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Introduction

Mathematical modeling of physical phenomena and biological processes often leads

to nonlocal problems for partial di¤erential equations.

Recently, nonlocal boundary value problems for parabolic and hyperbolic equa-

tions with an integral condition on the lateral boundary have been actively studied,

integral conditions appear in cases where, for example, a direct measurement of phys-

ical quantities is impossible, but their averaged values are known. Such situations

occur in studying plasma processes [1], heat conduction [4, 81, 89], certain manufac-

turing processes [88], moisture transfer in porous media [119], inverse problems [120],

as well as problems in mathematical biology [53] and demography [85].

Apparently, one of the �rst papers treating problems with integral conditions is

[81], in which for the one-dimensional heat equation the unique solvability of the mixed

problem with Dirichlet conditions on part of the boundary and an integral condition

was established. In [89] this result was extended to the general equation of parabolic

type. The development of the theory of nonlocal problems for di¤erential equations is

proceeding vigorously. Gushchin andMikhailov (see [55] and the bibliography therein)

studied the solvability of nonlocal problems for second order elliptic equations in which

iii
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the values of the solution on the boundary are related to the values at the interior

points by means of some operator, which in particular, can be an integral one. In [57]

Paneyakh studied a class of nonlocal conditions such that the values of the solution

at a point of the boundary are expressed in terms of the integral of the solution with

respect to the measure corresponding to this point and obtained constraints under

which there exists a unique classical solution of the problem under study. A number

of papers dealt with the disposition of the spectrum of operators arising from nonlocal

problems for ordinary [51] and partial di¤erential equations [56].

The investigations on nonlocal problems with integral conditions for hyperbolic

equations have appeared. Mixed problems in which one or both boundary conditions

were replaced by integral ones were studied in [9, 62]. The unique solvability of a

problem having as data only integral conditions was established in [91]. It should

be noted that the classical solution of a problem in such a setting, one that can be

described as the integral analog of the Goursat problem, was obtained for the simplest

equation uxy = 0 in [122].

This dissertation investigates the use of the Rothe discretization in time method

in solving evolution problems with integrodi¤erential equations and a nonclassical

boundary conditions. Since 1930, various classical types of initial boundary value

problems have been investigated by many authors using this method, it�s developed

and applied to linear as well as nonlinear evolution equations by Rektorys [105],

Bouziani [39], Kartsatos and Zigler [50], Neµcas [80], Bahuguna and Raghavendra [59],

and others. It consists in replacing the time derivatives in an evolution equation by

the corresponding di¤erence quotients giving rise to a system of time-independent
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operator equations. An approximate solution to the evolution equation is de�ned

in terms of the solutions of these time-independent systems. After proving a priori

estimates for the approximate solution, the convergence of the approximate solution

to the unique solution of the evolution equation is established. We remark that

the application of Rothe method to nonlocal problems in Chapters 3 and 4 is made

possible thanks to the use of the so-called Bouziani space, �rst introduced by Bouziani

Abd-Elfattah, see, for instance, [9, 19, 98].

This research began ( Chapter 2 ) with the study of the following problem ( with

a quasilinear hyperbolic equations ):

@2v

@t2
+ �2�2kv + �2�2k @v

@t
= g

�
x; t; v;

@v

@t

�
; (x; t) 2 
� [0; T ] ; (1)

v(0; x) = '01 (x) ;
@

@t
v(0; x) = '02 (x) ; x 2 
; (2)

vj��(0;T ) =  1; �ivj��(0;T ) =  0i; �k+ivj��(0;T ) =  i+2; i = 0; :::; k � 1: (3)

where v is an unknown function, '01; '
0
2;  i;  

0
i and g are a given functions supposed

to be su¢ ciently regular and T is a positive constant. The present chapter can be

considered as a generalization of the problems studied in my magister thesis in the

way that the conditions are nonhomogenious and the considered equation is a 2k-

dimensional one. It appears in various �elds of physics and engineering sciences,

for example, in the study of transverse and longitudinal oscillations of a viscoelastic

bar. Along a di¤erent line, the case of linear hyperbolic equation with homogeneous

boundary and initial conditions was considered by Gaiduk [87] and Bouziani [21], in

[87] the author proved, with the aid of the method of contour integral, while, in [21]
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the author use a functional analysis method based on an energy inequality to prove

the existence and uniqueness of the solution.

In the next chapter, we deal with a class of semilinear parabolic integrodi¤erential

equations (T is a positive constant and 
 is a bounded open domain in Rn with a

Lipschitz boundary �):

@v

@t
(x; t)� @2v

@x2
(x; t) =

Z t

0

a (t� s) k0 (s; v (x; s)) ds+ g (x; t) ; (4)

Z 1

0

v(x; t)dx = E (t) ;

Z 1

0

xv(x; t)dx = G (t) ; t 2 [0; T ]; (5)

v(x; 0) = V0(x); x 2 (0; 1); (6)

where v is an unknown function, E; G; V0; k0 and a are a given functions supposed to

be su¢ ciently regular and T is a positive constant. The linear case of this problem,

i.e.
R t
0
a (t� s) k0 (s; v (x; s)) ds = 0, appears for instance in the modeling of the quasi-

static �exure of a thermoelastic rod (see [28]) and has been studied, �rstly, with a

more general second-order parabolic equation or a 2m-parabolic equation in [18, 28]

by means of the energy-integrals method and, secondly, via the Rothe method [98].

For other models, we refer the reader, for instance, to [58-61], and references therein.

The purpose of the last chapter is to study the solvability of the following problem

@2v

@t2
� @2v

@x2
� @3v

@t@x2
=

Z t

0

a (t� s) k0 (s; v) ds+ g

�
t; v;

@v

@t

�
; (7)

Z 1

0

v(x; t)dx = E (t) ;

Z 1

0

xv(x; t)dx = G (t) ; t 2 [0; T ]; (8)

v(x; 0) = V0(x);
@

@t
v(x; 0) = W0(x); x 2 (0; 1); (9)
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where a; k0; g; V0; W0; E and G are su¢ ciently regular given functions of the

indicated variables and T is a positive constant.

Problems of this type were �rst introduced in [35], in which the �rst author proved

the well-posedness of certain linear hyperbolic equations with integral conditions.

Later, similar problems with equations

@2v

@t2
� @2v

@x2
= g

�
t; v;

@v

@t

�
;

and

@2v

@t2
� @2v

@x2
� �2

@3v

@t@x2
= g

�
t; v;

@v

@t

�
;

have been studied in [59] by using the Rothe method and in [9, 17, 24, 30, 35,

62, 90, 91, 109] by other methods, as energetic method, the Schauder �xed point

theorem, Galerkin method, and the theory of characteristics, other kinds of nonlinear

integral perturbations have been investigated by Bahuguna and Raghavendra [59] for

nonlinear parabolic and hyperbolic problems.



Chapter 1

Background

In the course of this thesis, we will work in the standard functional spaces of the

types C(I;X); C0;1(I;X); and L1(I;X); where X is a Banach space, the main

properties of which can be found in [73].Our analysis requires also the use of the

space of functions which are square integrable in the Bochner sense, i.e. Bochner

integrable and satisfying Z
I

ky (t)k2H dt < +1;

denotes this space by L2 (I;H) : A primitive function

Y (t) =

Z t

0

y (�) d� ;

to the function y (t) can be de�ned, in this case, on the basis of the Riesz theorem, it

can be shown that

Lemma 1 If H is a Hilbert space and y 2 L2 (I;H) ; then, the function

Y (t) =

Z t

0

y (�) d� ;

1
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possesses the following properties

i) Y is a continuous abstract function in the interval I; i.e.

Y 2 C(I;H):

ii) Y is absolutely continuous in I; i.e.

Y 2 AC(I;H):

iii) Y is strongly di¤erentiable a.e. in I; we write

Y 0(t) = y(t) in L2(I;H):

iv) If Y is integrable and g 2 H; then

(Y (t); g)H =

Z t

0

(y(�); g)Hd� ;

holds for all t 2 I:

v) Moreover, we have

Y (0) = 0 in H:

Let (�;�) and k�k be the usual inner product and the corresponding norm respec-

tively in L2(0; 1):We de�ne on C0(0; 1) (the vector space of continuous functions with

compact support in (0; 1)) the bilinear form given by

((u; v)) =

Z 1

0

=xu=xvdx; (1.1)

where

=xu =
Z x

0

u (�; :) d�: (1.2)

The bilinear form (1:1) is considered as a scalar product on C0(0; 1) for which C0(0; 1)

is not complete.
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De�nition 2 We denote by B1
2(0; 1) a completion of C0(0; 1) for the scalar product

(2:1); which is denoted (�;�)B; called the Bouziani space or the space of square integrable

primitive functions on (0; 1): By the norm of function u from B1
2(0; 1); we understand

the nonnegative number:

kukB =
p
(u; u)B = k=xuk : (1.3)

For u 2 L2(0; 1); we have the elementary inequality

kukB �
1p
2
kuk : (1.4)

We denote by L2(0; T ;B1
2(0; 1)) the space of functions which are square integrable

in the Bochner sense, with the scalar product

(u; v)L2(0;T ;B12(0;1))
=

Z T

0

(u (:; t) ; v (:; t))Bdt:

Since the spaceB1
2(0; 1) is a Hilbert space, it can be shown that L2(0; T ;B

1
2(0; 1)) is

a Hilbert space as well. The set of all continuous abstract functions in [0; T ] equipped

with the norm

sup
0���T

ku (:; �)kB ; (1.5)

is denoted C(0; T ;B1
2(0; 1)):

De�nition 3 the set of all u 2 L2 (
) such that �iu 2 L2 (
) ; i = 1; k equipped

with the norm

kukH =
�
kuk2 +

�ku
2� 1

2
;

associated to the inner product

(u; v)H = (u; v) +
�
�ku;�kv

�
;
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is called the space H
�
�k;


�
: Clearly, H

�
�k;


�
is a Hilbert space for (:; :)H .

The nature of the boundary conditions in our problems suggests to introduce the

following spaces

V =
�
v 2 H

�
�k;


�
; v � 0 and �iv � 0; i = 1; :::; k � 1 over �

	
; (1.6)

for the �rst problem and for the second and the last

W =

�
v 2 L2(0; 1);

Z 1

0

v (x) dx =

Z 1

0

xv (x) dx = 0

�
; (1.7)

which are clearly Hilbert spaces for (�;�): Strong or weak convergence is denoted by!

or *, respectively. The letter C will stand for generic positive constant which may

be di¤erent in the same discussion.

Lemma 4 (Gronwall�s Lemma) (a1) Let x(t) � 0; h(t); y(t) be real integrable func-

tions on the interval [a; b]: If

y(t) � h(t) +

Z t

a

x (s) y(s)ds; 8t 2 (a; b) ; (1.8)

then

y(t) � h (t) +

Z t

a

h (s)x (s) exp

0@ tZ
s

x (�) d�

1A ds; 8t 2 (0; T ): (1.9)

In particular, if x(t) � C is a constant and h(t) is nondecreasing, then

y(t) � h(t)ec(t�a); 8t 2 (0; T ): (1.10)

(a2) Let faigi be a sequence of real nonnegative numbers satisfying

ai � A+Bh

i�1X
k=1

ak; 8i = 1; 2; :::; (1.11)
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where A;B and h are positive constants. Then

ai � A exp [B (i� 1)h] ; (1.12)

takes place for all i = 1; 2; ::::

(a3) If

ai 6 A+Bh
iX

k=1

ak; 8i = 1; 2; :::;

with h < 1
b
, then

ai 6
A

1�Bh
exp

�
B(i� 1)h
1�Bh

�
; 8i = 1; 2; :::: (1.13)

Proof. (a1) De�ne

v (s) = exp

�
�
Z s

a

x (r) dr

�Z s

a

x (r) y (r) dr; s 2 I:

Using the product rule, the chain rule, the derivative of the exponential function and

the fundamental theorem of calculus, we obtain for the derivative

v0 (t) =

0BBB@y (s)�
Z s

a

x (r) y (r) dr| {z }
�h(s)

1CCCA� x (r) exp

�
�
Z s

a

x (r) dr

�
; s 2 I;

where we used the assumed integral inequality for the upper estimate. Since x and

the exponential are non-negative, this gives an upper estimate for the derivative of v.

Since v(a) = 0, integration of this inequality from a to t gives

v (t) �
Z t

a

h (s)x (s) exp

�
�
Z s

a

x (r) dr

�
ds:
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Using the de�nition of v(t) for the �rst step, and then this inequality and the func-

tional equation of the exponential function, we obtainZ t

a

x (s) y (s) ds = exp

�Z t

a

x (r) dr

�
v (t)

�
Z t

a

h (s)x (s) exp

�Z t

a

x (r) dr �
Z s

a

x (r) dr

�
ds:

Substituting this result into the assumed integral inequality gives Grönwall�s inequal-

ity.

If the function h is non-decreasing, then part (a1), the fact h(s) � h(t); and the

fundamental theorem of calculus imply that

y (t) � h (t) +

�
�h (t) exp

�Z t

s

x (r) dr

������s=t
s=a

= h (t) exp

�Z t

s

x (r) dr

�
; t 2 I:

To prove assertion (a2) ; we rewrite the assumed inequality in the form

ai � Ai + L
i�1X
j=1

hai; where Ai =
Ai

1� Lh
; L = Lh =

L

1� Lh
; i = 1; ::: ;

from this inequality we successively deduce

a1 � A1; a2 � A2
�
1 + Lh

�
; :::; ai � Ai

�
1 + Lh

�i�1
:

Hence and from

�
1 + Lh

�i�1
=
h�
1 + Lh

�h�1i(i�1)h � exp �(i� 1)hL� ;
we obtain assertion (a2) :

Lemma 5 Let fujgj be a sequence such that uj 2 L2 (
) ; 8j 2 N�; hence

�
uj � uj�1; uj

�
=
1

2

uj2 + 1
2

uj � uj�1
2 � 1

2

uj�12 ;
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holds for all j 2 N�:

The following lemma plays a crucial rôle, especially in chapters 3 and 4:

Lemma 6 Let V; Y be two Hilbert spaces with v ,! Y: If un ! u in C(I; Y ) and the

estimates

k~un(t)kv 6 c; for all t 2 I;du(n)dt
(t)


Y

6 c; for a.e. t 2 I;

hold for all n > n0 > 0, then

(i) u 2 L1(I; V ) \ C0;1 (I; Y ) ;

(ii) u is di¤erentiable a.e. in I and
du

dt
2 L1 (I; Y ) ;

(iii) un(t)* u(t); ~un(t)* u(t) in V for all t 2 I;

(iv)
du(n)

dt
*

du

dt
in L2 (I; Y ) :

Proof. Cf [73; page 26]



Chapter 2

Existence and uniqueness of the

solution of an evolution problem

for a quasilinear pseudo-hyperbolic

equation

2.1 Statement of the problem

In the present chapter, we deal with a class of quasilinear pseudo-hyperbolic equations

(T is a positive constant and 
 is a bounded open domain in Rn with a Lipschitz

boundary �):

@2s

@t2
+ �2�2ks+ �2�2k @s

@t
= g

�
t; x; s;

@s

@t

�
; (t; x) 2 
� [0; T ] ; (2.1)

9
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subject to the initial conditions

s(0; x) = '01 (x) ;
@

@t
s(0; x) = '02 (x) ; x 2 
; (2.2)

and the boundary conditions

sj��(0;T ) =  1; �isj��(0;T ) =  0i i = 0; :::; k � 1; (2.3)

�k+isj��(0;T ) =  i+2; i = 0; :::; k � 1: (2.4)

Introducing a new unknown function u(t; x) = s(t; x)� 1(t; x); our problem with

nonhomogeneous boundary conditions can be equivalently reduced to the problem of

�nding a function satisfying

@2u

@t2
+ �2�2ku+ �2�2k @u

@t
= f

�
t; x; u;

@u

@t

�
; (x; t) 2 
� [0; T ] ; (2.5)

u(0; x) = '1 (x) ;
@

@t
u(0; x) = '2 (x) ; x 2 
; (2.6)

uj��(0;T ) = 0; �iuj��(0;T ) = 0 i = 0; :::; k � 1; (2.7)

�k+iuj��(0;T ) = 0; i = 0; :::; k � 1; (2.8)

where

f(t; x; u;
@u

@t
) := g

�
t; x; u;

@u

@t

�
� @2 1

@t2
� �2�2k 1 � �2�2k @ 1

@t
;

and

'1 (x) = '01 (x)�  1 (0; x) ; '2 (x) = '02 (x)�
@

@t
 1(0; x):

Hence, instead of studying directly the problem (2:1)� (2:4) ; we concentrate our

attention on problem (2:5) � (2:8): Once u is known, the function s is immediately

obtained through the relation s = u+  1. Throughout the chapter, we assume that
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H1� f (t; p; q) 2 L2 (
) for each (t; p; q) 2 I � V � V; with

V =
�
v 2 H

�
�k;


�
; v � 0 and �iv � 0; i = 1; :::; k � 1 over �

	
: (2.9)

H2� For some positive constant L; the following Lipschitz condition

kf (t; p; q)� f (t0; p0; q0)k � L (jt� t0j+ kp� p0k+ kq � q0k) ;

is satis�ed for all t; t0 2 I; and all p; p0; q; q0 2 V:

H3 � '1; '2; �'1; �'2 2 H
�
�2k;


�
\ V:

H4�  i;  
0
i 2 L2 (
) ; i = 1; 2k:

To close this section, we announce the main result of the chapter.

Theorem 7 Under assumptions (H1)� (H4) ; problem (2:5)� (2:8) admits a unique

weak solution u in the sense of8>>>>>><>>>>>>:
u 2 AC(I; V );

u0 2 L2(I; V ) \ AC(I; L2(
));

u00 2 L2(I; L2(
));8>><>>:
u(0) = '1;

u0(0) = '2;

and Z T

0

(u00(t); v(t)) dt+ �2
Z T

0

�
�ku(t);�kv(t)

�
dt+ �2

Z T

0

�
�ku0(t);�kv(t)

�
dt

=

Z T

0

(f(t; u (t) ; u0 (t)); v(t)) dt; 8v 2 L2(I; V );

here the derivative du
dt
is denoted by u0:

The proof of the last result will be carried out along the following sections.
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2.2 Construction of the approximate solutions

In order to solve problem (2:5)�(2:8) by the Rothe method, we divide the time interval

[0; T ] into n subintervals [tj�1; tj]; j = 1; :::; n; where tj = jh and h = T=n: Then,

replacing @
@t
u and @2

@t2
u by the corresponding standard di¤erence quotient, problem

(2:5)� (2:8) may be approximated at each point t = tj; j = 1; :::; n; by the following

time discretized problem.

Find a function uj : 
! Rn; such that

uj � 2uj�1 + uj�2
h2

+ �2�2kuj + �2�2kuj � uj�1
h

= fj; (2.10)

or

�2uj + �2�2kuj + �2�2k�uj = fj; 8j = 1; n; (2.11)

ujj� = 0; �iujj� = 0; :::i = 0; k � 1; (2.12)

�k+iujj� = 0; :::i = 0; k � 1; (2.13)

where

�uj :=
uj � uj�1

h
; �2uj :=

�uj � �uj�1
h

;

and where

fj := f (tj; x; uj�1; �uj�1) ;

starting from

u�1(x) = '1(x)� h'2(x); u0(x) = '1(x); x 2 
: (2.14)

From (2:10) ; we have

uj
h2
+ �2�2kuj + �2�2kuj

h
= fj +

2uj�1 � uj�2
h2

+ �2�2kuj�1
h

: (2.15)
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Multiplying for all j = 1; :::; n; (2:11); (2:15) by v 2 V and integrating over 
, we get

�
�2uj; v

�
+ �2

�
�2kuj; v

�
+ �2

�
�2k�uj; v

�
= (fj; v) ; 8j = 1:n; (2.16)

or

1

h2
(uj; v) + �2

�
�2kuj; v

�
+ �2

1

h

�
�2kuj; v

�
=

�
fj +

2uj�1 � uj�2
h2

+ �2�2kuj�1
h

; v

�
: (2.17)

For all j = 1; :::; n; and all p = 1; :::; k; we have

�
�2puj; v

�
=

Z



nX
i=1

@2

@x2i

�
�2p�1uj

�
vdx

=

Z
�

@

@�
�2p�1ujv d� �

Z



nX
i=1

@

@xi
�2p�1uj

@v

@xi
dx:

But, due to (2:9); v � 0 over �; then

�
�2puj; v

�
= �

Z



nX
i=1

@

@xi
�2p�1uj

@v

@xi
dx:

Integrating by parts the right-hand side, it follows

�
�2puj; v

�
= �

Z
�

nX
i=1

�2p�1uj
@v

@xi
cos (�; xi) d� +

Z



�2p�1uj�vdx;

consequently �
�2puj; v

�
=
�
�2p�1uj;�v

�
; 8v 2 V; 8p = 1; k; (2.18)

hence, having in mind that �ivj� = 0; �
k+ivj� = 0; ::::::i = 1; k � 1

�
�2kuj; v

�
=
�
�kuj;�

kv
�
; 8v 2 V: (2.19)

Substituting (2:19) in (2:16); (2:17) respectively, we get

�
�2uj; v

�
+ �2

�
�kuj;�

kv
�
+ �2

�
�k�uj;�

kv
�
= (fj; v) ; 8v 2 V; (2.20)
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and

1

h2
(uj; v) + �2(�kuj;�

kv) + �2
1

h
(�kuj;�

kv)

=

�
fj +

2uj�1 � uj�2
h2

; v

�
+
�2

h

�
�kuj�1;�

kv
�
; 8v 2 V: (2.21)

Putting

Fj = fj +
2uj�1 � uj�2

h2
�
2 L2 (
)

�
; (2.22)

and

a (uj; v) =
1

h2
(uj; v) + �2

�
�kuj;�

kv
�
+ �2

1

h

�
�kuj;�

kv
�
; (2.23)

identity (2:21) becomes

a(uj; v) = Lj (v) ; 8v 2 V; 8j = 1; p; (2.24)

with

Lj (v) = (Fj; v) +
�2

h

�
�kuj�1;�

kv
�
; 8j = 1; p:

Let�s prove now that the bilinear form a(:; :) is continuous and V � elliptic.

Using (2:23), we get

a(v; v) =
1

h2
(v; v) + �2

�
�kv;�kv

�
+ �2

1

h

�
�kv;�kv

�
=

1

h2
kvk2 +

�
�2 +

1

h
�2
��kv

2
� k kvk2H , 8v 2 V;

with

k = min

�
�2 +

1

h
�2;

1

h2

�
:
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Therefore, majorize the bilinear form a(:; :) (by virtue of the Cauchy-Schwarz inequal-

ity), we get

a(u; v) =
1

h2
(u; v) +

�
�2 +

1

h
�2
��
�ku;�kv

�
�

�
1

h2
kuk kvk+

�
�2 +

1

h
�2
��ku

�kv
�

�
�
1

h2
kukH kvkH +

�
�2 +

1

h
�2
�
kukH kvkH

�
�

�
�2 +

1

h
�2 +

1

h2

�
kukH kvkH

� k
0 kukH kvkH ; 8u; v 2 V;

with

k
0
= �2 +

1

h
�2 +

1

h2
;

from which it follows that the forme a(:; :) is continuous and V � elliptic.

On the other hand, we have

jLjvj � kFjk kvk+
�2

h

�kuj�1
�kv


� max(1;

�2

h
)
�
kFjk+

�kuj�1
� kvkH ; 8v 2 V;

from which we deduce that the forme Lj(�); j = 1; :::; n; is continuous overH(�k;
).

Therefore, according to the Lax-Milgram theorem, for each j = 1; :::; n; problem

(2:11)� (2:13) admits a unique solution uj 2 V .

Denote by unj ; �u
n
j ; �

2unj ; the expressions corresponding to the divisions dn with

step lengths hn = T
n
:
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2.3 A priori estimates

Proposition 8 For each n 2 N� and each j = 1; :::; n; the solutions uj of the time-

discretized problem (2:11)� (2:13) satisfy the estimates

�2unj  � �; 8j = 1; n; (2.25)�unj H � �

j�j ; 8j = 1; n; (2.26)unj H � �

j�jT + k'1kH ; 8j = 1; n; (2.27)

where

� =
q
2 [3K2

2 + �2K2
1 + TL] exp [LT ] ;

with

K1 = 2TM + k'2k+
�
�2 + 1

� �k'1
 ;

K2 = M +
�2�2k'1 + �2�2k'2

+ ��2
2
+ 1

��k'2
 ;

M = L (k'1k+ k'2k) + max
0�t�T

kf (t; 0; 0)k ;

and

 = max

�
1

�2
; 1

��
4 +

T + 1

L
�2
�
:

Proof. Now, for j = 1; :::; n; we take the di¤erence of the relations (2:20)j �

(2:20)j�1, tested with v = �2uj = (�uj � �uj�1)=h which belongs to V , we have

(�2uj � �2uj�1; �
2uj) + �2

�
�k�uj;�

k (�uj � �uj�1)
�
+ �2h

�
�k�2uj;�

k�2uj
�

= (fj � fj�1; �
2uj):
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Accordingly, due to assumption H2 and Lemma 5; we get

�2uj2 + �2uj � �2uj�1
2 + �2

�k�uj
2

+�2
�k (�uj � �uj�1)

2 + 2h�2 �k�2uj
2

�
�2uj�12 + �2

�k�uj�1
2

+2L(jtj � tj�1j+ kuj�1 � uj�2k+ k�uj�1 � �uj�2k)
�2uj ;

then

�2uj2 + �2uj � �2uj�1
2 + �2

�k�uj
2

+�2
�k (�uj � �uj�1)

2 + 2h�2 �k�2uj
2

�
�2uj�12 + �2

�k�uj�1
2

+2Lh(1 + k�uj�1k+
�2uj�1)�2uj : (2.28)

On the other hand, thanks to the Cauchy inequality

jabj � "

2
a2 +

1

2"
b2; 8a; b 2 R; et " > 0;

we can write, for " = 1

k�uj�1k
�2uj � 1

2
k�uj�1k2 +

1

2

�2uj2 ;�2uj�1�2uj � 1

2

�2uj�12 + 1
2

�2uj2 ;
and

�2uj � 1

2
+
1

2

�2uj2 ;
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hence

(1 + k�uj�1k+
�2uj�1)�2uj =

�2uj+ k�uj�1k�2uj
+
�2uj�1�2uj

� 1

2
+
1

2

�2uj2 + 1
2
k�uj�1k2 +

1

2

�2uj2
+
1

2

�2uj�12 + 1
2

�2uj2
� 1

2
+
3

2

�2uj2 + 1
2
k�uj�1k2

+
1

2

�2uj�12 : (2.29)

Substituting (2:29) in (2:28) and omitting the second, fourth and last terms in the

left-hand side, this gives

�2uj2 + �2
�k�uj

2 �
�2uj�12 + �2

�k�uj�1
2

+2Lh

�
1

2
+
3

2

�2uj2 + 1
2
k�uj�1k2 +

1

2

�2uj�12�
�

�2uj�12 + �2
�k�uj�1

2
+Lh

h
1 + 3

�2uj2 + k�uj�1k2 + �2uj�12i :

Observing that

k�ujk2 =
h�2uj + �uj�1

2
� h (h+ 1)

�2uj2 + (1 + h) k�uj�1k2 ;
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it follows that

�2uj2 + �2 k�ujk2H �
�2uj�12 + �2

�k�uj�1
2

+Lh
h
1 + 3

�2uj2 + k�uj�1k2 + �2uj�12i
+�2h (h+ 1)

�2uj2 + �2 k�uj�1k2 + �2h k�uj�1k2

=
�2uj�12 + �2 k�uj�1k2H + Lh

+Lh

�
3 +

�2

L
(h+ 1)

��2uj2
+Lh

��
1 +

�2

L

�
k�uj�1k2 +

�2uj�12� :
By recurrence, we get

�2uj2 + �2 k�ujk2H �
�2u12 + �2 k�u1k2H + L (j � 1)h

+Lh

jX
i=2

�
3 +

�2

L
(T + 1)

��2ui2
+Lh

j�1X
i=1

��2ui2 + �1 + �2

L

�
k�uik2

�
�

�2u12 + �2 k�u1k2H + LT

+Lh

jX
i=1

��
4 +

�2

L
(T + 1)

��2ui2 + �1 + �2

L

�
k�uik2

�
�

�2u12 + �2 k�u1k2H + LT

+

�
4 +

�2

L
(T + 1)

�
Lh

jX
i=1

h�2ui2 + k�uik2i ;
hence

�2uj2 + �2 k�ujk2H �
�2u12 + �2 k�u1k2H + LT

+Lh

jX
i=1

h�2ui2 + �2 k�uik2H
i
;

with

 = max

�
1

�2
; 1

��
4 +

T + 1

L
�2
�
:
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In virtue of Lemma 4; we can write

�2uj2 + �2 k�ujk2H �
"�2u12 + �2 k�u1k2H + LT

1� Lh

#
� exp [L (j � 1)h=1� Lh] ;

provided that h < 1
L
: In particular, since h is intended to tend towards zero, we can,

without loss of generality, consider that h � 1
2L

: In this case we get

�2uj2 + �2 k�ujk2H � 2
h�2u12 + �2 k�u1k2H + LT

i
� exp [2LT ] : (2.30)

To estimate
�2u12 + �2 k�u1k2H ; we test the relation (2:20); written for j = 1; with

v = �u1 = (u1 � '1) =h which is an element of V and observing that �u0 = '2;

�2u1 = (�u1 � '2) =h; we have

1

h
(�u1 � '2; �u1) + �2(h�k�u1 +�

k'1;�
k�u1) + �2(�k�u1;�

k�u1) = (f1; �u1);

hence

1

2h
k�u1k2 �

1

2h
k'2k

2 +
1

2h
k�u1 � '2k

2 +
�2h

2

�k�u1
2

��
2

2h

�k'1
2 + �2

2h

h�k�u1 +�
k'1
2 + �2

�k�u1
2

� kf1k k�u1k ;

from which we deduce that

k�u1k2 + k�u1 � '2k
2 + �2h2

�k�u1
2

+�2
h�k�u1 +�

k'1
2 + 2�2h�k�u1

2
� 2h kf1k k�u1k+ k'2k

2 + �2
�k'1

2 ;
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consequently,

k�u1k2 � 2h kf1k k�u1k+ k'2k
2 + �2

�k'1
2 ;

taking into account that

kf1k = kf (t1; '1; '2)k

� kf (t1; '1; '2)� f (t1; 0; 0)k+ kf (t1; 0; 0)k

� L (k'1k+ k'2k) + max
0�t�T

kf (t; 0; 0)k :=M < +1;

by virtue of assumption (H2) ; then

k�u1k � K1; (2.31)

where

K1 = 2TM + k'2k+
�
�2 + 1

� �k'1
 :

On the other hand, taking (2:20) written for j = 1 and tested with v = �2u1; we

obtain

(�2u1; �
2u1) + �2(�ku1 ��k'1;�

k�2u1) + �2(�k�u1 ��k'2;�
k�2u1)

= (f1; �
2u1)�

�
�2�k'1 + �2�k'2;�

k�2u1
�
;

therefore

(�2u1; �
2u1) + �2

�
�k�u1;�

k�u1 ��k'2
�
+ �2h

�
�k�2u1;�

k�2u1
�

=
�
f1; �

2u1
�
�
�
�2�2k'1 + �2�2k'2; �

2u1
�
;

consequently,

�2u12 + �2

2

�k�u1
2 + �2

2

�k�u1 ��k'2
2 + �2h

�k�2u1
2

� kf1k
�2u1+ �2�2k'1 + �2�2k'2

�2u1+ �2

2

�k'2
2 :
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Provided that
�2u1 � �k'2

 ; we can write
�2u12 + �2

2

�k�u1
2 + �2h

�k�2u1
2

� M
�2u1+ �2�2k'1 + �2�2k'2

�2u1+ �2

2

�k'2
�2u1 ;

from which it follows that

�2u12 + �2

2

�k�u1
2 + �2h

�k�2u1
2 � K2

�2u1 ;
where

K2 =M +
�2�2k'1 + �2�2k'2

+ ��2
2
+ 1

��k'2
 ;

hence �2u1 � K2; (2.32)

and

�2
�k�u1

2 � 2K2
2 :

The sum of the inequality (2:31) squared and multiplied by �2 with the last inequality,

gives

�2 k�u1k2H �
�
2K2

2 + �2K2
1

�
: (2.33)

Substituting (2:32) and (2:33) in (2:30); it holds that

�2uj2 + �2 k�ujk2H � 2
�
3K2

2 + �2K2
1 + TL

�
� exp [2LT ] ; 8j = 1; p;

hence �2uj2 + �2 k�ujk2H � �2; 8j = 1; n;

where

� =
q
2 [3K2

2 + �2K2
1 + TL] exp [LT ] ;
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from which it follows that

�2uj � �; 8j = 1; n; (2.34)

and

k�ujkH �
�

j�j ; 8j = 1; n: (2.35)

On the other hand, we have

kujkH � h
�
k�u1kH + k�u2kH + :::+ k�ujkH

�
+ k'1kH ;

from where

kujkH �
�

j�jT + k'1kH ; 8j = 1; n: (2.36)

Finally, the inequalities (2:34) ; (2:35) and (2:36) can be generalized for each n 2 N�;

from where we obtain the desired estimations (2:25) ; (2:26) et (2:27) : So, the proof

of the Proposition 8 is complete.
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2.4 Convergence and existence result

Let us de�ne, in the interval I = [0; T ] ; the abstract functions

un(t) = unj�1 + �unj (t� tnj�1); in Inj ; (2.37)

eun(t) =

8>><>>:
un1 ; for t = 0;

unj ; in ~Inj =
�
tnj�1; t

n
j

�
;

(2.38)

Un(t) = �unj�1 + �2unj (t� tnj�1); in Inj ; (2.39)

eUn(t) =

8>><>>:
�un1 ; for t = 0;

�unj ; in ~Inj ;

(2.40)

Yn (t) =

8>><>>:
�2un1 ; for t = 0;

�2unj ; in ~Inj ;

(2.41)

bun(t) =

8>><>>:
un1 ; for t = 0;

unj�1; in ~Inj ;

(2.42)

bUn(t) =

8>><>>:
�un1 ; for t = 0;

�unj�1; in ~Inj ;

(2.43)

efn (t) = f
�
tnj ; bun(t); bUn(t)� , in ~Inj : (2.44)

As a consequence of Proposition 8, we have the following Corollary

Corollary 9 There exist C > 0 such that the estimates

kun (t)kH � C; k~un (t)kH � C; (2.45)

eUn (t)
H
� C; (2.46)

kYn (t)k � C;

Un � dun

dt


L2(I:L2(
))

� Chn; (2.47)
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k~un (t)� un (t)kH � Chn;
eUn (t)� Un (t)

 � Chn; (2.48)

kun (t)� bun (t)kH � Chn;
Un (t)� bUn (t) � Chn; (2.49)

hold for all t 2 I and n 2 N�:

Proof. Obviously, estimates (2:45) [(2:46) ; (2:47) ; respectively] are a direct con-

sequence of estimates (2:25) [(2:26) ; (2:27) ; respectively] : On the other hand, from

(2:37) and (2:38) [(2:39) and (2:40) ; respectively] ; we can write

~un (t)� un (t) =

8>><>>:
(tnj � t)�unj ; in eInj ;
hn�u

n
1 ; for t = 0;

(2.50)

and

eUn (t)� Un (t) =

8>><>>:
(tnj � t)�2unj ; in eInj ;
hn�

2un1 ; for t = 0;

(2.51)

from which, for each t 2 I; by virtue of (2:26) and (2:25) respectively;

k~un (t)� un (t)kH � hn max
0�j�pn

�unj H
� Chn;

and

eUn (t)� Un (t)
 � hn max

0�j�pn

�2unj 
� Chn:

Similarly, we obtain

un (t)� bun (t) =
8>><>>:

�hn�un1 ; for t = 0;

(t� tnj )�u
n
j ; in eInj ; (2.52)
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and

Un (t)� bUn (t) =
8>><>>:

�hn�2un1 ; for t = 0;

(t� tnj )�
2unj ; in eInj ; (2.53)

which implies

kun (t)� bun (t)kH � hn max
0�j�pn

�unj H
� Chn;8t 2 I;

and

Un (t)� bUn (t) � hn max
0�j�pn

�2unj 
� Chn;8t 2 I;

which achieves the proof of Corollary 9.

Proposition 10 There exists a function u 2 AC(I; V ) with u0 2 L2 (I; V )\AC (I; L2 (
))

and u00 2 L2 (I; L2 (
)) ; such that

un �! u in C(I; V ); (2.54)

Un �! u0 in C(I; L2(
)); (2.55)

eun * u in L2(I; V ); (2.56)

eUn * u0 in L2(I; V ); (2.57)

Yn * u00 in L2(I; L2(
)): (2.58)

Moreover, the error estimate

kun � uk2C(I;V ) + kUn � u0k2C(I;L2(
)) � Chn;

takes place for all n � n0:
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Proof. In view of identity (2:20) and due to the de�nitions of eun (t) ; eUn (t) and
Yn (t) ; this shows that for each n and m 2 N�

�2
�
�keun (t) ;�kv(t)

�
+ �2

�
�k eUn (t) ;�kv(t)

�
+ (Yn (t) ; v(t))

=
� efn(t); v(t)� ; 8v 2 L2 (I; V ) ; a:e: t 2 I; (2.59)

and

�2
�
�keum (t) ;�kv(t)

�
+ �2

�
�k eUm (t) ;�kv(t)

�
+ (Ym (t) ; v(t))

=
� efm(t); v(t)� ; 8v 2 L2 (I; V ) ; a:e: t 2 I: (2.60)

Taking the di¤erence of relations (2:59) and (2:60) tested with v = eUn � eUm which
belongs to V; it follows that

�2
�
�keun (t)��keum (t) ;�k eUn (t)��k eUm (t)�

+�2
�
�k eUn (t)��k eUm (t) ;�k eUn (t)��k eUm (t)�

+
�
Yn (t)� Ym (t) ; eUn (t)� eUm (t)�

=
� efn(t)� efm(t); eUn (t)� eUm (t)� ; a:e: t 2 I:

Ignoring the second term in the left-hand side, we have

�2
�
�keun (t)��keum (t) ;�k eUn (t)��k eUm (t)�

+
�
Yn (t)� Ym (t) ; eUn (t)� eUm (t)�

�
� efn(t)� efm(t); eUn (t)� eUm (t)� ; a:e: t 2 I: (2.61)

On the other hand, observing that

eun � eum = (un � um) + (eun � un) + (um � eum) ;
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and

eUn � eUm = (Un � Um) +
�eUn � Un

�
+
�
Um � eUm� ;

the inequality (2:61) becomes

�2
�
�kun (t)��kum (t) ;�k eUn (t)��k eUm (t)�+ (Un (t)� Um (t) ; Yn (t)� Ym (t))

� ��2
�
�keun (t)��kun (t) ;�k eUn (t)��k eUm (t)���eUn (t)� Un (t) ; Yn (t)� Ym (t)

�
��2

�
�kum (t)��keum (t) ;�k eUn (t)��k eUm (t)���Um (t)� eUm (t) ; Yn (t)� Ym (t)

�
+
� efn(t)� efm(t); eUn (t)� eUm (t)� ; a:e: t 2 I: (2.62)

But, we have

�
�kun (t)��kum (t) ;�k eUn (t)��k eUm (t)�

=
1

2

d

dt

�kun (t)��kum (t)
2 ; a:e: t 2 I; (2.63)

and

(Un (t)� Um (t) ; Yn (t)� Ym (t))

=
1

2

d

dt
kUn (t)� Um (t)k2 ; a:e: t 2 I: (2.64)

Accordingly, substituting (2:63) and (2:64) in (2:62) ; we derive, with the help of

Schwarz and Cauchy inequalities

�2

2

d

dt

�kun (t)��kum (t)
2 + 1

2

d

dt
kUn (t)� Um (t)k2

� �2
�k eUn (t)��k eUm (t) ��keun (t)��kun (t)

+ �kum (t)��keum (t)�
+ kYn (t)� Ym (t)k

heUn (t)� Un (t)
+ Um (t)� eUm (t)i

+
1

2

eUn (t)� eUm (t)2 + 1
2

 efn(t)� efm(t)2 ; a:e: t 2 I;
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by virtue of Corollary 9, we have

�k eUn (t)��k eUm (t) � C;
eUn (t)� eUm (t) � C and kYn (t)� Ym (t)k � C;

whence

�2

2

d

dt

�kun (t)��kum (t)
2 + 1

2

d

dt
kUn (t)� Um (t)k2

� C
��keun (t)��kun (t)

+ �kum (t)��keum (t)�
+C

heUn (t)� Un (t)
+ Um (t)� eUm (t)i

+
1

2

eUn (t)� eUm (t)2 + 1
2

 efn(t)� efm(t)2
� C

��keun (t)��kun (t)
+ �kum (t)��keum (t)�

+C
heUn (t)� Un (t)

+ Um (t)� eUm (t)i
+
3

2

eUn (t)� Un (t)
2 + 3

2
kUn (t)� Um (t)k2

+
3

2

Um (t)� eUm (t)2 + 1
2

 efn(t)� efm(t)2 ; a:e: t 2 I;
here, the elementary inequality

(a+ b+ c)2 � 3
�
a2 + b2 + c2

�
;

has been used, and on the basis of estimate (2:48), we obtain

�2
d

dt

�kun (t)��kum (t)
2 + d

dt
kUn (t)� Um (t)k2

� C (hn + hm) + C (hn + hm)
2

+3 kUn (t)� Um (t)k2 +
 efn(t)� efm(t)2 ; a:e:t 2 I: (2.65)

For every t �xed in (0; T ]; there exist two integers p and q corresponding to the

subdivision of I into n and m subintervals, respectively, such that t 2
�
tnp�1; t

n
p

�
\
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tmq�1; t

m
q

�
: Now, owing to assumption (H2), let us majorize the last term of the

inequality (2:65)

 efn(t)� efm(t) =
f(tnp ; ûn(t); Ûn(t))� f

�
tmq ; ûm(t); Ûm(t)

�
� L

���tnp � tmq
��+ kûn(t)� ûm(t)k+

Ûn(t)� Ûm(t)
�

� L
�
(hn + hm) + kûn(t)� ûm(t)kH +

Ûn(t)� Ûm(t)
�

� L ((hn + hm) + kûn(t)� un(t)kH + kun(t)� um(t)kH

+ kum(t)� ûm(t)kH +
Ûn(t)� Un(t)


+ kUn(t)� Um(t)k+

Um(t)� Ûm(t)
� ;

taking into account (2:49); we obtain

 efn(t)� efm(t) � L (1 + C) (hn + hm) + L kun(t)� um(t)kH

+L kUn(t)� Um(t)k : (2.66)

Substituting (2:66) in (2:65) and integrating over (0; t) with consideration to the fact

that un(0) = um(0) = '1 and U
n(0) = Um(0) = '2; this gives

�2
�kun(t)��kum(t)

2 + kUn(t)� Um(t)k2

� C (hn + hm) + C (hn + hm)
2

+C

Z t

0

�
kun(s)� um(s)k2H + kUn(s)� Um(s)k2

�
ds;

from where

�kun(t)��kum(t)
2 + kUn(t)� Um(t)k2

� C (hn + hm) + C (hn + hm)
2

+C

Z t

0

�
kun(s)� um(s)k2H + kUn(s)� Um(s)k2

�
ds: (2.67)
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On the other hand, for almost all t 2 I; we have

d

dt
kun(t)� um(t)k2 = 2

�
un(t)� um(t); eUn (t)� eUm (t)�

� 2 kun(t)� um(t)k
eUn (t)� eUm (t)

� kun(t)� um(t)k2 +
eUn (t)� eUm (t)2 :

Integrating over (0; t) with consideration to the fact that un(0)�um(0) = 0; we arrive

at

kun(t)� um(t)k2 �
Z t

0

kun(s)� um(s)k2 ds

+

Z t

0

eUn (s)� eUm (s)2 ds
�

Z t

0

kun(s)� um(s)k2H ds

+

Z t

0

eUn (s)� eUm (s)2 ds: (2.68)

We sum up the inequalities (2:67) and (2:68); we deduce that

kun(t)� um(t)k2H + kUn(t)� Um(t)k2

� C (hn + hm) + C (hn + hm)
2

+C

Z t

0

�
kun(s)� um(s)k2H + kUn(s)� Um(s)k2

�
ds

+

Z t

0

eUn(s)� Un(s)
2 ds+ Z t

0

Um(s)� eUm(s)2 ds
� C (hn + hm) + C (hn + hm)

2

+

�Z T

0

eUn(t)� Un(t)
2 dt+ Z T

0

Um(t)� eUm(t)2 dt�
+C

Z t

0

�
kun(s)� um(s)k2H + kUn(s)� Um(s)k2

�
ds;
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consequently, by virtue of corollary 9, we get

kun(t)� um(t)k2H + kUn(t)� Um(t)k2

� C (hn + hm) + C (hn + hm)
2

+C

Z t

0

�
kun(s)� um(s)k2H + kUn(s)� Um(s)k2

�
ds.

Now, let us apply the Lemma 4 to the last inequality, this gives

kun(t)� um(t)k2H + kUn(t)� Um(t)k2

� C (hn + hm) + C (hn + hm)
2 +�

C (hn + hm) + C (hn + hm)
2� eCT :

Since the right-hand side of this inequality does�nt depend on t, we pass to the supre-

mum in the left part, it follow that

kun � umk2C(I;V ) + kUn � Umk2C(I;L2(
))

�
�
(hn + hm) + (hn + hm)

2� eCT ; (2.69)

from which we deduce that both fung and fUng are Cauchy sequences in the Banach

spaces C(I; V ) and C(I; L2(
)); respectively. Accordingly, there exist two functions

u 2 C(I; V ) and U 2 C(I; L2(
)) such that8>><>>:
un �! u in C(I; V );

Un �! U in C(I; L2(
)):

(2.70)

Lemma 11 There exists a function s with the properties

s 2 AC(I; V ) with s0 2 L2 (I; V ) \ AC
�
I; L2 (
)

�
and s00 2 L2

�
I; L2 (
)

�
;
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and sub-sequences

funlgk � fungn ; feunlgk � feungn ;neUnlo
k
�
neUno

n
and fYnlgk � fYngn ;

such that

unl * s in L2(I; V ); (2.71)

eunl * s in L2(I; V ); (2.72)

eUnl * s0 in L2(I; V ); (2.73)

Ynl * s00 in L2(I; L2 (
)): (2.74)

Proof. We integrate the estimates (2:45) and (2:48a) squared over (0; T ): Succes-

sively we obtain

kunkL2(I;V ) � C;

keunkL2(I;V ) � C;

keun � unkL2(I;V ) � Chn:

The sequences fungn and feungn are bounded in the Hilbert space L2(I; V ); we can
extract from fungn [feungn ; respectively] a sub-sequence funlg [feunlg ; respectively]
which converges weakly in L2(I; V ); i.e.

unl * s in L2(I; V ); (2.75)

and

eunl * ' in L2(I; V ): (2.76)
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Let�s prove that ' is none other than the function s. For this, note that

���(eunl � s; v)L2(I;V )

��� =
���(eunl � unl ; v)L2(I;V ) + (u

nl � s; v)L2(I;V )

���
� keunl � unlk L2(I;V ) � kvk L2(I;V ) +

���(unl � s; v)L2(I;V )

���
� Chnl � kvk L2(I;V ) +

���(unl � s; v)L2(I;V )

��� ;
for all v 2 L2(I; V ). Passing to the limit for nl ! +1; owing to (2:75); we obtain

���(eunl � s; v)L2(I;V )

���! 0;

i.e.

eunl * s in L2(I; V ):

Compared with (2:76); we deduce, according to the uniqueness of the limit in L2(I; V );

that s = ': Analogously, we deduce that
neUno and fYng are bounded in L2(I; V ) and

L2(I; L2 (
)); respectively, and so, it�s possible to extract a sub-sequences
neUnlo and

fYnlg such that

eUnl * S in L2(I; V ); (2.77)

Ynl * Y in L2(I; L2 (
)):

By virtue of (2:37) and (2:40) ; we have for t 2 eInljZ t

0

eUnl (�) d� =

j�1X
i=1

Z ti

ti�1

�unli d� +

Z t

tj�1

�unlj d�

= hnl

j�1X
i=1

�unli + (t� tj�1) �u
nl
j

= unlj�1 + �unlj (t� tj�1)� '1

= unl (t)� '1;
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then Z t

0

eUnl (�) d� = unl (t)� '1; 8t 2 In: (2.78)

Lemma 12 The limit function s satis�es

s (t) =

Z t

0

S (�) d� + '1; in L2 (I; V ) :

Proof. Owing to Lemma 1 and the limit relation (2:77) ; the integral w (t) =R t
0
S (�) d� exists, with the properties

w 2 AC (I; V ) ; w0 = S in L2 (I; V ) and w (0) = 0 in V: (2.79)

By virtue of (2:70) ; (2:75) and the uniqueness of the weak limit, we obtain the required

result if unl * w + '1 in L
2 (I; V ) i.e.

lim
nl!1

Z T

0

(unl (t) ; v(t))H dt =

Z T

0

(w (t) + '1; v(t))H dt; 8v 2 L2 (I; V ) ;

or

lim
nl!1

Z T

0

(unl (t)� w (t)� '1; v(t))H dt = 0:

Let�s suppose, �rst, that v (t) � v 2 V; 8t 2 I; then by virtue of (2:78) and since

the norms of functions are uniformly bounded with respect to t and nl; owing to the

dominated convergence theorem of Lebesgue we conclude

lim
nl!1

Z T

0

(unl (t)� (w (t) + '1) ; v)H dt

=

Z T

0

�
lim
nl!1

(unl (t)� (w (t) + '1) ; v)H

�
dt

=

Z T

0

�
lim
nl!1

Z t

0

�
~Unl (�)� S (�) ; v

�
H
d�

�
dt;
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but ~Unl * S in L2 (I; V ) ; then

lim
nl!1

Z T

0

(unl (t)� (w (t) + '1) ; v)H dt = 0; 8t 2 I:

Analogously, this can be extended to cases where v is a step function. Because of the

step functions space is a dense subspace of L2 (I; V ), then, the last result is true for

all v 2 L2 (I; V ) ; we can thus arrive at

unl * w + '1 in L2 (I; V ) :

Hence, owing to (2:79), the function s satis�es

s 2 AC (I; V ) ; (2.80)

s0 = S in L2 (I; V ) ; (2.81)

s (0) = '1 in C (I; V ) : (2.82)

Having in mind that eUnl * S in L2 (I; V ) ; in what follows eUnl * S in L2 (I; L2 (
)) :

Similarly, we conclude that the integral
R t
0
Y (�) d� exists and

R t
0
Y (�) d�+'2 = S (t),

with the properties

S 2 AC
�
I; L2 (
)

�
; S 0 (t) = Y (t) ; S (0) = '2 in L2 (
) and s00 (t) = Y (t) :

(2.83)
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Owing to (2:70) ; (2:80) ; (2:81) ; (2:82) ; and (2:83), we deduce that

u 2 AC(I; V );

U = u0 in L2(I; V ) \ AC(I; L2(
));

Ynl * u00 in L2(I; L2(
));

u(0) = '1;

u0(0) = '2:

Moreover, letting m!1 in (2:69) ; we obtain the desired error estimate

kun � uk2C(I;V ) + kUn � u0k2C(I;L2(
))

� C
�
hn + h2n

�
eCT

� Chn;

and the proof is complete.

Theorem 13 The limit function u from Proposition 10 is a weak solution to problem

(2:5)� (2:8) in the sense of:8>>>>>><>>>>>>:
u 2 AC(I; V );

u0 2 L2(I; V ) \ AC(I; L2(
));

u00 2 L2(I; L2(
));8>><>>:
u(0) = '1;

u0(0) = '2;

and Z T

0

(u00(t); v(t)) dt+ �2
Z T

0

�
�ku(t);�kv(t)

�
dt+ �2

Z T

0

�
�ku0(t);�kv(t)

�
dt

=

Z T

0

(f(t; u (t) ; u0 (t)); v(t)) dt; 8v 2 L2(I; V ): (2.84)
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Proof. In light of the properties of the function u listed in Proposition 10, the �rst

three conditions are already seen. On the other hand, since un ! u in C(I; V ) and

Un ! u0 in C(I; L2(
)) as n!1 and, by construction, un(0) = '1 and U
n(0) = '2;

it follows that u(0) = '1 and u0(0) = '2; so the initial conditions are also ful�lled. It

remains to see that the integral identity (2:84) ; is obeyed by u:

In view of (2:38); (2:40); (2:41) and (2:44); the identity (2:20) becomes

(Ynl(t); v(t)) + �
2
�
�keunl(t);�kv(t)

�
+ �2

�
�k eUnl(t);�kv(t)

�
=

� efnl(t); v(t)� ; 8v 2 L2 (I; V ) ; a:e: t 2 I: (2.85)

Integrating (2:85) over (0; t); this gives

Z T

0

(Ynl(t); v(t)) dt+ �2
Z T

0

�
�keunl(t);�kv(t)

�
dt+ �2

Z T

0

�
�k eUnl(t);�kv(t)

�
dt

=

Z T

0

� efnl(t); v(t)� dt;
which may be rewritten in the form

Z T

0

(Ynl(t)� u00(t); v(t)) dt+

Z T

0

(u00(t); v(t)) dt

+�2
Z T

0

�
�keunl(t)��ku(t);�kv(t)

�
dt+ �2

Z T

0

�
�ku(t);�kv(t)

�
dt

+�2
Z T

0

�
�k eUnl(t)��ku0(t);�kv(t)

�
dt+ �2

Z T

0

�
�ku0(t);�kv(t)

�
dt

=

Z T

0

� efnl(t)� f (t; u(t); u0(t)) ; v(t)
�
dt+

Z T

0

(f (t; u(t); u0(t)) ; v(t)) dt:

Thus, to establish relation (2:84) ; we have to show that

Z T

0

(Ynl(t)� u00(t); v(t)) dt+ �2
Z T

0

�
�keunl(t)��ku(t);�kv(t)

�
dt

+�2
Z T

0

�
�k eUnl(t)��ku0(t);�kv(t)

�
dt �!

nl!1
0; (2.86)
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and Z T

0

� efnl(t)� f (t; u(t); u0(t)) ; v(t)
�
dt �!

nl!1
0; (2.87)

for all v 2 L2(I; V ): Obviously, limit relation (2:86) is a direct consequence of (2:56);

(2:57) and (2:58); while for relation (2:87); let us observe that

 efnl(t)� f (t; u(t); u0(t))


=
f �tnlp ; ûnl(t); Ûnl(t)�� f (t; u(t); u0(t))


� L

���tnlp � t
��+ kûnl(t)� u(t)k+

Ûnl(t)� u0(t)
� ;8t 2 ~Inlp ;

and this, by virtue of condition (H2); whence efnl(t)� f (t; u(t); u0(t))


� L
�
hnl + kûnl(t)� u(t)kH +

Ûnl(t)� u0(t)
�

� L
�
hnl + kûnl(t)� unl(t)kH + ku

nl(t)� u(t)kH

+
Ûnl(t)� Unl(t)

+ kUnl(t)� u0(t)k
�
:

Due to estimates (2:49), we obtain

 efnl(t)� f (t; u(t); u0(t))


� L (Chnl + kunl(t)� u(t)kH + kUnl(t)� u0(t)k) ;

for all t 2 I; from where, performing a limit process nl !1 and taking into account

(2:54) and (2:55) ; we get

 efnl(t)� f (t; u(t); u0(t))
 �!
nl!1

0;

hence  efnl(t)� f (t; u(t); u0(t))

L2(I;L2(
))

�!
nl!1

0;
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from which we deduce the desired relation.

2.5 Uniqueness

Proposition 14 The limit function u from Proposition 10 is the unique weak solution

of the problem (2:5)� (2:8):

Proof. Let u1 and u2 be two weak solutions of (2:5) � (2:8). From (2:84); for

u (t) = u1 (t)� u2 (t) and v 2 L2(I; V ); such that

v(t) =

8>><>>:
u0(t); for t 2 [0; a]

0; for t 2 ]a; T ]
;

where a 2 [0; T ] is arbitrary, we obtain

�2
Z a

0

�
�ku (t) ;�ku0(t)

�
dt+ �2

Z a

0

�ku0 (t)
2 dt+ Z a

0

(u00 (t) ; u0 (t)) dt

�
Z a

0

kf(t; u1 (t) ; u01 (t))� f(t; u2 (t) ; u
0
2 (t)k ku0(t)k dt

� L

Z a

0

(ku (t)k+ ku0(t)k) ku0(t)k dt:

Hence, omitting the second term in the left-hand side of the inequality thus obtained

and applying the inequality of Cauchy to the right part, we get

�2
Z a

0

�
�ku (t) ;�ku0(t)

�
dt+

Z a

0

(u00 (t) ; u0 (t)) dt

� L

2

Z a

0

ku (t)k2 dt+ 3L
2

Z a

0

ku0(t)k2 dt;

from where, with consideration to the fact that u 2 AC (I; V ) ;

�2

2

�ku (a)
2 � �2

2

�ku (0)
2 + 1

2
ku0 (a)k2 � 1

2
ku0 (0)k2

� L

2

Z a

0

ku (t)k2 dt+ 3L
2

Z a

0

ku0(t)k2 dt;
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so, because

u(0) = 0 in V and u0(0) = 0 in L2(
);

we obtain

�2

2

�ku (a)
2 + 1

2
ku0 (a)k2 � L

2

Z a

0

ku (t)k2 dt+ 3L
2

Z a

0

ku0(t)k2 dt; (2.88)

here, using the elementary inequality

ku (a)k2 �
Z a

0

�
ku (t)k2 + ku0(t)k2

�
dt;

it follows

�2

2

�ku (a)
2 + ku (a)k2 + 1

2
ku0 (a)k2

�
�
1 +

3L

2

�Z a

0

�
ku (t)k2 + ku0(t)k2

�
dt:

then

min
�
�2; 1

� ��ku (a)
2 + ku(a)k2�+ ku0(a)k2

� 2

�
1 +

3L

2

�Z a

0

�
ku (t)k2H + ku0(t)k

2
�
dt;

or

ku (a)k2H + ku0(a)k
2 � 2 + 3L

min (�2; 1)

Z a

0

�
ku (t)k2H + ku0(t)k

2
�
dt:

In light of which, due to Lemma 4, we get

ku (a)k2H + ku0(a)k
2
= 0;

and consequently

u (a) = 0; 8a 2 [0; T ] ;

which achieves the proof.



Chapter 3

The weak solvability of a

semilinear parabolic

integrodi¤erential equation with

nonclassical boundary conditions

3.1 Statement of the problem

The purpose of this chapter is to study the solvability of the following equation:

@v

@t
(x; t)� @2v

@x2
(x; t) =

Z t

0

a (t� s) k0 (s; v (x; s)) ds+ g (x; t) ; (x; t) 2 (0; 1)� [0; T ];

(3.1)

with initial condition

v(x; 0) = V0(x); x 2 (0; 1); (3.2)

43
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and the integral conditions

Z 1

0

v(x; t)dx = E(t); t 2 [0; T ]; (3.3)

Z 1

0

xv(x; t)dx = G(t); t 2 [0; T ]; (3.4)

where v is an unknown function, E; G and V0 are a given functions supposed to be

su¢ ciently regular, while k0 and a are suitably de�ned functions satisfying certain

conditions to be speci�ed later and T is a positive constant.

It is convenient at the beginning to reduce problem (3:1) � (3:4) with inhomo-

geneous integral conditions to an equivalent one with homogeneous conditions. For

this, we introduce a new unknown function u by setting

u(x; t) = v(x; t)�R(x; t); (x; t) 2 (0; 1)� [0; T ];

where

R(x; t) = 6 (2G(t)� E(t))x� 2 (3G(t)� 2E(t)) :

Then, the function u is seen to be the solution of the following problem

@u

@t
(x; t)� @2u

@x2
(x; t) =

Z t

0

a (t� s) k (s; u (x; s)) ds+ f (x; t) ; (x; t) 2 (0; 1)� [0; T ];

(3.5)

u(x; 0) = U0(x); x 2 (0; 1); (3.6)Z 1

0

u(x; t)dx = 0; t 2 [0; T ]; (3.7)Z 1

0

xu(x; t)dx = 0; t 2 [0; T ]; (3.8)

where

f (x; t) = g (x; t)� @R(x; t)

@t
; (3.9)



45

U0(x) = V0(x)�R(x; 0); (3.10)

and

k (s; u (x; s)) = k0 (s; u (x; s) +R(x; s)) : (3.11)

Hence, instead of looking for the function v; we search for the function u: The solution

of problem (3:1)� (3:4) will be simply given by the formula v(x; t) = u(x; t)+R(x; t):

In the sequel, we make the following assumptions:

H1� Functions f : [0; T ] ! L2 (0; 1) and a : [0; T ] ! R are Lipschitz continuous,

i.e.

9l1 2 R; kf (t)� f (t0)k � l1 jt� t0j ; 8t 2 [0; T ] ;

and

9l2 2 R; ja (t)� a (t0)j � l2 jt� t0j ; 8t 2 [0; T ] :

H2� Mapping k : [0; T ]�W ! L2 (0; 1) is Lipschitz continuous in both variables,

i.e.

9l3 2 R; kk (t; u)� k (t0; u0)k � l3 [jt� t0j+ ku� u0k] ;

for all t; t0 2 I; u; u0 2 W; and satis�es

9l4; l5 2 R; kk (t; u)kB � l4 kukB + l5;

for all t 2 I and all u 2 W; where l4 and l5 are positive constants.

H3� Function U0 2 H2 (0; 1) \W; i:e:

U0 2 H2(0; 1);

Z 1

0

U0 (x) dx =

Z 1

0

xU0 (x) dx = 0:

We will be concerned with a weak solution in the following sense.
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De�nition 15 A function u : I ! L2(0; 1) is called a weak solution to problem

(3:5)� (3:8) if the following conditions are satis�ed:

(i) u 2 L1(I;W ) \ C(I; B1
2(0; 1));

(ii) u is strongly di¤erentiable a.e. in I and du=dt 2 L1(I; B1
2(0; 1));

(iii) u(0) = U0 in W;

(iv) the identity �
du

dt
(t) ; v

�
B

+ (u(t); v)

=

�Z t

0

a (t� s) k (s; u (s)) ds; v

�
B

+ (f (t) ; v)B ; (3.12)

holds for all v 2 W and a.e. t 2 [0; T ]:

This chapter is organized as follows. In Section 2; by the Rothe discretization in

time method, we construct approximate discretised solutions to problem (3:5)�(3:8).

Some a priori estimates for the approximations are derived in Section 3, while Section

4 is devoted to establish the existence and the uniqueness of the solutions of the

problem under study.

To close this section, we announce the main result of this chapter:

Theorem 16 Under assumptions (H1)�(H3) ; Problem (3:5)�(3:8) admits a unique

weak solution u, in the sense of De�nition 15:

3.2 Construction of approximate discrete solutions

In order to solve problem (3:5)� (3:8) by the Rothe method, we proceed as follows.

Let n be a positive integer, we divide the time interval I = [0; T ] into n subintervals
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Inj := [t
n
j�1; t

n
j ]; j = 1; :::; n; where t

n
j := jhn and hn := T=n. Then, for each n � 1;

problem (3:5) � (3:8) may be approximated by the following recurrent sequence of

time-discretized problems. We successively look for functions unj 2 W such that

unj � unj�1
hn

�
d2unj
dx2

= hn

j�1X
i=0

a
�
tnj � tni

�
k (tni ; u

n
i ) + fnj ; (3.13)

Z 1

0

unj (x)dx = 0; (3.14)

Z 1

0

xunj (x)dx = 0; (3.15)

starting from

un0 = U0; �u
n
0 =

d2

dx2
U0 + f (0) ; (3.16)

for every j = 1; :::; n; where unj (x) := u
�
x; tnj

�
; �unj :=

�
unj � unj�1

�
=hn; f

n
j (x) :=

f
�
x; tnj

�
: For this, multiplying for all j = 1; :::; n; (3:1) by =2xv :=

R x
0

hR �
0
v (�) d�

i
d�

and integrating over (0; 1); we get

Z 1

0

�unj (x)=2xvdx�
Z 1

0

d2unj
dx2

(x)=2xvdx

= hn

Z 1

0

j�1X
i=0

a
�
tnj � tni

�
k (tni ; u

n
i )=2xvdx+

Z 1

0

fnj =2xvdx: (3.17)

Note that, using a standard integration by parts, for any function v from the space

W

=21v =
Z 1

0

(1� �) v (�) d� =

Z 1

0

v (�) d� �
Z 1

0

�v (�) d� = 0: (3.18)
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Carrying out some integrations by parts and invoking (3:18) ; we obtain for each term

in (3:17) :

Z 1

0

�unj (x)=2xvdx =

Z 1

0

@

@x
=x
�
�unj (x)

�
=2xvdx

= =x
�
�unj (x)

�
=2xv

��1
0
�
Z 1

0

=x
�
�unj (x)

�
=xvdx

= �
�
�unj ; v

�
B
: (3.19)

For the second term in left-hand side, we get

Z 1

0

@2unj
@x2

(x)=2xvdx =
@unj
@x

(x)=2xv
����1
0

�
Z 1

0

@unj
@x

(x)=xvdx

= �
Z 1

0

@unj
@x

(x)=xvdx

= �uj (x)=xvj10 +
Z 1

0

uj (x) vdx

= (uj; v) : (3.20)

While for the �rst one in the right-hand side, we obtain

hn

Z 1

0

j�1X
i=0

a
�
tnj � tni

�
k (tni ; u

n
i (x))=2xvdx

= hn

j�1X
i=0

a
�
tnj � tni

� Z 1

0

k (tni ; u
n
i (x))=2xvdx

= hn

j�1X
i=0

a
�
tnj � tni

� Z 1

0

@

@x
=xk (tni ; uni (x))=2xvdx

= hn

j�1X
i=0

a
�
tnj � tni

� �
=xk (tni ; uni (x))=2xv

��1
0
dx�

Z 1

0

=xk (tni ; uni (x))=xvdx
�

= �hn
j�1X
i=0

a
�
tnj � tni

� Z 1

0

=xk (tni ; uni (x))=xvdx

= �hn
j�1X
i=0

a
�
tnj � tni

�
(k (tni ; u

n
i ) ; v)B ; (3.21)
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and for the last one

Z 1

0

fnj (x)=2xv (x) dx =

Z 1

0

@

@x
=x
�
fnj (x)

�
=2xvdx

= =x
�
fnj (x)

�
=2xv

��1
0
�
Z 1

0

=x
�
fnj (x)

�
=xvdx

= �
�
fnj ; v

�
B
: (3.22)

By virtue of (3:19) ; (3:20) ; (3:21) and (3:22) ; (3:17) becomes

�
�unj ; v

�
B
+
�
unj ; v

�
= hn

j�1X
i=0

a
�
tnj � tni

�
(k (tni ; u

n
i ) ; v)B +

�
fnj ; v

�
B
; (3.23)

or

�
unj ; v

�
B
+ hn

�
unj ; v

�
= h2n

j�1X
i=0

a
�
tnj � tni

�
(k (tni ; u

n
i ) ; v)B + hn

�
fnj ; v

�
B
+
�
unj�1; v

�
B
:

Let � (:; :) : W �W ! R and Lj (:) : W ! R be two functions de�ned by

� (u; v) = (u; v)B + hn (u; v) ; (3.24)

Lj (v) = h2n

j�1X
i=0

a
�
tnj � tni

�
(k (tni ; u

n
i ) ; v)B + hn

�
fnj ; v

�
B
+
�
unj�1; v

�
B
: (3.25)

To derive the existence and uniqueness of unj ; we need to use the Lax-Milgram theo-

rem. For this, let us prove that the bilinear form �(:; :) is continuous andW�elliptic.

Using (3:24), we get

� (v; v) = (v; v)B + hn (v; v)

� (1 + hn) kvk2B

� 2 kvk2B : (3.26)
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On the other hand, we have

j� (u; v)j = j(u; v)B + hn (u; v)j

� kukB kvkB + hn kuk kvk

� kuk kvk ; (3.27)

estimates (3:26) and (3:27) implies that �(:; :) is continuous and W � elliptic. Also,

from (3:25) we have

jLj (v)j =
�����h2n

j�1X
i=0

�
�
tnj � tni

�
(k (tni ; u

n
i ) ; v)B

+hn
�
fnj ; v

�
B
+
�
unj�1; v

�
B

���
�

"
hnC

j�1X
i=0

(C1 kuni k+ C2) + hn
fnj + unj�1

#
kvk ; (3.28)

which prove that Lj (:) is continuous for each j = 1; :::; n: Since �(:; :) is continuous

and W � elliptic and Lj (:) is continuous; the Lax-Milgram Lemma guarantees the

existence and uniqueness of unj ; 8j = 1; :::; n:

3.3 A priori estimates

Lemma 17 There exist C > 0 such that, for all n � 1; the solutions uj of the

discretized problems (3:13)� (3:16); j = 1; :::; n; satisfy the estimates

unj  � C; (3.29)

�unj B � C: (3.30)
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Proof. Testing the di¤erence (3:23)j� (3:23)j�1 with v = �unj (2 W ) ; taking into

account assumptions (H1)� (H3) and the Cauchy-Schwarz inequality, we obtain

�unj B + unj � unj�1

B

�
�unj�1B + C1

3
h2n

j�2X
i=0

kuni kB +
C1
3
hn +

C1
3
hn
unj�1B ;

where

C1 := 3max fl2�; T l2� +M1� + l1g ; M1 := max
t2I

ja (t)j and � := max fl4; l5g :

Multiplying the left-hand side of the last inequality with
�
1� C1

3
hn
�
(< 1 and positive for n � n0)

and adding the terme

2

3
C1hn

hunj � unj�1

B
�
�unj Bi (< 0 for n � n0) ;

we get

(1� C1hn)
h�unj B + unj Bi

�
hunj�1B + �unj�1Bi+ C1h

2
n

j�2X
i=0

kuni kB + C1hn: (3.31)

Applying the last inequality recursively, it follows that

(1� C1hn)
j
h�unj B + unj Bi

� [kun0kB + k�un0kB + C1T ] + TC1hn

j�2X
i=0

kuni kB ; (3.32)

or, by virtue of Lemma 4; there exists n0 2 N� such that

�unj B + unj B � C2; 8n � n0;
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where

C2 : = (exp (TC1) + 1) [k�un0kB + kun0kB + TC1]

� exp [(exp (TC1) + 1)TC1] :

And so our proof is complete.

We address now the question of convergence and existence.

3.4 Convergence, existence and uniqueness

Now let us introduce the Rothe function un(t) : I ! W obtained from the functions

uj by piecewise linear interpolation with respect to time

un(t) = unj�1 + �unj (t� tnj�1); in Inj ; (3.33)

as well the step functions eun(t); ûn(t); efn (t) and ek (t; eun(t)) de�ned as follows:
eun(t) =

8>><>>:
un0 ; for t = 0;

unj ; in ~Inj :=
�
tnj�1; t

n
j

�
;

ûn(t) =

8>><>>:
u (0) ; for t = 0;

unj�1; in ~Inj ;

(3.34)

efn (t) =
8>><>>:

f (0) ; for t = 0;

f
�
tnj
�
; in ~Inj ;

(3.35)

ek (t; eun(t)) =
8>><>>:

0; for t = 0;

hn
Pj�1

i=0 a
�
tnj � tni

�
k (tni ; u

n
i ) ; in ~Inj =

�
tnj�1; t

n
j

�
:

(3.36)

Corollary 18 There exist C > 0 such that the estimates

kun (t)k � C; k~un (t)k � C; 8t 2 I; (3.37)
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B

� C; for a: e: t 2 I; (3.38)

k~un (t)� un (t)kB � Chn; kûn (t)� un (t)kB � Chn; 8t 2 I; (3.39)

and ek (t; eun(t)) � C; 8t 2 I; (3.40)

hold for all n 2 N�:

Proof. For the inequalities (3:37); (3:38) and (3:39) see [98; Corollary 4:2:],

whereas for the last inequality, assumption (H2) and estimate (3:29) guarantee the

desired result.

Proposition 19 The sequence (un)n converges in the norm of the space C(I; B
1
2 (0; 1))

to some function u 2 C(I; B1
2 (0; 1)) and the error estimate

kun � ukC(I;B12(0;1)) � C
p
hn; (3.41)

takes place for all n � n0:

Proof. By virtue of (3:34) ; (3:35) and (3:36) the variational equation (3:23) may

be rewritten in the form�
dun

dt
(t) ; v

�
B

+ (eun(t); v) = �ek (t; eun(t)) ; v�
B
+
� efn (t) ; v�

B
; (3.42)

for a.e. t 2 [0; T ]: In view of (3:42) ; using (3:38) and (3:40) with the fact that efn (t)
B
�M2 := max

t2I
kf (t)kB ;

we obtain

j(eun(t); v)j � �ek (t; eun(t))
B
+
 efn (t)

B
+

dundt (t)

B

�
kvkB

� C kvkB ; a:e:t 2 [0; T ]: (3.43)
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Now, for n; m be two positive integers, testing the di¤erence (3:42)n � (3:42)m with

v = un (t)�um (t) which is inW; with the help of the Cauchy-Schwarz inequality and

taking into account that

2 ((du=dt) (t) ; u (t))B = (d=dt) ku (t)k
2
B ; a:e:t 2 [0; T ];

and, by virtue of (3:43) we obtain after some rearrangements

1

2

d

dt
kun (t)� um (t)k2B + keun (t)� eum (t)k2

� C kum (t)� eum(t)kB + C keun(t)� un (t)kB

+
ek (t; eun(t))� ek (t; eum(t))

B
kun (t)� um (t)kB

+
 efn (t)� efm (t)

B
kun (t)� um (t)kB ; a:e:t 2 [0; T ]: (3.44)

To derive the required result, we need to estimate the third and the last term in the

left-hand side, for this, let t be arbitrary but �xed in (0; T ]; without loss of generality

we can suppose that there exist three integers p; q and � such that

t 2 (tnp�1; tnp ] \ (tmq�1; tmq ]; n = �m; tnp = tmq :

From which, using (3:36) we can write

ek (t; eun(t))� ek (t; eum(t))
B

= hm


p�1X
j=0

24�(j+1)�1X
i=j�

�
a
�
tnp � tnj

�
k
�
tnj ; u

n
j

�
� a

�
tmq � tmi

�
k (tmi ; u

m
i )
�35

B

:
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Taking into account assumption (H1) and the fact that
��a �tnp � tnj

�
� a

�
tmq � tmi

��� �
Chn; thus, there exist "n 2 [0; Chn] such that

ek (t; eun(t))� ek (t; eum(t))
B

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

(Chn � "n) k
�
tnj ; u

n
j

�
B

+
��a �tmq � tmi

��� k �tnj ; unj �� k (tmi ; u
m
i )

B

i
:

Therefore, recalling assumptions (H1) ; (H2) and having in mind that "n 2 [0; Chn] ;

we estimate

ek (t; eun(t))� ek (t; eum(t))
B

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

Chn + C
�
hn +

unj � umi

B

�35 ;
from where, we derive

ek (t; eun(t))� ek (t; eum(t))
B

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

Chn + C (hn + keun(s)� un (s)kB

+ kun (s)� um (s)kB + kum (s)� eum(s)kB)] ;
holds for all s 2

�
tmi ; t

m
i+1

�
: We take the supremum with respect to s from 0 to t in

the right-hand side, invoking the fact that s 2
�
tmi ; t

m
i+1

�
�
�
tnj�1; t

n
j

�
and estimate

(3:39) ; we obtain

ek (t; eun(t))� ek (t; eum(t))
B

� hm

q�1X
i=0

�
Chn + C sup

0�s�t
kun (s)� um (s)kB

�
;
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so that

ek (t; eun(t))� ek (t; eum(t))
B
� Chn + C sup

0�s�t
kun (s)� um (s)kB : (3.45)

Let t 2 (tnp�1; tnp ] \ (tmq�1; tmq ]; from assumption (H1) it follows that efn (t)� efm (t)
B
=

f �tnp�� f
�
tmq
�

B

� l1
��tnp � tmq

��
� l1hn: (3.46)

Ignoring the second term in the left-hand side of (3:44) which is clearly positive and

using estimates (3:37) ; (3:39) ; (3:45) and (3:46) ; yields

d

dt
kun (t)� um (t)k2B

� C (hn + hm) + C sup
0�s�t

kun (s)� um (s)k2B ; a:e:t 2 [0; T ]:

Integrating this inequality with respect to time from 0 to t and invoking the fact that

un(0) = um(0) = U0; we get

kun (t)� um (t)k2B � C (hn + hm) + C

Z t

0

sup
0���t

kun (�)� um (�)k2B d�;

whence

sup
0�s�t

kun (s)� um (s)k2B � C (hn + hm) + C

Z t

0

sup
0���t

kun (�)� um (�)k2B d�:

Accordingly, by Gronwall�s Lemma we obtain

sup
0�s�t

kun (s)� um (s)k2B � C (hn + hm) exp (ct) ; 8t 2 [0; T ] ;

consequently

sup
0�s�T

kun (s)� um (s)kB � C
p
hn + hm; (3.47)
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takes place for all n; m 2 N�: This implies that (un (t))n is a Cauchy sequence in

the Banach space C(I; B1
2(0; 1)); and hence it converges in the norm of this latter to

some function u 2 C(I; B1
2(0; 1)): Besides, passing to the limit m!1 in (3:47); we

obtain the desired error estimate, which �nishes the proof.

Now, we present some properties of the obtained solution.

Theorem 20 The limit function u from Proposition 19 yields the following statements

(i) u 2 C(I; B1
2(0; 1)) \ L1(I;W ));

(ii) u is strongly di¤erentiable a.e. in I and du=dt 2 L1(I; B1
2(0; 1));

(iii) eun(t)! u(t) in B1
2(0; 1) for all t 2 I;

(iv) un (t) ; eun(t)* u(t) in W for all t 2 I;

(v) dun

dt
(t)* du

dt
(t) in L2(I; B1

2(0; 1)):

Proof. On the basis of estimates (3:37) and (3:38); uniform convergence statement

from Proposition 19 and the continuous embedding W ,! B1
2(0; 1), the assertions of

the present theorem are direct consequences of Lemma 6:

Theorem 21 Under assumptions (H1)�(H3) ; problem (3:5)�(3:8) admits a unique

weak solution, namely the limit function u from Proposition 20, in the sense of De�-

nition 15:

Proof. We have to show that the limit function u satis�es all the conditions (i),

(ii), (iii), (iv) of De�nition 15: Obviously, in light of the properties of the function u

listed in Theorem 20, the �rst two conditions of De�nition 15 are already seen. On the

other hand, since un ! u in C(I;W ) as n!1 and, by construction, un(0) = U0; it
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follows that u(0) = U0; so the initial condition is also ful�lled, that is, De�nition

15(iii) takes place. It remains to see that the integral identity (3:12) is obeyed by u.

For this, integrating (3:42) over (0; t) and using the fact that un(0) = U0; we get

(un (t)� U0; v)B +

Z t

0

(eun(�); v) d�
=

Z t

0

�ek (� ; eun(�)) ; v�
B
d� +

Z t

0

� efn (�) ; v�
B
d� ;

consequently, after some rearrangements

(un (t)� U0; v)B +

Z t

0

(eun(�); v) d�
=

Z t

0

�Z �

0

a (� � s) k (s; u (s)) ds; v

�
B

d� +

Z t

0

(f (�) ; v)B d�

+

Z t

0

�ek (� ; eun(�))� Z �

0

a (� � s) k (s; u (s)) ds; v

�
B

d�

+

Z t

0

� efn (�)� f (�) ; v
�
B
d� : (3.48)

Let ŝn : I ! I and ŝn : I ! I denotes the functions

ŝn(t) =

8>><>>:
0; for t = 0

tnj�1; in ~Inj

; ~sn (t) =

8>><>>:
0; for t = 0

tnj ; in ~Inj

: (3.49)

To investigate the desired result, we prove some convergence statements. Using

(3:34) ; (3:35) and (3:49) we have for all t 2
�
tnj�1; t

n
j

�
ek (t; eun(t))� Z t

0

a (t� s) k (s; u (s)) ds

=

Z tnj

0

�
a
�
tnj � ŝn (s)

�
k (ŝn (s) ; ûn (s))� a (t� s) k (s; u (s))

�
ds

+

Z tnj

t

a (t� s) k (s; u (s)) ds: (3.50)

Taking into account (3:37) ; (3:41) and assumptions (H1); (H2) it follows that

a �tnj � ŝn (s)
�
k (ŝn (s) ; ûn (s))� a (t� s) k (s; u (s))


B
� C

p
hn: (3.51)
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Thanks to (3:50) and (3:51) we obtainek (t; eun(t))� Z t

0

a (t� s) k (s; u (s)) ds


B

� C
p
hn: (3.52)

On the other hand, in view of the assumed Lipschitz continuity of f; we have

 efn (�)� f (�)

B
� kf (~sn (�))� f (�)kB

� l1hn: (3.53)

Now, the sequences f(eun(�); v)g, n� efn (�) ; v�
B

o
and

n�ek (� ; eun(�)) ; v�
B

o
are uni-

formly bounded with respect to both � and n, so the Lebesgue theorem of majorized

convergence is applicable to (3:48) ; thus, having in mind (3:39) ; (3:41) ; (3:52)

and (3:53) ; we derive

(u (t)� U0; v)B +

Z t

0

(u (�) ; v) d�

=

Z t

0

�Z �

0

a (� � s) k (s; u (s)) ds; v

�
B

d� +

Z t

0

(f (�) ; v)B d� ; (3.54)

takes place for all v 2 W and t 2 [0; T ]. Finally, di¤erentiating (3:54) with respect to

t; we get �
d

dt
u (t) ; v

�
B

+ (u (t) ; v)

=

�Z t

0

a (t� s) k (s; u (s)) ds; v

�
B

+ (f (t) ; v)B ; a:e:t 2 [0; T ]:

The uniqueness may be argued in the usual manner. Indeed, exploiting an idea in

[3] ; consider u1 and u2 two di¤erent solutions of (3:1)� (3:4) and de�ne w = u1�u2.

Then, we have �
d

dt
w (t) ; v

�
B

+ (w (t) ; v)

=

�Z t

0

a (t� s) [k (s; u1 (s))� k (s; u2 (s))] ds; v

�
B

:
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Choosing v = w (t) as a test function, with the aid of Cauchy-Schwarz inequality and

assumption (H2); we obtain

1

2

d

dt
kw (t)k2B + kw (t)k

2

� C

Z t

0

[kk (s; u1 (s))� k (s; u2 (s))kB] ds kw (t)kB : (3.55)

Let � 2 [0; p] such that

kw (�)kB = max
s2[0;p]

kw (s)kB ; (3.56)

integrating (3:55) over (0; p); 0 � p � T; using (3:56) and invoking assumption (H2);

we get Z p

0

�
1

2

d

dt
kw (t)k2B + kw (t)k

2

�
dt � Cp2 kw (�)k2B ;

consequently, with the fact that w (0) = 0Z p

0

�
1

2

d

dt
kw (t)k2B + kw (t)k

2

�
dt � Cp

Z �

0

d

dt
kw (t)k2B dt: (3.57)

Choosing p as constant verifying the condition

9� 2 N; T = �p and Cp � 1

2
;

which gives, by virtue of (3:57) thatZ p

0

1

2

d

dt
kw (t)k2B dt+

Z p

0

kw (t)k2 dt �
Z �

0

1

2

d

dt
kw (t)k2B dt;

taking into account that � � p; we obtain

kw (t)k = 0; on [0; p] :

Following the same lines as for [0; p] ; we deduce that

kw (t)k = 0; on [ip; (i+ 1) p] ; i = 1; 2; 3; :::;

therefore, we derive w (t) � 0; on [0; T ] ; then u1 � u2: This achieves the proof.



Chapter 4

Existence and uniqueness of the

solution of an evolution problem

for a quasilinear hyperbolic

integrodi¤erential equation

4.1 Statement of the problem

In this chapter, we want to study the solvability of the following integrodi¤erential

equation

@2v

@t2
� @2v

@x2
� @3v

@t@x2
=

Z t

0

a (t� s) k0 (s; v) ds+ g

�
t; v;

@v

@t

�
; (4.1)
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subject to the boundary integral conditionsZ 1

0

v(x; t)dx = E (t) ;

Z 1

0

xv(x; t)dx = G (t) ; t 2 [0; T ]; (4.2)

and starting from

v(x; 0) = V0(x);
@

@t
v(x; 0) = W0(x); x 2 (0; 1); (4.3)

where a; k0; g; V0; W0; E and G are su¢ ciently regular given functions of the

indicated variables ( satisfying certain conditions to be speci�ed later ) and T is a

positive constant.

By the transformation

u(x; t) = v(x; t)�R(x; t); (x; t) 2 (0; 1)� [0; T ]; (4.4)

where

R(x; t) = 6 (2G(t)� E(t))x� 2 (3G(t)� 2E(t)) ; (4.5)

problem (5:1) � (5:3) with inhomogeneous integral conditions (5:2) is converted to

the following equivalent problem with homogeneous conditions for the new unknown

function u :

@2u

@t2
� @2u

@x2
� @3u

@t@x2
=

Z t

0

a (t� s) k (s; u) ds+ f

�
t; u;

@u

@t

�
; (4.6)Z 1

0

u(x; t)dx = 0;

Z 1

0

xu(x; t)dx = 0; t 2 [0; T ]; (4.7)

u(x; 0) = '(x);
@

@t
u(x; 0) =  (x); x 2 (0; 1); (4.8)

where

f

�
t; u;

@u

@t

�
= g

�
t; u+R;

@ (u+R)

@t

�
� @2R(x; t)

@t2
; (4.9)
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'(x) = V0(x)�R(x; 0);  (x) =W0(x)�
@R(x; t)

@t
; (4.10)

and

k (s; u (x; s)) = k0 (s; u (x; s) +R(x; s)) : (4.11)

Hence, instead of looking for the function v; we seek the function u: The solution of

problem (5:1)� (5:3) will be given by

v(x; t) = u(x; t) +R(x; t): (4.12)

This chapter is divided as follows. We begin by stating the precise assumptions

of the functions involved in the posed problem and by making precise the concept of

the solution. Section 2; is devoted to the construction of approximate solutions of

problem (4:6)�(4:8). Then, some a priori estimates for the approximations are derived

in Section 3; while the convergence of the method, uniqueness and the continuous

dependence on initial data of the solution to problem under study are established in

Section 4.

Let (�;�) and k�k be the usual inner product and the corresponding norm respec-

tively in L2(0; 1):

Throughout this chapter, we will make the following assumptions:

H1� Functions f : [0; T ] �W �W ! L2 (0; 1) and a : [0; T ] ! R are Lipschitz

continuous, i.e.

9l1 � 0; kf (t; u; v)� f (t0; u0; v0)k � l1 [jt� t0j+ ku� u0k+ kv � v0k] ; (4.13)

and

9l2 � 0; ja (t)� a (t0)j � l2 jt� t0j ; (4.14)



64

for all t; t0 2 I and u; v; u0; v0 2 W:

H2� Mapping k : [0; T ]�W ! L2 (0; 1) is Lipschitz continuous in both variables,

i.e.

9l3 2 R; kk (t; u)� k (t0; u0)k � l3 [jt� t0j+ ku� u0k] ; (4.15)

and satis�es

9l4; l5 2 R; kk (t; u)kB � l4 kukB + l5; (4.16)

for all t; t0 2 I; u; u0 2 W; where l3; l4 and l5 are positive constants.

H3� Functions ';  2 H2 (0; 1) \W; i:e:

';  2
�
v 2 H2(0; 1);

Z 1

0

v (x) dx =

Z 1

0

xv (x) dx = 0

�
: (4.17)

We look for a weak solution in the following sense.

De�nition 22 A function u : I ! L2(0; 1) is called a weak solution to problem

(4:6)� (4:8) if the following conditions are satis�ed:

(i) u 2 C0;1 (I;W ) ;

(ii) u is strongly di¤erentiable a.e. in I with du=dt 2 L1(I;W )\C0;1(I; B1
2(0; 1))

and d2u=dt2 2 L1(I; B1
2(0; 1));

(iii) u(0) = ' in W and (du=dt) (0) =  in B1
2(0; 1);

(iv) the identity

��
d2u=dt2

�
(t) ; v

�
B
+ ((du=dt) (t) ; v) + (u (t) ; v)

=

�Z t

0

a (t� s) k (s; u (x; s)) ds; v

�
B

+

�
f

�
t; u (t) ;

@u

@t
(t)

�
; v

�
B

; (4.18)

holds for all v 2 W and a.e. t 2 [0; T ]:
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In this chapter, we will demonstrate the following main result:

Theorem 23 Under assumptions (H1)�(H3) ; Problem (4:6)�(4:8) admits a unique

weak solution u; in the sense of De�nition 23:

4.2 Construction of an approximate solution

Let n be a positive integer. To solve problem (4:6) � (4:8) by the Rothe method,

we subdivide the time interval I by points t = jh; j = 0; :::; n; where h = T=n is a

step time. Then, we are conducted to solve successively for j = 1; :::; n the following

recurrent sequence of time-discretized problems:

�2unj �
@2

@x2
unj �

@2

@x2
�unj = hn

j�1X
i=0

anj;ik
n
i + fnj ; (4.19)

Z 1

0

uj(x)dx = 0; t 2 [0; T ]; (4.20)

Z 1

0

xuj(x)dx = 0; t 2 [0; T ]; (4.21)

starting from

u0(x) = '(x); x 2 (0; 1); (4.22)

�u0(x) =  (x); x 2 (0; 1); (4.23)

where unj := u
�
tnj
�
; �unj :=

�
unj � unj�1

�
=hn; f

n
j := f (tj; uj�1; �uj�1) ; a

n
j;i := a

�
tnj � tni

�
and kni := k (tni ; u

n
i ) ; for all j; i = 1; :::; n: Multiplying for all j = 1; :::; n; (4:19) by
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=2xv :=
R x
0

hR �
0
v (�) d�

i
d� and integrating over (0; 1); we getZ 1

0

�2unj=2xvdx�
Z 1

0

@2

@x2
unj=2xvdx�

Z 1

0

@2

@x2
�unj=2xvdx

= hn

Z 1

0

j�1X
i=0

anj;ik
n
i =2xvdx+

Z 1

0

fnj =2xvdx; (4.24)

carrying out some integrations by parts for each term in (4:24), with consideration to

the fact that

=21v =
Z 1

0

(1� �) v (�) d� =

Z 1

0

v (�) d� �
Z 1

0

�v (�) d� = 0; 8v 2 W; (4.25)

it follows that

�
�2unj ; v

�
B
+
�
unj ; v

�
+
�
�unj ; v

�
= hn

j�1X
i=0

anj;i (k
n
i ; v)B +

�
fnj ; v

�
B
; (4.26)

and also

�
unj ; v

�
B
+ hn

�
unj ; v

�
+ h2n

�
unj ; v

�
= h3n

j�1X
i=0

anj;i (k
n
i ; v)B + h2n

�
fnj ; v

�
B

+hn
�
unj�1; v

�
+
�
2unj�1 � unj�2; v

�
B
: (4.27)

Let � (:; :) : W �W ! R and Lj (:) : W ! R be two functions de�ned by

� (u; v) =
�
unj ; v

�
B
+ hn

�
unj ; v

�
+ h2n

�
unj ; v

�
; (4.28)

Lj (v) = h3n

j�1X
i=0

anj;i (k
n
i ; v)B + h2n

�
fnj ; v

�
B

+hn
�
unj�1; v

�
+
�
2unj�1 � unj�2; v

�
B
: (4.29)

Since �(:; :) is continuous andW�elliptic and Lj (:) is continuous; then, Lax-Milgram

Lemma guarantees the existence and uniqueness of unj ; for all j = 1; :::; n:
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4.3 A priori estimates

Lemma 24 There exist C > 0 such that, for all n � 1; the solutions unj of the

discretized problems (4:19)� (4:23); j = 1; :::; n; obey the estimates

unj  � C; (4.30)�unj  � C; (4.31)�2unj B � C: (4.32)

Proof. Using v = �2unj (2 W ) as a test function in the di¤erence (4:26)j �

(4:26)j�1; we obtain

�
�2unj � �2unj�1; �

2unj
�
B
+
�
�unj ; �u

n
j � �unj�1

�
+ hn

�
�2unj ; �

2unj
�

= hn

j�2X
i=0

�
anj;i � anj�1;i

� �
kni ; �

2unj
�
B

+hna
n
j;j�1

�
knj�1; �

2unj
�
B
+
�
fnj � fnj�1; �

2unj
�
B
; (4.33)

taking into account assumptions (H1)� (H3) and the Cauchy Schwarz inequality, we

get

�2unj 2B � �2unj�12B
+
�unj 2 � �unj�12 + 2hn �2unj 2

� Ch2n
�2unj B j�2X

i=0

(1 + kuni kB)

+Chn

�
1 +

unj�1B��2unj B
+Chn

h
1 +

�unj�1B + �2unj�1Bi �2unj B ; (4.34)
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hence,

�2unj 2B + �unj 2 � �2unj�12B � �unj�12 + 2hn �2unj 2
� Ch2n

�2unj B j�2X
i=0

kuni kB + Chn
�2unj B

+Chn
unj�1B �2unj B

+Chn
�unj�12B + Chn

�2unj 2B
+Chn

�2unj�12B : (4.35)

Noting that

hn
�unj�1B � unj�1B � unj�2B ; (4.36)

hence

hn

j�1X
i=1

k�uni kB + k'kB �
unj�1B : (4.37)

Similarly,

hn

j�1X
i=1

�2uni B + k kB � �unj�1B : (4.38)

Using the inequality (4:37) in (4:35) ; we get after some rearrangements

�2unj 2B + �unj 2 + 2hn �2unj 2
� (1 + Chn)

h�unj�12 + �2unj�12Bi+ Chn
�2unj B + Chn

�2unj 2B
+Ch2n

�2unj B j�1X
i=0

[kuni kB + k�uni kB] ; (4.39)

or, by virtue of (4:37) and (4:38)

�2unj 2B + �unj 2 + 2hn �2unj 2
� (1 + Chn)

h�unj�12 + �2unj�12Bi+ Chn
�2unj B + Chn

�2unj 2B
+Ch2n

�2unj B j�1X
i=0

"
hn

iX
k=0

�
k�unkkB +

�2unkB�
#
; (4.40)
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from which we deduce that

�2unj 2B + �unj 2 + 2hn �2unj 2
� (1 + Chn)

h�unj�12 + �2unj�12Bi+ Chn
�2unj B

+Ch2n

j�1X
i=0

�
k�uni k

2
B +

�2uni 2B�+ Chn
�2unj 2B ; (4.41)

then, with the fact that

Chn
�2unj B =

�
C
p
hn

��p
hn
�2unj B�

� 1

4
C2hn + hn

�2unj 2B ; (4.42)

we obtain

(1� Chn)
h�2unj 2B + �unj 2i

� (1 + Chn)
h�2unj�12B + �unj�12i

+Ch2n

j�1X
i=0

��2uni 2B + k�uni k2�+ Chn: (4.43)

Hence

(1� Chn)
h�2unj 2B + �unj 2i

� (1 + Chn)
h�unj�12 + �2unj�12Bi

+( + Chn)Ch
2
n

j�1X
i=0

�
k�uni k

2 +
�2uni 2B�+ ( + Chn)Chn; (4.44)

with

 := 2 exp (TC) � (1 + Chn)p ; 8n � n0; (4.45)
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for all p � j: Now, let�s suppose that

(1� Chn)
p
h�2unj 2B + �unj 2i

� (1 + Chn)
p
h�unj�p2 + �2unj�p2Bi

+(p+ Chn)Ch
2
n

j�1X
i=0

�
k�uni k

2 +
�2uni 2B�

+(p+ Chn)Chn; (4.46)

multiplying the last inequality by (1� chn) and using (4:43) ; we get

(1� Chn)
p+1
h�2unj 2B + �unj 2i

� (1 + Chn)
p
h
(1 + Chn)

h�unj�(p+1)2 + �2unj�(p+1)2Bi
+Ch2n

j�1X
i=0

�
k�uni k

2 +
�2uni 2B�+ Chn

#

+(p+ Chn)Ch
2
n

j�1X
i=0

�
k�uni k

2 +
�2uni 2B�

+(p+ Chn)Chn; (4.47)

using (4:45) we obtain

(1� Chn)
p+1
h�2unj 2B + �unj 2i

� (1 + Chn)
p+1
h�unj�(p+1)2 + �2unj�(p+1)2Bi

+( (p+ 1) + Chn)Ch
2
n

j�1X
i=0

�
k�uni k

2 +
�2uni 2B�

+( (p+ 1) + Chn)Chn; (4.48)
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then, the following inequality is veri�ed for all j:

(1� Chn)
j
h�2unj 2B + �unj 2i

� (1 + Chn)
j
h
k�un0k

2 +
�2un02Bi

+(j + Chn)Ch
2
n

j�1X
i=0

�
k�uni k

2 +
�2uni 2B�

+(j + Chn)Chn: (4.49)

Hence

�
1� CT

1

n

�n h�2unj 2B + �unj 2i
�

�
1 + CT

1

n

�n h�2un02B + k�un0k2i
+(j + Chn)Ch

2
n

j�1X
i=0

��2uni 2B + k�uni k2�
+(j + Chn)Chn: (4.50)

This shows that

�2unj 2B + �unj 2
� C

h�2un02B + k�un0k2 + 1i
+Chn

j�1X
i=0

��2uni 2B + k�uni k2� : (4.51)

Applying the Gronwall�s Lemma in (4:51) and taking into account the fact that

hn

jX
i=1

k�uni k � hn
�unj + �unj�1 + :::+ �un1


�

unj � k'k ; (4.52)

we get the desired result. So, the proof is complete.
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4.4 Convergence, existence and uniqueness

Let us de�ne, in the interval I = [0; T ] ; the abstract functions

un(t) = unj�1 + �unj (t� tnj�1); in Inj ; (4.53)

eun(t) =

8>><>>:
un1; for t = 0;

unj ; in ~Inj =
�
tnj�1; t

n
j

�
;

(4.54)

Un(t) = �unj�1 + �2unj (t� tnj�1); in Inj ; (4.55)

eUn(t) =

8>><>>:
�un1 ; for t = 0;

�unj ; in ~Inj ;

(4.56)

Yn (t) =

8>><>>:
�2un1 ; for t = 0;

�2unj ; in ~Inj ;

(4.57)

bun(t) =

8>><>>:
un1 ; for t = 0;

unj�1; in ~Inj ;

(4.58)

bUn(t) =

8>><>>:
�un1 ; for t = 0;

�unj�1; in ~Inj ;

(4.59)

efn (t) = f
�
tnj ; bun(t); bUn(t)� ; in ~Inj : (4.60)

ek (t; eun(t)) =

8>><>>:
0; for t = 0;

hn
Pj�1

i=0 a
n
j;ik

n
i ; in ~Inj =

�
tnj�1; t

n
j

�
:

(4.61)

Lemma 25 There exist C > 0 such that the estimates

kun (t)k � C; k~un (t)k � C; kUn (t)k � C;
eUn (t) � C; kYn (t)kB � C; (4.62)dundt (t)

 � C;

Un (t)� dun
dt
(t)


B

� Chn; (4.63)ek (t; eun(t))
B
� C; (4.64)



73eUn (t)� Un (t)

B
� Chn; keun (t)� un (t)k � Chn; (4.65)

bUn (t)� Un (t)

B
� Chn; kbun (t)� un (t)k � Chn; (4.66)

 efn (t) � C; (4.67)

 efn (t)� efm (t)
B
� C (hn + hm) + C kun(t)� um(t)kB (4.68)

+C kUn(t)� Um(t)kB ;

and

ek (t; eun(t))� ek (t; eum(t))
B
� Chn + C sup

0�s�t
kun (s)� um (s)kB ; (4.69)

hold for all t 2 I and n � n0:

Proof. Having in mind estimates (4:30) � (4:32) and assumptions (H1) � (H3) ;

estimates (4:62)�(4:66) follow immediately. Whereas, from the inequality
 efn (t) �f �tnj ; bun(t); bUn(t)�� f

�
tnj ; 0; 0

�+f �tnj ; 0; 0� ; it follows by means of (4:30); (4:31)
and (H1) that

 efn (t) � C
unj�1+ C

�unj�1+max
t2I

kf (t; 0; 0)k

� C: (4.70)

For estimate (4:68) ; let t be arbitrary but �xed in (0; T ]; then there exist two integers

p and q corresponding to the subdivision of (0; T ] into n and m subintervals, respec-

tively, such that t 2 (tnp�1; tnp ] \ (tmq�1; tmq ]: According to (4:66) and assumption (H1)
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we get

 efn (t)� efm (t)
B
=

f �tnp ; bun(t); bUn(t)�� f
�
tmq ; bum(t); bUm(t)�

B

� C (hn + hm) + C kun(t)� um(t)kB

+C kUn(t)� Um(t)kB : (4.71)

For the last inequality, we have

ek (t; eun(t))� ek (t; eum(t))
B
=

hn
p�1X
i=0

anp;ik
n
i � hm

q�1X
i=0

amq;ik
m
i


B

: (4.72)

Let l be an arbitrary positive integer such that l = nm; noting that

ek (t; eun(t))� ek (t; eum(t))
B

�
ek (t; eul(t))� ek (t; eun(t))

B
+
ek (t; eul(t))� ek (t; eum(t))

B
; (4.73)

hence, to establish that

ek (t; eun(t))� ek (t; eum(t))
B
� Chn + C sup

0�s�t
kun (s)� um (s)kB ; (4.74)

we can suppose that there exist � 2 N� such that

m = �n: (4.75)

On the other hand, let t1; t2 2
�
tnj�1; t

n
j

�
such that t1 2

�
tm��1; t

m
�

�
; t2 2

�
tm��1; t

m
�

�
and � � �; using (4:61) we write

ek (t1; eum(t1))� ek (t2; eum(t2))
B
=

hm
��1X
i=0

am�;ik
m
i � hm

��1X
i=0

am�;ik
m
i


B

; (4.76)
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where

ek (t1; eum(t1))� ek (t2; eum(t2))
B

�
hm

��1X
i=0

am�;ik
m
i � hm

��1X
i=0

am�;ik
m
i


B

+

hm
��1X
i=�

am�;ik
m
i


B

� hm

��1X
i=0

��am�;i � am�;i
�� kkmi kB + hm

��1X
i=�

��am�;i�� kkmi kB ; (4.77)

then, by taking into account assumptions (H1)� (H3) ; (4:30) and (4:75) ; we derive

ek (t1; eum(t1))� ek (t2; eum(t2))
B

� Chm

��1X
i=0

��tm� � tm�
��+ hm

��1X
i=�

C; (4.78)

and consequently, by virtue of assumption (H2) and estimate (4:78), having in mind

that
�
tm��1; t

m
�

�
[
�
tm��1; t

m
�

�
�
�
tnj�1; t

n
j

�
; and �hm � �hm � T; we get

ek (t1; eum(t1))� ek (t2; eum(t2))
B
� Chn: (4.79)

Therefore, (4:75) and (4:79) enables us to suppose that

9� 2 N�; m = �n and tnp = tmq : (4.80)

From which, identity (4:72) becomes

ek (t; eun(t))� ek (t; eum(t))
B

=

�hm
p�1X
j=0

anp;jk
n
j � hm

p�1X
j=0

0@�(j+1)�1X
i=j�

amq;ik
m
i

1A
B

; (4.81)

that is,

ek (t; eun(t))� ek (t; eum(t))
B
= hm


p�1X
j=0

24�(j+1)�1X
i=j�

�
anp;jk

n
j � amq;ik

m
i

�35
B

: (4.82)
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Taking into account assumption (H1) and the fact that tnp = tmq ; we infer that

��anp;j � amq;i
�� � C

��tnp � tnj � tmq + tmi
��

� C
��tmi � tnj

��
� Chn; (4.83)

we suppose that anp;j � amq;i; thus, there exists "n 2 [0; Chn] such that

anp;j = amq;i + Chn � "n: (4.84)

Performing the substitution anp;j = amq;i + Chn � "n in the identity (4:82) ; we get

ek (t; eun(t))� ek (t; eum(t))
B

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

�amq;i + Chn � "n
�
knj � amq;ik

m
i


B

35 ; (4.85)

whence

ek (t; eun(t))� ek (t; eum(t))
B

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

(Chn � "n) k
n
j


B
+
��amq;i�� knj � kmi


B

35 : (4.86)

Therefore, recalling assumptions (H1) ; (H2) ; using estimate (4:86) and having in

mind that "n 2 [0; Chn] ; we estimate

ek (t; eun(t))� ek (t; eum(t))
B

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

Chn + C
�
hn +

unj � umi

B

�35 ; (4.87)
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this consists the fact that anp;j � amq;i: If not, we follows the same lines as above, from

where, we derive

ek (t; eun(t))� ek (t; eum(t))
B

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

Chn + C
�
hn +

unj � un (s)

B

+ kun (s)� um (s)kB + kum (s)� umi kB)] ;

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

Chn + C (hn + keun(s)� un (s)kB

+ kun (s)� um (s)kB + kum (s)� eum(s)kB)] ; (4.88)

holds for all s 2
�
tmi ; t

m
i+1

�
: Hence, we take the supremum with respect to s from 0 to

t in the right-hand side, invoking the fact that s 2
�
tmi ; t

m
i+1

�
�
�
tnj�1; t

n
j

�
and estimate

(4:65) ; we obtain

ek (t; eun(t))� ek (t; eum(t))
B

� hm

p�1X
j=0

24�(j+1)�1X
i=j�

Chn + C sup
0�s�t

kun (s)� um (s)kB

35 ; (4.89)

which implies that

ek (t; eun(t))� ek (t; eum(t))
B

� hm

q�1X
i=0

�
Chn + C sup

0�s�t
kun (s)� um (s)kB

�
; (4.90)

and �nally,

ek (t; eun(t))� ek (t; eum(t))
B
� Chn + C sup

0�s�t
kun (s)� um (s)kB ; (4.91)

hence the proof is complete.
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Proposition 26 There exists a function u such that

(i) u 2 C0;1 (I;W ) ; du=dt 2 L1(I;W ) \ C0;1(I; B1
2(0; 1)) and d2u=dt2 2

L1(I; B1
2(0; 1));

(ii) un ! u in C (I;W ) ;

(iii) eun(t)* u (t) ; in W for all t 2 I;

(iv) Un ! du=dt in C(I; B(0; 1));

(v) eUn(t)* du=dt in W for all t 2 I;

(vi) dun=dt * du=dt in L2 (I;W ) ;

(vii) (d=dt)Un * d2u=dt2 in L2(I; B(0; 1)):

Moreover, the error estimates

kun � ukC(I;W ) � C
p
hn; (4.92)

kUn � du=dtkC(I;B12(0;1)) � C
p
hn; (4.93)

take splace for all n � n0:

Proof. By virtue of (4:54) � (4:61) ; the variational equation (4:26) may be

rewritten in the form

(Yn (t) ; v)B + (eun(t); v) + �eUn (t) ; v�
=

�ek (t; eun(t)) ; v�
B
+
� efn (t) ; v�

B
: (4.94)

Testing the di¤erence (4:94)n � (4:94)m with v = eUn(t)� eUm(t); taking into account
the fact that

�
un (t)� um (t) ; eUn (t)� eUm (t)�

=
1

2

d

dt
kun (t)� um (t)k2 ; a:e: t 2 I; (4.95)
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and

(Un (t)� Um (t) ; Yn (t)� Ym (t))

=
1

2

d

dt
kUn (t)� Um (t)k2 ; a:e: t 2 I; (4.96)

we obtain

1

2

d

dt
kUn (t)� Um (t)k2B +

1

2

d

dt
kun (t)� um (t)k2

� kum (t)� eum (t)keUn(t)� eUm(t)+ keun (t)� un (t)k
eUn(t)� eUm(t)+

kYn (t)� Ym (t)kB
eUn (t)� Un (t)


B

+ kYn (t)� Ym (t)kB
Um (t)� eUm (t)

B

+
ek (t; eun(t))� ek (t; eum(t))

B

eUn(t)� eUm(t)
B

+
 efn (t)� efm (t)

B

eUn(t)� eUm(t)
B
: (4.97)

Or, by virtue of Lemma 4, we can write

1

2

d

dt
kUn (t)� Um (t)k2B +

1

2

d

dt
kun (t)� um (t)k2

� C (hm + hn) + C sup
0�s�t

kun (s)� um (s)k
eUn(t)� eUm(t)

B

+C kUn(s)� Um(s)kB
eUn(t)� eUm(t)

B
: (4.98)

Noting that

eUn(t)� eUm(t)
B
�

eUn(t)� Un(t)

B
+ kUn(t)� Um(t)kB +

Um(t)� eUm(t)
B

� C (hm + hn) + kUn(t)� Um(t)kB ; (4.99)
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using (4:99) in (4:98) we get

1

2

d

dt
kUn (t)� Um (t)k2B +

1

2

d

dt
kun (t)� um (t)k2

� C (hm + hn) + C sup
0�s�t

kun (s)� um (s)k2

+C kUn(t)� Um(t)kB
eUn(t)� eUm(t)

B
; (4.100)

recalling (4:99) in this last, it follows that

d

dt
kUn(t)� Um(t)k2B +

d

dt
kun (t)� um (t)k2

� C (hm + hn) + C

�
kUn(t)� Um(t)k2B + sup

0�s�t
kun (s)� um (s)k2

�
: (4.101)

Integrating this inequality with respect to time from 0 to t and invoking the fact that

un(0) = um(0) and Un(0) = Um(0); we get

kUn(t)� Um(t)k2B + kun (t)� um (t)k2

� C (hm + hn) + C
R t
0

�
kUn(s)� Um(s)k2B + sup0���s kun (�)� um (�)k2

�
ds;

(4.102)

from which we deduce that

kUn(t)� Um(t)k2B + sup0�s�t kun (s)� um (s)k2

� C (hm + hn) + C
R t
0

�
kUn(s)� Um(s)k2B + sup0���s kun (�)� um (�)k2

�
ds:

(4.103)

By virtue of Gronwall�s Lemma and the above inequality, we obtain

sup
0�s�T

kUn (s)� Um (s)k2B + sup
0�s�T

kun (s)� um (s)k2 � C (hm + hn) ; (4.104)

takes place for all n; m 2 N�: This implies that (Un (t))n ; (un (t))n are a Cauchy

sequences in the Banach spaces C(I; B1
2(0; 1)) and C(I;W ); respectively. Hence,

there exist two functions u 2 C(I;W ) and U 2 C(I; B1
2(0; 1)) such that

(un)n ! u in C(I;W ); (4.105)
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(Un)n ! U in C(I; B1
2 (0; 1)): (4.106)

Now, on the basis of the estimates (4:30)�(4:32) and the convergence results (4:105); (4:106),

Lemma 6 enables us to state the following assertions

(i) u 2 C0;1 (I;W ) ;

(ii) u is strongly di¤erentiable a.e.in I and du=dt 2 L1(I;W );

(iii) eun(t)* u (t) ; for all t 2 I;

(iv) dun=dt * du=dt in L2 (I;W ) ;

as well as

(1) U 2 C0;1 (I; B(0; 1)) ;

(2) U is strongly di¤erentiable a.e.in I and dU=dt 2 L1(I; B(0; 1));

(3) eUn(t)* U in W for all t 2 I;

(4) (d=dt)Un * dU=dt in L2(I; B(0; 1)):

On the other hand, by virtue of (4:63); (4:106) and the convergence property (iv)

stated above, we get

(U (t)� du (t) =dt; v)B = lim
n
(U (t)� Un (t) ; v)B

+ lim
n

�
Un (t)�

d

dt
un (t) ; v

�
B

+ lim
n

�
d

dt
un (t)� du (t) =dt; v

�
B

�! n�!10; (4.107)

from which, we deduce that U = du=dt and consequently dU=dt = d2u=dt2. Finally,

letting m ! 1 in (4:104); we obtain the desired error estimate. So, the proof is

complete.

Theorem 27 Under assumptions (H1)�(H3) ; problem (4:6)�(4:8) admits a unique
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weak solution, namely the limit function u from Proposition 26, in the sense of De�-

nition 22:

Proof. Note that in light of what precedes, the limit function u satis�es all the

conditions (i); (ii); (iii) and (iv) of De�nition 22: It remains to see that u obeys the

integral identity (4:18). For this, integrating (4:94) over (0; t); we get

(Un (t)�  ; v)B + (u
n (t)� '; v) +

Z t

0

(eun(�); v) d�
=

Z t

0

�ek (� ; eun(�)) ; v�
B
d� +

Z t

0

� efn (�) ; v�
B
d� ; (4.108)

consequently, after some rearrangement

(Un (t)�  ; v)B + (u
n (t)� '; v) +

Z t

0

(eun(�); v) d�
=

Z t

0

�Z �

0

a (� � s) k (s; u (x; s)) ds; v

�
B

d� +

Z t

0

�
f

�
� ; u (�) ;

@u

@t
(�)

�
; v

�
B

d�

+

Z t

0

�ek (� ; eun(�))� Z �

0

a (� � s) k (s; u (x; s)) ds; v

�
B

d�

+

Z t

0

�efn (�)� f

�
� ; u (�) ;

@u

@t
(�)

�
; v

�
B

d� : (4.109)

Using (4:58) and (4:61) we have for all t 2
�
tnj�1; t

n
j

�
ek (t; eun(t))� Z t

0

a (t� s) k (s; u (:; s)) ds

= hn

j�1X
i=0

anj;ik
n
i �

Z t

0

a (t� s) k (s; u (:; s)) ds

=

Z tnj

0

a
�
tnj � ŝn (s)

�
k (ŝn (s) ; ûn (s)) ds�

Z t

0

a (t� s) k (s; u (:; s)) ds

=

Z tnj

0

a
�
tnj � ŝn (s)

�
k (ŝn (s) ; ûn (s)) ds�

Z tnj

0

a (t� s) k (s; u (:; s)) ds

+

Z tnj

t

a (t� s) k (s; u (:; s)) ds

=

Z tnj

0

�
a
�
tnj � ŝn (s)

�
k (ŝn (s) ; ûn (s))� a (t� s) k (s; u (:; s))

�
ds

+

Z tnj

t

a (t� s) k (s; u (:; s)) ds; (4.110)
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where ŝn : I ! I denotes the function

ŝn(t) =

8>><>>:
0; for t = 0;

tnj�1; in ~Inj :

(4.111)

Thus, estimating the term

��a �tnj � ŝn (s)
�
� a (t� s)

�� ; (4.112)

owing to assumption (H1); taking into account that t 2 Inj we obtain

��a �tnj � ŝn (s)
�
� a (t� s)

�� � C
��tnj � ŝn (s)� t+ s

��
� C

���tnj � t
��+ js� ŝn (s)j

�
� Chn; (4.113)

which clearly follows that

9"n � 0;
��a �tnj � ŝn (s)

�
� a (t� s)

��+ "n = Chn: (4.114)

For the term

k (ŝn (s) ; ûn (s))� k (s; u (:; s)) ; (4.115)

we have, using assumption (H2)

kk (ŝn (s) ; ûn (s))� k (s; u (:; s))kB

� C [jŝn (s)� sj+ kûn (s)� u (:; s)kB] ; (4.116)

or, by (4:66) ; (4:92) ; (4:111) and the fact that

kûn (s)� u (:; s)kB � kûn (s)� un (s)kB + kun (s)� u (:; s)kB ; (4.117)
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we get

kk (ŝn (s) ; ûn (s))� k (s; u (:; s))kB � C
p
hn: (4.118)

Taking into account estimate (4:84) and assumptions (H1); (H2) we estimate

a �tnj � ŝn (s)
�
k (ŝn (s) ; ûn (s))� a (t� s) k (s; u (:; s))


B

�
a �tnj � ŝn (s)

�
k (ŝn (s) ; ûn (s))

�
�
a
�
tnj � ŝn (s)

�
+ Chn � "n

�
k (s; u (:; s))


B

� k(Chn � "n) k (s; u (:; s))kB

+
a �tnj � ŝn (s)

�
k (ŝn (s) ; ûn (s))� a

�
tnj � ŝn (s)

�
k (s; u (:; s))


B

� C (Chn � "n) (1 + ku (:; s)kB)

+
��a �tnj � ŝn (s)

��� kk (ŝn (s) ; ûn (s))� k (s; u (:; s))kB ; (4.119)

hence, by virtue of (4:30) and (4:118) ; it follows that

a �tnj � ŝn (s)
�
k (ŝn (s) ; ûn (s))� a (t� s) k (s; u (:; s))


B

� C (Chn) (1 + C) + C
p
hn � C

p
hn (4.120)

�! n�!10;

this consists the fact that a (t� s) � a
�
tnj � ŝn (s)

�
: If not, we follows the same lines

as above. On the other hand, in view of the assumed Lipschitz continuity of f; we

have efn (�)� f

�
� ; u (�) ;

@u

@t
(�)

�
B

�
f �~sn (�) ; bun(�); bUn(�)�� f (� ; u(�); u0(�))


B

� C
h
hn + kbun(�)� u(�)kB +

bUn(�)� u0(�)

B

i
�! n�!10: (4.121)
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Now, the sequences f(eun(�); v)g, n� efn (�) ; v�
B

o
and

n�ek (� ; eun(�)) ; v�
B

o
are uni-

formly bounded with respect to both � and n, so the Lebesgue theorem of ma-

jorized convergence is applicable to (4:109) ; thus, having in mind (4:110) ; (4:120) ;

and (4:121) ; we derive

(U (t)�  ; v)B + (u (t)� '; v) +

Z t

0

(u (�) ; v) d�

=

Z t

0

�Z �

0

a (� � s) k (s; u (x; s)) ds; v

�
B

d� +

Z t

0

�
f

�
� ; u (�) ;

@u

@t
(�)

�
; v

�
B

d� ;(4.122)

takes place for all v 2 W and t 2 [0; T ]. Finally, di¤erentiating (4:122) with respect

to t; we get

(u00 (t) ; v)B + (u
0 (t) ; v) + (u (t) ; v)

=

�Z t

0

a (t� s) k (s; u (x; s)) ds; v

�
B

+

�
f

�
t; u (t) ;

@u

@t
(t)

�
; v

�
B

;(4.123)

which achieves the proof of the existance. The uniqueness may be argued as follow.

Let r be another solution for (4:6) � (4:8) and w = u � r. Then, with v = w0 (t) as

test function in the di¤erence (4:123)u�(4:123)r and taking into account assumptions

(H1); (H2) and the fact that

((d=dt)w (t) ; w (t))B = (1=2) (d=dt) kw (t)k
2
B ; (4.124)

we obtain

1

2
(d=dt) kw0 (t)k2B + kw0 (t)k

2
+
1

2
(d=dt) kw (t)k2B

�
Z t

0

a (t� s) k (s; u (x; s)) ds�
Z t

0

a (t� s) k (s; r (x; s)) ds


B

kw0 (t)kB

+

f �t; u (t) ; @u@t (t)
�
� f

�
t; r (t) ;

@r

@t
(t)

�
B

kw0 (t)kB ; 8t 2 [0; T ]
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from which, we deduce that

1

2
(d=dt) kw0 (t)k2B + kw0 (t)k

2
+
1

2
(d=dt) kw (t)k2B

� C kw0 (t)kB sup
t2[0;T ]

ja (t)j
Z t

0

kw (s)kB ds

+C (kw (t)kB + kw0 (t)kB) kw0 (t)kB ; 8t 2 [0; T ]

or, by virtue of the property (i) from Proposition 26

1

2
(d=dt) kw0 (t)k2B +

1

2
(d=dt) kw (t)k2B

� C sup
s2[p1;t]

kw (s)kB kw0 (t)kB + C kw (t)k2B + C kw0 (t)k2B ;

for all t 2 [p1; p2] � [0; T ] ;where

p : = p2 � p1; w
0 (t) = 0; 8t 2 [0; p1]

and w0 (t) 6= 0; 8t 2 ]p1; p2[ ; (4.125)

from which, with (4:125) ; it follows

(d=dt) kw0 (t)k2B + (d=dt) kw (t)k
2
B

� C sup
s2[p1;t]

kw (s)k2B + C kw0 (t)k2B :

this for all t 2 [p1; p2] : Integrating the above inequality on (p1; t) � [p1; p2], we get

kw0 (t)k2B + kw (t)k
2
B

� C

Z t

p1

"
kw0 (s)k2B + sup

�2[p1;s]
kw (�)k2B

#
ds;

or

kw0 (t)k2B + sup
s2[p1;t]

kw (s)k2B

� C

Z t

p1

"
kw0 (s)k2B + sup

�2[p1;s]
kw (�)k2B

#
ds:
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Applying Gronwall�s inequality, we get

kw0 (t)k2B + sup
s2[p1;t]

kw (t)k2B � 0; 8t 2 [p1; p2] :

Contradiction with (4:125) : This achieves the proof.

Finally, we introduce the result of continuous dependence of the solution upon the

data.

Theorem 28 Let u� be the weak solution of problem (4:6) � (4:8) corresponding to

('�;  �; a�; k�; f�) instead of (';  ; a; k; f); then the inequality

ku (t)� u� (t)k2

� k �  �k2B + k'� '�k2

+

Z t

0

�Z �

0

ka (� � s) k (s; u (s)) ds� a� (� � s) k� (s; u� (s))kB ds
�2
d�

+

Z t

0

f �� ; u (�) ; dd� u (�)
�
� f �

�
� ; u� (�) ;

d

d�
u� (�)

�2
B

d� ; (4.126)

takes place for all t 2 I:

Proof. Subtracting the identity (4:123) for u and u� with w (t) = u(t)� u�(t) as

a test fuction in the resulting relation, we get by integration over (0; t)

1

2
kw0 (t)k2B �

1

2
kw0 (0)k2B +

Z t

0

kw0 (t)k2 + 1
2
kw (t)k2 � 1

2
kw (0)k2

�
Z t

0

Z �

0

ka (� � s) k (s; u (s)) ds� a� (� � s) k� (s; u� (s))kB ds kw0 (�)kB d�

+

Z t

0

f �� ; u (�) ; ddtu (�)
�
� f �

�
� ; u� (�) ;

d

dt
u� (�)

�
B

kw0 (�)kB d� ;
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hence

kw0 (t)k2B � kw0 (0)k
2
B + 2

Z t

0

kw0 (t)k2 + kw (t)k2 � kw (0)k2

�
Z t

0

�Z �

0

ka (� � s) k (s; u (s)) ds� a� (� � s) k� (s; u� (s))kB ds
�2
d�

+

Z t

0

f �� ; u (�) ; dd� u (�)
�
� f �

�
� ; u� (�) ;

d

d�
u� (�)

�2
B

d�

+2

Z t

0

kw0 (�)k2B d� ; (4.127)

from which we deduce the desired result and so the continuous dependence of the

solution of (4:6)� (4:8) upon data. So the proof is complete.
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ABSTRACT 

 

الأولى مسألة من ، نثبت وجود ووحدانية الحل لبعض المسائل التطورية، في ھذه الرسالة :ملخص
تخص  المسألة الثانية‘ وحدية غير متجانسة ابتدائيةشبه خطية مع شروط  زائديهأجل معادلة نصف 

تفاضلية مع شروط حدية غير كلاسيكية و المسألة الأخيرة تخص - معادلة تكافئية نصف خطية تكاملية
الطريقة المستعملة ھي . تفاضلية مع شروط حدية غير كلاسيكية-تكامليةشبه خطية زائديھمعادلة 
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RESUME:Dans cette thèse on démontre l'existence et l'unicité de quelques problèmes 

d'évolution. On commence par un problème avec une équation pseudo-hyperbolique quasi-

linéaire avec des conditions initiales et aux limites non-homogènes.Le second chapitre est 

consacré à l'étude d'un problème relatif à une équation semi-linéaire parabolique intégro-

différentielle avec des conditions aux limites non classiques et le dernier chapitre est pour 

l'étude d'un problème avec une équation quasi-linéaire pseudo-hyperbolique intégro-

différentielle avec des conditions aux limites non classiques. La méthodeutilisée est celle de 

discrétisation de Rothe. 

 

ABSTRACT: The thesis is concerned with the study of the existence and the uniqueness of 

evolution problems. We began with a problem for a quasi-linear pseudo-hyperbolic equation 

with nonhomogeneous boundary and initial conditions. The second is for a semi-linear 

parabolic integro-differential equation with non-classical boundary conditions, and the last 

one is for a quasi-linear hyperbolic integro-differential equation with non-classical boundary 

conditions. We use the Rothe-time discretization method. 

 

 


