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General introduction

The subject of fractional calculus is, in a certain sense, as old as classical calculus

[64] as we know it today: Its origins date back to the end of the seventeenth cen-

tury, also the time when Newton and Leibniz developed the theory of differential
n

to denote the

and integral calculus. Namely, Leibniz introduced the symbol i

nth derivative of a function f in a letter to de I'Hospital (with the assumption
n

d
that n € IN), de I'Hospital replied: “What does W’{ mean if n = %?”
Leibniz wrote prophetically, “Thus it follows that d2x will be equal to zv/dx : x,

an apparent paradox, from which one day useful consequences will be drawn.”

The fact that de I’'Hospital specifically asked for n = % (i.e. a fraction or rational
number), gave rise to the name of this part of mathematics. But it was not until
the first half of the 19th century that the theory of generalized operators achieved
a level in its development suitable as a point of departure for the modern mathe-
matician. By then the theory had been extended to include operators D®, where
a could be rational or irrational, positive or negative, real or complex. Thus the
name fractional calculus became somewhat of a misnomer. A better description
might be differentiation and integration to an arbitrary order. However, we shall
adhere to tradition and refer to this theory as the fractional calculus. It was Li-
ouville [47] who expanded functions in series of exponentials and defined the ath
derivative of such a series by operating term-by-term as though « were a positive
integer. Riemann [63] proposed a different definition that involved a definite in-
tegral and was applicable to power series with non-integer exponents. Evidently
it was Griinwald and Krug who first unified the results of Liouville and Riemann.
Griinwald [33], disturbed by the restrictions of Liouville’s approach, adopted as
his starting point the definition of a derivative as the limit of a difference quo-
tient and arrived at definite-integral formulas for the ath derivative. Krug [40],
working through Cauchy’s integral formula for ordinary derivatives, showed that

Riemann’s definite integral had to be interpreted as having a finite lower limit
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while Liouville’s definition, in which no distinguishable lower limit appeared, cor-
responded to a lower limit —oo. These theoretical beginnings was accomplished
by a parallel development of the applications of the fractional calculus to various
problems. The first of these was the discovery by Abel [5] in 1823 that the solution
of the integral equation for the tautochrone could be accomplished via an integral
transform, which, benefits from being written as a semi-derivative. An important
next step in the application of fractional derivatives was the operational calcu-
lus of Heaviside, developed to solve certain problems of electromagnetic theory.
Namely Heaviside [37] introduced fractional differentiation in his investigation of
transmission line theory; and this concept has been extended by Gemant [32] for

use in problems of elasticity.

Although the birthday of fractional calculus date back to the end of the seven-
teenth century and the first steps of the theory itself and some applications traced
back to the first half of the nineteenth century, the subject only really came to life
over the last few decades. A particular feature is that fractional derivatives provide
an excellent instrument for the description of memory and hereditary properties of
various materials and processes. This is the main advantage of fractional models in
comparison with classical integer-order models, in which such effects are in fact ne-
glected, another feature is that engineers and scientists have developed new models
that involve fractional differential equations in mechanics (theory of viscoelasticity
and viscoplasticity), bio-chemistry (modelling of polymers and proteins), electri-
cal engineering (transmission of ultrasound waves), medicine (modelling of human
tissue under mechanical loads), etc. The first book which was entirely devoted to
a systematic presentation of the ideas, methods and applications of the fractional
calculus is the book written by K. U. Oldharn and J. Spanier [60].

The first conference devoted to the topic of fractional calculus took place in 1974,
in New Haven, USA. Circumstances have changed considerably since then. in
the last decades the general interest in such a tool has experienced a continuing
growth and at present many conferences, symposia, workshops, or special sessions
are found, as well as papers and special issues in recognized journals, devoted to

the theoretical and application aspects of fractional calculus.

On the other hand, in recent years, many scientists have become aware of the
potential use of chaotic dynamics in engineering applications, such as electrical

engineering, information processing, secure communications, etc...
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With the development of the fractional-order algorithm, the dynamics of fractional-
order systems have received much attention. Studying chaos in fractional-order
dynamical systems is an interesting topic as well. It is well known that chaos
cannot occur in continuous integer order systems of total order less than three due
to the Poincaré-Bendixon theorem. It has been shown that many fractional-order
dynamical systems behave chaotically with total order less then three. The thesis

consists of two parts.

The first part is devoted to the fractional calculus and it contains two chapters
(chapter 1 and chapter 2).

In chapter 1 some preliminary concepts are introduced, including the Laplace
transform and their basic properties, special functions (the gamma and the beta
function, the Mitag-Leffler function) which play the most important role in the

theory of fractional derivatives and fractional differential equations.

In chapter 2 three approaches (Riemann-Liouville, Griinwald-Litnicov and Caputo
approaches) to the generalization of the notions of derivation and integration are
considered. In the end of this chapter some methods of treatment of the fractional
differential equations are introduced including numerical algorithm. The second
part is devoted to the concept of fractional-order dynamical systems and applica-
tions, it is divided into two chapters (chapter 3 and chapter 4).

In chapter 3 a generalization of notion of dynamical systems (Fractional-order
dynamical systems) is considered including stability theory, periodic solutions, Bi-
furcations and chaos, it is shown that all most classical criterion and tools for the
study of dynamical systems have been reformulated in a general sitting and used
for the study of fractional-order dynamical systems.

In chapter 4 we present our three papers [1-3] given as applications of the mathe-
matical tools introduced in the previous chapters. The thesis is ended by a general
conclusion and perspectives.

More than 80 references are listed and cited in this thesis, even if it cannot be a
complete bibliography for this area of interest. We can find many other references

related to this topic.
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Fractional calculus



Chapter 1
Preliminaries

In this chapter we, briefly, introduce some necessary but relatively simple math-
ematical tools that will arise in the study of the concepts of fractional calculus.
These are the Laplace transform, the Gamma function, the Beta function and the

Mittag-Leffler Function.

1.1 The Laplace transform

“What we know is not much. What we do not know is immense.”
Pierre-Simon Laplace

The Laplace transform is a powerful tool that we shall exploit in our investigation
of fractional differential equations. Our purpose in this section is to present the
definition and some basic properties of the Laplace transform then we derive some
transforms and inverse transforms of functions that arise frequently in this study.
We denote the Laplace transform of a function f(t) by the symbol L{f(¢)}, or
when convenient, by F'(s). More detailed information may be found in [29, 30].
The Laplace transform of a function f(¢) of a real variable ¢ € R is formally
defined by

L{f(1)}(s) = F(s) = /Ooo e f(t)dt, (s€C). (1.1)

If the integral in (1.1) is convergent at sy € C, then it converges absolutely for
s € C such that Re(s) > Re(so).
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The inverse Laplace transform is given for ¢ € Rt by the formula

EHINO = 5 [ ealelds, & = Relso)) (12)
T Jy—ico
Obviously, £ and £7! are linear integral operators. The direct and the inverse
Laplace transforms are inverse to each other for “sufficiently good” functions f
and g
L7L{f} = f and ££7 g} = g.

1.1.1 Existence conditions for the Laplace transform

Theorem 1.1.

Let f be a continuous or piecewise continuous function in every finite interval
(0, 7). If f(t) is of exponential order e™, then the Laplace transform of f(t) exists
for all s such that Re(s) > a.

Proof.
Suppose that f, is of exponential order e*, then there exists a positive constant
K such that for all ¢t > T

[f(t)] < Ke™.

We have

/ e‘“f(t)dt‘ < [ e f()dt,
0
<K [ et = 2

S—a

for Re(s) > a.

This complete the proof. ]
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1.1.2 Basic properties of the Laplace transform

a) Heavisides first shifting property

Theorem 1.2.

For a real constant a we have
L{"f(t)}(s) = F(s +a)
where F(s) = L{f(t)}(s).

Proof.

By definition we have

L{e " f(t)}(s) = /OOO e~ CrIE()dt = F(s + a).

b) Scaling property

For a constant a # 0, we have

i) = 7 (2).

lal* \a
c) The Laplace transform of derivatives

To find the Laplace transform of a derivative, we integrate the expression (1.1) by

parts. Then, we obtain

Oo —st _ _f(t)e_St = 1 = —st gt
/0 et f(t)dt = {—S L +8/0 et/ () dt.

Evaluating the limits and multiplying by s gives the following

sLLf()}H(s) = f(0) + L{f' (1) }(s).

This gives the Laplace transform of f'(t) as follows

L{f (1)} (s) = sL{f(t)}(s) — f(0).
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This can be continued for higher order derivatives (replacing f(t) by f’(¢) in the
above equation ) and gives the following expression for the Laplace transform of
the nth derivative of f(t).

LLFT ()} (s) = s"L{F ()} (s) = D s" " fF1(0). (1.3)

d) Convolution Property

If L{f(t)}(s) = F(s) and L{g(t)}(s) = G(s), then

LLF@) x g(0)}(s) = F(s)G(s). (1.4)

Or, equivalently,
LTHF(s)G(s)} = f(t) = g(t),

where f(t) x g(t) is the convolution of f(t) and g(t) defined by the integral

f(?f)*g(t):/0 f(t —7)g(r)dr.

1.1.3 The Laplace transform of some usual functions

L L{I}s) = [ et = 1,

s
2. at I 7(sfa)tdt: f
L{e"}(s)= [, e o fors>a
. o a
3. L{sin(at)}(s) = [, e *sin(at)dt = T
S s
4. L{cos(at)}(s) = [, e * cos(at)dt = g
n O n ,—st n!
5. L{t"}(s) = [, t"e *dt = prEeg

1.2 Special functions

In this section, we deal with definitions and some basic properties of the special
functions (Gamma, Beta and Mittag-LefHler) these later are essential elements in

our coming chapters.
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1.2.1 Gamma function

One of the important basic functions of the fractional calculus is the Euler’s
Gamma function, which generalizes the factorial n!, and allows n to take also

non-integer and even complex values.
This function plays an important role in the theory of differ-integration. A com-

prehensive definition of I'(x) is that provided by the Euler limit [60]

NIN?®
z[z + 1][z + 2]...[z + N]

)

F(ZE) = LimN_m[

But the so-called Euler integral definition:

['(z) = /000 t" e tdt (x> 0), (1.5)

is often more useful, although it is restricted to positive values of x. An integration

by parts applied to the definition (1.5) leads to the recurrence relationship

I'(z+1) =al'(z).

Since I'(1) = 1, this recurrence shows that for a positive integer n, we have
I'n+1)=nl'(n)=nn—-1'n—-1)=..=n[n—1]..2.1.I(1) = nl

Rewritten as
['(z)

xr —

[(x—1) = r—1>0

Using this relation, the Euler Gamma function is extended to negative arguments
for which definition (1.5) is inapplicable. The graph of the gamma function is
shown in Figure(1.1).

1.2.2 Beta function

The function that is closely related to the gamma function is the complete beta
function B(x,y). For positive values of the two parameters, x and y, this function
is defined by the Beta integral:

B(x,y) = /Olt“u —t]tdt. (x>0, y > 0) (1.6)
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FiGURE 1.1: Graphical representation of Euler Gamma function

The beta function B(z,y) is symmetric with respect to its arguments z and y,
that is, B(x,y) = B(y, x).
This follows from (1.6) by the change of variables 1 —t = u, that is

B(z,y) = /0 w1 — u]"tdu = B(y, r).

Using the Laplace transform, we can prove that this function is connected with

the Gamma function by the relation

L(2)C(y)

Hx+w-(%y¢ZD

B(x>y) =

Clearly this relationship extended the beta function to negative non-integer argu-
ments for which the definition (1.6) is inapplicable.
With help of the Beta function we can establish the following two important rela-

tionships for the Gamma function. The first one is

D(z)D(1 - z) =

O<z<l1

sin(mz)’ (0<e<1),
1

for example F<§) = /7.

The second one is the Legendre formula

L(x)T(z + %) = Vm2¥ 1T (27), (27 ¢ Zy).
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1.2.3 Mittag-Leffler function

“The mathematicians best work is art, a high perfect art, as daring as the most
secret dreams of imagination, clear and limpid. Mathematical genius and artistic

genius touch one another.”
Gosta Mittag-Leffiler

The exponential function e*, plays a very important role in the theory of integer-
order differential equations. Its one-parameter generalization, is the Mittag-Leffler

function defined by

Eo(z) = kzzo m (:€C; a>0). (1.7)

This function was introduced by Mittag-Leffler [53, 54], and studied also by Wiman
[80].

E,(z) is an entire function of z. In particular we have
Ei(2) =¢* and E(z) = cosh(\/z).

Graphical representations of this function for some values of « are shown in fig-
ure(1.2)

Now we shall give some informations about the asymptotic behaviour of this func-
tion [26].

Theorem 1.3.

Let a> 0, 7 >0, ¢ € [—m, 7|, then the following statements hold
a) im, oo Eu(re’) =0 if |p| > ar/2.

b) lim, 00| En(re?)| = 0o |¢| < ar/2.

¢) E,(re*) remains bounded for r — oo if |p| = am/2.

The following theorem describe the interconnection between the one-parameter

Mittag-Leffler function and the Laplace transform operation.

Theorem 1.4.
Let o > 0, A € C and define x(t) = E_,(A\t), then the Laplace transform of x is
gien by

a—1
La(s) = Sj 5 (A€ O Re(s) >0 s < 1), (1.8)
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FIGURE 1.2: Graphical representation of the one parameter Mittag-Lefller func-
tion for some value of a.

Proof.

Writing down the series expansion of z(¢) in powers of t* gives

2(t) = Eo(-27) = % %

Differentiating (1.8) n times with respect to A leads to the following relation

an p(n a nls! —a
E[t E( )(—)\t )](S) = W, ()\ e C; RB(S) > 0; ’)\S | < 1) (19)
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Now, let us introduce an important theorem called “Final value theorem” which
gives information about the asymptotic behaviour of the function f(t) directly

from his Laplace’s transform F'(s).

Theorem 1.5. (Final value theorem)
Let F(s) be the Laplace transform of the function f(t). If all poles of sF(s) are
in the open left-half plane, then

lim f(t) = lim sF(s).

t—o00 s—0

Using theorems (1.4 and 1.5) we obtain a statement on the asymptotic behaviour

of the function z(t) = E,(—At%) as its argument tends to infinity:

Theorem 1.6.

Let a > 0,7 >0, ¢ € [-m, 7| and A = rexp(ip). Define x(t) = E,(—At*). Then,
the following two statements hold

a) im0 2(t) = 0 if |p] < an/2,

b) x(t) is unbounded ast — oo if |p| > am/2.

The two-parameter Mittag-Leffler function E, 3(2), generalizing the one in (1.7),
is defined by the series expansion [62]

kZZOFak‘Jrﬁ (:€C; a>0, 8>0). (1.10)

When =1, E,3(2) coincides with E,(z)
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The hyperbolic sine and cosine are also particular cases of the two-parameter

Mittag-Leffler function:

Eyq(z kZF2k+ Z ! —cosh (2),
=0

lc:O

1 Z*T 0 sinh(2)

E _
2.2 F2k+2 T2 (2k+ 1) 2

Mg

k=0

The Mittag-Leffler function satisfies the following differentiation formulas

d n
(a) [P E, s(A\2™)] = 2P B n(A2") (n€N; A e ).



Chapter 2

Fractional integrals and fractional

derivatives

In his discovery of caICLTlLIus, Leibniz first introduced the idea of a symbolic method
and used the symbol Ez = D™y for the nth derivative, where n is a non-negative
integer. L’Hospital asked Leibniz about the possibility that n be a fraction. "What
if n = %?’ Leibniz replied: "It will lead to a paradox.” But he added prophetically,

"From this apparent paradox, one day useful consequences will be drawn .

From this brief historical introduction we can say that fractional calculus grows
out of the classical definitions of the integral and derivative operators, in much the

same way fractional exponents is an outgrowth of exponents with integer value.

The meaning of integer exponents is a repeated multiplication of a numerical
value, this concept can clearly become confused when considering exponents of
non integer value, it is the notation that makes the jump seem obvious. While
one can not imagine the multiplication of a quantity a fractional number of times,
there seems no practical restriction to placing a non-integer into the exponential
position. Similarly, the common formulation for the fractional integral (derivative)
can be derived directly from a traditional expression of the repeated integration
(differentiation) of a function, and provides an interpolation between integer-order

integrals (derivatives).

There are several types of fractional integrals and fractional derivatives. In this
chapter we give definitions and some basic properties of three different types (the

choice has been reduced to those definitions which are related to applications).

18



Chapter 2. Fractional integrals and fractional derivatives 19

2.1 Riemann-Liouville fractional integral

2.1.1 Definition

According to Riemann-Liouville approach the notion of fractional integral of order
a(a > 0) is a natural consequence of the well known formula (usually attributed
to Cauchy) that reduces the calculation of the n-fold integral of a function f(¢) to

a single integral of convolution type.

We begin by a review of the n-fold integral of a function f assumed to be continuous

on the interval [a, b], where b > z.

First recalling that if G(z,t) is jointly continuous on [a, b] X [a, b], then we have

a a a t

In particular when G(z,t) is a function of a variable ¢ only, that is if G(z,t) = f(¢)

then (2.1) can be written as

/:dml/:l fHdt = /:f(t)dt/t dz,,

~ [ @-oswa

this is the formula of two-fold integral reduced to a single integral. Similar com-

putation gives the following formula of 3-fold integral reduced to a single integral

/jdx1 /jl dzs /ax2f(t)dt:/am (x_2t)2f(t)dt.

By induction we deduce the Cauchy formula of n-fold integral

@) = D @) = [ oy [Cdeae [ 00
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Using the Gamma function this formula can be rewritten as

Jf(z) = WD f(z) = ﬁ / e tUWd > a, ne N (2.2)

Since the gamma function is an analytic expansion of the factorial for all positive
real values (section 1.2.1), one can replace n by a real positive number «, in (2.1.1),

then one defines the Riemann-Liouville fractional integral of order o > 0 as follows

Jof(x)= EED f(z) = ﬁ/m(x —)* " f(#)dt, x>a, a>0.(2.3)

Example 2.1.

Let f(z) = (z — a)? for a fived B > —1 and o > 0, we have

1

Jf(x) = Tla) /x(a: —a)P(x —t)*"1dt.

Using the substitution t = a + s(x — a) and the Beta function we get

JOf(x) = ﬁ(m — a)Mﬂ/O s9(1—s)* ds

- M(m — q)*th,

MNa+5+1)

Theorem 2.1.
Let f € Lila,b] and o > 0, then the integral J&f(x) exists for almost every

x € |a,b]. Moreover, the function J&f itself is also an element of Li|a, b].
Proof. We have

T “+o00
J;’f(x):% / (x — )L F(t)dt = / By (x — 1) Dy ().

o0

where

ust for 0 <u<b-—a,
0 else,
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and
u for a <u <b,
Dy(ur) f(w) <u<
0 else.
Clearly @1, &5 € L1(R), and thus the desired result follows. O

2.1.2 Some basic properties

e If f is a continuous function for z > a then, we have [62]

lim - J2 f(x) = f(x), (2.4)

a—0

so we can put

Jof(z) = f(@).

e Let f be a continuous function for x > a, we have

Jo (Jif(@) = TP f(a). (2.5)
In fact we have
52 (1) = % / m(x AL

|
K‘
S
+
Y
S?/

where the integral

is evaluated using the substitution

t=s+y(x—s),
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and the definition of the beta function.

e If F(s) is the Laplace transform of the function f(z) then the Laplace trans-

form of the Riemann-Liouville fractional integral J¢ f(x) is given by

F(s)

LT f(@))(s) = — = (2.6)

For the proof of (2.6) we introduce the following causal function

t(x 1
D, (t) = =4, a >0,

[(a)’
where the suffix + is just denoting that the function is vanishing for ¢ < 0.

Clearly this function is locally absolutely integrable in R™, and the Laplace

transform of ®,(t) is given by

Notice that the Riemann-Liouville fractional integral of f(¢) could be ex-

pressed as the convolution of the two functions ®,(¢) and f(¢) namely

2w = [ (x;(—fj;_lf(t)dt,

-/ ",z — ) (t)dt,
= D, (t) * f(1).

Based on the convolution property of the Laplace transform (1.4), one deduce
that

=5 (2.7)
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2.2 Riemann-Liouville fractional derivatives

2.2.1 Definition

After shedding light on some basic properties of the Riemann-Liouville integral
operators. Now we come to the corresponding differential operators. First, we
recall the following identity which holds for a function f having a continuous nth

derivative on the interval [a, b]
Df = Dm g, (2.8)

where n, m € N, such that m > n.

Now suppose that n is not an integer. In view of previous sections the right-hand
side of (2.8) is meaningful. Hence, we come to the following definition of the

Riemann-Liouville fractional differential operator.

Definition 2.2.
Let a € Ry and m = [«| (the smallest integer that exceeds «).
The operator L'D¢ defined by

BEDRf = DmIpe S, (2.9)

is called the Riemann-Liouville fractional differential operator of order «.

Equivalently, we have

RL e f () — ﬁ% s(t —s)m 7 f(s)ds, m—1<a<m
o 4= f(2). a=m

For a = 0 we set ®LD? = I the identity operator, and whenever o € N the new

operator D2 coincides with the classical differential operator D®.

Remark 2.3.

The Riemann-Liouville fractional operator, is not local.
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Example 2.2.
Let f(t) = ¢, then

T DRf(t) = DI f (1),

~ g P = seias),
_ c(t—a)™@
r'l—oa)’

Example 2.3.
Let f(t) = (t—a)? for a fived 3 > —1 and o > 0. Then, in view of example (2.1),

we have

BDRf(t) = DI (1), mo=[a]

- F(ﬂ—i_l) m _ p\ym—a+pB
“Tm—atprn)’ (= )",

One can distinguish two cases. Namely: If (o — B) € N, then the right-hand side

is the m-th derivative of a polynomial of degree m — (o — ), this implies that
"D f(t) =0.

But if (o — ) ¢ N, then

LB+1)

D) = G

(t —s).

2.2.2 Some basic properties

The law of exponents
In section (2.1.2), we have proved the rule of composition for Riemann-Liouville
fractional integrals. That is if f is a continuous function for x > aand o > 0, g >

0, then
Je (I f(@) = JetPf(x). (2.10)

However, this rule may not be generalized to the case of fractional derivatives
without imposing some additional restrictions on f. To show that (2.10) does not
necessarily hold for all & and 8 when replacing J* and J? by BLD® and ELD},

let introduce the following example
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Let f(t) =t2, a =2 and 8 = 2 then

1, s

DD () = =7,
o Lo
TOT() = -3t

Obviously in this example we have
DD (F) # EDII(f ()

In the following we shall state, precisely, some conditions under which the law of

exponents holds.

e Composition with integer-order derivatives.
The composition of Riemann-Liouville fractional derivatives with integer or-
der derivatives appears in many applied problems, so it is convenient to in-
troduce it here. Let us consider the n-th derivative of the Riemann Liouville

fractional derivative of real order «, we have

DD ) = D [y as),

I'(m—«

:Pm+mioumeMm([“‘@“W“”*V@MQ,

= D).

To consider the fractional derivatives of the n-th integer derivative we recall

the following relationships
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and
BEDRg(t) = TEDF (WD g(t)) -

Using the above relations we obtain

DN M@) = TEDET (WD)

D ()t — a)i
_ mpge (f(t) L )>>,

L f9a)(t — ayr
F'j—n—a+1)

n—

»—‘h.

= WDI () -

<.
I
o

From this results we see that the Riemann-Liouville fractional operator
RL Do commutes with the integer operator D™ only if f7/ vanishes in the

lower terminal a for all j =0,1,2,....n — 1.

e Composition with fractional-order Derivatives.
Now, let us consider the composition of two fractional Riemann-Liouville
operators LD and BEDP | we put m = [o] and n = [f] then

BED (DY f() = D (AEDy ™ (BEDRE®))
= D" (BEDI (1)

n

bej (t _ a)m—oc—j
J:1|:RLD f :|t:ar(m—04—j+1)
— RLDets £ () Z[RLDB TE() Lzaw(t;a_)j—:)
(2.11)
and
m ) _ A\ B-J
WDRCEDE0) = WD) - X [0
(2.12)

From this relationships we deduce that in general case the Riemann-Liouville
fractional operators #£D2 and BLD? do not commute, except for the case

a = . When « # [ it commutes only if both sums in the right-hand sides
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of (2.11) and (2.12) vanish, that is if

fi(a) =0, for all j=0,1,2, .. max(n —1,m —1).

The Laplace transform In order to evaluate the Laplace transform of the

Riemann-Liouville fractional derivative LD f(t) we write it in the form:
D f(t) = g™(1),

where

g(t) = "D fx) = m /(t —8)" 7 f(s)ds. m = [a]

Using the notation L£(f(z))(s) = F(s), L(g(x))(s) = G(s) and the formula for

the Laplace transform of integer-order derivative (1.3) we get
L{Dyf(z)} (s) =5"G(s) — sFgm=k=1(0). (2.13)

G(s) can be evaluated by the formula of the Laplace transform of the Riemann-

Liouville fractional integral (2.7) namely

G(s) = s ™ YF(s). (2.14)
On the other hand, we have
k—1 A" ma) RL ya—k—1
o) = S D ) = D). (25)

Substituting (2.14) and (2.15) into (2.13), then we obtain the formula for the

Laplace transform of the Riemann-Liouville fractional derivative

3

LLTDIf(O)} (s) =5"F(s) = Y s" [ GOy (1] - (2.16)

e
I

The practical application of this Laplace transform is limited by the absence of
physical interpretation of the limit values of fractional derivative at the lower

terminal ¢t = 0, [62].
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2.3 Grunwald-Letnikov fractional derivative

2.3.1 Definition

As presented above, the Riemann-Liouville formulation approaches the problem
of fractional calculus from the repeated integral, but the Griinwald-Letnikov for-
mulation approaches the problem from the derivative side by observing that the
derivative of integer order m and the m-fold integral are two notions closer to each
other than one usually assumes, namely they are particular cases of the following

general expression

DPf() = lim h-pzn:(—n’f ( b ) F(t — kh), (2.17)
h—0 k=0 k

nh=t—a

where

<p):p@—n@—mm@—k+m
2 k! ’

are the binomial coefficients.

The expression (2.17) represents the derivative of order m if p = m and the m-fold
integral if p = —m, this expression is used to define a fractional derivative and
fractional integral by directly replacing p € N in (2.17), by an arbitrary real «,
provided that the binomial coefficient can be understood as using the Gamma

function in place of the standard factorial. Also, the upper limit of the summation

goes to infinity as
We end up with the generalized form of the Griinwald-Letnikov fractional deriva-
tive

t—a

L na N faT k F(O[—f-].)
L0110 = fmgh ™ SV (e ) Sk e

It is conceivable, that like the definition of Riemann-Liouville for the fractional
integral may be used to define the fractional derivative, the above form of the
G-L derivative could be altered for use in an alternate definition of the fractional

integral. The most natural alteration of this form is to consider the G-L derivative
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for negative a. But in (2.17), there is a problem that ( _kp > is not defined using

factorials. We have

<—p> —p(=p—1(-=p—2)..(-p—k+1)
k k! ’
(p+k—1)!

e (2.19)

~ (-1

The factorial in (2.19) may be generalized for negative real, using the Gamma

function, thus

( _p> - (—1)’“%. (2.20)

Now we can rewrite (2.18) for —«, and this leads to the G-L fractional integral

t—a

CEDZef(t) = T by (FIE?F—L’;)) (L= kh). (2.21)
k=0 ’

2.3.2 Link to the Riemann-Liouville approach

If we assume that the derivatives f*)(¢), (k = 1,2,...,m) are continuous in the

interval [a, T'] and m is an integer such that m > a, we can rewrite (2.18) as follows

t

) / (t— 5y Fm) (5)ds. (2.22)

a

)t —a)k—e 1
—a+1) I'im—«

m—1 (k)
GL o f (a
Dy f(t) = E
a t f( ) F(k:
k=0
Also, the right hand side of (2.22) can be written as

t

/ (t — s)2m=a=Lf0m) (g)ds \  (2.93)

a

am |t f(k)(a) (t— a)M*OH*k . 1
dtm | &= T'(m—a+k+1) r'(2m — «)

and after m integration by part, we obtain the expression of the Riemann-Liouville

derivative
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t

= sty = G { DT ),

a

am 1
dtm | T'(m — «)

= RLDEf(1). (2.24)

So, under the above assumptions we have
DR () = DY)

Therefore, the properties that we have seen in the Riemann-Liouville definition for
the fractional derivative remain valid for the Grinwald-Letnikov definition, under

a suitable assumptions.

Remark 2.4.
The Riemann-Liouville definition of the fractional integral and derivative is suit-
able to find the analytic solution for relatively simple functions. Conversely, the

Griinwald-Letnikov definition is adopted for numerical computations.

2.4 Caputo fractional derivative

2.4.1 Definition

As it is mentioned in section (2.2), the Laplace transform of the Riemann-Liouville
fractional derivative include the limit values of fractional derivative at the lower
terminal £ = 0, so the initial conditions required for the solution of fractional order
differential equations are themselves of a non-integer order. Also, the fractional
derivative of a constant is not a 0.

In the mathematical sense, when solving non-integer order differential equations,
it is possible to use this definition given the proper initial conditions as it happens.
However in the physical world, these properties of the RL definition presents, a
serious problem. Today, we are well versed with the interpretation of the physical
world in the equations of integer order, and we do not have a practical knowledge
of the world in a fractional order. Our mathematical tools go in excess of practical

limitations of our comprehension.
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The Italian mathematician Caputo proposed a solution to this conflict in 1967, [17].
By introducing a new definition, in which he attempts to find a link between what
is possible and what is practical. The aim of the slight modification of the concept
of fractional derivative is to allow the use of integer order initial conditions in the
solution of fractional differential equations. In addition, the Caputo derivative of a
constant is 0, as we will see below. In order to achieve this goal, Caputo proposes
the same operations as in Riemann-Liouville definition but in the reverse order,
namely to get the Riemann-Liouville derivative of order a > 0, of a function f,
first one must integrate f by the fractional order m — «, after that, differentiate
the resulting function by the integer order m. While in the Caputo approach,
first one must differentiate f by the integer order m, then integrate f(™ by the

fractional order m — a.

Definition 2.5.
Let a > 0, and m = [a]. Then, we define the Caputo’s fractional operator € D¢

by
C Nna m—ao "
aDt f(t) = ‘]a dtmf(t)’

——1 — gyl i) ds
i [ s

a

t

m

whenever A f € Li[a,b].
ds™

Remark 2.6.
As in the case of the Riemann-Liouville operators, we see that the Caputo deriva-

tives are not local either.

2.4.2 Some basic properties

1. Linearity

Let A,y € R. From the definition of ¢ D¢ it follows directly that

GDE () +79(1) = A GDE(f(0) + v GDF (9(1)).-

2. Interpolation

When « € N, we have m = «, then the definition (2.5) implies that

e

aqgm’ dtmf'
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This means that: similarly to the Riemann-Liouville and Griinwald-Litnikove
approaches, the Caputo approach provides also an interpolation between

integer-order derivatives.

3. Composition

Let n € N and m = [«], we have
JDFGDIf (1) = GDFf (1)
Namely

SDXDPf() = oD DD (1)),
= D", D (),
= Dyt pmen g,
= oDME(t).

4. Laplace transform
We begin by writing the derivative in the form:
D f(t) = T (1)
0+t 9
where
Using the formula for the Laplace transform of Riemann-Liouville fractional

integral (2.7), and the formula for the Laplace transform of integer-order

derivative (1.3) we get

3

L{LYDEF#)} () =S G (s) = s*F(s) — Y s*F1f0(0).  (2.25)

£
I

Clearly, the Laplace transform of the Caputo fractional derivative involves
the values of f(x) and its derivatives at the lower terminal x = 0, for which a
certain physical interpretation exists, so we expect that the fractional Caputo

derivative can be useful for solving applied problems.
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2.4.3 Link to the Riemann-Liouville approach

Let o > 0 and f a function having a continuous derivatives f*)(t), (k =

1,2,...,m) in the interval [a,T], where m = [«a], then from (2.24) we have

t

L na _ — f(k) ((Z) (t — a)k—a 1 _ Jym—a—1p(m
_ /M)t —a)te o
=2 That ) + CDYf(t). (2.26)

Clearly if f®)(a) =0, (k=0,1,2,...,m — 1) then

WDRf(t) = LDIf().

2.5 Fractional differential equations

This section will be devoted to the study of Caputo’s fractional differential equa-
tions. In the first subsection we aboard the existence and uniqueness questions for
the initial value problems with a most general class of fractional equations, then
in the second subsection we move to the analytical resolution of linear equations.

Whereas in the third subsection we shall deal with numerical resolution.

2.5.1 Initial value problems

We begin with initial value problem of the form

{ sD(t) = /(). (227

0) =2V, k=0,1,2,...,m—1

where as usual we have set m = [a].

The existence and uniqueness theory for such equations have been presented in
[26].

Theorem 2.7.
Let a > 0 and m = [a].
Moreover, let x, z}, ...,xgl_l eR, K >0 andT* > 0.
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Define
m—1
G = {(t,w) e (0,77, |r = thal JkI|< K} :
k=0
and let the function f : G — R be continuous.

Furthermore, define M = supq yec|f(t, z)| and

T= { o M =0, (2.28)

min {T*, (KI'(a + 1)/M)Y*} else.
Then, there ezists a function x € C'[0,T] solving the initial value problem (2.27).

Theorem 2.8.

Let a > 0 and m = [«].

Moreover, let 23, 2}, ..., x0* € R, K > 0 and T* > 0.

Define G as in theorem (2.7) , and let the function f : G — R be continuous and

satisfying a Lipschitz condition with respect to the second variable, i.e;

|f(t,x1) — f(t,x2)| < Ll — 24, (2.29)

with some constant L > 0. Then define T as in theorem (2.7), there exists a
uniquely defined function x € C'[0,T] solving the initial value problem (2.27).

Corollary 2.9.

Assumes the hypotheses of the theorem (2.7 and 2.8), except that the set G, i.e;
the domain of definition of the function f is now taken to be G = R2.

Moreover, we assume that f is continuous and that there exist constants ¢; >
0, co >0 and 0 < pu <1 such that

|[f(t,z)| < e + ozt forall (t,z) € G.

Then, there exists a uniquely function x € C'[0,00), solving the initial value prob-

lem (2.27).

For the proof of theorem (2.7 and 2.8 ) one can refer to [26](chapter 6).

Remark 2.10.
- In real applications, we have usually 0 < a < 1. In this case, the set G defined

in the theorem (2.7) is just the simple rectangle

G=0,7] x |29 — K,z + K] .
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-For simplicity of the presentation we only treat the scalar case here. However,
all the results in this section can be extended to vector-valued functions z (i.e.

systems of equations) without any problems.
It is well know that if
f:00,a] x[b,c] = R,

is a continuous function and satisfy a Lipschitz condition with respect to the second

variable and y, z are two solutions of the differential equation of order 1

dx(t)
dt

- f(t,l’),

subject to the initial conditions y(0) = yo, 2(0) = zo where yo # 2. Then, for all ¢
where both y(t) and z(t) exist, we have y(t) # z(¢). But a similar statement does
not hold for equations of higher order, for example the equation

d*z

ae = 0
has solutions z1(t) = 0, x2(t) = cost and x3(t) = sint clearly the graphs of these

solutions cross each other. Similar effects arise for fractional equations and we

have the following result

Theorem 2.11.
Let 0 < a < 1 and assume that f : [0,a] X [b,c] = R, is a continuous function and
satisfy the Lipschitz condition (2.29) with respect to the second variable and vy, z

are two solutions of the fractional differential equation of order «
“Dfa(t) = f(t,x)
0t ) )

subject to the initial conditions y(0) = yo, 2(0) = 2y where yo # zo. Then, for all
t where both y(t) and z(t) exist, we have y(t) # z(t).

2.5.2 Initial value problems for linear equations

It is a common observation in many areas of mathematics that the linearity as-
sumption allows to derive more precise statements. So, in this section we restrict
our attention to linear fractional differential equations which are very important
in many applications. Explicit expressions for solutions of such equations can be

obtained and used for the study of stability property.
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2.5.2.1 One dimensional case

For simplicity, we begin by the scalar (one dimensional) case

Theorem 2.12.
Let > 0 and m = [a], A € R and g € C[0,T]. The solution of the initial value

problem
2®(0) =2, k=01,..m—1,
15 given by
m—1
o(t) =Y af w(t) + & (1), (2.31)
k=0
with
Joq(t),  ifA=0,
z(t) = (2.32)

t
%fqt—Tuo T)dT ifA#0,
0

where ug(t) = JEeq(t), k=0,1,..m — 1 and e,(t) = Eo(\t%).

Remark 2.13.

In the special case 0 < a < 1, the solution is given by

z(t) = :L‘O E (At¥) + q(t — 7)o LE! (A7) dT,

]
= ZEO 'E, () + Oft(t — 1) EL (Nt — 7)%)q(T)dT.

In the limit case a — 1~ we obtain the classical formula

t

x(t) = a:(()o)e’\t + /e)‘(t_T)q(T)dT.

0

Proof. (Theorem (2.12)).

In the case A = 0, we have e,(t) = E,(0) = 1. Then, ug(t) = t*/k!, for every k.
Thus, the direct differentiation of a given x(t) affirms the claim.

In the case A # 0, the proof will be divided into two facts:

The first is that the functions u, satisfy the homogeneous differential equation

CD U = )\’U,k (k:O,l,...,m—l),
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with initial conditions u,ij)(O) = 0x; (Kronecker’s delta) for j,k =0,1,...,m — 1.
The second fact is that the function Z is a solution of (2.30).

Then the proof will be achieved by the superposition principal.

a) we have
= Nt
alt) =
ea(?) ;0 I+ ja)
Then i
= )\jtaj+
t) = Jiea(t) = 2.33
applying the operator D to both sides of (2.33) yields
0 )\jtoz (G—1)+k
C o
D t) =
oD = o G D k)
00 )\j+1taj+k
_Jgof(l—f—]a—l—k)
o0 Ntk
=\ Z _ ,
o (1 + ja+ k)
Moreover, for j = k, we have
ul™(0) = D* JEeq(0) = 1.
For j < k, we have
. 0
(9) j 7k k—j k—j—1
0)=D’Jyen(0) = J o) = ——— [ (0 — I eq(T)dT = 0.
u)(0) = DV e (0) 06(>IW—ﬁﬁ P e ()

And for j > k, we have

u?(0) = D7 JFeq(0) = D) Feq(0) = 0,
since

Ditea(t) —pits AT
0 @ 0 1=0 F(l + lOé)7

Npla+k—j
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b)We have

t
[q(t—7)e,(r)dr =
0

>/IH

¢
f t—T
0

>/IH

Since ¢ is continuous and e, is at least improperly integrable, then the integral
exists and it is a continuous function of ¢, thus #(0) = 0. Using the well know

rules for differentiation of parameter integrals we obtain

o(r >d¢+§ (t)e, (0)

q(t — T)dT

- xjax
- xfax

>/Ir— >/IH

because €/ (0) = 0, this formula can be generalized for (k = 0,1,....,m — 1) as

follows

then D*7(0) = 0 for (k = 0, 1,...,m—1). Thus ¥ Fulfills the required homogeneous
initial conditions. Now, it remains to show that z solves the non-homogeneous

differential equation. We have

AL%)
e (t) = dat* LB (\tY) = Aat*! (—
& (At)! Nt

=M e T A TGy

then
0 = funit o = ftn £ X
00 )\j—l t s - - o
= 2 ey AT = 2 ()
Thus

GDeE(t) = zl NG DI g(t) = > NLTT (),
Jj= Jj=
=X N Tq(t) = q(t) + S NJ3%(t) = q(t) + AE(L).

=0 j=1
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Notice here that in view of the convergence property of the series expansion for
e/, and the continuity of ¢, the interchange between summation and integration is

possible. O

2.5.2.2 Multidimensional case

First, let us give the general solution for the commensurate fractional order linear

homogeneous system
YDOX(t) = AX(t), 0<t<a, (2.34)

where X € R", a > 0, and A € R" x R". To derive this general solution the
author of [57], proceeds by analogy with treatment of homogeneous integer order
linear systems with constant coefficients where the exponential function Exp(t) is
replaced by the Mittag-Leffler function E,(t*). Hence, we seek solutions of the

form

X(t) = uB (M), (2.35)

the constant A and the vector u are to be determined. Substituting (2.35) in (2.34)
gives

UNEL (M) = AuE, (At®). (2.36)

Thus
(A= X)u =0, (2.37)

because E,(At*) # 0. Therefore, the vector X in (2.35) is a solution of the system
(2.34) on condition that A is an eigenvalue and u an associated eigenvector of the
matrix A. Now, if all k-fold eigenvalues of A have k eigenvectors, then we know
that the set of all these eigenvectors is linearly independent and thus it forms a

basis of C". Hence, the following result holds.

Theorem 2.14.
Let My, ..., \, be the eigenvalues of the matriz A and vV, ..., u™ be the correspond-

ing eigenvectors. Then, the general solution of the fractional differential equation
(2.34)is given by

X(t) =Y Cru® E,(\t®), (2.38)
k=1

with certain constants Cy, € C.
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Example 2.4.

Let us consider the system

6 DPX (1) = AX (1),

2 —1
where 0 < a <1 and A =

4 -3
The eigenvalues of the matriz A are Ay =1 and Ay = —2 and their corresponding
eigenvectors are ut) = [1,1]7 and u® = [1,4]7 respectively. Thus, the general

solution of the given system 1is

X(t)=¢ ( 1 ) Ea(t*) + ¢ < i ) Eo(—2t%),

where ¢y and co are arbitrary constants.

Remark 2.15.
If the matrix A has a repeated eigenvalue A, of algebraic multiplicity & and geo-
metric multiplicity m (i.e: with m linearly independent eigenvectors u, ..., u(™)),

then we envisage two cases.

a) If m = k, then
XU = M, (M), .., XB = u® B, (),

are k linearly independent solutions of the homogeneous system (2.34).
b) If m < k, then, the theorem (2.14) is not applicable and we must resort to a

different representation of the general solution.

Definition 2.16.
Let A be an eigenvalue of multiplicity k, of the nxn matrix A. Then fori =1, ..., k,

any nonzero solution v of
(A= X)'v=0 with (A—X)"'v#0,

is called a generalized eigenvector of order 7, of the matrix A. The set of generalized

eigenvectors v, ..., v is linearly independent and is called a Jordan chain.

Notice that an ordinary eigenvector u can be considered as a generalised eigen-
vector of order 1. The generalized eigenvectors vV, ..., v®) can be determined by
solving the following successive sequence of linear equations, in which v is known

and vV is unknown:
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In the case (b) of remark (2.15) the generalized eigenvalues will be useful for
creating the fundamental set of solutions of the homogeneous system (2.34) as

shown in the following theorem.

Theorem 2.17.
For each k-fold eigenvalue X, of the matrix A we have k linearly independent
solutions X1, ..., X®) of the homogeneous linear system (2.34) which can be rep-
resented in the form

-1

XO(t) => ottt gl ey - 1=1, .k, (2.39)

s=0

The combination of these solutions for all eigenvalues leads to n linearly indepen-

dent solutions of the system (2.34).

Remark 2.18.
Let X(t) = [z1(t), x2(t), ..., 7, (t)]T be the solution of the initial value problem,
consisting of the homogeneous system (2.34) and the initial condition X (0) = Xj.

Then, the initial value problem for the non-homogeneous fractional order system

SDeX(t)=AX(t)+ B(t), 0<t<a,
X(0) = Xo,

where

B(t) = [ba(t), ba(t), .. ba(B)]

has the solution
Y (t) = [y (t), y2(t), ., yu ()]
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such that .

yi(t) = i(t) + / zi(1 — t)bs(7)dr.

0

2.5.3 Numerical algorithms for fractional equations

Two sets of the numerical methods have been mainly used in the literature, to
solve fractional-order differential equations, namely, the frequency-domain meth-
ods [67] and the time-domain methods [24, 25, 27]

The frequency-domain methods have been primarily most frequently used to in-
vestigate chaos in fractional order systems [35, 42]. Unfortunately, it has been
shown that these approaches are not always reliable for detecting chaos in such
systems [70, 72]. Therefore, a great deal of effort has been recently expended over
the last years in attempting to find robust and stable numerical as well as analyt-
ical time-domain methods for solving fractional differential equations of physical
interest. The Adomian decomposition method [4], homotopy perturbation method
[59], homotopy analysis method [15], differential transform method [55] and varia-
tional iteration method [58] are relatively new approaches to provide an analytical
approximate solution to linear and nonlinear fractional differential equations.

An efficient method for solving fractional differential equations in term of Ca-
puto type fractional derivative, is the predictor-corrector scheme or more precisely,
PECE (Predict, Evaluate, Correct, Evaluate) [27, 28], which represents a gener-
alization of Adams-Bashforth-Moulton algorithm. This method is described as

follows. Let consider the following fractional order initial value problem

¢ Do = f(t 0<t<T
0 tm f( 71’), = = ) (240)
™) =a2f k=0,1,2,...,[a] -1
which is equivalent to the Volterra integral equation
ik
_ kY - . (a—1)
w(t) = ;xo SR / (t—7) "V f(r,2(7))dr. (2.41)
= 0

Set h =T/N and t; = jh, (j =0,1,2,..., N) with T being the upper bound of the
interval on which we are looking for the solution. Then, the corrector formula for

equation (2.41) is given by
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n

th he he
Th(ton) = Y of k:+!1+ )f(tn+17xﬁ(tn+1))+—Z%‘,nﬂf(tj?l’h(tj)),

— MNa+2 INa+2) =
(2.42)
where
a+1 «a .
—(n— + 1)%, =0
B e L (R o)
(n=Jj+2)**" +(n—j)* —2(n—j+1)*, 1<j<n

By using a one-step Adams-Bashforth rule instead of a one-step Adams-Moulton

rule, the predictor 7} (t,41) is given by

-1

Z t"+1+—zbgn+1f(twivh( 6)), (2.44)

k=

where
o

h : N N :
bimir = —((n—j+1)" = (n—j)"), 0<j<n. (2.45)

The error estimate of this method is

e = max |x(t;) — zn(t;)] = O(RP), (2.46)

0<j<n
where p = min(2,1 + «).

Now, the basic algorithm for the fractional Adams-Bashforth-Moulton method is
completely described.

For numerical resolution of fractional differential equations in term of Riemann-
Liouville derivative we adopt the algorithm derived from the GriinwaldLetnikov
definition (2.18). This approach is based on the fact that for a wide class of
functions, two definitions GL (2.18) and RL (2.9) are equivalent. The relation
for the explicit numerical approximation of the ath derivative at the points kh
(k=1,2,...) has the following form

D2 (kh) ~ % > (-1 < “ ) z((k — j)h), (2.47)
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where h is the time step of the calculation and (—1)’ ( O.[ ) =C%, (7=0,1,..)
J
are binomial coefficients. For their calculation we can use the following expression
a « J—o— 1 a
Co=1, C} = (f)cj_l' (2.48)

The described numerical method is a so-called Power Series Expansion (PSE) of

a generating function.

For t > a the number of addends in the fractional-derivative approximation (2.42)
(2.47) becomes enormously large. However, it follows from the expression for the
coefficients in the Griinwald-Letnikov definition (2.17) that for large ¢ the role of
the history of behaviour of the function f(¢) near the lower terminal ¢ = a can
be neglected under certain assumption. Those observations lead Podlubny [62],
to the formulation of the short memory principle which mean taking into account
the behaviour of f(¢) only in the short interval [t — L, t|, where L is the memory
length

DEF() & D), (¢ a+ D). (2.49)

Clearly, the fractional derivative with lower limit a is approximated by the frac-
tional derivative with moving lower limit ¢ — L, therefore the number of addends
in (2.49) is always less than L/h.

If f(t) < M for all t € [a,b] then the error of approximation is given by [62]

M

A(t) =| DEf(t) — FLD?f@Nféz;ﬁjszg]

, (a+L<t). (2.50)

Thus, in order to obtain a good approximation (i.e; A(¢) < €) we must choose the

memory length L which satisfies

Lz(ﬁﬁgzﬂym. (2.51)



Part 11

Fractional systems and

applications

45



Chapter 3

Fractional-order dynamical

systems

Fractional systems, can be considered as a generalization of integer order systems
[51, 60]. In this chapter we will focus our attention on the qualitative study
(stability theory, periodic behavior, bifurcation and chaos) of a fractional-order

dynamical system given in the following form
CDpx = f(t,2), (3.1)

where z € R™, f is defined on a suitable subset U C R™™! and a = [aq, ao, ..., a,,]7
are the fractional orders, 0 < o; < 1, (: = 1,2,...,n) ( we adopt this restriction
of fractional order o because fractional equations in this range require only one
initial condition to guarantee the uniqueness of the solution). When a; = ay =
.. = Qp, the system (3.1) is called a commensurate order system, otherwise it is
an incommensurate order system. If f depends explicitly on ¢ then (3.1) is called
non-autonomous system otherwise it is called autonomous system. The constant
a is an equilibrium point of the Caputo fractional dynamical system (3.1), if and
only if f(t,a) =0, for all ¢.

3.1 Stability theory of fractional systems

A well known and important area of research in theory of dynamical system is
the stability theory, the stability of fractional system is different from that in the

integer one. When talking about stability, one is interested in the behaviour of

46
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solutions of (3.1) for ¢ — oo. Therefore we will only consider problems whose
solutions z exist on [0, 00). Moreover, some additional assumptions are required
in this section. The first assumption is that f is defined on a set G = [0, 00) x {w €
R” : |lw|| < W} with some 0 < W < oo. The norm of G may be an arbitrary
norm on R™. The second assumption is that f is continuous on its domain of
definition and that it satisfies a Lipschitz condition there. This asserts that the
initial value problem consisting of (3.1) and the initial condition x(0) = x, has a
unique solution on the interval [0, b) with some b < oo if ||zo]] < W. And finally
we assume that the function z(¢) = 0 is a solution of (3.1) for t > 0. Under these

assumptions we may formulate the followings main concepts.

Definition 3.1.

Under the hypothesis mentioned above, The solution z(t) = 0 of the system (3.1)
is said to be

- Stable if: for any € > 0 there exists some 6 > 0 such that the solution of the
initial value problem consisting of (3.1) and the initial condition x(0) = x, satisfies

|z(t)|| < € for all £ > 0 whenever ||zg| < .

- Asymptotically stable if: it is stable and there exists some v > 0 such that
limy_,o0 2(t) = 0 whenever ||| < 7.

Remark 3.2.

A solution y of the differential equation § D@z = g(t,x) is said to be (asymptot-
ically) stable if and only if the zero solution of D%z = f(t,2) with f(t,2) =
g(t,z+y(t)) — g(t,y(t)) is (asymptotically) stable.

Definition 3.3. (Exponential stability).
The solution x(t) = 0 of the system (3.1) is said to be (locally) exponentially

stable if there exist two real constants a, A > 0 such that
2(t)]| < allz(to)|le™ for all t > ¢, (3.2)

whenever ||z(tp)|| < d. It is said to be globally exponentially stable if (3.2) holds
for any x(tp) € R™.

A generalization of exponential stability is the Mittag-Leffler stability which is

more useful for fractional system.

Definition 3.4. (Mittag-Leffler stability).
The solution z(t) = 0 of (3.1) is said to be Mittag-Leffler stable if

lz ()]l < {mlz(to)| Ea(=A(t — to)*)}",
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where tq is the initial time, a € (0, 1) the fractional order, A > 0, b > 0, m(0) = 0,
m(z) > 0 and m(z) is locally Lipschitz on x € B C R™ with constant Lipschitz

my.

Definition 3.5. (Generalized Mittag-Leffler stability).
The solution z(t) = 0 of (3.1) is said to be generalized Mittag-Leffler stable if

le (@) < {mlz(to))(t = to) " Bap— (=At — t0)*)}",

where g is the initial time, « € (0, 1) the fractional order, —a <y < 1—a, A > 0,
b >0, m(0) =0, m(z) > 0 and m(x) is locally Lipschitz on z € B C R" with

constant Lipschitz my.

Notice here that the Mittag-Leffler stability and Generalized Mittag-Leffler stabil-
ity imply asymptotic stability.

As mentioned in [48], the stabilities of fractional-order systems are not of expo-
nential type. Thus, a new definition called power law stability ¢ =° was introduced
in [61], which is a special case of the Mittag-Leffler stability [46] and it is defined

as follows.

Definition 3.6. (Power law stability t=#).
The trajectory x(t) = 0 of the system (3.1) is t=# asymptotically stable if there is

a positive real  such that:

V|z(t)| with t <to,3N(x(t)), such that V¢ > to, ||z(t)|| < Nt=°.

We begin our analysis by the linear time invariant (LTI) systems.

3.1.1 Stability of fractional LTI systems

Stability of linear fractional order systems, which is of main interest in control
theory, has been thoroughly investigated where necessary and sufficient conditions
have been derived. In 1996, Matignon [48], have been introduced the stability
properties of n-dimensiona linear fractional order systems from a point of view of
control. In [23], Deng et al. studied the stability of n-dimensional linear fractional
differential equation with time delays. An interesting difference between stable
integer-order system and a stable fractional-order system is that the last one may

have roots in right half of the complex plane.
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Theorem 3.7.
Consider the N-dimensional linear differential system with fractional commensu-

rate order «
YDeX = AX, (3.3)

where A is an arbitrary constant N X N matriz.

a) The system (3.3) is asymptotically stable if and only if |arg(spec(A))| > am/2.
In this case the components of the state decay towards 0 like t=°.

b)The system (3.3) is stable if and only if |arg(spec(A))| > am/2 and all eigenval-
ues with |arg(\)| = an/2 have a geometric multiplicity that coincides with their

algebraic multiplicity.

The fact that the components of z(t) slowly decay towards 0 following ¢~* leads
to fractional systems, sometimes, being called long memory systems.

In the limit case & — 1 we recover the well known classical result [19], that the
eigenvalues must have negative real parts in case (a) and non-positive real parts

and a full set of eigenvectors if the real parts are zero for case (b).

Proof.
If the matrix A is diagonalisable then according to theorem (2.14) and remark(2.15)

the general solution is given by

X(t) = i Cru® B, (Apt®), (3.4)
k=1

and by theorem (1.4) its Laplace transform is

Sa—l

Sa—)\k'

X(s) = zn: Cru® (3.5)
k=1

If A is not diagonalisable then according to theorem (2.17), the general solution

can be given by a linear combination of a fundamental solutions given by

XUD(1) =Y plith=t=dap=1=0\ goy =1k j=1,...,m. (3.6)
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where k; is the multiplicity of eigenvalue A; and ) k; = n.
j=1
Taking into account the relation (1.9) and applying Laplace transform to both

sides of (3.6) yields

. oy (=i = 1)lge!
XUD () = va“)( (Saz_ A?)fi Col=1,.k j=1,.,m. (3.7)
i=0 J

Now, if all eigenvalues lie in the region |arg(\a)| > g; (i.e |arg(N\)| > am/2), then
using (3.5), (3.7) and the final value theorem (1.5) we get

lim X (¢) = lim sX(s) = 0.

t—o00 s—0

If there is some eigenvalues lie in the region |arg(\)| < am/2, then from theo-
rem(3.18) we have

lim |E, (At%)] = oo

t—o0

Thus from (3.4) and (3.6), X (¢) is unbounded.

Therefore, the system (3.3) is asymptotically stable if and only if all eigenvalues
lie in the region |arg(\)| > am/2. O

Next we consider the stability of incommensurate rational order system [23].

Corollary 3.8.

Suppose that oy # oy # ... # oy, and all oy;’s are rational numbers between 0 and
1, and suppose that m s the lowest common multiple of the denominators u; of
a;, (i =1,..,n) where a; = Z—Z, vi,u; € Z° fori = 1,...,n, and setting v = -
then system (3.3) is asymptotically stable if:

larg(A)[ > vg (3.8)

for all roots X of the following characteristic equation

det(diag(]N™1, ..., \™]) — A) = 0. (3.9)

The characteristic equation of (3.3) is of fractional powers of s, this corollary tells
that in case of rational orders the characteristics equation can be transformed to

an integer-order polynomial equation.
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Proof.
The application of the Laplace transform to both sides of (3.3) gives the equation

(diag([s®*, ..., s*"]) — A) X (s) = (s '21(0), ..., 5" 2, (0))7, (3.10)
multiplying s on both sides of (3.10) gives
(diag([s®, ..., s°"]) — A)sX(s) = (s*21(0), ..., sz, (0))7, (3.11)
which does not have an unique solution sX(s) only when

det(diag([s™,...,s"]) — A) = 0. (3.12)

Denoting s = A7 = A™ and subtracting in (3.12) yields the equation (3.9). If all
roots of the equation (3.12) lie in open left half complex plane, Re(s) < 0 (i.e
larg(s)| > g wich imply |arg(\)| > 7% ), then we consider (3.11) in Re(s) > 0.
In this restricted area, (3.11) has a unique solution sX(s) = (sX1(s), ..., sXn(s)).
So, we have

lim  sX;(s)=0,i=1,...,n.
s—0,Re(s)>0

Using the final-value theorem of Laplace transform, we get

lim z;(t) = lim sX;(s)=0,i=1,..,n.
t—o0 s—0,Re(s)>0
This complete the proof. n

Theorem 3.3, remain valid [56], in the case 1 < a < 2.

3.1.2 Stability of fractional nonlinear systems

Let consider the commensurate fractional-order nonlinear autonomous system

given by

6 Djw = f() (3.13)

where x € R", f is defined on a suitable subset U C R™. According to stability
theorem defined in [71] and [2], an equilibrium point Z of system (3.13) is locally
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FI1cURE 3.1: Stability region for fractional-order systems

asymptotically stable for a given « in (0, 2) if all the eigenvalues \;, (i = 1,2, ..., n)

of the Jacobian matrix J = 8—|$:5; satisfy the condition
x
T .
larg(A;)| > ag, 1= 1,2,...,n. (3.14)
Remark 3.9.

The given theoretical results make clear that the stability condition for fractional-
order systems differs from the well-known condition for integer order systems. In
particular, the left half-plane (stable region) for integer-order systems maps into
the angular sector |arg(spec(J))| > am/2 in the case of fractional-order systems,
indicating that the stable region becomes larger and larger when the value of

fractional-order « is decreased

Fig.3.1 shows stable and unstable regions of the complex plane, for 0 < a < 2.

Now, let consider the incommensurate fractional order system a; # as # ... #
and suppose that m is the LCM of the denominators u; of «;, (i = 1,...,n) where
o = %, v, u; € ZT for i = 1,...,n, then the system (3.13) is asymptotically stable
if:

larg)] > 5.

for all roots \ of the following equation

det(diag([\", ..., \""]) — J) = 0.
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3.1.3 Some Routh-Hurwitz conditions for fractional sys-

tems

Routh-Hurwitz criterion is a powerful tool used for the stability analysis of some
parameter dynamical systems, because it provides an opportunity to study the
stability of such parameter system without the need to set its control parame-
ters, therefore we can identify the stability region in the parameter space, this
technique is extensively used in the area of control and synchronization. Some
Routh-Hurwitz stability conditions are generalized to the fractional order case in
[7], and largely used in field of control and synchronization [3, 49]. Consider the
commensurate system

6 Dz = f(z, ), (3.15)

where z € R" is the state space vector, u € R™ is the parameter vector and f is
defined on a suitable subset U C R™ x R™. An interesting question arises when
analysing the condition (3.14 ), namely, what are the conditions on u, that all the

roots of the polynomial equation
P = X"+ ar ()N + A a1 ()X + an () =0, (3.16)

satisfy (3.14) where all the coefficients in (3.16) are real?

For oo = 1 the answer is given by the classical Routh-Hurwitz criterion [52] that is

a, >0,
aq 1
>0,
as a2
aq 1 0
as Qa2 Qi > O,
as a4 as
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ay 1 0 0
as az a 1 0...0
as ag as ... 1 0..0 | >0.
0 0 0 an,

For a € (0, 1) the classical Routh-Hurwitz conditions are sufficient but not neces-
sary, therefore we need a new version of this criterion that will be adopted in the

last case.

Definition 3.10.
The discriminant D(P) of a polynomial P()) is defined by

D(P) = (=1)"""V2R(P, P'),

where P’ is the derivative of P and R(P, P') is the (2n — 1) x (2n — 1) resultant
of P(X\) and its derivative P'(\), given as follows

aq Qp, 0
0 1 a a, 0
0 1 n
R(P,P') = “ ¢
n (n—1)a A1 0
0 n (n—1)ay e 0
0 0 n  (n—1Da; ... a,1

For n = 3, we have

D(p) = 18ayazas + (a1az)® — 4as(a1)® — 4(az)® — 27(as)*.

Noting that if D(P) > 0 (< 0), there is an even (odd) number of pairs of complex
roots for the equation P(\) = 0.
For n = 3, D(P) > 0 implies that all the roots are real, and D(P) < 0 implies

that there is only one real root and one pair of complex conjugate roots.

Proposition 3.11.
1) For n =1, the condition for (3.14) is a; > 0.
2) Formn = 2:
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-If D(p) > 0, the condition for (3.14) is a1 > 0 and ay > 0.

-If D(p) < 0, the condition for (3.14) is [tan™* (—W)’ > aj.
3) Forn = 3:

- When D(p) > 0, the necessary and sufficient conditions of (3.14) are the classical

Routh-Hurwitz conditions given by aq > 0, ag > 0 and ayas > agz.

- When D(p) < 0, we distinct the three following cases

a) If a; >0, az > 0, a3 > 0 and o < % then (5.14) is satisfied.

b) If a1 <0, ap <0 and o > 2 then all roots of P(A) = 0 satisfies |arg(\)| < .
c) If ay > 0, ay > 0 and ayas = ag then (3.14) is satisfied for all a € [0,1).

4) For general n > 1, the necessary and sufficient condition for (3.14) is

[

0

o Z 5

Cy

where Cy is the curve
z=uz(l —itanan/2),

and Cy is the curve

z=x(1l +itanam/2).

Proof.
1)For n =1, we have P(\) = A + a; which posses a single real root A = —a; then
(3.14) is satisfied if and only if a; > 0.

2)For n = 2, we have
P(\) = X + a1\ + ay,

its roots are given by
—aq + (a1)2 — 4@2

AL = 5

-If D(p) > 0, Ay are real and (3.14) will be converted to classical Routh-Hurwitz

conditions, namely a; > 0, ay > 0.

-If D(p) < 0, Ay are complex conjugates and the condition (3.14) is equivalent to

aq 2




Chapter 3. Fractional-order dynamical systems 56

3)For n = 3, we have:

-When D(p) > 0 then all the roots of P(A\) = 0 are real. Thus, the classical

Routh-Hurwitz conditions are equivalents to (3.14).

-When D(p) < 0, the roots of P(\) = 0 are one real Ay = —b and a complex
conjugate pair Ay = 3 4+ 7. Hence,

PA) = A +b)(A =B —iv)(A =B +1iy),
and its coefficients are

a; = b—2ﬁ, as :,82"")/2 —Zbﬁ, as :b(ﬁ2—|—’y2)

az > 0 imply b > 0,
a; > 0 imply b > 20,

and
2

B
cos?(0)

as > 0 imply > 203 > 43*

thus
T
0> —
3

2
where 6 = |arg(\)|, so if o < 3 then (3.14) is satisfied.

b)
a; < 0 imply b < 20
and 52
imply ————— < 2083 < 43*
as < 0 imply cos2(0) <208 < 4p
thus
T
0 < —
3
. 2
so if o > 3 then
larg(\)| < ar.
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c)
a1as = ag imply B(B* + %) + b*3 = 2b3>

thus
B=0or B2+~>+b = 2b0.

The last equality is not valid if both a; > 0 and ay > 0 thus

, T
m)}n|arg(/\)| =5

Therefore (3.14) is satisfied for all « € [0,1).

4) For general n > 1 if P(z) has no roots in the region

m
o)

larg(A)] < a2

1
then the function —— will be analytic in this region. Using Cauchy theorem

P(z)

i f(2)dz =0,

for all f(z) analytic within and on C, and the fact that P(z) is polynomial of
degree > 1 this completes the proof O]

Corollary 3.12.

For general n > 1, a necessary condition for (3.14) is a, > 0.

Proof.

For general n > 1, we have

PO = [[ T+ 0)I] T =287+ 87 + 7))

i J

then

@, = ([[6IT T+

So if a,, < 0, there exists at last iy such that (b;, < 0). Hence, there exists at last
a positive real rout (—b;, > 0) of P(A\) = 0. Thus, miny|arg(\)| = 0. Therefore,
for all a € [0,1) (3.14) is not satisfied. Hence, the necessary condition for (3.14)
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is a,, > 0.

3.1.4 Lyapunov direct method for fractional system

Lyapunov direct method is used for studying both local and global stability of the
corresponding systems. In this section we discus the extension of Lyapunov direct
method for fractional-order nonlinear systems which leads to the Mittag-Leffler
stability [20, 45].

Theorem 3.13.

Let x = 0 be an equilibrium point for the system

§Dpa(t) = f(t,z), a€l0,1), (3.17)

and D C R™ be a domain containing the origin.

Let V(t,z(t)) : [0,00) x D — R be a continuously differentiable function and locally
Lipschitz with respect to x such that

ar|z]|* < V(t,x(t)) < as|jz]|*, (3.18)
SDJV(t,2(t) < —ag|jz||*, (3.19)

where t > 0,z € D, € [0,1), a1, a9, 3,a and b are arbitrary positive constants.
Then, x = 0 is Mittag-Leffler stable.

If the assumptions hold globally on R™. Then, x = 0 is globally Mittag-Leffler
stable.

The following theorem gives a generalized fractional Lyapunov direct method.

Theorem 3.14.
Let x = 0 be an equilibrium point for the system (3.17) and D C R™ be a domain

containing the origin.
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Let V(t,z(t)) : [0,00) x D — R be a continuously differentiable function and locally
Lipschitz with respect to x such that

arllz]|* < V(t,z(t) < az §D; ||, (3.20)
DIV (t,x(1)) < —agllz]*, (3.21)

where t > 0,z € D, € [0,1),n # B,n > 0,| —n| < 1,a1,as,a3,a and b are

arbitrary positive constants. Then, x = 0 is asymptotically stable.

Now we apply the class-K functions to the analysis of fractional Lyapunov direct
method.

Definition 3.15.
A continuous function « : [0,%) — [0, 00) is said to belong to class-K if it is strictly

increasing and «(0) = 0.

Lemma 3.16. (Fractional comparison principle)
Assume that § Dex(t) > §Dy(t) and x(0) = y(0), for a € (0,1). So z(t) > y(t).

Theorem 3.17.
Let x = 0 be an equilibrium point for the system (3.17). Assume that there exists
a Lyapunov function V (t,x(t)). and a class-K functions o;(i = 1,2,3 satisfying

ar([lz]]) < V(# x(t) < ao(ll]), (3.22)

§ DIV (ta(t) < —as(|l]), (3.23)

where f € [0,1). Then x = 0 is asymptotically stable.

Example 3.1.

Let consider the fractional system
6 Dfle(t)] = —|z(t)], (3.24)

where o € (0,1). We choose the Lipschitz function V(t,z) = |z| as a Lyapunov
candidate and oy = as = a = b = l,a3 = —1. Then, aqlz(t)|* < V(t,z) <
o|z (1) and § DRV (t,x) < —|x(t)|. Applying theorem (5.13) gives the Mittag-
Leffler stability of the equilibrium point x = 0.
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3.2 Periodic solutions

Recently, much attention has been focused on the existence of periodic solutions in
fractional-order systems [69, 73, 74, 78, 83]. The aim of this section is to highlight
on one of the basic differences between fractional order and integer order systems.
It is analytically shown that a time invariant fractional order system contrary to
its integer order counterpart cannot generate exactly periodic signals. As a result,

a limit cycle cannot be expected in the solution of these systems.

3.2.1 Fractional-order derivatives of periodic functions

Suppose that z(t) is a non-constant periodic function with a specific period T, i.e.
x(t+T)=uxz(t), forallt>D0. (3.25)

Taking the derivative of both sides of (3.25) we obtain

fl—f(t +T) = Z—f(t), forall t > 0. (3.26)

Hence, the derivative of a non-constant periodic function z(t) with period T is a
periodic function with the same period T. Now we ask the following reasonable
question. is there a similar result for the fractional derivative of a non-constant

periodic function? A negative answer for this question is claimed in [69].

Theorem 3.18.

Suppose that x(t) is a non-constant periodic function with a specific period T and
m-times differentiable. The fractional-order derivative function oD{x(t) (symbol
oDy denote the Riemann-Liouville, Grunwald-Litnikov or Caputo fractional-order
derivative operator) where 0 < o ¢ N and m is the first integer greater than «,

cannot be a periodic function with period T

Proof.
The proof of this theorem can be found in [69] O

Example 3.2.
Consider the function z(t) = sin(t), the Laplace transform of fractional-order

derivative of z(t) is given as

L( ¢D%x(t)) = s°X (s) = (3.27)
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1.5

y=SDY sin(t

y=sin(t+an/2)

N
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FIGURE 3.2: Graphical representation of the fractional derivative oD-sin(t)
and the function sin(t 4 0.5%)

where 0 < a < 1. The inverse Laplace transform of (3.27) is obtained as
ODta.T(t) = tliaEZQ,a(—tz). (328)

For a = 1 the function tl_O‘Eg,Q,a(—tQ) is a non-constant periodic function and
for 0 < a < 1 this function is not periodic, but it asymptotic converges to the

periodic function sin(t + am/2) as shown in Figure 3.2.

3.2.2 Non-existence of periodic solutions in a class of fractional-

order systems

Given a fractional-order time-invariant system based on the Caputo derivative and

a vector of continuous functions f in the form
6 Dia(t) = f(x), a€(0,1) (3.29)
a non-constant solution

w(t) = (21(t), 22(t), .. 2a(t)",
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of the system (3.29) is said to be a periodic solution if there exists a constant
T > 0 such that:
z(t+T) =x(t), (3.30)

for all t > 0. The minimum of such 7T is called period of this solution. The periodic

orbit or cycle is the image of the interval [0, 7] under

2(t) = (z1(t), 22(1), ..., 2 ()T,
in the state space R™ [79].

The main outcome of this section is summarized in the following theorem:

Theorem 3.19.
The fractional-order time-invariant system (3.29) defined via the Caputo derivative

cannot have any non-constant smooth periodic solution.

This result has been extended in [69], by analytically proving that fractional-
order system (3.29) based on Griinwald-Letnikov derivative or Riemann-Liouville

derivative cannot generate exact periodic solutions.

Proof.
Suppose that Z(¢) is a solution for differential equation (3.29). If Z(¢) is a non-

constant periodic function with periodic T', then
f(@() = f@(t+1T)), (3.31)
for all t > 0. From (3.29) and (3.31) we get
oDFE(t +T) =0 DYE(1),

for all t > 0, which is in contradiction with theorem (3.18). Consequently, Z(t),
as a solution of differential equation (3.29), cannot be a non-constant periodic

function. ]

Example 3.3.
Consider the marginally stable LTI system

2

§Dy(t) = —k sin(af)z + k cos(af)y.

{ §Dfx =k cos(a)x + k sin(af)y (3.32)
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System (3.32) can be written in matricial form as follows
DX = AX (3.33)
where
Ao k cos(af) k sin(af)
—k sin(af) k cos(af) 7
and
x
X- ( ) .
Y
The matriz A has two complex conjugate eigenvalues
A2 = k( cos(ozg) + ism(ag)),
and its corresponding eigenvectors are
1
U1 = )
1
and
1
Vg = .
—1
Hence, the general solution of (3.32) is given by
X(t) = 5 C1 0 + Co 1 [Ea()\lt ) + Ea(>\2t )]
1 1 0
_Z [CI < 0 ) — Co ( 1 > [Ea()\lta) — Ea()\gta)], (334)
where ¢y, co are arbitrary real numbers.
For special case o =1 the solution can be rewritten as
kt) — sin(kt
X(t) = < cr(eos(kt) — sin(kt)) ) _ (3.35)

co(cos(kt) + sin(kt))
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If (xo,90) # (0,0), then all solutions of system (3.32) are periodic of period 27”
But, for case 0 < a < 1, non-zero solutions of (3.32) are not periodic, although

they converge to periodic signals [74].

Remark 3.20.
The fractional order system with lower terminal of a = o0 could have periodic

solutions [83].

3.3 Bifurcation and chaos in fractional systems

Chaotic systems have been a focal point of renewed interest for many researchers
in the past few decades. Such non-linear systems can occur in various natural
and man-made systems, and are known to have great sensitivity to initial con-
ditions. Thus, two trajectories starting at arbitrarily nearby initial conditions in
such systems could evolve in drastically different fashions, and soon become totally
uncorrelated. At first glance, chaotic time trajectories look very much like noise.
In fact, chaotic signals and noise have similar broad-band frequency spectrum char-
acteristics. However, there is a fundamental difference between noise and chaos,
which is determinism. Chaos can be classified as deterministic but unpredictable.
Whereas noise is neither deterministic nor predictable. This unpredictability of
chaotic time signals has been utilized for secure communication applications [6].
Basically, the useful signal is encapsulated in a chaotic envelope (produced by a
chaotic oscillator) at the transmitter end, and is transmitted over the communi-
cation channel as a chaotic signal. At the receiver end, the information-bearing
signal is recovered using various techniques [8]. It has been shown that fractional-
order systems, as generalizations of many well-known systems, can also behave
chaotically, such as the fractional order systems of Lorenz [34], Chua [35], Chen
[44], Rossler [43], Coullet [65], modified Van der Pol-Duffing [50] and Liu [77].

It has been shown that, chaos in fractional order autonomous systems can occur
for orders less than three and this cannot happen in their integer order counter-
parts according to the Poincaré-Bendixon theorem [38].

Various scenarios of transition to chaos have been detected in fractional order sys-
tems. A well know one of them is the period doubling to chaos which is initialized

in general by a Hopf bifurcation [3, 68].



Chapter 3. Fractional-order dynamical systems 65

3.3.1 Hopf bifurcation

Different from integer order systems, there exist less theoretical tools to study
dynamics of fractional-order systems. Recall that Hopf bifurcation in integer or-
der systems can be investigated in detail by means of normal form theory and
center manifold theorem [36], while similar tools have not yet developed for frac-
tional systems. So detailed results about fractional Hopf bifurcation are few. Only
through stability theory of equilibrium points and numerical simulations, we have
analyzed Hopf bifurcation of 3-dimensional fractional-order systems in [3].

Let consider the following three-dimensional fractional-order commensurate sys-

tem:

Dix = f(p,x) (3.36)

where ¢ €]0,2[, z € R3, and suppose that E is an equilibrium point of this system.
In the integer case (when ¢ = 1) the stability of F is related to the sign of

Re(\;),i =1,2,3 where \; are the eigenvalues of the jacobian matrix g—£| o

If Re(\;) < 0 for all i = 1,2,3 then E is locally asymptotically stable. If there
exist ¢ such that Re();) > 0 then E is unstable.

The conditions of system (3.36) with ¢ = 1, to undergo a Hopf bifurcation at the

equilibrium point £ when = 3*, are

The jacobian matrix has two complex-conjugate eigenvalues A\ 2(3) = 6(5) £
iw(B), and one real A3(f) (this can be expressed by D(Pg(8)) < 0),

- 0(p*) =0, and A\3(5*) # 0,
- w(p") #0,
_ de #O

B | g—p-
But in the fractional case the stability of E is related to the sign of

mi(q.8) = a5 — largL(B)] . i =1.2.3

If m;(q, B) < 0 for all i = 1,2, 3, then E is locally asymptotically stable.

If there exist ¢ such that m;(q, 3) > 0, then E is unstable.

So the function m;(q, ) has a similar effect as the real part of eigenvalue in integer
systems, therefore we extend the Hopf bifurcation conditions to the fractional

systems by replacing Re(\;) with m;(q, 8) as follows
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- D(Pe(B)) <0,

- ml,g(q,ﬁ*) = 0, and /\3(ﬁ*> 7é 0,

- om #0.
98 [ g—p-

Remark 3.21.
The limit cycle which appear through a Hopf bifurcation is not a solution for a

fractional system but it attracts a nearby solutions.

3.3.2 A necessary condition to have chaos in fractional-

order systems

A saddle point in a 3-D nonlinear integer order system, is an equilibrium point on
which the equivalent linearized model, has at least, one eigenvalue in the stable
region and one in the unstable region. A saddle point is of index 1 if one of the
eigenvalues is in the unstable region and others are in the stable region. A saddle
point is of index 2 if two eigenvalues are in the unstable region and one is in the
stable region. In chaotic systems, it is found that scrolls are generated only around
the saddle points of index 2. The saddle points of index 1 are responsible only for
connecting the scrolls [12, 18, 41, 66]. In the 3-D commensurate fractional order
systems like their ordinary counterparts, the saddle points of index 2 play a key

role in generation of scrolls [21, 22]. Assume that a 3-D chaotic system

&= f(x),

displays a chaotic attractor. For every scroll existing in the chaotic attractor, this
system has a saddle point of index 2 encircled by its respective scroll. Suppose
that (2 is the set of equilibrium points of the system surrounded by scrolls. The

corresponding fractional system
D% = f(x),

possesses the same equilibriums points. Hence, a necessary condition for frac-
tional order system to exhibit the chaotic attractor similar to its integer order
counterpart is instability of the equilibrium points in 2. Otherwise, one of these
equilibrium points becomes asymptotically stable and attracts the nearby trajec-

tories. According to (3.14), this necessary condition is mathematically equivalent



Chapter 3. Fractional-order dynamical systems 67

to [75]

o — min(Jarg(\,)]) > 0.

However, referring to 3-D integer-order systems, recent findings have shown that
in general case the local instability of the equilibrium points cannot be considered
as a necessary condition to generate chaos. For example, in [82], a simple 3-D
autonomous system displays a chaotic attractor located around two stable node-
type of foci as its only equilibrium points. Additionally, in [76], it has been reported
a 3-D autonomous chaotic system that has only one equilibrium and furthermore,
this equilibrium is a stable node-focus. these recent findings make clear that in
general case a necessary condition to generate chaos is the global instability of the
equilibrium points. In order to confirm the existence or no-existence of chaotic
behaviores in a fractional-order system, two useful tools are a valuable, namely

the bifurcation diagram and the Lyapunov exponents.

3.3.3 Lyapunov exponents

Lyapunov exponents were first introduced by Lyapunov in order to study the
stability of non-stationary solutions of ordinary differential equations. These ex-
ponents provide a meaningful way to categorize steady-state behavior of dynamical
systems, determine instability in the system, classify invariant sets, and approxi-
mate the dimension of strange attractors or other non-trivial invariant sets. Lya-

punov exponents

are the average exponential rates of divergence or convergence of nearby orbits in
the state space. The signs of Lyapunov exponents indicate the stability property
of the dynamic system. For example, when all Lyapunov exponents are negative,
trajectories from all directions in the state space converge to the equilibrium point.
In this case, the system is exponentially stable about the equilibrium point and
the attractor of the system is a fixed point. If one exponent is zero while others
are negative, trajectories converge from all and the attractor in the state space is
a one-dimensional curve. If the trajectory is further bounded and forms a closed
loop, the system performs a periodic motion and has a stable limit cycle. Two
zero Lyapunov exponents mean that the attractor is a two-dimensional torus in
the state space, indicating quasi-periodic motion. If at least one Lyapunov expo-
nent is positive, two initially nearby trajectories separate at an exponential rate

and the system is chaotic. The computation of Lyapunov characteristic exponents
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(LCE) for nonlinear dynamical systems is a fundamental problem for understand-
ing the dynamical behaviour of nonlinear systems, and can be classified on two
set (analytical methods based on the mathematical model and numerical methods
based on an observed time series). Many researches works have been devoted to
this end, including [9-11, 31, 39, 81, 84].

Although an autonomous fractional system cannot define a dynamical system in
the sense of semigroup because of the memory property determined by the frac-
tional derivative, we can’t use directly classical analytical methods for computation
of Lyapunov exponents in fractional systems based on the knowledge of Jacobian
matrix, but we can still estimating Lyapunov exponents from time series data after
performing a phase-space reconstruction. A time series is a sequence of observa-
tions which are ordered in time. Since a single experimental time series is affected
by all of the relevant dynamical variables, it contains a relatively complete his-
torical record of the dynamics. The procedure of calculating Lyapunov exponents

from a time series can be summarized in the following steps [81, 84]:

1. Reconstructing the dynamics in a finite-dimensional space. Choose an em-
bedding dimension dg and construct a dg-dimensional orbit representing the
time evolution of the system by the time-lag method. This means that we

define

yi = (4, LitTiags -+ Iz’—&-(dE—l)Tlag); (3.37)

where T},, is the time lag. Equation (3.37) provides the fiducial trajectory

for the analysis of Lyapunov exponents.

2. Determining the neighbors y; of y; , i.e., the point of the orbit which are

contained in a shell of suitable radius r, and centered at y;

Tmin < |y — wil| <7 (3.38)

3. Determining the dg X dg matrix J; which describes how the time evolution

sends small vectors around y; to small vectors around y;,,. The matrix J; is
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obtained by looking for neighbors y; of y;, and imposing

Ji(Y; — ¥i) B Yj+1 — Yir1- (3.39)

The elements of J; are obtained by a least-squares method then we obtain a

sequence of matrices Ji, Jo, J3....

4. Using QR decomposition, one determines successively orthogonal matrices
() ;) and upper triangular matrices [(;) with positive diagonal elements such

that Q) is the unit matrix and

J1Q) = Q) R,
Q0 = Qe R,

Ji1Q) = Qi+ R(j+1)-

This decomposition is unique except in the case of zero diagonal elements.

Then Lyapunov exponents A% are given by

1 K-1
7=0

where K is the available number of matrices, T' is sampling time step, and
1=1,2,...,dg.

5. Repeating Step 2 through Step 4 along the fiducial trajectory until the con-

vergent Lyapunov exponents are achieved.

Another approach for estimating Lyapunov exponents in fractional-order systems

recently introduced is the semi-analytical method in [16].

3.3.4 The 0-1 test for validating chaos

An efficient binary test for chaos called the 0 — 1 test has been recently proposed
and applied to fractional systems in [13, 14]. The idea underlying the test is to
construct a random walk-type process from the data and then to examine how

the variance of the random walk scales with time. Specifically, consider a set of
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discrete data, sampled at times n = 1,2,3,... , representing a one-dimensional
observable data set obtained from the system dynamics. Consider the real valued
function p(n), as defined in [14]. On the basis of the function p(n), define the

mean square displacement M (n). In particular:

- If the behavior of p(n) is Brownian (i.e., the underlying dynamics is chaotic),

then M (n) grows linearly in time.

- If the behavior of p(n) is bounded (i.e., the underlying dynamics is non-
chaotic), then M(n) is bounded.

Thus it should be examined whether the asymptotic growth rate

logM
K = lim 22220 (n)
n—oo  logn
approaches 0 or 1.
When K is close to 0, the motion is classified as regular (i.e. periodic or quasi-

periodic); when K is close to 1, the motion is classified as chaotic.
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Applications

This chapter is devoted to the application of the tools previously presented, as a
results three papers are published in a certain international journals.

In the first paper [1] titled “A new chaotic attractor from hybrid optical bistable
system” we postulate a new three-dimensional autonomous chaotic system, where
the single quadratic nonlinearity in the original hybrid optical bistable system is
replaced by a single cubic non linearity; the new system can generates two 1-scroll
chaotic attractors simultaneously or one 2-scroll chaotic attractor. The chaotic be-
haviors are validated by means of Bifurcation diagram with an associated Poincaré
map and the Lyapunov exponent spectrum.

The second paper [3] presents and analyzes the fractional-order modified hy-
brid optical system, furthermore fractional Hopf bifurcation conditions are pos-
tulated. It has been demonstrated that chaos, as well as the other usual non-
linear dynamic phenomena, occur in this systems with mathematical order less
than three. The Largest Lyapunov exponents and the bifurcation diagrams shows
the period-doubling bifurcation and the transformation from periodic to chaotic
motion through the fractional-order and confirms the justness of the proposed
fractional Hopf bifurcation conditions (in this system).

The fact that financial variables possess long memories makes fractional modelling
appropriate for dynamical behaviors in financial systems. Chaotic phenomenon
makes prediction impossible in the financial world then the deletion of this phe-
nomenon from fractional financial system is very useful, the main contribution
of the last paper [2] is to this end. Nonlinear feedback control scheme has been
extended to control fractional financial system. The results are proved analyti-
cally by applying the Lyapunov linearization method and stability condition for

fractional system. Numerically the unstable fixed points have been successively

71
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stabilized for different values of fractional-order, moreover unstable periodic orbits

has been stabilized.
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4.1 A new chaotic attractor from hybrid optical

bistable system
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Abstract In this work, a new three-dimensional au-
tonomous chaotic system has been introduced by mod-
ifying a hybrid optical system. The single quadratic
nonlinearity is replaced by a single cubic nonlinearity;
the new system can display two 1-scroll chaotic at-
tractors simultaneously or one 2-scroll chaotic attrac-
tor. The bifurcation diagram is obtained and Lyapunov
spectrum is calculated for the proposed system. The
results show that the new system exhibits rich com-
plexity features such as stable, periodic, and chaotic
dynamics.

Keywords New chaotic attractor - Hopf bifurcation -
Lyapunov spectrum - Bifurcation diagram

1 Introduction

Chaos has been found to be very useful and has great
potential in many technological disciplines such as in
computer sciences, power systems protection, biomed-
ical systems analysis, flow dynamics and liquid mix-
ing, encryption, and communications.

The first chaotic attractor in a three-dimensional au-
tonomous system was discovered by Lorenz in 1963,

M.-S. Abdelouahab () - N.-e. Hamri

Department of Science and Technology, University Center
of Mila, Mila 43000, Algeria

e-mail: medsalah3 @yahoo.fr

while studying atmospheric convection [1]; this sys-
tem has seven terms on the right-hand side, two of
which are nonlinear (xz and xy). In 1976, Rossler
found a three-dimensional quadratic autonomous
chaotic system [2], which also has seven terms on the
right-hand side, but with only one quadratic nonlinear-
ity (xz). Obviously, the Rossler system has a simpler
algebraic structure as compared to the Lorenz system.
In 1979, Rossler proposed another even simpler (al-
gebraic) system [3], which has only six terms with a
single quadratic nonlinearity (y?). Some attention has
been focused on effectively creating chaos via sim-
ple physical systems such as electronic circuits and
switching piecewise-linear controllers. In 1983, Chua
has introduced a simple electronic circuit that exhibits
chaotic behavior, which can be accurately modeled by
means of a system of three nonlinear ordinary differ-
ential equations [4].

In 1984, Fliiggen and Mitschke reported the ob-
servation of chaos in a hybrid optical bistable device
and studied its realization as an electronic circuit; see
Fig. 1. The structure of the system is described by a
third-order differential equation with a quadratic non-
linearity; this equation can be transformed on a three-
dimensional autonomous system which has only six
terms with a single quadratic nonlinearity (x2). This
system can display only a 1-scroll attractor [5] and [6].
Many other works in literature focused on introduc-
ing new chaotic systems [7—17]. In this paper, we in-
troduce a new three-dimensional autonomous chaotic
system by modifying a hybrid optical system; a sin-
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Abstract In this paper, a chaotic fractional-order
modified hybrid optical system is presented. Some ba-
sic dynamical properties are further investigated by
means of Poincaré mapping, parameter phase por-
traits, and the largest Lyapunov exponents. Fractional
Hopf bifurcation conditions are proposed; it is found
that Hopf bifurcation occurs on the proposed system
when the fractional-order varies and passes a sequence
of critical values. The chaotic motion is validated by
the positive Lyapunov exponent. Finally, some numer-
ical simulations are also carried out to illustrate our
results.

Keywords Fractional system - Stability - Hopf
bifurcation - Chaos

1 Introduction

The idea of fractional calculus has been known since

the development of the regular calculus, and it means
a generalization of integration and differentiation to
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arbitrary order. It has been found that many systems
in interdisciplinary fields can be described by the frac-
tional differential equations, such as viscoelastic sys-
tems, dielectric polarization, electrode-electrolyte po-
larization, electromagnetic waves, and quantum evo-
lution of complex systems [1-5].

Optics is a field in which the use of conventional
calculus plays a major role, and it is of interest to see
how fractional calculus may offer useful mathemati-
cal tools in this field. For example; fractionalization of
Gaussian beams is given in [6], fractionalization of the
Fourier transform and its applications has been already
studied by several researchers [7-9], a fractional vari-
ational optical flow model is introduced in [10], and
a new class of nondiffracting fractional vortex beams
that connect Bessel beams of successive order in a
smooth transition is introduced in [11]. On the other
hand, memory effect has been observed in optical sys-
tems [12, 13]; this fact makes fractional modeling ap-
propriate for dynamic behaviors in optical systems.
Based on the above motivations, one might be tempted
to introduce the fractional-order version of the modi-
fied hybrid optical system presented in our previous
work [14].

There are several definitions of fractional deriva-
tives [15-18].

In this paper, we use the Caputo-type fractional
derivative defined in [15] by
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Fractional-order financial system introduced by W.-C. Chen (2008) displays chaotic motions at
order less than 3. In this paper we have extended the nonlinear feedback control in ODE systems
to fractional-order systems, in order to eliminate the chaotic behavior. The results are proved
analytically by applying the Lyapunov linearization method and stability condition for fractional
system. Moreover numerical simulations are shown to verify the effectiveness of the proposed
control scheme.

1. Introduction

Nonlinear chaotic systems have attracted more attention of researchers in various fields
of natural sciences. This is because these systems are rich in dynamics, and possess great
sensitivity to initial conditions. Since the chaotic phenomenon in economics was first found in
1985, great impact has been imposed on the prominent western economics at present, because
the chaotic phenomenon’s occurring in the economic system means that the macroeconomic
operation has in itself the inherent indefiniteness. Although the government can adopt
such macrocontrol measures as the financial policies or the monetary policies to interfere,
the effectiveness of the interference is very limited. The instability and complexity make
the precise economic prediction greatly limited, and the reasonable prediction behavior
has become complicated as well. In the fields of finance, stocks, and social economics,
because of the interaction between nonlinear factors, with all kinds of economic problems
being more and more complicated and with the evolution process from low dimensions to
high dimensions, the diversity and complexity have manifested themselves in the internal
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structure of the system and there exists extremely complicated phenomenon and external
characteristics in such a kind of system. So it has become more and more important to
study the control of the complicated continuous economic system, and stabilize the instable
periodic or stationary solutions, in order to make the precise economic prediction possible
[1,2].

Great interest has been paid to the application of fractional calculus in physics,
engineering systems, and even financial analysis [3, 4]. The fact that financial variables
possess long memories makes fractional modelling appropriate for dynamic behaviors in
financial systems. Moreover, the control and synchronization of fractional-order dynamic
systems is also performed by various researchers [5-10]. Fractional-order financial system
proposed by Chen in [11] displays many interesting dynamic behaviors, such as fixed points,
periodic motions, and chaotic motions. It has been found that chaos exists in this system with
orders less than 3, period doubling, and intermittency routes to chaos were found. In this
paper, we propose to eliminate the chaotic behaviors from this system, by extending the non-
linear feedback control in ODE systems to fractional-order systems. This paper is organized
as follows. In Section 2, we present the financial system and its fractional version. In Section 3
general approach to feedback control scheme is given, and then we have extended this control
scheme to fractional-order financial system, numerical results are shown. Finally, in Section 4
concluding comments are given.

2. Financial System
2.1. Integer-Order Financial System

Recently, the studies in [1, 2] have reported a dynamic model of finance, composed of
three first-order differential equations. The model describes the time-variation of three state
variables: the interest rate x, the investment demand y, and the price index z. The factors
that influence the changes of x mainly come from two aspects: firstly, it is the contradiction
from the investment market, (the surplus between investment and savings); secondly, it is the
structure adjustment from goods prices. The changing rate of y is in proportion with the rate
of investment, and in proportion by inversion with the cost of investment and the interest
rate. The changes of z, on one hand, are controlled by the contradiction between supply and
demand of the commercial market, and on the other hand, are influenced by the inflation
rate. Here we suppose that the amount of supplies and demands of commercials is constant
in a certain period of time, and that the amount of supplies and demands of commercials is
in proportion by inversion with the prices. However, the changes of the inflation rate can in
fact be represented by the changes of the real interest rate and the inflation rate equals the
nominal interest rate subtracts the real interest rate. The original model has nine independent
parameters to be adjusted, so it needs to be further simplified. Therefore, by choosing the
appropriate coordinate system and setting an appropriate dimension to every state variable,
we can get the following more simplified model with only three most important parameters:

x=z+(y-a)x,
y=1-by-x? (2.1)

Z=-x-cz,
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where a > 0 is the saving amount, b > 0 is the cost per investment, and ¢ > 0 is the elasticity
of demand of commercial markets. It is obvious that all three constants, a, b, and ¢, are
nonnegative, For more detail about the study of the local topological structure and bifurcation
of this system; see [1, 2]. We assume that a is control parameter and b = 0.1, ¢ = 1.

2.1.1. Analysing the System

(i) If a > 9, system (2.1) has one fixed point:

p1 = (0,10,0). 2.2)

(ii) If a < 9, system (2.1) has three fixed points:

[9-a [9-a
Pl—(ollolo)/ PZ,S— <:F 10 /a+1/:|: 10 > (23)

To study the stability of equilibrium points we apply the Lyapunov’s first (indirect)
method [12] so we have the following theorem.

Theorem 2.1. Let x = x* be an equilibrium point of a nonlinear system:

x = f(x), (24)

where f : D — R" is continuously differentiable and D C R" is the neighborhood of the equilibrium
point x*. Let \; denote the eigenvalues of the Jacobian matrix A = 0f/0x|,. then the following are
considered.

(i) IfRe \; < 0 for all i, then x = x* is asymptotically stable.
(ii) If Re A; > O for one or more i, then x = x* is unstable.

(iii) If ReA; < O for all i and at least one Re\; = 0, then x = x* may be either stable,
asymptotically stable, or unstable.

Since A is only defined at x*, stability determined by the indirect method is restricted
to infinitesimal neighborhoods of x*.

To study the signs of the real parts of eigenvalues, we have the following famous
criterion [13].
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Criterion 1 (Routh-Hurwitz). Given the polynomial P(A) = A" + a A"+ +a, 1A +a,, where
the coefficients a;, i =1,2,...,n, are real constants, define the n Hurwitz matrices

Hi = (am),

H2=<(11 1>
as dp

(2.5)
aa 1 00 --- 0
az dp; ap 1 0
Hn — as adg az dap; --- 0 ,
000 0 - ay

where a; =0ifi > n.
All of roots of the polynomial have negative real part if and only if the determinants

of all Hurwitz matrices are positive: det H; >0, i=1,2,...,n.

Routh-Hurwitz criteria for n = 3 are a; >0, a3 > 0and aja, — az > 0.

Stability of p,

The Jacobian matrix of system (2.1) at the equilibrium point p; is

10-a 0 1
In= o -L ol (2.6)
10
10 -1

its characteristic polynomial is

P(x)=ﬁ+<a-%>ﬁ+<11”1599>A+<“1_09>. 2.7)

By applying the Routh-Hurwitz criterion we find that the real parts of these
eigenvalues are all negative if and only if

89
a—ﬁ>0,
a-9>0, (2.8)

(a_§><11a—99>_<a—9> 50
10 10 10 '
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Figure 1: (a) Largest Lyapunov exponent according to a. (b) Chaotic attractor for a = 3.
Then it follows that a > 9, and thus p; is locally asymptotically stable if and only if a > 9.

Stability of p23

The Jacobian matrix of system (2.1) at the equilibrium points p, 3 is

1 + 1
10
Jprs = 9-a ’ (2.9)
2 0 01 0
-1 0 -1
and its characteristic polynomial is
1 1 18 1 18
S = 134 2. (_t,. 20 L. 1°
pL) =4 +10)L +< 5a+10>A+< 5a+10>. (2.10)

The real parts of these eigenvalues are all negative if and only if

118
597107

(2.11)
l —la+E —<—1a+§ >0
10\ 5 10 5 10 '
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Then it follows that

a<?o,
(2.12)
a>?9.

So p, 3 are unstable for every value of a.

In order to detect the chaos we calculate the largest Lyapunov exponent A,y using the
scheme proposed by Wolf et al. [14]. The initial states are taken as x(0) =2, y(0) =3, z(0) =2,
Figure 1(a) displays the evolution of Amax according to a and Figure 1(b) displays chaotic
attractor for a = 3. System (2.1) displays chaotic behavior in the windows 0 < a <7 (Amax > 0),
periodic behavior in 7 < a <9 (Amax = 0) and stationary behavior for a > 9 (Amax < 0).

2.2, Fractional-Order Financial System

Chen has introduced in [11] the generalization of system (2.1) for fractional incommensurate-
order model which takes the form

Dix=z+(y-a)x,
D%y =1-by-x?, (2.13)
D%z =-x-cz.
Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary

order but there are several definitions of fractional derivatives.
In this paper, we use the Caputo-type fractional derivative defined in [15] by:

t
DIf() = ——— (nl_ 5 [ ey mar

—a(Srm),

where n = [q] is the value of g rounded up to the nearest integer, I' is the gamma function
and j* is the Riemann-Liouville integral operator defined by

(2.14)

“f(t) = L ft (t-7)* f(r)dr (2.15)
/ - L(a) )y . )

For the numerical solutions of system (2.13) we use the Adams-Bashforth-Moulton predictor-
corrector scheme [16].

We assume that g (q1 = g2 = g3 = q) is the control parameter,and c =1, b=0.1,a = 3.
Fractional system (2.13) has the same fixed points pi,3 as integer system (2.1), but for the
stability analysis we have this theorem introduced in [17, 18].
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Theorem 2.2. The fractional linear autonomous system

DX = AX
XeR", 0<a<2, AeR" xR, (2.16)
X(0) = Xo

is locally asymptotically stable if and only if
. T .
min|arg(4;)| > az, = 1,2,...,n. (2.17)
Proposition 2.3. Let x = x* be an equilibrium point of a fractional nonlinear system
Dx=f(x), 0<a<2. (2.18)
If the eigenvalues of the Jacobian matrix A = 0f /0x|,. satisfy

min|arg(4;)| > aZ

3 i=12..m, (2.19)

then the system is locally asymptotically stable at the equilibrium point x*.

Proof. Let x = x* + 6x. Substituting in (2.18), we find

D*(x* + 6x) = f(x* + 6x). (2.20)

SO
D*(6x) = f(x*) + Adbx + Q(||6x||2>. (2.21)
Since f(x*) = 0 (x* is the equilibrium point of system (2.18)) and

limysx -0 (O(ll6x[1?)/[[6x]) = 0, then

D%6x = Abx. (2.22)
Taking into account Theorem 2.2, we deduce that If the eigenvalues of the matrix A satisfy

min|arg(A;)| > a%, i=1,2,...,n, (2.23)
1

then x* is locally asymptotically stable.
This completes the proof. O
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Stability of p,

The Jacobian matrix of system (2.13) at the equilibrium point p; is

7 0 1

]Pl = 0 —l 0 ’ (224)
10
-1 0 -1
and its characteristic polynomial is
59 66, 6

=322y 2 2.25
Py =4 10)L 10)L 10 (2:25)

its eigenvalues are Ay = —0.87298, 1, = -1/10, A3 = 6.8730, we note that A3 is real positive
then |arg(As)| = 0 < q(or/2), for all g €]0, 2[, so p; is unstable for all g €]0,2[.

Stability Of P23

The Jacobian matrix of system (2.13) at the equilibrium point p, 3 is

3
1 /-1
5
Ipz,j, = 3 1 7 (226)
F2 5 10 0
-1 0 -1
its characteristic polynomial is
1 6, 6
S =3+ — A2+ 2+~ 2.27
pA) =2 +10J\ +5A+5, (2.27)

and its eigenvalues are \; = 0.31278 + 1.2474i, A, = 0.31278 — 1.2474i, and A3 = —0.72556, we
have

larg(A12)| = 1.3251, larg(As)| = o, (2.28)
so min;| arg(A;)| = 1.3251, then the critical value of g is

2 min; Ai
ge = w ~(.8436, (2.29)

(i) If g < 0.8436, then p 3 are locally asymptotically stable.
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Figure 2: (a) Largest Lyapunov exponent according to g. (b) Phase diagram for some values of 4.

(ii) If g > 0.8436, then p, 3 are unstable.
In order to detect the chaos, we calculate the largest Lyapunov exponent Amax-

The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2, Figure 2(a) shows the
evolution of Amax according to g. System (2.13) exhibits chaotic behaviors for g > 0.86.

3. Feedback Control
3.1. Integer Case

A general approach to control a nonlinear dynamical system via feedback control can be
formulated as follows:

x(t) = f(x,ut), (3.1)

where x(t) is the system state vector, and u(t) the control input vector. Given a reference
signal X(t), the problem is to design a controller in the state feedback form:

u(t) = g(x, 1), (3.2)
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where g is vector-valued function, so that the controlled system
x(t) = f(x,8(x,1),t) (3.3)

can be driven by the feedback control g(x, t) to achieve the goal of target tracking so we must
have

Jim (1) = () = 0 (3.4)

Proposition 3.1. Let us consider the nonlinear system
é=F(et), (3.5)

where e = x — X, X(t) is a periodic orbit (or fixed point) of the given system (3.1) with u = 0, and
F(e t) = f(x,g(x,t),t) - f(X,0,t).

If 0 is a fixed point of system (3.5) and all eigenvalues of the jacobian matrix A = 0F/0x|,
have negative real parts then the trajectory x(t) of system (3.3) converge to X(t)

Proof. Since X(t) is a periodic orbit (or fixed point) of the given system (3.1) with u = 0, so it
satisfies

X(t) = f(X,0,t), (3.6)
a subtraction of (3.6) from (3.1) gives
x(t) = X(t) = f(x,g(x, 1), 1) - f(X,0,8), (37)
50
é=F(et). (3.8)

Since all eigenvalues of the jacobian matrix A have negative real parts, it follows from

Theorem 2.1 that 0 is asymptotically stable, so we have lim; _, .. [|le(t)|| = O then lim; _, ;. [[x(£)—

X(t)|| = 0, finally x(t) o x(t). O
—ty

3.2. Fractional Case

Let us consider the fractional system
Dx(t) = f(x,u,t). (3.9)
We proceed as in the integer case. the controlled system can be written as

D%x(t) = f(x, g(x,t),1). (3.10)
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Figure 3: (a) Stabilizing the equilibrium point p; for g = 0.9. (b) Evolution of the perturbation u(t).

Let X(t) be a periodic orbit (or fixed point) of the given system (3.9) with u = 0, then we
obtain the system error

D%e(t) = F(e, t) (3.11)

Proposition 3.2. If 0 is a fixed point of system (3.11) and the eigenvalues of the jacobian matrix
A = OF / 0x|, satisfies the condition

min|arg(4;)| > a%, i=1,2,...,n (3.12)

then the trajectory x(t) of system (3.10) converge to X(t).

Proof. It follows directly from Proposition 2.3. O
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Figure 4: (a) Stabilizing the equilibrium point p, for g = 0.95. (b) Stabilizing the equilibrium point p3 for
q=14.

3.3. Application to the Fractional Financial System

Let us consider the fractional financial system (2.13), we propose to stabilize unstable periodic
orbit (or fixed point) (X, , Z), the controlled system is as follows:

Di'x=z+ (y—-a)x+ul(t),
D7y =1-by- X%+ ux(t), (3.13)

D%z = —x—cz+us(t).

Since (X, /, Z) is solution of (2.13), then we have:

D% =%+ (- a)k,

D®3j =1-bjj - ¥, (3.14)

D%z = -X - cz.
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x t

Figure 5: Selecting an unstable periodic orbit in the chaotic attractor of period T =9 for g = 0.97.

Subtracting (3.14) from (3.13) with notation, e; = x =X, e; =y — i/, ez = z — Z, we obtain the
system error:
D%e; = e3—aey + xy — Xy +uy(t),
D%e; = —bep — e1(x + X) + un(t), (3.15)

D%e; = —e1 — ces + us(t).

We define the control functions as follow:

ui(t) = —(xy - X7),
uy(t) = e1(x +X), (3.16)

u3(t) =ée.

So the system error (3.15) becomes

D%e; = e3 — aey,
Dq2€2 = —b62, (317)

D%e3 = —cesz.
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Figure 6: Stabilizing unstable periodic orbit of period T = 9 for q = 0.97.
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The Jacobian matrix is [ gbo ] and its characteristic polynomial is:

—C

p(x) =x*+ (a+b+c)x*+ (ab+c(a+b))x + abc (3.18)

so we have the eigenvalues Ay = —a, A, = -b, A3 = —c. Since all eigenvalues are real negatives
one has arg(\;) = o, therefore |arg(\;)| > q(or/2), for all g satisfies 0 < g < 2, it follows from
Proposition 3.2 that the trajectory x(t) of system (3.13) converges to X(f) and the control is
completed.

3.4. Simulation Results

In this section we give numerical results which prove the performance of the proposed
scheme. As mentioned in Section 2.3 we have implemented the improved Adams-Bashforth-
Moulton algorithm for numerical simulation.
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Figure 7: Selecting an unstable periodic orbit in the chaotic attractor of period T = 16.05 for g = 1.1.

The initial states are taken as x(0) =2, y(0) =3, z(0) = 2.

3.4.1. Stabilizing the Unstable Fixed Points

The control can be started at any time according to our needs, so we choose to activate the
control when ¢ > 20, in order to make a comparison between the behavior before activation
of control and after it.

For g = 0.9 unstable point p; has been stabilized, as shown in Figure 3(a), note that
u(t) = —=(x(Hy(t) = 0 x 10) = -x(t)y(t), so the control is activated when t > 20 and
|x(#)y(t)] < 0.2 (more precisely t = 22.5) in order to make the perturbation u;(t) smaller.
firstly the evolution of x(t), y(t), z(t) is chaotic, then when the control is started at t = 22.5 we
see that p; is rapidly stabilized.

In Figure 3(b) we observe the evolution of the perturbation u(t), when the control
is started we see that uy(t) and us(t) are very small but u;(t) is a bit larger, after that the
perturbation u(t) becomes close to zero rapidly.

For g = 0.95, the unstable point p, has been stabilized, as shown in Figure 4(a).

For g = 1.4 the fixed point p; was stabilized, Figure 4(b) shows the results of control.

When ¢ is less than 20, there is a chaotic behavior, but when the control is activated at
t = 20, the two points p, and p3 are rapidly stabilized.

In the real world of finance if we want to have a good investment demand we can
choose to stabilize p;, and in this case the interest rate and price index will be near zero.
During the recent financial crisis in 2009 many banks decided to reduce interest rates to nearly
zero in order to control this situation.
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3.4.2. Stabilizing Unstable Periodic Orbit

Although the unstable periodic orbits are dense in the chaotic attractor, we can choose one of
them (which represent the performance of the system), by analyzing data experimental, after
that we stabilize it. In this paper the close-return (CR) method [19] is used for the detection
of UPO embedded in the attractor.

For g = 0.97 we choose an unstable periodic orbit with period T = 9, localized in
the interval [78.2,87.2] as shown in Figure 5, then the control is started at t = 87.2, when
the trajectory x(t) begins to emerge from the unstable orbit, Figure 6 displays the results of
control, if t is less then 78.2 there is chaotic behavior (the error e(t) is large), after the activation
of control, this chaotic behavior is replaced by a periodic behavior and we note that the error
e(t) becomes very close to zero.

For g = 1.1 we choose an unstable periodic orbit with period T = 16.05, localized in the
interval [71.45,87.5] as shown in Figure 7, the control is started at t = 20, Figure 8 displays the
results of control. Although the control is executing at t = 20, it does not give effect rapidly,
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and the orbit is stabilized at t = 63, when the control is activated the error begins to diminish,
and becomes close to zero after ¢ = 63.

The stabilization of the periodic orbits is very important, because it permits, on the one
hand to make some predictions, and secondly, it is more realistic than the stabilization of the
stationary points in the financial circle, where one cannot generally fix the interest rate and
the investment demand as well as the price index, for a long period.

4. Conclusions

Chaotic phenomenon makes prediction impossible in the financial world; then the deletion
of this phenomenon from fractional financial system is very useful, the main contribution of
this paper is to this end.

Nonlinear feedback control scheme has been extended to control fractional financial
system. The results are proved analytically by applying the Lyapunov linearization method
and stability condition for fractional system. Numerically the unstable fixed points p; >3 have
been successively stabilized for different values of g; moreover unstable periodic orbit has
stabilized. This proves the performance of the proposed scheme.
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General conclusion and

perspectives

The work accomplished in the frame of this thesis has been a significant enrich-
ment of our knowledge about some concerns of the subject of fractional-order
chaotic systems. In the first three chapters we have presented some tools that are
eventually used in study of fractional-order systems. In the last chapter we have
exposed our contributions to the analysis of fractional-order chaotic systems where
three articles are presented. The first article postulate and further studied a new
chaotic system of three-dimensional autonomous equations with cubic nonlinear-
ity, which can generate two 1-scroll chaotic attractors simultaneously, (or a one
2-scroll chaotic attractor) with three equilibria. Dynamical behaviors of this new
chaotic system, including some basic dynamical properties, bifurcations, periodic
windows, routes to chaos, have been analyzed both theoretically and numerically,
by means of a bifurcation diagram with an associated Poincaré map and Lyapunov
exponent spectrum. The second paper present and analyze the fractional-order
modified hybrid optical system. It has been demonstrated that chaos, as well as the
other usual nonlinear dynamic phenomena, occur in this systems with mathemat-
ical order less than three. The Largest Lyapunov exponents and the bifurcation
diagrams show the period-doubling bifurcation and the transformation from peri-
odic to chaotic motion through the fractional-order and confirms the justness of
the proposed fractional Hopf bifurcation conditions (in this system). The theoret-
ical analysis which validates conditions of Hopf bifurcation repose on the normal
form and center manifold theorem, unfortunately these tools are not developed yet
in fractional order systems. The last paper deals with the extension of nonlinear
feedback control scheme in order to control fractional financial system. The re-
sults are proved analytically by applying the Lyapunov linearization method and
stability condition for fractional system. Numerically the unstable fixed points

have been successively stabilized for different values of fractional order; moreover
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unstable periodic orbit has been stabilized, which proves the performance of the
proposed scheme. the results obtained in these papers are modestly important,
referenced and cited by others authors in diverse publications. As a result of our
review, some important directions of study have appeared as a natural prolonging
objectives for the present work. Additional efforts are needed in both theory and
application of fractional-order systems. the existence of exact periodic solution
in fractional-order autonomous system, the problem of stability, the problem of
calculating Lyapunov spectrum and application of fractional calculus in circuit

theory especially in circuit elements with memory are still ender active study.
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Abstract

This thesis deals with fractional-order chaotic systems. The main highlight is
on some basic differences between a fractional-order system and its integer order
counterpart. Namely, stability conditions, existence of periodic solutions and min-
imal total order for which chaos can occur etc...

The finding of a new chaotic attractor from Hybrid optical bistable system is
reported and dynamic of the new system is investigated in both integer and
fractional-order cases. It is shown that asymptotic stability of equilibrium points
of the fractional system can occur with positive real part of some corresponding
eigenvalues which is not the case in integer-order systems. We have established
criterion under which a fractional-order system undergoes Hopf bifurcation. The
results are validated by mean of stability theory and numerical simulations. It
is shown that chaos can be occurred in fractional-order system with total order
less than three which is not the case in integer-order system due to the Poincaré-
Bendixon theorem.

Finally, nonlinear feedback control scheme has been extended to control fractional
financial system. The results are proved analytically by applying the stability
condition for fractional system. Numerically the unstable fixed points have been
successively stabilized for different values of fractional order; moreover some un-

stable periodic orbits have been stabilized.

Keywords: Fractional-order derivatives, Stability of fractional-order systems, Bi-

furcation, Periodic solutions, Chaos, Chaos control.



Résumeé

Cette these porte sur les systemes chaotiques d’ordre fractionnaire. Nous met-
tons en relief quelques différences de base entre un systeme d’ordre fractionnaire
et le systeme d’ordre entier correspondant. A savoir, les conditions de stabilité,
I’existence des solutions périodiques et 1’ordre total minimal pour lequel le chaos
peut se produire etc....

La découverte d'un nouvel attracteur chaotique en modifiant un systeme optique
est rapporté et sa dynamique a été analysée dans le cas entier ainsi que dans le
cas fractionnaire. Il est montré que les points d’équilibre peuvent étre asympto-
tiquement stables méme s’il existe des valeurs propres correspondantes de parties
réelles positives ce qui est impossible pour les systemes d’ordre entier. Nous avons
établi des criteres pour lesquels un systeme d’ordre fractionnaire volue vers une
bifurcation de Hopf. Les résultats sont confirmés en utilisant la théorie de la sta-
bilité et des simulations numériques. Il est montré aussi que le chaos se produit
dans ce systeme d’ordre fractionnaire avec un ordre total inferieur a trois ce qui
est impossible pour un systeme d’ordre entier d’apres le théoreme de Poincaré-
Bendixon.

Finalement, la méthode de controle par rétroaction (feedback) non linéaire a été
étendu pour controler un systeme financier d’ordre fractionnaire. Les résultats
sont analytiquement prouvés en utilisant la condition de stabilité des systemes
fractionnaires. Numériquement les points fixes instables ont été stabilisés succes-
sivement pour différentes valeurs de 1’ordre fractionnaire, de plus quelques orbites

périodiques instables ont été stabilisées.

Mots clés : Dérivées d’ordre fractionnaire, Stabilité des systemes d’ordre frac-

tionnaire, Bifurcation, Solutions périodiques, Chaos, Controle du chaos.
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