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Introduction
There are three important steps in the computational modelling of

any physical process. First one problem de�nition, the second one is
model, and the third one is computer simulation.

The �rst natural step is to de�ne an idealisation of our problem of
interest in terms of relevent quantities which we would like to measure.
In de�ning this idealisation we expect to obtain a well-posed problem
this is one that has a unique solution for a given set of parameters. It
might not always be possible to guarantee the �delity of the idealisation
since, in some instences the physical process is not totally understood.
An example the complex environment within a nuclear reactor where
obtaining measurments is too di¢ cult.
The second step of the modelling process is to represent our ideal-

isation of the physical reality by a mathematical model, the governing
equations of the problem. These are available for many physical phe-
nomenon. For example the equations of elasticity in structural mechanics
govern the deformation of a solid object due to applied external forces.
These are complex equations that are very di�cult to solve both analyt-
ically and numerically. To overcome this problem we need to introduce
simplifying assumptions to reduce the complexity of the mathematical
model and make it at hand to either exact or numerical solution. After
the selection of an approximate, together with suitable boundary and
initial conditions, we can proceed to its solution mathematical model.
Over the last few years, various processes in the natural sciences and

engineering lead to the non classical parabolic initial/boundary value
problems which involve non-local integral terms over the spatial do-
main. The integral terms may appear in the boundary conditions in
which case the boundary condition is called non-local, or in the govern-
ing partial di¤erential equation itself, which is then often referred to as
a partial integro-di¤erential equation, or in both. Non-local boundary
value problems were �rst used by [51,57]. The presence of an integral
term in a boundary condition can complicate the application of a stan-
dard numerical techniques such as �nite di¤erence method, �nite element
methods,spectral techniques, boundary integral equation scheme, etc. It
is important to convert the non local boundary-value problems to more
desirable form, to make them more applicable the problems of practical
interest. In many cases it is a hard task. The use of quadrature ap-
proximations in these problems is not an easy task. The accuracy of the
quadrature must be compatible with the discretization of the di¤erential
equation. The sparsity of coe¢ cient matrices of systems of linear alge-
braic equations arising in the time-stepping is complicated. Due to this
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reason new methods are introduced to overcome these di¢ culties, like,
Adomian decomposition method, Homotopy perturbation method and
variational iteration method, etc. Up to now partial di¤erential equa-
tions with non local boundary conditions have been one of the fastest
growing aeras in various �elds. Science and industry are both responsible
for this growth in the last three decades.
In this thesis we will consider the numerical solution of mathematical

problems which are modeled by partial di¤erential equations with non
local boundary conditions. E¢ cient and accurate numerical methods
are introduced, analysed and used. for solving one dimensional homo-
geneous heat equation with nonlocal boundary conditions two steps are
needed, in the �rst one we apply a sixth-order �nite di¤erence scheme
using the method of lines semi-discretization approach to transform the
model of partial di¤erential equation into a system of �rst order ordinary
di¤erential equations, in the second step we solve the resulted system
of �rst order di¤erential equations using the technique of fourth-order
Runge-Kutta method. The obtained results are more accurate than
those obtained by former searchers who are dealed with this kind of
problems [6]. In the next chapters we introduce the Adomian�s decom-
position method for solving both one dimensional , two-dimensional and
three-dimensional homogeneous and non homogeneous heat equation(
linear and nonlinear) [1-5]. In the last chapter we analyse and use the
Homotopy perturbation method for solving linear (nolinear) equations
with nonlocal boundary conditions.The obtained results are with good
agreement of the exact ones.
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1 An overview

1.1 High order compact �nite di¤erence

Finite di¤erence schemes can be classi�ed into two types, explicit and
implicit. Explicit schemes expresse the nodal derivatives like an explicit
weighted sum of the nodal values of the function, e.g,

u0i =
ui+1 � ui�1

2h
+O(h2)

The local truncation error is

O(h2) = �h
2

6
u000(�); � 2 (xi�1; xi+1)

And

ui" =
ui+1 + ui�1 � 2ui

h2
+O(h2)

The local truncation error is

O(h2) = �h
2

12
u(4)(�); � 2 (xi�1; xi+1)

Where h denotes the step size of equally spaced mesh of the domaine
of u.
Assuming that u

000
and u(4) are bounded, the local truncation error

approaches zero at the same rate that h2 approaches zero, when h! 0.
It simply said that the local truncation error is of order h2, which is
denoted by the symbols O(h2). Implicit methods increase the complexity
of the algorithm since they require matrix inversion but are still relatively
uncomplicated. Better approximations can be obtained by increasing
the order of the truncation error of the �nite di¤erence scheme.This is
commonly accomplished by including more points in the stencil of the
numerical scheme.

As an example, consider an explicit centred �nite di¤erence formula
with a �ve point stencil approximating the �rst derivative

u0i �
ui�2 � 8ui�1 + 8ui+1 � ui+2

12h
(1)
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which has a local truncation error of O(h4) given by

�i = �
1

30
h4u(5)(�); � 2 (xi�2; xi+2) (2)

The smaller truncation error is more advantageous, but it require a
larger stencil.
A disatvantage for this approach is the need to include more equation

for grid points near and at the boundaries. Also, for highier-order im-
plicit schemes, the inversion of the matrices with the increased number
of non-zero diagonals may be too costly. An alternative is to not enlarge
the stencil, but involve values of the derivative at some nodes where the
function is already evaluated.

considering the �nite di¤erence approximation of the �rst derivative
proposed in 1966 by Collatz [56], which approximates the derivative
values at
three grid points with known function values over the same three grid

points
1

4
u0i�1 + u0i +

1

4
u0i+1 �

3

4h
(ui+1 � ui�1) (3)

This scheme is of order four as it will be proven later, this new scheme
has a local truncation error of O(h4); similar to (1.1). However, if (1.1)
is used over a discretized domaine, four additional formulas are needed
at the two points on both ends where the stencil protrudes the domaine.
On the contrary, scheme (1.3) only requires additional formulas at each
of the end points. Assuming that at least one boundary condition is
known, only one additional formula may be needed.Thus the proposed
implicit scheme (1.3) gives a distinct advantage over the explicit equation
(1.1).
The developement and application of the above implicit �nite di¤er-

ence formula (1.3) to solve initial boundary value problems modled by
partial di¤erential equations is more recent appearence.
As mentioned above, some partucular formulas are reported by Col-

latz [56] pp. 538. However, their implementation as di¤erence schemes
approximating partial di¤erential equations began in the early 1970s for
some �uid mechanics problems. Since that time, several distinct classes
of compact schemes have been developed. The two most common are
the upwind and the centred schemes see, Lele [38]. In recent years, due
to the appearence of faster and more powerful computing machine , com-
pact schemes are proving more advantageous. The current emphasis of
these higher-order methods has been to the �eld of �uid mechanics as
well as other areas of aero-acoustics and electro-magnetics... In the last
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ten years, much work has been done with compact schemes by many
authors.
This work discusses the formulation of two di¤erent approaches the

�rst one sixth-order compact �nite di¤erence scheme and Fourth-Order
Runge-Kutta Algorithm.

1.2 Consistency, Stability and Convergence
Finite di¤erence schemes approximating partial di¤erential equations are
analyzed according to three important propreties:consistency,stability
and convergence. To introduce these concepts, consjder the following
boundary value problem

uxx = q(x); 0 < x < 1 (4)

u(0) = a ; u(1) = b (5)

Where q is contuneous and bounded function in its interval. Introducing
the di¤erential operator L
We rewrite the problem (1.4) and (1.5) in an operator form we have

Lu= fuxx; 0 < x < 1 (6)

u(0)= a; u(1) = b

To obtain a numerical approximation of this problem, a grid formed
by points in the domain of the function u must be de�ned. By selecting
hx as uniform step sizes along the x-axis, the grid points

x = ihx; i = 0; 1; 2; ::N (7)

Using central di¤erence approximations for uxx on the grid points, equa-
tion (1.4) is approximated by a �nite di¤erence equation. As a conse-
quence, the continuous problem (1.4), (1.5) is replaced by a new discret
problem given by

Ui+1 + Ui�1 � 2Ui
h2x

= q(xi); i = 0; 1; 2; ::::; N (8)

U0 = a; UN+1 = b (9)

The discrete problem (1.8)-(1.9) can also be written in the form

AU = Q (10)
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Where U is the vector of unknowns U = [ U 1; U 2; ::::::; U N ] and

A =
1

h2

2666666664

�2 1 : : : :: :
1 �2 1 : : : :
: 1 �2 1 : : :
: : 1 �2 1 : :
: : : 1 �2 1 :
: : : : 1 �2 1
: : : : : 1 �2

3777777775
; Q =

2666666664

q(x1)� a
h2

q(x2)
:
:
:

q(xN�1)
q(xN)� b

h2

3777777775
(11)

Solving this system we obtain the approximate solution U

Where

U =

2666666664

U1
U2
:
:
:
:
UN

3777777775
Thus, the centred di¤erence is a second oreder accurate approxima-

tion to u00 at xi ; i = 1; 2::::N and the local truncation error which is
denoted by replacing U i by the exact solution u(xi) in the di¤erence
equation (1,8) as follows

�i = [u"(xi) +
h2

12
u0000(xi) +O(h4)]� q(xi) (12)

Or

�i =
h2

12
u0000(xi) +O(h4)

Where u0000 is a function independent of h , and �i = O(h2) as h !
0; de�nning � as follows

� =

2666666664

�1
�2
:
:
:
:
�N

3777777775
14



Then
� = Au�Q

Or
Au = Q+ � (13)

Hence the global error is given by the vector

E = u� U

subtructting (1,13) from (1,10) we obtain

AE = �� (14)

Or

E =

2666666664

E1 =
E2 =
:
:
:
:

EN =

=

u1 � U1
u2 � U2

:
:
:
:

uN � UN

3777777775
Rewritting (1,14) in the following form

AhEh = ��h (15)

The superscrit h means that we are acting on a grid equally spaced
with a mesh step h: solving the above system we have

Eh = �(Ah)�1�h

and taking norms gives

Eh

 = 

(Ah)�1�h

 � 

(Ah)�1



�h

 (16)

Supposing that there is a constant C independent of h such that

(Ah)�1

 � C (17)

Then 

Eh

 � C k�hk (18)

Where the norms used are

kEk1 = max
1�i�N

jEij = max
1�i�N

ju(xi)� Uij

15



Or

kEk1 = h
NX
i=1

jEij

And so on.
De�nition 1 Suppose a �nite di¤erence for a linear boundary value

problem gives a linear system of the form

AhUh = Qh

Where h is the mesh width. We say the method is stable if (Ah)�1

exists and there exist a positive number h1 and a constantC, independent
of h such that 

(Ah)�1

 � C; for all h � h1 (19)

De�nition 2 The di¤erence scheme (1,8) is consistent with the con-
tinuous problem (1,4) if



�h

! 0 as h! 0. Moreover if the inequality

�h

 � c1h
k (20)

holds for some positive constants c1 and k, then it is said that the dif-
ference scheme (1,8) is of order hk consistent with the continuous prob-
lem(1,4)
The concepte of convergence is now presented.
Theorem 1 If the di¤erence scheme (1,8) is stable and is also

consistent with the continuous problem (1,4) then, the discrete solution
Uh of (1,8)converges to the solution u of (1,4) and satis�es

Eh

 � 

(Ah)�1



�h

 � C



�h

! 0 as h! 0 (21)

Where C is independent of h. The proof results from (1,19) and
(1,20), hence, the discret solution Uh of (1,8) converges to the continuous
one u of (1,4) with order of O(h2):

1.3 The Compact Scheme

Considering high-order approximation for the �rst derivative of a func-
tion u using implicit schemes as de�ned in [56], pp.538-539.For this we
suppose a function u of one variable de�ned on the real line R: A uni-
form partition formed by discrete points xi; i = 0; 1; 2; :::;is de�ned in
R: An implicit numerical approximation of the �rst derivative u0 at the
grid points can be given by

�u0i�1 + u0i + �u0i+1 =
a

2h
(ui+1 � ui�1) (22)
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where � and a are arbitrairy constants. In fact equation (1,22) rep-
resents a family of numerical approximations for u0:

Theorem 2 If u is an n + 1 times di¤erentiable function on R
(n � 4) and xi; i = 0; 1; 2; :::; is a uniform partition of R with step size
h, then the implicit �nite di¤erence scheme equation (1,22) de�nes a one
parameter family of numerical approximations for u0 with second order
formal accuracy. Fourth-order maximum formal accuracy is obtained for
a = 3

2
and � = 1

4
with local truncation error

�i =
1

120
h4u(5)(�); � 2 (xi�1; xi+1) (23)

Proof Grouping all terms of equation (1,22) on the left-hand side,
expanding the functions u and its �rst derivative u0at each node accord-
ing to their Taylor expansions, and substituting them into (1,22) leads
to

�u0i�1 + u0i + �u0i+1 �
a

2h
(ui+1 � ui�1) (24)

=2�(u0i +
h2

2!
u000i +

h4

4!
u
(5)
i + :::) + u0i

� a

2h
[(ui + hu0i +

h2

2!
u00i +

h3

3!
u000i +

h4

4!
u
(4)
i + ::::)

�(ui � hu0i +
h2

2!
u00i �

h3

3!
u000i +

h4

4!
u
(4)
i � :::)]

combining like terms gives

�u0i�1 + u0i + �u0i+1 �
a

2h
(ui+1 � ui�1)

= (2�+ 1� a)u0i + (2
�

2!
� a

3!
)h2u000i

+(2
�

4!
� a

5!
)h4u

(5)
i + :::

By setting (2�+1�a) = 0, the �rst term is eliminated and equation
(22) becomes a one parameter family of second order schemes, that,
is the constant a is uniquely determined by the parameter � as a =
2�+ 1:The truncation error is given by

�i = (2
�

2!
� a

3!
)h2u000i =

4�� 1
6

h2u000i

In addition, if the second coe¢ cient term in (1,24) is forced to zero,
that is, 2�

2!
� a

3!
= 0 , then both constants � and a are uniquely de-

termined. These values are � = 1
4
and a = 3

2
which are the constants

17



de�ning (3). The local truncation error is

�i = (2
�

4!
� a

5!
)h4u

(5)
i =

1

120
h4u(5)(�)

which proves that the implicit compact scheme

1

4
u0i�1 + u0i +

1

4
u0i+1 =

3

4h
(ui+1 � ui�1)

has the same formal fourth-order accuracy as the �ve-point explicit cen-
tered �nite di¤erence scheme. An important advantage of the scheme
(1,22) is that its stencil only consists of three points instead of �ve as in
the explicit centered counterpart. The formal order of accuracy for the
implicit scheme (1,22) can be easily increased by enlarging its stencil,
maintainig a tridiagonal matrix for the unknown derivative values. For
this purpose , consider the scheme

�u0i�1 + u0i + �u0i+1 =
a

2h
(ui+1 � ui�1) +

b

4h
(ui+2 � ui�2) (25)

The analogous of theorem 2 for this new scheme can be formulated
as follows here.

Theorem 3 If u is n+1 times di¤erentiable function on R (n � 6) and
xi; i = 0; 1; 2; :::; is a uniform partition of R with step size hx, then the
implicit �nite di¤erence equation (1,24) de�nes a one parameter family of
numerical approximations for u0 with four-order formal accuray. A sixth-
order maximum formal accuracy is obtained for a = 14

9
; � = 1

3
; and b = 1

9

with local truncation error

�i =
1

1200
h6u(7)(�); � 2 (xi�2; xi+2) (26)

Proof Grouping all terms of equation (1,25)) on the left-hand
side, expanding the functions u and its �rst derivative u0 at each node
according to their Taylor expansions, substituting them into (1,25), and
combining like terms leads to

�u0i�1 + u0i + �u0i+1 �
a

2h
(ui+1 � ui�1)�

b

4h
(ui+2 � ui�2)

= (2�+ 1� a� b)u0i + (2
�

2!
� a

3!
� 2

2b

3!
)h2u000i

+(2
�

4!
� a

5!
� 2

4b

5!
)h4u

(5)
i + (2

�

6!
� a

7!
� 2

6b

7!
)h6u

(7)
i

By setting 2� + 1 � a � b = 0 and 2 �
2!
� a

3!
� 22b

3!
= 0; the �rst

two terms in the right-hand side are eliminated and the equation (1,25)
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becomes a one parameter family of fourth-order schemes.That is, the
constants a and b are uniquely determined by the parameter �. The
truncation error is given by the O(h4) term in the right-hand side. If
this third term is forced to zero, then all constants �; a and b are uniquely
detrmined. These values are � = 1

3
; a = 14

9
; and b = 1

9
: As a consequence,

the following sixth-order compact scheme approximation for the �rst
derivative is obtained

1

3
u0i�1 + u0i +

1

3
u0i+1 =

7

9
h(ui+1 � ui�1) +

1

36h
(ui+2 � ui�2) (27)

The local truncation error for this particular scheme is

�i = �
1

1260
h6u(7)(&); & 2 (xi�2; xi+2)

Note that the presence of factorial terms yields the coe¢ cients of the
truncation error that is very small. This may in fact result in an even
higher order of formal accuracy for the given scheme than is suggested
by O(h6). The previous sixth-order scheme (1,27) usually written as

1

3
u0i�1 + u0i +

1

3
u0i+1 =

7

9h
(ui+1 � ui�1) +

1

36h
(ui+2 � ui�2) (28)

The following will also adopt the same convention. Similar proce-
dures as those used in proving the above theorems, can be followed to
derive other compact schemes. When dealing with the boundary value
problems, the complete compact di¤erencing scheme consits of two dif-
ferents types of formulas. The interior formula, which is the heart of the
compact scheme, approximates derivative values at all but the bound-
ary and near boundary points. To approximate derivative values at these
points, one-sided di¤erence schemes that mimic the implicit nature and
the formal order of accuracy of the interior scheme may be used. The
number of points excluded by the interior scheme depends on the stencil.

1.4 Interior scheme

The compact scheme for the �rst derivative at interior points (1,22)
and (1,25) are particular cases of the more general well-known schemes
de�ned, as �lows

LX
k=�L

�kU
0
i+k =

1

h

MX
l=�M

�lUi+l; �0 = 1; �k = ��k (29)
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By expading the summations, the schemes are shown as

��LU
0
i�L + ��L+1U

0
i�L+1 + :::+ ��1U

0
i�1 + U 0i + ::+ �LU

0
i+L

=
1

h
(��MUi�M + ��M+1Ui�m+1 + ::+ ��1Ui�1 + �0Ui + �1Ui+1 + ::+ �MUi+M :

The left-hand side there are 2L+1 derivative values and the right-
hand side has a 2M+1 node stencil. To avoid the computational com-
plexity when uing the implicit schemes, we should restricte L � 2. The
formula (1,29) for the �rst derivative reduces to


U 0i�3 + �U 0i�2 + �U 0i�1 + U 0i + �U 0i+1 + �U 0i+2 + 
U 0i+3 = (30)

=
a

2h
(Ui+1 � Ui�1) +

b

4h
(Ui+2 � Ui�2) +

c

6h
(Ui+3 � Ui�3) +

d

8h
(Ui+4 � Ui�4)

Further study of compact schemes will be reduced to the L = 2 case
where 
 = 0. The second derivative scheme is

�U 00i�2 + �U 00i�1 + U 00i + �U 00i+1 + �U 00i+2 (31)

=
a

h2
(Ui+1 � 2Ui + Ui�1) +

b

4h2
(Ui+2 � 2Ui + Ui�2) +

c

9h2
(Ui+3 � 2Ui + Ui�3)

Similarely a third derivative centered compact scheme is given by

�U 000i�2 + �U 000i�1 + U 000i + �U 000i+1�U
000
i+2 (32)

a

2h3
(Ui+2 � 2Ui+1 + 2Ui�1 � Ui�2) +

b

8h3
(Ui+3 � 3Ui+1 + 3Ui�1 � Ui�3)

Finally, a fourth derivative compact scheme can be written as

�U
(4)
i�2+�U

(4)
i�1+U

(4)
i +�U

(4)
i+1+�U

(4)
i+2 =

a

h4
(Ui+2�4Ui+1+6Ui�4Ui�1+Ui+2)

(33)
The formal order of accuracy of the compact schemes can be obtained

by expanding each term in above equations in Taylor series about xi and
then matching the Taylor series coe¢ cients for the terms in the scheme as
performed in theorems 2 and 3. Here the derivation of centred compact
di¤erencing extended in general form to schemes with pentadiagonal
implicit matrix up to 9 grid points stencils. First, consider the Taylor
expansions for the left-hand side terms in (1,30) with 
 = 0.

U 0i�2 = U 0i � 2hU 00i +
22h2

2!
U 000i � ::

29h9

9!
U
(10)
i +

210h10

10!
U
(11)
i +R11(x) (34)

U 0i�1 = U 0i � hU 00i �
h2x
2!
U 00i � :::� h9

9!
U
(10)
i +

h10)

10!
U
(11)
i +R11(x) (35)
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U 0i = U 0i

U 0i+1 = U 0i + hU 00i +
h2

2!
U 00i + :::+

h9

9!
U
(10)
i +

h10

10!
U
(11)
i +R11(x)

U 0i+2 = U 0i + 2hU
00
i +

22h2

2!
U 000i + ::+

29h9

29
U
(10)
i +

210h10

210
U
(11)
i +R11(x)

We do the same thing for expanding the righ-hand side

Ui�4 = Ui � 4hU 0i +
42h2

2!
U 00i � ::� 4

9h9

9!
U
(10)
i �R11(x)

Ui�3 = Ui � 3hU 0i +
32h2

2!
U 00i _:::�

39h9

9!
U
(9)
i +

310h10

10!
�R11(x)

Ui�2 = Ui � 2hU 0i +
22h2

2!
U 00i � ::� 2

9h9

9!
U
(9)
i +

210h10

10!
U
(10)
i �R11(x)

Ui�1 = Ui � hxU
0
i +

h2

2!
U 00i � ::� h9

9!
U
(9)
i +

h10

10!
U
(10)
i +R11(x)

Ui+1 = Ui + hU 0i +
h2

2!
U 00i + ::+

h9

9!
U
(9)
i +

h10

10!
U
(10)
i +R11(x)

Ui+2 = Ui + 2hU
0
i +

22h2

2!
U 00i + ::+

29h9

9!
U
(9)
i +

210h10

10!
U
(10)
i +R11(x)

Ui+3 = Ui + 3hU
0
i +

32h2

2!
U 00i + ::+

39h9

9!
U
(9)
i +

310h10

10!
U
(10)
i +R11(x)

Ui+4 = Ui + 4hU
0
i +

42h2

2!
U 00i + ::+

49h9

9!
U
(9)
i +

410h10

10!
U
(10)
i +R11(x)

Doing the same like in theorems ( 2) and (3) the last expansions are
substituted into (2.9) we gather all like terms we obtain

(1+2�+2�)U 0i+
2

2!
(�+22�)h2U 000i +

2

4!
(�+24�)h4U

(5)
i +

2

6!
(�+26�)h6U

(7)
i +

+
2

8!
(�+ 28�)h8U

(9)
i +

2

10!
(�+ 210�)h9U

(11)
i + :::+ : =

(a+b+c+d)U 0i+
1

3!
(a+22b+32c+42d)h2U 000i +

1

5!
(a+24b+34c+44d)h4U

(5)
i +

+
1

7!
(a+ 26b+ 36c+ 46d)h6U

(7)
i +

1

9!
(a+ 28b+ 38c+ 48d)h8U

(9)
i + ::

+
1

11!
(a+ 210b+ 310c+ 410d)h10U

(11)
i + ::::

Equating coe¢ cients with the same power of h we get the follownig
system of six equations

a+ b+ c+ d = 2(�+ �) + 1 (36)
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a+ 22b+ 32c+ 42d = 2
3!

2!
(�+ 22�) (37)

a+ 24b+ 34c+ 44d = 2
5!

4!
(�+ 24�) (38)

a+ 26b+ 36c+ 46d = 2
7!

6!
(�+ 26�) (39)

a+ 26b+ 36c+ 46d = 2
7!

6!
(�+ 26�) (40)

a+ 28b+ 38c+ 48d = 2
11!

10!
(�+ 28�) (41)

a+ 210b+ 310c+ 410d = 2
1!

10!
(�+ 210�) (42)

Solving this system we have

Scheme 
 � � a b c d order
T4 1

4
3
2

4
T6 1

3
14
9

1
9

6
T8 3

8
25
16

1
5

�1
80

8
T10 2

5
39
25

4
15

1
35

1
525

10

Table 1. Coe¢ cients of interior schemes for �rst derivative

Scheme � � a b c d order

T4
1

10

6

5
4

T6
2

11

12

11

3

11
6

T8
9

38

147

152

51

95

�23
700

8

T10
8

29

1126

1305

988

1305

�74
1015

43

9135
10

Table2 :Coefficientsofinteriorschemes forsecondderivative
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1.5 Adomian decompostion method

Usually numerical methods are based on discretization techniques, and
only approximate values of the solution are obtained and only for some
values of time and space. With Adomian decomposition method, the
solution is obtained by a series expanssion of the so called Adomian�s
polynomials, not requiring discretization of the variables, and, there-
fore, not being a¤ected by errors associated to discretization. Also this
method does not require linearization or perturbation and, consequently,
does not change the actual solution of the problem. As well, Adomian�s
decomposition method is very competent on �nding an approximate or
exact solution for linear and non linear problems, not required in many
cases, large computer memory.To introduce the Adomian decomposition
method, consider the initial boundary value problem

ut �r(a(x)ru) = G(x; t; u); x 2 
 2 R; t 2]0; T ] (43)

With the initial condition

u(x; 0) = u0(x); x 2 
 (44)

Where G(x; t; u) is non linear vector function, some assumptions are
taken for the data a; G; and u0 in order to assure the existence and
uniqueness of the solution of the system (1,45).
The principal algorithm of the Adomian decomposition method ap-

plied to a general non linear equation is in the form

L(u) +R(u) +N(u) = q (45)

The linear term are decomposed into L+R, while the non linear terms
are represented by N(u). L is taken as the highest order derivative, and
R is the remainder of the linear operator. L�1 is regarded as the inverse
operator of L and is de�ned by a de�nete integration from 0 to t, i.e.,

L�1(:) =

Z t

0

(:)dt (46)

If L a second-order operator

L�1(:) =

Z t

0

Z t

0

(:)dt dt (47)

L�1L(u) = u(x; t)� u(x; 0)� tut(x; 0) (48)
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Operating on both sides of equation (1,47) with the inverse operator
L�1 yields

L�1(L(u)) = L�1(q)� L�1(R(u))� L�1(N(u)) (49)

Or

u(x; t) = u(x; 0) + tut(x; 0) + L
�1(q)� L�1(R(u))� L�1(N(u)) (50)

The decomposition method represents the solution of equation (1,32)
as a series

u(x; t) =
1X
n=0

un(x; t) (51)

The nonlinear operator, N(u), is decomposed as follows

N(u)) =
1X
n=0

An (52)

Substituting (1,33) and (1,34) into (1,32) we have

1X
n=0

un(x; t) = u0 � L�1(R(
1X
n=0

un))� L�1(
1X
n=0

An) (53)

Where
u0 = u(x; 0) + tut(x; 0) + L

�1(q) (54)

Consequently, it can be written as

u1 = �L�1(R(u0))� L�1(A0) (55)

u2 = �L�1(R(u1))� L�1(A1)

::

un+1 = �L�1(R(un))� L�1(An)

Where An are Adomian�s polynomials of u0; u1; u2; :::; and are ob-
tained from the formula

An =
1

n!

dn

d�n
[G(

1X
i=0

�iui)]�=0; n = 0; 1; 2; ::: (56)

Equation (1,38) gives
A0 = g(u0)

A1 = u1
d

du0
g(u0)
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A2 = u2
d

du0
g(u0) +

u21
2!

d2

du20
g(u0)

A3 = u3
d

du0
g(u0) + u1u2

d2

du20
g(u0) +

u31
3!

d3

du30
g(u0) (57)

::

::

::

The accuracy level of the approximation of u(x; t) can be enhanced
by computing components as far as we like. The n-term approximant

limn!1Sn=u(x; t); where (58)

Sn=
n�1X
k=0

uk(x; t); k � 0

can be used to approximate the solution.

Convergence of the solution
We consider the following hypotheses

(H1) (T (u)� T (v); v � u) � k ku� vk2 ; k > 0; u; v 2 H (59)

(H2) Whatever may be M > 0, there exists a constant C(M) > 0
such that for u; v 2 H with kuk �M , we have

(T (u)� T (v); w) � CM ku� vk kwk for every w 2 H

Where H is a Hilbert space.
Theorem. If N is lipschitzian function in H, the Adomian method

applied to the following nonlinear heat equation

@u

@t
=
@2u

@x2
+ g(u)

Where g(u) is the nonlinear terms converges.
Proof. We consider the above equation, then we set

L(u) =
@u

@t
; R(u) = �@

2u

@x2
; N(u) = �g(u)

We have

L(u) =
@u

@t
= �T (u) = @2u

@x2
+ g(u)
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This operator is hemicontinuous. We can the convergence hypothesis
(H1) :ie.
There exists a constant k > 0, such that for u; v 2 H we have

(T (u)� T (v); u� v) � k ku� vk2 ;

T (u)� T (v) = � @2

@x2
(u� v)� (g(u)� g(v));

(T (u)� T (v); u� v) = (� @2

@x2
(u� v); u� v)� (g(u)� g(v));

But there exists a real � > 0 such that

(� @2

@x2
(u� v); u� v) � � ku� vk2

Because
@2

@x2

Is a di¤erential operator in H. In addition ,

(g(u)� g(v); u� v) � � ku� vk2

Where � > 0 is the lipschitzian constant and therefore

(T (u)� T (v); u� v) � (� � �) ku� vk2 ;

And taking k = � � �; then we obtain hypothesis (H1), we can now
prove the hypothesis (H2), i.e.

8M > 0; � C(M) > 0 such that kuk � kMk ; kvk �M =)
(T (u)� T (v); w)�C(M) ku� vk kwk ; 8w 2 H

Thus we obtain

(T (u)� T (v); w) � ku� vk kwk+ � ku� vk kwk � C(M) ku� vk kwk

Where C(M) = 1 + �:Hence, the hypothesis (H2) is satis�ed.
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1.6 The homtopy perturbation method

The explicit solutions of di¤erential equations are obtained by making
use of reliable algorithm like homotopy perturbation method (HPM).
In recent years, much attention has been given to the study of HPM
,He [13-17], and [23, 27, 29] for solving a wide range of problems whose
mathematical models are governed by di¤erential equations or system of
di¤erential equations. HPM deform a di¢ cult problem into an in�nite
set of problems which are easier to solve without any need to transform
nonlinear terms.The speed of convergence of the method is based on a
rapidly convergent series with easily computable components. Numerical
results show that the homotopy perturbation method is easy to imple-
ment and accurate when applied to solve Partial di¤erential equations.
to illustrate the basic ideas of this method, we consider the following
equation:

L[u(x; t)] +N [u(x; t)] = q(x; t); (x; t) 2 
 (60)

Subject to the boundary condition

B(u;
@u

@�
) = 0; (x; t) 2 


And initial condition
u(x; 0) = u0 (61)

Where L is a linear operator, N a nonlinear operator and q(x; t) is
the source term, B is a boundary operator and � is the boundary of the
domain 
. we de�ne a convex homotopy H(u; p) by

H(u; p) = (1� p)[L(v)� L(u0)] + p[L(u) +N(u)� q(x; t)] = 0 (62)

We have
H(u; 0) = L(v)� L(u0) (63)

H(u; 1) = L(u) +N(u)� q(x; t) (64)

This shows that H(u; p) continuously traces an implicitly de�ned
curve from a starting point H(v0; 0) to a solution function H(f; 1). The
embedding parameter monotonically increases from zero to unit as the
trivial problem

L(v)� L(u0) = 0

Continuously deforms the original problem

L(u) +N(u)� q(x; t) = 0
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The embedding parameter p 2 [0; 1] can be considered as an expand-
ing parameter [13-14,17]. We can assume that the solution of equation
(44) can be written as a power series in p, as following

v = v0 + v1 + v2 + v3 + ::: (65)

The comparison of like powers of p give solutions of various orders
and the best approximation is u = limp!1v = v0 + v1 + v2 + v3 + :::
It constitutes a main objective of this thesis to perform a numeri-

cal analysis of heat equation with nonlocal boundary conditions in both
cases one-dimensional, two-dimensional and three-dimensional and wave
equation , studying its solutions and behaviour by di¤erent numerical
methods, namely High- order �nite di¢ rence method, Adomian�s de-
composition method and homotopy perturbation method. In the second
chapter we used the sixth-order �nite di¤erence scheme for solving a one
dimensional di¤usion equation with an integral boundary condition, the
obtained results are of order O(h6x +h

4
t ) [6]. in the last six chapters we

used the Adomian�s decompsition method and homotopy perturbation
method, the obtained results are all exact [1-5].
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Chapter 2
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2 A one-dimensional di¤usion equation with an in-
tegral condition

In this chapter, we �rst introduce the compact sixth-order �nite di¤er-
ence formula then we adjust compact �nite di¤erence formula for the
following heat equation with non local boundary conditions

@u

@t
=
@2u

@x2
; (x; t) 2]0; 1[�]0; T [ (66)

u(x; 0) = f(x); 0 < x < 1 (67)

ux(1; t) = g(t); 0 < t < T (68)

Z b

0

u(x; t)dx = m(t) (69)

where f(x), g(t), b and m(t) are known. This problem describe cer-
tain chemicals absorbing light at various frequencies. The intensity of
such light on photoelectric cell gives us an electric signal which is pro-
portional to the total amount of chemical present in the volume through
which the light passes. Let u(x; t) denote the chemical concentration
which is di¤using in a straight glasse tube with x measured in the di-
rection of axis of the tube. Then the electric signal produced by a light
beam passing through the tube at right angles between x = 0 and x = b
is proportional to

R b
0
u(x; t)dx. This integral represents the total mass

of chemical in 0 � x � b at time t [18]. For such di¤usion processes, the
integral condition (4) aries naturally and can be used as supplementary
information in the determination of unknown concentration u(x; t).
J.cannon and J.vander hoek [49] studied the existence and uniqueness

propreties of this problem.
A.B gumel [30] has proposed numerical scheme of order O(h2x + h2t )

L0_Stable parallel Algorithm for solving this problem.
Later, M.Akram and pasha [18] have proposed a more accurate al-

gorithm of order O(h3x + h3t ). We propose a more accurate scheme of
order O(h6x + h4t ). The numerical experiments show that the proposed
sixth-order schemes are unconditionally stable and more accurate than
that in [18], furthermore for the choice

hx =
1
8
and ht =

1
1000

The approximate solution coincides with the exact one at more than
half of grid points discretization.
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2.1 SIXTH-ORDERCOMPACTFINITEDIFFER-
ENCE FORMULA

Compact formula is a special �nite di¤erence method which uses the
values of the function and its derivatives only a

three consecutive points.
First keeping time continuous, we carry out a spatial discretization

of @
2U
@x2

; we divide the interval [0; 1] using a uniform grid 0 = x0 < x1 <
x2 < :::::: < xN
with a mesh size hx = xi+1 � xi =

1
N
; i = 0; 1; 2; :::::; N � 1; N:

2.2 STANDARDCOMPACTFINITEDIFFERENCE

The standard sixth-order compact �nite di¤erence formula for second
derivative is

h2x
12
(U 00x2i�1 + 10U

00
x2i + U 00x2i+1

) = Ui�1 � 2Ui + Ui+1) (70)

where Ui = U(xi; t) and the coe¢ cients can be determined in the
following way.

1- Write the compact �nite di¤erence formula in general form

h2x(a�1U
"
i�1 + a0U

"
i + a1U

"
i+1) = b�1Ui�1 + b0Ui + b1Ui+1 (71)

where a�1; a0; a1; b�1; b0 and b1 are parameters to be determined.
2- Expand botIh sides of the equation (2.6) using Taylor series at the

point xi
with respect to the discretization parameter hx:
3- We obtain six equations by setting the coe¢ cients hjx; j =

0; 1; :::; 5
equal zero.solve the six equations for the six unknown parameters.

The obtained accuracy is O(h6x) for formula (2.6)
2.2- Write equation (2.1) in a discret point form

@u(xi; t)

@t
=
@2u(xi; t)

@x2i
; i = 1; ::::; N � 1 (72)

Equation (2.5) is valid only for i = 2; 3,.....,N � 2 to attain the same
accuracy at i = 1
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and i = N � 1 special formula must be developed.
When i = 1 we use the formula

h2x
12
(14U"1 � 5U"2 + 4U"3 � U"4 ) = U0 � 2U1 + U2 (73)

From Simpson integration Rule we haveR b
0
u(x; t)dx t hx

3
(u0 + 4u1 + u2) = m(t);

b has been chosen as a grid point, and when i=N-1 we use the formula

h2x
12
(
�127
30

U"N�4+
86

5
U"N�3�

257

10
U"N�2+

461

15
U"N�1) = UN�2�UN�1+hU

0

N

(74)
We use U to stand for the approximation value of u throughout this

chapter.
All Formula are O(h6x) or written in Matrix Form

AU" =MU +H (75)

Where

A = h2x
12

2666666666666664

14�5 4 �1 0 0 : : : 0
1 10 1 0 0 : : : : 0
0 1 10 1 0 0 : : : 0
0 0 1 10 1 0 0 : : 0
0 0 0 1 10 1 0 0 : 0
0 : : 0 1 10 1 0 : 0
0 : : : 0 1 10 1 0 0
0 : : : : 0 1 10 1 0
0 : : : : : 0 1 10 0
0 : : : : 0 �127

30
86
5
�257
10

461
15

3777777777777775

M =

2666666666666664

�6 0 0 : : : : : : 0
1 �2 1 0 0 : : : : 0
0 1 �2 1 0 0 : : : 0
0 0 1 �2 1 0 0 : : 0
0 0 0 1 �2 1 0 : : 0
0 : : 0 1 �2 1 0 : 0
0 : : : 0 1 �2 1 0 0
0 : : : : 0 1 �2 1 0
0 : : : : : 0 1 �2 1
0 : : : : : : 0 1 �1

3777777777777775
; H =

2666666666666664

3
h
m(t)
0
:
:
:
:
:
:
0

hU 0N

3777777777777775
:
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Finally, we obtain

U" = A�1M U + A�1H
Putting A�1M = B and A�1H = R(t)

U" = B U(t) +R(t ) (76)

Substituting in (2.7) we get a system of ordinary di¤erential equations

dU

dt
= B U(t) +R(t) (77)

with the initial condition
U(0) = f(x)

Putting f(t; U) = B U(t) +R(t), we obtain the following equation

dU

dt
= f(t; U) (78)

We solve this equation using fourth-order Runge-KuttaMethod as followning
k1 = f(t0; U0)
k2 = f(t0 +

1
2
ht;

K1

2
htU0)

k3 = f(t0 +
1
2
ht;

K2

2
htU0)

k4 = f(t0 + ht; k3ht + U0)

UN+1 = UN +
1

6
ht(k1 + 2k2 + 2k3 + k4) (79)

2.3 COMPUTATIONAL RESULTS

In order to test the sixth-order compact �nite di¤erence scheme, we
consider the problem. Consider the heat

equation with
f(x) = 0:5x2

g(t) = 1
m(t) = 0:75t+ 1

6
(0:75)3

which is easily seen to have exact solution u(x; t) = 0:5x2 + t:
Using Runge-Kutta method, the problem is solved for

hx=1
8
; ht =

1
1000

; hx =
1
10
; ht =

1
1000

The results of approximate solution are tabulated in Tables 1
and 2
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hx =
1
8
; ht =

1
1000

x exact solution approximate solution absolute error
1
8
8:8125� 10�3 8:3865� 10�2 7:5053� 10�2

1
4
0:03225 2:8182� 10�2 4:068� 10�3

3
8
7:1313� 10�2 7:1477� 10�2 1:64� 10�4

1
2
0:126 0:126 0:0

5
8
0:19631 0:19631 0:0

3
4
0:28225 0:28225 0:0

7
8
0:38381 0:38381 0:0

Table 1

hx =
1
10
; ht =

1
1000

x exact solution approximate solution absolute error
1
10

0:006 0:14449 0:13849
1
5

0:021 1:7083� 10�2 3:917� 10�3
3
10

0:046 4:5849� 10�2 1:51� 10�4
2
5

0:081 8:10446� 10�2 4:46� 10�5
1
2

0:126 0:126 0:0
3
5

0:181 0:181 0:0
7
10

0:246 0:246 0:0
4
5

0:321 0:321 0:0
9
10

0:406 0:406 0:0

Table 2

Conclusion
It is observed that the results obtained using compact sixth-order

�nite di¤erence scheme are unconditionally stable and highly accurate
and more e¢ cient if compared to those obtained by Akram and Pasha
[18]. the method developed is sixth-order accurate in space and fourth-
order in time with very high speed fourth-order Runge-Kutta Algorithm.
It should to be noted that, only one iterate was needed to obtain the
results shown in both tables 1 and 2.
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uex = 0:5x+ t

1
0

1.0

0

0.8
0.6

0.4

x

0.0
0.2

z 2
3
4

1

y
4

3

2

5

Variation of uex = 0:5x+ t for di¤erent values of x and t
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2.4 One-dimensional nonhomogeneous heat equa-
tion with nonlocal boundary conditions

Statement of the Problem
In this chapter, we consider the non homogeneous heat equation in

one dimension with the non local boundary conditions. There has re-
cently been much attention to the search for better and more accurate
solution methods for determining a solution, approximate or exact to
this type of problems. Consider the heat equation

@u

@t
=
@2u

@x2
+ q(x; t); 0 < x < 1; 0 < t � T (80)

Subject to the given initial condition

u(x; 0) = f(x); 0 � x � 1 (81)

And the non local boundary conditions

u(0; t) =

Z 1

0

�(x; t)u(x; t)dx+ g(t)1 ; 0 < t � T (82)

u(1; t) =

Z 1

0

 (x; t)u(x; t)dx+ g(t)2; 0 < t � T (83)

where f ,g1; g2; �;  and q are known functions and are su¤eciently smooth,
T is given constant. Many authors as [6] , [9] [18-22] ,[30-31] and [24-26],
have suggested traditional techniques for solving this type of problems
in M. A. Rahman [8], has proposed a fourth-order numerical �nite dif-
ference scheme for the solution of this problem. We propose a new tech-
nique for solving the given problem, this technique is based on Adomian�s
series solution method. This method provides us an exact solution which
is much better result than that in [8]
.

2.5 Adomian Decomposition Method

To introduce the Adomian decomposition method, consider the problem

@u

@t
=

@

@x
(k(x)

@u

@x
) +G(x; t; u); x 2 
 � R; t 2 (0; T ] (84)

With the initial condition

u(x; 0) = f(x); x 2 
 (85)
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And the nonlocal boundary conditions

u(0; t) =

Z 1

0

'(x; t)u(x; t)dx+ g(t)1; 0 < t � T (86)

u(1; t) =

Z 1

0

 (x; t)u(x; t)dx+ g(t)2; 0 < t � T (87)

Where G(x; t;u) is nonlinear function, assuming that su¢ ciently
smooth in order to assure the existence and uniqueness of the solution
to the equation (2,1)
In this section, we outline the steps to obtain a solution of (3,1)-(3,4)

using Adomian decomposition method, which is initiated by G.Adomian[36],
[40],and [47]. To begin it is convenient to rewrite the problem in the
standard form

Lt(u) = Lxx(u) + q(x; t) (88)

Where the di¤erential operators Lt and Lxx are given by
Lt(:) = @

@t
(:) and Lxx = @2

@x2
:

Assuming that the inverse operator L�1t exists and it is de�ned as

L�1t =

Z t

0

(:)dt (89)

Applying inverse operator L�1t on both sides of (3; 5) and using the
initial condition yields

L�1t (Lt(u)) = L�1t (Lxx(u)) + L
�1
t (q(x; t))

Or
u(x; t) = f(x) + L�1t (Lxx(u)) + L

�1
t (q(x; t))

Now we decompose the unkown function u(x; t) by a sum of components
de�ned by the series [36]

u(x; t) =
1X
k=0

uk(x; t) (90)

Where u0 is identi�ed as u(x; 0) , the components uk(x; t) are obtained
by the recursive formula

1X
k=0

uk(x; t) = f(x) + L�1t fLxx(
1X
k=0

uk(x; t))g+ L�1t (q(x; t))

Or
u0(x; t) = f(x) + L�1t (q(x; t)) (91)
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uk+1(x; t) = L�1t (Lxx(uk(x; t))); k � 0 (92)

We note that the recursive relationship is constructed on the basis that
the zeroth component u0(x; t) is de�ned by all terms that arise from
the initial condition and from integrating the source term,the remaining
components uk(x; t); k � 1; can be completly determined such that each
term is computed by using the previous term. Accordingly, considering
few terms only the relations (3,8) and (3,9) give

u0 = f(x) + L�1t (x; t)

u1 = L�1t (Lxx(u0))

u2 = L�1t (Lxx(u1))

and so on. As a result, the components u0 ,u1;u2,... are identi�ed and
the series solution thus entirely determined. However, in many cases the
exact solution in a closed form may be obtained as we can see in our
examples.

2.6 Numerical Examples

EXAMPLE 1 we consider the problem (3; 1) with;

f(x) = x2; 0 < x < 1; g1(t) =
1

4(t+ 1)2
; 0 < t < 1 (93)

g2(t) =
3

4(t+ 1)2
; 0 < t < 1; �(x; t) = x; 0 < x < 1 (94)

 (x; t) = x; 0 < x < 1; q(x; t) = �2(x2+t+1)
(t+1)3

; 0 < x < 1; 0 < t �
1
which has exact solution u(x; t) = ( x

t+1
)2, we rewrite the given prob-

lem in an operator form

Lt(u(x; t)) = Lxx(u(x; t)) + q(x; t) (95)

where
Lt(:) =

@
@t
(:),Lxx = @2

@x2
(:),L�1t =

R t
0
(:)dt

Applying the inverse operator L�1t on both sides of (3,12) we have

u(x; t) = u(x; 0) + L�1t (Lxx(u(x; t))) + L
�1
t (q(x; t)) (96)

Now the recursive formula is

u0 = f(x) + L�1t (q(x; t)
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Or

u0 = x2 + L�1t f
�2(x2 + t+ 1)

(t+ 1)3
g

And
uk+1(x; t) = L�1t (Lxx(uk(x; t))); k � 0 (97)

Using the recursive relation we compute the components as follows

u0 = x2 +

Z t

0

�2(x2 + t+ 1)dt

(t+ 1)3
=

x2

(t+ 1)2
+

2

t+ 1
� 2 (98)

u1 = L�1t (Lxx(u0)) =

Z t

0

2dt

(t+ 1)2
=

�2
t+ 1

+ 2

uk = 0; k � 2 (99)

The solution in the series form is given by

u(x; t) =
1X
k=0

u(x; t)

Or
u(x; t) = u0(x; t) + u1(x; t) + uk(x; t); k � 2

Hence, the solution of (3,1) with (3,10) and (3,11) is given as

u(x; t) =
x2

(t+ 1)2

which is the exact solution.

EXAMPLE 2 In this example we consider

q(x; t) = 0 (100)

u(x; 0) = f(x) = 0:5x2; 0 < x < 1 (101)

ux(1; t) = g(t) = 1; 0 < t < TZ b

0

u(x; t)dx = m(t) = 0:75t+
1

6
(0:75)3 (102)

where b is belongs to ]0; 1[. We rewrite the given problem in an operator
form as

Lt(u(x; t)) = Lxx(u(x; t)) + q(x; t) (103)

where
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Lt(:) =
@
@t
(:); Lxx =

@2

@x2
; L�1t =

R t
0
(:)dt:

Applying the inverse operator L�1t on both sides of (3,20), we have

u(x; t) = u(x; 0) + L�1t (Lxx(u(x; t))) + L
�1
t (q(x; t) (104)

Now the recursive formula is

u0(x; t) = f(x) + L�1t (0)

Or
u0(x; t) = 0:5x

2 + L�1t (0)

And
uk+1(x; t) = L�1t (Lxx(uk(x; t))); k � 0

Using the recursive relation we compute the components as follows

u0(x; t) = 0:5x
2 (105)

u1(x; t) = L�1t (Lxx(u0(x; t))

Or

u1(x; t) =

Z t

0

dt = t (106)

uk(x; t) = 0; k � 2 (107)

Thus, the solution in series form is given by

u(x; t) =
1X
k=0

uk(x; t)

Or
u(x; t) = u0(x; t) + u1(x; t) + uk(x; t); k � 2

Hence, the solution of (3,1) with (16-19) is given as

u(x; t) = 0:5x2 + t

This solution coincides with the exact one.

EXAMPLE 3 consider the problem

q(x; t) = �30x4 + 6t5

u(x; 0) = u0(x; t) = f(x) = x6; 0 � x � 1
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u(0; t) =

Z 1

0

�(x; t)u(x; t)dx+g1(t); 0 � t � T

u(1; t) =

Z 1

0

 (x; t)u(x; t)dx+ g2(t); 0 � t � T

Where
�(x; t) = 0:2;  (x; t) = 0:4

g1(t) =
4

5
t6 � 1

35
; g2(t) =

3

5
t6 +

33

35

Applying the inverse operator L�1t on both sides of (3,1), we have

u(x; t) = u(x; 0) + L�1t (Lxx(u(x; t))) + L
�1
t (q(x; t)) (108)

Now the recursive formula is

u0(x; t) = f(x) + L�1t (q(x; t))

Or
u0(x; t) = x6 + L�1t (�30x4 + 6t5)

And
uk+1(x; t) = L�1t (Lxx(uk(x; t))); k � 0

Computing the components u0; u1; u2 and u3

u0(x; t) = x6+L�1t (�30x4+6t5) = x6+

Z t

0

(�30x4+6t5)dt = x6�30x4t+t6

u1 = L�1t (Lxx(u0)) = L�1t (30x
4�360x2t) =

Z t

0

(30x4�360x2t)dt = 30x4t�180x2t2

u2 = L�1t (Lxx(u1)) = L�1t (360x
2t�360t2) =

Z t

0

(360x2t�360t2)dt = 180x2t2�120t3

u3 = L�1t (Lxx(u2)) = L�1t (360t
2) =

Z t

0

360t2dt = 120t3

uk = 0; k � 4
Finally, we obtain the solution

u(x; t) = u0 + u1 + u2 + u3

Or
u(x; t) = x6 + t6
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This solution coincides with the exact one.

Example 4

Consider solving the di¤usion equation

@u

@t
=
@2u

@x2
+ (�2 + 1)etsin(�x); x 2 (0; 1); t 2 (0; 1)

u(0; t) = u(1; t) = 0 (109)

u(x; 0) = sin(�x)

The exact solution of this equation is

u(x; t) = etsin(�x)

to solve this problem we write it in an operator form as

Ltu(x; t) = Lxx(u(x; t)) + (�
2 + 1)etsin(�x) (110)

Operating L�1t on both sides of (3,27) and imposing the initial con-
dition we obtain

u(x; t) = u(x; 0) + L�1t (Lxx(u(x; t))) + L
�1
t ((�

2 + 1)etsin(�x)) (111)

Where L�1t is a one fold integral operator, which means that

L�1t =

Z t

0

(:)dt

The Adomian decomposition method assumes a series solution for
u(x; t) given by an in�nite sum of components

u(x; t) =
1X
k=0

uk(x; t) (112)

The components uk(x; t) are computed recursively as follows

u0(x; t) = sin(�x) + L�1t ((�
2 + 1)etsin(�x)) (113)

And
uk+1(x; t) = L�1t (Lxx(uk(x; t)); k � 0 (114)

To �nd the solution , one solves the above recursive relations respec-
tively, we obtain

u0(x; t) = sin(�x) +

Z t

0

(�2 + 1)etsin(�x)dt
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u0(x; t) = ��2sin(�x) + (�2 + 1)etsin(�x)

u1(x; t) = L�1t (Lxx(u0(x; t)) =

Z t

0

(�4sin(�x)� (�2 + 1)�2etsin(�x))dt

u1(x; t) = (�
2 + 1)�2sin(�x) + �4sin(�x)t� �2(�2 + 1)sin(�x)et

u2(x; t) = L�1t (Lxx(u1(x; t)) =

Z t

0

(��6sin(�x))t��4(�2+1)sin(�x)+�4(�2+1)sin(�x)et)dt

u2(x; t) = ��4(�2+1)sin(�x)��4(�2+1)(sin(�x))t�(�6sin(�x))
t2

2!
+(�4(�2+1)sin(�x))et

u3(x; t) = L�1t (Lxx(u2(x; t)) =

Z t

0

(�6(�2+1)sin(�x)+�6(�2+1)sin(�x)t+�8sin(�x)
t2

2!
��6(�2+1)etsin�x)dt

u3(x; t) = �6(�2+1)sin(�x)+�6(�2+1)sin(�x)t+�6(�2+1)sin(�x)
t2

2!
+�8sin(�x)

t3

3!
��6(�2+1)sin(�x)et

u4(x; t) = L�1t (Lxx(u3(x; t)) =

Z t

0

Lxx(u3(x; t))dt

u4(x; t)=��8(�2 + 1)sin(�x)� �8(�2 + 1)(sin�x)t� �8(�2 + 1)sin�x
t2

2!
� �8(�2 + 1)sin�x

t3

3!
� �

��10(�2 + 1)sin�xt
4

4!
+ �8(�2 + 1)(sin(�x))et

u5(x; t)= �
10(�2 + 1)sin(�x) + �10(�2 + 1)sin(�x)t+ �10(�2 + 1)sin(�x)

t2

2!
+

�10(�2 + 1)sin�x
t3

3!
+ �10(�2 + 1)sin�x

t4

4!
+ �12(�2 + 1)sin�x

t5

5!
� �10(�2 + 1)sin(�x)et

u6(x; t)=��12(�2 + 1)sin(�x)� �12(�2 + 1)sin(�x)t� �12(�2 + 1)sin(�x)
t2

2!
� �12(�2 + 1)sin�x

t3

3!
�

��12(�2 + 1)sin(�x)t
4

4!
� �12(�2 + 1)sin(�x)

t5

5!
� �12(�2 + 1)sin(�x)

t6

6!
+

+�12(�2 + 1)sin(�x)et

And so on, then

u(x; t) = u0(x; t)+u1(x; t)+u2(x; t)+u3(x; t)+u4(x; t)+ :::: = etsin(�x)
(115)

This result is in good agreement with analytic solution
.

Example 5
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We consider the problem (3,1)-(3,4) with:

u(x; 0) = f(x) = �2cos(x); 0 < x < 1 (116)

And the boundary conditions

u(1; t) = g(t) = (�2 + t)cos(1:0); 0 < t < 1Z b

0

u(x; t)dt = (�2 + t)sin(0:75); 0 < t < 1 (117)

q(x; t) = (1 + �2 + t)cos(x)

b = 0:75, from equations (3,8) and (3,9) we obtain

u0=�
2cos(x) +

Z t

0

(1 + �2 + t)cos(x)dt = �2cos(x) + (118)

+(1 + �2)tcos(x) +
t2

2!
cos(x)

u1 = L�1t [Lxx(u0)] = ��2tcos(x)� (1 + �2)
t2

2!
cos(x)� t3

3!
cos(x) (119)

u2 = L�1t [Lxx(u1)] = �2
t2

2!
cos(x) + (1 + �2)

t3

3!
cos(x) +

t4

4!
cos(x) (120)

u3 = L�1t [Lxx(u2)] = ��2
t3

3!
cos(x)� (1 + �2)t

4

4!
cos(x)� t5

5!
cos(x) (121)

u4 = L�1t [Lxx(u3)] = �2
t4

4!
cos(x) + (1 + �2)

t5

5!
cos(x) +

t6

6!
cos(x) (122)

u5 = L�1t [Lxx(u4)] = ��2
t5

5!
cos(x)� (1 + �2)t

6

6!
cos(x)� t7

7!
cos(x) (123)

::::

And so on,

un�2 = L�1t [Lxx(un�3)] = (�1)n�2cos(x)[�2
tn�2

(n� 2)!+(1+�
2)

tn�1

(n� 1)!+
tn

n!
]

(124)

un�1 = L�1t [Lxx(un�2)] = (�1)n�1cos(x)[�2
tn�1

(n� 1)!+(1+�
2)
tn

n!
+

tn+1

(n+ 1)!
]

(125)

un = L�1t [Lxx(un�1)] = (�1)ncos(x)[�2
tn

n!
+ (1 + �2)

tn+1

(n+ 1)!
+

tn+2

(n+ 2)!
(126)
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We sum the �rst n-terms, we have

Sn =
nX
i=0

ui = (�
2 + t)cosx+ (�1)n[�2 tn+1

(n+ 1)!
+

tn+2

(n+ 2)!
]; 0 < t < 1

(127)
Hence

u(x; t) = limn!1Sn = (�
2 + t)cos(x) (128)

This solution is in good agreement with the exact one.

2.7 Conclusion

In this chapter Adomian decomposition method is proposed for solving
non homogeneous heat equation with nonlocal boundary conditions and
initial condition. The results obtained show that the Adomian decom-
position method provides us an exact solution.
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Example 3

Table 1 hx =
1

10
; ht =

1

100
Comparing absolute Error for Adomian 4 terms

xi uAd uex juex � uAdj
0 � 1:2000� 10�4 1:0� 10�12 1:2000� 10�4

0:1 � 1:1900� 10�4 1:0� 10�6 1:18� 10�4

0:2 � 5:6� 10�5 6:4� 10�5 0:00012

0:3 6:09� 10�4 7:29� 10�4 0:00012

0:4 3:976� 10�3 4:096� 10�3 0:00012

0:5 1:5505� 10�2 1:5625� 10�2 0:00012

0:6 4:6536� 10�2 4:6656� 10�2 0:00012

0:7 0:11753 0:11765 0:00012

0:8 0:26202 0:26214 0:00012

0:9 0:53132 0:53144 0:00012

1:0 0:99988 1:0 0:00012
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Example 4

hx=
1

10
; ht =

1

100

xi uex uAd 4� Iterates juex � uAdj
0:0 0:0 0:0 0:0

0:1 0:34152 0:32905 0:01247

0:2 0:6496 0:62589 0:02371

0:3 0:8941 0:86147 0:03263

0:4 1:0511 1:0127 0:0384

0:5 1:1052 1:0648 0:0404

0:6 1:0511 1:0127 0:0384

0:7 0:8941 0:86147 0:03263

0:8 0:6496 0:62589 0:02371

0:9 0:34152 0:32905 0:01247

1:0 0:0 0:0 0:0
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Example 5

hx=
1

10
; ht =

1

25

xi uex 4� iterates uAd juex � uAdj
0:0 9:9096 9:9096 0:0

0:1 9:8601 9:8601 0:0

0:2 9:7121 9:7121 0:0

0:3 9:467 9:467 0:0

0:4 9:1274 9:1274 0:0

0:5 8:6965 8:6965 0:0

0:6 8:1787 8:1787 0:0

0:7 7:5793 7:5793 0:0

0:8 6:9041 6:9041 0:0

0:9 6:1599 6:1599 0:0

1:0 5:3542 5:3542 0:0
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uex =
x2

(t+1)2

1.01.0
0.80.8

0.60.6
x y

0.2 0.2
0.4 0.4

0.0 0.0
0.0
0.2
0.4z
0.6
0.8
1.0

Variation of uex = x2

(t+1)2
for di¤erent values of x and t
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uex = x6 + t6

­4

y

­2

4

2 x
0

­4
­2

0

2

0

4

10000
z

20000

30000

Variation of uex = x6 + t6 for di¤erent values of x and t
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uAd = x6 + t6 � 120t3

­4
­2

y
4

­4

x2

0 0
0 ­2

2

4

10000
20000
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uex = exp(t)� sin(�x)
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u = �8 � sin(�x)� (�4:2514� 10�6) + exp(t)� sin(�x)
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Variation of uAd = (�4:2514 � 10�6)�8 sin(�x) + sin(�x) exp(t) for
di¤erent values of x and t
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Table 2 Comparing Absolute Error hx=
1

10
; ht =

1

100
For 4 terms of Adomian solution

x uAd uex juex � uAdj
0:0 0:0 0:0 0:0

0:1 0:4 0:31214 0:08786

0:2 0:6 0:59373 0:00627

0:3 0:8 0:81719 0:101719

0:4 0:9 0:96067 0:06067

0:5 1:0 1:0101 0:0101

0:6 0:9 0:96067 0:06067

0:7 0:8 0:81719 0:01719

0:8 0:6 0:59373 0:00627

0:9 0:4 0:31214 0:08786

1:0 0:0 0:0 0:0

54



Example 5

hx=
1

10
; ht = 0:25

xi uex 4� Iterates uAd juex � uAdj
0:0 9:9096 9:9096 0:0

0:1 9:8601 9:8601 0:0

0:2 9:7121 9:7121 0:0

0:3 9:467 9:467 0:0

0:4 9:1274 9:1274 0:0

0:5 8:6965 8:6965 0:0

0:6 8:1787 8:1787 0:0

0:7 7:5793 7:5793 0:0

0:8 6:9041 6:9041 0:0

0:9 6:1599 6:1699 0:0

1:0 5:3542 5:3542 0:0
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uex = (�
2 + t)� cos(x)
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uAd = (�
2 + t)� cos(x)� t5
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for di¤erent values of x and t
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2.8 One-dimensional nonhomogeneous di¤usion equa-
tion with derivative boundary conditions

Statement of the Problem
In this chapter, we consider the one dimensional nonhomogeneous

heat equation with derivative boundary conditions

@u

@t
=
@2u

@x2
+ q(x; t); (x; t)�]0; 1[�]0; T [ (129)

u(x; 0) = g(x); 0 � x � 1 (130)

ux(0; t) = f1(t); 0 < t � T (131)

ux(1; t) = f2(t); 0 < t � T (132)

Where g(x); f1(t); f2(t) and q(x; t) are known. Many authors have
proposed numerical methods for solving nonlocal problems [6], [7-10],
[18-22], [24-26], [30-31]. Later Akram[11], has proposed an 0(h3 + t3)
L0 � stable parallel algorithm for solving the problem. In this work we
propose a new technique based on the Adomian decomposition series
solution [36,40,47]. The numerical examples show that results obtained
coincide with the exact ones [1]. The organization of this chapter is the
following.
In this section, we give a brief de�nition of this method, in section 3

the accuracy and the e¤eciency of the Adomian decomposition method
are investigated with numerical illustration, the section 4 consists of a
brief conclusion.

2.9 Adomian decomposition method

Reweriting the problem (4,1) in the following operator form

Lt(u(x; t)) = Lxx(u(x; t)) + q(x; t) (133)

where

Lt(:) =
@

@t
(:); Lxx(:) =

@2

@x2
(:)

L�1is regarded as the inverse operator of L and is de�ned by a de�ned
integration from 0 to t, i.e.

L�1t (:) =

Z t

0

(:)dt (134)
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Operating on both sides of equation (4,5) with L�1t using the initial
condition yields

L�1t Lt(u(x; t)) = L�1t (Lxx(u(x; t))) + L
�1
t (q(x; t))

Or

u(x; t) = u(x; 0) + L�1t (Lxx(u(x; t))) + L
�1
t (q(x; t)) (135)

Now we decompose the unkown function u(x; t) by a sum of compo-
nents de�ned by the following series with u0 identi�ed as u(x; 0)

u(x; t) =

1X
k=0

uk(x; t) (136)

The components uk are obtained by the recursive formula
1X
k=0

uk(x; t) = g(x) + L�1t (Lxx(
1X
k=0

uk(x; t))) + L
�1
t (q(x; t))

Or
u0 = g(x) + L�1t (q(x; t)) (137)

uk+1 = L�1t (Lxx(uk(x; t))); k � 0 (138)

From the equations (4,9) and (4,10), we get

u0 = g(x) + L�1t (q(x; t))

u1 = L�1t (Lxx(u0(x; t)))

u2 = L�1t (Lxx(u1(x; t)))

u3 = L�1t (Lxx(u2(x; t)))

:::::::::::::::::::::::::

and so on. The componenets u0,u1; u2; u3; :::::; are identi�ed and the
series solution thus entirely determined. However in many cases the
exact solution in a closed formmay be obtained. For numerical purposes,
we can use the approximation

u(x; t) = limm�!1 m (139)

where

 m =
m�1X
k=0

uk(x; t) (140)

Evaluating more componenets of u(x; t); we obtain a more accurate
solution. Noting that the convergence of this method has been proved
by Adomian [47], Adomian and Rach[40] and Wazwaz [32] have investi-
gated the phenomenon of the self-canceling "Noise" terms where sum of
components vanishes in the limit, we observe that "Noise" terms appear
for nonhomogeneouse cases only.
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2.10 Numerical examples

Example 1

We consider the nonhomogeneous heat equation

@u

@t
=
@2u

@x2
+ q(x; t); 0 < x < 1; t > 0 (141)

q(x; t) = �2ex�t

ux(0; t) = f1(t) = e�t; 0 < t � T

ux(1; t) = f2(t) = e1�t; 0 < t � T

u(x; 0) = g(x) = ex; 0 � x � 1 (142)

Rewriting equation (4,13) in operator form

Lt(u(x; t)) = Lxx(u(x; t))) + q(x; t) (143)

where

Lt(:) =
@

@t
(:); Lxx(:) =

@2

@2
(:); L�1t (:) =

Z t

0

(:)dt

Applying L�1t on both sides of (4,15), we have

u(x; t) = u(x; 0) + L�1t (Lxx(u(x; t))) + L
�1
t (q(x; t)) (144)

Now we get the recursive formula as follows

u0(x; t) = g(x) + L�1t (q(x; t))

Or
u0(x; t) = ex + L�1t (�2ex�t) = ex(�1 + 2e�t) (145)

uk+1(x; t) = L�1t (Lxx(uk(x; t))); k � 0
u1(x; t) = L�1t (Lxx(u0(x; t))) = ex(2� t� 2e�t) (146)

u2(x; t) = L�1t (Lxx(u1(x; t))) = ex(�2 + 2t� t2

2
+ 2e�t) (147)

u3(x; t) = L�1t (Lxx(u2(x; t))) = ex(2� 2t+ t2 � t3

3!
� 2e�t)

Then the solution, in the series form, is given by

u(x; t) =
1X
k=0

uk(x; t)
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Or

u(x; t) = ex(1� t+
t2

2!
� t3

3!
+ :::) = ex�t

This solution is the exact one.

Example 2

Consider the problem (1) with the follownig conditions

q(x; t) = xt2

u(x; 0) = sin(x) (148)

ux(0; t) = 1

ux(1; t) = sin(t)

Rewriting the given problem in an operator form as

Lt(u(x; t)) = Lxx(u(x; t)) + q(x; t) (149)

where

Lt(:) =
@

@t
(:); Lxx(:) =

@2

@x2
(:) and L�1t (:) =

Z t

0

(:)dt

Applying the inverse operator L�1t on both sides of equation (4,21),
we get

u(x; t) = u(x; 0) + L�1t (Lxx(u(x; t))) + L
�1
t (q(x; t)) (150)

Now the recursive formula is

u0(x; t) = g(x) + L�1t (q(x; t))

Or

u0(x; t) = sin(x) +

Z t

0

xt2dt = sin(x) + x(
t3

3
) (151)

uk+1(x; t) = L�1t (Lxx(u(x; t))); k � 0
Then

u1(x; t) = L�1t (Lxx(u(x; t))) =

Z t

0

�sin(x)dt = �t � sin(x) (152)

u2(x; t) = L�1t (Lxx(u1(x; t))) =

Z t

0

tsin(x)dt =
t2

2!
sin(x) (153)
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u3(x; t) = L�1t (Lxx(u2(x; t))) =

Z t

0

�t
2

2
sin(x)dt = �t

3

3!
sin(x) (154)

:::::::::::::::::::

And so on, the solution in the series formula is given by

u(x; t) =
1X
k=0

uk(x; t)

Or

u(x; t) =
t3

3
x+ (1� t

1!
+
t2

2!
� t3

3!
+ :::)sin(x) =

t3

3
x+ e�tsin(x) (155)

this is the exact solution.

Example 3

Consider the problem (1) with the following boundary and initial
conditions

q(x; t) = 0

u(x; 0) = sin(�x) (156)

ux(0; t) = �e��
2t

ux(1; t) = ��e�
2t

We rewrite the equation (1) in an operator form as following

Lt(u(x; t)) = Lxx(u(x; t)) + q(x; t) (157)

where

Lt(:) =
@

@t
(:); Lxx(:) =

@2

@x2
and L�1t (:) =

Z t

0

(:)dt

Operating on both sides of equation (4,28) with the inverse operator
L�1t ; we have

u(x; t) = u(x; 0) + L�1t (Lxx(u(x; t))) + L
�1
t (q(x; t)) (158)

Proceeding as before, we �nd the recursive formula as follows

u0(x; t) = g(x) + L�1t (q(x; t))

Or
u0(x; t) = sin(�x)

uk+1(x; t) = L�1t (Lxx(uk(x; t))); k � 0
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So, the components of the series solution are computed using the
recursive formula as follows

u0(x; t) = sin(�x) (159)

u1(x; t) = L�1t (Lxx(u0(x; t))) = ��2tsin(�x)

u2(x; t) = L�1t (Lxx(u1(x; t))) =
t2

2!
�4sin(�x)

u3(x; t) = L�1t (Lxx(u2(x; t))) = �
t3

3!
�6sin(�x)

::::::::

And so on, the solution in the series formula is given by

u(x; t) =
1X
k=0

uk(x; t)

Or

u(x; t) = sin(�x)(1� �2t

1!
+
�4t2

2!
� �6t3

3!
+ :::) = sin(�x)e��

2t

This solution coincides with the analytic one.

.EXAMPLE 4

Consider the heat equation

@u

@t
� @2u

@x2
= 0; 0 < x < 1 (160)

Subjec to the intial condition

u(x; 0) = sinx; 0 < x < 1 (161)

and the boundary conditions

ux(1; t) = ��e��
2t; 0 < t < T

Z b

0

u(x; t)dx =
1

�
(
1
2
p
2
+ 1)e��

2t (162)

we rewrite the equation (4,31) in an operator form

Lt(u(x; t))� Lxx(u(x; t)) = 0; 0 < x < 1 (163)
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Following Adomian, appliyng the inverse operator L�1t to both sides
of equation (4,34) one obtains

u(x; t) = u0(x; 0) + L
�1
t (Lxx(u(x; t)) (164)

According to Adomian�s method, one assumes that the unknown
function u(x; t) can be expressed by an in�nite sum of components of
the form,

u(x; t) =

1X
n=0

un(x; t) (165)

Substituting equation (4,36) into equation (4,35) one obtains

1X
n=0

un(x; t) = u0(x; 0) + L
�1
t (Lxx(

1X
n=0

un(x; t))) (166)

To determine the components of un(x; t); n = 0; 1; 2; :::; Adomian�s
technique can employ the recursive relation de�ned by

u0 = u0(x) = sinx (167)

u1 = L�1t (Lxx(u0)) = �
Z t

0

sinxdt = �tsinx (168)

u2 = L�1t (Lxx(u1)) = sinx

Z t

0

tdt =
t2

2!
sinx (169)

u3 = L�1t (Lxx(u2)) = �sinx
Z t

0

t2

2!
dt = �t

3

3!
sinx (170)

:::

And so on, the solution obtained is given by

u(x; t) = u0+u1+u2+u3+:::+: = sinx(1�t+ t
2

2!
� t

3

3!
+::+::) = e�tsinx

(171)

2.11 Conclusion

The results obtained in this chapter compared to those obtained by
Akram[11] show that the Adomian decomposition method is more accu-
rate. In adddition the computation of the components of the solution
are easy and take less time in comparison with other classical methods.
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Example 1

hx=
1

10
; ht =

1

25

xi uex 4� Iterates uAd juex � uAdj
0:0 0:96079 0:96079 0:0

0:1 1:0618 1:0618 0:0

0:2 1:1735 1:1735 0:0

0:3 1:2969 1:2969 0:0

0:4 1:4333 1:4333 0:0

0:5 1:5841 1:5841 0:0

0:6 1:7507 1:7507 0:0

0:7 1:9348 1:9348 0:0

0:8 2:1383 2:1383 0:0

0:9 2:3632 2:3632 0:0

1:0 2:1617 2:1617 0:0
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Example 2

hx=
1

10
; ht =

1

25

xi uex uAd 4� Iterates juex � uAdj
0:0 0:0 0:0 0:0

0:1 0:10391 9:5921� 10�2 7:989� 10�3

0:2 0:20678 0:19088 0:0159

0:3 0:30759 0:28394 0:02365

0:4 0:40532 0:37416 0:03116

0:5 0:499 0:46064 0:03836

0:6 0:58770 0:54252 0:04518

0:7 0:67052 0:61897 0:05155

0:8 0:74665 0:68925 0:0574

0:9 0:81531 0:75263 0:06268

1:0 0:87583 0:80850 0:06733
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uex = exp(x� t)
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Variation of uex = exp(x� t) for di¤erent values of x and t
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uAd = exp(x)� (1� t+ t2

2!
� t3

3!
)

1.0
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0.6
0.4

z

0
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1.0

0.2

1.6
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x y
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Variation of uAd = exp(x) � (1 � t
1
+ t2

2!
� t3

3!
) for di¤erent values of

x and t
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Example 1

hx=
1

10
; ht =

1

100

xi uex uAd_4 iterate juex � uAdj
0:0 0:99005 0:99005 0

0:1 1:0942 1:0942 0

0:2 1:2092 1:2092 0

0:3 1:3364 1:3365 0:0001

0:4 1:4770 1:4770 0:0

0:5 1:6323 1:6323 0:0

0:6 1:8040 1:8040 0:0

0:7 1:9937 1:9938 0:0001

0:8 2:2034 2:2034 0:0

0:9 2:4351 2:4351 0:0

1:0 2:6912 2:6913 0:0001
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Example 2

hx=
1

10
; ht =

1

100

xi uex uAd 4� iterate juex � uAdj
0:0 0:0 0:0 0:0

0:1 0:9884 0:9884 0:0

0:2 0:19669 0:19669 0:0

0:3 0:29258 0:29258 0:0

0:4 0:38555 0:38555 0:0

0:5 0:47516 0:47516 0:0

0:6 0:55962 0:55962 0:0

0:7 0:63781 0:63781 0:0

0:8 0:71022 0:71022 0:0

0:9 0:77554 0:77554 0:0

1:0 0:8331 0:8331 0:0
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Example 3

hx=
1

10
; ht =

1

250

xi uex uAd 5� iterate juex � uAdj
0:0 0:0 0:0 0:0

0:1 0:29706 0:29705 0:00001

0:2 0:56503 0:56503 0:0

0:3 0:7777 0:77770 0:0

0:4 0:91424 0:91424 0:0

0:5 0:96129 0:96129 0:0

0:6 0:91424 0:91424 0:0

0:7 0:7777 0:77770 0:0

0:8 0:56503 0:56503 0:0

0:9 0:29706 0:29706 0:00001

1:0 0:0 0:0 0:0
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Example 4

hx=
1

10
; ht =

1

250

xi uex uAd 5� iterate juex � uAdj
0:0 0:0 0:0 0:0

0:1 9:9435� 10�2 9:9435� 10�2 0:0

0:2 0:19788 0:19788 0:0

0:3 0:29434 0:29434 0:0

0:4 0:38786 0:38786 0:0

0:5 0:47751 0:47751 0:0

0:6 0:56239 0:56239 0:0

0:7 0:64165 0:64165 0:0

0:8 0:71449 0:71449 0:0

0:9 0:78020 0:78020 0:0

1:0 0:83811 0:83811 0:0
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Example 1

uex = exp(x� t)
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uAd = exp(x)(1� t+ t2

2
� t3

3!
)
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3!
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and t
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Example 2
uex =

xt3

3
+ exp(�t) sin(x)
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uAd =
xt3

3
+ sin(x)(1� t+ t2

2!
� t3

3!
)
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3
+ sin(x)(1� t+ t2
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3!
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x and t

76



Example 3

uex = sin(�x)� exp(��2t)
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uAd = sin(�x)� (1� �2t
1!
+ �4t2

2!
� �6t3

3!
)
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uex = sin(x) exp(�t)

0.0041.0
0.8 0.003

0.6
0.4

x y
0.002

0.0010.2
0.00.000

0.0

0.4

0.2

0.6

z

0.8

Variation of uex = sin(x) exp(�t) for di¤erent values of x and t

79



uex = sin(x)(1� t
1!
+ t2

2!
� t3

3!
)
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and t
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2.12 A two-dimensional di¤usion equation

Statement of the Problem
Partial di¤eretial equations with non local boundary conditions and

partial integro-di¤erential arise in many �elds of science and engineering,
as chemical di¤usion, heat conduction processes, population dynamics,
thermoelasticity, medical science, electrochemistry and control theory ,
[10,24,31,37, 39], [41-45], [50], [52-55] and [57]. A detailed description
of the occurence of such equations is given in [54]. The present paper
deals with a two-dimensional di¤usion equation with non local boundary
conditions. We apply the decomposition method for solving this problem
[36, , 40, 47]. This type of problem, was solved by many searchers using
traditional numerical methods, B.A. Wade et al [19] have proposed a
fourth-order Padè-scheme. The purpose of this work is to study and
use Adomian decomposition method, we obtain an analytic solution.
These results show that the decomposition method is more accurate,
e¢ cient and reliable in comparison with the tradional methods, like �nite
di¤erence method, etc.

We consider the two-dimensional di¤usion equation, that is given by

@u

@t
=
@2u

@x2
+
@2u

@y2
; 0 < x; y < 1; t > 0 (172)

Initial conditions are assumed to be of the form

u(x; y; 0) = f(x; y); (x; y) 2 
 [ @


And the Dirichelet time-dependent boundary conditions are

u(0; y; t) =  0(y; t); 0 � t � T; 0 � y � 1

u(1; y; t) =  1(y; t); 0 � t � T; 0 � y � 1
u(x; 0; t) = '0(x)
(t); 0 � t � T; 0 � x � 1 (173)

u(x; 1; t) = '1(x; t); 0 � t � T; 0 � x � 1
and non local boundary condition.Z 1

0

Z 1

0

u(x; y; t)dxdy = m(t); (x; y) 2 
 [ @
 (174)

where f;  0;  1; '0; '1 and m are known functions. 
(t) is to be deter-
mined.
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2.13 Adomian decomposition method

First, we rewrite the problem (1) in an operator form

Lt(u(x; y; t) = Lxx(u(x; y; t)) + Lyy(u(x; y; t)) (175)

where

Lt =
@

@t
(:); Lxx =

@2

@x2
(:); Lyy =

@2

@y2
(:)

L�1t is the inverse operator of Lt and is de�ned by

L�1t =

Z t

0

(:)dt (176)

Operating on both sides of equation (4) with the inverse operator
L�1t using the initial condition we have

u(x; y; t) = L�1t ((Lxx(u(x; y; t)) + Lyy(u(x; y; t)))

Or

u(x; y; t) = u(x; y; 0) + L�1t (((Lxx(u(x; y; t)) + Lyy(u(x; y; t))) (177)

Decomposing the uknown function u(x; y; t) by a sum of components
de�ned by the following series

u(x; y; t) =
1X
k=0

uk(x; y; t) (178)

Where u0 is identi�ed as u(x; y; 0) the components uk are obtained
by the recursive relation

1X
k=0

uk(x; y; t) = f(x; y) + L�1t (Lxx(
1X
k=0

uk(x; y; t)) + Lyy(
1X
k=0

uk(x; y; t)))

Or
u0 = f(x; y) (179)

uk+1 = L�1t (Lxx(uk(x; y; t)) + Lyy(uk(x; y; t))); k � 0 (180)

From the equations (8) and (9), we get

u0 = f(x; y)

u1 = L�1t (Lxx(u0(x; y; t)) + Lyy(u0(x; y; t)))
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u2 = L�1t (Lxx(u1(x; y; t)) + Lyy(u1(x; y; t)))

u3 = L�1t (Lxx(u2(x; y; t)) + Lyy(u2(x; y; t)))

::::::::::::::::::::::::::::::::::

And so on as result the componenets u0; u1; u2; u3; ::: are identi�ed
and the series solution is determined. However, in many cases the exact
solution may be obtained as we can see in the numrical examples.

2.14 Numerical examples

Example 1

We consider the two-dimensional di¤usion equation

@u

@t
=
@2u

@x2
+
@2u

@x2
; 0 < x; y < 1 (181)

In which u = u(x; y; t), with dirichlet time-dependent boundary
conditions on the boundary @
 of the square 
 de�ned by the lines
x = 0; y = 0; x = 1; y = 1, given by

u(0; y; t) = e(y+2t); 0�t�T; 0�y�1

u(1; y; t) = e(1+y+2t); 0 � t � T; 0 � y � 1 (182)

u(x; 0; t) = e(x+2t); 0 � t � T; 0 � x � 1
u(x; 1; t) = e(1+x+2t); 0 � t � T; 0 � x � 1

and non local boundary conditionZ 1

0

Z 1

0

u(x; y; t)dxdy = (e� 1)2e2t (183)

with the initial conditions

u(x; y; 0) = e(x+y) (184)

Theoretical solution is given by

u(x; y; t) = e(x+y+2t) (185)

We write the given problem in an operator form as the following

Lt(u(x; y; t)) = Lxx(u(x; y; t)) + Lyy(u(x; y; t)) (186)
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where

Lt(:) =
@

@t
(:); Lxx =

@2

@x2
(:); Lyy =

@2

@y2
; L�1t =

Z t

0

(:)dt

Applying the inverse operator to both sides of (15) one obtains

u(x; y; t) = u(x; y; 0)+L�1t (Lxx(u(x; y; t)))+L
�1
t (Lyy(u(x; y; t))) (187)

According to Adomian�s method, one assumes that the unkown func-
tion u(x; y; t) can be expressed by an in�nte sum of components of the
form

u(x; y; t) =
1X
k=0

uk(x; y; t) (188)

Substituting equation (17) into equation (16), one obtains

1X
k=0

uk(x; y; t) = u0x; y) + L�1t (Lxx(
1X
k=0

uk(x; y; t)) + Lyy(
1X
k=0

uk(x; y; t)))

(189)
To determine the componenents of uk(x; y; t),k = 0; 1; 2; ::: Ado-

mian�s technique can employ the recursive relation de�ned by

u0(x; y; t) = f(x; y)

or
u0(x; y; t) = e(x+y) (190)

and

uk+1(x; y; t) = L�1(Lxx(uk(x; y; t)) + Lyy(uk(x; y; t))); k � 0

which gives

u1 = L�1t (Lxx(u0) + Lyy(u0)) = 2

Z t

0

ex+ydt = 2tex+y (191)

u2 = L�1t (Lxx(u1) + Lyy(u1)) = 2

Z t

0

tex+ydt = 2t2ex+y (192)

u3 = L�1t (Lxx(u2) + Lyy(u2)) = 4

Z t

0

t2ex+ydt =
4

3
t3ex+y (193)

u4 = L�1t (Lxx(u3) + Lyy(u3)) =
4

3

Z t

0

t3e(x+y)dt =
2

3
t4e(x+y) (194)
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u5 = L�1t (Lxx(u4)+Lyy(u4)) =
2
3

R t
0
t4e(x+y)dt = 4

3�5t
5e(x+y)

u6 = L�1t (Lxx(u5) + Lyy(u5)) =
4

3� 5

Z t

0

t5e(x+y)dt =
8

3� 5� 6t
6e

0x+y)

u7 = L�1t (Lxx(u6) + Lyy(u6)) =
16

3� 5� 6� 7t
7e(x+y) (195)

Substituting (19)-(24) into equation (17). The solution u(x; y; t) of
(10) in a series form

u(x; y; t)= e(x+y)(1 +
2

1!
t+

4

2!
t2 +

4� 2
3!

t3 +
2� 2� 4

4!
t4 +(196)

+
4� 4� 2

5!
t5 +

4� 2� 8
6!

t6 +
�24� 16

7!
t7 + ::::::::)

Follows immediately. After some tedious algebra factoring equation
(25) can be rewritten as

u(x; y; t) = e(x+y)(1 +
2t

1!
+
(2)2

2!
t2 +

(2)3

3!
t3 +

(2)4

4!
t4 + ::) (197)

It can be easily observed that (26) is equivalent to the exact solution

u(x; y; t) = e(x+y)e2t = e(x+y+2t) (198)

Example 2

Consider the two-dimensional nonhomogeneous di¤usion problem

@u

@t
=
@2u

@x2
+
@2u

@y2
� e�t(x2 + y2 + 4); t > 0; 0 < x; y < 1 (199)

with the initial condition

u(x; y; 0) = 1 + x2 + y2 (200)

And the boundary conditions

u(0; y; t) = 1 + y2e�t; 0 � t � 1; 0 � y � 1;

u(1; y; t) = 1 + (1 + y2)e�t; 0 � t � 1; 0 � y � 1 (201)

u(x; 0; t) = 1 + x2e�t; 0 � t � 1; 0 � x � 1
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u(x; 1; t) = 1 + (1 + x2)e�t; 0 � t � 1; 0 � x � 1
and nonlocal boundary conditionZ 1

0

Z t

0

u(x; y; t)dt = 1 +
2

3
e�t; 0 � x � 1; 0 � y � 1 (202)

The exact solution is

u(x; y; t) = 1 + e�t(x2 + y2) (203)

Writing the problem in operator form

Lt(u(x; y; t)) = Lxx(u(x; y; t)) +Lyy(u(x; y; t))� e�t(x2 + y2 +4) (204)

Where Lt; Lxx; and Lyy are the linear di¤erential operators de�ned
by the following form

Lt =
@

@t
(:); Lxx =

@2

@x2
(:); Lyy =

@2

@y2
(:) (205)

And the inverse operator given by the de�ned integral with respect
to t from 0 to t:

L�1t (:) =

Z t

0

(:)dt (206)

Applying the inverse operator on both sides of the equation (33), we
get

L�1t (Lt(u(x; y; t; ))) = L�1t (Lxxu(x; y; t))) + L
�1
t (Lyyu(x; y; t)))+
L�1t (�e�t(x2 + y2 + 4)

L�1t (Lt(u(x; y; 0))) = u(x; y; 0) (207)

From equations (36) and (37) we have

u(x; y; t)=u(x; y; 0) + L�1t ((Lxx + Lyy)(u(x; y; t)) + :: (208)

+L�1t (�e�t(x2 + y2 + 4))

And the zeroth-component given by

u0(x; y; t) = u(x; y; 0) + L�1t (�e�t(x2 + y2 + 4)) (209)
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Decomposing the unkown function u(x; y; t) into a sum components
de�ned by the in�nite series

u(x; y; t) =

1X
k=0

uk(x; y; t) (210)

One the zeroth-component determined, the remaining components
u1,u2; u3; :; uk:::, entirely determined. Now substituting (40) into (38)
leads to the recursive relations

u0(x; y; t) = u(x; y; 0) + L�1t (�e�t(x2 + y2 + 4))

:

uk+1(x; y; t) = L�1t ((Lxx1 + Lyy)(u(x; y; t)))

Or

u0(x; y; t)= 1 + x
2 + y2 � (x2 + y2 + 4)

Z t

0

e�tdt = (211)

(1 + x2 + y2) + (4 + x2 + y2)e�t � (4 + x2 + y2)

=�3 + (4 + x2 + y2)e�t (212)

u1(x; y; t)=L
�1
t ((Lxx + Lyy)(u0(x; y; t))) =

Z t

0

4e�tdt (213)

=�4e�t + 4

u2(x; y; t) = L�1t ((Lxx + Lyy)(u1)) =

Z t

0

(0)dt = 0 (214)

uk(x; y; t) = 0; k � 2 (215)

One the components u0; u1; u2; u3; :::; uk; :::; are determined then, the
series solution completely determined as following

u(x; y; t) = u0(x; y; t) + u1(x; y; t) +
1X
k=2

uk(x; y; t)

Or
u(x; y; t) = 1 + (x2 + y2)e�t (216)

it should be noted that this solution coincides with the exact one.
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Example 3

Consider the two-dimensonal di¤usion problem

@u

@t
=
@2u

@x2
+
@2u

@y2
; 0 < x; y < 1; t > 0 (217)

Subject to the initial condition

u(x; y; 0 = (1� y)ex; 0 � x; y � 1 (218)

and the boundary conditions

u(0; y; t) = (1� y)et; 0 � t � 1; 0 � y � 1 (219)

u(1; y; t) = (1� y)e1+t; 0 � t � 1; 0 � y � 1 (220)

u(x; 0; t) = e1+t; 0 � t � 1; 0 � x � 1 (221)

u(x; 1; t) = 0; 0 � t � 1; 0 � x � 1 (222)

Rewriting the equation (48) in an operator form as the following

Lt(u(x; y; t)) = Lxx(u(x; y; t)) + Lyy(u(x; y; t)) (223)

where

Lt(:) =
@

@t
(:); Lxx(:) =

@2

@x2
(:); Lyy(:) =

@2

@y2
(:)

L�1t is regarderd as the inverse operator of Lt and is de�ned by a de�ned
integration from 0 to t, i.e

L�1t (:) =

Z t

0

(:)dt (224)

Operating on both sides of equation (54) with the inverse operator
L�1t using the initial condition yields

L�1t (Lt(u(x; y; t)) = L�1t ((Lxx + Lyy)(u(x; y; t)))

Or
u(x; y; t) = u(x; y; 0) + L�1t ((Lxx + Lyy)(u(x; y; t))) (225)

Now decomposing the unkown function u(x; y; t) by a sum of com-
ponents de�ned by the following series with u0 identi�ed as u(x; y; 0)

u(x; y; t) =
1X
k=0

uk(x; y; t) (226)
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from the recursive relations we obtain the components uk as following

1X
k=0

uk(x; y; t) = u(x; y; 0) + L�1t ((Lxx + Lyy)(

1X
k=0

uk(x; y; t)))

Or
u0(x; y; t) = u(x; y; 0) (227)

uk+1(x; y; t) = L�1t ((Lxx + Lyy)(uk(x; y; t))); k � 0 (228)

From (58) and (59), we have

u0(x; y; t) = (1� y)ex (229)

u1(x; y; t)=L
�1
t ((Lxx + Lyy)(u0(x; y; t))) =

Z t

0

(1� y)exdt = (230)

=(1� y)tex

u2(x; y; t)=L
�1
t ((Lxx + Lyy)(u1(x; y; t))) =

=

Z t

0

(1� y)exdt = (1� y)ex(
t2

2!
)

u3(x; y; t)=L
�1
t ((Lxx + Lyy)(u2(x; y; t))) =

=

Z t

0

(1� y)ex(
t2

2!
)dt = (1� y)ex(

t3

3!
)

x

::::::::::

uk(x; y; t)=L
�1
t ((Lxx + Lyy)(uk�1(x; y; t))) =

=

Z t

0

(1� y)ex(
tk�1

(k � 1)!dt = (1� y)ex
tk

k!

Then the solution in the series form is given by

u(x; y; t) =

1X
k=0

uk(x; y; t) = (1� y)ex(

1X
k=0

tk

k!
) = (1� y)ex+t (231)

As we can verify by substitution, this solution is equivalent to the theo-
ritical one
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Example 1

hx=hy =
1

10
; ht =

1

250

xi; yj uex uAd 5� iterate juex � uAdj
0:0 0:0 1:008 1:008 0:0

0:1 0:1 1:2312 1:2312 0:0

0:2 0:2 1:5038 1:5038 0:0

0:3 0:3 1:8368 1:8368 0:0

0:4 0:4 2:2434 2:2434 0:0

0:5 0:5 2:7401 2:7401 0:0

0:6 0:6 3:3468 3:3468 0:0

0:7 0:7 4:0878 4:0878 0:0

0:8 0:8 4:9928 4:9928 0:0

0:9 0:9 6:0982 6:0982 0:0

1:0 1:0 7:4484 7:4484 0:0
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Example 3

hx=hy =
1

10
; ht =

1

250

xi yj uex uAd 5� iterate juex � uAdj
0:0 0:0 1:004 1:004 0:0

0:1 0:1 0:99864 0:99864 0:0

0:2 0:2 0:98104 0:98104 0:0

0:3 0:3 0:94869 0:94869 0:0

0:4 0:4 0:89868 0:89868 0:0

0:5 0:5 0:82766 0:82766 0:0

0:6 0:6 0:73177 0:73177 0:0

0:7 0:7 0:60655 0:60655 0:0

0:8 0:8 0:44689 0:44689 0:0

0:9 0:9 0:24695 0:24695 0:0

1:0 1:0 0:0 0:0 0:0
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uex = exp(
1
250
)� exp(x+ y)

1.01.0
0.80.8

0.60.6
yx

0.40.4
0.20.2
0.00.0

1
2
3
4z
5

7
6

Variation of uex = exp(x+ y + 1
250
) for di¤erent values of x and y
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uAd = exp(x+y)� (1+ 1
1!
� 2

250
+ 1
2!
� ( 2

250
)2+ 1

3!
� ( 2

250
)3+ 1

4!
� ( 2

250
)4)

x

­2000

­3000

­1000

z

1000
800

600
400

5
4
3
2
1
0

y

0
200

0

Variation of uAd for diferent values of x and y
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uex = (1� y)� exp(x+ 1
250
)

1.0
0.8

1.0

0.8

0.8
0.6

yx
0.6 0.6

z

0.40.4
0.2

0.4

0.2
0.00.0

0.2
0.0

1.0

Variation of uex = (1� y) exp(x+ 1
250
) for values of x and y
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uAd = (1�y)�exp(x)�(1+ 1
250
+ 1
2!
�( 1

250
)2+ 1

3!
�( 1

250
)3+ 1

4!
�( 1

250
)4)

1.0
0.8

1.0

0.8

0.8
0.6

yx
0.6 0.6

z

0.40.4
0.2

0.4

0.2
0.00.0

0.2
0.0

1.0

Variation of uAd for di¤erent values of x and y
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2.15 A three-dimensional Di¤usion equation

Statement of the Problem
In this chapter we are dealing with A three-dimensional Di¤usion

equation. For solving this problem we use the Adomian decomposition
method presented in the previous Chapters. We consider the three-
dimensional di¤usion equation given by

@u

@t
=
@2u

@x2
+
@2u

@y2
+
@2u

@z2
; 0 < x; y; z < 1; t > 0 (232)

initial condition is given by

u(x; y; z; 0) = f(x; y; z); (x; y; z) 2 
 [ @


And the Dirichelet time-dependent boundary conditions are

u(0; y; z; t) =  0(y; z; t); 0 � t � T; 0 � y; z � 1 (233)

u(1; y; z; t) =  1(y; z; t); 0 � t � T; 0 � y; z � 1

u(x; 0; z; t) = '0(x; z)� 
(t); 0 � t � T; 0 � x; z � 1

u(x; 1; z; t) = '1(x; z; t); 0 � t � T; 0 � x; z � 1

u(x; y; 0; t) = �0(x; y; t); 0 � t � T; 0 � x; y � 1

u(x; y; 1; t) = �1(x; y; t); 0 � t � T; 0 � x; y � 1
And nonlocal boundary conditionZ 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz = m(t); (x; y; z) 2 
 [ @
 (234)

Where f;  0;  1; '0; '; �0; �1 and m are known functions and 
(t) is
to be determined.

96



2.16 ADOMIAN DECOMPOSITION METHOD

A Operator form
In this section, we outline the steps to obtain a solution to the above

problem using the Adomian decomposition method, which was initiated
by G. Adomian [36,40,47]. For this purpose we reformulate the problem
in an operator form

Lt(u(x; y; z; t)) = Lxx(u(x; y; z; t)) + Lyy(u(x; y; z; t)) + Lzz(u(x; y; z; t))
(235)

Where the di¤erential operators Lt(:)= @
@t
; Lxx(:) =

@2

@x2
; Lyy(:) =

@2

@y2
; Lzz(:) =

@2

@z2
: Assuming that the inverse operator L�1t exists and is

de�ned as:

L�1t =

Z t

0

(:)dt (236)

B. Application to the problem
Applying the inverse operator on both the sides of (6,4) and using

the initial condition, yields:

u(x; y; z; t) = L�1t (Lxx(u(x; y; z; t)) + Lyy(u(x; y; z; t)) + Lzz(u(x; y; z; t))

or

u(x; y; z; t) = u(x; y; z; 0)+L�1t (Lxx(u(x; y; z; t)+Lyy(u(x; y; z; t))+Lzz(u(x; y; z; t)))
(237)

Now , we decompose the unknown function u(x; y; z; t) as a sum of
components de�ned by the series

u(x; y; z; t) =
1X
k=0

uk(x; y; z; t) (238)

Where u0(x; y; z; t) is identi�ned as u(x; y; z; 0). Substituting equa-
tion (7) into equation (6) one obtains

1X
k=0

u(x; y; z; t) = L�1t (Lxx(
1X
k=0

uk(x; y; z; t)+Lyy(
1X
k=0

uk(x; y; z; t)+Lzz(
1X
k=0

uk(x; y; z; t))

(239)
The components are obtained by the recursive formula

u0(x; y; z) = f(x; y; z) (240)
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uk+1(x; y; z; t) = L�1t (Lxx(uk(x; y; z; t)+Lyy(uk(x; y; z; t)+Lzz(uk(x; y; z; t)); k � 0
(241)

From equations (9) and (10) we obtain the �rst few terms as:

u0 = f(x; y; z)

u1 = L�1t (Lxx(u0) + Lyy(u0) + Lzz(u0))

u2 = L�1t (Lxx(u1) + Lyy(u1) + Lzz(u1))

u3 = L�1t (Lxx(u2) + Lyy(u2) + Lzz(u2))

and so on. As a result the components u0; u1; u2; u3; ::::::are iden-
ti�ed and the series solution is thus entirely determined. However , in
many cases the exact solution in a closed form may be obtained as we
can see in our examples.

2.17 NUMERICAL EXAMPLES

Example 1
We consider the three-dimensional di¤usion equation

@u

@t
=
@2u

@x2
+
@2u

@y2
+
@2u

@z2

In which u = u(x; y; z; t). The Dirichelet time-dependent boundary
conditions on the boundary @
 of the cube 
 de�ned by the lines x =
0; y = 0; z = 0; x = 1; y = 1; z = 1 are given by

u(0; y; z; t) = exp(y + z + 3t); 0 � t � T; 0 � y; z � 1 (242)

u(1; y; z; t) = exp(1 + y + z + 3t); 0 � t � T; 0 � y; z � 1
u(x; 0; z; t) = exp(x+ z + 3t); 0 � t � T; 0 � x; z � 1

u(x; 1; z; t) = exp(1 + x+ z + 3t); 0 � t � T; 0 � x; z � 1
u(x; y; 0; t) = exp(x+ y + 3t); 0 � t � T; 0 � x; y � 1

u(x; y; 1; t) = exp(x+ y + 1 + 3t)

And nonlocal boundary conditionZ 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz = (e� 1)3exp(3t) (243)

With the initial condition

u(x; y; z; 0) = exp(x+ y + z) (244)
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Analytic solution is given by

u(x; y; z; t) = e(x+y+z+3t) (245)

Using the decomposition method, described above, equation (9) gives
the �rst component

u0 = f(x; y; z) = e(x+y+z) (246)

And equation (10) gives the following components of the series

Lxx(u0) + Lyy(u0) + Lzz(u0) = 3e
(x+y+z)

u1 = L�1t (3e
(x+y+z)) =

Z t

0

3e(x+y+z)dt = 3te(x+y+z) (247)

u2 = L�1t (Lxx(u1) + Lyy(u1) + Lzz(u1))

u2 = L�1t (9te
(x+y+z)) =

Z t

0

9te(x+y+z)dt =
32

2!
t2e(x+y+z) (248)

u3 = L�1t (Lxx(u2) + Lyy(u2) + Lzz(u2)

u3 = L�1t (
27

2
t2e(x+y+z)) =

Z t

0

27

2
t2e(x+y+z)dt =

33

3!
t3e(x+y+z) (249)

u4 = L�1t (Lxx(u3) + Lyy(u3) + Lzz(u3)

u4 = L�1t (
32

2
t3e(x+y+z)) =

Z t

0

32

2
t3e(x+y+z)dt =

34

4!
t4e(x+y+z) (250)

u5 = L�1t (Lxx(u4) + Lyy(u4) + Lzz(u4))

u5 = L�1t (
34

4!
t4e(x+y+z)) =

Z t

0

34

4!
t4e(x+y+z)dt =

35

5!
t5e(x+y+z) (251)

u6 = L�1t (Lxx(u5) + Lyy(u5) + Lzz(u5))

u6 = L�1t (
35

5!
t5e(x+y+z)) =

Z t

0

35

5!
t5e(x+y+z)dt =

36

6!
t6e(x+y+z) (252)

u7 = L�1t (Lxx(u6) + Lyy(u6) + Lzz(u6))

u7 = L�1t (
36

6!
t6e(x+y+z)) =

Z t

0

36

6!
t6e(x+y+z)dt =

37

7!
t7e(x+y+z) (253)

Substituting (6,15)-(6,22) into equation (6,7) we obtain the solution
u(x; y; z; t) of (6,1)-(6,13) in series form as:

u(x; y; z; t) = e(x+y+z)(1 +
3t

1!
+
32

2!
t2 +

33

3!
t3 +

34

4!
t4 +

35

5!
t5 + ::) (254)
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Which can be rewritten as:

u(x; y; z; t) = e(x+y+z)e3t = e(x+y+z+3t) (255)

It can be easily observed that (6,24) is equivalent to the exact solu-
tion.

Eample 2

Consider the three-dimensional non homogeneous di¤usion problem

@u

@t
=
@2u

@x2
+
@2u

@y2
+
@2u

@z2
�e�t(x2+y2+z2+4); t > 0; 0 < x; y; z < 1 (256)

With the initial condition

u(x; y; z; 0) = 1 + x2 + y2 + z2 (257)

And the boundary conditions

u(0; y; z; t) = 3 + (y2 + z2 � 2)e�t; 0 � t � T; 0 � y; z � 1

u(1; y; z; t) = 3 + (�1 + y2 + z2)e�t; 0 � t � T; 0 � y; z � 1
u(x; 0; z; t) = 3 + (x2 + z2 � 2)e�t; 0 � t � T; 0 � x; z � 1
u(x; 1; z; t) = 3 + (�1 + x2 + z2)e�t; 0 � t � T; 0 � x; z � 1
u(x; y; 0; t) = 3 + (x2 + y2 � 2)e�t; 0 � t � T; 0 � x; y � 1

u(x; y; 1; t) = 3 + (�1 + x2 + y2)e�t; 0 � t � T; 0 � x; y � 1 (258)

And the non local boundary conditionZ 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz = 3� e�t; 0 � t � T (259)

Theoritical solution is given by

u(x; y; z; t) = 3 + (x2 + y2 + z2 � 2)e�t (260)

Writing the problem in operator form and applying the inverse op-
erator one obtains;

L�1t (Lt(u(x; y; z; t)))=L
�1
t (Lxxu(x; y; z; t) + Lyyu(x; y; z; t) + Lzzu(x; y; z; t)) +(261)

+L�1t (�e�t(x2 + y2 + z2 + 4)) (262)

L�1t (Lt(u(x; y; z; 0))) = u(x; y; z; 0) (263)

100



From which we obtain

u(x; y; z; t)=u(x; y; z; 0) + L�1(Lxxu(x; y; z; t) + Lyyu(x; y; z; t) + Lzzu(x; y; z; t)) +(264)

+L�1t (�e�t(x2 + y2 + z2 + 4)) (265)

Using Adomian decomposition, the zeroth component is given by:

u0(x; y; z; t) = u(x; y; z; 0) + L�1t (�e�t(x2 + y2 + z2 + 4)) (266)

And

uk+1(x; y; z; t) = L�1t (Lxxuk(x; y; z; t)+Lyyuk(x; y; z; t)+Lzzuk(x; y; z; t)); k � 0
(267)

Applying these formula, we obtain the components of the series so-
lution as:

u0(x; y; z; t) = 1+x
2+y2+z2+

Z t

0

�e�t(x2+y2+z2+4)dt = �3+(x2+y2+z2+4)e�t

(268)

u1(x; y; z; t) = L�1t (Lxxu0(x; y; z; t)+Lyyu0(x; y; z; t)+Lzzu0(x; y; z; t)) =

Z t

0

6e�tdt = 6�6e�t

(269)
u2(x; y; z; t) = L�1t (Lxxu1(x; y; z; t) + Lyyu1(x; y; z; t) + Lzzu1(x; y; z; t))

u2(x; y; z; t) =

Z t

0

0dt = 0 (270)

Then
uk(x; y; z; t) = 0; k � 2 (271)

Finally, we obtain the aproximate solution:

u(x; y; z; t) = u0(x; y; z; t) + u1(x; y; z; t)

u(x; y; z; t) = �3 + (x2 + y2 + z2 ++4) + 6� 6e�t

u(x; y; z; t) = 3 + (x2 + y2 + z2 � 2)e�t (272)

And we can observe that the obtained result is exact.
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Example 1

hx=hy = hz =
1

10
; ht =

1

250

xi; yj; zk uex uAd 5� iterate juex � uAdj
0:0 0:0 0:0 1:021 1:021 0:0

0:1 0:1 0:1 1:3662 1:3662 0:0

0:2 0:2 0:2 1:8441 1:8441 0:0

0:3 0:3 0:3 2:4893 2:4893 0:0

0:4 0:4 0:4 3:3602 3:3602 0:0

0:5 0:5 0:5 4:5358 4:5358 0:0

0:6 0:6 0:6 6:1227 6:1227 0:0

0:7 0:7 0:7 8:2648 8:2648 0:0

0:8 0:8 0:8 11:156 11:156 0:0

0:9 0:9 0:9 15:059 15:059 0:0

1:0 1:0 1:0 20:328 20:328 0:0
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Example 2

hx = hy = hz =
1

10
; ht =

1

250

xi yj zk uex uAd 1� iterate juex � uAdj
0:0 0:0 0:0 1:0080 0:98403 0:02397

0:1 0:1 0:1 1:0976 1:0737 0:0239

0:2 0:2 0:2 1:3665 1:3426 0:0239

0:3 0:3 0:3 1:8148 1:7908 0:024

0:4 0:4 0:4 2:4422 2:4183 0:0239

0:5 0:5 0:5 3:249 3:225 0:024

0:6 0:6 0:6 4:235 4:2111 0:0239

0:7 0:7 0:7 5:4004 5:3764 0:024

0:8 0:8 0:8 6:7450 6:721 0:024

0:9 0:9 0:9 8:2689 8:2449 0:024

1:0 1:0 1:0 9:9721 9:9481 0:024
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uex = exp(x+ y + 253
250
)

1.01.0
0.80.8

0.60.6
0.4

x y

0.4
0.20.2
0.00.0

5

10z
15

20

Variation of uex = exp(x+ y + 253
250
) for di¤erent values of x and y
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uAd = exp(x+ y + 1)(1 + 3
1!
+ 1

2!
� ( 3

250
)2 + 1

3!
� ( 3

250
)3 + 1

4!
� ( 3

250
)4)

1.01.0
0.80.8

0.60.6

z

0.4

x y

0.4
0.2

10

0.2
0.00.0

5

15

20

Variation of uAd for di¤erent values of x and y
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uex = 3 + (x
2 + y2 � 1) exp( �1

250
)

1.01.0
0.80.8

0.60.6
x y

0.2 0.2
0.4 0.4

2

0.0 0.0

8

6z
4

10

Variation of uex = (3 + x2 + y2 � 1) exp( �1250) for di¤erent values of x
and y
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uAd = �3 + (x2 + y2 + 5) exp( �1
250
)

1.01.0

0.20.2
0.0

2

0.0

0.60.6
0.4

x y

0.4

0.8 0.8

6z
4

8

10

Variation of uAd = �3 + (x2 + y2 + 5) exp( �1250) for di¤erent values of
x and y
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Chapter 3
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3 Numerical method for solving hyperbolic equa-
tion with an integral boundary condition

In this chapter we will deal with a new kind of non classical bound-
ary value problems that is, the solution of hyperbolic partial di¤erential
equations with nonlocal boundary speci�cations. These nonlocal condi-
tions arise mainly when the data on the boundary cannot be measured
directly. Many physical phenomena are modeled by nonclassical hy-
perbolic boundary value problems with nonlocal boundary conditions.
Numerical solution of hyperbolic partial di¤erential equations with an
integral condition on the boundary still to be a major research area with
widespread application in engineering, physic and technology.
We consider the following one-dimentional wave-equation with non

classical boundary speci�cation

@2u

@t2
� @2u

@x2
= q(x; t); 0 < x < 1; 0 < t � T (273)

With the initial conditions

u(x; 0) = r(x); 0 � x � 1 (274)

ut(x; 0) = s(x); 0 � x � 1 (275)

And the boundary conditions

u(0; t) = p(t); 0 < t � T (276)R 1
0
u(x; t)dx = q(t); 0 < t � T

Where r; s; p and q are known functions, we suppose that f is su¤e-
ciently smooth to produce a smooth classical solution.

3.1 Adomian decomposition analysis

The Adomian decomposition method has been shown [36, 40, 46] to solve
e¤ectively, easily, and accrately a large classe of linear and non linear, or-
dinary, partial di¤erantial equations with approximate solutions which
converge rapidly to accurate solutions. In recent years, many papers
were devoted to the problem of approximate solution of one-dimensional
wave equation with non local boundary conditions [39]. The basic moti-
vation of this work is to apply the Adomian decomposition method for
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solving the one-dimentional wave equation with a non local boundary
condition. It is well known now in the literature that this algorithm
provides the solution in rapidly convergent series. The implementation
of the Adomian method in [17] and [40-43] has shown reliable results in
that few terms only are needed to obtain accurate solutions.

References

[1] Consider equation (7,1)-(7,5) written in the form

Ltt(u(x; t)) = Lxx(u(x; t)) + q(x; t); 0 < x < 1; 0 < t � T (277)

Where the di¤erential operators Lxx and Ltt are given as

Lxx =
@2

@x2
; Ltt =

@2

@t2

The inverse operator L�1tt is therefore considered a two-fold integral
operator de�ned by

L�1tt (:) =

Z t

0

Z t

0

(:)dt (278)

Operating with L�1tt on equation (7,6), it then follows

L�1tt (Ltt(u(x; t)) = L�1tt (Lxx(u(x; t)) + L
�1
tt (q(x; t)) (279)

The result can be simpli�ed as:

u(x; t) = r(x) + ts(x) + L�1tt (Lxx(u(x; t) + q(x; t))) (280)

The standard ADM de�nes the solution in the form of

u(x; t) =

1X
k=0

uk(x; t) (281)

Where the components uk, (k = 0; 1; 2; 3; ::). Are determined recur-
sively by using the relation

u0 = r(x) + ts(x) + L�1tt (q(x; t)) (282)

And
uk+1 = L�1tt [Lxx(uk)]; k � 0 (283)

If the series converges in a suitable way, then the general solution is
obtained as

u(x; t) = limn!1

nX
k=0

uk(x; t) (284)
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3.2 Numerical Examples

References

[1] Example 1
We consider the following wave equation

@2u

@t2
� @2u

@x2
= 0; 0 < x < 1; 0 < t < 0:5 (285)

With the initial boundary conditions

u(x; 0) = 0; 0 � x � 1 (286)

ut(x; 0) = �cos(�x); 0 � x � 1 (287)

And the boundary conditions

u(0; t) = p(t) = sin(�t); 0 < t < 0:5Z 1

0

u(x; t)dt = q(t) = 0 (288)

Substituting in the equations (7,11) and (7,12) we obtain the following
equations

u0 = t(�cos�x) (289)

uk+1 = L�1tt [Lxx(uk)]; k � 0 (290)

We can then proceed to compute the �rst few terms of the series (7,10)

u0 = t(�cos�x) (291)

u1 = L�1tt [Lxx(u0)] = �cos�x

Z t

0

Z t

0

tdt = cos(�x)(��3 t
3

3!
) (292)

u2 = L�1tt [Lxx(u1)] = cos�x

Z t

0

Z t

0

�5
t3

3!
dt = cos�x(�5

t5

5!
) (293)

u3 = L�1tt [Lxx(u2)] = cos�x

Z t

0

Z t

0

(��7 t
5

5!
)dt = cos�x(��7 t

7

7!
) (294)

u4 = L�1tt [Lxx(u3)] = cos�x

Z t

0

Z t

0

�9
t7

7!
dt = cos�x(�t

9

9!
(295)

::::

::::
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And so on
u(x; t) = u0 + u1 + u2 + u3 + u4 + :::: (296)

Hence

u(x; t) = cos�x[�t� (�t)
3

3!
+
(�t)5

5!
� (�t)

7

7!
+
(�t)9

9!
� :::] (297)

Or
u(x; t) = cos(�x)sin(�t) (298)

This result shows that, this method provides excellent approximation
to the solution of this problem.
Example 2
Consider the following wave equation

@2u

@t2
� 1
4

@2u

@x2
= 0; 0 < x < 1; t > 0 (299)

With the initial conditions

u(x; 0) = x; 0 < x < 1 (300)

ut(x; 0) = ex; 0 < x < 1 (301)

And the boundary conditions

ux(0; t) = 2sinh(
t

2
); t > 0 (302)

ux(1; t) = 2e( sinh(
t

2
) + 1); t > 0 (303)

It can be veri�ed that the exact solution is

u(x; t) = 2ex sinh(
t

2
) + x

Writing the problem (7,28) in an operator form yields

Ltt(u(x; t))�
1

4
Lxx(u(x; t) = 0 (304)

Operating with the inverse operator L�1tt on both sides of equation
(7,33) and impose the initial conditions (7,29)-(7,30) we obtain

L�1tt [Ltt(u(x; s))] = u(x; t)� u(x; 0)� tut(x; 0)

u(x; t) = u(x; 0) + tut(x; 0) + L
�1
tt [Lxx(u(x; t))] (305)
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Starting with

u0 = u(x; 0) + tut(x; 0) = x+ tex (306)

And using
uk+1 = L�1tt [Lxx(uk)]; k � 0

We can obtain

u1 = L�1tt [Lxx(u0)] = 2e
x

Z t

0

Z t

0

(
t

2
)dt = 2ex

( t
2
)3

3!
(307)

u2 = L�1tt [Lxx(u1)] = 2e
x

Z t

0

Z t

0

( t
2
)3

3!
dt = 2ex

( t
2
)5

5!
(308)

u3 = L�1tt [Lxx(u2)] = 2e
x

Z t

0

Z t

0

( t
2
)5

5!
dt = 2ex

( t
2
)7

7!
(309)

:::

By continuing the iteration, we �nd that

uk = 2e
x (

t
2
)2k+1

(2k + 1)!
(310)

Which implies that

u(x; t) = x+ 2ex
1X
k=0

uk(x; t) = x+ 2exsinh(
t

2
) (311)

Which converges to the exact solution.
Eample 3
Consider the following wave equation

@2u

@t2
� @2u

@x2
= 0; 0 < x < 1; 0 < t � 0:5 (312)

with the initial conditions

u(x; 0) = cos�x; 0 < x < 1 (313)

ut(x; 0) = 0; 0 < x < 1 (314)

And the boundary conditions

ux(0; t) = 0 (315)Z 1

0

u(x; t)dx = 0; 0 < t � 05 (316)
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Which easily seen to have the exact solution

u(x; t) = cos(�x) cos(�t)

Rewriting the equation (7,41) in an operator form

Ltt(u(x; t)) = Lxx(u(x; t)) (317)

We operate with the inverse operator L�1tt on both sides of equation
we get the following equations

L�1tt [Ltt(u(x; t)] = L�1tt [Lxx(u(x; t)] (318)

L�1tt [Ltt(u(x; t)] =

Z t

0

dx

Z t

0

@2u

@t2
dx = u(x; t)� u(x; 0)� tut(x; 0)

(319)
Then

u(x; t)� u(x; 0)� tut(x; 0) = L�1tt [Lxx(u(x; t)] (320)

Or
u(x; t) = u(x; 0) + tut(x; 0) + L

�1
tt [Lxx(u(x; t))] (321)

From equation (7,10), (7,11) and (7,12) we can get the di¤erent terms
of the approximate series solution

u0 = u(x; 0) + tut(x; 0) = cos�x (322)

u1 = L�1tt [Lxx(u0)] = ��2cos(�x)
Z t

0

Z t

0

dt = cos(�x)(�(�t)
2

2!
)

(323)

u2 = L�1tt [Lxx(u1))] = cos(�x)

Z t

0

Z t

0

(�t)2

2!
dt = cos(�x)(

(�t)4

4!
)

(324)

u3 = L�1tt [Lxx(u2)] = cos(�x)

Z t

0

Z t

0

(�(�t)
4

4!
)dt = cos(�x)(�(�t)

6

6!
)

(325)

:::

uk = cos(�x)(�1)k (�t)
2k

(2k)!
(326)

Hence, the approximate series solution is given by

u(x; t) = u0 + u1 + u2 + u3 + :::+ uk + :: (327)
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Or

u(x; t) = cos(�x)(1� (�t)
2

2!
+
(�t)4

4!
� (�t)

6

6!
+ ::+ ((�1)k (�t)

2k

(2k)!
+ ::)

(328)
Which convrges to the exact solution

u(x; t) = cos(�x)cos(�t) (329)

3.3 Conclusion

In this chapter, we employed new thechnique for the solution of some hy-
perbolic equations with nonlocal boundary conditions( wave equation).
this technique is reliable , e¢ cient, accurate and gives us the solution in
a closed form.
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Example 1

hx =
1

10
; ht =

1

250

xi uex uAd 5� iterate juex � uAdj
0:0 1:2566� 10�2 1:2566� 10�2 0:0

0:1 1:1951� 10�2 1:1951� 10�2 0:0

0:2 1:0166� 10�2 1:0166� 10�2 0:0

0:3 7:3851� 10�3 7:3851� 10�3 0:0

0:4 3:8831� 10�3 3:8831� 10�3 0:0

0:5 0:0 0:0 0:0

0:6 � 3:8831� 10�3 � 3:8831� 10�3 0:0

0:7 � 7:3861� 10�3 � 7:3861� 10�3 0:0

0:8 � 1:0166� 10�2 � 1:0166� 10�2 0:0

0:9 � 1:1951� 10�2 � 1:1951� 10�2 0:0

1:0 � 1:2566� 10�2 � 1:2566� 10�2 0:0
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Example 2

hx =
1

10
; ht =

1

250

xi uex uAd 5� iterate juex�uAd j
0:0 0:004 0:004 0:0

0:1 0:10442 0:10442 0:0

0:2 0:20489 0:20489 0:0

0:3 0:30540 0:30540 0:0

0:4 0:40597 0:40597 0:0

0:5 0:50659 0:50659 0:0

0:6 0:60729 0:60729 0:0

0:7 0:70806 0:70806 0:0

0:8 0:8089 0:8089 0:0

0:9 0:90984 0:90984 0:0

1:0 1:0109 1:0109 0:0
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Example 3

hx =
1

10
; ht =

1

250

xi uex uAd 5� iterate juex � uAdj
0:0 0:99992 0:99992 0:0

0:1 0:95098 0:95098 0:0

0:2 0:80895 0:80895 0:0

0:3 0:58774 0:58774 0:0

0:4 0:30899 0:30899 0:0

0:5 0:0 0:0 0:0

0:6 � 0:30899 � 0:30899 0:0

0:7 � 0:58774 � 0:58774 0:0

0:8 � 0:80895 � 0:80895 0:0

0:9 � 0:95098 � 0:95098 0:0

1:0 � 0:99992 � 0:99992 0:0
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uex = cos(�x)� sin(�t)

0.010
0.005

0.0
z

­0.010
­0.005
0.000

1.0 1.0

0.8y
0.6

0.2 0.2
0.4 0.4

0.0

x0.8
0.6

Variation of uex = cos(�x) cos(�t) for di¤erent values of x and t

uAd = cos(�x)� (�t� (�t)3

3!
+ (�t)5

5!
� (�t)7

7!
+ (�t)9

9!
)

0.010

z
0.0

0.005
0.000

­0.005
­0.010

1.0 1.0
0.8

0.6
y

0.4 0.4
0.20.2

0.0

x0.8
0.6

Variation of uAd for di¤erent values of x and t
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uex = x+ 2 exp(x)� sinh( t
2
)

1.01.0
0.80.8

0.60.6

0.2 0.2
0.4 0.4

x y

0.0 0.0
0.0

1.0
0.8
0.6

z 0.4
0.2

Variation of uex = x+2 exp(x) sinh( t
2
) for di¤erent values of x and t

uAd = x+ 2 exp(x)( t
2
+ 1

3!
( t
2
)3 + 1

5!
( t
2
)5 + 1

7!
( t
2
)7 + 1

9!
( t
2
)9)

1.01.0
0.80.8

0.60.6

0.2 0.2
0.4 0.4

x y

0.0 0.0
0.0

1.0
0.8
0.6

z 0.4
0.2

Variation of uAd = x+ 2 exp(x)( t
2
+ 1

3!
( t
2
)3 + 1

5!
( t
2
)5 + 1

7!
( t
2
)7 + 1

9!
( t
2
)9

for di¤erent values of x and t
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uex = cos(�x) cos(�t)

yx

0.4

1.0

0.4

0.5

0.2 0.2

z
0.00.0

­1.0

­0.5

0.0

0.6
0.8

1.0

0.6
0.8

1.0

Variation of uex = cos(�x) cos(�t) for di¤erent values of x and t

uAd = cos(�x)(1� (�t)2

2!
+ (�t)4

4!
� (�t)6

6!
+ (�t)8

8!
)

yx

0.4

1.0

0.4

0.5

0.2 0.2

z
0.00.0

­1.0

­0.5

0.0

0.6
0.8

1.0

0.6
0.8

1.0

Variation of uAd = cos(�x)(1� (�t)2

2!
+ (�t)4

4!
� (�t)6

6!
+ (�t)8

8!
) for di¤erent

values of x and t
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3.4 The homotopy perturbation method for solving
nonlocal problems

In the last two decades wih the rapid development of di¤erential equa-
tions. There has appeared ever-increasing interest of scientists and engi-
neers in the analytical techniques for linear and nonlinear problems with
nonlocal boundary conditions. The widely applied techniques are pertur-
bation methods . J.He [29] has proposed a new perturbation technique
coupled with the homotopy technique, which is called the homotopy
perturbation method (HPM). In contrast to the traditional perturba-
tion methods. HPM does not depend upon a small parameter in the
equation. By the homotopy technique in topology. A homotopy is con-
structed with an embeding parameter p 2 [0; 1], which is considered as
a small parameter. HPM has been used in numerous works. He [23],
has obtained a solution to Blasius equation by the HPM. He [15], ap-
plied HPM to solve boundary value problems which is governed by the
nonlinear ordinary(Partial) di¤erential equation. Furthermore, HPM is
applied to solve the Helmhotz equation. And the results show that this
method is e¤ecient and simple. Thus, the main goal of this work is
to apply the homotopy perturbation method (HPM) for solving linear
or nonlinear Initial boundary value problems with nonlocal boundary
conditions. The general form of equation is given as follows

@u

@t
�G(x; t; u;

@u

@x
;
@2u

@x2
) = 0; a < x < b; 0 < t < T (330)

Subject to the initial condition

u(x; 0) = f(x); 0 < t < T (331)

And nonlocal boundary conditions

u(a; t) =

Z b

a

'(x; t)u(x; t)dx+ g0(t); 0 < t < T (332)

u(b; t) =

Z b

a

 (x; t)u(x; t)dx+ g1(t); 0 < t < T (333)

Where f; ';  ; g0 and g1 are known functions and G is continuous
function.
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3.5 Analysis of homotopy perturbation method

To ullistrate the basic ideas, let X; and Y be the topological spaces. If
f and g are continuous maps of the spaces X into Y , it is said that f
is homotopic to g;if there is continuous map F : X � [0; 1] ! Y such
that F (x; 0) = f(x) and F (x; 1) = g(x), for each x 2 X, then the map is
called homotopy between f and g. We consider the following nonlinear
partial di¤erential equation

A(u)� f(r) = 0; r 2 
 (334)

Subject to the boundary conditions

B(u;
@u

@�
) = 0; r 2 � (335)

Where A is a general di¤erential operator. f is a known analytic
function, � is the boundary of the domain 
 and @

@�
denotes directional

derivative in outward normal direction to 
. The operator A, generally
divided into two parts, L and N , where L is linear , while N is nonlinear.
using A = L+N , eq(8,5) can be rewritten as follws

L(u) +N(u)� f(r) = 0 (336)

By the homotpy technique, we construct a homotopy de�ned as

H(u; p) : 
� [0; 1]! R (337)

Which satis�es

H(u; p) = (1� p)[L(u)�L(u0)]+ p[A(u)� f(r)]; p 2 [0; 1]; r 2 
 (338)

Or

H(u; p) = L(u)� L(u0) + pL(u0) + p[N(u)� f(r)] = 0; p 2 [0; 1]; r 2 

(339)

Where p 2 [0; 1] is an embedding parameter , u0 is an initial approx-
imation of equation (8,5), which satis�es the boundary conditions. It
follows from the equation (8,10) that

H(u; 0) = L(u)� L(u0) = 0 (340)

H(u; 1) = A(u)� f(r) = 0 (341)

The changing process of p from 0 to 1 monotonically as a trivial
problem. H(u; 0) = L(u)�L(u0) = 0 is continuously transformed to the
original problem

H(u; 1) = A(u)� f(r) = 0 (342)
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In topology, this process is known as continuous deformation . L(u)�
L(u0) and A(u) � f(r) are called homotopic. We use the embedding
parameter p as a small parameter , and assume that the solution of
equation (8,10) can be written as a power series of p :

u = u0 + pu1 + p2u2 + p3u3 + :::+ pnun + ::: (343)

Setting p = 1 we obtain the approximate solution of equation (8,5)
as

u = limp!1 u = u0 + u1 + u2 + u3 + :::+ un + ::: (344)

The series of equation (8,15) is convergent for most of the cases.
However, the rate of the convergence depends on the nonlinear operator
N(u) . The following suggestions have already been made by He (1999):
- The second derivative of N(u) with respect to u should be small

because the parameter may be relatively large i.e p! 1 and the norm
of L�1(@N

@u
) must be smaller than one in order that the series converges.

3.6 Numerical examples

Example 1
Consider the equation (8,1) with the following data

G(x; t; u;
@u

@x
;
@2u

@x2
) =

@2u

@x2
� @u

@x
(345)

u(x; 0) = ex � x (346)

u(0; 1) =

Z 1

0

u(x; t)dx = e+ t; a = 0; b = 1; '(x; t) = 1; g0 =
3

2
(347)

u(1; t) =

Z 1

0

1

2
u(x; t)dt =

1

2
(e+ t); a = 0; b = 1;  (x; t) =

1

2
; g1 =

3

4
(348)

We solve the problem using the homotopy perturbation method (HPM),
we construct the homotopy as the following

H(u; p) = (1� p)(
@u

@t
� @u0

@t
) + p(

@u

@t
� @2u

@x2
+
@u

@x
) = 0 (349)

Suppose that the solution of (8,1) with (8,16)-(8,19) is given in the
following form

u(x; t) = u0(x; t) + pu(x; t) + p2u(x; t) + p3u(x; t) + :::: (350)
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Substituting the equation (8,1) into equation (8,20) and equating the
coe¢ cients of like powers of p, we get

@u0
@t

� @u0
@t

= 0; u0 = u(x; 0) = ex � x (351)

@u1
@t

� @2u0
@x2

+
@u0
@x

= 0; u1(x; 0) = 0; u1 = t (352)

@u2
@t

� @2u1
@x2

+
@u1
@x

= 0; u2(x; 0) = 0 (353)

From equation (8,17) and (8,20) we can get

u0 = ex � x; u1 = t; u2 = 0; u3 = 0; :::::; un = 0; ::::: (354)

Supposing that p! 1 we obtain the solution of the problem (8,1),(8,16)-
(8,19) as follows

u = ex � x+ t

Which coincides with the exact solution.

Example 2

We consider the problem

@u

@t
+
@2u

@t2
=
@2u

@x2
+
@u

@x
+ 2(t� x); 0 < x < 1; 0 < t < T (355)

With the initial condition

u(x; 0) = x2;
@u

@t
(x; 0) = 0; 0 < x < 1; 0 < t < T (356)

And the boundary conditions

u(0; t) =

Z 1

0

'(x; t)u(x; t)dt+g0(t) = 1+
1

4
t2; where ; '(x; t) =

1

4
; g0 =

11

12
;

(357)

u(1; t) =

Z 1

0

 (x; t)u(x; t)dt+g1(t) = 1+
1

6
t2; where;  (x; t) =

1

6
; g1 =

17

18
(358)

From (8,20) and (8,21) we can get

@u

@t
� @u0

@t
= 0; u0 = u(x; 0) = x2 (359)

@u1
@t

+
@2u0
@t2

� @u0
@x

� @2u0
@x2

� 2(t� x) = 0; u1(x; 0) = 0; (360)
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@u0
@x

= 2x;
@2u0
@x2

= 2;
@2u0
@t2

= 0

@u1
@t

= 2 + 2t

Hence, we obtain
u1 = 2t+ t2 (361)

@u2
@t

+
@2u1
@t2

� @2u1
@x2

� @u1
@x

= 0; u2(x; 0) = 0 (362)

@2u1
@t2

= 2;
@u1
@x

=
@2u1
@x2

= 0

@u2
@t

= �2

Then, we have
u2 = �2t (363)

@u3
@t

+
@2u2
@t2

� @u2
@x

� @2u2
@x2

= 0; u3(x; 0) = 0 (364)

@2u2
@t2

= 0;
@u2
@x

=
@2u2
@x2

= 0;
@u3
@t

= 0

And so on, we obtain the approximate solution as follows

u(x; t) = u0 + u1 + u2 + ::

Or
u(x; t) = x2 + 2t+ t2 � 2t = x2 + t2 (365)

Which is the exact solution of equation (8,26)-(8,29).

Example 3
Consider the following nonlinear reaction-di¤usion equation:

@u

@t
� @2u

@x2
= u2 � (@u

@x
)2; 0 < x < 1; 0 < t � T (366)

Subject to the initial condition

u(x; 0) = ex; 0 < x < 1 (367)

And the nonlocal boundary conditions

u(0; t) =

Z 1

0

'(x; t)u(x; t)dx+ g0(t) = e1+t; ' = 1; g0 = et (368)
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u(1; t) =

Z 1

0

 (x; t)u(x; t)dx+ g1(t) =
1

2
e1+t;  =

1

2
; g1 =

1

2
et (369)

Solving the equation (8,37) with the initial condition (8,38), yields

u0 = ex

u1 = tex

u2 =
t2

2!
ex

u3 =
t3

3!
ex

:

un =
tn

n!
ex (370)

Substituting equation (8,41) into equation (8,15)nyields

u(x; t) = u0 + u1 + u2 + u3 + :::+ un + ::

Or

u(x; t) = ex(1 +
t

1!
+
t2

2!
+
t3

3!
+ :::+

tn

n!
+ ::)

Finally we obtain the approximate solution

u(x; t) = ex+t (371)

Which coincides with the exact solution .

Example 4
We consider the problem

@u

@t
=
1

2
(x2

@2u

@x2
); 0 < x < 1; 0 < t � T (372)

Subject to the initial condition

u(x; 0) = x2 (373)

And the boundary conditions

u(0; t) =

Z 1

0

u(x; t)dx+ g1 =
1

3
et; g1 = 0 (374)

u(1; t) =

Z 1

0

u(x; t)dx+ g2 =
1

3
(et + 1); g2 =

1

3
(375)
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According to equations (8,10)-(8,15) and equation (8,44) the follow-
ing terms are calculated successively

@u0
@t

� @u0
@t

= 0; u0 = x2 (376)

@u1
@t

� 1
2
x2
@2u0
@x2

= 0 (377)

@u1
@t
=x2 (378)

u1=x
2t (379)

@u2
@t

� 1
2
x2
@2u1
@x2

= 0;
@u2
@t

= x2t (380)

u2 = x2
t2

2
(381)

@u3
@t

� 1
2
x2
@2u2
@x2

= 0;
@u3
@t

= x2
t2

2!

u3 = x2
t3

3!
(382)

:

un = x2
tn

n!

And so on. To obtain the solution in the series form

u(x; t) = u0 + u1 + u2 + u3 + :::+ un + :::

Or

u(x; t) = x2(1 +
t

1!
+
t2

2!
+
t3

3!
+ :::+

tn

n!
+ :::)

And in a closed form given by

u(x; t) = x2et (383)

Which is the exact solution.

Example 5

Consider the problem

@u

@t
=
1

4
(x2

@2u

@x2
+ y2

@2u

@y2
); 0 < x; y < 1; 0 < t � T (384)
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With the following initial condition

u(x; y; 0) = x2y2 (385)

And the boundary conditions

u(0; y; t) =

Z 1

0

Z 1

0

u(x; y; t)dxdy + g1 =
1

9
et +

1

6
; g1 =

1

6

u(1; y; t) =

Z 1

0

Z 1

0

u(x; y; t)dxdy + g2 =
1

9
et +

1

3
; g2 =

1

3

u(x; 0; t) =

Z 1

0

Z 1

0

u(x; y; t)dxdy + g3 =
1

9
et +

1

4
; g3 =

1

4

u(x; 1; t) =

Z 1

0

Z 1

0

u(x; y; t)dxdy =
1

9
et (386)

Using (8,14),(8,15) for (8,5) we have

@u0
@t

� @u0
@t

= 0; u0 = x2y2 (387)

@u1
@t

� 1
4
(x2

@2u0
@x2

+ y2
@2u0
@y2

) = 0

@u1
@t

= x2y2

u1 = x2y2t

@u2
@t

� 1
4
(x2

@2u1
@x2

+ y2
@2u1
@y2

) = 0

@u2
@t

= (x2y2)t

u2 = (x
2y2)

t2

2!

@u3
@t

� 1
4
(x2

@2u2
@x2

+ y2
@2u2
@y2

) = 0

@u3
@t

= x2y2
t2

2!

u3 = x2y2
t3

3!
:

129



@un
@t

� 1
4
(x2

@2un�1
@x2

+ y2
@2un�1
@y2

) = 0

@un
@t

= x2y2
tn�1

(n� 1)!

un = x2y2
tn

n!

The solution in the series form is given by

u(x; y; t) = x2y2(1 +
t

1!
+
t2

2!
+
t3

3!
+ :::+

tn

n!
+ :::) (388)

And in a closed form by

u(x; y; t) = x2y2et (389)

This solution coincides with the exact one.

Example 6
Consider the problem

@u

@t
=
1

6
(x2

@2u

@x2
+ y2

@2u

@y2
+ z2

@2u

@z2
); 0 < x; y; z < 1; 0 < t � T (390)

Subject to the initial condition

u(x; y; z; 0) = x2y2z2 (391)

And the boundary conditions

u(0; y; z; t) =

Z 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz + g1 =
1

27
et; g1 = 0

u(1; y; z; t) =

Z 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz + g2 =
1

27
et +

1

2
t; g2 =

1

2
t

u(x; 0; z; t) =

Z 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz + g3 =
1

27
(et + 1); g3 =

1

27

u(x; 1; z; t) =

Z 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz + g4 =
1

27
(et + 3); g4 =

1

9

u(x; y; 0; t) =

Z 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz + g5 =
1

27
et +

1

6
; g5 =

1

6
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u(x; y; 1; t) =

Z 1

0

Z 1

0

Z 1

0

u(x; y; z; t)dxdydz + g6 =
1

27
et +

1

5
t; g6 =

1

5
t

(392)

From equations (8,10)-(8,15) we get the following equations

@u0
@t

� @u0
@t

= 0; u0 = x2y2z2 (393)

@u1
@t

� 1
6
(x2

@2u0
@x2

+ y2
@2u0
@y2

+ z2
@2u0
@z2

) = 0

@u1
@t

=
1

6
(2x2y2z2 + 2x2y2z2 + 2x2y2z2) = x2y2z2

u1 = x2y2z2
t

1!

@u2
@t

� 1
6
(x2

@2u1
@x2

+ y2
@u1
@y2

+ z2
@u1
@z2

) = 0

@u2
@t

=
1

6
(2x2y2z2 + 2x2y2z2 + 2x2y2z2)t = x2y2z2t

u2 = x2y2z2
t2

2!

@u3
@t

� 1
6
(x2

@2u2
@x2

+ y2
@2u2
@y2

+ z2
@2u2
@z2

) = 0

@u3
@t

=
1

6
(2x2y2z2 + 2x2y2z2 + 2x2y2z2)

t2

2!
= x2y2z2

t2

2!

u3 = x2y2z2
t3

3!
:

@un
@t

� 1
6
(x2

@2un�1
@x2

+ y2
@2un�1
@y2

+ z2
@2un�1
@z2

) = 0

@un
@t

=
1

6
(x2

@2un�1
@x2

+ y2
@2un�1
@y2

+ z2
@2un�1
@z2

)
tn�1

(n� 1)! = x2y2z2
tn�1

(n� 1)!

un = x2y2z2
tn

n!
(394)

Hece, the approximate solution is given by

u(x; y; z; t) = u0 + u1 + u2 + u3 + ::+ un + ::

Or

u(x; y; z; t) = x2y2z2(1 +
t

1!
+
t2

2!
+
t3

3!
+ ::+

tn

n!
+ ::)
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Therefore we obtain

u(x; y; z; t) = x2y2z2et (395)

So, the exact solution of the problem is obtained.

Example 7

consider the problem

utt = (u
�1ux)x; 0 < x < 1; 0 < t � T (396)

With the initial condition

u(x; 0) =
1

(1 + x)2
; ut(x; 0) = 0 (397)

According to the HPM, we have

H(u; p)= (1� p)(
@2u

@t2
� @2u0

@t2
) + p(

@2u

@t2
� @

@x
(u�1

@u

@x
)) (398)

=0 (399)

By equating the terms with the identical powers of p , yields

p0 :
@2u0
@t2

� @2u0
@t2

= 0;
@2u0
@t2

= 0; u0 =
1

(1 + x)2
(400)

p1 :
@2u1
@t2

� @

@x
(u�10

@u0
@x
) = 0

@2u1
@t2

=
2

(1 + x)2

u1 =
2

(1 + x)2
t2

2!

p2 :
@2u2
@t2

� @

@x
(u�11

@u1
@x
) = 0

@2u2
@t2

=
2

(1 + x)2

u2 = u1

Then,
u = u0 + u1

Or

u(x; t) =
1 + t2

(1 + x)2
(401)
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Which is the exact solution.

Example 8

Consider the following problem

@2u

@t2
=

@

@x
(u�2

@u

@x
) (402)

Subject to the initial condition

u(x; 0) =
1

2 + x
;
@u

@t
(x; 0) =

�t
2 + x

(403)

We suggest u0(x; t) = 1�t
2+x
. doing as above we can get the following

equations
@2u0
@t2

� @2u0
@t2

= 0; u0 =
1� t

2 + x
(404)

@2u1
@t2

� @

@x
(u�20

@u0
@x
) = 0

@2u1
@t2

=
@

@x
(u�2

@u0
@x
) = 0

u1 = 0

Then, we obtain the solution

u(x; t) =
1� t

2 + x
(405)

Which is the exact solution.
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Example 1

hx =
1

10
; ht =

1

250

xi uex uhpm 1� iterate juex � uhpmj
0:0 1:004 1:0 0:004

0:1 1:0092 1:0052 0:004

0:2 1:0254 1:0214 0:004

0:3 1:0539 1:0499 0:004

0:4 1:0958 1:0918 0:004

0:5 1:1527 1:1487 0:004

0:6 1:2261 1:2221 0:004

0:7 1:3178 1:3138 0:004

0:8 1:4295 1:4255 0:004

0:9 1:5636 1:5596 0:004

1:0 1:7223 1:7183 0:004
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uex = exp(x)� x+ t

44

0 0
0­2

xy

­2
­4 ­4

2 2

50
z

100

150

Variation of uex = exp(x) � x + t for di¤erent values of x and
t

uhpm = exp(x)� x

44

22

0 0
0

­2

xy

­2
­4­4

20
40
60
80z

120
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Variation of uhpm = exp(x)� x for di¤erent values of x
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Example 2

hx =
1

10
; ht =

1

250

xi uex uhpm 2� iterates juex � uhpmj
0:0 1:6� 10�5 8:016� 10�3 0:008

0:1 1:0016� 10�2 1:8016� 10�2 0:008

0:2 4:0016� 10�2 4:8016� 10�2 0:008

0:3 9:0016� 10�2 9:8016� 10�2 0:008

0:4 0:16002 0:16002 0:0

0:5 0:25002 0:25802 0:008

0:6 0:36002 0:36802 0:008

0:7 0:49002 0:49802 0:008

0:8 0:64002 0:64802 0:008

0:9 0:81002 0:81802 0:008

1:0 1:0 1:008 0:008
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uex = x2 + t2
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Variation of uex = x2 + t2 for di¤erent values of x and t

uhpm = x2 + t2 + 2t
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Variation of uhpm = x2 + t2 + 2t for di¤erent values of x and t
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Example 3

hx =
1

10
; ht =

1

250

xi uex uhpm 5� iterates juex � uhpmj
0:0 1:004 1:004 0:0

0:1 1:1096 1:1096 0:0

0:2 1:2263 1:2263 0:0

0:3 1:3553 1:3553 0:0

0:4 1:4978 1:4879 0:0

0:5 1:6553 1:6553 0:0

0:6 1:8294 1:8294 0:0

0:7 2:0218 2:0218 0:0

0:8 2:2345 2:2345 0:0

0:9 2:4695 2:4695 0:0

1:0 2:7292 2:7292 0:0
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uex = exp(x+ t)
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Example 4

hx =
1

10
; ht =

1

250

xi uex uhpm 5� iterate juex � uhpmj
0:0 0:0 0:0 0:0

0:1 0:01004 0:01004 0:0

0:2 0:04016 0:04016 0:0

0:3 9:036� 10�2 9:036� 10�2 0:0

0:4 0:16064 0:16064 0:0

0:5 0:251 0:231 0:0

0:6 0:36144 0:36144 0:0

0:7 0:49196 0:49196 0:0

0:8 0:64257 0:64257 0:0

0:9 0:81325 0:81325 0:0

1:0 1:004 1:004 0:0
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uex = x2 exp(t)
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Example 5

hx =
1

10
; ht =

1

250

xi uex uhpm 5� iterate juex � uhpmj
0:0 0:0 0:0 0:0

0:1 1:004� 10�4 1:004� 10�4 0:0

0:2 1:6064� 10�3 1:6064� 10�3 0:0

0:3 8:1325� 10�3 8:1325� 10�3 0:0

0:4 2:5703� 10�2 8:5703� 10�2 0:0

0:5 6:2751� 10�2 8:2751� 10�2 0:0

0:6 0:13012 0:13012 0:0

0:7 0:24106 0:24106 0:0

0:8 0:41124 0:41124 0:0

0:9 0:65873 0:65873 0:0

1:0 1:004 1:004 0:0
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uex = x2y2 exp( 1
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Example 6

hx = hy = hz =
1

10
; ht =

1

250

xi yj zk uex uhpm 5� iterate juex � uhpmj
0:0 0:0 0:0 0:0 0:0 0:0

0:1 0:1 0:1 1:004� 10�6 1:004� 10�6 0:0

0:2 0:2 0:2 6:4257� 105 6:4257� 10�5 0:0

0:3 0:3 0:3 7:3192� 10�4 7:3192� 10�4 0:0

0:4 0:4 0:4 4:1124� 10�3 4:1124� 10�3 0:0

0:5 0:5 0:5 1:5688� 10�2 1:5688� 10�2 0:0

0:6 0:6 0:6 4:6843� 10�2 4:6843� 10�2 0:0

0:7 0:7 0:7 0:11812 0:11812 0:0

0:8 0:8 0:8 0:26319 0:26319 0:0

0:9 0:9 0:9 0:53357 0:53357 0:0

1:0 1:0 1:0 1:004 1:004 0:0
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uex = (5:5)x
2y2 exp( 1
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Example 7

hx =
1

10
; ht =

1

250

xi uex uhpm 1� iterate juex � uhpmj
0:0 1:0 1:0 0:0

0:1 0:82646 0:82645 0:00001

0:2 0:69446 0:69444 0:00002

0:3 0:59173 0:59172 0:00001

0:4 0:51021 0:51020 0:00001

0:5 0:44445 0:44444 0:00001

0:6 0:39063 0:39063 0:0

0:7 0:34603 0:34602 0:00001

0:8 0:30865 0:30864 0:00001

0:9 0:27701 0:27701 0:0

1:0 0:25 0:25 0:0
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uex =
1+t2

(1+x)2
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uex =
1�t
2+x
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3.7 CONCLUSION

In this thesis we made a detailed study of some relatively new tech-
niques along with some of their applications. In partucular, we focused
on high-order �nite di¤erence schemes HOFS, Adomian decomposition
method ADM and homotopy pertubation method HPM and discussed in
lenght their respective applications in solving various diversi�ed initial
and boundary value problems. �rst, we proposed and employed HOFS
unconditionally stable, the results obtained are of order O(h6x + h4t ) [6].
The next methods are employed without using linearization, discretiza-
tion, transformation, or restrictive assumptions, absorb the positve fea-
tures, the coupled techniques and hence are very much compatible with
the diversi�ed and versatile nature of the physical problems, the results
obtained are all in good agreement with the exact solutions of the prob-
lems under study [1-5]. moreover these methods are easier to implement
and are more user friendly as compared to the tradional techniques. It
may be concluded that the relatively new techniques can be treated as
alternatives for solving a wide class of non linear problems. We would
like to mention that the techniques and ideas presented in this thesis
can be extended for �nding the analytic solution of the obstacle, unilat-
eral, free, moving, and contact problems which arise in various branches
of mathematical, physical, medical, structure analysis, and engineering
sciences. These problems can be studied in the general, natural, and
uni�ed framework of variational inequalities. In a variational inequality
framework of such problems, the location of contact area (free or moving
boundary) becoms an integral part of the solution and no special tech-
niques are needed to obtain it. It is well-known that if the obstacle is
known then the variational inequalities can be characterized by system
of variational equations. This area of research is not yet developed and
o¤ers a wealth of new opportunities for further research.
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