mittag-

Leffler stability of the equilibrium point x = 0.
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3.2 Periodic solutions

Recently, much attention has been focused on the existence of periodic solutions in

fractional-order systems [69, 73, 74, 78, 83]. The aim of this section is to highlight

on one of the basic differences between fractional order and integer order systems.

It is analytically shown that a time invariant fractional order system contrary to

its integer order counterpart cannot generate exactly periodic signals. As a result,

a limit cycle cannot be expected in the solution of these systems.

3.2.1 Fractional-order derivatives of periodic functions

Suppose that x(t) is a non-constant periodic function with a specific period T , i.e.

x(t+ T ) = x(t), for all t ≥ 0. (3.25)

Taking the derivative of both sides of (3.25) we obtain

dx

dt
(t+ T ) =

dx

dt
(t), for all t ≥ 0. (3.26)

Hence, the derivative of a non-constant periodic function x(t) with period T is a

periodic function with the same period T . Now we ask the following reasonable

question. is there a similar result for the fractional derivative of a non-constant

periodic function? A negative answer for this question is claimed in [69].

Theorem 3.18.

Suppose that x(t) is a non-constant periodic function with a specific period T and

m-times differentiable. The fractional-order derivative function 0D
α
t x(t) (symbol

0D
α
t denote the Riemann-Liouville, Grünwald-Litnikov or Caputo fractional-order

derivative operator) where 0 < α /∈ N and m is the first integer greater than α,

cannot be a periodic function with period T .

Proof.

The proof of this theorem can be found in [69]

Example 3.2.

Consider the function x(t) = sin(t), the Laplace transform of fractional-order

derivative of x(t) is given as

L( 0D
α
t x(t)) = sαX(s) =

sα

1 + s2
(3.27)



Chapter 3. Fractional-order dynamical systems 61

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

 

 

y= 0
GLDt

α sin(t)

y=sin(t+απ/2)

t

y

Figure 3.2: Graphical representation of the fractional derivative 0D
0.5
t sin(t)

and the function sin(t+ 0.5π2 )

where 0 < α < 1. The inverse Laplace transform of (3.27) is obtained as

0D
α
t x(t) = t1−αE2,2−α(−t2). (3.28)

For α = 1 the function t1−αE2,2−α(−t2) is a non-constant periodic function and

for 0 < α < 1 this function is not periodic, but it asymptotic converges to the

periodic function sin(t+ απ/2) as shown in Figure 3.2.

3.2.2 Non-existence of periodic solutions in a class of fractional-

order systems

Given a fractional-order time-invariant system based on the Caputo derivative and

a vector of continuous functions f in the form

C
0 D

α
t x(t) = f(x), α ∈ (0, 1) (3.29)

a non-constant solution

x(t) = (x1(t), x2(t), ..., xn(t))T ,



Chapter 3. Fractional-order dynamical systems 62

of the system (3.29) is said to be a periodic solution if there exists a constant

T > 0 such that:

x(t+ T ) = x(t), (3.30)

for all t ≥ 0. The minimum of such T is called period of this solution. The periodic

orbit or cycle is the image of the interval [0, T ] under

x(t) = (x1(t), x2(t), ..., xn(t))T ,

in the state space Rn [79].

The main outcome of this section is summarized in the following theorem:

Theorem 3.19.

The fractional-order time-invariant system (3.29) defined via the Caputo derivative

cannot have any non-constant smooth periodic solution.

This result has been extended in [69], by analytically proving that fractional-

order system (3.29) based on Grünwald-Letnikov derivative or Riemann-Liouville

derivative cannot generate exact periodic solutions.

Proof.

Suppose that x̃(t) is a solution for differential equation (3.29). If x̃(t) is a non-

constant periodic function with periodic T , then

f(x̃(t)) = f(x̃(t+ T )), (3.31)

for all t > 0. From (3.29) and (3.31) we get

0D
α
t x̃(t+ T ) =0 D

α
t x̃(t),

for all t > 0, which is in contradiction with theorem (3.18). Consequently, x̃(t),

as a solution of differential equation (3.29), cannot be a non-constant periodic

function.

Example 3.3.

Consider the marginally stable LTI system{
C
0 D

α
t x = k cos(απ

2
)x+ k sin(απ

2
)y

C
0 D

α
t y(t) = −k sin(απ

2
)x+ k cos(απ

2
)y.

(3.32)
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System (3.32) can be written in matricial form as follows

C
0 D

α
t X = AX (3.33)

where

A =

(
k cos(απ

2
) k sin(απ

2
)

−k sin(απ
2
) k cos(απ

2
)

)
,

and

X =

(
x

y

)
.

The matrix A has two complex conjugate eigenvalues

λ1,2 = k( cos(α
π

2
)± isin(α

π

2
)),

and its corresponding eigenvectors are

v1 =

(
1

i

)
,

and

v2 =

(
1

−i

)
.

Hence, the general solution of (3.32) is given by

X(t) =
1

2

[
c1

(
1

0

)
+ c2

(
0

1

)]
[Eα(λ1t

α) + Eα(λ2t
α)]

− 1

2i

[
c1

(
1

0

)
− c2

(
0

1

)]
[Eα(λ1t

α)− Eα(λ2t
α)] , (3.34)

where c1, c2 are arbitrary real numbers.

For special case α = 1 the solution can be rewritten as

X(t) =

(
c1(cos(kt)− sin(kt))

c2(cos(kt) + sin(kt))

)
. (3.35)
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If (x0, y0) 6= (0, 0), then all solutions of system (3.32) are periodic of period 2π
k

.

But, for case 0 < α < 1, non-zero solutions of (3.32) are not periodic, although

they converge to periodic signals [74].

Remark 3.20.

The fractional order system with lower terminal of a = ±∞ could have periodic

solutions [83].

3.3 Bifurcation and chaos in fractional systems

Chaotic systems have been a focal point of renewed interest for many researchers

in the past few decades. Such non-linear systems can occur in various natural

and man-made systems, and are known to have great sensitivity to initial con-

ditions. Thus, two trajectories starting at arbitrarily nearby initial conditions in

such systems could evolve in drastically different fashions, and soon become totally

uncorrelated. At first glance, chaotic time trajectories look very much like noise.

In fact, chaotic signals and noise have similar broad-band frequency spectrum char-

acteristics. However, there is a fundamental difference between noise and chaos,

which is determinism. Chaos can be classified as deterministic but unpredictable.

Whereas noise is neither deterministic nor predictable. This unpredictability of

chaotic time signals has been utilized for secure communication applications [6].

Basically, the useful signal is encapsulated in a chaotic envelope (produced by a

chaotic oscillator) at the transmitter end, and is transmitted over the communi-

cation channel as a chaotic signal. At the receiver end, the information-bearing

signal is recovered using various techniques [8]. It has been shown that fractional-

order systems, as generalizations of many well-known systems, can also behave

chaotically, such as the fractional order systems of Lorenz [34], Chua [35], Chen

[44], Rössler [43], Coullet [65], modified Van der Pol-Duffing [50] and Liu [77].

It has been shown that, chaos in fractional order autonomous systems can occur

for orders less than three and this cannot happen in their integer order counter-

parts according to the Poincaré-Bendixon theorem [38].

Various scenarios of transition to chaos have been detected in fractional order sys-

tems. A well know one of them is the period doubling to chaos which is initialized

in general by a Hopf bifurcation [3, 68].
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3.3.1 Hopf bifurcation

Different from integer order systems, there exist less theoretical tools to study

dynamics of fractional-order systems. Recall that Hopf bifurcation in integer or-

der systems can be investigated in detail by means of normal form theory and

center manifold theorem [36], while similar tools have not yet developed for frac-

tional systems. So detailed results about fractional Hopf bifurcation are few. Only

through stability theory of equilibrium points and numerical simulations, we have

analyzed Hopf bifurcation of 3-dimensional fractional-order systems in [3].

Let consider the following three-dimensional fractional-order commensurate sys-

tem:

Dqx = f(β, x) (3.36)

where q ∈]0, 2[, x ∈ R3, and suppose that E is an equilibrium point of this system.

In the integer case (when q = 1) the stability of E is related to the sign of

Re(λi), i = 1, 2, 3 where λi are the eigenvalues of the jacobian matrix ∂f
∂x
|E.

If Re(λi) < 0 for all i = 1, 2, 3 then E is locally asymptotically stable. If there

exist i such that Re(λi) > 0 then E is unstable.

The conditions of system (3.36) with q = 1, to undergo a Hopf bifurcation at the

equilibrium point E when β = β∗, are

- The jacobian matrix has two complex-conjugate eigenvalues λ1,2(β) = θ(β) ±
iω(β), and one real λ3(β) (this can be expressed by D(PE(β)) < 0),

- θ(β∗) = 0, and λ3(β∗) 6= 0,

- ω(β∗) 6= 0,

- dθ
dβ

∣∣∣
β=β∗

6= 0.

But in the fractional case the stability of E is related to the sign of

mi(q, β) = q
π

2
− |arg(λi(β))| , i = 1, 2, 3.

If mi(q, β) < 0 for all i = 1, 2, 3, then E is locally asymptotically stable.

If there exist i such that mi(q, β) > 0, then E is unstable.

So the function mi(q, β) has a similar effect as the real part of eigenvalue in integer

systems, therefore we extend the Hopf bifurcation conditions to the fractional

systems by replacing Re(λi) with mi(q, β) as follows
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- D(PE(β)) < 0,

- m1,2(q, β∗) = 0, and λ3(β∗) 6= 0,

- ∂m
∂β

∣∣∣
β=β∗

6= 0.

Remark 3.21.

The limit cycle which appear through a Hopf bifurcation is not a solution for a

fractional system but it attracts a nearby solutions.

3.3.2 A necessary condition to have chaos in fractional-

order systems

A saddle point in a 3-D nonlinear integer order system, is an equilibrium point on

which the equivalent linearized model, has at least, one eigenvalue in the stable

region and one in the unstable region. A saddle point is of index 1 if one of the

eigenvalues is in the unstable region and others are in the stable region. A saddle

point is of index 2 if two eigenvalues are in the unstable region and one is in the

stable region. In chaotic systems, it is found that scrolls are generated only around

the saddle points of index 2. The saddle points of index 1 are responsible only for

connecting the scrolls [12, 18, 41, 66]. In the 3-D commensurate fractional order

systems like their ordinary counterparts, the saddle points of index 2 play a key

role in generation of scrolls [21, 22]. Assume that a 3-D chaotic system

ẋ = f(x),

displays a chaotic attractor. For every scroll existing in the chaotic attractor, this

system has a saddle point of index 2 encircled by its respective scroll. Suppose

that Ω is the set of equilibrium points of the system surrounded by scrolls. The

corresponding fractional system

Dαx = f(x),

possesses the same equilibriums points. Hence, a necessary condition for frac-

tional order system to exhibit the chaotic attractor similar to its integer order

counterpart is instability of the equilibrium points in Ω. Otherwise, one of these

equilibrium points becomes asymptotically stable and attracts the nearby trajec-

tories. According to (3.14), this necessary condition is mathematically equivalent
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to [75]

α
π

2
−min

i
(|arg(λi)|) ≥ 0.

However, referring to 3-D integer-order systems, recent findings have shown that

in general case the local instability of the equilibrium points cannot be considered

as a necessary condition to generate chaos. For example, in [82], a simple 3-D

autonomous system displays a chaotic attractor located around two stable node-

type of foci as its only equilibrium points. Additionally, in [76], it has been reported

a 3-D autonomous chaotic system that has only one equilibrium and furthermore,

this equilibrium is a stable node-focus. these recent findings make clear that in

general case a necessary condition to generate chaos is the global instability of the

equilibrium points. In order to confirm the existence or no-existence of chaotic

behaviores in a fractional-order system, two useful tools are a valuable, namely

the bifurcation diagram and the Lyapunov exponents.

3.3.3 Lyapunov exponents

Lyapunov exponents were first introduced by Lyapunov in order to study the

stability of non-stationary solutions of ordinary differential equations. These ex-

ponents provide a meaningful way to categorize steady-state behavior of dynamical

systems, determine instability in the system, classify invariant sets, and approxi-

mate the dimension of strange attractors or other non-trivial invariant sets. Lya-

punov exponents

λi (i = 1, ..., n),

are the average exponential rates of divergence or convergence of nearby orbits in

the state space. The signs of Lyapunov exponents indicate the stability property

of the dynamic system. For example, when all Lyapunov exponents are negative,

trajectories from all directions in the state space converge to the equilibrium point.

In this case, the system is exponentially stable about the equilibrium point and

the attractor of the system is a fixed point. If one exponent is zero while others

are negative, trajectories converge from all and the attractor in the state space is

a one-dimensional curve. If the trajectory is further bounded and forms a closed

loop, the system performs a periodic motion and has a stable limit cycle. Two

zero Lyapunov exponents mean that the attractor is a two-dimensional torus in

the state space, indicating quasi-periodic motion. If at least one Lyapunov expo-

nent is positive, two initially nearby trajectories separate at an exponential rate

and the system is chaotic. The computation of Lyapunov characteristic exponents
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(LCE) for nonlinear dynamical systems is a fundamental problem for understand-

ing the dynamical behaviour of nonlinear systems, and can be classified on two

set (analytical methods based on the mathematical model and numerical methods

based on an observed time series). Many researches works have been devoted to

this end, including [9–11, 31, 39, 81, 84].

Although an autonomous fractional system cannot define a dynamical system in

the sense of semigroup because of the memory property determined by the frac-

tional derivative, we can’t use directly classical analytical methods for computation

of Lyapunov exponents in fractional systems based on the knowledge of Jacobian

matrix, but we can still estimating Lyapunov exponents from time series data after

performing a phase-space reconstruction. A time series is a sequence of observa-

tions which are ordered in time. Since a single experimental time series is affected

by all of the relevant dynamical variables, it contains a relatively complete his-

torical record of the dynamics. The procedure of calculating Lyapunov exponents

from a time series can be summarized in the following steps [81, 84]:

1. Reconstructing the dynamics in a finite-dimensional space. Choose an em-

bedding dimension dE and construct a dE-dimensional orbit representing the

time evolution of the system by the time-lag method. This means that we

define

yi = (xi, xi+Tlag , ..., xi+(dE−1)Tlag), (3.37)

where Tlag is the time lag. Equation (3.37) provides the fiducial trajectory

for the analysis of Lyapunov exponents.

2. Determining the neighbors yj of yi , i.e., the point of the orbit which are

contained in a shell of suitable radius r, and centered at yi

rmin ≤ ‖yj − yi‖ ≤ r. (3.38)

3. Determining the dE × dE matrix Ji which describes how the time evolution

sends small vectors around yi to small vectors around yi+1. The matrix Ji is
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obtained by looking for neighbors yj of yi, and imposing

Ji(yj − yi) ≈ yj+1 − yi+1. (3.39)

The elements of Ji are obtained by a least-squares method then we obtain a

sequence of matrices J1, J2, J3....

4. Using QR decomposition, one determines successively orthogonal matrices

Q(j) and upper triangular matrices R(j) with positive diagonal elements such

that Q(0) is the unit matrix and

J1Q(0) = Q(1)R(1),

J2Q(1) = Q(2)R(2),

...

Jj+1Q(j) = Q(j+1)R(j+1).

This decomposition is unique except in the case of zero diagonal elements.

Then Lyapunov exponents λiK are given by

λiK =
1

TK

K−1∑
j=0

lnR(j)ii, (3.40)

where K is the available number of matrices, T is sampling time step, and

i = 1, 2, ..., dE.

5. Repeating Step 2 through Step 4 along the fiducial trajectory until the con-

vergent Lyapunov exponents are achieved.

Another approach for estimating Lyapunov exponents in fractional-order systems

recently introduced is the semi-analytical method in [16].

3.3.4 The 0-1 test for validating chaos

An efficient binary test for chaos called the 0− 1 test has been recently proposed

and applied to fractional systems in [13, 14]. The idea underlying the test is to

construct a random walk-type process from the data and then to examine how

the variance of the random walk scales with time. Specifically, consider a set of



Chapter 3. Fractional-order dynamical systems 70

discrete data, sampled at times n = 1, 2, 3, ... , representing a one-dimensional

observable data set obtained from the system dynamics. Consider the real valued

function p(n), as defined in [14]. On the basis of the function p(n), define the

mean square displacement M(n). In particular:

- If the behavior of p(n) is Brownian (i.e., the underlying dynamics is chaotic),

then M(n) grows linearly in time.

- If the behavior of p(n) is bounded (i.e., the underlying dynamics is non-

chaotic), then M(n) is bounded.

Thus it should be examined whether the asymptotic growth rate

K = lim
n→∞

logM(n)

logn
,

approaches 0 or 1.

When K is close to 0, the motion is classified as regular (i.e. periodic or quasi-

periodic); when K is close to 1, the motion is classified as chaotic.
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Applications

This chapter is devoted to the application of the tools previously presented, as a

results three papers are published in a certain international journals.

In the first paper [1] titled “A new chaotic attractor from hybrid optical bistable

system” we postulate a new three-dimensional autonomous chaotic system, where

the single quadratic nonlinearity in the original hybrid optical bistable system is

replaced by a single cubic non linearity; the new system can generates two 1-scroll

chaotic attractors simultaneously or one 2-scroll chaotic attractor. The chaotic be-

haviors are validated by means of Bifurcation diagram with an associated Poincaré

map and the Lyapunov exponent spectrum.

The second paper [3] presents and analyzes the fractional-order modified hy-

brid optical system, furthermore fractional Hopf bifurcation conditions are pos-

tulated. It has been demonstrated that chaos, as well as the other usual non-

linear dynamic phenomena, occur in this systems with mathematical order less

than three. The Largest Lyapunov exponents and the bifurcation diagrams shows

the period-doubling bifurcation and the transformation from periodic to chaotic

motion through the fractional-order and confirms the justness of the proposed

fractional Hopf bifurcation conditions (in this system).

The fact that financial variables possess long memories makes fractional modelling

appropriate for dynamical behaviors in financial systems. Chaotic phenomenon

makes prediction impossible in the financial world then the deletion of this phe-

nomenon from fractional financial system is very useful, the main contribution

of the last paper [2] is to this end. Nonlinear feedback control scheme has been

extended to control fractional financial system. The results are proved analyti-

cally by applying the Lyapunov linearization method and stability condition for

fractional system. Numerically the unstable fixed points have been successively

71
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stabilized for different values of fractional-order, moreover unstable periodic orbits

has been stabilized.
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4.1 A new chaotic attractor from hybrid optical

bistable system

Nonlinear Dyn (2012) 67:457–463
DOI 10.1007/s11071-011-9994-5

O R I G I NA L PA P E R

A new chaotic attractor from hybrid optical bistable system

Mohammed-Salah Abdelouahab ·
Nasr-eddine Hamri

Received: 25 August 2010 / Accepted: 21 February 2011 / Published online: 17 March 2011
© Springer Science+Business Media B.V. 2011

Abstract In this work, a new three-dimensional au-
tonomous chaotic system has been introduced by mod-
ifying a hybrid optical system. The single quadratic
nonlinearity is replaced by a single cubic nonlinearity;
the new system can display two 1-scroll chaotic at-
tractors simultaneously or one 2-scroll chaotic attrac-
tor. The bifurcation diagram is obtained and Lyapunov
spectrum is calculated for the proposed system. The
results show that the new system exhibits rich com-
plexity features such as stable, periodic, and chaotic
dynamics.

Keywords New chaotic attractor · Hopf bifurcation ·
Lyapunov spectrum · Bifurcation diagram

1 Introduction

Chaos has been found to be very useful and has great
potential in many technological disciplines such as in
computer sciences, power systems protection, biomed-
ical systems analysis, flow dynamics and liquid mix-
ing, encryption, and communications.

The first chaotic attractor in a three-dimensional au-
tonomous system was discovered by Lorenz in 1963,

M.-S. Abdelouahab (�) · N.-e. Hamri
Department of Science and Technology, University Center
of Mila, Mila 43000, Algeria
e-mail: medsalah3@yahoo.fr

while studying atmospheric convection [1]; this sys-
tem has seven terms on the right-hand side, two of
which are nonlinear (xz and xy). In 1976, Rössler
found a three-dimensional quadratic autonomous
chaotic system [2], which also has seven terms on the
right-hand side, but with only one quadratic nonlinear-
ity (xz). Obviously, the Rössler system has a simpler
algebraic structure as compared to the Lorenz system.
In 1979, Rössler proposed another even simpler (al-
gebraic) system [3], which has only six terms with a
single quadratic nonlinearity (y2). Some attention has
been focused on effectively creating chaos via sim-
ple physical systems such as electronic circuits and
switching piecewise-linear controllers. In 1983, Chua
has introduced a simple electronic circuit that exhibits
chaotic behavior, which can be accurately modeled by
means of a system of three nonlinear ordinary differ-
ential equations [4].

In 1984, Flüggen and Mitschke reported the ob-
servation of chaos in a hybrid optical bistable device
and studied its realization as an electronic circuit; see
Fig. 1. The structure of the system is described by a
third-order differential equation with a quadratic non-
linearity; this equation can be transformed on a three-
dimensional autonomous system which has only six
terms with a single quadratic nonlinearity (x2). This
system can display only a 1-scroll attractor [5] and [6].
Many other works in literature focused on introduc-
ing new chaotic systems [7–17]. In this paper, we in-
troduce a new three-dimensional autonomous chaotic
system by modifying a hybrid optical system; a sin-

Author's personal copy
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Fig. 1 (a) Set-up of the hybrid optical device. (b) The elec-
tronic model

gle quadratic nonlinearity (x2) is replaced by a single
cubic nonlinearity (x3). The new system can display
two 1-scroll chaotic attractors simultaneously or a one
2-scroll chaotic attractor.

2 The model

2.1 Original system

The references [5] and [6] describe an electrooptical
hybrid system without time delay exhibiting chaotic
behavior and gives its realization as an electronic cir-
cuit as shown in Fig. 1.

The simplified structure of this system is described
by the following third-order differential equation with
quadratic nonlinearity:

...
U = −Ü

(
L

R
+ RmC

)
− U̇

(
Rm

R
+ C

Cm

+ 1

)

− 1

RCm

U + ϑ2

RCm

(U − μ)2 (1)

where U is the voltage in the capacitor, Rm variable
resistance, R resistance, Cm,C capacitor, L inductiv-
ity, μ bias, and ϑ is the gain. The third-order differen-
tial equation (1) is transformed into a system of three

Fig. 2 Chaotic attractor of system (2) for α = 0.5 and β = 1

first-order equations:

⎧⎨
⎩

ẋ = y

ẏ = z

ż = −αz − y + f (x)

(2)

where f (x) is the logistic function given by

f (x) = βx(1 − x) (3)

α and β are positive real numbers. System (2) has
only two equilibrium points E0 = (0,0,0) and E+ =
(1,0,0). For some values of parameters, this system
exhibits chaotic behavior and displays 1-scroll chaotic
attractor which is depicted in Fig. 2.

2.2 Modified system

In this paper, a new continuous-time three-dimensional
autonomous system is presented as follows:

⎧⎨
⎩

ẋ = y

ẏ = z

ż = −αz − y + g(x)

(4)

where we replace the quadratic logistic function f in
system (1) by a cubic function g:

g(x) = βx
(
1 − x2) (5)

The divergence is given by

∇V = ∂ẋ

∂x
+ ∂ẏ

∂y
+ ∂ż

∂z
= −α
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Therefore, system (4) is dissipative for every strictly
positive value of α. An exponential contraction of the
system is

dV

dt
= e−α

so a volume element V0 is apparently contracted by
the flow into a volume element V0e

−αt in time t ; it
means that each volume containing the trajectory of
this dynamical system shrinks to zero as t → +∞ at
an exponential rate −α.

2.2.1 Stability of equilibria

The new system (4) has three equilibrium points which
are found by equating the right-hand sides of (4) to
zero and they are given as follows:

E0 = (0,0,0), E+ = (1,0,0) and E− = (−1,0,0)

The Jacobian matrix at the equilibrium E(xeq, yeq, zeq)

is

JE =
⎛
⎝ 0 1 0

0 0 1
β(1 − 3x2

eq) −1 −α

⎞
⎠

Its characteristic polynomial is

PE(λ) = λ3 + αλ2 + λ − β
(
1 − 3x2

eq

)

In order to study the stability conditions of the
equilibrium points, we apply Routh–Hurwitz criterion
[18], which states that all real parts of eigenvalues are
negative if and only if the following condition holds:

a1 > 0, a3 > 0, and a1a2 − a3 > 0 (6)

where a1, a2, and a3 are defined such that

PE(λ) = λ3 + a1λ
2 + a2λ + a3

2.2.1.1 Stability condition of E0 The characteristic
polynomial of JE0 is

PE0(λ) = λ3 + αλ2 + λ − β (7)

applying Routh–Hurwitz criterion (6), we find that E0

is instable for every positive value of α and β .

Fig. 3 Poincaré section Σ for α = 0.5 and β = 0.65

Fig. 4 Bifurcation diagram yn as function of β with α = 0.5

2.2.1.2 Stability condition of E± The characteristic
polynomial of JE± is

PE±(λ) = λ3 + αλ2 + λ + 2β (8)

applying Routh–Hurwitz criterion (6), we find that E+
and E− are both locally asymptotically stable for ev-
ery positive value of α and β satisfying the condition
α > 2β .

3 Hopf bifurcation analysis

This section will describe the Hopf bifurcation of the
β-parametric system. Since equilibrium point E0 is in-
stable for every positive value of α and β , but E+, E−
change stability properties at α = 2β , we will study
the Hopf bifurcation from E±.
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Fig. 5 Phase space of system (4) for α = 0.5, (a) at β = 0.2
fixed points E± asymptotically stable, (b) at β = 0.35 period-1
limit cycle, (c) at β = 0.45 period-2 limit cycle

Proposition 1 System (4) undergoes a supercritical
Hopf bifurcation at E± for a given positive value of
α, when the parameter β crosses the critical value
βc = α

2 .

Proof We translate the equilibrium points E± to the
origin (0,0,0). we obtain the linear system:

Ẋ = JE±X (9)

Fig. 6 Phase space of system (4) for α = 0.5, (a) at β = 0.485
period-4 limit cycle, (b) β = 0.49, (c) at β = 0.5 tow 1-scroll
chaotic attractors exist

where

X =
⎛
⎝x ± 1

y

z

⎞
⎠ and JE± =

⎛
⎝ 0 1 0

0 0 1
−2β −1 −α

⎞
⎠

We wish to determine the sufficient conditions
such that JE± will have one real negative eigen-
value λ0(β) and two complex-conjugate eigenvalues
λ±(β) = γ (β) ± iω(β), with the real part γ (β) satis-
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fies the conditions:

γ (βc) = 0 and
dγ

dβ

∣∣∣∣
β=βc

�= 0

We write the characteristic equation as follows:

(λ − λ0)(λ − λ+)(λ − λ−) = 0

then

λ3 − (2γ + λ0)λ
2 + (|λ+|2 + 2γ λ0)λ − |λ+|2λ0 = 0

(10)

From (8) and (10), we get

⎧⎨
⎩

2γ + λ0 = −α

|λ+|2 + 2γ λ0 = 1
|λ+|2λ0 = −2β

(11)

so λ0 = −(α + 2γ ) < 0. The Jacobian matrix JE± has
two pure imaginary eigenvalues if and only if a1a2 =
a3, therefore, β = α

2 (in this case, we have λ0 = −α,
λ+ = i, and λ− = −i).

So, the critical Hopf bifurcation point βc is βc = α
2 ;

the two equilibrium points E± change their stability
properties at βc . From (11), we obtain

2β − 2γ − α − 2γ (2γ + α)2 = 0

differentiating with respect to β, we get

dγ

dβ
= 1

(2γ + α)2 + 4γ (2γ + α) + 1

then

dγ

dβ

∣∣∣∣
β=βc

= 1

α2 + 1
�= 0

It follows that system (4) satisfies the conditions of
Hopf bifurcation theorem at E±; see [19]. �

4 Numerical results

In this section, the dynamical behaviors of the system
(4) are investigated numerically, where α is fixed at
α = 0.5 and β is considered as a control parameter;
a fourth Runge–Kutta algorithm is used to solve the
system.

Fig. 7 2-scroll chaotic attractor for α = 0.5 and β = 0.65,
(a) projection in x–y plan, (b) projection in x–z plan, (c) pro-
jection in y–z plan

4.1 Period doubling route to chaos

For drawing the bifurcation diagram, we use an appro-
priate Poincaré section Σ defined by

Σ = {
(y, z) ∈ R2/x = 1

}

as shown in Fig. 3.
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Fig. 8 Lyapunov
exponents λ1, λ2 and λ3, as
function of β , for α = 0.5

The resulting points {yn}n∈N are plotted versus the
desired parameter β; see Fig. 4.

The Phase space of system (4) for α = 0.5 is
represented in Fig. 5, Fig. 6 using the initial con-
ditions (x0, y0, z0) = (1.5,0,0), and (x̃0, ỹ0, z̃0) =
(−1.5,0,0), and in Fig. 7 using the initial conditions
(x0, y0, z0) = (1.5,0,0).

For β < 0.25, the trajectory converge to the fixed
points E± which are locally asymptotically stable; see
Fig. 5a. When β > 0.25, we find the two limit cy-
cles that have emerged from the two fixed points E±
through a Hopf bifurcation, as described above; see
Fig. 5b. With decreasing dissipation (increasing β), we
observe a succession of further bifurcations, where the
period doubles. At β ≈ 0.44, the period-one limit cy-
cles become instable and a period-two limit cycles ap-
pear; see Fig. 5c, followed by a bifurcation to period-
four limit cycles at β ≈ 0.48; see Fig. 6a. This bifurca-
tion process continues up to a critical value of β ≈ 0.5,
where two chaotic attractors appear see Fig. 6c. When
β ≈ 0.6, the two chaotic attractors join and give a 2-
scroll chaotic attractor; see Fig. 7a, b, c. We can ob-
serve some other periodic windows at β ≈ 0.68 and
β ≈ 0.72.

4.2 Lyapunov exponents and Lyapunov dimension

The Lyapunov exponents measure the exponential
rates of divergence or convergence of nearby trajec-
tories in phase space. λ > 0 is related to the expanding
nature of different directions in phase space, λ < 0

is related to the contracting nature of different direc-
tions in phase space, and λ = 0 is related to the critical
nature between the contracting expanding nature of
different directions in phase space. The efficient algo-
rithm given by Wolf et al. [20], is used to calculate
Lyapunov exponents λ1, λ2, and λ3 of system (4). The
results are depicted in Fig. 8 as function of parame-
ter β .

When β < 0.25, the Lyapunov exponents satisfy
λ1 < 0, λ2 < 0, λ3 < 0, so there is a stationary regime.
For 0.25 < β < 0.5 they satisfy λ1 ≈ 0, λ2 < 0,
λ3 < 0, then system (4) undergoes periodic orbits. For
all most values of β ≥ 0.5, they satisfy λ1 > 0, λ2 ≈ 0,
λ3 < 0, then system (4) is chaotic. According to Ka-
plan and Yorke [21], the Lyapunov dimension of the
chaotic attractor is defined as follows:

DL = j +
∑i=j

i=1 λi

|λj+1| (12)

where λ1 ≥ λ2 ≥ λ3 ≥ · · · are the Lyapunov expo-
nents, j is the largest integer such that

∑i=j

i=1 λi ≥ 0,

and
∑i=j+1

i=1 λi < 0.
When α = 0.5 and β = 0.65, the three Lyapunov

exponents are λ1 ≈ 0.13, λ2 ≈ 0.00, and λ3 ≈ −0.87.

Applying formula (12), we find the fractal dimen-
sion of system (4); it is DL = 2.1530.

5 Conclusions

This article has presented and further studied a new
chaotic system of three-dimensional autonomous
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equations with cubic nonlinearity, which can gener-
ate two 1-scroll chaotic attractors simultaneously, (or
a one 2-scroll chaotic attractor) with three equilibria.
Dynamical behaviors of this new chaotic system, in-
cluding some basic dynamical properties, bifurcations,
periodic windows, routes to chaos, have been analyzed
both theoretically and numerically, by means of a bi-
furcation diagram with an associated Poincaré map
and Lyapunov exponent spectrum.
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Abstract In this paper, a chaotic fractional-order
modified hybrid optical system is presented. Some ba-
sic dynamical properties are further investigated by
means of Poincaré mapping, parameter phase por-
traits, and the largest Lyapunov exponents. Fractional
Hopf bifurcation conditions are proposed; it is found
that Hopf bifurcation occurs on the proposed system
when the fractional-order varies and passes a sequence
of critical values. The chaotic motion is validated by
the positive Lyapunov exponent. Finally, some numer-
ical simulations are also carried out to illustrate our
results.

Keywords Fractional system · Stability · Hopf
bifurcation · Chaos

1 Introduction

The idea of fractional calculus has been known since
the development of the regular calculus, and it means
a generalization of integration and differentiation to

M.-S. Abdelouahab (�) · N.-E. Hamri
Institute of Science and Technology, University Center
of Mila, Mila 43000, Algeria
e-mail: medsalah3@yahoo.fr

J. Wang
Cisco School of Informatics, Guangdong University
of Foreign Studies, Guangzhou 510006, P.R. China

arbitrary order. It has been found that many systems
in interdisciplinary fields can be described by the frac-
tional differential equations, such as viscoelastic sys-
tems, dielectric polarization, electrode-electrolyte po-
larization, electromagnetic waves, and quantum evo-
lution of complex systems [1–5].

Optics is a field in which the use of conventional
calculus plays a major role, and it is of interest to see
how fractional calculus may offer useful mathemati-
cal tools in this field. For example; fractionalization of
Gaussian beams is given in [6], fractionalization of the
Fourier transform and its applications has been already
studied by several researchers [7–9], a fractional vari-
ational optical flow model is introduced in [10], and
a new class of nondiffracting fractional vortex beams
that connect Bessel beams of successive order in a
smooth transition is introduced in [11]. On the other
hand, memory effect has been observed in optical sys-
tems [12, 13]; this fact makes fractional modeling ap-
propriate for dynamic behaviors in optical systems.
Based on the above motivations, one might be tempted
to introduce the fractional-order version of the modi-
fied hybrid optical system presented in our previous
work [14].

There are several definitions of fractional deriva-
tives [15–18].

In this paper, we use the Caputo-type fractional
derivative defined in [15] by
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Dαf (t) = 1

Γ (n − α)

∫ t

0
(t − τ)n−α−1f (n)(τ ) dτ

= jn−α

(
dn

dtn
f (t)

)
,

where n = [α] is the value of α rounded up to the near-
est integer, Γ is the gamma function and jβ is the
Riemann–Liouville integral operator defined by

jβf (t) = 1

Γ (β)

∫ t

0
(t − τ)β−1f (τ) dτ.

The Laplace transform of the Caputo derivative is

L
{
Dαf (t)

} = sαL
{
f (t)

} −
n−1∑
k=0

sα−1−kf (k)(0).

For zero initial conditions, we have L{Dαf (t)} =
sαL{f (t)}.

An important problem facing the implementation
of fractional order systems is stability, stability of lin-
ear fractional systems was studied in [19, 20], and
some fractional order Routh–Hurwitz conditions are
given in [21].

2 The fractional-order modified hybrid optical
system

The fractional-order modified hybrid system is given
by

⎧⎨
⎩

Dq1x = y

Dq2y = z

Dq3z = −αz − y + βx(1 − x2),

(1)

where the parameters α,β are both positive real, and
q = (q1, q2, q3) is the fractional-order. When q =
(1,1,1), system (1) exhibits chaotic behavior with
the parameter values α = 0.35 and β = 0.6. Figure 1
shows the chaotic attractor.

2.1 Stability analysis

In this section we proceed with commensurate order
q1 = q2 = q3 = q .

Fig. 1 Chaotic attractor of system (1), when q = (1,1,1), with
the parameter values α = 0.35, and β = 0.6

2.1.1 Fractional order Routh–Hurwitz (FR-H)
conditions

Let consider the following three-dimensional frac-
tional-order commensurate system:

Dqx = f (x), (2)

where q ∈ ]0,1], x ∈ R3, and suppose that xeq is an
equilibrium point of this system, then its characteristic
equation is given as

P(λ) = λ3 + a1λ
2 + a2λ + a3 = 0, (3)

and its discriminant is given by:

D(P ) = 18a1a2a3 + (a1a2)
2 − 4a3(a1)

3

− 4(a2)
3 − 27(a3)

2. (4)

According to [21], we have the following fractional
order Routh–Hurwitz conditions:

1. If D(P ) > 0, then the necessary and sufficient con-
dition for the equilibrium point E, to be locally
asymptotically stable, is a1 > 0, a3 > 0, a1a2 −
a3 > 0.

2. If D(P ) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, then E is lo-
cally asymptotically stable for q < 2/3. However,
if D(P ) < 0, a1 < 0, a2 < 0, q > 2/3, then E is
unstable.

3. If D(P ) < 0, a1 > 0, a2 > 0, a1a2 − a3 = 0, then
E is locally asymptotically stable for all q ∈ ]0,1[.

4. The necessary condition for the equilibrium point
E, to be locally asymptotically stable is a3 > 0.
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Remark 1 Notice that when q ∈ ]1,2[, if D(P ) > 0,
then all the roots of P(λ) = 0 are real, hence Routh–
Hurwitz conditions a1 > 0, a3 > 0, a1a2 − a3 > 0,
are both necessary and sufficient for E, to be lo-
cally asymptotically stable, but if D(P ) < 0, then the
Routh–Hurwitz conditions a1 > 0, a3 > 0, a1a2 −
a3 > 0, are necessary, but not sufficient.

2.1.2 Stability of the equilibrium points

The system (1) has three equilibrium points which are
found by equating the right-hand sides of (1) to zero,
and they are given as follows:

E0 = (0,0,0), E+ = (1,0,0), and

E− = (−1,0,0).

The Jacobian matrix evaluated at the equilibrium E =
(xeq, yeq, zeq) is

JE =
⎛
⎝ 0 1 0

0 0 1
β(1 − 3x2

eq) −1 −α

⎞
⎠ ,

and its characteristic polynomial is

PE(λ) = λ3 + αλ2 + λ − β
(
1 − 3x2

eq

)

so, we have a1 = α, a2 = 1, a3 = β(3x2
eq − 1), and

D(P ) = 18αβ
(
3x2

eq − 1
) − 4β

(
3x2

eq − 1
)
α3

× 27β3(3x2
eq − 1

)3 + α2 − 4.

2.1.2.1 Stability condition of E0 The characteristic
polynomial of JE0 is

PE0(λ) = λ3 + αλ2 + λ − β

so a3 = −β < 0, the FR-H conditions are not verified
for all value of q ≤ 2, then E0 is unstable.

2.1.2.2 Stability condition of E± The characteristic
polynomial of JE± is

PE±(λ) = λ3 + αλ2 + λ + 2β (5)

so a1 = α > 0, a2 = 1 > 0, a3 = 2β > 0, and

D(PE±) = −8α3β + α2 + 36αβ − 216β3 − 4 < 0,

for all 0 < α ≤ 0.8 and β > 0

Fig. 2 Representation of D(PE± ) as function of α,β

as shown in Fig. 2, and we have a1a2 − a3 = α − 2β .
So according to FR-H conditions, when β = α

2 ,
and 0 < α ≤ 0.8, then E± are unstable for q ∈ [1,2[,
in particular for the integer order q = 1, while they
are asymptotically stable for the fractional order
q ∈ ]0,1[.

2.2 Hopf bifurcation

One of the basic differences between dynamical be-
havior of fractional-order systems and integer-order
systems is that the limit set of a trajectory of integer-
order system as the limit cycle of this system is a so-
lution for this system, but in the fractional-order case,
the limit set of a trajectory of fractional-order system
can be, not a solution for this system; see [22]. In [23],
the authors claimed there are no periodic orbits in frac-
tional order systems, and in [24], the authors gave an
example where the solutions of the system are not pe-
riodic, but they converge to periodic signals. In this
paper, we are interested about the final state of trajec-
tory (we suppress the transitory state), so the limit cy-
cle which appears through a Hopf bifurcation is not
a solution of a fractional system but it attracts nearby
solutions.

Let consider the following three-dimensional frac-
tional-order commensurate system:

Dqx = f (β, x) (6)

where q ∈ ]0,2[, x ∈ R3, and suppose that E is an
equilibrium point of this system. In the integer case
(when q = 1), the stability of E is related to the sign
of Re(λi), i = 1,2,3 where λi are the eigenvalues of
the Jacobian matrix ∂f

∂x
|E .

If Re(λi) < 0 for all i = 1,2,3, then E is lo-
cally asymptotically stable. If there exist i such that
Re(λi) > 0, then E is unstable.
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Fig. 3 (a) The real
eigenvalue λR versus β∗.
(b) Critical values β∗,
versus the
fractional-order q∗

The conditions of system (6) with q = 1, to undergo

a Hopf bifurcation at the equilibrium point E when

β = β∗, are

– The Jacobian matrix has two complex-conjugate

eigenvalues λ1,2(β) = θ(β) ± iω(β), and one real

λ3(β) (this can be expressed by D(PE(β∗)) < 0),

– θ(β∗) = 0, and λ3(β
∗) �= 0,

– ω(β∗) �= 0,

– dθ
dβ

|β=β∗ �= 0.

But in the fractional case, the stability of E is re-

lated to the sign of mi(q,β) = q π
2 − | arg(λi(β))|,

i = 1,2,3. If mi(q,β) < 0 for all i = 1,2,3, then E

is locally asymptotically stable. If there exist i such

that mi(q,β) > 0, then E is unstable. So, the function

mi(q,β) has a similar effect as the real part of eigen-

value in integer systems, therefore, we extend the Hopf

bifurcation conditions to the fractional systems by re-

placing Re(λi) with mi(q,β) as follows:

– D(PE(β∗)) < 0,

– m1,2(q,β∗) = 0, and λ3(β
∗) �= 0,

– ∂m
∂β

|β=β∗ �= 0.

2.2.1 Hopf bifurcation versus the parameter β and
the fractional order q

In this subsection, we fix the parameter α at α = 0.35,
β is restricted to 0 < β ≤ 1, and 0 < q < 2.

Since E0 is unstable for all 0 < β ≤ 1, and 0 < q <

2, we will study the Hopf bifurcation about the two
equilibria E±.

As shown in Sect. 2.1.2, D(PE±) < 0, for all 0 <

β ≤ 1, so we have two complex eigenvalues and one
real, which is represented in Fig. 3a. The solutions
(q∗, β∗) of equation m(q,β) = 0, are represented in
Fig. 3b. Clearly, the real eigenvalue is not null for all
0 < β∗ ≤ 1.

From Fig. 4, it is clear that ∂m
∂β

|β=β∗ �= 0, for all 0 <

β∗ ≤ 1, and we have ∂m
∂q

|q=q∗ = π
2 �= 0, so the pro-

posed fractional-order Hopf bifurcation conditions are
verified for all pair (q∗, β∗), solutions of m(q,β) = 0.

3 Numerical results

According to the different definitions of fractional
derivatives [15–18], two approaches have been pri-
marily used to solve the fractional-order equations:
the frequency-domain method and the time-domain
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Fig. 4 Evolution of
∂m
∂β

|β=β∗ versus (β∗, q∗)

method. In this paper, the PECE (Predict, Evaluate,
Correct, Evaluate) algorithm (time-domain method)
which is related to the Caputo definition is used [25].

Let consider the fractional differential equation
with initial conditions

{
Dαx(t) = f (t, x(t)), 0 ≤ t < T

x(k)(0) = x
(k)
0 , k = 0,1, . . . , n − 1

which is equivalent to the Volterra integral equation

x(t) =
[α]−1∑
k=0

x
(k)
0

tk

k!

+ 1

Γ (α)

∫ t

0
(t − τ)α−1f

(
τ, x(τ )

)
dτ. (7)

Set h = T
N

, tn = nh, n = 0,1, . . . ,N , then (7) can
be discretized as follows:

xh(tn+1) =
[α]−1∑
k=0

x
(k)
0

tkn+1

k!

+ hα

Γ (α + 2)
f

(
tn+1, x

p
h (tn+1)

)

+ hα

Γ (α + 2)

n∑
j=0

aj,n+1f
(
tj , xh(tj )

)
.

where

aj,n+1 =

⎧⎪⎪⎨
⎪⎪⎩

nα+1 − (n − α)(n + 1)α, j = 0,

(n − j + 2)α+1 + (n − j)α+1

−2(n − j + 1)α+1, 1 ≤ j ≤ n,

1, j = n + 1,

x
p
h (tn+1) =

[α]−1∑
k=0

x
(k)
0

tkn+1

k!

+ 1

Γ (α)

n∑
j=0

bj,n+1f
(
tj , xh(tj )

)
,

bj,n+1 = hα

α

(
(n + 1 − j)α − (n − j)α

)
, 0 ≤ j ≤ n.

In this method, the error is estimated as

ε = max
j=0,1,...,N

∣∣x(tj ) − xh(tj )
∣∣ = o

(
hp

)

where p = min(2,1 + α).

3.1 Bifurcation and chaos versus the parameter β

In this subsection, the dynamical behaviors of system
(1) are investigated numerically by means of bifur-
cation diagram, and the largest Lyapunov exponents,
which measure the exponential rates of divergence or
convergence of nearby trajectories in phase space, but
algorithms for calculation of Lyapunov spectra from
differential equations are not applicable in the frac-
tional order system. Therefore, in this paper, the al-
gorithm for determining Lyapunov exponents from a
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Fig. 5 Poincaré section
∑

, for q = 0.97 and β = 0.6

Fig. 6 Bifurcation diagram of zn versus β , with q = 0.97

time series proposed by Wolf et al. [26] is used. The
fractional order q , is fixed at q = 0.97, and β is con-
sidered as a control parameter. The critical Hopf bi-
furcation value is localized at β∗ = 0.233, using the
proposed conditions. To draw the bifurcation diagram,
we use an appropriate Poincaré section

∑; see Fig. 5,
defined by

∑ = {
(y, z) ∈ R2/x = 1

}
(8)

The resulting points are plotted versus the parame-
ter β; see Fig. 6, and the largest Lyapunov exponents
in Fig. 7.

When β < 0.233, the equilibrium points E± are a
locally asymptotically stable focus (see Fig. 8a), the
neighbors trajectories converge to the points E±; this
is confirmed by the negative sign of the largest Lya-
punov exponents.

When β = 0.233, a system (1) undergoes a Hopf
bifurcation as mentioned above; the fixed points E±

Fig. 7 Largest Lyapunov exponents versus β , with q = 0.97

becomes unstable, and two period-one limit cycles ap-
pears for 0.233 < β < 0.442, as shown in Fig. 8b.

When β ≈ 0.442, a new bifurcation occurs, the
two period-one limit cycles becomes unstable and two
period-two limit cycles appears; see Fig. 8c.

At β ≈ 0.486, two period-4 limit cycles appears
through a new bifurcation Fig. 8d, followed by a bi-
furcation to two period-8 limit cycles at β ≈ 0.496;
see Fig. 8e. This bifurcation process continues up to
a critical value of β ≈ 0.51, where two chaotic at-
tractors appear; see Fig. 8f. This chaotic behavior is
proved by the existence of positive largest Lyapunov
exponents, the two chaotic attractors joined, and gives
a two-scrolls chaotic attractor at β ≈ 0.6; see Fig. 8g.

3.2 Bifurcation and chaos versus the fractional
order q

The parameter β is fixed at β = 0.6, and the fractional
order q is considered as a control parameter the criti-
cal Hopf bifurcation value is localized at q∗ = 0.866,
using the proposed conditions. For drawing the bifur-
cation diagram, we use the Poincaré section

∑
, given

above.
The resulting points are plotted versus the frac-

tional-order q see Fig. 9; notice here that q is close
to one, and the largest Lyapunov exponents in Fig. 10.
When q < 0.866, the equilibrium points E± are a lo-
cally asymptotically stable focus (see Fig. 11a), the
neighbors trajectories converge to the points E±. This
is confirmed by the negative sign of the largest Lya-
punov exponents. When q = 0.866, system (1) under-
goes a Hopf bifurcation as mentioned above, the fixed
points E± becomes unstable, and two period-one limit
cycles appears for 0.866 < q < 0.934, as shown in
Fig. 11b.
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Fig. 8 Phase portrait of system (1) for different values of β , and q = 0.97

Fig. 9 Bifurcation diagram of zn versus the fractional order q ,
with β = 0.6

When q ≈ 0.934, a new bifurcation occurs, the
period-one limit cycles becomes unstable, and two
period-two limit cycles appears; see Fig. 11c.

Fig. 10 Largest Lyapunov exponents versus the fractional or-
der q , with β = 0.6

At q ≈ 0.9432, two period-4 limit cycles appears
through a new bifurcation (Fig. 11d), followed by a
bifurcation to two period-8 limit cycles at q ≈ 0.946;
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Fig. 11 Phase portrait of system (1) for different values of q , and β = 0.6

see Fig. 11e. This bifurcation process continues up to
a critical value of q ≈ 0.949, where two chaotic at-
tractors appears; see Fig. 11f. This chaotic behavior is
proved by the existence of positive largest Lyapunov
exponents (Fig. 10), the two chaotic attractors joined,
and gives a two-scrolls chaotic attractor at q ≈ 0.969;
see Fig. 11g.

3.3 Some effects of the fractional order q on the
behavior of dynamical systems

It is convenient to note here some effects of the frac-
tional order q on the behavior of dynamical systems:

1. In general the decrease of q can stabilize the un-
stable fixed points (especially when there is no
real positive corresponding eigenvalue) and can in-
crease the convergence speed of nearby trajecto-
ries, but the variation of the fractional order q has
no effect on the number of equilibrium points.

2. The increase of q decreases the convergence speed
of nearby trajectories, and can destabilize the sta-
ble fixed points (especially when there is a pair of
complex eigenvalues). Moreover, Hopf bifurcation
(cascade of period doubling) and chaos can appear
when increasing the fractional order q .

3. When a Hopf bifurcation occur through the frac-
tional-order q (at q = q∗), then the diameter D(q)

of the resulting limit cycle is close to zero in
the neighborhood of q∗ and increases as q in-
creases like √ , for example, the diameter of the
resulting limit cycle from the bifurcation value
q∗ = 0.866 mentioned above is calculated approx-
imately using the Poincaré section. The results
are close to

√
42(q − 0.866) − 13(q − 0.866)1.1,

so we have D(q) ≈ √
a(q − q∗) + o(q − q∗),

a ∈ R∗+, which is similar to the integer-order case
when replacing q by a bifurcation parameter. Fig-
ure 12 shows a comparative representation be-
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Fig. 12 Comparative representation between the estimated and
the calculated R(q) = D(q)

2

tween
√

42(q−0.866)−13(q−0.866)1.1

2 , and the calcu-

lated R(q) = D(q)
2 .

4 Conclusion and perspectives

This paper has presented and analyzed the fractional
order modified hybrid optical system. It has been
demonstrated that chaos, as well as the other usual
nonlinear dynamic phenomena, occur in this system
with mathematical order less than three. The largest
Lyapunov exponents and the bifurcation diagrams
show the period-doubling bifurcation and the trans-
formation from periodic to chaotic motion through the
fractional-order and confirm the justness of the pro-
posed fractional Hopf bifurcation conditions (in this
system). The theoretical analysis that validates con-
ditions of Hopf bifurcation in integer order systems
repose on the normal form and center manifold theo-
rem; unfortunately, these tools are not developed yet
in fractional order systems. Our future works will be
focused on the theoretical analysis of the proposed
conditions by extending the normal form and center
manifold theorem to fractional order systems.
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Fractional-order financial system introduced by W.-C. Chen (2008) displays chaotic motions at
order less than 3. In this paper we have extended the nonlinear feedback control in ODE systems
to fractional-order systems, in order to eliminate the chaotic behavior. The results are proved
analytically by applying the Lyapunov linearization method and stability condition for fractional
system. Moreover numerical simulations are shown to verify the effectiveness of the proposed
control scheme.

1. Introduction

Nonlinear chaotic systems have attracted more attention of researchers in various fields
of natural sciences. This is because these systems are rich in dynamics, and possess great
sensitivity to initial conditions. Since the chaotic phenomenon in economics was first found in
1985, great impact has been imposed on the prominent western economics at present, because
the chaotic phenomenon’s occurring in the economic system means that the macroeconomic
operation has in itself the inherent indefiniteness. Although the government can adopt
such macrocontrol measures as the financial policies or the monetary policies to interfere,
the effectiveness of the interference is very limited. The instability and complexity make
the precise economic prediction greatly limited, and the reasonable prediction behavior
has become complicated as well. In the fields of finance, stocks, and social economics,
because of the interaction between nonlinear factors, with all kinds of economic problems
being more and more complicated and with the evolution process from low dimensions to
high dimensions, the diversity and complexity have manifested themselves in the internal
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structure of the system and there exists extremely complicated phenomenon and external
characteristics in such a kind of system. So it has become more and more important to
study the control of the complicated continuous economic system, and stabilize the instable
periodic or stationary solutions, in order to make the precise economic prediction possible
[1, 2].

Great interest has been paid to the application of fractional calculus in physics,
engineering systems, and even financial analysis [3, 4]. The fact that financial variables
possess long memories makes fractional modelling appropriate for dynamic behaviors in
financial systems. Moreover, the control and synchronization of fractional-order dynamic
systems is also performed by various researchers [5–10]. Fractional-order financial system
proposed by Chen in [11] displays many interesting dynamic behaviors, such as fixed points,
periodic motions, and chaotic motions. It has been found that chaos exists in this system with
orders less than 3, period doubling, and intermittency routes to chaos were found. In this
paper, we propose to eliminate the chaotic behaviors from this system, by extending the non-
linear feedback control in ODE systems to fractional-order systems. This paper is organized
as follows. In Section 2, we present the financial system and its fractional version. In Section 3
general approach to feedback control scheme is given, and then we have extended this control
scheme to fractional-order financial system, numerical results are shown. Finally, in Section 4
concluding comments are given.

2. Financial System

2.1. Integer-Order Financial System

Recently, the studies in [1, 2] have reported a dynamic model of finance, composed of
three first-order differential equations. The model describes the time-variation of three state
variables: the interest rate x, the investment demand y, and the price index z. The factors
that influence the changes of x mainly come from two aspects: firstly, it is the contradiction
from the investment market, (the surplus between investment and savings); secondly, it is the
structure adjustment from goods prices. The changing rate of y is in proportion with the rate
of investment, and in proportion by inversion with the cost of investment and the interest
rate. The changes of z, on one hand, are controlled by the contradiction between supply and
demand of the commercial market, and on the other hand, are influenced by the inflation
rate. Here we suppose that the amount of supplies and demands of commercials is constant
in a certain period of time, and that the amount of supplies and demands of commercials is
in proportion by inversion with the prices. However, the changes of the inflation rate can in
fact be represented by the changes of the real interest rate and the inflation rate equals the
nominal interest rate subtracts the real interest rate. The original model has nine independent
parameters to be adjusted, so it needs to be further simplified. Therefore, by choosing the
appropriate coordinate system and setting an appropriate dimension to every state variable,
we can get the following more simplified model with only three most important parameters:

ẋ = z +
(
y − a

)
x,

ẏ = 1 − by − x2,

ż = −x − cz,

(2.1)
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where a ≥ 0 is the saving amount, b ≥ 0 is the cost per investment, and c ≥ 0 is the elasticity
of demand of commercial markets. It is obvious that all three constants, a, b, and c, are
nonnegative, For more detail about the study of the local topological structure and bifurcation
of this system; see [1, 2]. We assume that a is control parameter and b = 0.1, c = 1.

2.1.1. Analysing the System

(i) If a ≥ 9, system (2.1) has one fixed point:

p1 = (0, 10, 0). (2.2)

(ii) If a < 9, system (2.1) has three fixed points:

p1 = (0, 10, 0), p2,3 =

⎛

⎝∓

√
9 − a

10
, a + 1,±

√
9 − a

10

⎞

⎠. (2.3)

To study the stability of equilibrium points we apply the Lyapunov’s first (indirect)
method [12] so we have the following theorem.

Theorem 2.1. Let x = x∗ be an equilibrium point of a nonlinear system:

ẋ = f(x), (2.4)

where f : D → Rn is continuously differentiable and D ⊂ Rn is the neighborhood of the equilibrium
point x∗. Let λi denote the eigenvalues of the Jacobian matrix A = ∂f/∂x|x∗ then the following are
considered.

(i) If Reλi < 0 for all i, then x = x∗ is asymptotically stable.

(ii) If Reλi > 0 for one or more i, then x = x∗ is unstable.

(iii) If Reλi ≤ 0 for all i and at least one Reλj = 0, then x = x∗ may be either stable,
asymptotically stable, or unstable.

Since A is only defined at x∗, stability determined by the indirect method is restricted
to infinitesimal neighborhoods of x∗.

To study the signs of the real parts of eigenvalues, we have the following famous
criterion [13].
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Criterion 1 (Routh-Hurwitz). Given the polynomial P(λ) = λn+a1λ
n−1+ · · ·+an−1λ+an, where

the coefficients ai, i = 1, 2, . . . , n, are real constants, define the n Hurwitz matrices

H1 = (a1),

H2 =
(
a1 1
a3 a2

)

...

Hn =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

,

(2.5)

where ai = 0 if i > n.
All of roots of the polynomial have negative real part if and only if the determinants

of all Hurwitz matrices are positive: detHi > 0, i = 1, 2, . . . , n.

Routh-Hurwitz criteria for n = 3 are a1 > 0, a3 > 0 and a1a2 − a3 > 0.

Stability of p1

The Jacobian matrix of system (2.1) at the equilibrium point p1 is

Jp1 =

⎛

⎜⎜
⎜
⎜⎜
⎝

10 − a 0 1

0 − 1
10

0

−1 0 −1

⎞

⎟
⎟⎟
⎟
⎟
⎠
, (2.6)

its characteristic polynomial is

P(λ) = λ3 +
(
a − 89

10

)
λ2 +

(
11a − 99

10

)
λ +

(
a − 9

10

)
. (2.7)

By applying the Routh-Hurwitz criterion we find that the real parts of these
eigenvalues are all negative if and only if

a − 89
10

> 0,

a − 9 > 0,
(
a − 89

10

)(
11a − 99

10

)
−
(
a − 9

10

)
> 0.

(2.8)
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Figure 1: (a) Largest Lyapunov exponent according to a. (b) Chaotic attractor for a = 3.

Then it follows that a > 9, and thus p1 is locally asymptotically stable if and only if a > 9.

Stability of p2,3

The Jacobian matrix of system (2.1) at the equilibrium points p2,3 is

Jp2,3 =

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

1 ±
√

9 − a
10

1

∓2
√

9 − a
10

−0.1 0

−1 0 −1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

, (2.9)

and its characteristic polynomial is

p̃(λ) = λ3 +
1

10
λ2 +

(
−1

5
a +

18
10

)
λ +

(
−1

5
a +

18
10

)
. (2.10)

The real parts of these eigenvalues are all negative if and only if

−1
5
a +

18
10

> 0,

1
10

(
−1

5
a +

18
10

)
−
(
−1

5
a +

18
10

)
> 0.

(2.11)
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Then it follows that

a < 9,

a > 9.
(2.12)

So p2,3 are unstable for every value of a.
In order to detect the chaos we calculate the largest Lyapunov exponent λmax using the

scheme proposed by Wolf et al. [14]. The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2,
Figure 1(a) displays the evolution of λmax according to a and Figure 1(b) displays chaotic
attractor for a = 3. System (2.1) displays chaotic behavior in the windows 0 < a < 7 (λmax > 0),
periodic behavior in 7 ≤ a ≤ 9 (λmax ≈ 0) and stationary behavior for a > 9 (λmax < 0).

2.2. Fractional-Order Financial System

Chen has introduced in [11] the generalization of system (2.1) for fractional incommensurate-
order model which takes the form

Dq1x = z +
(
y − a

)
x,

Dq2y = 1 − by − x2,

Dq3z = −x − cz.

(2.13)

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
order but there are several definitions of fractional derivatives.

In this paper, we use the Caputo-type fractional derivative defined in [15] by:

Dqf(t) =
1

Γ
(
n − q

)
∫ t

0
(t − τ)n−q−1f (n)(τ)dτ

= jn−q
(
dn

dtn
f(t)

)
,

(2.14)

where n = [q] is the value of q rounded up to the nearest integer, Γ is the gamma function
and jα is the Riemann-Liouville integral operator defined by

jαf(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1f(τ)dτ. (2.15)

For the numerical solutions of system (2.13) we use the Adams-Bashforth-Moulton predictor-
corrector scheme [16].

We assume that q (q1 = q2 = q3 = q) is the control parameter, and c = 1, b = 0.1, a = 3.
Fractional system (2.13) has the same fixed points p1,2,3 as integer system (2.1), but for the
stability analysis we have this theorem introduced in [17, 18].
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Theorem 2.2. The fractional linear autonomous system

DαX = AX

X(0) = X0

X ∈ Rn, 0 < α < 2, A ∈ Rn × Rn, (2.16)

is locally asymptotically stable if and only if

min
i

∣
∣arg(λi)

∣
∣ > α

π

2
, i = 1, 2, . . . , n. (2.17)

Proposition 2.3. Let x = x∗ be an equilibrium point of a fractional nonlinear system

Dαx = f(x), 0 < α < 2. (2.18)

If the eigenvalues of the Jacobian matrix A = ∂f/∂x|x∗ satisfy

min
i

∣
∣arg(λi)

∣
∣ > α

π

2
, i = 1, 2, . . . , n, (2.19)

then the system is locally asymptotically stable at the equilibrium point x∗.

Proof. Let x = x∗ + δx. Substituting in (2.18), we find

Dα(x∗ + δx) = f(x∗ + δx). (2.20)

so

Dα(δx) = f(x∗) +Aδx +©
(
‖δx‖2

)
. (2.21)

Since f(x∗) = 0 (x∗ is the equilibrium point of system (2.18)) and
lim‖δx‖→ 0(©(‖δx‖2)/‖δx‖) = 0, then

Dαδx ≈ Aδx. (2.22)

Taking into account Theorem 2.2, we deduce that If the eigenvalues of the matrix A satisfy

min
i

∣∣arg(λi)
∣∣ > α

π

2
, i = 1, 2, . . . , n, (2.23)

then x∗ is locally asymptotically stable.
This completes the proof.
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Stability of p1

The Jacobian matrix of system (2.13) at the equilibrium point p1 is

Jp1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

7 0 1

0 − 1
10

0

−1 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (2.24)

and its characteristic polynomial is

P(λ) = λ3 − 59
10
λ2 − 66

10
λ − 6

10
. (2.25)

its eigenvalues are λ1 ≈ −0.87298, λ2 = −1/10, λ3 ≈ 6.8730, we note that λ3 is real positive
then | arg(λ3)| = 0 < q(π/2), for all q ∈]0, 2[, so p1 is unstable for all q ∈]0, 2[.

Stability of p2,3

The Jacobian matrix of system (2.13) at the equilibrium point p2,3 is

Jp2,3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 ±
√

3
5

1

∓2
√

3
5
− 1

10
0

−1 0 −1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.26)

its characteristic polynomial is

p̃(λ) = λ3 +
1
10
λ2 +

6
5
λ +

6
5
, (2.27)

and its eigenvalues are λ1 ≈ 0.31278 + 1.2474i, λ2 ≈ 0.31278 − 1.2474i, and λ3 ≈ −0.72556, we
have

∣∣arg(λ1,2)
∣∣ ≈ 1.3251,

∣∣arg(λ3)
∣∣ = π, (2.28)

so mini| arg(λi)| ≈ 1.3251, then the critical value of q is

qc =
2 mini

∣∣arg(λi)
∣∣

π
≈ 0.8436, (2.29)

(i) If q < 0.8436, then p2,3 are locally asymptotically stable.
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Figure 2: (a) Largest Lyapunov exponent according to q. (b) Phase diagram for some values of q.

(ii) If q > 0.8436, then p2,3 are unstable.

In order to detect the chaos, we calculate the largest Lyapunov exponent λmax.
The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2, Figure 2(a) shows the

evolution of λmax according to q. System (2.13) exhibits chaotic behaviors for q ≥ 0.86.

3. Feedback Control

3.1. Integer Case

A general approach to control a nonlinear dynamical system via feedback control can be
formulated as follows:

ẋ(t) = f(x, u, t), (3.1)

where x(t) is the system state vector, and u(t) the control input vector. Given a reference
signal x̃(t), the problem is to design a controller in the state feedback form:

u(t) = g(x, t), (3.2)
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where g is vector-valued function, so that the controlled system

ẋ(t) = f
(
x, g(x, t), t

)
(3.3)

can be driven by the feedback control g(x, t) to achieve the goal of target tracking so we must
have

lim
t→ tf
‖x(t) − x̃(t)‖ = 0. (3.4)

Proposition 3.1. Let us consider the nonlinear system

ė = F(e, t), (3.5)

where e = x − x̃, x̃(t) is a periodic orbit (or fixed point) of the given system (3.1) with u = 0, and
F(e, t) = f(x, g(x, t), t) − f(x̃, 0, t).

If 0 is a fixed point of system (3.5) and all eigenvalues of the jacobian matrix A = ∂F/∂x|0
have negative real parts then the trajectory x(t) of system (3.3) converge to x̃(t)

Proof. Since x̃(t) is a periodic orbit (or fixed point) of the given system (3.1) with u = 0, so it
satisfies

˙̃x(t) = f(x̃, 0, t), (3.6)

a subtraction of (3.6) from (3.1) gives

ẋ(t) − ˙̃x(t) = f
(
x, g(x, t), t

)
− f(x̃, 0, t), (3.7)

so

ė = F(e, t). (3.8)

Since all eigenvalues of the jacobian matrix A have negative real parts, it follows from
Theorem 2.1 that 0 is asymptotically stable, so we have limt→+∞‖e(t)‖ = 0 then limt→+∞‖x(t)−
x̃(t)‖ = 0, finally x(t) →

t→ tf
x̃(t).

3.2. Fractional Case

Let us consider the fractional system

Dαx(t) = f(x, u, t). (3.9)

We proceed as in the integer case. the controlled system can be written as

Dαx(t) = f
(
x, g(x, t), t

)
. (3.10)
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Figure 3: (a) Stabilizing the equilibrium point p1 for q = 0.9. (b) Evolution of the perturbation u(t).

Let x̃(t) be a periodic orbit (or fixed point) of the given system (3.9) with u = 0, then we
obtain the system error

Dαe(t) = F(e, t) (3.11)

Proposition 3.2. If 0 is a fixed point of system (3.11) and the eigenvalues of the jacobian matrix
A = ∂F/∂x|0 satisfies the condition

min
i

∣∣arg(λi)
∣∣ > α

π

2
, i = 1, 2, . . . , n (3.12)

then the trajectory x(t) of system (3.10) converge to x̃(t).

Proof. It follows directly from Proposition 2.3.
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Figure 4: (a) Stabilizing the equilibrium point p2 for q = 0.95. (b) Stabilizing the equilibrium point p3 for
q = 1.4.

3.3. Application to the Fractional Financial System

Let us consider the fractional financial system (2.13), we propose to stabilize unstable periodic
orbit (or fixed point) (x̃, ỹ, z̃), the controlled system is as follows:

Dq1x = z +
(
y − a

)
x + u1(t),

Dq2y = 1 − by − x2 + u2(t),

Dq3z = −x − cz + u3(t).

(3.13)

Since (x̃, ỹ, z̃) is solution of (2.13), then we have:

Dq1 x̃ = z̃ +
(
ỹ − a

)
x̃,

Dq2 ỹ = 1 − bỹ − x̃2,

Dq3 z̃ = −x̃ − cz̃.

(3.14)
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Figure 5: Selecting an unstable periodic orbit in the chaotic attractor of period T = 9 for q = 0.97.

Subtracting (3.14) from (3.13) with notation, e1 = x − x̃, e2 = y − ỹ, e3 = z − z̃, we obtain the
system error:

Dq1e1 = e3 − ae1 + xy − x̃ỹ + u1(t),

Dq2e2 = −be2 − e1(x + x̃) + u2(t),

Dq3e3 = −e1 − ce3 + u3(t).

(3.15)

We define the control functions as follow:

u1(t) = −
(
xy − x̃ỹ

)
,

u2(t) = e1(x + x̃),

u3(t) = e1.

(3.16)

So the system error (3.15) becomes

Dq1e1 = e3 − ae1,

Dq2e2 = −be2,

Dq3e3 = −ce3.

(3.17)
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Figure 6: Stabilizing unstable periodic orbit of period T = 9 for q = 0.97.

The Jacobian matrix is
[ −a 0 1

0 −b 0
0 0 −c

]
and its characteristic polynomial is:

p(x) = x3 + (a + b + c)x2 + (ab + c(a + b))x + abc (3.18)

so we have the eigenvalues λ1 = −a, λ2 = −b, λ3 = −c. Since all eigenvalues are real negatives
one has arg(λi) = π , therefore | arg(λi)| > q(π/2), for all q satisfies 0 < q < 2, it follows from
Proposition 3.2 that the trajectory x(t) of system (3.13) converges to x̃(t) and the control is
completed.

3.4. Simulation Results

In this section we give numerical results which prove the performance of the proposed
scheme. As mentioned in Section 2.3 we have implemented the improved Adams-Bashforth-
Moulton algorithm for numerical simulation.



Chapter 4. Applications 104

Mathematical Problems in Engineering 15

−3 −2 −1 0 1 2 3

x

1

2

3

4

5

6

y

0 100 200 300 400

t

−3

−2

−1

0

1

2

3

x

The orbit that will be stabilized

Figure 7: Selecting an unstable periodic orbit in the chaotic attractor of period T = 16.05 for q = 1.1.

The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2.

3.4.1. Stabilizing the Unstable Fixed Points

The control can be started at any time according to our needs, so we choose to activate the
control when t ≥ 20, in order to make a comparison between the behavior before activation
of control and after it.

For q = 0.9 unstable point p1 has been stabilized, as shown in Figure 3(a), note that
u1(t) = −(x(t)y(t) − 0 × 10) = −x(t)y(t), so the control is activated when t ≥ 20 and
|x(t)y(t)| ≤ 0.2 (more precisely t = 22.5) in order to make the perturbation u1(t) smaller.
firstly the evolution of x(t), y(t), z(t) is chaotic, then when the control is started at t = 22.5 we
see that p1 is rapidly stabilized.

In Figure 3(b) we observe the evolution of the perturbation u(t), when the control
is started we see that u2(t) and u3(t) are very small but u1(t) is a bit larger, after that the
perturbation u(t) becomes close to zero rapidly.

For q = 0.95, the unstable point p2 has been stabilized, as shown in Figure 4(a).
For q = 1.4 the fixed point p3 was stabilized, Figure 4(b) shows the results of control.
When t is less than 20, there is a chaotic behavior, but when the control is activated at

t = 20, the two points p2 and p3 are rapidly stabilized.
In the real world of finance if we want to have a good investment demand we can

choose to stabilize p1, and in this case the interest rate and price index will be near zero.
During the recent financial crisis in 2009 many banks decided to reduce interest rates to nearly
zero in order to control this situation.
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Figure 8: Stabilization an unstable periodic orbit of period T = 16.05 for q = 1.1.

3.4.2. Stabilizing Unstable Periodic Orbit

Although the unstable periodic orbits are dense in the chaotic attractor, we can choose one of
them (which represent the performance of the system), by analyzing data experimental, after
that we stabilize it. In this paper the close-return (CR) method [19] is used for the detection
of UPO embedded in the attractor.

For q = 0.97 we choose an unstable periodic orbit with period T = 9, localized in
the interval [78.2, 87.2] as shown in Figure 5, then the control is started at t = 87.2, when
the trajectory x(t) begins to emerge from the unstable orbit, Figure 6 displays the results of
control, if t is less then 78.2 there is chaotic behavior (the error e(t) is large), after the activation
of control, this chaotic behavior is replaced by a periodic behavior and we note that the error
e(t) becomes very close to zero.

For q = 1.1 we choose an unstable periodic orbit with period T = 16.05, localized in the
interval [71.45, 87.5] as shown in Figure 7, the control is started at t = 20, Figure 8 displays the
results of control. Although the control is executing at t = 20, it does not give effect rapidly,
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and the orbit is stabilized at t = 63, when the control is activated the error begins to diminish,
and becomes close to zero after t = 63.

The stabilization of the periodic orbits is very important, because it permits, on the one
hand to make some predictions, and secondly, it is more realistic than the stabilization of the
stationary points in the financial circle, where one cannot generally fix the interest rate and
the investment demand as well as the price index, for a long period.

4. Conclusions

Chaotic phenomenon makes prediction impossible in the financial world; then the deletion
of this phenomenon from fractional financial system is very useful, the main contribution of
this paper is to this end.

Nonlinear feedback control scheme has been extended to control fractional financial
system. The results are proved analytically by applying the Lyapunov linearization method
and stability condition for fractional system. Numerically the unstable fixed points p1,2,3 have
been successively stabilized for different values of q; moreover unstable periodic orbit has
stabilized. This proves the performance of the proposed scheme.
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General conclusion and

perspectives

The work accomplished in the frame of this thesis has been a significant enrich-

ment of our knowledge about some concerns of the subject of fractional-order

chaotic systems. In the first three chapters we have presented some tools that are

eventually used in study of fractional-order systems. In the last chapter we have

exposed our contributions to the analysis of fractional-order chaotic systems where

three articles are presented. The first article postulate and further studied a new

chaotic system of three-dimensional autonomous equations with cubic nonlinear-

ity, which can generate two 1-scroll chaotic attractors simultaneously, (or a one

2-scroll chaotic attractor) with three equilibria. Dynamical behaviors of this new

chaotic system, including some basic dynamical properties, bifurcations, periodic

windows, routes to chaos, have been analyzed both theoretically and numerically,

by means of a bifurcation diagram with an associated Poincaré map and Lyapunov

exponent spectrum. The second paper present and analyze the fractional-order

modified hybrid optical system. It has been demonstrated that chaos, as well as the

other usual nonlinear dynamic phenomena, occur in this systems with mathemat-

ical order less than three. The Largest Lyapunov exponents and the bifurcation

diagrams show the period-doubling bifurcation and the transformation from peri-

odic to chaotic motion through the fractional-order and confirms the justness of

the proposed fractional Hopf bifurcation conditions (in this system). The theoret-

ical analysis which validates conditions of Hopf bifurcation repose on the normal

form and center manifold theorem, unfortunately these tools are not developed yet

in fractional order systems. The last paper deals with the extension of nonlinear

feedback control scheme in order to control fractional financial system. The re-

sults are proved analytically by applying the Lyapunov linearization method and

stability condition for fractional system. Numerically the unstable fixed points

have been successively stabilized for different values of fractional order; moreover
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unstable periodic orbit has been stabilized, which proves the performance of the

proposed scheme. the results obtained in these papers are modestly important,

referenced and cited by others authors in diverse publications. As a result of our

review, some important directions of study have appeared as a natural prolonging

objectives for the present work. Additional efforts are needed in both theory and

application of fractional-order systems. the existence of exact periodic solution

in fractional-order autonomous system, the problem of stability, the problem of

calculating Lyapunov spectrum and application of fractional calculus in circuit

theory especially in circuit elements with memory are still ender active study.
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[47] J. Liouville. Mémoire: Sur le calcul des differentielles à indices quelconques.
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Abstract

This thesis deals with fractional-order chaotic systems. The main highlight is

on some basic differences between a fractional-order system and its integer order

counterpart. Namely, stability conditions, existence of periodic solutions and min-

imal total order for which chaos can occur etc...

The finding of a new chaotic attractor from Hybrid optical bistable system is

reported and dynamic of the new system is investigated in both integer and

fractional-order cases. It is shown that asymptotic stability of equilibrium points

of the fractional system can occur with positive real part of some corresponding

eigenvalues which is not the case in integer-order systems. We have established

criterion under which a fractional-order system undergoes Hopf bifurcation. The

results are validated by mean of stability theory and numerical simulations. It

is shown that chaos can be occurred in fractional-order system with total order

less than three which is not the case in integer-order system due to the Poincaré-

Bendixon theorem.

Finally, nonlinear feedback control scheme has been extended to control fractional

financial system. The results are proved analytically by applying the stability

condition for fractional system. Numerically the unstable fixed points have been

successively stabilized for different values of fractional order; moreover some un-

stable periodic orbits have been stabilized.

Keywords: Fractional-order derivatives, Stability of fractional-order systems, Bi-

furcation, Periodic solutions, Chaos, Chaos control.



Résumé

Cette thèse porte sur les systèmes chaotiques d’ordre fractionnaire. Nous met-

tons en relief quelques différences de base entre un système d’ordre fractionnaire

et le système d’ordre entier correspondant. A savoir, les conditions de stabilité,

l’existence des solutions périodiques et l’ordre total minimal pour lequel le chaos

peut se produire etc....

La découverte d’un nouvel attracteur chaotique en modifiant un système optique

est rapporté et sa dynamique a été analysée dans le cas entier ainsi que dans le

cas fractionnaire. Il est montré que les points d’équilibre peuvent être asympto-

tiquement stables même s’il existe des valeurs propres correspondantes de parties

réelles positives ce qui est impossible pour les systèmes d’ordre entier. Nous avons

établi des critères pour lesquels un système d’ordre fractionnaire volue vers une

bifurcation de Hopf. Les résultats sont confirmés en utilisant la théorie de la sta-

bilité et des simulations numériques. Il est montré aussi que le chaos se produit

dans ce système d’ordre fractionnaire avec un ordre total inferieur à trois ce qui

est impossible pour un système d’ordre entier d’après le théorème de Poincaré-

Bendixon.

Finalement, la méthode de contrôle par rétroaction (feedback) non linéaire a été

étendu pour contrôler un système financier d’ordre fractionnaire. Les résultats

sont analytiquement prouvés en utilisant la condition de stabilité des systèmes

fractionnaires. Numériquement les points fixes instables ont été stabilisés succes-

sivement pour différentes valeurs de l’ordre fractionnaire, de plus quelques orbites

périodiques instables ont été stabilisées.

Mots clés : Dérivées d’ordre fractionnaire, Stabilité des systèmes d’ordre frac-

tionnaire, Bifurcation, Solutions périodiques, Chaos, Contrôle du chaos.



  مــلـخـــــص
  

)  فوضوية شبهطبيعة ديناميكية ( ةالشواش الأنظمة موضوع  بالدراسة تتناول الأطروحة ھذه

 ذات والأنظمة كسرية رتب ذات الأنظمة بين الأساسية الفروق بعض نبرز حيث كسرية  رتب ذات

 الأدنى الحد كذا و الدورية الحلول وجود الاستقرار، شروط حيث من لھا، الموافقة صحيحة رتب

  ...الخ الشواش تحدث أن يمكن التي الكلية للرتبة

 ھجين نظام على التغييرات بعض بإدخال وذلك جديد شواش جذاب تقديم الأطروحة ھذه في تم لقد

 عدد الرتبة حالة في الجديد للنظام الديناميكية الطبيعة دراسة  تتم وقد الاستقرار ثنائي بصري

 .كسري عدد الرتبة حالة في وكذا  صحيح

 بوجود حتى  الكسرية الرتبة ذو النظام ھذا في التوازن لنقاط استقرار يحدث أن يمكن أنه تبين وقد

 رتب ذات للنظم بالنسبة ممكن غير وھذا موجب حقيقي جزء ذات الموافقة الذاتية القيم بعض

 النظام يجتاز بموجبھا والتي الشروط بعض الأطروحة ھذه في اقترحنا أخرى جھة من. صحيحة

 الأنظمة استقرار نظرية باستخدام عليھا التصديق تم النتائج ھذه. ھوبف نوع من تفرع الكسري

 مع الكسري النظام ھذا في يحدث أن يمكن الشواش أن لوحظ لقد. العددي بالحساب وكذلك  الكسرية

  نظرية حسب  صحيحة رتب ت ذا الأنظمة في الحدوث مستحيل وھذا ثلاثة من أقل كلية رتبة

  .بندكسن بوانكري

 الرتبة ذو المالي النظام في للتحكم الخطية غير المترددة بالتغذية المراقبة طريقة تمديد تم أخيرا،

 التحكم تم عدديا. الكسرية بالنظم الخاصة الاستقرار نظرية بتطبيق تحليليا إثباتھا تم  النتائج. الكسرية

  .المستقرة غير المدارات بعض وكذا التوازن نقاط في

  

 الدورية الحلول    التفرع، الكسرية، النظم استقرار الكسرية، المشتقات ذات النظم :مفتاحيه كلمات

 .الشواش في التحكم الشواش،
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