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Introduction

Integral inequalities play a big role in the study of di¤erential integral equation and

partial di¤erential equations. They were introduced by Gronwall in 1919 [13], who

gave their applications in the study of some problems concerning ordinary di¤erential

equation.

Since that time, the theory of these inequalities knew a fast growth and a great

number of monographs were devoted to this subject [4, 14, 15, 38]. The applications

of the integral inequalities were developed in a remarkable way in the study of the

existence, the uniqueness, the comparison, the stability and continuous dependence

of the solution in respect to data. In the last few years, a series of generalizations of

those inequalities appeared. Among these generalization, we can quote Pachpatte�s

work [27].

In the last few years, a number of nonlinear integral inequalities had been estab-

lished by many scholars, which are motivated by certain applications. For example,

we refer the reader to literatures ([1],[31],[33]) and the references therein. However,

only a few papers [27, 25, 23] studied the nonlinear delay integral inequalities and

integrodi¤erential inequalities as far as we know.

In fact, in the quantitative of some classes of delay partial di¤erential equations, in-

tegral equations and integrodi¤erential equations, the bounds provided by the earlier

inequalities are inadequate and it is necessary to seek some new integral inequalities,

delay integral inequalities, integrodi¤erential inequalities in the case of the functions

with one and more than one variables which can be used as tools in this way.



4

The aim of the present work is to give an exposition of the classical results about

integral inequalities with have appeared in the mathematical literature in recent years;

and to establish some new integral inequalities, integrodi¤erential inequalities and also

many new retarded integral inequalities. The results given here can be used in the

qualitative theory of various classes of boundary value problems of partial di¤erential

equations, partial di¤erential equations with a delay, di¤erential equations, integral

equations and integrodi¤erential equations.

The work begging by presenting a number of classical facts in the domain of

Gronwall inequalities and some nonlinear inequalities in the general cases, we collected

a most of the above inequalities from the book "Integral inequalities and applications"

by Bainov and Simeonov [4].

In the chapter 2, we establish some new nonlinear integral inequalities for functions

of one variable, with a further generalization of these inequalities in to function with n

independent variables. These results (extend the Gronwall type inequalities obtained

by Pachpatte [27, 2002] and Oguntuase [25, 2001].We note that our results in this

chapter are published in E.J.D.E. (see : [10])

In the chapter 3, we establish some new linear and nonlinear integrodi¤erential

inequalities for functions of n independent variables, which can be used as tools in

the theory of partial di¤erential and integrodi¤erential equations. The present results

(in press : [16] ) are a generalizations of some inequalities proved in [32].

The purpose of the chapter 4 is to establish some nonlinear retarded integral

inequalities in the case of functions of n independent variables which can be used

as handy tools in the theory of partial di¤erential and integral equations with time
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delays. These new inequalities represent a generalization of the results obtained by

Ma and Pecaric [23, 2006], Pachpatte [29, 2002] and by Cheung [5, 2006] in the case

of the functions with one and two variables.

We illustrate this work, in the end of each chapter (2-4), by applying our new

results to certain boundary value problem and some integral equations with a delay .



Chapter 1

Classical Gronwall Inequalities

This chapter is presenting a number of classical facts in the domain of Gronwall

inequalities and some nonlinear inequalities in the general cases, we collected a most

of the above inequalities from the book "Integral inequalities and applications" by

Bainov and Simeonov [4].

1.1 Some Linear Gronwall Inequalities

In the qualitative theory of di¤erential and Volterra integral equation, the Gronwall

type inequalities of one variable for the real functions play a very important role.

the �rst use of the Gronwall inequality to establish boundedness and stability is due

to Bellman. For the ideas and the methods of Bellman see [3] where further references

are given.

In 1919, Gronwall [13] proved a remarkable inequality which has attracted and

continues to attract considerable attention in the literature.

6
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Theorem 1 (Gronwall-bellman-Bihari) Let u;	and g be real continuous func-

tions de�ned in [a; b] ; g(t) � 0 for t 2 [a; b] : Suppose that on [a; b] we have the

inequality

u(t) � 	(t) +
Z t

a

g(s)u(s)ds: (1.1)

Then

u(t) � 	(t) +
Z t

a

g(s)	(s) exp

�Z t

s

g(�)d�

�
ds: (1.2)

Proof. De�ne the function

y(t) =

Z t

a

g(s)u(s)ds; (1.3)

for t 2 [a; b]. Then we have y(a) = 0 and

y0(t) = g(t)u(t)

� g(t)	(t) + g(t)y(t); t 2 [a; b] :

By multiplication with exp
�
�
R t
a
g(s)ds

�
� 0; we obtain

d

dt

�
y(t) exp

�
�
Z t

a

g(s)ds

��
� 	(t)g(t) exp

�
�
Z t

a

g(s)ds

�
:

By integration on [a; t], one gets

y(t) exp

�
�
Z t

a

g(s)ds

�
�
Z t

a

	(x)g(x) exp

�
�
Z x

a

g(s)ds

�
dx;

from where results

y(t) �
Z t

a

	(x)g(x) exp

�
�
Z t

x

g(s)ds

�
dx; t 2 [a; b] :

Since

u(t) � 	(t) + y(t);
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the theorem is thus proved

Next, we shall present some important corollaries resulting from the Gronwall

ineqaulity above.

Corollary 2 If 	 is di¤erentiable, then from (1.1) it follows that

u(t) � 	(a)
�Z t

a

g(s)ds

�
+

Z t

a

exp

�
�
Z t

s

g(x)dx

�
	0(s)ds;

for all t 2 [a; b].

Corollary 3 (Gronwall ineqaulity ) If 	 is constant, then from

u(t) � 	+
Z t

a

g(s)u(s)ds

it follows that

u(t) � 	exp
�Z t

a

g(s)ds

�
:

Filatov [12] proved the following linear generalization of Gronwall�s inequality.

Theorem 4 Let u be a continuous nonnegative function such that

u(t) � a+
Z t

t0

[b+ cu(s)] ds; for t � t0;

where a � 0; b � 0 and c � 0:

then for t � t0; u(t)satis�es

u(t) �
�
b

c

�
(exp (c(t� t0))� 1) + a exp (c(t� t0)) :

More general result was given in Willett [37]. Here we give an extended version

due to Beesack [2]
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Theorem 5 Let u and k be continuous and a and b Riemann integrable functions

on J = [�; �] with b and k nonnegative on J .

(i) If

u(t) � a(t) + b(t)
Z t

�

k(s)u(s)ds; t 2 J; (1.4)

then

u(t) � a(t) + b(t)
Z t

�

k(s)a(s) exp

�Z t

s

b(x)k(x)dx

�
ds: (1.5)

For all t 2 J: Moreover, equality holds in (1.5) for a subinterval J1 = [�; �1] of J if

equality holds in (1.4) for t 2 J1:

(ii) The result remains valid if � is replaced by � in both (1.4) and (1.5) .

(iii) Both (i) and �(ii) remain valid if
R t
�
is replaced by

R �
t
and

R t
s
by
R s
t
throughout.

Remark 6 Pachpatte [26] Proved an analogous result on R+ and (�1; 0]:

Remark 7 Willett�s paper [37] also contains a linear generalization in which b(t)k(s)

is replaced by
nX
i=1

bi(t)ki(s):

1.2 Analogues of Gronwall�s Inequality

1.2.1 Nonlinear Inequalities

We can consider various nonlinear generalisations of Gornwall�s ineqaulity.

The .following theorem is proved in Pachpatte [27]

Theorem 8 Let u be a nonnegative function that satis�es the integral ineqaulity

u(t) � c+
Z t

t0

(a(s)u(s) + b(s)u�(s))ds; (1.6)



10

for c � 0; � � 0; where a(t) and b(t) are continuous nonnegative functions for t � t0:

(i) For 0 � � � 0 we have

u(t) �
�
c1�� exp

�
(1� �)

Z t

t0

a(s)ds

�
+ (1� �)

Z t

t0

b(s) exp

�
(1� �)

Z t

s

a(x)dx

�
ds

� 1
1��

:

(i) For � = 1 we have

u(t) � c exp
�Z t

t0

[a(s) + b(s)] ds

�
;

(i) For � � 1 , with the additional hypothesis

c �
�
exp

�
(1� �)

Z t0+h

t0

a(s)ds

�� 1
1��
�
(1� �)

Z t0+h

t0

b(s)ds

�� 1
1��

;

we also get for t0 � t � t0 + h; for h � 0;

u(t) � c

�
exp

�
(1� �)

Z t

t0

a(s)ds

�
� c�1(�� 1)

Z t

t0

b(s) exp

�
(1� �)

Z t

s

a(x)dx

�
ds

� 1
1��

:

Remark 9 Inequality (1.5) is also considered in Willett [37], willett and Wong [36].

and Chu and Metcalf [7]

The following theorem is modi�ed version of theorem proved in Pachpatte [27]

(see also : [25]).

Theorem 10 If

u(t) � f(t) + c
Z t

0

�(s)u�(s)ds;
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where all functions are continuous and nonnegative on [0; h]; 0 � � � 1 and c � 0;

then

u(t) � f(t) + c��0
�Z t

0

�
1

1�� (s)

�1��
;

where �0 is the unique root of � = a+ b�
�:

Pachpatte [27] also proved the following result:

Theorem 11 If

u(t) � c1 + c2
Z t

0

�(s)u�(s)ds+ c3

Z h

0

�(s)u�(s)ds;

c1 � 0; c2 � 0 ; c3 � 0; and the functions u(t) and �(t) are continuous and

nonnegative on [0; h]; the for 0 � � � 1 we have

u(t) �
�
�1��0 + c2(1� �)

Z t

0

�(s)ds

� 1
1��

;

where �0 is the unique root of equation�
c2 + c3
c3

� +
c2c1
c3

�1��
� �1�� � c2(1� �)

Z h

0

�(s)ds = 0:

If � � 1 and c2(1��)
R h
0
�(s)ds � c1��1 ; there exists an interval [0; �] � [0; h] where

u(t) �
�
c1��1 + c2(�� 1)

Z t

0

�(s)ds

� 1
1��

:

A related result was proved by Stachurska [34].:

Theorem 12 Let the functions u; a; b and k be continuous and nonegative of J =

[�; �]; and n be a positive integer (n � 2) and a
b
be nondecreasing function. If

u(t) � a(t) + b(t)
Z t

�

k(s)un(s)ds; t 2 J; (1.7)
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then

u(t) � a(t)
�
1� (n� 1)

Z t

�

k(s)b(s)an�1(s)ds

� 1
1��

; (1.8)

� � t � �n; where

�n = sup

�
t 2 J : (n� 1)

Z t

�

k(s)b(s)an�1(s)ds

�
:

Remark 13 The ineqaulity (1.7) was considered by Maroni [24], But without the

assumption of the monocity of the ratio a
b
: He obtained two estimates, one for n � 2

and another for n � 3: Both are more complicated than (1.8) . For n = 2 and a
b

nondecreasing, Stachurska�s result can be better than Maroni�s on long intervals.

1.2.2 Inequalities with Kernels of (L)-Type

In this section we present some natural generalisations of Gronwall ineqaulities for

real functions of one variable with kernels satisfying a Lipschitz condition (see: (1.9)),

which are important in the qualitative theory of di¤erential eqautions.

Theorem 14 (Bainov and Simeonov ,[4]) ; Let A;B : [�; �[! R+; L : [�; �[�R+ !

R+ be continuous functions and

0 � L(t; x)� L(t; y) �M(t; y)(x� y); t 2 [�; �[; x � y � 0; (1.9)

where M is nonnegative continuous function on [�; �[�R+:

Then for every nonnegative continuous function u : [�; t] ! R+ satisfying the in-

eqaulity

u(t) � A(t) +B(t)
Z t

�

L(s; u(s))ds; t 2 [�; �[: (1.10)
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We have the estimation

u(t) � A(t) +B(t)
Z t

�

L(x;A(x)) exp

�Z t

x

M(s; A(s))B(s)ds

�
dx;

for all t 2 [�; �[:

Now, we can give the following two corollaries that are obvious consequences of

the above Theorem.

Corollary 15 Let us suppose that A;B : [�; �[! R+; G : [�; �[�R+ ! R+ are

continuous and

0 � G(t; x)�G(t; y) � N(t)(x� y); t 2 [�; �[; x � y � 0; (1.11)

where N is nonnegative continuous function on [�; �[:

If u : [�; t]! R+ is continuous and satisties the ineqaulity

u(t) � A(t) +B(t)
Z t

�

G(s; u(s))ds; t 2 [�; �[: (1.12)

We have the estimation

u(t) � A(t) +B(t)
Z t

�

G(x;A(x)) exp

�Z t

x

N(s)B(s)ds

�
dx;

for all t 2 [�; �[:

Corollary 16 Let A;B;C : [�; �[! R+; H : R+ ! R+ be continuous and H satis�es

the following condition of Lipschitz type:

0 � H(x)�H(y) �M:(x� y); M � 0; x � y � 0; (1.13)
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If u : [�; t]! R+ is continuous and satisties the ineqaulity

u(t) � A(t) +B(t)
Z t

�

C(s)H(u(s))ds; t 2 [�; �[: (1.14)

We have the bound

u(t) � A(t) +B(t)
Z t

�

C(x)H(A(x)) exp

�
M

Z t

x

C(s)B(s)ds

�
dx;

for all t 2 [�; �[:

For more generalisations of above Theorem, we refer the reader to literatures

([9],[4] and [31]) and the references therein.

Remark 17 Putting H : R+ ! R+; H(x) = x, we obtain Lemma 1 of [8] which a

natural generalisation of the Gronwall ineqaulity.



Chapter 2

Some Generalisations of Classical

Integral Inequalities

In the present chapter we establish some new nonlinear integral inequalities for func-

tions of one variable, with a further generalization of these inequalities in to function

with n independent variables. These results (see: [27]) extend the Gronwall type

inequalities obtained by Pachpatte [27] and Oguntuase [25].

In the last section of this chapter, we present some applications of our results to

study certain properties of solutions of the nonlinear hyperbolic partial integrodi¤er-

ential equation.

2.1 Nonlinear Generalisations in One Variable

Our main results are given in the following theorems:

15
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Theorem 18 Let u (t), f (t) be nonnegative continuous functions in a real interval

I = [a; b]. Suppose that k (t; s) and its partial derivatives kt (t; s) exist and are nonneg-

ative continuous functions for almost every t; s 2 I: Let �(u(t)) be real-valued, pos-

itive, continuous, strictly non-decreasing, subadditive, and submultiplicative function

for u(t) � 0 and let W (u(t)) be real-valued, positive, continuous, and non-decreasing

function de�ned for t 2 I: Assume that a(t) is a positive continuous function and

nondecreasing for t 2 I: If

u (t) � a(t) +
Z t

a

f (s)u (s) ds+

Z t

a

f (s)W

�Z s

a

k (s; �) �(u (�))d�

�
ds; (2.1)

for a � � � s � t � b; then for a � t � t1;

u(t) � p(t)

�
a(t) +

Z t

a

f (s)	�1 (	(�) (2.2)

+

Z s

a

k (s; �) �(p(�))�(

Z �

a

f (�) d�)d�

�
ds

�
;

where

p(t) = 1 +

Z t

a

f(s) exp

�Z s

a

f(�)d�

�
ds; (2.3)

� =

Z b

a

k (b; s) �(p (s) a(s))ds; (2.4)

	(x) =

Z x

x0

ds

�(W (s))
; x � x0 > 0: (2.5)

Where 	�1 is the inverse of 	 and t1is chosen so that

	(�) +

Z s

a

k (s; �) �(p(�))�(

Z �

a

f (�) d�)d� 2 Dom(	�1):

Proof. De�ne a function z(t) by

z(t) = a(t) +

Z t

a

f (s)W

�Z s

a

k (s; �) �(u (�))d�

�
ds; (2.6)
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then (2.6) can be restated as

u(t) � z(t) +
Z t

a

f (s)u (s) ds; (2.7)

clearly z(t) is nonnegative and continuous in t 2 I; using lemma ?? to (2.7), we get

u(t) � z(t) +
Z t

a

f(s)z(s) exp

�Z s

a

f(�)d�

�
ds; (2.8)

moreover if z(t) is nondecreasing in t 2 I; we obtain

u(t) � z(t)p(t); (2.9)

where p(t) is de�ned by (2.3). From (2.6), we have

z(t) � a(t) +
Z t

a

f (s)W (v(s))ds; (2.10)

where

v(t) =

Z t

a

k (t; s) �(u (s))ds: (2.11)

From (2.9) we observe that

v(t) �
Z t

a

k (t; s) �

�
p (s)

�
a(s) +

Z s

a

f (�)W (v(�))d�

��
ds

�
Z t

a

k (t; s) �(p (s) a(s))ds+

Z t

a

k (t; s) �

�
p (s)

Z s

a

f (�)W (v(�))d�

�
ds

�
Z b

a

k (b; s) � (p (s) a(s)) ds+

Z t

a

k (t; s) �

�
p (s)

Z s

a

f (�) d�

�
� (W (v(s))) ds

� � +

Z t

a

k (t; s) �

�
p (s)

Z s

a

f (�) d�

�
� (W (v(s))) ds: (2.12)

Where � is de�ned by (2.4).

Since � is a subadditive and a submultiplicative function, W and v(t) are nondecreas-

ing. De�ne r(t) as the right side of (2.12), then r(a) = � and v(t) � r(t); r(t) is
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positive nondecreasing in t 2 I and

r0(t) = k (t; t) �

�
p(t)

Z t

a

f (�) d�

�
� (W (v(t)))

+

Z t

a

kt (t; s) �(p (s)

Z s

a

f (�) d�)�(W (v(s)))ds;

� � (W (r(t)))

�
k (t; t) �

�
p(t)

Z t

a

f (�) d�

�
+

Z t

a

kt (t; s) �

�
p (s)

Z s

a

f (�) d�

�
ds

�
; (2.13)

dividing both sides of (2.13) by � (W (r(t))) we obtain

r0(t)

�(W (r(t)))
�
�Z t

a

k (t; s) �(p(s)

Z s

a

f (�) d�)ds

�0
: (2.14)

Note that for

	(x) =

Z x

x0

ds

�(W (s))
; x � x0 > 0;

it follows that

[	(r(t))]0 =
r0(t)

�(W (r(t)))
. (2.15)

From (2.15) and (2.14), we have

[	(r(t))]0 � [
Z t

a

k (t; s) �(p(s)

Z s

a

f (�) d�)ds]0; (2.16)

integrate (2.16) from a to t, leads to

	(r(t)) � 	(�) +
Z t

a

k (t; s) �(p(s)

Z s

a

f (�) d�)ds;

then

r(t) � 	�1
�
	(�) +

Z t

a

k (t; s) �(p(s))�(

Z s

a

f (�) d�)ds

�
: (2.17)

By (2.17),(2.12) ,2.10) and (2.9) we have the desired result
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Remark 19 The preceding Theorem is a generalization of the result obtained by

Pachpatte in [27, Theorem 2.1].and the inequality in (2.1) can be considered as a

further generalization of the inequality given in ([25],[15]) .

Theorem 20 Let u (t) ; f(t); b (t) ; h (t) be nonnegative continuous functions in a real

interval I = [a; b]. Suppose that h(t) 2 C1(I;R+) is nondecreasing. Let �(u(t));W (u(t))

and a(t) be as de�ned in Theorem 18. If

u (t) � a(t) +
Z t

a

f (s)u (s) ds+

Z t

a

f (s)h(s)W (

Z s

a

b (�) �(u (�))d�)ds;

for a � � � s � t � b; then for a � t � t2;

u(t) � p(t)

�
a(t) +

Z t

a

f (s)h(s)	�1 (	(#)

+

Z s

a

b(�)�

�
p (�)

Z �

a

f (�)h(�)d�

�
d�

�
ds

�
:

Where p(t) is de�ned by (2.2), 	 is de�ned by (2.7) and

# =

Z b

a

b(s)�(p (s) a(s))ds;

the t2 is chosen so that 	(#) +
R s
a
b(�)�(p (�)

R �
a
f (�)h(�)d�)d� 2 Dom(	�1):

The proof of the above theorem follows similar arguments as in the proof of The-

orem 18; so we omit it.

Remark 21 The preceding theorem is a generalization of the result obtained by Ogun-

tuase in [25, Theorem 2.3, 2.9].

In this section we use the following class of function.
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De�nition 22 A function g : R+ ! R+ is said to belong to the class S if it satis�es

the following conditions,

1. g(u) is positive, nondecreasing and continuous for u � 0 and

2. (1=v)g(u) � g(u=v); u > 0; v � 1:

Theorem 23 Let u(t), f(t); a(t); k(t; s);� and W be as de�ned in Theorem 18, let

g 2 S . If

u (t) � a(t) +
Z t

a

f (s) g(u (s))ds+

Z t

a

f (s)W

�Z s

a

k (s; �) �(u (�))d�

�
ds; (2.18)

for a � � � s � t � b; then for a � t � t3;

u(t) � p(t)

�
a(t) +

Z t

a

f (s)	�1
�
	(�)

+

Z s

a

k (s; �) �(p(�))�(

Z �

a

f (�) d�)d�

�
ds

�
: (2.19)

Where

p(t) = 
�1
�

(1) +

Z t

a

f(s)ds

�
; (2.20)

� =

Z b

a

k (b; s) �(p (s) a(s))ds; (2.21)


(�) =

Z �

"

ds

g(s)
; � � " > 0: (2.22)

Where 
�1 is the inverse function of 
; and 	;	�1 are de�ned in theorem 18, t3is

chosen so that 
(1) +
R t
a
f(s)ds is in the domain of 
�1, and

	(�) +

Z s

a

k (s; �) �(p(�))�(

Z �

a

f (�) d�)d� ;

is in the domain of 	�1.Proof. De�ne the function

z(t) = a(t) +

Z t

a

f (s)W

�Z s

a

k (s; �) �(u (�))d�

�
ds; (2.23)
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then (2.18) can be restated as

u(t) � z(t) +
Z t

a

f (s) g(u (s))ds: (2.24)

When z(x) is a positive, continuous, nondecreasing in x 2 I and g 2 S;then it can be

restated as

u(t)

z(t)
� 1 +

Z t

a

f (s) g(
u (s)

z(s)
)ds: (2.25)

The inequality (2.25) may be treated as one-dimensional Bihari-lasalle inequality (see

[4]), which implies

u(t) � p(t)z(t); (2.26)

where p(t) is de�ned by (2.20). By (2.23) and (??) we get

u(t) � p(t)
�
a(t) +

Z t

a

f (s)W (v(s))ds

�
;

where

v(s) =

Z s

a

k (s; �) �(u (�))d� :

Now, by following the argument as in the proof of Theorem 18, we obtain the desired

inequality in (2.19).

Remark 24 Under some suitable conditions in the above Theorem, the inequality in

(2.18) can be considered as a further generalization of the inequality given in [27,

Theorem 2.1].

Theorem 25 Let u (t) ; f(t); b (t) ; h (t),�(u(t));W (u(t)) and a(t) be as de�ned in

Theorem 20, let g 2 S. If

u (t) � a(t) +
Z t

a

f (s) g(u (s))ds+

Z t

a

f (s)h(s)W

�Z s

a

b (�) �(u (�))d�

�
ds; (2.27)
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for a � � � s � t � b; then for a � t � t4;

u(t) � p(t)

�
a(t) +

Z t

a

f (s)h(s)	�1
�
	(#)

+

Z s

a

b(�)�(p (�)

Z �

a

f (�)h(�)d�)d�

�
ds

�
: (2.28)

Here p(t) is de�ned by (2.20), 	 is de�ned by (2.7) and

# =

Z b

a

b(s)�(p (s) a(s))ds;

the value t4 is chosen so that 	(#) +
R s
a
b(�)�(p (�)

R �
a
f (�)h(�)d�)d� 2 Dom(	�1):

The proof of the above theorem follows similar argument as in the proof of The-

orem 23, we omit it.

2.2 Nonlinear Generalizations in Several Variables

In what follows we denote by R the set of real numbers, R+ = [0;1). All the functions

which appear in the inequalities are assumed to be real valued of n variables which

are nonnegative and continuous. All integrals are assumed to exist on their domains

of de�nitions.

Throughout this paper, we assume that I = [a; b] in any bounded open set in the

dimensional Euclidean space Rn and that our integrals are on Rn(n � 1); where a =

(a1; a2; ::::; an); b = (b1; b2; ::::; bn) 2 Rn+: For x = (x1; x2; :::xn); t = (t1; t2; :::tn) 2 I; we

shall denote the integral

Z x

a

=

Z x1

a1

Z x2

a2

:::

Z xn

an

:::dtn:::dt1:
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Furthermore, for x; t 2 Rn; we shall write t � x whenever ti � xi; i = 1; 2; :::; n:and 0 �

a � x � b ,for x 2 I and D = D1D2:::Dn; where Di =
@
@xi
; for i = 1; 2; :::; n:

Let C(I;R+) denote the class of continuous functions from I to R+:

Remark 26 The following theorem deals with n-independent variables versions of

the inequalities established in Pachpatte [27, Theorem 2.3].

Theorem 27 Let u(x); f(x); a(x) 2 C(I;R+) and letK(x; t); Dik(x; t) be in C(I� I;R+)

for all i = 1; 2; :::; n and c be a nonnegative constant. (1) If

u (x) � c+
Z x

a

f (s)

�
u (s) +

Z s

a

k (s; �)u (�) d�

�
ds; (2.29)

for x 2 I and a � � � s � b; then

u (x) � c
�
1 +

Z x

a

f(t) exp

�Z t

a

(f(s) + k(b; s)) ds

�
dt

�
: (2.30)

(2) If

u (x) � a(x) +
Z x

a

f (s)

�
u (s) +

Z s

a

k (s; �)u (�) d�

�
ds; (2.31)

for x 2 I and a � � � s � b; then

u (x) � a(x) + e(x)
�
1 +

Z x

a

f(t) exp

�Z t

a

(f(s) + k(b; s)) ds

�
dt

�
; (2.32)

where

e(x) =

Z x

a

f(s)

�
a (s) +

Z s

a

k (s; �) a (�) d�

�
ds: (2.33)

Proof. (1)The inequality (2.29) implies the estimate

u(x) � c+
Z x

a

f (s)

�
u (s) +

Z s

a

k (b; �)u (�) d�

�
ds:
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We de�ne the function

z(x) = c+

Z x

a

f (s)

�
u (s) +

Z s

a

k (b; �)u (�) d�

�
ds;

then z(a1; x2; :::; xn) = c , u(x) � z(x) and

Dz(x) = f (x)

�
u (x) +

Z x

a

k (b; s)u (s) ds

�
;

� f (x)

�
z (x) +

Z x

x0
k (b; s) z (s) ds

�
:

De�ne the function

v(x) = z (x) +

Z x

a

k (b; s) z (s) ds;

then z(a1; x2; :::; xn) = v(a1; x2; :::; xn) = c, Dz(x) � f(x)v(x) and z(x) � v(x); we

have

Dv(x) = Dz(x) + k(b; x)z(x) � (f(x) + k(b; x)) v(x): (2.34)

Clearly v(x) is positive for all x 2 I, hence the inequality (??) implies the estimate

v(x)Dv(x)

v2(x)
� f(x) + k(b; x);

that is

v(x)Dv(x)

v2(x)
� f(x) + k(b; x) + (Dnv(x))(D1D2:::Dn�1v(x))

v2(x)
;

hence

Dn

�
D1D2:::Dn�1v(x)

v(x)

�
� f(x) + k(b; x):

Integrating with respect to xn from an to xn , we have

D1D2:::Dn�1v(x)

v(x)
�
Z xn

an

[f(x1; :::; xn�1; tn) + k(b; x1; :::; xn�1; tn)] dtn;
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thus

v(x)D1D2:::Dn�1v(x)

v2(x)
�

Z xn

an

[f(x1; :::; xn�1; tn) + k(b; x1; :::; xn�1; tn)] dtn

+
(Dn�1v(x))(D1D2:::Dn�2v(x))

v2(x)
:

That is

Dn�1

�
D1D2:::Dn�2v(x)

v(x)

�
�
Z xn

an

[f(x1; :::; xn�1; tn) + k(b; x1; :::; xn�1; tn)] dtn;

integrating with respect to xn�1 from an�1 to xn�1 , we have

D1D2:::Dn�2v(x)

v(x)
�

Z xn�1

an�1

Z xn

an

[f(x1; :::; xn�2; tn�1; tn)

+k(b; x1; :::; xn�2; tn�1; tn)]dtndtn�1:

Continuing this process, we obtain

D1v(x)

v(x)
�
Z x2

a2

:::

Z xn

an

[f(x1; t2; t3; :::; tn) + k(b; x1; t2; t3; :::; tn)] dtn:::dt2:

Integrating with respect to x1 from a1 to x1, we have

log
v(x)

v(a1; x2; :::; xn)
�
Z x

a

[f(t) + k(b; t)] dt;

that is,

v(x) � c exp
�Z x

a

[f(t) + k(b; t)] dt

�
: (2.35)

Substituting (2.35) into Dz(x) � f(x)v(x); we have

Dz(x) � cf(x) exp
�Z x

a

[f(t) + k(b; t)] dt

�
; (2.36)

integrating (2.36) with respect to the xn component from an to xn; then with re-

spect to the an�1 to xn�1; and continuing until �nally a1 to x1, and noting that
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z(a1; x2; :::; xn) = c , we have

z(x) � c
�
1 +

Z x

a

f(t) exp

�Z t

a

[f(s) + k(b; s)] ds

�
dt

�
:

This completes the proof of the �rst part.

(2) De�ne a function z(x) by

z(x) =

Z x

a

f (s)

�
u (s) +

Z s

a

k (s; �)u (�) d�

�
ds: (2.37)

Then from (2.31), u(x) � a(x) + z(x) and using this in (2.37), we get

z(x) �
Z x

a

f (s)

�
a (s) + z(s) +

Z s

a

k (s; �) [a (�) + z(�)]d�

�
ds;

� e(x) +

Z x

a

f(s)

�
z (s) +

Z s

a

k (s; �) z (�) d�

�
ds: (2.38)

Where e(x) is de�ned by (2.33). Clearly e(x) is positive, continuous an nondecreasing

for all x 2 I. From (2.38) it is easy to observe that

z(x)

e(x)
� 1 +

Z x

a

f(s)

�
z (s)

e(s)
+

Z s

a

k (s; �)
z (�)

e(�)
d�

�
ds:

Now, by application the inequality in part (1); we have

z (x) � e(x)
�
1 +

Z x

a

f(t) exp

�Z t

a

(f(s) + k(b; s)) ds

�
dt

�
: (2.39)

The desired inequality in (2.32) follows from (2.39) and the fact that u(x) � a(x) +

z(x):

The following theorem deals with n-independent variables versions of the inequal-

ities established in Theorem 23. We need the inequalities in the following lemma (see

[15] ).
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Lemma 28 ([15, Khellaf])Let u(x) and b(x) be nonnegative continuous functions,

de�ned for x 2 I:;and let g 2 S: Assume that a(x) is positive, continuous function ,

nondecreasing in each of the variables x 2 I : Suppose that

u(x) � c+
Z x

a

b(t)g (u(t)) dt; (2.40)

holds for all x 2 I with x � a; then

u(x) � G�1
�
G(c) +

Z x

a

b(t)dt

�
; (2.41)

for all x 2 I such that G(c) +
R x
a
b(t)dt 2 Dom(G�1);Where G(u)=

R u
u0
dz=g(z); u >

0(u0 > 0):

Theorem 29 Let u(x); f(x); a(x) and k(x; t) be as de�ned in Theorem 27.Let �(u(x))

be real-valued, positive, continuous, strictly non-decreasing, subadditive, and submul-

tiplicative function for u(x) � 0 and let W (u(x)) be real-valued, positive, continuous,

and non-decreasing function de�ned for x 2 I: Assume that a(x) is positive continuous

function and nondecreasing for x 2 I: If

u (x) � a(x) +
Z x

a

f (t) g(u (t))dt+

Z x

a

f (t)W

�Z t

a

k (t; s) �(u (s))ds

�
dt; (2.42)

for a � s � t � x � b; then for a � x � x�;

u(x) � � (x)
�
a(x) +

R x
a
f (t)

�W
h
	�1

�
	(�) +

R t
a
k(b; s)�

�
� (s)

R s
a
f (�) d�

�
ds
�i
dt
o
;

(2.43)

where

�(x) = G�1
�
G(1) +

Z x

a

f(s)ds

�
; (2.44)

� =

Z b

a

k (b; s) �(� (s) a(s))ds; (2.45)
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G(u) =

Z u

u0

1=g(z)dz; u > 0 (u0 > 0); (2.46)

	(x) =

Z x

x0

ds

�(W (s))
; x � x0 > 0: (2.47)

Where G�1 is the inverse function of G; and 	 is the inverse function of 	�1 , x�is

chosen so that G(1) +
R x
a
f(s)ds is in the domain of G�1, and

	(�) +

Z t

a

k(b; s)�

�
� (s)

Z s

a

f (�) d�

�
ds;

is in the domain of 	�1 .Proof. De�ne the function

z(x) = a(x) +

Z x

a

f (t)W

�Z t

a

k (t; s) �(u (s))ds

�
dt; (2.48)

then (2.48) can be restated as

u(x) � z(x) +
Z x

a

f (t) g(u (t))dt:

We have z(x) is a positive, continuous, nondecreasing in x 2 I and g 2 S;Then the

above inequality can be restated as

u(x)

z(x)
� 1 +

Z x

a

f (t) g

�
u (t)

z(t)

�
dt: (2.49)

by Lemma 28 we have

u(x) � z(x)�(x); (2.50)

where �(x) is de�ned by (2.44). By (2.48) and (2.50) we have

z(x) � a(x) +
Z x

a

f (t)W (v(t))dt; (2.51)

where

v(x) =

Z x

a

k (x; t) �(u (t))dt: (2.52)
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By (2.52) and (2.50) , we observe that

v(x) �
Z x

a

k (b; t) �

�
� (t)

�
a(t) +

Z t

a

f (s)W (v(s))ds

��
dt

�
Z x

a

k (b; s) �(� (s) a(s))ds

+

Z t

a

k (b; s) �(� (s)

Z s

a

f (�)W (v(�))d�)ds;

� � +

Z x

a

k (b; s) �[� (s)

Z s

a

f (�) d� ]�(W (v(s)))ds: (2.53)

Where � is de�ned by (2.45). Since � is subadditive and submultiplicative function,

W and v(x) are nondecreasing for all x 2 I. De�ne r(x) as the right side of (2.53),

then r(a1; x2; :::; xn) = � and v(x) � r(x); r(x) is positive and nondecreasing in each

of the variables x1; x2; x3; :::xn . Hence

Dr(x)

�(W (r(x)))
� k (b; x) �[� (x)

Z x

a

f (s) ds];

since

Dn

�
D1:::Dn�1r(x)

�(W (r(x)))

�
=

Dr(x)

�(W (r(x)))
� Dn�(W (r(x)))D1:::Dn�1r(x)

�2(W (r(x)))
;

the above inequality implies

Dn

�
D1:::Dn�1r(x)

�(W (r(x)))

�
� Dr(x)

�(W (r(x)))
;

and

Dn

�
D1:::Dn�1r(x)

�(W (r(x)))

�
� k (b; x) �[�(x)]:

Where �(x) = � (x)
R x
a
f (s) ds: Integrating with respect to xn from an to xn, we have

D1:::Dn�1r(x)

�(W (r(x)))
�
Z xn

an

k (b; x1; x2; :::; xn�1; sn) �[�(x1; x2; :::; xn�1; sn)]dsn:
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Repeating this argument, we �nd that

D1r(x)

�(W (r(x)))
�
Z x2

a2

:::

Z xn�1

an�1

Z xn

an

k (b; x1; s2; :::; sn) �[�(x1; s2; :::; sn)]dsndsn�1:::ds2:

Integrating both sides of the above inequality with respect to x1 from a1 to x1, we have

	(r(x))�	(�) �
Z x

a

k(b; s)� [�(s)] ds;

and

r(x) � 	�1
�
	(�) +

Z x

a

k(b; s)�

�
� (s)

Z s

a

f (�) d�

�
ds

�
:

From this we obtain

v (x) � r(x) � 	�1
�
	(�) +

Z x

a

k(b; s)�

�
� (s)

Z s

a

f (�) d�

�
ds

�
: (2.54)

By (2.50), (2.51) and (2.54) we obtain the desired inequality in (2.43).

2.3 Applications

In this section, our results are applied to the qualitative analysis of two applica-

tions. The �rst is the system of nonlinear di¤erential equations for one variable

functions. The second is nonlinear hyperbolic partial integrodi¤erential equation of

n-independent variables.

First we consider the system of nonlinear di¤erential equations

du

dt
= F1(t; u(t);

Z t

x0

K1(t; u(s))ds); (2.55)

for all t 2 I = [t0; t1] � R+; where u 2 C(I;Rn); F1 2 C(I � Rn � Rn;Rn) and

K1 2 C(I � Rn;Rn):
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In what follows, we shall assume that the Cauchy problem

du

dt
= F1(t; u(t);

Z t

t0

K1(t; u(s))ds); x 2 I; (2.56)

u(t0) = u0 2 Rn;

has a unique solution, for every t0 2 I and u0 2 Rn: We shall denote this solution by

u(:; t0; u0): The Following theorem deals the estimate on the solution of the nonlinear

Cauchy problem (2.56).

Theorem 30 Assume that the functions F1 and K1 in (2.56) satisfy the conditions

kK1(t; u)k � h(t)�(kuk); t 2 I; (2.57)

kF1(t; u; v)k � kuk+ kvk ; u; v 2 Rn; (2.58)

where h and � are as de�ned in Theorem 20. Then we have the estimate, for t0 �

t � t2;

ku(t; t0; u0)k � et�t0( ku0k+
Z t

t0

h(s)E1(s; ku0k)ds); (2.59)

where

E1(t; ku0k) = 	�1(	(#) +
Z t

t0

�(e��x0
Z �

t0

h(�)d�)d�); (2.60)

	(t) =

Z t

a

ds

�(s)
; t � a > 0; (2.61)

# =

Z t1

t0

ku0k�
�
es�t0

�
ds; (2.62)

and t2 is chosen so that 	(#) +
R s
x0
�
�
e��t0

R �
t0
h(�)d�

�
d� 2 Dom(	�1).

Proof. Let t0 2 I; u0 2 Rn and u(:; t0; u0) be the solution of the Cauchy problem

(2.56). Then we have

u(t; t0; u0) = u0 +

Z t

t0

F1(s; u(s; t0; u0);

Z s

t0

K1(s; u(� ; t0; u0))d�)ds: (2.63)
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Using (2.57) and (2.58) in (2.63), we have

ku(t; t0; u0)k � ku0k+
Z t

t0

f(s)

�
ku(s; t0; u0)k+

Z s

t0

kK1(s; u(� ; t0; u0))k d�
�
ds;

� ku0k+
Z t

t0

f(s)

�
ku(s; t0; u0)k+ h(s)

Z s

t0

�(ku(� ; t0; u0)k)d�
�
ds:(2.64)

Now, a suitable application of Theorem 20 with a(t) = ku0k ; f(t) = b(t) = 1 and

W (u) = u to (2.64) yields (2.59).

If, in addition, we assume that the function F1 satis�es the general condition

kF1(t; u; v)k � f(t) (g (kuk) +W (kvk)) ; (2.65)

where f ; g and W are as de�ned in Theorem 25, we obtain an estimation for

u(:; t0; u0); and from any particular conditions of (2.65) and (2.57), we can get some

useful results similar to Theorem 30.

Secondly, we shall demonstrate the usefulness of the inequality established in

Theorem 29 by obtaining pointwise bounds on the solutions of a certain class of

nonlinear equation in n-independent variables. We consider the nonlinear hyperbolic

partial integrodi¤erential equation

@nu(x)

@x1@x2:::@xn
= F

�
x; u(x);

Z x

x0
K (x; s; u(s)) ds

�
+G (x; u(x)) (2.66)

for all x 2 I = [x0;x1] � Rn+ , where x = (x1; x2; ::::; xn); x0 = (x01; x02; ::::; x0n); x1 =

(x11 ; x
1
2 ; ::::; x

1
n ) are in Rn+ and u 2 C(I;R); F 2 C(I�R�R;R); K 2 C(I�I� R;R)

and G 2 C(I� R;R): With suitable boundary conditions, the solution of (2.66) is of

the form

u(x) = l(x) +

Z x

x0
F

�
s; u(s);

Z s

x0
K (s; t; u(t)) dt

�
ds+

Z x

x0
G (s; u(s)) ds: (2.67)
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The following theorem gives the bound of the solution of (2.66).

Theorem 31 Assume that the functions l; F; K and G in (2.66) satisfy the condi-

tions

jK(s; t; u(t))j � k(s; t)�(ju(t)j); t; s 2 I and u 2 R; (2.68)

jF (t; u; v)j � 1

2
juj+ jvj ; u; v 2 R and t 2 I; (2.69)

jG (s; u)j � 1

2
juj ; s 2 I and u 2 R; (2.70)

jl (x)j � a(x); x 2 I ; (2.71)

where a; f; k and � are as de�ned in Theorem 20, with f(x) = b(x) + e(x) for all

x 2 I where b; e 2 C(I;R+); then we have the estimate, for x0 � x � x�

ju(x)j � exp
 

nY
i=1

(xi � x0i )
!�

a(x) +

Z x

a

E(t)dt

�
: (2.72)

Here

E(t) = 	�1

 
	(�) +

Z t

a

k(x1; s)�

"
exp

 
nY
i=1

(si � x0i )
!Z s

a

f (�) d�

#
ds

!
; (2.73)

� =

Z x1

x0
k (x1; s) �

 
a(s) exp

 
nY
i=1

(si � x0i )
!!

ds; (2.74)

	(x) =

Z x

x0

ds

�(s)
; x � x0 > 0; (2.75)

where x�is chosen so that 	(�) +
R t
a
k(x1; s)�

�
exp (

Qn
i=1(si � x0i ))

R s
a
f (�) d�

�
ds;is

in the domain of 	�1.

Proof. Using the conditions (2.68), (2.71) in (2.67), we have

ju(x)j � a(x) +

Z x

x0
jG(s; u(s))j ds+

Z x

x0
f(s)

�
ju(s)j+

Z s

x0
jK (s; t; u(t))j dt

�
ds;

� a(x) +

Z x

x0

�
ju(s)j+

Z s

x0
k(s; t)�(ju(t)j)dt

�
ds: (2.76)
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Now, a suitable application of Theorem 29 with f(s) = 1; g(u) = u and W (u) = u to

(2.76) yields (2.72)

Remarks. If we assume that the functions F and G satisfy the general conditions

jF (t; u; v)j � f(t) (g (juj) +W (jvj)) ; (2.77)

jG (t; u)j � f(t)g (juj) ; for t 2 I and u 2 R; (2.78)

we can obtain an estimation of u(x).

From the particular conditions of (2.68), (2.77) and (2.78), we can obtain some

useful results similar to Theorem 29. To save space, we omit the details here.

Remark 32 Under some suitable conditions, the uniqueness and continuous depen-

dence of the solutions of (2.55) and (2.66) can also be discussed using our results

(see:[27]).



Chapter 3

Some New Integrodi¤erential

Ineqaulities

The study of integrodi¤erential inequalities for functions of one or n independent vari-

ables is also very important tool in the study of stability, existence, bounds and other

qualitative properties of di¤erential equations solutions�, integrodi¤erential equations

and in the theory of hyperbolic partial di¤erential equations.we refer the reader to

literatures ([1],[31],[33]) and the references therein. Our aim in this chapter is to es-

tablish some integrodi¤erential inequalities in n independent variables, an application

of our results is also given.

35
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3.1 Linear Integrodi¤erential Ineqaulities in One

Variable

One of the most useful inequalities is given in the following lemma (see [1],[32])

Lemma 33 [1]Let �(x; y) and c(x; y) be nonnegative continuous functions de�ned

for x � 0; y � 0; for which the inequality

�(x; y) � a(x) + b(y) +
Z x

0

Z y

0

c(s; t)�(s; t)dsdt; (3.1)

holds for x � 0; y � 0; where a(x); b(y) > 0; a0(x); b0(y) � 0 are continuous functions

de�ned for x � 0; y � 0: Then

�(x; y) � [a(0) + b(y)][a(x) + b(0)]

[a(0) + b(0)]
exp

�Z x

0

Z y

0

c(s; t)dsdt

�
; (3.2)

for x � 0; y � 0:

Wendro¤�s inequality has recently evoked a lively interest, as may be seen from the

papers of Pachpatte [25]. In [32] Pachpatte considered on some new integrodi¤erential

inequalities of the Wendro¤ type for functions of two independent variables.

In this section , we will give some linear integrodi¤erential ineqaulities in one

variable.

Let �rst give the following result :

Theorem 34 Let �(x); c(x); Di�(x) and D�(x) be nonnegative continuous functions

for all i = 1; 2; :::; n de�ned for x 2 S; �(x01; x2; x3; :::; xn) = 0 and �(x1; :::; xi�1; x0i ; xi+1; :::xn) =

0 for any i = 2; 3; :::; n . If

D�(x) �
nX
i=1

ai(xi) +

Z x

x0
c(t)[�(t) +D�(t)]dt; (3.3)
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holds for x 2 S, where ai(xi) > 0; a0i(xi) � 0 are continuous functions de�ned for

xi � 0 for all i = 1; 2; :::; n: Then

D�(x) �
nX
i=1

ai(xi) +

Z x

x0
c(t)[A(t) exp(

Z t

x0
[1 + c(�)]d�)]dt: (3.4)

For x 2 S with x � t � � � x0 � 0; where A(x) is de�ned above .

Proof. We de�ne the function

u(x) =
nX
i=1

ai(xi) +

Z x

x0

c(t)[�(t) +D�(t)]dt; (3.5)

and

u(x01; x2; x3; :::; xn) = a1(x
0
1) +

nX
i=2

ai(xi): (3.6)

Then,

D�(x) � u(x): (3.7)

Di¤erentiating

Du(x) = c(x)[�(x) +D�(x)]: (3.8)

By integrating b to x from x0 to x , we have

�(x) �
Z x

x0

u(t)dt: (3.9)

We obtain

Du(x) � c(x)
�
u(x) +

Z x

x0
u(t)dt

�
: (3.10)

If we put

v(x) = u(x) +

Z x

x0
u(t)dt; (3.11)

v(x1; :::; xi�1; x
0
i ; xi+1; :::xn) = u(x1; :::; xi�1; x

0
i ; xi+1; :::xn); (3.12)
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we have

Dv(x) = Du(x) + u(x):

Using the facts that Du(x) � c(x)v(x) and u(x) � v(x), we have

Dv(x) � [1 + c(x)]v(x): (3.13)

D1D2:::Dn�1u(x1; :::; xn�1; x
0
n) = 0: (3.14)

then

D1D2u(x1; x2; x
0
3; x4; :::; xn) = 0: (3.15)

Continuing this process, we obtain

D1D2u(x) �
Z x3

x03

:::

Z xn

x0n

c(x1; x2; t3;:::; tn)A(x1; x2; t3;:::; tn) (3.16)

exp

�Z t

x0
[1 + c(�)]d�

�
dtn:::dt3:

we have

D1u(x1; x
0
2; x3; x4; :::; xn) = a

0
1(x1): (3.17)

Integrating to x2 from x02 to x2 ), we have

D1u(x) � a01(x1) +

Z x2

x02

Z x3

x03

:::

Z xn

x0n

c(x1; t2; :::; tn)A(x1; t2; :::; tn) (3.18)

exp

�Z t

x0
[1 + c(�)]d�

�
dtn:::dt2:

Integrating with respect to x1 from x01 to x1; and we have

u(x) �
nX
i=1

ai(xi) +

Z x

x0
c(t)A(t) exp

�Z t

x0
[1 + c(�)]d�

�
dt: (3.19)

By the above inequalities above, we obtain the desired bound
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Remark 35 We note that in the special case n = 2 , x 2 R2+ and x0 = (x01; x
0
2) =

(0; 0) in Theorem above. then our result reduces to Theorem 1 obtained in [32].

Theorem 36 Let �(x); c(x); Di�(x) and D�(x) be nonnegative continuous functions

for all i = 1; 2; :::; n de�ned for x 2 S , �(x01; x2; x3; :::; xn) = 0 and �(x1; :::; xi�1; x0i ; xi+1; :::xn) =

0 for any i = 2; 3; :::; n. If

D�(x) �
nX
i=1

ai(xi) +M

�
�(x) +

Z x

x0
c(t)[�(t) +D�(t)]dt

�
; (3.20)

holds for x 2 S, where ai(xi) > 0; a0i(xi) � 0 are continuous functions de�ned for

xi � 0 for all i = 1; 2; :::; n: and M � 0 is constant. Then

D�(x) � A(x) exp
�Z x

x0
[M + c(t) +Mc(t)]dt

�
;

for x 2 S; with x � t � x0 � 0;

Proof. We de�ne the function

u(x) =
nX
i=1

ai(xi) +M

�
�(x) +

Z x

x0
c(t)[�(t) +D�(t)]dt

�
; (3.21)

with

u(x01; x2; x3; :::; xn) = a1(x
0
1) +

nX
i=2

ai(xi): (3.22)

we have

Du(x) =M [D�(x) + c(x)[�(x) +D�(x)]] : (3.23)

Using the fact that D�(x) � u(x) and M�(x) � u(x), we have

Du(x) � [M + c(x) +Mc(x)]u(x); (3.24)

we have

u(x) � A(x) exp
�Z x

x0
[M + c(t) +Mc(t)]dt

�
; (3.25)
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we obtain the desired bound above)

Remark 37 We note that in the special case n = 2 ,x 2 R2+ and x0 = (x01; x02) = (0; 0)

in Theorem above . then our result reduces to Theorem 2 obtained in [32] .

3.2 linear Generalisations in Several Variables

In this section , All the functions which appear in the inequalities are assumed to

be real valued of n-variables which are nonnegative and continuous. All integrals are

assumed to exist on their domains of de�nitions.

Throughout this paper, we shall assume that S in any bounded open set in the

dimensional Euclidean space Rn and that our integrals are on Rn(n � 1):

For x = (x1; x2; :::xn); t = (t1; t2; :::tn); x0 = (x01; x
0
2; :::; x

0
n) 2 S; we shall denoteZ x

x0
dt =

Z x1

x01

Z x2

x02

:::

Z xn

x0n

:::dtn:::dt1:

Furthermore, for x; t 2 Rn; we shall write t � x whenever ti � xi; i = 1; 2; :::; n and x �

x0 � 0, for x; x0 2 S:

We note D = D1D2:::Dn; where Di =
@
@xi
; for i = 1; 2; :::; n:

We use the usual convention of writing
P

s2	 u(s) = 0 if 	 is the empty set.

Our main results are given in the following theorems.

Theorem 38 Let �(x) and c(x) be nonnegative continuous functions de�ned on S;

for which the inequality

�(x) �
nX
i=1

ai(xi) +

Z x

x0
c(t)�(t)dt; (3.26)
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holds for all x 2 S with x � x0 � 0; where ai(xi) > 0; a0i(xi) are continuous functions

de�ned for xi � 0 for all i = 1; 2; :::; n: Then

�(x) � A(x) exp(
Z x

x0
c(t)dt); (3.27)

for x 2 S with x � x0 � 0; where

A(x) =
[a1(x1) + a2(x

0
2) +

Pn
s=3 as(xs)] [a1(x

0
1) + a2(x2) +

Pn
s=3 as(xs)]

[a1(x01) + a2(x
0
2) +

Pn
s=3 as(xs)]

(3.28)

Proof. We de�ne the function u(x) by the right member of (3.26), Then

Du(x) = c(x)�(x) (3.29)

and

u(x0
1
; x2; :::; xn) = a1(x

0
1) + a2(x2) +

nX
s=3

as(xs); (3.30)

u(x1 ; x
0
2; x3;:::; xn) = a1(x1) + a2(x

0
2) +

nX
s=3

as(xs): (3.31)

Using �(x) � u(x) in (3.29), we have

Du(x) � c(x)u(x): (3.32)

From (3.32), we observe that

u(x)Du(x)

u2(x)
� c(x);

that is

u(x)Du(x)

u2(x)
� c(x) + (Dnu(x))(D1:::Dn�1u(x))

u2(x)
;

hence

Dn

�
D1:::Dn�1u(x)

u(x)

�
� c(x): (3.33)
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Integrating (3.33) with respect to xn from x0n to xn; we have

(D1:::Dn�1u(x))

u(x)
�
Z xn

x0n

c(x1; :::; xn�1; tn)dtn;

thus

u(x)D1:::Dn�1u(x)

u2(x)
�
Z xn

x0n

c(x1; :::; xn�1; tn)dtn +
(Dn�1u(x))(D1:::Dn�2u(x))

u2(x)
;

that is

Dn�1

�
D1:::Dn�2u(x)

u(x)

�
�
Z xn

x0n

c(x1; :::; xn�1; tn)dtn: (3.34)

Integrating (3.34) with respect to xn�1 from x0n�1 to xn�1; we have

D1:::Dn�2u(x)

u(x)
�
Z xn�1

x0n�1

Z xn

x0n

c(x1; :::xn�2; tn�1; tn)dtndtn�1:

Continuing this process, we obtain

D1D2u(x)

u(x)
�
Z x3

x03

:::

Z xn

x0n

c(x1; x2; t3;:::; tn)dtndtn�1::::dt3;

from this we obtain

D2

�
D1u(x)

u(x)

�
�
Z x3

x03

:::

Z xn

x0n

c(x1; x2; t3;:::; tn)dtndtn�1::::dt3: (3.35)

Integrating (3.35) with respect to x2 from x02 to x2 and by (3.31) we have

D1u(x)

u(x)
� a01(x1)

a2(x00) + a1(x1) +
Pn

s=3 as(xs)
(3.36)

+

Z x2

x02

:::

Z xn

x0n

c(x1; t2; t3;:::; tn)dtndtn�1::::dt2:

Integrating (3.36) with respect to x1 from x01 to x1 and by (3.30), we have

log
u(x)

u(x01; x2; ::::; xn)
�
Z x1

x01

a01(t1)

a2(x02) + a1(t1) +
Pn

s=3 as(xs)
dt1 +

Z x

x0
c(t)dt;
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that is

u(x) � A(x) exp(
Z x

x0
c(t)dt): (3.37)

By (3.37) and �(x) � u(x); we obtain the desired bound in (3.27).

Remark 39 We note that in the special case n = 2, x 2 R2+ and x0 = (x01; x02) = (0; 0)

in Theorem 38. our estimate reduces to Lemma 33 (see: [32]).

Theorem 40 Let �(x); c(x); Di�(x) and D�(x) be nonnegative continuous functions

for all i = 1; 2; :::; n de�ned for x 2 S; �(x01; x2; x3; :::; xn) = 0 and �(x1; :::; xi�1; x0i ; xi+1; :::xn) =

0 for any i = 2; 3; :::; n . If

D�(x) �
nX
i=1

ai(xi) +

Z x

x0
c(t)[�(t) +D�(t)]dt; (3.38)

holds for x 2 S, where ai(xi) > 0; a0i(xi) � 0 are continuous functions de�ned for

xi � 0 for all i = 1; 2; :::; n: Then

D�(x) �
nX
i=1

ai(xi) +

Z x

x0
c(t)[A(t) exp(

Z t

x0
[1 + c(�)]d�)]dt: (3.39)

For x 2 S with x � t � � � x0 � 0; where A(x) is de�ned in (3.28).

Proof. We de�ne the function

u(x) =

nX
i=1

ai(xi) +

Z x

x0

c(t)[�(t) +D�(t)]dt; (3.40)

and

u(x01; x2; x3; :::; xn) = a1(x
0
1) +

nX
i=2

ai(xi): (3.41)

Then, (3.38) can be restated as

D�(x) � u(x): (3.42)
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Di¤erentiating (3.40)

Du(x) = c(x)[�(x) +D�(x)]: (3.43)

Integrating both sides of (3.43) to x from x0 to x , we have

�(x) �
Z x

x0

u(t)dt: (3.44)

Now, using (3.44) and (3.42) in (3.43) we obtain

Du(x) � c(x)
�
u(x) +

Z x

x0
u(t)dt

�
: (3.45)

If we put

v(x) = u(x) +

Z x

x0
u(t)dt; (3.46)

v(x1; :::; xi�1; x
0
i ; xi+1; :::xn) = u(x1; :::; xi�1; x

0
i ; xi+1; :::xn); (3.47)

then by (3.46), we have

Dv(x) = Du(x) + u(x):

Using the facts that Du(x) � c(x)v(x) and u(x) � v(x), we have

Dv(x) � [1 + c(x)]v(x): (3.48)

Which by following an argument to that in the proof of Theorem 38 yields the estimate

for v(x) such that

v(x) � A(x) exp
�Z x

x0
[1 + c(t)]dt

�
: (3.49)

By (3.49) and (3.45), we have

Du(x) � c(x)A(x) exp
�Z x

x0
[1 + c(t)]dt

�
; (3.50)



45

and

D1D2:::Dn�1u(x1; :::; xn�1; x
0
n) = 0: (3.51)

Integrating both sides of (3.50) to xn from x0n to xn and by (3.51), we have

D1D2:::Dn�1u(x) �
Z xn

x0n

c(x1; :::xn�1; tn)A(x1; :::xn�1; tn) exp

�Z t

x0
[1 + c(�)]d�

�
dtn:

By (3.40), we have

D1D2u(x1; x2; x
0
3; x4; :::; xn) = 0: (3.52)

Continuing this process, and by (3.52), we obtain

D1D2u(x) �
Z x3

x03

:::

Z xn

x0n

c(x1; x2; t3;:::; tn)A(x1; x2; t3;:::; tn) (3.53)

exp

�Z t

x0
[1 + c(�)]d�

�
dtn:::dt3:

By (3.40), we have

D1u(x1; x
0
2; x3; x4; :::; xn) = a

0
1(x1): (3.54)

Integrating both sides of (3.53) to x2 from x02 to x2 and by (3.54), we have

D1u(x) � a01(x1) +

Z x2

x02

Z x3

x03

:::

Z xn

x0n

c(x1; t2; :::; tn)A(x1; t2; :::; tn) (3.55)

exp

�Z t

x0
[1 + c(�)]d�

�
dtn:::dt2:

Integrating (3.55) with respect to x1 from x01 to x1; and by (3.41), we have

u(x) �
nX
i=1

ai(xi) +

Z x

x0
c(t)A(t) exp

�Z t

x0
[1 + c(�)]d�

�
dt: (3.56)

By (3.56) and (3.42), we obtain the desired bound in (3.39)

Remark 41 We note that in the special case n = 2 , x 2 R2+ and x0 = (x01; x
0
2) =

(0; 0) in Theorem 40. then our result reduces to Theorem 1 obtained in [32].
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Theorem 42 Let �(x); c(x); Di�(x) and D�(x) be nonnegative continuous functions

for all i = 1; 2; :::; n de�ned for x 2 S , �(x01; x2; x3; :::; xn) = 0 and �(x1; :::; xi�1; x0i ; xi+1; :::xn) =

0 for any i = 2; 3; :::; n. If

D�(x) �
nX
i=1

ai(xi) +M

�
�(x) +

Z x

x0
c(t)[�(t) +D�(t)]dt

�
; (3.57)

holds for x 2 S, where ai(xi) > 0; a0i(xi) � 0 are continuous functions de�ned for

xi � 0 for all i = 1; 2; :::; n: and M � 0 is constant. Then

D�(x) � A(x) exp
�Z x

x0
[M + c(t) +Mc(t)]dt

�
; (3.58)

for x 2 S; with x � t � x0 � 0; where A(x) is de�ned in (3.28). Proof. We de�ne

the function

u(x) =
nX
i=1

ai(xi) +M

�
�(x) +

Z x

x0
c(t)[�(t) +D�(t)]dt

�
; (3.59)

with

u(x01; x2; x3; :::; xn) = a1(x
0
1) +

nX
i=2

ai(xi): (3.60)

Di¤erentiating (3.59), we have

Du(x) =M [D�(x) + c(x)[�(x) +D�(x)]] : (3.61)

Using the fact that D�(x) � u(x) and M�(x) � u(x), we have

Du(x) � [M + c(x) +Mc(x)]u(x); (3.62)

by (3.62), we have

u(x) � A(x) exp
�Z x

x0
[M + c(t) +Mc(t)]dt

�
; (3.63)
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where A(x) is de�ned in (3.28).

By (3.63) and using the fact that D�(x) � u(x) from (3.57), we obtain the desired

bound in (3.58)

Remark 43 We note that in the special case n = 2 ,x 2 R2+ and x0 = (x01; x02) = (0; 0)

in Theorem 42. then our result reduces to Theorem 2 obtained in [32] .

Theorem 44 Let �(x); p(x); and q(x) be nonnegative continuous functions de�ned

for x 2 S: If

�(x) �
nX
i=1

ai(xi) +

Z x

x0
p(t)�(t)dt+

Z x

x0
p(t)

�Z t

x0
q(s)�(s)ds

�
dt;

holds for x � x0 � 0, where ai(xi) > 0; a0i(xi) � 0 are continuous functions de�ned

for xi � 0 for all i = 1; 2; :::; n: Then

�(x) �
nX
i=1

ai(xi) +

Z x

x0
p(t)Q(t)dt;

for all x � x0 � 0; where

Q(x) = A(x) exp

�Z x

x0
(p(t) + q(t))dt

�
;

with A(x) de�ned in (3.28).

Proof. The proof of this Theorem follows by an argument similar to that in Theorem

38, We omit the details.

Remark 45 We note that in the special case n = 2 ,x 2 R2+ and x0 = (x01; x02) = (0; 0)

in Theorem 44, our result reduces to Theorem 2 obtained in [32].
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3.3 Nonlinear Integrodi¤erential in n-independents

Variables

In this section we will give some new nonlinear integrodi¤erential inequalities for the

functions of n-independent variables.

We can also give the following lemma.

Lemma 46 [10]Let u(x); a(x) and b(x) be nonnegative continuous functions, de�ned

for x 2 S:

Assume that a(x) is positive, continuous function and nondecreasing in each of the

variables x 2 S : If

u(x) � a(x) +
Z x

x0
b(t)u(t)dt; (3.64)

holds for all x 2 S; with x � x0 � 0: Then

u(x) � a(x) exp(
Z x

x0
b(t)dt): (3.65)

Theorem 47 Let �(x); a(x); b(x); c(x); f(x); Di�(x); andD�(x) be nonnegative con-

tinuous functions for all i = 1; 2; :::; n de�ned for x 2 S; �(x01; x2; x3; :::; xn) =

0 and �(x1; :::; xi�1; x0i ; xi+1; :::xn) = 0 for any i = 2; 3; :::; n. Let K(�(x)) be real-

valued, positive, continuous, strictly non-decreasing, subadditive and submultiplicative

function for �(x) � 0 and let H(�(x)) be real-valued, continuous positive and non-

decreasing function de�ned for x 2 S . Assume that a(x); f(x) are positive and
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nondecreasing in each of the variables x 2 S . If

D�(x) � a(x) + f(x)H
�Z x

x0
c(t)K(�(t))dt

�
+

Z x

x0
b(t)D�(t)dt; (3.66)

holds ,for x 2 S with x � x0 � 0: Then

D�(x) �
�
a(x) + f(x)H

�
G�1

�
G(�) +

Z x

x0

c(t)K(p(t)f(t))dt

���
� exp

�Z x

x0
b(t)dt

�
; (3.67)

for x 2 S;where

p(x) =

Z x

x0
exp(

Z t

x0
b(s)ds)dt; (3.68)

� =

Z 1

x0

c(t)K(a(t)p(t))dt; (3.69)

G(z) =

Z z

z0

ds

K(H(s))
; z � z0 > 0: (3.70)

Where G�1 is the inverse function of G; and

G(�) +

Z x

x0

c(t)K(p(t)f(t))dt;

is in the domain of G�1 for x 2 S:

Proof. We de�ne the function

z(x) = a(x) + f(x)H

�Z x

x0
c(t)K(�(t))dt

�
; (3.71)

then (3.28) can be restated

D�(x) � z(x) +
Z x

x0
b(t)D�(t)dt: (3.72)

Clearly z(x) is positive, continuous function and nondecreasing in each of the variables

x 2 S; using (3.64) of lemma 46 to (3.72), we have

D�(x) � z(x) exp
�Z x

x0
b(t)dt

�
: (3.73)
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Integrating to x from x0 to x; we have

�(x) � z(x)p(x); (3.74)

where

p(x) =

Z x

x0
exp

�Z t

x0
b(s)ds

�
dt: (3.75)

By (3.71), we have

z(x) = a(x) + f(x)H (v(x)) ; (3.76)

where

v(x) =

Z x

x0
c(t)K(�(t))dt: (3.77)

By (3.74) and (3.77), we have

�(x) � fa(x) + f(x)H (v(x))g p(x): (3.78)

From (3.78), (3.77) and since K is subadditive and submultiplicative function, we

notice that

v(x) �
Z x

x0
c(t)K [fa(t) + f(t)H (v(t))g p(t)] dt;

�
Z x

x0
c(t)K(a(t)p(t))dt

+

Z x

x0
c(t)K(f(t)p(t))K(H(v(t)))dt; (3.79)

�
Z 1

x0
c(t)K(a(t)p(t))dt

+

Z x

x0
c(t)K(f(t)p(t))K(H(v(t)))dt:

We de�ne 	(x) as the right side of (3.78), then

	(x01; x2; x3; :::; xn) =

Z 1

x0
c(t)K(a(t)p(t))dt; (3.80)
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and

v(x) � 	(x): (3.81)

	(x) is positive nondecreasing in each of the variables x2; :::; xn 2 Rn�1+ ; then

D1	(x) =

Z x2

x02

Z x3

x03

:::

Z xn

x0n

c(x1;t2; :::; tn)

�K (p(x1;t2; :::; tn)f(x1;t2; :::; tn))K (H(v(x1;t2; :::; tn))) dtn:::dt2;

�
Z x2

x02

Z x3

x03

:::

Z xn

x0n

d(x1;t2; :::; tn)

�K (p(x1;t2; :::; tn)f(x1;t2; :::; tn))K (H(	(x1;t2; :::; tn))) dtn:::dt2;(3.82)

� K (H(	(x)))

Z x2

x02

Z x3

x03

:::

Z xn

x0n

c(x1;t2; :::; tn)

�K (p(x1;t2; :::; tn)f(x1;t2; :::; tn)) dtn:::dt2:

Dividing both sides of (3.82) by K (H(	(x))) ; we get

D1	(x)

K (H(	(x)))
�

Z x2

x02

Z x3

x03

:::

Z xn

x0n

c(x1;t2; :::; tn)

K (p(x1;t2; :::; tn)f(x1;t2; :::; tn)) dtn:::dt2: (3.83)

We note that, for

G(z) =

Z z

z0

ds

K(H(s))
; z � z0 > 0: (3.84)

Thus it follows that

D1G(	(x)) =
D1	(x)

K(H(	(x)))
: (3.85)

From (3.83), (3.84) and (3.85), we have

D1G(	(x)) �
Z x2

x02

Z x3

x03

:::

Z xn

x0n

c(x1;t2; :::; tn)

�K (p(x1;t2; :::; tn)f(x1;t2; :::; tn)) dtn:::dt2: (3.86)
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Now setting x1 = s in (3.86) and then integrating with respect from x01 to x1; we

obtain

G(	(x)) � G(	(x01; x2; :::; xn)) +
Z x

x0
c(t)K(p(t)f(t))dt; (3.87)

by (3.87), we have

	(x) � G�1
�
G

�Z 1

x0

c(t)K(a(t)p(t))dt

�
+

Z x

x0

c(t)K(p(t)f(t))dt

�
: (3.88)

The required inequality in (3.67) follows from the fact (3.73), (3.76), (3.81) and (3.88)

Many interesting corollaries can be obtained from Theorem 47.

Corollary 48 Let �(x); a(x); b(x); c(x); Di�(x); D�(x) and K(�(x)) be as de�ned

in Theorem 47. If

D�(x) � a(x) +
Z x

x0
c(t)g(�(t))dt) +

Z x

x0
b(t)D�(t)dt;

holds, for x 2 Rn+ with x � x0 � 0: Then

D�(x) �
�
a(x) + T�1

�
T (�) +

Z x

x0

c(t)K(p(t))dt

��
� exp

�Z x

x0
b(t)dt

�
;

for x 2 Rn+ with x � x0 � 0; where

p(x) =

Z x

x0
exp(

Z t

x0
b(s)ds)dt;

� =

Z 1

x0

c(t)K(a(t)p(t))dt;

T (z) =

Z z

z0

ds

K(s)
; z � z0 > 0;
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where T�1 is the inverse function of T and

T (�) +

Z x

x0

c(t)K(p(t))dt;

is in the domain of T�1 for x 2 Rn+:

Corollary 49 Let �(x); b(x); c(x); Di�(x)and D�(x) be as de�ned in Theorem 47.

If

D�(x) �M +

Z x

x0
c(t)�(t)dt+

Z x

x0
b(t)D�(t)dt;

holds, for x 2 Rn+ with x � x0 � 0; where M > 0 is a constant, then

�(x) �M
�
1 + exp

�
log(

Z 1

x0

c(t)p(t)dt) +

Z x

x0

c(t)p(t)dt

��
p(x);

for x 2 Rn+ with x � x0 � 0;where

p(x) =

Z x

x0
exp(

Z t

x0
b(s)ds)dt

Similarly, we can obtain many other kinds of estimates.

Remark 50 Our results can be generalized to integrodi¤erential inequalities with a

time delay for functions of one or n independent variables, this is under study.

3.4 An Application

In this section we present an immediate simple example of application (Theorem 47)

to study the boundless of the solution of partial integrodi¤erential equation.
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Consider the nonlinear partial integrodi¤erential equation8>><>>:
Du(x) = f(x) +

R x
0
h(x; t; u(t); Du(t))dt

u(:::; xi; 0; xi+2; :::) = 0 for all i = 1; 2; :::; n

; (3.89)

for x 2 Rn+ .Were h : Rn+ � R� R! R; f(x) : Rn+! R are continuous functions.

Assume that these functions are de�ned and continuous on their respective domains

of de�nition such that

jf(x)j �M; (3.90)

and

jh(x; t; u(t); Du(t))j � c(t) ju(t)j+ b(t) jDu(t)j ; (3.91)

for x 2 Rn+, where M > 0 is a constant and c(x); b(x) are nonnegative, continuous

functions de�ned for x 2 Rn+: If �(x) is any solution of the boundary value problem

(3.89), then

D�(x) = f(x) +

Z x

0

h(x; t;�(t); D�(t))dt; (3.92)

for x 2 Rn+, by (3.90) and (3.91) we have

jD�(x)j =M +

Z x

0

c(t) j�(x)j+ b(t) jD�(x)j dt: (3.93)

Now by a suitable application of Corollary 49 of Theorem 47, we obtain the bound

on the solution �(x) of (3.89).

j�(x)j �Mp(x)
�
1 + exp

�
log(

Z 1

0

c(t)p(t)dt) +

Z x

0

c(t)p(t)dt

��
; (3.94)

for x 2 Rn+; where

p(x) =

Z x

0

exp(

Z t

0

b(s)ds)dt:



Chapter 4

Some New Integral Ineqaulities

With Delay

The purpose of this chapter is to establish some nonlinear retarded integral inequal-

ities in the case of functions of n independent variables which can be used as handy

tools in the theory of partial di¤erential and integral equations with time delays.

These new inequalities represent a generalization of the results obtained by Ma and

Pecaric [23], Pachpatte [29] and by Cheung [5] in the case of the functions with one

and two variables.

4.1 Introduction

Now, let us �rst list the main results of [23, 29, 5], for the functions with two variables

for u(x; y) 2 (� 2 R2+;R+), as the following:

55
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A Inequality of Ma and Pecaric [23, Theorem 2.1] :

up(x; y) = k +

mX
i=1

Z �1i(x)

�1i(x0)

Z �1i(y)

�1i(y0)

ai(s; t)u
q(s; t)dtds (4.1)

+
nX
j=1

Z �2j(x)

�2j(x0)

Z �2j(y)

�2j(y0)

bj(s; t)u
q(s; t)w(u(s; t))dtds:

B Pachpatte�s inequality [29, Theorem 4] :

up(x; y) = k +

Z x

x0

Z y

y0

a(s; t)g1(u(s; t))dtds

+

Z �(x)

�(x0)

Z �(y)

�(y0)

b(s; t)g2(u(s; t))dtds: (4.2)

C Cheung�s inequality [5, Theorem 2.4] :

up(x; y) = k +
p

p� q

Z �(x)

�(x0)

Z �(y)

�(y0)

a(s; t)uq(s; t)dtds

+

Z 
(x)


(x0)

Z �(y)


(y0)

b(s; t)uq(s; t)'(u(s; t))dtds: (4.3)

However, sometimes we need to study such inequalities with a function c(x) in

place of the constant term k and for functions of several variables .

Our main result is given in the �owing inequality in the case of functions with n

independent variables :

'(u(x)) � c(x) +

n1X
j=1

dj(x)

Z e�j(x)
e�j(x0) aj(x; t)�(u(t))w1(u(t))dt

+

n2X
k=1

lk(x)

Z e�k(x)
e�k(x0) bk(x; t)�(u(t))w2(u(t))dt; (4.4)

in a general form, where c(x) is a function and all the functions which appear in this

inequality are assumed to be real valued of n�variables.
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Furthermore, we show that the results (4.1)- (4.3) can be deduced from our in-

equality (4.4) in some special cases. As applications we give the estimate solution of

retarded partial di¤erential equation.

We note that the inequality (4.4) is also a generalization of the main results in

[21, 35].

In this chapter, we suppose Rn+ = [0;1) a subset of Rn. All the functions which

appear in the inequalities are assumed to be real valued of n-variables which are

nonnegative and continuous. All integrals are assumed to exist on their domains of

de�nitions.

For x = (x1; x2; :::xn); t = (t1; t2; :::tn); x0 = (x01; x
0
2; :::; x

0
n) 2 Rn+; we shall denote

:

Z e�i(x)
e�i(x0) dt =

Z �j1(x1)

�j1(x01)

Z �j2(x2)

�j2(x02)

:::

Z �jn(xn)

�jn(x0n)

:::dtn:::dt1; j = 1; 2; :::; n1;Z e�k(x)
e�k(x0) dt =

Z �k1(x1)

�k1(x
0
1)

Z �k2(x2)

�k2(x
0
2)

:::

Z �kn(xn)

�kn(x
0
n)

:::dtn:::dt1; k = 1; 2; :::; n2;

with n1; n2 2 f1; 2; :::; g : :

Furthermore, for x; t 2 Rn+; we shall write t � x whenever ti � xi; i = 1; 2; :::; n and x �

x0 � 0, for x; x0 2 Rn+:

We note D = D1D2:::Dn; where Di =
@
@xi
; for i = 1; 2; :::; n;

We use the usual convention of writing
P

s2	 u(s) = 0 if 	 is the empty set.

e�j(t) = (�j1(t1); �j2(t2); :::; �jn(tn)) 2 Rn+ for j = 1; 2; :::; n1
e�k(t) = (�k1(t1); �k2(t2); :::; �kn(tn)) 2 Rn+ for k = 1; 2; :::; n1
we note e�j(t) � t for j = 1; 2; :::; n1 whenever �ji(ti) � ti for any i = 1; 2; :::; n

and j = 1; 2; :::; n1;
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and e�k(t) � t for k = 1; 2; :::; n2 whenever �ki(ti) � ti for any i = 1; 2; :::; n and

k = 1; 2; :::; n2

4.2 Generalization of the Integral IneqaulitiesWith

Delay

Now, let us list the our main results as the following :

Theorem 51 Let c 2 C(Rn+;R+); w1; w2 2 C(R+;R+) be nondecreasing functions

with w1(u); w2(u) > 0 on (0;1) and let aj(x; t) and bk(x; t) 2 C(Rn+ � Rn+;R+) be

nondecreasing functions in x for every t �xed for any j = 1; 2; :::; n1; k = 1; 2; :::; n2.

Let �ji; �ki 2 C1(R+;R+) be nondecreasing functions with �ji(ti) � ti and �ki(ti) � ti

on R+ for i = 1; 2; :::; n; j = 1; 2; :::; n1; k = 1; 2; :::; n2 and p > q � 0:

(a1) If u 2 C(Rn+;R+) and

up(x) � c(x) +

n1X
j=1

Z e�j(x)
e�j(x0) aj(x; t)u

q(t)dt

+

n2X
k=1

Z e�k(x)
e�k(x0) bk(x; t)u

q(t)w1(u(t))dt; (4.5)

for any x 2 Rn+ with x0 � t � x; then there exists x� 2 Rn+; such that for all

x0 � t � x�; we have

u(x) �
 
	�11

"
	1(p(x)) +

p� q
p

n2X
k=1

Z e�k(x)
e�k(x0) bk(x; t)dt

#! 1
p�q

: (4.6)

Where

p(x) = c(p�q)=p(x) +
p� q
p

n1X
j=1

Z e�j(x)
e�j(x0) aj(x; t)dt; (4.7)
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and

	1(�) =

Z �

�0

ds

w1(s
1

p�q )
; � > �0 > 0: (4.8)

Here, 	�1 is the inverse function of 	, and the real numbers x� are chosen so that

	1(p(x)) +
p�q
p

Pn2
k=1

R e�k(x)e�k(x0) bk(x; t)dt 2 dom(	�11 ):
(a2) If u 2 C(Rn+;R+) and

up(x) � c(x) +

n1X
j=1

Z e�j(x)
e�j(x0) aj(x; t)u

q(t)w1(u(t))dt

+

n2X
k=1

Z e�k(x)
e�k(x0) bk(x; t)u

q(t)w2(u(t))dt: (4.9)

(i) For the case w2(u) � w1(u); for any x 2 Rn+ with x0 � t � x; then there exists

�1 2 Rn+; such that for all x0 � t � �1; we have

u(x) �
�
	�11

�
	1(c

(p�q)=p(x)) + e(x)
�� 1

p�q :

(ii) For the case w1(u) � w2(u); for any x 2 Rn+ with x0 � t � x; then there exists

�2 2 Rn+; such that for all x0 � t � �2; we have

u(x) �
�
	�12

�
	2(c

(p�q)=p(x)) + e(x)
�� 1

p�q :

Where

e(x) =
p� q
p

"
n1X
j=1

Z e�k(x)
e�k(x0) aj(x; t)dt+

n2X
k=1

Z e�k(x)
e�k(x0) bk(x; t)dt

#
; (4.10)

	i(�) =

Z �

�0

ds

wi(s
1

p�q )
; � > �0 > 0; for i = 1; 2: (4.11)
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Here, 	�1i is the inverse function of 	i and the real numbers �i are chosen so that

	2(c
(p�q)=p(x)) + e(x) 2 dom(	�1i ) for i = 1; 2 respectively:

The proof of the theorem will be given in the next section.

Corollary 52 Let the functions u; c; w1; aj; bk ( j = 1; 2; :::; n1; k = ; 2; :::; n1) and

the constants p; q be de�ned as in Theorem 51 and

up(x; y) � c(x; y) +

n1X
j=1

Z �j(x)

�j(x0)

Z �j(y)

�j(y0)

aj(x; y; s; t)u
q(s; t)dsdt

+

n2X
k=1

Z �k(x)

�k(x0)

Z �k(y)

�k(y0)

bk(x; y; s; t)u
q(t)w1(u(t))dt; (4.12)

for any (x; y) 2 R2+ with x0 � s � x and y0 � t � y; then there exists (x�; y�) 2 Rn+;

such that for all x0 � s � x� and y0 � s � y�; then

u(x; y) �
�
	�1

�
	(p1(x; y)) +

p� q
p
B1(x; y)

�� 1
p�q

: (4.13)

Where

p1(x; y) = c(p�q)=p(x; y) +
p� q
p
A1(x; y); (4.14)

A1(x; y) =

n1X
j=1

Z �j(x)

�j(x0)

Z �j(y)

�j(y0)

aj(x; y; s; t)dsdt; (4.15)

B1(x; y) =

n2X
k=1

Z �k(x)

�k(x0)

Z �k(y)

�k(y0)

bk(x; y; s; t)dsdt; (4.16)

and

	(�) =

Z �

�0

ds

w1(s
1

p�q )
; � > �0 > 0: (4.17)

Here, 	�1 is the inverse function of 	, and the real numbers (x�; y�) are chosen so

that 	(p1(x; y)) +
p�q
p
B1(x; y) 2 dom(	�1):
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Remark 53 Setting aj(x; y; s; t) = aj(s; t); bk(x; y; s; t) = bk(s; t) and c(x; y) = k

� 0 in Corollary 52, we obtain Ma and Pecaric�s Theorem 2.1 [23].

Remark 54 De�ne aj(x; y; s; t) = p
p�qaj(s; t); bk(x; y; s; t) =

p
p�qbk(s; t) c(x; y) =

k > 0 (Constant) and j = k = 1 in Corollary 52, we obtain Cheung�s Theorem 2.4

[5].

Remark 55 Obviously, (4.1)�(4.3) are special cases of Theorem 51. So our result

includes the main results in [23, 29, 5].

Using Theorem 51, we can get some more generalized results as follows.

Theorem 56 Let the functions u; c; wi; aj; bk (i = 1; 2; j = 1; 2; :::; n1; k = ; 2; :::; n1)

be de�ned as in Theorem 51. Moreover, let ' 2 C(R+;R+) be a strictly increasing

function such that limx!1 '(x) =1; and let � 2 C(R+;R+) be nondecreasing func-

tion with �(x) > 0 for all x 2 Rn+

(b1) If u 2 C(Rn+;R+) and

'(u(x)) � c(x) +

n1X
j=1

Z e�j(x)
e�j(x0) aj(x; t)�(u(t))dt

+

n2X
k=1

Z e�k(x)
e�k(x0) bk(x; t)�(u(t))w1(u(t))dt (4.18)

for any x 2 Rn+ with x0 � t � x; then there exists x� 2 Rn+; such that for all

x0 � t � x�; we have

u(x) � '�1
�
G�1

�
	�11 (	1(�(x)) +B(x))

��
(4.19)
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where

�(x) = G(c(x)) + A(x); (4.20)

A(x) =

n1X
j=1

Z e�j(x)
e�j(x0) aj(x; t)dt; (4.21)

B(x) =

n2X
k=1

Z e�k(x)
e�k(x0) bk(x; t)dt; (4.22)

and

G(x) =

Z x

x0

ds

�('�1(s))
; x > x0 > 0; (4.23)

	i(�) =

Z �

�0

ds

wi('�1(G�1(s)))
; � > �0 > 0; i = 1; 2: (4.24)

The real number x� is chosen so that 	1(�(x)) +B(x) 2 dom(	�11 ) :

(b2) If u 2 C(Rn+;R+) and

'(u(x)) � c(x) +

n1X
j=1

Z e�j(x)
e�j(x0) aj(x; t)�(u(t))w1(u(t))dt

+

n2X
k=1

Z e�k(x)
e�k(x0) bk(x; t)�(u(t))w2(u(t))dt:

(i) For the case w2(u) � w1(u); for any x 2 Rn+ with x0 � t � x; then there exists

�1 2 Rn+; such that for all x0 � t � �1; we have

u(x) � '�1
�
G�1

�
	�11 (	1(G(c(x))) + A(x) +B(x))

��
:

(ii) For the case w1(u) � w2(u); for any x 2 Rn+ with x0 � t � x; then there exists

�2 2 Rn+; such that for all x0 � t � �2; we have

u(x) � '�1
�
G�1

�
	�12 (	2(G(c(x))) + A(x) +B(x))

��
:
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Where A;B;G and 	i(i = 1; 2) are de�ned in (4.21)-(4.24), 	�1i is the inverse func-

tion of 	i and the real numbers �i are chosen so that 	i(G(c(x))) +A(x) +B(x) 2

dom(	�1i ) for i = 1; 2 respectively:

Many interesting corollaries can also obtained for the above theorms (in the case

of one variable or in the case of n independent variables). For example :

Corollary 57 (Inequality in one variable)

Let p > q � 0; c > 0 be some constants and w1; w2 be de�ned as in Theorem 51.

Moreover, let aj(x; t) and bk(x; t) 2 C(R+�R+;R+) be nondecreasing functions in x

for every t �xed and �j; �k 2 C1(R+;R+) be nondecreasing functions with �j(t) � t

and �k(t) � ti on R+ for j = 1; 2; :::; n1; k = 1; 2; :::; n2 for any j = 1; 2; :::; n1; k =

1; 2; :::; n2

(c1) Let u 2 C(R+;R+) and

u(x)p � c
p

p�q +
p

p� q

n1X
j=1

Z �j(x)

0

aj(x; t)u(t)
qdt

+
p

p� q

n2X
k=1

Z �k(x)

0

bk(x; t)u(t)
qw1(u(t))dt

for any x 2 R+ with 0 � t � x ; then there exists (x�) 2 R+; such that for all

0 � t � x� ; we have

u(x) �
��
	�11 (	1(�(x)) +B(x))

�� 1
p�q : (4.25)

Where

�(x) = c+ A(x);
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and

A(x) =

n1X
j=1

Z �j(x)

0

aj(x; t)dt; (4.26)

B(x) =

n2X
k=1

Z �k(x)

0

bk(x; t)dt; (4.27)

	i(�) =

Z �

�0

ds

wi

�
s

1
p�q

� � > �0 > 0; i = 1; 2 (4.28)

Where the real number x� is chosen so that 	1(�(x)) +B(x) 2 dom(	�11 ) .

(c2) If u 2 C(R+;R+) and

u(x)p � c
p

p�q +
p

p� q

n1X
j=1

Z �j(x)

0

aj(x; t)u(t)
qw1(u(t))dt

+
p

p� q

n2X
k=1

Z �k(x)

0

bk(x; t)u(t)
qw2(u(t))dt: (4.29)

(i) For the case w2(u) � w1(u); for any x; t 2 R+ with 0 � t � x; then

u(x) � u(x) �
��
	�11 (	1(c) + A(x) +B(x))

�� 1
p�q :

(ii) For the case w1(u) � w2(u); for any x; t 2 R+ with 0 � t � x; then we have :

u(x) � u(x) �
��
	�12 (	2(c) + A(x) +B(x))

�� 1
p�q :

Where 	i; Aand B (i = 1; 2)are de�ned in (4.26)-(4.28).

Remark 58 (i) Corollary 57 (c1) reduces to the Sun�s inequality [35, Theorem 2.1]

in the case of one variable (n = 1) when aj(x; t) = aj(t); bk(x; t) = bk(t); �k(x) =

�j(x) and j = k = 1:

(ii) Corollary 57 (c2) reduces to the Sun�s inequality [35, Theorem 2.2] in the case of
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one variable (n = 1) when aj(x; t) = aj(t); bk(x; t) = bk(t); �k(x) = x and j = k = 1

and w1 = w2:

Remark 59 Under a suitable conditions in (b1), the inquality (4.18) gives a new

estimate for the inquality (4.5) in(a1).

Corollary 60 (Inequality in two variables)

Let a; b 2 C(� � R2+;R+) � 2 C1(J1; J1); � 2 C1(J2; J2) be nondecreasing func-

tions with � = J1 � J2 and J1 = [x0; a] 2 R+; J1 = [y0; b] 2 R+where �(x) � x on

J1; �(y) � y on J2: Let k � 0:

If u(x; y) 2 C(� � R2+;R+) and

u(x; y) � k +

Z x

x0

Z y

y0

a(s; t)u(s; t)dsdt

+

Z �(x)

�(x0)

Z �(y)

�(y0)

b(s; t)u(s; t)dsdt; (4.30)

for (x; y) 2 �; then

u(x; y) � k exp [A(x; y) +B(x; y)] ;

for (x; y) 2 �; where

A(x; y) =

Z x

x0

Z y

y0

a(s; t)dsdt; (4.31)

B(x; y) =

Z �(x)

�(x0)

Z �(y)

�(y0)

b(s; t)dsdt; (4.32)

for (x; y) 2 �:
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Theorem 61 Let the functions u; c; ; ';�; wi; aj; bk (i = 1; 2; j = 1; 2; :::; n1; k =

; 2; :::; n1) be de�ned as in Theorem 56

'(u(x)) � c(x) +

n1X
j=1

dj(x)

Z e�j(x)
e�j(x0) aj(x; t)�(u(t))w1(u(t))dt

+

n2X
k=1

lk(x)

Z e�k(x)
e�k(x0) bk(x; t)�(u(t))w2(u(t))dt;

then

u(x) � '�1
�
G�1

h
	�1

�
	(G(c(x))) + eA(x) + eB(x)�i�

where

eA(x) =

n1X
j=1

dj(x)

Z e�j(x)
e�j(x0) aj(x; t)dt;

eB(x) =

n2X
k=1

lk(x)

Z e�k(x)
e�k(x0) bk(x; t)dt:

Corollary 62 If

up(x) � c(x) +
Z e�(x)
0

a(t)uq(t) + b(t)up(t)dt

for any x 2 Rn+ with x0 � t � x; then there exists x� 2 Rn+; such that for all

x0 � t � x�; we have

u(x) � p

p� q c
p�q
p (x) exp

"
p

p� q

Z e�(x)
0

a(t) + b(t)dt

#

Remark 63 (i) Theorem 61 reduces to Theorem 2.2 of Lipovan [21] in the case of

one variable, when '(x) = x, bk(x; t) = 0; w1(t) = 1; j = 1 and n = 1:

(ii)Theorem 61 is also a generalization of the main result in Lipovan [21, Theorem

2.1] in the case of one variable variable, when '(x) = x, bk(x; t) = 0; w1(t) =

1;�(t) = 1; for any x; t 2 R+(n = 1) and for j = 1:
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Remark 64 (i)Under a suitable conditions, Theorem 61 reduces to Theorem 2.3 and

Theorem 2-4 in the case of tow variables of the main results in Zhang and Meng [40] .

(ii) Under a suitable conditions in Theorem 61, we can also obtain an other esti-

mations of the Ma and Pecaric�s inequality (4.1) and the main results in [23].

Remark 65 Theorem 61 further reduces to the man results in [5, Therem 2.1, 2.2,

2.4] and the results in [28].

4.3 Proof of Theorems

Since the proofs resemble each other, we give the details for (a1) and Theorem 61

only; the proofs of the remaining inequalities can be completed by following the proofs

of the above-mentioned inequalities.

Proof. Theorem 51 (a1) Fixing any arbitrary numbers y = (y1; :::; yn) 2 Rn+ with

x0 < y � x�; we de�ne on [x0; y] a function z(x) by

z(x) = c(y) +

n1X
j=1

Z e�j(x)
e�j(x0) aj(y; t)u

q(t)dt

+

n2X
k=1

Z e�k(x)
e�k(x0) bk(y; t)u

q(t)w1(u(t))dt; (4.33)

z(x) is a positive and nondecreasing function and z(x0) = c(y); then

u(x) � z(x)1=p; x 2 [x0; y]: (4.34)
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We know that

D1D2:::Dnz(x) =

n1X
j=1

aj(y; e�j(x))uq(e�j(x))�0j1�0j2:::�0jn
+

n2X
k=1

bj(y; e�j(x))uq(e�j(x))w1(u(e�j(x)))� 0k1� 0k2:::� 0kn
� zq=p(x)

"
n1X
j=1

aj(y; e�j(x))�0j1(x1)�0j2(x2):::�0jn(xn) (4.35)

+

n2X
k=1

bj(y; e�j(x))w1(z1=p(e�j(x)))� 0k1� 0k2:::� 0kn
#
:

Using (4.35), we have

D1D2:::Dnz(x)

zq=p(x)
�

"
n1X
j=1

aj(y; e�j(x))�0j1(x1)�0j2(x2):::�0jn(xn) (4.36)

+

n2X
k=1

bj(y; e�j(x))w1(z1=p(e�j(x)))� 0k1� 0k2:::� 0kn
#
:

Using D1D2:::Dn�1z(x) � 0; q
p
z(q�p)=p(x) � 0, Dn(x) � 0 and by (4.36), then

Dn

�
D1D2:::Dn�1z(x)

zq=p(x)

�
� D1D2:::Dnz(x)

zq=p(x)

�
n1X
j=1

aj(y; e�j(x))�0j1(x1)�0j2(x2):::�0jn(xn) (4.37)

+

n2X
k=1

bk(y; e�k(x))w1(z1=p(e�k(x)))� 0k1� 0k2:::� 0kn:
Fixing x1; x2; :::; xn�1;setting xn = tn and integrating (4.37) from x0n to xn; we obtain

D1D2:::Dn�1z(x)

zq=p(x)

�
n1X
j=1

Z �jn(xn)

�jn(x0n)

aj(y; �j1(x1); �j2(x2); :::; �jn�1(xn�1); �jn(tn))�
0

j1�
0

j2:::�
0

jn�1dtn

+

n2X
k=1

Z �kn(xn)

�kn(x
0
n)

bk(y; �k1(x1); �k2(x2); :::; �kn�1(xn�1); tn)w1(z
1=p(�k1; �k2; :::; �kn�1; tn))

�
0

k1(x1)�
0

k2(x2):::�
0

kn�1(xn�1)dtn:
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Using the same method, we reduce that

D1z(x)

zq=p(x)

�
n1X
j=1

"Z �jn(xn)

�jn(x0n)

:::

Z �jn(xn)

�jn(x0n)

aj(y; �j1(x1); t2; :::; tn)�
0

j1(x1)dtn:::dt2

#

+

n2X
k=1

"Z �jn(xn)

�jn(x
0
n)

:::

Z �jn(xn)

�jn(x
0
n)

bk(y; �k1(x1); t2; :::; tn)

: w1(z
1=p(�k1(x1); t2; :::; tn))�

0

k1(x1)dtn:::dt2

i
: (4.38)

Integrating (4.38) form x01 to x1; we obtain

p

p� q z
(p�q)=p(x) � p

p� q c
(p�q)=p(y) +

n1X
j=1

Z e�j(y)
e�j(x0) aj(y; t)dt

+

n2X
k=1

Z e�k(x)
e�k(x0) bk(y; t)w1(z

1=p(t))dt;

for all x 2 [x0; y], which implies that

z(p�q)=p(x) � c(p�q)=p(y) +
p� q
p

n1X
j=1

Z e�j(y)
e�j(x0) aj(y; t)dt

+
p� q
p

n2X
k=1

Z e�k(x)
e�k(x0) bk(y; t)w1(z

1=p(t))dt: (4.39)

We setting r1(x) = z(p�q)=p(x); the (4.39) can be rewritten as

r1(x) � p(y) +
p� q
p

n2X
k=1

Z e�k(x)
e�k(x0) bk(y; t)w1(r

1=(p�q)
1 (t))dt:

De�ning v(x) on [x0; y]; by

v(x) = p(y) +
p� q
p

n2X
k=1

Z e�k(x)
e�k(x0) bk(y; t)w1(r

1=(p�q)
1 (t))dt; (4.40)
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by (4.40), we have v(x0) = p(y) and

z(p�q)=p(x) � v(x); (4.41)

and

D1D2:::Dnv(x) =
p� q
p

n2X
k=1

bk(y; e�k(x))w1(r1=(p�q)1 (e�k(x)))� 0k1� 0k2:::� 0kn
� p� q

p

n2X
k=1

bk(y; e�k(x))w1(v1=(p�q)(e�k(x)))� 0k1� 0k2:::� 0kn:
By using the same method above, we obtain

D1v(x)

w1(v(x)1=p�q)
(4.42)

� p� q
p

n2X
k=1

"Z �jn(xn)

�jn(x
0
n)

:::

Z �jn(xn)

�jn(x
0
n)

bk(y; �k1(x1); t2; :::; tn)�
0

k1(x1)dtn:::dt2

#
:

Integrating (4.42) form x01 to x1; we obtain

	1(v(x)) � 	1(p(y)) +
p� q
p

n2X
k=1

Z e�k(x)
e�k(x0) bk(y; t)dt (4.43)

and from (4.43) and for any arbitrary y, we get

v(y) � 	�11

"
	1(p(y)) +

p� q
p

n2X
k=1

Z e�k(y)
e�k(x0) bk(y; t)dt

#
(4.44)

From (4.44) and (4.41), we reduce to :

z(y) �
 
	�11

"
	1(p(y)) +

p� q
p

n2X
k=1

Z e�k(y)
e�k(x0) bk(y; t)dt

#! p
p�q

: (4.45)

By (4.45) and (4.34), then

u(y) �
 
	�11

"
	1(p(y)) +

p� q
p

n2X
k=1

Z e�k(y)
e�k(x0) bk(y; t)dt

#! 1
p�q

Since y � x�is arbitrary we are done with the proof.
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Proof. (Theorem 61) Fxing any arbitrary numbers � = (� 1; :::; �n) 2 Rn+ with

x0 < � � �; we de�ne on [x0; � ] a function z(x) by

z(x) = c(�) +

n1X
j=1

dj(�)

Z e�j(x)
e�j(x0) aj(� ; t)�(u(t))w1(u(t))dt

+

n2X
k=1

lk(�)

Z e�k(x)
e�k(x0) bk(� ; t)�(u(t))w2(u(t))dt;

z(x) is a positive and nondecreasing function and z(x0) = c(�); then

u(x) � '�1(z(x)); x 2 [x0; � ]:

We know that

D1D2:::Dnz(x) =

n1X
j=1

dj(�)aj(� ; e�j(x))�(u(e�j(x)))w1(u(e�j(x)))�0j1�0j2:::�0jn
+

n2X
k=1

lk(�)bk(� ; e�k(x))�(u(e�k(x)))w2(u(e�k(x)))� 0k1� 0k2:::� 0kn;
� �('�1(z(x))

"
n1X
j=1

dj(�)aj(� ; e�j(x))w1('�1(z(e�j(x)))�0j1�0j2:::�0jn
+

n2X
k=1

lk(�)bk(� ; e�k(x))w2('�1(z(e�k(x)))� 0k1� 0k2:::� 0kn
#
:

Using the same method in proof of the Theorem 51, and for all x 2 [x0; � ], which

implies that :

z(x) � G�1

"
G(c(�)) +

n1X
j=1

dj(�)

Z e�j(x)
e�j(x0) aj(� ; t)w1(u(t))dt

+

n2X
k=1

lk(�)

Z e�k(x)
e�k(x0) bk(� ; t)w2(u(t))dt

#
:

De�ning v(x) on [x0; � ] by

v(x) = G(c(�)) +

n1X
j=1

dj(�)

Z e�j(x)
e�j(x0) aj(� ; t)w1(u(t))dt

+

n2X
k=1

lk(�)

Z e�k(x)
e�k(x0) bk(� ; t)w2(u(t))dt:
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We have v(x0) = G(c(�)) and

z(x) � G�1(v(x));

and

u(x) � '�1(G�1(v(x))); (4.46)

and we can obtain :

D1D2:::Dnv(x)

w1('�1(G�1(v(x))))
�

"
n1X
j=1

dj(�)aj(� ; e�j(x))�0j1(x1)�0j2(x2):::�0jn(xn)
+

n2X
k=1

lk(�)bk(� ; e�k(x))� 0k1(x1)� 0k2(x2):::� 0kn(xn)
#
:

By using the same method above, we obtain :

	1(v(x)) � 	1(G(c(�))) +

n1X
j=1

dj(�)

Z e�j(x)
e�j(x0) aj(� ; t)dt

+

n2X
k=1

lk(�)

Z e�k(x)
e�k(x0) bk(� ; t)dt:

From which we get

v(�) � 	�11

"
	1(G(c(�))) +

n1X
j=1

dj(�)

Z e�j(�)
e�j(x0) aj(� ; t)dt

+

n2X
k=1

lk(�)

Z e�k(�)
e�k(x0) bk(� ; t)dt

#
: (4.47)

for any arbitrary numbers � 2 Rn+; with x0 < � � �:

from (4.46) and (4.47), we reduce to :

u(�) � '�1

(
G�1

 
	�11

"
	1(G(c(�))) +

n1X
j=1

dj(�)

Z e�j(�)
e�j(x0) aj(� ; t)dt

+

n2X
k=1

lk(�)

Z e�k(�)
e�k(x0) bk(� ; t)dt

#!)
:

Since � is arbitrary and � � �, we obtain the result in the Theorem 61.
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4.4 Applications

4.4.1 Partial delay di¤erential equation in R2

In this section we present applications of the inequality (4.30) Corollary 60 to study

the boundedness and uniqueness of the solutions of the initial boundary value problem

for partial delay di¤erential equations in two variables of the form

D2D1u(x; y) = f (x; y; u(x; y); u(x� h1(x); y � h2(y))) ; (4.48)

u(x; y0) = a1(x); u(x0; y) = a2(y); a1(x0) = a2(y0); (4.49)

where f 2 C(� � R2 ;R ); a1 2 C1(J1 ;R ); a2 2 C1(J2 ;R ); h1 2 C1(J1 ;R+

); h2 2 C1(J2 ;R+ ) such that x� h1(x) � 0; y� h2(y) � 0; h01(x) � 1; h02(x) � 1

and h1(x0) = h2(y0) = 0:

Where J1 = [x0; a] 2 R+; J2 = [x0; b] 2 R+ and � = J1 � J2:

Our �rst result gives the bound on the solution of the problem (4.48),(4.49).

Theorem 66 Suppose that

jf (x; y; u; v)j � a(x; y) juj+ b(x; y) jvj ; (4.50)

and

ja01x) + a2(y)j � k; (4.51)

where a; b 2 C(� ;R+ ) and k � 0 is a constant, and let

M1 = max
x2J1

1

1� h01(x)
; M2 = max

y2J2

1

1� h01(y)
: (4.52)
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If u(x; y) is any solution of (4.48)-(4.49), then

ju(x; y)j � k exp
�
A(x; y) +B(x; y)

�
; (4.53)

where

A(x; y) =

Z x

x0

Z y

y0

a(s; t)dsdt; (4.54)

B(x; y) = M1M2

Z �(x)

�(x0)

Z �(y)

�(y0)

b(�; �)d�d� (4.55)

in which �(x) = x� h1(x) for x 2 J1 and �(y) = y � h2(y) for y 2 J2 and

b(�; �) = b(� + h1(s); � + h2(t)); for �; s 2 J1; � ; t 2 J2:

Proof. The solution u(x; y) of the problem (4.48)-(4.49) satis�es the equivalent

integral equation

u(x; y) = a1(x) + a2(y) +

Z x

x0

Z y

y0

f (s; t; u(s; t); u(s� h1(s); t� h2(t))) dsdt: (4.56)

Using (4.50), (4.51) and (4.52) in (4.56) and making the change of variables, we have

ju(x; y)j � k +

Z x

x0

Z y

y0

a(s; t) ju(x; y)j dsdt

+M1M2

Z �(x)

�(x0)

Z �(y)

�(y0)

b(�; �) ju(x; y)j d�d�: (4.57)

Now a suitable application of the inequality (4.30) given in Corollary 60 to (4.57)

yields (4.53). The right-hand side of (4.53) gives us the bound on the solution u(x; y)

of (4.48)-(4.49) in terms of the known functions. Thus, if the right-hand side of (4.53)

is bounded, then we assert that the solution of (4.48)-(4.49) is bounded for x; y 2 �:

The next result deals with uniqueness of the solutions of the problem (4.48)-(4.49).
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Theorem 67 Suppose that the function f in (4.48) satis�es the condition

jf (x; y; u; v)� f (x; y; u; v)j � a(x; y) ju� uj+ b(x; y) jv � vj ; (4.58)

where a; b 2 C(� ;R+ ), and let M1;M2; �; �; b be as in Theorem 61.

Then the problem (4.48)-(4.49 has at most one solution on �:

Proof. Let u(x; y) and u(x; y) be two solutions of (4.48)-(4.49) on �; the we have

u(x; y)� u(x; y) =

Z x

x0

Z y

y0

[f (s; t; u(s; t); u(s� h1(s); t� h2(t)))

� f (s; t; u(s; t); u(s� h1(s); t� h2(t)))] dsdt: (4.59)

Using (4.58) in (4.59) and making the change of variables, we have

ju(x; y)� u(x; y)j �
Z x

x0

Z y

y0

a(s; t) ju(s; t)� u(s; t)j dsdt

+M1M2

Z �(x)

�(x0)

Z �(y)

�(y0)

b(�; �) ju(�; �)� u(�; �)j d�d�(4.60)

Now a suitable application of the inequality (4.30) given in Corollary 60 to (4.60).

Therefore u(x; y) = u(x; y); there is at most one solution of the problem (4.48)-(4.49)

on �:

4.4.2 Partial delay di¤erential equation in Rn

In this section we present an immediate application of our results (Theorem 51 and

Corollary 62 ) to study the boundless of the solution of delay partial di¤erential

equation.

First we consider the nonlinear partial delay di¤erential equation in Rn:
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8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Dup(x) = h(x; u(x); u(x� e�(x));
up(0; x2; x3; :::; xn) = c1(x1);

up(0; x2; x3; :::xn�1; xn) = cn(xn)

up(:::; xi�1; 0; xi+1; :::) = ci(xi) for all i = 2; 3; :::; n� 1;

ci(0) = 0 for all i = 1; 2; :::; n:

(4.61)

For x = (x1;x2; :::; xn) 2 Rn+ and e�(x) = (�1(x1); �2(x2); :::; �n(xn)) 2 Rn+ for �i ; ci 2
C1(R+;R+) for i = 1; 2; :::; nwhere h : Rn+ � R� R! R; is continuo function.

Assume that those functions are de�ned and continuous on their respective domains

of de�nition such that

e�(x) � x; for all x = (x1;x2; :::; xn) 2 Rn+; (4.62)

and

jh(x; u; v)j � a(x) jv(x)jq + b(x) jv(x)jp ; (4.63)

for x 2 Rn+, where p > q � 0: is a constants and a(x); b(x) are nonnegative, continuous

functions de�ned for x 2 Rn+: If u(x) is any solution of the boundary value problem

(4.61), then

up(x) =
nX
i=1

ci(xi) +

Z x

0

h(t; u(t); u(t� e�(t))dt; (4.64)

For all x; t 2 Rn+ with 0 � t � x: using (4.61),(4.63) and by making the change of

variables in (4.64), we have

jup(x)j � c(x) +
Z e�(x)
0

ea(t) ju(t)jq +eb(t) ju(t)jp dt; (4.65)
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with c(x) =
Pn

i=1 jci(xi)j ; ea;eb 2 C1(Rn+;R+):
(e1) Now a suitable application of (a1) in Theorem 51 to (4.65), when e�j = e�k

; aj(x; t) = ea(t); bk(x; t) = eb(t) with j = k = 1 and w1(u) = up�q, then we obtain the
boundless of the solution u(x) :

u(x) �
 
c(p�q)=p(x) +

p� q
p

Z e�(x)
0

ea(t)dt! 1
p�q

exp

 
1

p

Z e�(x)
0

eb(t)dt! : (4.66)

(e2) Or by an application direct of Corollary 62 to (4.65), then

u(x) � p

p� q c
p�q
p exp

"
p

p� q

Z e�(x)
0

hea(t) +eb(t)i dt# : (4.67)

Remark 68 In the special case (p = 2 and q = 1) in the boundary value problem

(4.61), we can obtain :

(i) by using (4.66),we obtain

u(x) �
 p

c(x) +
1

2

Z e�(x)
0

ea(t)dt! exp 1
2

Z e�(x)
0

eb(t)dt! :

(ii) Or by using (4.67), then

u(x) � 2
p
c(x) exp

"
2

Z e�(x)
0

hea(t) +eb(t)i dt# :
We note that the results given here can be very easily generalized to obtain explicit

bounds on integral inequalities involving several retarded arguments.

Remark 69 Using similar method of those in the proof of Theorems above, we can

also obtain a new reversed inequalities of our results.
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Résumé 

 
Le but  de ce travail est de donner une exposition des résultats classiques 

de certaines inégalités intégrales apparus dans la littérature mathématique dans 

ces dernières années; et de établir quelques nouvelles inégalités intégrales, 

integrodifférentielles inégalités et aussi quelques  nouvelles inégalités intégrales 

avec un terme de retard.  

Les résultats donnés ici,  peuvent être utilisés dans la théorie qualitative de 

certaines classes des problèmes de valeur aux limites pour les EDP, EDP avec 

un retard, équations différentielles, équations intégrales et les équations 

integrodifférentielles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Abstract 
 

The aim of the present work is to give an exposition of the classical 

results about integral inequalities with have appeared in the mathematical 

literature in recent years; and to establish some new integral inequalities, 

integrodifferential inequalities and also many new retarded integral inequalities. 

The results given here can be used in the qualitative theory of various classes of 

boundary value problems of partial differential equations, partial differential 

equations with a delay, differential equations, integral equations and 

integrodifferential equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
 
 

 
  صــــملـــخ

 
 
 

 النتائج الكلاسيكية لبعض المتراجحات بعضول  عرض حالهدف من هذا العمل هو تقديم

 إيجاد بعض المتراجحات التكاملية التكاملية و الني دخلت مجال الرياضيات في الأعوام الأخيرة و

  .الجديدة ، المتراجحات التفاضلية التكاملية و أيضا بعض المتراجحات التكاملية ذات حد متأخر 

ة لبعض يدير من المسائل الح نظرية الكـم لكث علىالنتائــــج  المعروضة هنا ، يمكن أن تطبق

المعادلات التفاضلية الجزئية ،  المعادلات التفاضلية الجزئية ذات حد متأخر ، المعادلات التفاضلية ، 

  .  المعادلات التكاملية و المعادلات التفاضلية التكاملية 

  
  
  


