REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DES FRÈRES MENTOURI CONSTANTINE 1

FACULTE DES SCIENCES EXACTES

DEPARTEMENT DE CHIMIE

N°d'ordre135/DS/2019

Série:16/CH/2019

THÈSE

PRESENTEE POUR OBTENIR LE DIPLOME

DE DOCTORAT EN SCIENCES Option : Chimie inorganique Intitulé :

SYNTHESE, CARACTERISATION ET

PROPRIETES DE NOUVEAUX

COMPLEXES /POLYMERE A BASE DE

PYRAZOLE ET D'IMIDAZOLE

Par

Ahlam Leila ZERGUINI

Devant le jury

Président	H.MERAZIG	Professeur à l'université Constantine1
Rapporteur	A.CHEROUANA	Professeure à l'université Constantine1
Examinateurs	L.BENDJEDDOU	Professeure à l'université Constantine1
	F.Z.SETIFI	Professeure à l'université Ferhat Abbas. Sétif1
	N.BENALICHERIF	Professeur à l'université Akli Mohand Oulhadj.
		Bouira
	A.BENMOUSSA	Professeur à l'université Badji Mokhtar ANNABA

Soutenue le: 17 /07/ 2019

Remerciements

Je tiens à exprimer ma profonde gratitude à toute l'équipe de **l'unité** *de recherche CHEMS*, qui m'ont aidé, appris et, surtout encouragé, durant la période de recherche et, rédaction de cette thèse.

Je remercie tous les membres de jury, d'avoir bien voulu juger ce travail, je cite : **Pr H. Merazig, Pr A. Benmoussa, Pr N. Benali Cherif, Pr F. Setifi, Pr L. Bendjeddou**.

Mes plus vifs remerciements s'adressent aux **professeurs D. Rouag et H. Merazig**, sans qui je n'aurais pas pu effectuer ce travail, je vous serais toujours reconnaissante pour, votre aide qui m'a été précieuse, votre soutien et, surtout la qualité de vos enseignements.

Bien plus que, des remerciements, une profonde gratitude et de la reconnaissance, s'adressent à ma directrice de thèse, le **Pr Aouatef Cherouana**, pour avoir parcourue, en compagnie de la petite sara, ces onze années de chemin de vie avec moi.

Merci de la compréhension dont vous avez fait preuve, merci pour la confiance que vous m'avez accordé et surtout, merci pour l'encadrement et l'apprentissage, de qualité, que j'ai eu la chance d'avoir avec vous.

Je tiens à exprimer mes plus grands remerciements à, toute l'équipe du CRM² de l'université de Nancy et, de façon particulière au **Pr défunt S. Dahaoui**, pour toute l'aide et la grande contribution, qu'il nous a apporté pour effectuer ce travail de recherche. Ma plus profonde gratitude, s'adresse au **Pr F. H. Schaper** du département de chimie de l'Université de Montréal, pour m'avoir accueillie dans son laboratoire, pour m'avoir encadré, appris et, surtout d'avoir répondu présent, pour toutes les fois où, j'ai eu besoin d'aide.

Je tiens également à exprimer, ma profonde gratitude envers **le Pr K. Djebbar et le Pr Belfaitah Ali**, pour leur contribution, leur aide précieuse et leur apprentissage, qui plus est, de qualité.

J'exprime ma profonde reconnaissance aux **Docteurs Abdelatif Bensegueni** et **Boutabdja Mehdi**, pour leur grande aide, pour leurs encouragements, mais aussi, leur patience.

Mes plus grands remerciements et ma plus profonde reconnaissance, s'adressent à mes amies, qui m'ont aidé, soutenue et sans qui, je n'aurais pas pu mener à terme ce travail; je cite Nawel Redjem, Souheila Saadi, Nadjet Aymen, Sakina Ouis, Malika Oualbani, Lotfia Benchikh lefgoun, Assia Mili, Ziani Saida, Benyahia Faiza, Arzour Mouna, soumaya Maza.

J'aurais aimé te remercier de vive voix, toi mon amie de toujours, **Kenza Soraya Benhammoud**, mais dieu en a décidé autrement, je dirais néanmoins, avec beaucoup de peine et une gorge nouée, merci pour tout ce que tu as fait pour moi mimiche, repose en paix.

Je veux également exprimer une profonde reconnaissance à Mme Seraoui Fouzia, sa fille Hiba seraoui et Mme Camila Kessali, pour leurs soutien et aide précieuse. Je souhaite trouver des mots plus expressifs et forts que, gratitude et reconnaissance, pour exprimer toute la dévotion, la présence, l'aide monumentale, dont tu as fait preuve, durant toutes ces années, mais je dirais simplement, que sans toi ma petite sœur **Ouarda Nadia Zerguini,** je n'aurais pas pu, tu as été bien plus qu'à la hauteur car, tu as su remplacer l'irremplaçable.

Je tiens à exprimer une profonde gratitude et reconnaissance à ma mère adoptive **Benhamza Zoubeida**, qui m'a été d'une grande aide et, qui m'a encouragé tout au long de ce travail.

Je tiens à remercier mes frères Ali, Taha houssine et ahcene pour leurs aide et encouragements.

De vifs remerciements s'adressent à mes sœurs; Samia, Mina, Cherifa, Mouni et à mes belles sœurs Ndjima Hadjout et Safia Mimouni pour leur précieuse aide, compréhension et soutient tout le long de la période de rédaction.

Dédicaces

A la mémoire de:

Mes parents,

Mon amie Kenza Soraya

Benhammoud

Je dédie cette thèse à :

Toute ma famille ; frères, sœurs, beaux frères,

belles sœurs, neveux et nièces.

Mes oncles Salim Hadjout et Zerguini Omar et

mes tantes.

Mes cousins et mes cousines.

Tous mes amis et toutes mes amies.

Tous mes ainés scientifiques.

Tout le personnel technique et administratif du

département de chimie de l'université des

frères Mentouri. Constantine 1.

Préambule

La présente thèse, rentre dans le cadre d'une préparation, en vue de l'obtention du titre de Docteure en sciences, au sein de l'université Constantine 1 ; il s'agit d'un travail effectué avec l'aide et l'encadrement de deux institutions, à savoir : l'unité de recherche CHEMS de l'université Constantine1, dirigée par le Professeur H. Merazig et, le laboratoire de chimie inorganique de l'université de Montréal, dirigé par le Professeur F. H. Schaper.

Le travail de recherche que nous avons effectué, a porté ses fruits ; en effet, au terme d'un dur labeur, nous sommes parvenus à deux résultats très intéressent. Le premier, consiste en la synthèse de tétramères à base de cuivre, en passant par deux étapes distinctes, une étape de chauffage en réacteur fermé et l'autre, de formation du composé, dans un milieu ambiant avec la contribution du dioxygène atmosphérique.

Il faut savoir que les complexes oxo, existent depuis plus de 50 ans, et les publications de ces structures, possédant la particularité, d'avoir un cœur commun, ou cage avec, un atome central d'oxygène et, une même unité tétranucléaire [Cu_4 (μ_2 -Cl)₆ (μ_4 -O)], sont au nombre de 103, en référence à la banque de données CSDC 2019.

L'originalité de notre travail, est que nous sommes parvenus à trouver l'origine de l'atome central d'oxygène, avec une nouvelle méthode de synthèse, et que jusqu'à présent, les avis diffèrent quand à l'origine de cet atome.

Le deuxième résultat de cette recherche, consiste en, l'étude de la propriété catalytique du complexe tétra-pyrazole-sulfato-cuivre II. Monohydraté, qui s'est révélé être un bon catalyseur pour une réaction de couplage Chan-Evans-Lam.

TABLE DES MATIERES

INTRODUCTION GENERALE	20
CHAPITRE I : Théorie sur la méthodologie et les réactifs intervenant dans la synthèse des complexes/polymère de coordination	26
I – Introduction	26
II – Méthodologie de synthèse : La synthèse par voie solvothermale, les réacteurs chimiques fermés monophasiques	27
II – 1 Historique	27
II – 2 Définitions	28
II – 3 Systèmes fermés ou réacteurs fermés monophasiques	28
II - 3 - 1 Définition et caractéristiques d'un système ou réacteur fermé	28
II - 3 - 2 Facteurs gouvernant le fonctionnement d'un réacteur homogène fermé	29
II - 3 - 3 La réaction chimique dans un réacteur fermé monophasique	30
II - 3 - 3 - 1 Mise en contexte	30
II - 3 - 3 - 2 Aspects énergétiques et dynamique de mise en solution des réactifs	31
II - 3 - 3 - 3 Les états de la matière et le changement de phase	32
II - 3 - 3 - 4 La vaporisation et la pression de vapeur	32
a- La pression de vapeur	33
b- Le point critique	33
II - 3 - 3 - 5 L'état d'équilibre chimique	34
III – Les ligands de synthèse : 1H-Pyrazole, 1H-Imidazole et dioxygène atmosphérique	34
III – 1 Mise en contexte	34
III - 2 Les ligands 1H-Pyrazole et 1H-Imidazole	35

III – 2 - 1 Généralités	35
III – 2 - 2 Etude structurale des 1H-pyrazole et 1H-imidazole:	38
III – 2 – 2 - 1 Présentation des systèmes cycliques à cinq atomes 1,2 et 1,3 azotés sans conjugaison exocyclique	38
III – 2 – 2 - 2 Structure et basicité:	38
a- Structure	38
b- Basicité	42
III – 2 – 3 Méthodes structurales	44
III $-2 - 3 - 1$ La diffraction par Rayons X	44
III - 2 - 3 - 2 La spectroscopie UV-Visible	44
III $-2 - 3 - 3$ La spectroscopie IR (infra-rouge)	45
III $-2 - 4$ Aspects thermodynamiques: points d'ébullition, fusion et solubilité des cycles 1H-pyrazole et 1H-imidazole	47
III – 2 - 5 La réactivité des 1H-pyrazole et 1H-imidazole	48
III – 2 – 5 - 1 Les réactions acido-basiques	48
III – 2 – 5 - 2 Réactions avec les agents électrophiles: N-Alkylation (Méthylation) des 1H- imidazole et 1H-pyrazole	50
III – 3 Le dioxygène atmosphérique O ₂	53
III - 3 - 1 Historique	53
III – 3 – 2 Propriétés de l'oxygène	53
III - 3 - 2 - 1 Quelques aspects physico-chimiques	53
III $-3 - 2 - 2$ La solubilité de l'oxygène moléculaire notions d'oxygène dissous	54
a - Facteurs influençant la solubilité	54

b - Solubilité du dioxygène O ₂	55
III – 3 – 3 Réactivité de l'oxygène moléculaire	56
IV – La chimie inorganique des métaux de transition en général, du Cobalt et Cuivre en particulier	56
IV – 1 Mise en contexte	56
IV – 2 Les sels de chlorure et sulfates des deux éléments	57
IV – 3 Caractéristiques typiques des complexes de coordination	60
IV – 3 – 1 La couleur	60
IV – 3 – 2 Les spectres d'absorption électroniques	61
IV - 3 - 2 - 1 Formes typiques	61
Iv - 3 - 2 - 2 Signification de la transition d-d du spectre d'absorption électronique	62
IV – 4 Etude de la coordination des complexes de métaux de transition	64
IV - 4 - 1 Historique des complexes et composés de coordination	64
IV - 4 - 2 La liaison de coordination	65
IV – 4 – 3 Coordinences et géométries respectives	65
IV - 4 - 3 - 1 La percée de Werner et le modèle de Kepert	65
IV - 4 - 3 - 2 Coordinances Typiques des complexes de cobalt (II) et de cuivre (II)	66
IV - 4 - 3 - 2 - a Coordinance 4	66
IV - 4 - 3 - 2 - b Coordinance 5	67
IV - 4 - 3 - 2 - c Coordinence 6	67
V - Références	68
CHAPITRE II	72
I – Introduction	72

II – Historique des complexes oxo de type $[Cu_4OCl_6L_4]$ ayant pour ligands L : 1H- 73 pyrazole ou 1H-imidazole et leurs dérivés

II - 1 Mise en contexte

II – 2 Les complexes de coordination de type $[Cu_4OCl_6L_4]$ ayant pour ligands L le 1H- 74 imidazole ou ses dérivés (CSD 2019)

II – 3 Les complexes de coordination de type $[Cu_4OCl_6L_4]$ ayant pour ligands L les 77 dérivés du 1H-pyrazole (CSD 2019)

II – 4 Origine de l'atome central d'oxygène du tétramère et rôle du chlorure de cuivre 78 dans la formation du complexe

III – Synthèses de trois complexes oxo de type $[Cu_4OCl_6L_4]$ avec une unité 78 tétranucléaire $[Cu_4 (\mu_2-Cl)_6 (\mu_4-O)]$ et d'un polymère oxo avec une unité trinucléaire $[Cu_3(\mu-Cl)_3(\mu_3O)]$:

III - 1 Mise en contexte

III – 2 Synthèses du premier complexe : *Hexa* (μ_2 -*chloro*) (μ_4 -*oxo*) (*tétra-imidazole*) 79 *tétra cuivre* (*II*) ou [Cu₄OCl₆(C₃H₃N₂)₄]

III – 3 Synthèses du second complexe de coordination : *Hexa* (μ_2 -*chloro*) (μ_4 -*oxo*) 81 (*tétra-imidazole*) *tétra cuivre* (*II*). *Ethanol* ou [Cu₄OCl₆(C₃H₃N₂)₄]. C₂H₅OH

III – 4 Synthèses du troisième complexe de coordination : *Hexa* (μ_2 -*chloro*) (μ_4 -*oxo*) *Tétra* (*1-méthyle-pyrazole*) *tétra cuivre*(*II*) ou [Cu₄OCl₆(C₄H₆N₂)₄] 83

III – 5 Synthèse du polymère de coordination: *Tri* (μ -*chloro*) (μ_3 -*oxo*) *tri*(μ_2 - 87 *pyrazolo*)*bis*(*1H*-*pyrazole*)*tricuivre* (*II*) ou {Cu₃OCl₃(L₁)₂ (L₂)₃}_n (avec L₁ = 1H-pyrazole, L₂= pyrazole)

III - 5 - 1 Mise en contexte

III - 5 - 2 Synthèse d'un tétramère de cuivre avec un ligand 1H-pyrazole qui serait N- 87 éthylé

III – 5 – 3 Synthèse du polymère { $Cu_3OCl_3(L_1)_2 (L_2)_3$ }_n (avec L₁ = 1H-pyrazole, L₂= 88 pyrazole)

73

78

87

III – 6 Observations, premières déductions de toutes les synthèses effectuées	91
III – 6 - 1 Résumé de toutes les synthèses effectuées	91
III – 6 – 2 Observations expérimentales	93
III - 6 - 3 Premières déductions de la formation d'un composé oxo ayant pour ligands les 1H-imidazole ou 1H-pyrazole	96
IV – Etablissement du chemin réactionnel, analyse et interprétation chimique de la formation des tétramères/trimère à base de cuivre :	98
IV – 1 Mise en contexte	98
IV – 2 Le chauffage en système ou réacteur fermé	98
IV - 2 - 1 La mise en contact des réactifs avec le solvant : la dissolution	98
IV - 2 - 2 Transformation de la matière en système fermé	99
IV - 2 - 2 - 1 Action du chauffage sur les forces intermoléculaires	99
IV - 2 - 2 - 2 Propriétés chimiques des formes réactives générées par chauffage	100
IV - 2 - 2 - 3 Acidité ou basicité d'une molécule en synthèse organique	103
a- Mise en contexte	103
b- Notion d'acidité d'une molécule et Pka des réactifs et solvants utilisés en synthèse	103
IV – 2 – 3 Les réactions de N-méthylation, N-éthylation et N-propylation des ligands 1H-imidazole et 1H-pyrazole	105
IV - 2 - 3 - 1 Mise en contexte	105
IV - 2 - 3 - 2 Les réactions de N-méthylation, N-éthylation et N-propylation du ligand 1H-pyrazole	105
IV - 2 - 3 - 3 Les réactions de N-méthylation et N-éthylation du ligand 1H-imidazole	107
IV - 3 Réaction avec le deuxième ligand : le dioxygène atmosphérique et, formation des tétramères et trimère à base de cuivre	108

IV - 3 - 1 Mise en contexte

IV - 3 - 2 Réaction du dioxygène atmosphérique O₂ avec la solution et formation des 109 tétramères/trimère

V – Etude des propriétés spectrales des trois composés de coordination: 112 $[Cu_4OCl_6(C_3H_3N_2)_4]$. EtOH ; $[Cu_4OCl_6(C_4H_6N_2)_4]$; $\{Cu_3OCl_3(L_1)_2 (L_2)_3\}_n$ (avec $L_1 =$ 1H-pyrazole, $L_2 =$ pyrazole)

$$V - 1 - 1$$
 Etude du spectre IR du complexe (1) : 112

- V 1 2 Etude du spectre IR du complexe (2) : 114
- V 1 3 Caractérisation par spectroscopie Infrarouge du polymère (3) : 115
- V 2 La spectroscopie d'absorption électronique : Ultraviolet/Visible 116
- V 2 1 Interprétation des spectres UV-Vis du tétramère (1) : 116
- V 2 2 Interprétation du spectre UV-Vis du tétramère (2) : 116
- V 2 3 Interprétation du spectre UV-Vis du polymère (3) 117

VI – Etude par diffraction des rayons X des deux tétramères $[Cu_4OCl_6(C_3H_3N_2)_4]$. 117 EtOH; $[Cu_4OCl_6(C_4H_6N_2)_4]$; et du trimère : $\{Cu_3OCl_3(L_1)_2 \ (L_2)_3\}_n$ (avec $L_1 = 1H$ -pyrazole, L_2 = pyrazole)

VI – 1 Résolution et affinement des structures (1), (2) et (3): $[Cu_4OCl_6(C_3H_3N_2)_4]$. 117 EtOH ; $[Cu_4OCl_6(C_4H_6N_2)_4]$; $\{Cu_3OCl_3(L_1)_2 \ (L_2)_3\}_n$ (avec $L_1 = 1$ H-pyrazole, $L_2 = pyrazole$)

- VI 2 Description des structures des complexes oxo (1), (2) et (3) 119
- VI 2 1 Les Tétramères (1) et (2) : 119
- VI 2 1 1 Mise en contexte 119
- VI 2 1 2 Les unités asymétriques des complexes (1) et (2): 120
- VI 2 1 3 L'environnement de l'atome de cuivre: 124

108

VI - 2 - 1 - 4 Enchainement des structures dans les complexes (1) et (2) :	130
VI - 2 - 1 - 5 L'empilement des deux complexes de coordination (1) et (2)	133
$VI - 2 - 2$ Description de la structure du polymère de coordination (3) { $Cu_3OCl_3(L_1)_2$ (L_2) ₃ } _n (avec $L_1 = 1$ H-pyrazole, $L_2 = $ pyrazole)	136
VI - 2 - 2 - 1 L'unité asymétrique du polymère de coordination (3) :	136
VI - 2 - 2 - 2 L'Environnement de chaque atome de cuivre et géométries respectives:	139
VI – 2 – 2 – 3 Enchaînement, empilement des molécules du polymère et étude des interactions (les liaisons hydrogène et les interactions π - π et C-H π)	144
VII Conclusion du chapitre	147
VIII – Les Références	149
CHAPITRE III	153
Le complexe Tétra-pyrazole-sulfato-cuivre II.Monohydraté :	
Etude par diffraction des rayons X, spectrale UV-Visible et réaction de couplage par catalyse Chan-Evans-Lam	
I – Introduction	153
II – Synthèse et étude par analyse élémentaire du complexe [Cu(Pz) ₄ .SO ₄ .H ₂ O] avec Pz : 1H-pyrazole	154
II – 1 Synthèse du complexe [Cu(Pz) ₄ .SO ₄ .H ₂ O]	154
II – 2 Analyse élémentaire	155
III – Etude de la spectroscopie d'absorption électronique du composé de coordination, spectre Ultraviolet/Visible	155
IV – Caractérisation et étude par diffraction par Rayons X du complexe [Cu(Py) ₄ .SO ₄ .H ₂ O] avec Py : 1H-pyrazole	157
IV – 1 Mesure par diffraction des rayons X et enregistrement des intensités	157

IV – 2 Résolution et affinement de la structure	157
IV – 3 Description de la structure du complexe [Cu(Py) ₄ .SO ₄ .H ₂ O]	159
IV – 3 – 1 L'unité asymétrique	159
IV – 3 – 2 Environnement de l'atome de cuivre	160
IV - 3 - 3 Etude et analyse des interactions de la structure du complexe	162
IV – 3 – 3 – 1 Les liaisons hydrogène	162
IV – 3 – 3 – 2 Etude des interactions de type $\pi\pi$ et C-H π du composé de coordination	172
V – Etude de la propriété catalytique du complexe par réaction de couplage Chan- Evans-Lam	176
V – 1 La catalyse, introduction et définitions	176
V - 2 Catalyse homogène par les complexes de métaux de transition : la catalyse de coordination	178
V - 2 - 1 Historique de la catalyse de coordination	178
V - 2 - 2 La réactivité des complexes de coordination : notions de réactions élémentaires	178
V - 2 - 2 - 1 Création d'un site « vacant » et coordination du substrat (réactif)	178
V - 2 - 2 - 2 L'addition oxydante dissociative	180
V - 2 - 2 - 3 L'élimination réductrice	181
V - 2 - 2 - 4 Etapes élémentaires et conditions de la catalyse homogène : notion de cycle catalytique	181
V-3 Les réactions de couplage de composés organiques par catalyse de coordination	182
V - 3 - 1 Perspective historique	182
V – 3 – 2 Réactions de couplage Chan-Evans-Lam (CEL)	185

V - 3 - 2 - 1 Mise en contexte :	185
V - 3 - 2 - 2 Catalyse de coordination en présence d'un réactif organo-boronique et de catalyseur à base de Palladium	185
V - 3 - 2 - 3 Présentation de la réaction de couplage Chan-Evans-Lam (CEL)	186
V - 4 Etude de la propriété catalytique du complexe de coordination [Cu(II)(Pz) ₄ SO ₄ .H ₂ O] par catalyse homogène Chan-Evans-Lam (CEL)	187
V – 4 – 1 Introduction	187
V – 4 – 2 Procédure expérimentale	187
V - 4 - 2 - 1 Mode opératoire du processus catalytique du complexe [Cu(II)(Pz) ₄ SO ₄ .H ₂ O]	187
V - 4 - 2 - 2 Analyse par chromatographie gazeuse couplée à la spectroscopie de masse GC-MS	192
a- L'appareil de mesure GC-MS	192
b- La préparation des échantillons pour l'analyse :	193
c- Les spectres obtenus par analyse GC-MS	193
V – 4 – 3 Mécanismes réactionnels de la catalyse homogène avec le complexe [Cu(II)(Pz) ₄ SO ₄ .H ₂ O]	194
VI – Conclusion	197
VII - Références	198
CHAPITRE IV Le complexe <i>Dichloro-tétra-pyrazole Cobalt(II)</i> Etude par diffraction par rayons X, spectroscopie d'absorption électronique et fluorimétrie	203
I – Introduction au chapitre	203
II – Synthèse du complexe $[CoCl_2(C_3H_4N_2)_4]$	203

III – Caractérisation et étude par diffraction des rayons X du composé de coordination :	204
III – 1 Résolution et affinement de la structure:	204
III – 2 Coordination du complexe $[CoCl_2(C_3H_4N_2)_4]$	206
III – 3 Etude cristallographique de la structure du complexe $[CoCl_2(C_3H_4N_2)_4]$	208
III – 3 – 1 L'unité asymétrique :	208
III – 3 – 2 Environnement de l'ion de cobalt :	209
III – 3 – 3 Analyse et étude des interactions en présence de la structure du complexe $[CoCl_2(C_3H_4N_2)_4]$	210
III - 3 - 3 - 1 Les liaisons hydrogène :	210
III $-3 - 3 - 2$ Etude des interactions électrostatiques de type Cg—Cg et C-HCg dans le composé de coordination :	212
IV – Etude par spectroscopies d'absorption électronique et Fluorimétrie du complexe	213
IV – 1 Mise en contexte	213
IV – 2 Spectroscopie d'absorption électronique	214
IV – 3 Etude par spectrofluorimé1trie d'absorption-émission moléculaire	215
IV – 3 – 1 La fluorescence d'absorption-émission moléculaire	215
IV - 3 - 1 - 1 Principe	215
IV - 3 - 1 - 2 Définition	215
IV - 3 - 1 - 3 Origine de la fluorescence	216
IV – 3 – 1 – 4 Molécules privilégiées par la fluorimétrie	216
IV – 3 – 2 Appareillage utilisé et préparation des échantillons	217
IV - 3 - 3 Interprétation des spectres d'absorption-émission du complexe [CoCl ₂ (C ₃ H ₄ N ₂) ₄]	217

VI – Références	220
CONCLUSION GENERALE	222
ANNEXE I Techniques expérimentales	227
ANNEXE II Spectres Infra-rouge et d'absorption électroniques de toutes les structures	231
ANNEXE III du Tétramère	237
Hexa (µ2-chloro) (µ4-oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol	
ANNEXE IV du Tétramère	247
Hexa(µ2-chloro) (µ4-oxo) Tétra(méthyle-1pyrazole) tétra cuivre(II)	
ANNEXE V du Polymère	253
Tri (µ-chloro) (µ3-oxo) tri(µ2-pyrazolo)bis(1H-pyrazole)tricuivre (II)	
ANNEXE VI du complexe de coordination Tétra-pyrazole-sulfato-cuivre II. Monohydraté	270
ANNEXE VII du Complexe de coordination Dichloro-tétra-1H-pyrazole-Cobalt (II)	285
PUBLICATION	291
RESUMES en français, anglais, arabe	292

INTRODUCTION GENERALE

INTRODUCTION GENERALE

C'est notre immense fascination pour les cristaux, leur éclat et surtout, leurs innombrables couleurs et formes, qui a excité notre curiosité à vouloir comprendre, le cheminement de leur formation, mais aussi, apprendre et nous spécialiser en la science qui les caractérise qu'est : « la cristallographie ».

C'est la science, la plus exacte, pour étudier la structure de la matière cristalline à l'échelle atomique car, elle s'appuie sur le phénomène physique de « diffraction des rayons X ».

Grâce à toutes les informations qu'elle apporte, la cristallographie est au service de nombreuses disciplines, de la physique à la chimie, en passant par la biologie et, elle permet la caractérisation d'une infinité de matériaux.

Les cristallographes accomplissent un travail fascinant et en même temps lourd en amont, vu le nombre de domaines de la chimie, auquel nous sommes confrontés, pour la synthèse des cristaux, une fois produits, nous arrivons à l'étape qui nous incombe en tant que cristallographes, c'est-à-dire, caractériser et étudier ces derniers par diffraction des rayons X.

Une fois la caractérisation effectuée, nous menons en aval pour, plus de détails sur les structures, d'autres analyses, telles que l'analyse élémentaire, la spectroscopie IR, UV-vis, masse et la RMN. En dernier lieu, vient l'étape où, nous nous demandons à quoi pourraient servir ces composés dans tous les domaines scientifiques ; il s'agit de l'étude des propriétés. Cette dernière, représente un travail de titans, au vu du nombre de propriétés ; telles que la fluorescence, la catalyse, le magnétisme etc.....

C'est avec beaucoup de modestie et d'humilité que nous, cristallographes, dirons que nous ne sommes pas spécialisés dans une branche de la chimie mais, devons être pluridisciplinaires.

C'est avec cet esprit large et diversifié, que nous avons mis en place, notre travail de recherche expérimental, qui avait pour objectif, la synthèse de complexes et de polymères de coordination à base de métaux de transition.

Pour ce faire, nous avions choisi d'utiliser, des ligands hétérocycliques, car ils forment les plus larges et importantes classes de composés organiques, en effet ; leur nombre a atteint 50 millions en 2009, chiffre rapporté par « Chemical Abstract » et, les publications en chimie organique les concernant, sont de 55% [1].

De plus; ces dix dernières années, ont été marquées par la présence des hétérocycles par des réalisations, dans le domaine de la biochimie, telles que ; le décodage d'un génome, la détermination de la structure du ribosome et du mécanisme de son activité, et d'autres, plus larges applications obtenues par imageries. Davantage de progrès, a été réalisé dans le domaine de la chimie médicinale, notamment la chimiothérapie où, de nouvelles molécules ont été élaborées.

L'événement historique en sciences, est la création de la nanotechnologie, qui va avec les nouveaux matériaux et appareils électroniques, mener à des changements révolutionnaires dans la vie future. Dans le secteur de l'énergie, la production grimpante des biocarburants, le progrès dans le développement de l'hydrogène comme carburant, la photosynthèse artificielle et, les cellules solaires sensibles aux colorants, le tout, semble très encourageant.

Toutes ces grandes lignes de développement, et bien d'autres, seraient impossibles, sans chimie organique et sans composés hétérocycliques. Le bien fondé de ces affirmations, réside dans les faits suivants : la majorité des préparations pharmaceutiques, tels que ; les antibiotiques, cardiovasculaires, anti-carcinogéniques, sont de nature hétérocyclique, l'utilisation de nouveaux régulateurs de développement de plantes et de pesticides, dans le domaine de l'agriculture, est basée sur des structures hétérocycliques, la production de nouveaux polymères thermostables, de colorants et des conducteurs organiques, tous renfermant des fragments d'hétérocycles [1].

Compte tenu, du fait que, nous retrouvons les hétérocycles dans tous les domaines, nous étions convaincus qu'ils représentaient des ligands de choix pour nos synthèses.

En conséquence, nous avions choisi comme ligands, pour la synthèse de nos complexes et polymère de coordination ; les ligands 1H-imidazole et 1H-pyrazole.

Toujours, concernant la synthèse, nous avions choisi au départ, un mode de synthèse en réacteur fermé ou encore, par voie solvothermale, les objectifs étant, former des complexe et polymère de coordination directement, moyennant des réactions simples, peu nocives et sans risques, c'est-à-dire, en utilisant le moins de réactifs possibles, sans émanation de vapeurs toxiques et enfin, sans risque de déjections ou d'explosions.

Les métaux de transition étant nombreux, nous avions opté, par choix, pour le cuivre et le cobalt. Ayant établit nos choix, voici la liste des réactifs, que nous allons retrouver dans toutes nos synthèses :

- un ligand hétérocyclique, soit le 1H-imidazole ou le 1H-pyrazole ;
- un sel de métal de transition, à savoir le chlorure ou sulfate de cuivre et, le chlorure de cobalt ;
- un solvant soit, le méthanol, l'éthanol ou le propanol-2.

La première structure originale que nous avions obtenue, soit le complexe Hexa (μ_2 -chloro) (μ_4 -oxo) Tétra (méthyle-1pyrazole) tétra cuivre(II), a été déterminante, car elle a, non seulement fixé nos objectifs, mais encore, orientée notre recherche de façon définitive, vers la synthèse de complexes avec une unité tétranucléaire, appelée cage ou cœur de la structure [Cu₄ (μ_2 -Cl)₆ (μ_4 -O)] et, de type [Cu₄OCl₆L₄], encore appelés : **les tétramères de cuivre**.

Ces derniers existent depuis plus de 50 ans, le premier a été synthétisé par J. A. Bertrand en 1967, avec pour ligand L la triphényle- phosphine oxyde [2].

Depuis lors, de nombreux tétramères de cuivre, avec des ligands L différents; ont été répertoriés dans la banque de données structurale Cambridge CSDC (Cambridge structural database 2019), et actuellement ; leur nombre avoisine les cent structures.

Parmi ces dernières, nous retrouvons des ligands L tels que : les 1H-imidazoles [3], [4] ; les thiazolines [5] ; les pyridines [6], [7], [8] ; les pyrazines [9] ; les sulfimides [10] ; ou encore les sulfoxides [11], [12].

L'ossature de ce manuscrit, est construite sur quatre grands chapitres.

Dans le premier chapitre, nous allons présenter une étude théorique, de tout ce qui attrait à la synthèse, c'est à dire, les réactifs, solvants et, les réacteurs fermés homogènes (autoclaves).

Nous allons mener, une étude qualitative sur ces derniers en les définissants, comme étant des procédés de fabrication de produit en génie de la réaction. Par la suite, nous allons effectuer, une étude sur les transformations des états de la matière, pouvant avoir lieu sous l'effet de l'augmentation de la température (120-200°C) et de la pression (10-30 Kbar), et la réactivité engendrée. En deuxième lieu, nous allons étudier, de façon approfondie, les ligands ayant fait l'objet des synthèses effectuées, en effet, nous allons les définir, donner leurs propriétés physico-chimiques, allons insister sur leurs caractères acido-basiques, donner leurs caractérisations par ; spectroscopie (IR, UV-Vis), diffraction des rayons X, et enfin, étudier leurs réactivités par rapport à deux sites qui nous ont intéressé, soient, ceux des deux atomes d'azote.

Nous allons ajouter à notre partie théorique, un sous chapitre qui concerne le dioxygène atmosphérique, où ; nous allons insister sur sa réactivité et sa solubilité en milieu liquide. La dernière partie, qui concerne ce premier chapitre, va être consacrée à l'étude de la chimie inorganique, de deux métaux de transition, à savoir le cuivre et le cobalt.

Nous allons, dans un premier temps, nous familiariser, avec les sels de cuivre et cobalt, leur géométrie et, les complexes qu'ils pourraient former ; par la suite, nous allons aborder, les caractéristiques typiques, des complexes formés de métaux de transition, tels que la couleur, les spectres d'absorption électronique et le magnétisme.

Dans le deuxième chapitre, seront présentées trois structures cristallines originales synthétisées, dont deux tétramères de cuivre, avec une même unité tétra nucléaire [Cu₄ (μ_2 -Cl)₆ (μ_4 -O)] et, de type [Cu₄OCl₆(L)₄] il s'agit des complexes oxo :

- Hexa (µ₂-chloro) (µ₄-oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol
- Hexa (µ₂-chloro) (µ₄-oxo) Tétra (méthyle-1pyrazole) tétra cuivre(II).

Et, un polymère de coordination, avec une unité trinucléaire $[Cu_3(\mu-Cl)_3(\mu_3O)]$, le Tri (μ -chloro) (μ_3 -oxo) tri (μ_2 -pyrazolo) bis (1H-pyrazole) tricuivre (II).

Toutes les synthèses ont été effectuées dans le laboratoire du Professeur D. Rouag, à l'unité de recherche CHEMS de l'université de contantine1 et, la diffraction et caractérisation par rayons X, ainsi que, l'enregistrement des spectres IR et UV-visible, dans le laboratoire CRM² à Nancy en France, sous la responsabilité et l'assistance, du professeur défunt S. Dahaoui, avec la colaboration de Mr P. Durant.

Nous allons introduire, dans un sous-chapitre, les tétramères à base de cuivre, par un historique. Par la suite, nous allons détailler toutes les synthèses effectuées puis, expliquer de manières rationnelle et fondée, le chemin réactionnel probable et plausible, emprunté par les réactifs, pour aboutir à ces structures originales, dont le mode de synthèse est une première, car il n'a jamais été réalisé.

Pour finir, nous allons présenter, les analyses effectuées, soient, l'analyse élémentaire, l'étude spectroscopique IR, UV-visible et, la description structurale des complexes et polymère oxo obtenus.

Le troisième chapitre va traiter d'un complexe, de structure connue et publiée, mais que nous avons obtenu différemment, par voie de synthèse solvothermale, il s'agit du : tétra-pyrazole-sulfato-cuivre II. Monohydraté.

Il faut savoir que tout le travail concernant ce composé de coordination, a été effectué à l'université de Montréal, dans le laboratoire de recherche de chimie inorganique, sous la responsabilité et l'assistance du professeur Frank. Hein. Schaper.

Nous avons caractérisé le dit complexe, par diffraction des rayons X, étudié sa spectroscopie d'absorption électronique et, enfin déterminé sa propriété en tant que catalyseur, en utilisant une catalyse homogène, par réaction de couplage, des auteurs Chan-Evans-Lam.

Ce travail a aboutit à une publication, dans un journal international, « Inorganic Chemistry Communications », que nous allons présenter à la fin de cette thèse.

Dans le dernier chapitre (IV), nous allons présenter la structure d'un composé de coordination à base de cobalt : le dichloro-tétra-pyrazole Cobalt(II).

Nous avons effectué, une caractérisation par diffraction des rayons X, une étude spectrale par IR, UV-visible et une analyse par fluorimètrie.

En dernier lieu, nous allons chlore cette thèse, par une conclusion générale où, nous allons faire une synthèse, lexique bien sur et non chimique, de tout le travail de recherche que nous avons réalisé.

Références

[1] [A. F. Pozharskii, A. T. Soldatenkov and A. R. Katritzky, «Heterocycles in life and society », Second Edition, John Wiley & Sons, 2011]

[2] [J. A. Bertrand, «Five coordinate complexes»; Georgia Institute of technology, Vol. 6, N°.3, March 1967]

[3] [A. M. Atria, A. M. Contreras, J. Valenzuela, and E. Spodine ; Inorg. Chem, 38, 5681-5685, 1999]

[4] [W. Clegg, J. R. Nicholson, D. Collison, C. D. Garner, Acta Cryst, C44, 453-461; 1988]

[5] [C. A. Bolos, P. C. Chritidis ; Acta Cryst., C58, m29-m30, 2002]

[6] [N. S. Gill, M. Sterns, Inorganic Chemistry, Vol. 9, N°7, 1970]

[7] [H. M. Haendler, Acta Cryst, C46, 2054-2057, 1990]

[8] [B. T. Kilbourn, J. D. Dunitz, Inorganica Chimica Acta/1 :1/ june, 1967]

[9] [C. Näther, I. Jeβ, Acta Crystallographica Section E, Acta Cryst, E58, m4-m6, 2002]

[10] [P. F. Kelly, S. M. Man, A.M. Z.Slawin, K.W.Waring, Polyhedron 18, 3173-3179, 1999]

[11] [J. T. Guy, Jr. J. C. Cooper, R. D. Gilardi, J. L. Flippen-AndersonInorganic Chemistry, Vol 27, N°4, 1988]

[12] [X. Liu, Colin. A. Kilner, M. A. Halcrow, Acta Cryst, C59, m100-m102, 2003]

CHAPITRE I Théorie sur : La méthodologie et Les réactifs intervenant dans la synthèse des complexes/polymère de coordination

CHAPITRE I : Théorie sur la méthodologie et les réactifs intervenant dans la synthèse des complexes/polymère de coordination

I – Introduction

Le présent chapitre est constitué majoritairement de pré-requis, il représente en fait, la théorie nécessaire à l'interprétation des résultats de notre travail de recherche, où ; seront détaillés la méthode utilisée ainsi que, les réactifs mis en jeu ; en nous basant bien sûr, sur les résultats que nous avons obtenus, à savoir les complexes et polymère de coordination, pour établir nos besoins en théorie.

A chacun des participants aux réactions de synthèses à savoir, outils et réactifs, nous avons explicité le rôle joué ainsi que, la contribution à l'acheminement du produit final, ceci nous a amené à faire une étude pluridisciplinaire.

En effet, dans un premier temps, nous allons décrire qualitativement la méthode de synthèse par voie solvothermale, il s'agit des réacteurs fermés monophasiques (phase liquide), ou encore bombes hydrothermales, ayant servi à l'obtention de tous nos complexes/polymère de coordination et ce, pour comprendre le fonctionnement et les réactions susceptibles de s'y produire.

Par la suite, nous avons abordé les réactifs, en commençant par les ligands, à savoir, des composés hétérocycliques dont le 1H-pyrazole et le 1H-imidazole, où ; nous avons fait une étude aux regards de nombreux aspects comme : l'aspect thermodynamique, spectroscopique, structural et réactionnel. Aussi, une étude sur l'oxygène atmosphérique a été effectuée, là ; il nous a paru indispensable, d'aborder deux propriétés qui sont les lois qui régissent sa dissolution dans les liquides et, sa réactivité.

Dans le sous-chapitre des métaux de transition et, spécifiquement le cobalt et le cuivre, nous nous sommes, dans un premier temps, familiarisé avec la géométrie et la coordination des sels de cobalt et cuivre qui, représentent les réactifs de départ des synthèses effectuées, car nous les avons jugés nécessaires, pour parfaire la description et l'interprétation des produits obtenus. Par la suite, et d'une façon plus générale, nous nous sommes penchés sur, les caractéristiques typiques des complexes des métaux de transition à savoir leur couleur, leurs spectres d'absorption électronique.

Pour clore ce sous-chapitre, nous avons fait une étude sur, la coordination des complexes de coordination des métaux de transition, que nous avons adapté, au plus aux composés obtenus dans cette recherche, puisque dans les complexes et polymère que nous avons synthétisés, le cuivre et le cobalt ont un degré d'oxydation de II ; nous sommes allés chercher par exemple, les coordinences typiques des composés de Co(II) et Cu(II).

II – Méthodologie de synthèse : La synthèse par voie solvothermale, les réacteurs chimiques fermés monophasiques

II – 1 Historique

La technologie hydrothermale a suscité l'intérêt de scientifiques et technologues de différentes disciplines, en particulier dans les années 1990.

L'origine du terme hydrothermale est purement géologique, il a été utilisé pour la première fois par le géologue, Sir Roderick Murchison (1792-1871), pour décrire l'action de l'eau, soumise à haute température et pression, dans le changement de la croute terrestre, menant ainsi à la formation de roches et minéraux [1].

Ainsi, la majorité des minéraux naturels, formés à l'issue d'irruptions volcaniques (postmagmatiques), en présence d'eau et à température et pression élevés, sont dit d'origine hydrothermale. Plus tard, la technique hydrothermale pour la synthèse de composés inorganiques tels que, les monocristaux larges de quartz, a été réalisée par Nacken en 1930 [2] et, des zéolites par Barrer [3].

Aujourd'hui, La technique hydrothermale a trouvé sa place dans plusieurs branches de sciences et technologies, ceci a permis l'apparition d'une multitude de techniques apparentées telles que, la synthèse hydrothermale, traitement hydrothermal [4] etc ...

II – 2 Définitions

Malgré l'énorme progrès de la technique hydrothermale, il n'y a pas de définition unanime. Le terme hydrothermal signifie, réaction hétérogène en présence d'eau, dans des conditions de hautes température et pression, en vue de dissoudre et recristalliser des matériaux insolubles dans les conditions normales.

Morey et Niggli [5], ont défini la synthèse hydrothermale comme suit :

« Dans la méthode hydrothermale, les composés sont sujets à l'action de l'eau, à des températures généralement, au-delà de la température critique de l'eau (100- 374°C) dans des bombes fermées (réacteurs), et par conséquent, sous les hautes pressions correspondantes, développées par de telles solutions ».

Yoshimura [6], a proposé la définition suivante :

« Ce sont des réactions se produisant dans des conditions de hautes températures et pressions (>100°C et à 1atm), en milieu aqueux et dans un système clos ».

Au vu des nombreuses définitions, la synthèse par voie hydrothermale est une réaction chimique homogène ou hétérogène, effectuée en présence d'un solvant (aqueux ou non aqueux), au delà de la température ambiante et, sous une pression plus grande qu'une atmosphère, dans un système fermé. Les chimistes préfèrent utiliser un terme plus large qui est : solvothermale, signifiant toute réaction en présence d'un solvant dans des conditions supercritiques [7], [4].

II – 3 Systèmes fermés ou réacteurs fermés monophasiques

II – 3 – 1 Définition et caractéristiques d'un système ou réacteur fermé

Un système fermé, désigné aussi par, l'appellation de **réacteur chimique fermé**, est un appareillage adapté, permettant de réaliser une réaction chimique ; c'est-à-dire de transformer des espèces moléculaires en d'autres espèces moléculaires.

Néanmoins, cette appellation est limitée aux cas où, la transformation chimique est effectuée dans le but de produire, une ou plusieurs espèces chimiques déterminées.

Une des principales caractéristiques d'un réacteur fermé est, la nature des phases en présence. Dans les systèmes monophasiques ou homogènes, le milieu réactionnel est alors constitué par une phase gazeuse ou une phase liquide. Nous nous limiterons, dans notre étude, à ce type de réacteurs, c'est-à-dire **les réacteurs monophasiques fermés** [8].

II – 3 – 2 Facteurs gouvernant le fonctionnement d'un réacteur homogène fermé

Les facteurs gouvernant le fonctionnement d'un réacteur chimique, sont illustrés dans le schéma 1suivant:

Schéma 1 Les facteurs gouvernant le fonctionnement d'un réacteur chimique [8]

Lors de la conception d'un réacteur chimique, la thermodynamique apporte des informations complémentaires indispensables pour, établir le bilan énergétique de la transformation, ce qui constitue, un aspect quantitatif appelé : le calcul des réacteurs chimiques.

Dans notre étude, nous nous sommes focalisés sur l'aspect qualitatif, c'est-à-dire que nous avons fixés les valeurs des paramètres opératoires cités dans le schéma 1 ci-dessus, dans la nature des produits obtenus, nous n'allons pas faire de calculs ni de bilans énergétiques (calculs de réacteurs chimiques) mais ; allons expliquer de manière rationnelle et ce, à partir des paramètres opératoires, à savoir la température et la pression, le cheminement des réactions, jusqu'aux produits obtenus [9].

Le réacteur chimique fermé que nous avons utilisé pour toutes les synthèses, est un autoclave composé d'un corps en acier inoxydable et, d'une chemise en téflon d'une contenance de 23 ml, supportant une température allant jusqu'à 220°C.

Pour un domaine de température de [120-200]°C, la pression autogène (du Grec autogenês, existant par soi-même) générée varie de [10-30] atmosphères [10].

II – 3 – 3 La réaction chimique dans un réacteur fermé monophasique :

II - 3 - 3 - 1 Mise en contexte

Une synthèse dans un système fermé, c'est-à-dire, un système où ; il n'y a pas d'échange de matière avec le milieu extérieur, se fait en plusieurs étapes.

En effet, dans un premier temps, les réactifs et le solvant sont mis en contact, c'est **la dissolution**, ensuite interviennent les conditions opératoires, c'est-à-dire **le chauffage** et **la pression générée** (autogène), où ; la matière subit des changements de phases, qui vont transformer la structure des réactifs, c'est la réaction proprement dite dans laquelle, les produits prennent naissance.

A un moment donné, la matière ne se transforme plus et, un **équilibre chimique** s'installe : c'est la fin de la réaction [11].

Une autre étape très importante, dans ce type de synthèse, est **le refroidissement**, il doit se faire par degré pour que, la décompression soit lente et, pour permettre aux corps formés en solution, qui étaient dans une grande agitation, de décanter, favorisant ainsi, la formation de cristaux de bonne qualité.

Une fois le produit récupéré, nous rencontrons généralement, les cas de figure suivants ; que nous avons constatés et, établit de façon expérimentale :

• Une solution surmontant des particules cristallines ;

• Une solution dans laquelle se forment ultérieurement, des particules cristallines par évaporation du solvant, il s'agit là, d'un procédé qui peut prendre quelques jours ;

• Une solution dans laquelle les entités formées vont réagir avec un ligand se trouvant dans le milieu ambiant, dans notre cas le dioxygène atmosphérique, pour réagir et former des cristaux ;

• Une solution qui ne donne pas de cristaux même après évaporation du solvant.

Dans ce dernier cas, il est important de noter que, la synthèse par voie hydrothermale n'aboutit pas toujours à la formation de cristaux, ce procédé peut donner des produits intermédiaires qui, étant soumis à des conditions de température et pression ambiantes, réagissent une seconde fois, aboutissant au produit final, ainsi ; le réacteur fera l'objet d'une réaction intermédiaire, mettant les réactifs de départ en condition pour, les mener au produit final, il s'agit la, d'une constatation purement expérimentale, spécifique aux synthèses de nos composés de coordination.

Dans ce sous chapitre, nous allons expliciter toutes les étapes, qui constituent ce type de synthèse, en réacteur fermé homogène et, en même temps donner un aspect qualitatif des réactions en présence et non quantitatif ; comme les calculs de pression, de vitesses de réaction et d'avancement de la réaction etc.

II – 3 – 3 – 2 Aspects énergétiques et dynamique de mise en solution des réactifs

On peut arriver à comprendre le processus de dissolution en imaginant, qu'il se produit en trois étapes hypothétiques :

Les molécules du solvant se séparent pour, laisser de l'espace aux molécules de soluté. Cette étape, exige du travail pour vaincre les forces intermoléculaires d'attraction, et l'enthalpie du solvant augmente $\Delta H_1 > 0$ (l'enthalpie exprime une variation d'énergie associée à une réaction chimique).

Les molécules de soluté s'éloignent à des distances, correspondant à celles retrouvées en solution. Encore là, cette étape exige un travail pour vaincre les forces intermoléculaires d'attraction dans le soluté ($\Delta H_2 > 0$).

Les molécules séparées de soluté et de solvant se distribuent, au hasard, dans l'ensemble de la solution. On s'attend à ce que ce processus libère de l'énergie ΔH_3 , puisque maintenant des forces d'attraction s'établissent entre les molécules de soluté et celles de solvant.

La formation d'une solution est soit un processus endothermique ($\Delta H_{diss} > 0$), soit un processus exothermique ($\Delta H_{diss} < 0$); cela dépend des valeurs relatives des variations d'enthalpie dans les trois étapes hypothétiques [11].

A titre d'exemple, examinons la dissolution des composés ioniques, tels que les sels de métaux de transition, dans un solvant polaire et protique, les attractions ioniques retiennent ensemble les ions dans un solide ionique.

Les forces qui causent la dissolution des solides sont, les forces **ion-dipôle**, c'est-à-dire ; les attractions qui s'exercent entre les dipôles des molécules de solvant et, les cations et anions.

Dans la solution, les **forces ion-dipôle**, désagrègent le système cristallin d'un composé ionique soluble et, diminuent la tendance des ions à retourner à l'état cristallin [11].

II – 3 – 3 – 3 Les états de la matière et le changement de phase

Les caractéristiques, des trois états de la matière, observables à l'échelle macroscopique soient, les états solide, liquide et gazeux ; sont les suivantes :

► Un gaz se dilate jusqu'à ce qu'il occupe tout le volume du récipient qui le contient ; il n'a ni volume, ni forme fixes ; il est facilement compressible.

► Un liquide a un volume fixe ; il s'écoule jusqu'à ce qu'il couvre le fond du récipient qui le contient, et prend la forme de celui-ci ; il est peu compressible.

► Un solide a un volume fixe et une forme bien définie ; il est plus difficile à comprimer qu'un liquide [11].

C'est l'étude du comportement des particules à l'échelle microscopique qui, permet de mieux expliquer ces observations ; ainsi :

► Dans un gaz, on observe des atomes ou des molécules qui se déplacent à grande vitesse et qui sont très espacés ; ces particules entrent fréquemment en collision, mais ; elles ne s'immobilisent ni ne s'agglomèrent jamais.

► Dans un liquide, les atomes ou les molécules sont serrés les uns contre les autres, et les forces intermoléculaires sont suffisamment grandes pour maintenir ces particules à l'intérieur d'un volume fixe, mais non pour leur donner une forme bien définie.

► Dans un solide, les particules constitutives (atomes, ions ou molécules), sont directement en contact les unes avec les autres ; les forces intermoléculaires les maintiennent à l'intérieur d'un volume fixe et, leur donnent une forme bien définie [11].

II – 3 – 3 – 4 La vaporisation et la pression de vapeur

La vaporisation est un processus qui s'explique, à l'échelle moléculaire, comme suit :

- Les molécules d'un liquide, n'ont pas toutes la même vitesse ni, la même énergie cinétique ;
- L'énergie cinétique moyenne des molécules, est déterminée par la température du liquide ;

• Les molécules se trouvant à la surface de celui-ci et dont, l'énergie cinétique dépasse suffisamment l'énergie moyenne, échappent aux forces d'attraction intermoléculaires exercées par les molécules voisines, qui se trouvent à la surface ou, sous la surface du liquide : elles passent à l'état gazeux ou, se vaporisent.

Pour que la température d'un liquide demeure constante durant le processus de vaporisation, le liquide doit absorber de la chaleur, de manière à remplacer l'énergie cinétique des molécules énergétiques qui s'évaporent. La vaporisation est donc un processus endothermique. On appelle enthalpie ou chaleur de vaporisation, la quantité de chaleur que doit absorber une quantité donnée de liquide, pour s'évaporer à une température constante (exprimée en kJ/mole) [11].

a- La pression de vapeur

On appelle pression de vapeur d'un liquide, la pression partielle exercée par la vapeur, quand elle est en équilibre dynamique avec le liquide, à une température constante.

Il y a équilibre dynamique, chaque fois que deux processus inverses (liquide-vapeur), se produisent exactement au même rythme. A l'échelle macroscopique, il ne semble se produire aucun changement à l'état d'équilibre. Cependant, il se passe en fait des choses à l'état moléculaire, c'est pourquoi on qualifie l'équilibre, de dynamique.

C'est le cas d'un équilibre liquide-vapeur, les molécules de liquide continuent de se vaporiser, et les molécules de vapeur continuent de se liquéfier.

A une température donnée, le temps requis pour atteindre l'équilibre liquide-vapeur, dépend de plusieurs facteurs. Ainsi, l'équilibre est atteint, d'autant plus rapidement que, le volume de vapeur est faible et que la surface du liquide est grande.

Par contre, la pression de vapeur à l'état d'équilibre, dépend seulement de la nature du liquide et de la température. Lorsque la température augmente, l'énergie cinétique moyenne des molécules de liquide croît, un plus grand nombre de molécules ont une énergie cinétique assez grande pour quitter l'état liquide donc, le taux de vaporisation augmente.

A l'état d'équilibre, les taux de vaporisation et de liquéfaction sont de nouveau égaux, mais la pression exercée par la vapeur est plus élevée lorsque la température est plus élevée.

Par conséquent, la pression de vapeur d'un liquide augmente avec la vapeur [11].

b- Le point critique

Si on chauffe un liquide dans un contenant fermé, il ne se produit pas d'ébullition.

La pression du gaz qui s'exerce au dessus du liquide augmente continuellement, tandis que la vapeur s'accumule, de sorte que les bulles de vapeur qui se forment dans le liquide sont écrasées par la pression. Lorsque la température augmente, on n'observe pas d'ébullition, mais la masse volumique du liquide diminue, celle de la vapeur augmente, et l'interface ou ménisque entre le liquide et la vapeur devient floue, puis disparaît.

Enfin, il devient impossible de distinguer les deux états liquide et gazeux.

On appelle température critique, Tc, la température la plus élevée à laquelle, un liquide et sa vapeur peuvent coexister en équilibre, en tant qu'états physiques distincts de la matière.

La pression de vapeur à cette température est appelée pression critique, Pc.

La condition correspondant à une température Tc et à une pression Pc, est appelé point critique. Ce point est le dernier point de la courbe de pression de vapeur [11].

II – 3 – 3 – 5 L'état d'équilibre chimique

D'une manière générale, un état d'équilibre est caractérisé par l'absence de toute modification, au cours du temps, des variables intensives, à savoir la concentration des réactifs, la température, la pression, caractérisant un système. Celles-ci deviennent alors égales en tout point d'un système.

Il arrive que certaines réactions chimiques s'arrêtent alors qu'il reste encore des réactifs non consommés en quantité appréciable. Cela arrive à chaque fois, qu'une réaction chimique peut se produire en même temps de gauche à droite et, de droite à gauche : dans les conditions de température et de pression dans lesquels les produits ont été formés, ceux-ci peuvent réagir entre eux pour redonner les réactifs de départ.

C'est la réaction opposée, qui limite la réaction directe ; dans ce cas seulement, nous dirons que le système peut atteindre un équilibre chimique [12].

III – Les ligands de synthèse : 1H-Pyrazole, 1H-Imidazole et dioxygène atmosphérique

III – 1 Mise en contexte :

Deux types de ligands ont été utilisés pour la formation des complexes/polymère, faisant l'objet de cette recherche ; il s'agit des composés hétérocycliques 1H-pyrazole et 1Himidazole et, du dioxygène atmosphérique.

Ce sous-chapitre est destiné à, étudier les cycles 1H-pyrazole et 1H-imidazole, à travers leurs structures et basicités, leurs caractérisations spectrales et, par diffraction des rayons X, aussi ; quelques uns de leurs aspects thermodynamiques et enfin, leur réactivité.

Dans cette dernière, nous avons mis l'accent sur la réactivité de l'atome d'azote, dans différents milieux, nous avons fait abstraction de, celui des atomes de carbone présents dans l'hétérocycle car, de toutes les réactions de synthèses, seuls les atomes d'azote des hétérocycles suscités ont réagit.

La formation de tous les complexes faisant l'objet de cette recherche, a eu lieu en milieu ambiant, hors du réacteur, nous pouvons ainsi, considérer le dioxygène atmosphérique comme un ligand, de ce fait ; nous allons dans ce sous-chapitre, comme pour les précédents ligands, étudier sa structure, sa réactivité, en mettant l'accent sur, sa dissolution dans les liquides et particulièrement, les alcools.

III - 2 Les ligands 1H-Pyrazole et 1H-Imidazole

III – 2 - 1 Généralités :

Les cycles hétéro-substitués sont ceux où, un ou plusieurs atomes de carbones (contenus dans les cycles), sont remplacés par un hétéroatome. La pyridine, représente un exemple simple d'hétérocycles où, un atome de carbone du cycle benzène, est remplacé par un atome d'azote, avec conservation des insaturations et, de l'aromaticité du cycle. Les hydrogènes de ces cycles peuvent être remplacés par une multitude de substituants (aliphatiques, aromatiques, groupements fonctionnels etc...), une analyse récente des composés organiques, publiée dans « chemical abstracts », a révélé qu'en juin 2007, il existait 24.282.284 composés à structure hétérocyclique.

Les 1H-pyrazole et 1H-imidazole sont des hétérocycles à cinq atomes, en restant dans la même optique que la pyridine, dont, deux atomes de carbone, ont été remplacés par deux atomes d'azote [13].

Les dérivés 1H-imidazoles existent à l'état naturel, la figure1 ci-dessous, en schématise quelques exemples, et explique en même temps leurs usages et intérêts.

Acide amino-histidine proteinogénique : contenu dans les enzymes, peut former avec des ions métalliques des complexes (naturel)

Cimétidine : utilisée dans le traitement de

l'ulcère gastrique (naturelle)

Bifonazole : activité anti-fongique (pharmaceutique)

Histamine : amine biogénique, formée par la décarboxylation enzymatique de l'histidine

(naturelle)

Métronidazole : utilisé dans le traitement des infections aux tricomoniasis (pharmaceutique)

Eprosartan : inhibiteur de l'angiotensine II, utilisé comme agent anti-hypertensif (pharmaceutique)

Figure 1 Exemples de dérivés naturels et pharmaceutiques d'imidazoles [14]

Contrairement aux 1H-imidazoles, les produits naturels renfermant des cycles 1H-pyrazoles sont rares, ils sont plutôt d'origine synthétique. Voici quelques exemples, dans le domaine pharmaceutique, illustrés dans la figure 2 ci-après :

Difénamizole : analgésique, anti-

inflammatoire et anti-pyrétique

Bétazole : bioisostérique

Celecoxib : anti-arthritique et analgésique

Difenzoquat : herbicide

Dimetilan : insecticide

Figure 2 Exemples de dérivés pharmaceutiques de pyrazoles [14]

III – 2 - 2 Etude structurale des 1H-pyrazole et 1H-imidazole:

III -2 - 2 - 1 Présentation des systèmes cycliques à cinq atomes 1,2 et 1,3 azotés sans conjugaison exocyclique

Les 1H-pyrazole et 1H-imidazole sont des hétérocycles à cinq atomes, ils sont considérés comme des dérivés du pyrrole et ce par remplacement du groupement -CH= par un azote hybridé sp² : l'azométhine -N=, respectivement en position 2 et 3 (voir figure 3) [15].

1H-Pyrazole

1H-Imidazole

Figure 3 Présentatioon des cycles 1H-pyrazoles et 1H-imidazoes [15]

III – 2 – 2 - 2 Structure et basicité:

a- Structure :

La structure en termes d'orbitales moléculaires des 1H-pyrazole et 1H- imidazole, est similaire à celle du pyrrole, où ; chaque atome du cycle est dans un état d'hybridation sp², avec des liaisons π représentées par des orbitales moléculaires p_z.

La contribution électronique de chaque atome, dans l'aromaticité de ces cycles (constituée de six électrons π délocalisés), est décrite comme suit :

- Un électron pour chaque atome de carbone,
- Un électron de l'atome d'azote (en position 2 ou 3),
- Un doublet de l'atome d'azote en position 1, qui rentre dans la résonnance du cycle.

L'atome d'azote du groupement azométhine -N= (en position 2 ou 3), possède sa propre paire d'électrons non liante, qui ne rentre pas dans la résonnance du cycle, les structures en termes d'orbitales moléculaires, des 1H-pyrazole et 1H-imidazole, sont schématisées dans la figure 4 suivante [16]:

Figure 4 Structures des 1H-pyrazole et 1H-imidazole en termes d'orbitales moléculaires

Les cycles 1H-imidazole possèdent, des points de fusion et ébullition élevés comparés à ceux du pyrrole. Cela est dû, à la formation de ponts « hydrogène » intermoléculaires, liés au caractère amphotère (donneur-accepteur) de cet hétérocycle [17].

La grande hydro-solubilité de ce composé est le résultat de la formation de liaisons hydrogène $N-H...OH_2$ avec les molécules d'eau. En phase solide, le 1H-imidazole est associé sous forme de chaînes très structurées qui, composent un système fibreux dans les cristaux [17] (voir figure 5).

Figure 5 Représentation des liaisons hydrogène du 1H-Imidazole solide et hydraté [17]

La réaction des 1H-imidazoles avec, des protons ou des électrophiles, donne naissance au cation imidazolium, stabilisé par résonnance du cycle et, respectant ainsi son aromaticité. De la même façon et, en présence d'une base forte, le 1H-imidazole donne l'anion imidazolyle, ce qui confère à l'hétérocycle un caractère acide ou basique (voir schéma 2) [16].

Schéma 2 Caractère acide et basique du cycle 1H-imidazole [16]

La délocalisation des six électrons π des cycles 1H-pyrazoles et 1H-imidazoles, leur confère l'aromaticité et, leur structure est représentée par un ensemble de formes limites en résonnance [15], illustré par le schéma 3 suivant :

Schéma 3 Formes limites en résonnance des 1H-pyrazole et 1H-imidazole [15]

Il faut savoir que, pour décrire une molécule, les formes limites sont purement formelles et fictives, et aucune ne représente une espèce physiquement existante.

La molécule réelle est, un hybride de résonnance (on dit aussi plus simplement « hybride ») de l'ensemble des formes limites, par lesquelles on la représente.

Sa structure correspond à une sorte de « moyenne » entre, les structures des formes limites, et cette moyenne est pondérée, c'est-à-dire que chaque structure limite y intervient avec un certain poids ; plus ce poids est grand, plus le degré de ressemblance de la molécule réelle avec une structure limite est grand. Souvent ; l'une des formes limites a un poids nettement plus grand que celui des autres, ce qui justifie, dans la pratique, l'utilisation d'une seule forme limite lorsque rien ne nécessite une description plus complète d'une molécule [18].

Par conséquent, pour les 1H-pyrazoles, la forme limite 5 est relativement plus stable que les autres (1, 2, 3 et 4), ceci est dû aux groupements -C=N et - C=N⁺. Ainsi, le site préférentiel pour une attaque nucléophile est l'atome de carbone en position 4.

De la même façon, pour les 1H-imidazoles, ce sont les formes limites 3 et 5 qui sont les plus stables par -C=N et -C=N⁺; l'attaque s'y produit préférentiellement, sur l'atome de carbone en position 4 ou 5 [15].

b- Basicité

La présence de l'atome d'azote, en position 2 et 3, dans les cycles respectifs des 1H-pyrazole et 1H- imidazole, affecte considérablement leur basicité.

Ainsi, le doublet de cet atome, qui ne rentre pas dans la conjugaison du cycle, reste disponible pour la protonation et, rend ce type d'hétérocycles plus basiques que ceux qui n'en renferment qu'un seul. Toutefois, sa position joue un rôle important dans la basicité des cycles et ce, de part les différentes valeurs des produits de solubilité pK_{aH} (valeur de pKa de l'acide conjugué) [15] données dans la figure 6 qui suit:

Figure 6 Produits de solubilité PK_{aH} des 1H-pyrazole et 1H-imidazole [15]

Ainsi, le 1H-imidazole a un caractère basique assez fort (pKa_H de l'acide conjugué = 7,00) et, un caractère acide faible (pKa= 14,52) mais ; plus élevé que ceux du pyrrole et de l'éthanol. Ce caractère amphotère du 1H-imidazole, non substitué en position 1 (ou 3), a pour conséquence un transfert très rapide d'un proton de la position 1 (3) a la position 3 (1) et *vice versa* (tautomérie annulaire) [17].

Cet atome d'azote, exerce sur le cycle deux effets opposés :

- Un effet mésomère, qui se manifeste par la libération du doublet électronique, qui va conférer à l'hétérocycle la propriété d'une base forte.
- Un effet inductif lié à l'électronégativité de l'atome d'azote, qui aura pour effet le retrait du doublet et, conférer à l'hétérocycle la caractéristique d'une base faible.

Par conséquent, l'effet inductif et l'effet mésomère se retrouvent en « conflit », ainsi, dans le cas du 1H-imidazole, les azotes étant en position 1 et 3, l'effet mésomère va l'emporter sur l'effet inductif, il se comportera donc comme une base forte [18].

Tandis que pour le cycle 1H-pyrazole, c'est l'effet inductif qui va l'emporter sur le mésomère, les atomes d'azote étant en position 1 et 2, la basicité se verra réduite, ce qui va conférer aux cycles 1H-pyrazoles la propriété de base faible (schéma 4) [15].

Schéma 4 Effets inductif et mésomère des cycles 1H-pyrazole et 1H-imidazole [15]

III – 2 – 3 Méthodes structurales

III – 2 – 3 – 1 La diffraction par Rayons X

Les 1H-pyrazole et 1H-imidazole ont été caractérisés par diffraction des rayons X, le tableau 1 suivant, donne les valeurs des distances interatomiques et, des angles formés par les atomes de ces hétérocycles [19].

Tableau 1 Valeurs des distances interatomiques et des angles des cycles 1H-pyrazole [19]et 1H-imidazole [20]

Hétérocycle	Distances interatomiques (Å)	Angles (°)
	_	
a ²	$a^1 = 1.335$	$a^{1}a^{2} = 104.0$
$H_2C - CH \\ h^1 / h^1$	$a^2 = 1.414$	$a^{1}b^{2} = 112.3$
HCN	$b^1 = 1.314$	$a^2b^1 = 108.6$
$b^2 N g$	$b^2 = 1.346$	$b^1g = 110.0$
1H-PYRAZOLE	g = 1.361	$b^2g = 105.3$
$\mathbf{b^1} \mathbf{N} \mathbf{b^2}$	a = 1.311	$ab^1 = 107.5$
нс	$b^1 = 1.372$	$b^{1}b^{2} = 104.4$
$a \bigvee // b^3$	$b^2 = 1.337$	$b^2b^3 = 114.2$
$\frac{nC}{b^4}$ N	$b^3 = 1.311$	$b^3b^4 = 102.6$
1H-IMIDAZOLE	$b^4 = 1.381$	$b^4a = 111.2$

III – 2 – 3 – 2 La spectroscopie UV-Visible

Les spectres des hétérocycles diazotés à cinq atomes sont, en général, comparables à leurs homologues soient, ceux des cyclopentadiènes.

Dans le tableau 2 ci-dessous, sont répertoriées, les valeurs des longueurs d'onde (en millimicrons) et, des absorptivités ε (exprimées en log ε); des spectres d'absorption des 1H-pyrazole, 1-Méthyle-Pyrazole et 1H-imidazole (le solvant utilisé étant l'éthanol) [21], [22].

Hétérocycles	$\lambda_{\max}(\log \epsilon)$	Solvant
H $5 2N$ $4 3/$ 1H- Pyrazole	210 (3.53) [23], [24]	Ethanol
$ \begin{array}{c} CH_{3} \\ N \\ 5 \\ 4 \\ 3 \\ \end{array} $ 1Méthyle- Pyrazole	216(3.63) [24]	Ethanol
H N 1 2 4 3 N 1H- Imidazole	207-208 (3.70) [25]	Ethanol

Tableau 2 Longueurs d'ondes λ et absorptivité (logε) des cycles 1H-pyrazole, 1-méthyle pyrazole et 1H-imidazole

III – 2 – 3 – 3 La spectroscopie IR (infra-rouge)

Les spectres IR des 1H-pyrazole et 1H-imidazole, sont divisés en plusieurs régions, dont l'assignement des bandes IR est comme suit :

- Dans la région 3000 cm⁻¹, les absorptions caractéristiques correspondent au C-H aromatique avec un type de vibration d'élongation (stretch) [16].

Dans la région 1650-1300 cm⁻¹, correspondant aux liaisons C=C et C=N du cycle (type de vibration d'élongation, stretch), il y a, en général 4 ou 5 bandes caractéristiques, dont les intensités varient avec la nature (dans notre cas c'est l'azote) et, l'orientation des substituants des cycles [16].

Dans les régions 1300-1000 cm⁻¹et 1000-800 cm⁻¹, les bandes sont assignées à la liaison C-N du cycle aromatique, ainsi que ; les modes de déformation du cycle.

Dans la première région, les modes de déformation du cycle sont dans le plan (in plane), et dans la seconde, hors du plan (out of plane) et dans le plan (voir tableau 3) [16].

Tableau 3 Vibrations caractéristiques des composés 1H-pyrazole et 1H-imidazole dansles trois régions du spectre [16]

Région 1650 et 1300 cm⁻¹correspondant aux vibrations d'élongation ou de valence du cycle (ring-stretching modes)

1H-Pyrazole	-	1600-1570	1540-1510	1490-1470	1380-1370
1H-Imidazole	1605	1550-1520	1500-1480	1470-1450	1380-1320

Région correspondant aux vibrations caractéristiques entre 1300 et 1000 cm⁻¹

Vibr	ation d'élongat	Relaxation du cycle (cm ⁻¹)		
1H-Pyrazole	1310-1130	1160-1090	1040-975	
1H-Imidazole	1285-1260	1140	1100	1060

Région correspondant aux vibrations caractéristiques en dessous de 1000 cm⁻¹

Modes de vibration (C-H) (cm ⁻¹)			Cycle (cm ⁻¹)	Modes (C-H) (cm^{-1})
1H-Pyrazole	960-930	860-855	805-790	765-750
1H-Imidazole	970-930	895	840	760

III – 2 – 4 Aspects thermodynamiques: points d'ébullition, fusion et solubilité des cycles 1H-pyrazole et 1H-imidazole :

► Le 1H-imidazole se présente, à l'état solide, sous forme de cristaux incolores, avec les températures de fusion et d'ébullition respectives 90°C et 256°C, il est soluble dans l'eau et, les solvants protiques tels que, les alcools et, peu soluble dans les solvants aprotiques. Comparés aux pyrroles, les 1H-imidazoles ont des points d'ébullition et fusion élevés car, ce sont des donneurs et accepteurs quand à, leurs liaisons hydrogène, ainsi ; ils ne peuvent que former des ponts hydrogènes comme indiqué dans la figure 7 suivante [14]:

Figure 7 Ponts hydrogènes formés par les cycles 1H-imidazoles [14]

A l'état solide, la structure du cycle 1H-imidazole est formée de chaines, liées entre elles par des angles, ce qui confère aux cristaux une texture fibreuse. Lorsqu'il est dissous dans l'eau, les liaisons N-H...N sont remplacées par les liaisons N-H...O et N...H-O.

Les 1H-imidazoles sont des composés hétérocycliques très stables thermiquement, en effet ; ils se décomposent à une température au dessus de 500°C.

► A l'état solide, le 1H-pyrazole se présente sous forme de cristaux incolores, en forme d'aiguilles, ses points de fusion et d'ébullition, ont les valeurs respectives de 70°C et 188°C ; comme le 1H-imidazole, il est soluble dans l'eau et les alcools.

En solution aqueuse, il est sous forme de dimère (voir figure 8), c'est la raison pour laquelle ses points d'ébullition et de fusion, sont plus faibles que ceux du 1H-imidazole [14].

Figure 8 Ponts hydrogènes formés par le dimère 1H-pyrazole [14]

III – 2 - 5 La réactivité des 1H-pyrazole et 1H-imidazole

III – 2 – 5 - 1 Les réactions acido-basiques :

▶ Parmi les 1, 3 azoles, tels que l'oxazole, le thiazole ; les 1H-imidazoles ont de loin, la plus grande basicité ; avec les valeurs respectives des produits de solubilité de l'acide conjugué $pK_{aH} = 0.8, 2.52, 7.00.$

En présence d'acides, les 1H-imidazoles forment des sels avec une délocalisation symétrique de la charge positive dans le cycle comme décrit dans le schéma 5 ci-dessous [14].

Schéma 5 Réaction des 1H-imidazoles avec les acides [14]

Les 1H-imidazoles sont des acides faibles, la valeur de leur pKa étant égale à 14.52.

Leur réaction avec l'éthanolate de sodium (base forte) dans l'éthanol, conduit à un sel d'imidazole de sodium. Dans l'anion imidazolyle formé, la charge négative est symétriquement délocalisée (voir schéma 6).

Schéma 6 Réaction du 1H-imidazole en présence d'une base forte [14]

Par conséquent, les 1H-imidazoles se comportent comme des **systèmes amphotères** ; c'est-àdire qu'ils sont, à la fois acides et basiques.

Ils peuvent aussi former des complexes avec plusieurs ions métalliques, par exemple avec les sels de Co(II) comme illustré dans la figure 9 suivante :

Figure 9 Réaction de l'imidazole avec le chlorure de cobalt (II) [14]

► Les 1H-pyrazoles sont des bases faibles, comparés à leur homologues les 1H-imidazoles, les valeurs de leur pKa respectifs étant de 2.57 et 7.00 ; cette différence peut être attribuée, entre autres, à la délocalisation des charges positives dans les ions pyrazolium et imidazolium, en effet ; dans l'ion pyrazolium, les charges positives sont moins délocalisées que dans l'ion imidazolium (voir schémas 5 ci-dessus et 7 ci-dessous) [14].

Les 1H-pyrazoles avec leur hydrogène labile, sont acides dans le même ordre de grandeur que les 1H- imidazoles, en comparaison avec leur pKa_H respectifs 14.21et 14.52 [14].

Le 1H-pyrazole est déprotoné, comme le 1H-imidazole par une base forte.

Le schéma 7 ci-dessous, résume les réactions acido-basiques des 1H-pyrazoles :

L'ion pyrazolium

1H-Pyrazole

L'ion pyrazolyle

Schéma 7 Les réactions acido-basiques des 1H-pyrazoles [14]

Comme pour les 1H-imidazoles, les 1H-pyrazoles sont des ligands de choix pour les réactions de complexation, par exemple, avec le chlorure de nickel [14], ils donnent le complexe illustré par la figure 10 suivante :

Figure 10 Réaction des ligands pyrazoles avec le chlorure de nickel(II) [14]

L'anion pyrazolyle peut également servir de ligand, dans la réaction de complexation avec l'or, Au (I) comme représenté dans la figure 11 ci-dessous :

Figure 11 La réaction de l'ion pyrazolyle avec le cation Au(I) [14]

III – 2 – 5 - 2 Réactions avec les agents électrophiles: N-Alkylation (Méthylation) des 1H- imidazole et 1H-pyrazole

► La réaction des 1H-imidazoles avec des halogénoalcanes (R-X), ayant lieu au niveau de l'atome d'azote, possédant le doublet électronique libre (en position 3), donne des sels quaternaires. Dans un premier temps, ces derniers subissent une déprotonation rapide, aboutissant au produit 3-alkylimidazole qui, à son tour va réagir, avec une autre molécule d'halogénoalcane pour donner, le sel 1,3-dialkylimidazolium, la réaction est détaillée dans le schéma 8 ci-dessous [14].

Schéma 8 N-Alkylation du 1H-imidazole par un halogénoalcane [14]

En présence d'une base forte telle que la soude (NaOH), les atomes d'azote en position1, des 1H-imidazoles, sont alkylés, via l'anion imidazolyle (produit formé par réaction avec la base) [14], comme illustré dans le schéma 9 suivant :

Schéma 9 N-Alkylation du 1H-imidazole via l'anion imidazolyle [14]

► La N-alkylation pour les 1H-pyrazole est réalisée, préférentiellement, en milieu moyennement basique, à partir de l'ion pyrazolyle et, en présence d'iodo-alcanes (ou RI), elle a lieu en position 1 de l'hétérocycle [14].

Le schéma 10 suivant explicite la réaction :

Schéma 10 N-alkylation du 1H-pyrazole via l'anion pyrazolyle [14]

 L'auteur Samedy Ouk [26], a réalisé une étude très intéressante, concernant la réaction de N-méthylation des 1H-Pyrazole et 1H-Imidazole, en employant le diméthyle carbonate (DMC), comme agent méthylant.

Le DMC possède plusieurs propriétés, entre autres, une bonne réactivité avec une assez large gamme d'hétérocycles, mais surtout, il n'est pas toxique [27], [28].

La réaction de N-méthylation des 1H-pyrazole et 1H-imidazole, a été effectuée, aux températures respectives 140 et 170°C, sous pression atmosphérique [26].

Le tableau 4 suivant, montre clairement que, le rendement obtenu du 1H-imidazole, dans les conditions opératoires citées, est bien plus important que celui obtenu par le 1H-pyrazole.

Le rendement qui concerne le 1H-pyrazole, a été optimisé et donc, fixé à une température de 140°C, car ; il a été constaté qu'au dessus de cette dernière, la concentration en diméthyle carbonate, dans la phase liquide devient pratiquement nulle, et en dessous ; la vitesse de la réaction de N-méthylation diminue et, la formation du N-méthyle pyrazole augmente (voir tableau 4) [26].

Tableau 4 Effets des conditions de réaction sur le rendement et la vitesse de N-méthylation des 1H-pyrazole et 1H-imidazole en présence du diméthyle carbonate [26]

	Propriét	és					
physiques		Conditions opératoires		Résultats			
Hétérocycles	Points	РКа	Température	Vitesse	Temps	Conversion	Rendement
	d'ebuilition		(°C)	(h)	(h)	(%)	(%)
1 1 1 1 1 1 1 1 1 1	186	2.5	140	0.2	8	74	69
$ \begin{array}{c} $	255	7.0	170	0.2	9	100	98

Le schéma 11 suivant, décrit le mécanisme réactionnel de la N-méthylation du 1H-imidazole:

Schéma 11 Mécanisme plausible de la réaction de N-méthylation du 1H-imidazole en présence du diméthyle carbonate et du méthanol [26]

III – 3 Le dioxygène atmosphérique O₂:

III – 3 – 1 Historique:

Le gaz que nous appelons oxygène (de manière plus précise dioxygène), a été isolé pour la première fois en 1772 par Scheele, à partir du nitre ou salpêtre (NaNO₃), le suédois, le dénomma alors, « air de feu ».

C'est en 1778 que, Lavoisier, précisa que le même gaz était un constituant de l'air, il décrivit son rôle primordial dans la combustion et, lui donna son nom définitif d'oxygène.

Ces chercheurs établirent que l'oxygène représentait 21% de l'air atmosphérique, qu'il avait une importance vitale et enfin, qu'il jouait un rôle essentiel dans les phénomènes de combustion [29].

III – 3 – 2 Propriétés de l'oxygène:

III – 3 – 2 – 1 Quelques aspects physico-chimiques :

L'oxygène est un gaz incolore, il est de couleur bleue sous sa forme liquide ; quelques unes de ses propriétés sont sélectionnées dans le tableau 5 suivant :

Propriétés	0
	Ũ
Nombre atomique	8
Configuration électronique à l'état fondamental	$[He]2s^22p^4$
Enthalpie d'atomisation $\Delta_a H^{\circ}(298 \text{K/kJ mol}^{-1})$	249+
Point de fusion, mp/ (K)	54
Point d'ébullition, bp/ (K)	90
Enthalpie standard de fusion, $\Delta_{fus} H^{\circ}(mp)/kJ \text{ mol}^{-1}$	0.44
Energie de première ionisation, $IE_1/kJ \text{ mol}^{-1}$	1314
$\Delta_{\rm EA} {\rm H^{o}}_{\rm l}(298 {\rm K})/{\rm kJ} \ {\rm mol}^{-1}**$	-141
$\Delta_{\rm EA} {\rm H}^{\circ}{}_2(298 {\rm K})/{\rm kJ}~{\rm mol}^{-1}**$	+798
Rayon covalent, r _{cov} /pm	73
Rayon ionique, r _{ion} pour O ²⁻ /pm	140
Electronégativité de Pauling, χ_p	3.4

Tableau 5 Propriétés de l'élément oxygène [30]

+ : Pour l'oxygène, $\Delta_a H^\circ = 1/2$.énergie de dissociation de O_2 .

**: $\Delta_{EA}H^{\circ}_{1}$ représente l'enthalpie de changement associé au processus $O(g) + e^{-} \rightarrow O^{\circ}(g)$; $\Delta_{EA}H^{\circ}_{2}$ représente l'enthalpie de changement associé au processus $O^{\circ}(g) + e^{-} \rightarrow O^{2}(g)$.

III – 3 – 2 – 2 La solubilité de l'oxygène moléculaire notions d'oxygène dissous

a - Facteurs influençant la solubilité

Les solutions de gaz dans les liquides sont très courantes, prenons l'exemple du sang qui contient O_2 (g) et CO_2 (g) dissous, aussi, toutes les eaux naturelles contiennent O_2 (g) et N_2 (g) dissous, et des traces d'autres gaz. La solubilité d'un gaz dépend de la température, mais aussi, et de façon encore plus marquée, de **la pression**.

Il est difficile d'associer, une généralisation satisfaisante à l'influence de la température sur la solubilité des gaz dans les liquides, ainsi ; la plupart des gaz deviennent moins solubles dans l'eau à mesure que la température augmente. Toutefois, la situation est souvent inversée quand il s'agit de gaz dans des solvants organiques ; leur solubilité tend alors à augmenter avec la température. A température constante, la solubilité d'un gaz, est directement proportionnelle à sa **pression** en équilibre avec la solution.

Ainsi, doubler la pression d'un gaz, double sa solubilité [11].

L'influence de la pression sur la solubilité d'un gaz, a été énoncée par William Henry en 1803, et on l'appelle, la loi de Henry.

Pour se dissoudre dans un liquide, les molécules d'un gaz doivent d'abord entrer en collision avec la surface du liquide. Si la pression d'un gaz en contact avec une solution augmente, le nombre de molécules par unité de volume dans le gaz augmente, ce qui entraîne une fréquence plus élevée des collisions avec la surface du liquide. Plus les molécules de gaz qui se dissolvent sont nombreuses, plus la concentration en solution s'accroît.

Cependant, le nombre de molécules qui retournent à l'état gazeux en s'échappant de cette solution plus concentrée augmente également. Dans ce nouvel équilibre dynamique, à cette pression plus élevée du gaz, la concentration des molécules, tant dans la phase gazeuse que dans la solution, est plus grande que dans la solution initiale (à basse pression).

La solubilité augmente donc avec la pression du gaz [11].

b - Solubilité du dioxygène O₂

La solubilité de l'oxygène moléculaire dans l'eau, à pression atmosphérique, a probablement été, un sujet étudié de façon intensive et qui plus est, de grand intérêt.

Ce sont les travaux de Benson, Krause et Peterson, en 1979, qui ont conduit à des mesures expérimentales de haute précision de cette solubilité [31].

Cette dernière, a été évaluée en fraction molaire et, a été mesurée et quantifiée dans les conditions de, températures et pression respectives 298.15K (25°C) et 101.325 KPa (1 atm) [31]. Il faut savoir que, pour un système binaire gaz-liquide, la fraction molaire s'exprime par :

 $\begin{aligned} x_{(g)} &= n_{(g)} / n_{(g)} + n_{(l)} = \left[w_{(g)} / M_{(g)} \right] / \left[w_{(g)} / M_{(g)} \right] + \left[w_{(l)} / M_{(l)} \right], \text{ où }; \ g : gaz, l : liquide, n : nombre de moles, w: masse de substance, M : masse moléculaire. \end{aligned}$

Le tableau 6 suivant, donne les valeurs des solubilités, dans l'eau et quelques alcools, dans les conditions de Température et pression suscités, il s'agit de valeurs expérimentales [31].

Oxygène O ₂ / Solvant	Solubilité en fraction molaire	Mesure effectuée par
Eau : H ₂ O	2.301.10-5	Benson, Krause et
		Peterson
Méthanol : CH ₃ OH	4.122 10 ⁻⁴	P. L. Long et H. L. Clever
Ethanol : C ₂ H ₆ O	5.10 10 ⁻⁴	M. E. Derrick et H. L.
		Clever
Propanol-2	7.745 10 ⁻⁴	P. L. Long et H. L. Clever

Tableau 6 Valeurs des solubilités du dioxygène dans quelques solvants [31]

Nous remarquons de part, le tableau 6 ci-dessus que, pour une température de 25°C et une pression de 1 atmosphère, la solubilité du dioxygène diminue, de façon remarquable, pour les alcools, à mesure que, le nombre de carbones y augmente et, qu'elle possède la plus grande valeur pour l'eau.

Dans la littérature [10], il a été établit que, la solubilité du dioxygène dans l'eau, diminuait considérablement avec l'augmentation de la température et, qu'elle augmentait de la même façon dans les alcools, soit inversement à ce qui a été mentionné dans le tableau 6.

III – 3 – 3 Réactivité de l'oxygène moléculaire:

L'oxygène moléculaire est un gaz extrêmement réactif, il a la propriété d'oxyder beaucoup d'éléments de façon, vigoureuse et directe, que ce soit à température ambiante ou, dans d'autres conditions. Malgré la valeur élevée de son énergie de dissociation (493.4 kJ mole⁻¹) ; les réactions de ce gaz sont souvent très exothermiques ; et peuvent se poursuivre de façon spontanée (combustion) et même, explosive.

Beaucoup de composés organiques et inorganiques, réagissent directement avec O_2 , sous certaines conditions, les réactions peuvent être spontanées ou alors nécessiter des précurseurs tels que, le chauffage (chaleur), la lumière, charges électriques etc... [32].

Le dioxygène, peut former des complexes avec des cations de métaux de transition ou avec des complexes de coordination de ces cations, il peut se lier pour, former un complexe stable de type : M^{n+} -O₂ ou M^{n+} -O₂- M^{n+} ; aussi ; il peut réagir et se dissocier (coupure de liaison O-O) pour donner un complexe mono-oxygéné : M^{n+} -O [29].

IV – La chimie inorganique des métaux de transition en général, du Cobalt et Cuivre en particulier

IV – 1 Mise en contexte

Le cuivre et le cobalt sont des métaux du bloc d, comme ils constituent une transition, entre la nature métallique très marquée des métaux du bloc s et, la nature métallique moins prononcée des métaux du bloc p, ils sont appelés métaux de transition.

Leurs atomes ou cations, sont caractérisés par des orbitales d incomplètes, ce qui leur confère des propriétés physiques et chimiques particulières et, une grande réactivité [11].

Ce sous chapitre représente une étude qui, tantôt ciblera le cobalt et le cuivre et, tantôt se généralisera aux métaux de transition de la première rangée du tableau périodique.

Dans un premier temps, nous allons nous familiariser, des points de vues inorganique et structurale, avec les réactifs de départ soient, les sels de chlorure et sulfate, de cobalt et de cuivre, qui ont fait l'objet de cette recherche ; ensuite, d'une façon plus générale, nous allons discuter les caractéristiques des complexes qu'ils forment.

IV – 2 Les sels de chlorure et sulfates des deux éléments

Les sels de Cobalt

Les principaux sels de cobalt sont, le chlorure $CoCl_2$, obtenu par action de l'acide chlorhydrique sur le protoxyde ; sa solution froide est rose, mais elle devient bleue sous l'influence de la chaleur ; et, le sulfate $CoSO_4$ qui fournit des cristaux rouges hydratés, isomorphes du sulfate ferreux. Les sels de cobalt ont, la caractéristique de donner avec la potasse un précipité bleu de sel basique, qui devient rose en présence d'alcali ; avec les sulfures alcalins, ils précipitent en noir [33].

Le chlorure de cobalt (II) ou bien $CoCl_2$, est un composé de couleur bleue qui, exposé à l'humidité, devient rose en formant des hydrates : $CoCl_2.6H_2O$, $CoCl_2.4H_2O$ et $CoCl_2.2H_2O$. Le changement de couleur est essentiellement lié à un changement de géométrie, le composé bleu étant tétraédrique et, le rose octaédrique.

Les cristaux roses foncés de $CoCl_2.6H_2O$, renferment les molécules trans- $[CoCl_2(OH_2)_4]$, connectées à des molécules d'eau par des liaisons hydrogène formant ainsi un réseau [30]. Contrairement à sa précédente, la structure cristalline du sel de cobalt $CoCl_2.4H_2O$, est constituée de liaisons hydrogène liées à des molécules cis- $[CoCl_2(OH_2)_4]$, tandis que, le sel $CoCl_2.2H_2O$, est formé de chaines liées d'octaèdres [30], comme représenté dans la figure 11 suivante :

Figure 11 Représentation géométrique du chlorure de cobalt tétra hydraté [30]

Dans les solutions aqueuses des sels, de di-chlorure de cobalt CoCl₂, nous retrouvons en majorité, les formes ioniques suivantes : $[Co(OH_2)_6]^{2+}$, $[CoCl(OH_2)_5]^+$, $[CoCl_4]^{2-}$ et, en minorité, les espèces $[CoCl_2(OH_2)_4]$, $[CoCl_3(OH_2)]^-$ [30].

La coordination du cation Co^{2+} est variable, la configuration électronique d⁷ n'est pas en faveur d'un arrangement particulier ; en effet, les exemples suivants montrent quelques géométries de coordination du cation :

- [Co{N(SiMe₃)₂}₂] géométrie linéaire ;
- $[Co{N(SiMe_3)_2}_2(PPh_3)], [Co{N(SiMe_3)_2}_3]^{-}$ géométrie trigonale planaire ;
- [Co(OH)₄]₂₋, [CoCl₄]²⁻, [CoBr₄]₂₋, [CoI₄]²⁻, [Co(NCS-N)₄]²⁻, [Co(N₃)₄]²⁻, [CoCl₃(NCMe)]⁻ géométrie tétraédrique; avec Me : méthyle ;
- [Co(CN)₄]²⁻ géométrie plan carrée ;

• $[Co{N(CH_2CH_2PPH_2)_3}(SMe)]^+$, avec Me : méthyle et Ph : phényle ; géométrie bipyramide trigonale ;

- [Co(CN)₅]³⁻ géométrie pyramide à base carrée ;
- $[Co(OH_2)_6]^{2+}$, $[Co(NH_3)_6]^{2+}$ géométrie octaèdrique [30].

► Les sels de Cuivre

Parmi les composés de cuivre, il en existe deux séries ; les composés cuivreux où, le cuivre est univalent et les composés cuivriques où, il est bivalent.

Le chlorure cuivreux CuCl, est obtenu par action de l'acide chlorhydrique bouillant sur le cuivre, avec quelques gouttes d'acide azotique (HNO₃). C'est une poudre blanche cristalline insoluble dans l'eau, mais soluble dans l'acide chlorhydrique et l'ammoniaque.

Le chlorure cuivrique CuCl₂, jaune à l'état anhydre, cristallise hydraté, en aiguilles vertes ; on l'obtient en dissolvant l'oxyde cuivrique (CuO), dans l'acide chlorhydrique.

Le sulfate de cuivre ou CuSO₄, est le plus important des sels de cuivre. On le fabrique à partir de déchets de cuivre, que l'on oxyde par grillage puis, on dissout l'oxyde formé dans l'acide sulfurique. Hydraté, il se présente en beaux cristaux tricliniques bleus.

Chauffés, ces cristaux perdent leur eau en devenant une poudre blanche [33].

Le chlorure de cuivre $CuCl_2$ anhydre, se présente sous forme de cristaux, déliquescents jaunes ou marrons qui, exposés à l'humidité de l'air, forment le chlorure de cuivre di-hydraté de couleur vert-bleu. La structure du chlorure de cuivre anhydre, est constituée de chaines empilées où, l'atome central de cuivre a une géométrie octaédrique déformée [30], comme illustré dans la figure 12 ci-dessous :

Figure12 Représentation géométrique de la structure du chlorure de cuivre anhydre [30]

Dans la structure du chlorure de cuivre di-hydraté, les molécules forment une géométrie transplan-carrée où, l'atome de cuivre, est lié à l'atome de chlore avec, de faibles interactions (voir figure 13 ci-dessous), ainsi ; au delà de 570K (297°C) ; le CuCl₂ se décompose en, CuCl et Cl_2 [30].

a=1/5, b=226, c=2/1pm

Figure 13 Représentation géométrique du chlorure de cuivre di-hydraté [30]

Les cristaux bleus du sulfate de cuivre penta-hydraté $CuSO_4.5H_2O$; appelé bleu vitriole, sont constitués d'unités $[Cu(OH_2)_4]^{2+}$ ayant une géométrie plan carrée, avec deux ions sulfate, la sphère de coordination résultante, a la géométrie d'un octaèdre allongé.

Les molécules d'eau restantes forment des liaisons hydrogène avec la structure [30].

Le sulfate de cuivre, perd ses molécules d'eau, à mesure que, l'on augmente la température de chauffage, comme illustré dans le schéma 12 réactionnel suivant:

$$CuSO_{4}.5H_{2}O \xrightarrow[-2H_{2}O]{300K} CuSO_{4}.3H_{2}O \xrightarrow[-2H_{2}O]{380K} CuSO_{4}.H_{2}O \xrightarrow[-H_{2}O]{520K} CuSO_{4}$$

Schéma 12 Déshydratation du sel de sulfate de cuivre pentahydraté [30]

Il existe un grand nombre de complexes à base de cuivre dioxydé, par exemple les chlorocomplexes renfermant les formes suivantes $[CuCl_3]^-$, $[CuCl_4]^{2-}$, $[CuCl_5]^{3-}$.

Cependant, la structure de ces formes à l'état solide, avec une telle stœchiométrie dépend étroitement des contre-ions, c'est-à-dire du ligand autre que le chlore qui va annuler la charge effective du complexe formé [30].

Voici quelques exemples de complexes de cuivre (II), avec une coordinence 4, 5 ou 6 et, qui possèdent des ligands donneurs N ou O:

- $[Cu (NCS-N)_4]^2$: tétraèdre plat,
- Cis-et trans-[Cu (H₂NCH₂CO₂)₂] : plan-carrée,
- $[Cu(CN) {N(CH_2CH_2NH_2)_3}]^+$ avec CN en position axiale: bipyramide trigonale,
- [CuCl₂(OH₂)₂(MeOH)] : pyramide à base carrée,
- $[Cu(HOCH_2CH_2OH)_3]^{2+}$: octaèdre [30].

IV – 3 Caractéristiques typiques des complexes de coordination

IV – 3 – 1 La couleur

Les composés formés de métaux de transition dont, la configuration électronique à l'état fondamental est autre que, d^0 et d^{10} , ont la caractéristique d'être colorés.

Les complexes de configuration d^0 et d^{10} sont incolores, sauf si leur ligand contient un chromophore (groupe d'atomes dans une molécule responsable de l'absorption d'une radiation électromagnétique), qui absorbe dans la région du visible.

L'origine de la couleur est liée, en partie, à la transition électronique d-d, ainsi ; les complexes dont la couleur est pâle indiquent une faible transition, une couleur rouge intense comme celle de la cuprite Cu_2O , a une origine différente, elle est peu liée à l'intensité de la transition d-d mais, beaucoup plus liée à, ce qu'on appelle le transfert de charges de l'absorption ou émission du ligand [30].

IV – 3 – 2 Les spectres d'absorption électroniques

IV – 3 – 2 – 1 Formes typiques

Les composés des métaux de transitions sont colorés ; ainsi, les complexes de cuivre (II), sont bleus et peuvent prendre d'autres couleurs comme le vert, le jaune et l'orange, quand aux composés de cobalt $[Co(OH_2)_6]^{2+}$, de couleur rose pâle, ils réagissent avec l'acide chlorhydrique pour donner $[CoCl_4]^{2-}$ de couleur bleu foncé [30].

En fait, ces manifestations extérieures liées à la coloration, sont dues à la structure électronique des complexes des métaux de transition.

En conséquence, les spectres d'absorption électroniques, présentent quelques formes typiques, dont, les caractéristiques suivantes :

Toutes les absorptions sont larges, souvent jusqu'à 2000 cm⁻¹ et, occasionnellement, encore larges en dessous de 100 cm⁻¹.

La largeur de la ligne atomique des spectres est de l'ordre de 1 cm⁻¹.

► Dans le proche infra-rouge, le visible et le proche ultra-violet ; la majorité des bandes sont faibles, en comparaison avec les colorants, elles sont 10^2 à 10^4 plus faibles que les bandes les caractérisant. Ces bandes sont nommées d-d [34].

Aux plus hautes énergies, dans la région de l'ultra-violet, sont rencontrées, des bandes très intenses liées, au transfert de charge des complexes et, spécialement, ceux qui contiennent des halogènes. Elles proviennent des transitions n - π^* et $\pi - \pi^*$ ou, du transfert de charges électroniques, entre les orbitales du ligand et du métal, ce qui nous amène aux deux cas de figure suivants :

♦ Le transfert d'un électron d'une orbitale du ligand à une orbitale du métal, appelé transfert de charge du ligand au métal (ligand-to-metal charge transfert, LMCT), cette transition a lieu lorsqu'un ligand facilement oxydé, est lié au centre métallique qui, se trouve généralement dans un état d'oxydation élevé.

♦ Le transfert d'un électron d'une orbitale du métal à une orbitale du ligand, appelé transfert de charge du métal au ligand (metal-to- ligand charge transfert, MLCT), cette transition arrive quand un ligand, facilement réduit, est lié à un centre métallique qui lui-même est facilement oxydable [30].

► Les spectres des complexes octaédriques, ayant une configuration, d^1 , d^4 , d^6 et d^9 sont caractérisés par **une seule et large absorption**, tandis que ceux avec une configuration d^2 , d^3 , d^7 et d^8 , peuvent avoir jusqu'à **trois larges absorptions principales** [30].

► Les couleurs perçues par transmission de ce type de complexes, sont complémentaires aux absorptions de ces derniers. Par conséquent, la couleur du complexe observée, se situe dans la partie visible du spectre électronique [34].

IV – 3 – 2 – 2 Signification de la transition d-d du spectre d'absorption électronique

L'étude des spectres d'absorption électronique est, essentielle pour comprendre les états électroniques excités des complexes de métaux de transition.

L'énergie nécessaire pour promouvoir un électron d'une orbitale à une autre ou, plus précisément, pour exciter une molécule à partir de son état électronique fondamental, vers un état électronique excité, correspond à une absorption de lumière dans les régions proche infrarouge, visible ou ultraviolette du spectre d'absorption [35].

Pour les complexes des métaux de transition, de la première rangée du tableau périodique (couche 3d incomplète), les bandes d'absorption dans les deux premières régions, proche infra-rouge et visible sont relativement faibles et, sont associées à des transitions surtout localisées sur l'atome métallique. Bien que ces bandes faibles soient expliquées simplement par la théorie du champ cristallin, une comparaison détaillée des données avec les prévisions théoriques montre que la théorie du champ des ligands fournit une meilleure explication.

Lorsque les bandes spectrales sont faibles, ce n'est pas sans raison, cela signifie souvent que certaines bandes sont interdites, mais pas totalement, il se trouve que les bandes faibles qui nous intéressent sont de ce type. Les transitions électroniques qui correspondent aux bandes intenses sont du type dipôle électrique [35].

Classiquement, le vecteur électrique associé au faisceau lumineux incident, se comporte comme une paire de charges + et – oscillant à travers la molécule. Ces charges oscillantes induisent un dipôle oscillant dans la molécule ; lorsque la fréquence du dipôle moléculaire oscillant correspond à la fréquence de la molécule, une résonnance intervient et, la molécule acquiert de l'énergie du faisceau lumineux.

Clairement, le cœur de cette explication est un dipôle électrique – d'où l'expression « permis par le dipôle électrique ».

Dans un atome, les transitions permises par le dipôle électrique, sont celles qui, sont associées aux transitions entre les orbitales $s \leftrightarrow p$, $p \leftrightarrow d$ et $d \leftrightarrow f$ (où la flèche à double sens indique que les transitions sont permises dans les deux sens).

Les transitions interdites sont s \leftrightarrow d, p \leftrightarrow f, s \leftrightarrow s, p \leftrightarrow p et d \leftrightarrow d etc. Les bandes faibles observées dans la région visible, pour les complexes de métaux de transition, sont du type d \leftrightarrow d, et donc, selon Laporte, elles sont interdites par le spin [35].

Puisque ces règles doivent être respectées, pourquoi les complexes des métaux de transition manifestent, dans leur spectre d'absorption électronique, des bandes d-d ?

Tout simplement car, une transition interdite par le spin, devient permise si, un état singulet se mélange, dans une certaine mesure, à un état triplet par couplage spin-orbitale.

Les proportions du mélange des états, est faible pour les métaux de transition de la première rangée du tableau périodique et donc, les bandes associées aux transitions interdites par le spin sont très faibles. Par conséquent, les transitions d-d restent selon Laporte interdites et, leur parution sur un spectre d'absorption électronique, peut être expliquée par un mécanisme appelé « couplage vibronique » [30].

Pour un complexe octaédrique possédant un centre de symétrie, les vibrations moléculaires ne se produisent que, lorsqu'il perd temporairement cette symétrie, car ; c'est à cet instant où, la molécule ne possède plus de centre de symétrie, que le mélange des orbitales d et p peut s'effectuer.

Puisque la durée de vie d'une vibration $(10^{-13}s)$, est plus longue que celle d'une transition électronique $(10^{-18}s)$, une transition d-d impliquant une orbitale pd issue du mélange des orbitales p et d, peut avoir lieu, malgré le fait que, l'absorption soit faible.

Il faut savoir que pour une molécule non-centrosymétrique, le mélange entre les orbitales p et d s'effectue en grande proportions et, la probabilité pour que la transition d-d ait lieu est, plus grande que pour un complexe centrosymétrique [30].

En ce qui concerne la forme des bandes observées sur le spectre d'absorption, il y en a qui sont fines, d'autres sont larges et, certaines sont si larges qu'il est difficile d'être sûr qu'elles existent.

Pour comprendre ce phénomène, considérons un complexe métallique octaédrique, dans lequel, le mode de vibration métal-ligand, totalement symétrique (mode de respiration), est excité. Le complexe garde donc sa géométrie octaédrique car, toutes les liaisons métal-ligand se contractent et s'allongent en phase.

Le point essentiel est que, la répulsion entre les électrons du ligand et les électrons d du métal, et donc, le paramètre de dédoublement du champ cristallin Δ_0 , varie avec la distance métalligand. Dans le modèle des orbitales moléculaires, le recouvrement entre les orbitales du ligand et, les orbitales métalliques sera modulé par la vibration. La conclusion est que Δ_0 (éclatement du champ cristallin), n'est pas une quantité fixe, mais plutôt une quantité qui varie avec la distance métal-ligand, et qui varie donc, à tout instant d'une molécule à une autre. En conséquence, un pic d'absorption, n'apparaîtra pas comme une raie fine mais, en général, comme une large bande, due à la superposition d'une multitude de raies fines [35].

IV - 4 Etude de la coordination des complexes de métaux de transition

IV – 4 – 1 Historique des complexes et composés de coordination

C'est au 19^{ème} siècle, qu'a commencé la recherche en chimie des métaux de transition et, à ce moment, il est apparu que, beaucoup de composés étaient différents de ceux, dont les chimistes s'étaient familiarisés.

Il y avait une différence nette entre le comportement de composés ioniques simples, tels que le chlorure de sodium, et, des composés à base d'éléments de transition typiques, tels que le CuCl₂.2H₂O. En conséquence, beaucoup de composés formés de métaux de transition, se sont nommés complexes.

C'est Alfred Werner qui a mené des études sur les complexes à base de cobalt, ammoniac et de chlore de type $Co(NH_3)_nCl_3$ (n= 4, 5ou 6) ; qui l'ont conduit au postulat suivant : un ion métallique peut avoir deux types de valence, le premier est en relation avec le nombre de groupes anioniques associés au composé, appelé valence primaire.

Ainsi, le complexe cité, renferme trois groupement chlore et, possède donc une valence primaire de trois.

Actuellement, le terme de valence primaire a été remplacé par degré d'oxydation.

Werner a introduit une idée originale, concernant le second type de valence, il s'agit de la liaison des groupements anioniques et neutres à l'atome central métallique.

Comme ce dernier peut avoir une ou plusieurs valences caractéristiques primaires, il peut aussi avoir un nombre caractéristique de valence secondaire, les plus communs étant, 4 et 6.

Ce nombre est relié d'une part, aux groupements directement liés au métal dans la première sphère (ou sphère interne), d'autre part, il est relié faiblement (plus grande distance) à, des groupements additionnels situés dans la deuxième sphère (sphère externe), les ligands neutres occuperont la sphère interne [34].

A titre d'exemple, le cobalt dans les trois complexes $Co(NH_3)_nCl_3(n = 4, 5 \text{ ou } 6)$ a un degré d'oxydation de trois et, le nombre caractéristique secondaire de valence pour Co(III), est de six. Plus explicitement ; le complexe $Co(NH_3)_4Cl_3$ est lié à quatre ions NH₃ et deux chlores, dans la sphère interne, et un chlore dans la sphère externe ; dans la même logique, le complexe $Co(NH_3)_5Cl_3$ est lié à cinq ions NH₃ et un chlore dans la sphère interne, et deux chlores dans la sphère externe, aussi ; le complexe $Co(NH_3)_6Cl_3$ est lié à six ions NH₃, dans la sphère interne, et trois chlores dans la sphère externe. Le terme valence secondaire, correspond à celui, qui plus est moderne, de **nombre de coordination** [34].

Ainsi, les interactions dans les complexes sont plus comprises et, le terme complexe est devenu plus spécifique et, peut être remplacé sans aucune ambiguïté, par **composé de coordination** [34].

IV – 4 – 2 La liaison de coordination

Dans une liaison covalente typique, comme celle d'un atome de carbone et d'hydrogène, chaque atome, contribue avec un électron pour former un doublet et deux centres de liaison. Dans la même optique, nous pouvons envisager un deuxième type de liaison covalente où, nous avons toujours les deux centres de liaisons, le doublet électronique, mais où, le doublet provient d'un seul atome ou d'une molécule, ce type de liaison est connu sous le nom de

liaison de coordination ou dative covalente ou encore donneur-accepteur.

Tout composé formé de telles liaisons est nommé composé de coordination.

L'atome (ou molécule), qui donne les électrons est le donneur, celui qui reçoit est l'accepteur. Le terme complexe est utilisé pour décrire un composé de coordination dans lequel, l'accepteur est, l'atome ou l'ion du métal de transition, le donneur est le ligand (du latin *ligare*, qui veut dire lier) [34].

IV – 4 – 3 Coordinences et géométries respectives

IV – 4 – 3 – 1 La percée de Werner et le modèle de Kepert

Werner a été le premier à reconnaitre que, l'une des caractéristiques d'un composé de coordination est, le nombre de ligands qui sont directement liés à l'atome central, appelé valence secondaire ou coordinence.

La coordinence n'a pas forcément une valeur unique, pour un ion métallique particulier, c'est une méthode pour classer les composés de coordination.

Dans les composés de coordination, la fréquence de coordinence des ions métalliques Cu(II) et Co (II) est, à peu près comme ci-dessous :

Cobalt (II) : 6 (octaédrique) > 4 (tétraédrique) > 5 > 4 (plan carré) ;

Cuivre (II) : 6 (octaédrique)⁺ > 4 (plan carré) > 5⁺ ~ 4 (tétraédrique).

+ : en général déformé [35].

Plusieurs années après le travail classique de Werner qui, supposait qu'un métal avec un degré d'oxydation donné, avait une coordinence et une géométrie fixe ; et comme le modèle VSEPR (Valence shell electrons pairs repulsion) répulsion des paires électroniques, de la couche de valence ; prévoyait la géométrie des molécules, ayant pour atome central un élément du block p du tableau périodique, et ne tenait pas compte des effets stériques donc, ne s'appliquait pas aux complexes de métaux de transition, c'est le modèle de Kepert, qui est utilisé pour décrire la géométrie des complexes [30].

Kepert, considère que le métal est au centre d'une sphère de coordination et que, les ligands sont libres de se déplacer à travers toute la surface de la sphère, ils s'y repoussent mutuellement de la même façon que dans le modèle VSEPR. Toutefois, et contrairement à ce dernier, le modèle de Kepert ne tient pas compte des électrons qui ne sont pas liés.

Par conséquent, la géométrie de coordination des métaux de transition (le cuivre, cobalt) selon Kepert, est indépendante de la configuration électronique de l'état fondamental de l'atome métallique central ; et les complexes de type $[ML_n]$, $[ML_n]^{m+}$, $[ML_n]^{m-}$, possèdent la même géométrie de coordinatio n.(M : métal, L : ligand, m : nombre de charges).

Ce modèle prévoit la géométrie des complexes $[ML_n]$, $[ML_n]^{m+}$, $[ML_n]^{m-}$, en tenant compte, des répulsions entre les ligands L et, en ignorant les doublets non-liants [30].

IV – 4 – 3 – 2 Coordinences Typiques des complexes de cobalt (II) et de cuivre (II)

IV – 4 – 3 – 2 – a Coordinence 4

Les complexes de coordinence 4, tétraédriques, sont fréquents.

Dans certains cas, le tétraèdre est déformé (plat), ceci est attribué aux effets stériques ou, à l'empilement cristallin et, parfois même à des effets électroniques.

Les exemples suivants représentent des complexes anioniques tétraédriques : d^9 : $[CuCl_4]^{2-}$ déformé ; d^7 : $[CoCl_4]^{2-}$ [30].

IV – 4 – 3 – 2 – b Coordinence 5

De nombreux exemples de coordinence cinq ont été découverts et il est clair, à présent, que cette coordinence est beaucoup plus fréquente qu'on ne le pensait.

Bien que, dans la pratique elles soient souvent déformées, il existe deux structures pentacoordinées idéales, la bipyramide trigonale et la pyramide à base carrée [37].

Pour prévoir laquelle des deux structures sera adoptée par un complexe donné, l'auteur A. Addition, a introduit l'indice de trigonalité $\tau = (\beta - \alpha)/60$, où α et β sont les plus larges angles de coordination [38].

Ainsi, si $\tau = 1$ ou s'en rapproche, la géométrie du complexe est, en faveur de la bipyramide trigonale ; si $\tau = 0$ ou s'en rapproche, la géométrie du complexe est en faveur, de la pyramide à base carrée [39], [40].

On peut noter deux exceptions partielles, la première ; qui concerne les complexes de métaux de transition contenant des ligands fortement π -liants, ils tendent à adopter la configuration bipyramide trigonale [37].

Les complexes cationiques $[Cu(bpy)_2I]^+$ et $[Co(NCCH_3)_5]^+$ et, le complexe anionique $[CuCl_5]^{3^-}$, sont des exemples de structures bipyramides trigonales (bpy= bipyridyle).

Un autre exemple, de complexe anionique $[Cu_2Cl_6]^{2-}$ où, les ponts entre les anions adjacents conduisent à, une configuration en pyramide à base carrée pour chaque atome de cuivre [37].

IV-4-3-2-c Coordinence 6

La majorité des composés de coordination que l'on rencontre sont hexa-coordinés, la structure adoptée étant celle d'un octaèdre régulier ou légèrement déformé [37].

Les complexes octaédriques des métaux de transition, de configuration électronique d^4 à d^9 , ont tendance à être déformés ; ils sont soit allongés ou aplatis, c'est un effet électronique qu'on appelle déformation Jahn-Teller.

Les complexes suivants sont des exemples de coordination octaédrique :

;

$$d^9$$
: $[Cu(NO_2)_6]^{4-}$ déformé

 $d^7 : [Co(OH_2)_6]^{2+} [30].$

V - Références

[1] [Sir Roderick Murchison, cited by S. Somiya. 1840s]

[2] [R. Nacken, Artificial quartz crystals, US Office of technical service repport, PB-18-748 and 28-897, 1946]

[3] [R. M. Barrer, Synthesis and reactions of mordenite, J. Chem. Soc. 2158, 1948]

[4] [K. Byrappa. Masahiro. Yoshimura, « Handbook of hydrothermal technology », second edition ; Elseiver Inc. 2013]

[5] [G. W. Morey, P. Niggli, The hydrothermal formation of silicates, a review, J. Am. Chem. Soc. 35, 1086-1130., 1913]

[6] [M. Yoshimura, H. Suda, Hydrothermal processing of hydroxyapatite : past, present and future, in : P. W. Brown, B. Constanz (Eds), Hydroxyapatite and related materials, CRC press, Inc., Boca Raton, FL, pp. 45-72., 1994]

[7] [R. Roy, Fifty-year perspective on hydrothermal reserch, in : Proceedings of the workshop on solvothermal and hydrothermal reactions, Sun Messe Kagawa, 22-24, pp. 1.1-1.20, january, 1996]

[8] [P. Trambouze. J. P. Euzen, « Les réacteurs chimiques », Editions TECHNIP, 2002]

[9] [J. Vilermaux, « Génie de la réaction chimique, conception et fonctionnement des réacteurs », 2^{ème} édition, 1995]

[10] [Hong. Zhao, Zhi-Rong. Qu, Heng-Yun. Ye and Ren-Gen. Xiong, Chem. Soc. Rev, 37, 84–100, 2008]

[11] [J. W. Hill, R. H. Petrucci, M. Dion, M. Lamoureux, « Chimie générale »; Pearson Education. 2002]

[12] [F. Rouquérol. G. Chambaud, « Chimie générale » ; 7^{ème} édition, 2006]

[13] [Louis. D. Quin, John. A. Tyrell ; «Fundamentals of heterocyclic chemistry » ; John Wiley & Sons. 2010]

[14] [Theophil. Eicher, Siegfried. Hauptmann, Andreas. Speicher ; « The chemistry of heterocycles » structures, reactions, synthesis, and applications ; 3rd Edition. Wiley-VCH. 2012]

[15] [R. R.Gupta, M. Kumar, V. Gupta; Heterocyclic chemistry II- Five-Membered Heterocycles; Springer-Verlag Berlin Heidelberg 1999]

[16] [Alan R. Katritzky, Christopher A. Ramsden, John A. Joule, Viktor V. Zhdankin « Handbook of Heterocyclic Chemistry, Third Edition », Netherlands. 2010] [17] [René. Milcent, François. Chau,"Chimie organique hétérocyclique", EDP Sciences, 2003]

[18] [Les cours de Paul Arnaud.B. Jamart, J. Bodiguel, N. Brosse ; « Chimie organique »-Dunod- PARIS, 2009]

[19] [P. J. Wheatley, "Handbook of molecular dimensions X-Ray bond angles and lengths", Academic press. New-York and London; 1972]

[20] [H. W. W. Ehrlich, Acta Crytallogr. 13, 946, 1960]

[21] [G. Will, Z. Kristallogr., Kristallgeometrie, Kristallphis., Kristall-chem, 129, 211, 1969]

[22] [A. R. Katritzky, W. L. F. Armarego, « Physical methods in heterocyclic chemistry » volume III; Academic press, New York and London, 1971]

[23] [D. Dal Monte, A. Mangini, and R. Passerini, Gazz. Chim. Ital. 86, 797 1956]

[24] [R. Huttel and J. Kratzer, Chem. Ber. 92, 2014, 1959].

[25] [G. Leandri, A. Mangini, F. Montanari, and R. Passerini, Gazz. Chim. Ital. 85, 769, 1955]

[26] [Samedy. Ouk, S. Thiébaud, and E. Borredon, B. Chabaud ; Synthetic Communications, Taylor & Francis Group, 35: 3021–3026, 2005]

[27] [Tundo, P. New developments in dimethyl carbonate chemistry. Pure Appl. Chem. 73, 1117, 2001]

[28] [Ono, Y. Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Catal. Today, 35, 15. 1997]

[29] [C. S. Foote, J. S. Valentine, A. Greenberg, J. F. Liebman; «Active oxygen in chemistry »; Chapman & Hall; 1995]

[**30**] [Catherine E. Housecroft and Alan G. Sharpe « Inorganic chemistry » Fourth Edition ; Pearson. 2012]

[**31**] [A. S. Kertes, Solubility data series, volume7 « oxygen and ozone »; Pergamon press, 1981]

[32] [N. N. Greenwood, A. Earnshaw; «Chemistry of the elements», second edition Pergamon press 1997]

[33] [Grand Larousse encyclopédique ; volume 3, ISBN 2-03-000303-4 ; 1980]

[34] [M. Gerloch, E. C. Constable ; « Transition metal chemistry », (VCH, Weinheim), 1994]

[35] [Sidney. F. A. Kettle, « Physico-chimieinorganique », De Boeck, 1999]

[**36**][Catherine E. Housecroft and Alan G. Sharpe « Inorganic chemistry »Fourth Edition ; Pearson,2012]

[37] [Sidney. F. A. Kettle, « Physico-chimie inorganique », De Boeck. 1999]

[38] [International Journal of Inorganic Chemistry, Article ID 478380, 2015]

[**39**] [K. Diwan, B. Singh, S. K. Singh, M. G. B. Drew, and N. Singh, The International Journal for Inorganic, Organometallic and Boiinorganic Chemistry, Dalton transaction, Vol. 41,N°2, pp. 367-369, 2012].

[40] [M. Gupta, P. Mathur, and R. J. Butcher, Inorganic Chemistry, Vol. 40, N°5, PP. 878-885, 2001].

CHAPITRE II Synthèses, Interprétation chimique, étude par diffraction des rayons X et spectrale IR, UV-vis de trois complexes et d'un polymère

0X0

CHAPITRE II :

Synthèses, Interprétation chimique du chemin réactionnel de formation, caractérisation par diffraction des rayons X et étude spectrale infra-rouge, Ultra-violet des complexes oxo avec une unité tétra nucléaire $[Cu_4 (\mu_2-Cl)_6 (\mu_4-O)]$:

Hexa (μ₂-chloro) (μ₄-oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol
 Hexa (μ₂-chloro) (μ₄-oxo) Tétra (méthyle-1pyrazole) tétra cuivre(II)
 Et du polymère oxo avec une unité trinucléaire [Cu₃(μ-Cl)₃(μ₃O)]
 Tri (μ-chloro) (μ₃-oxo) tri (μ₂-pyrazolo) bis (1H-pyrazole) tricuivre (II)

I – Introduction

Le présent chapitre fera l'objet, de la synthèse, ainsi que l'interprétation chimique, du chemin réactionnel de formation de, trois nouveaux composés dont deux tétramères et un trimère à base de cuivre, de la spectroscopie IR et UV-vis et, de leur étude structurale par diffraction des rayons X.

Il s'agit de deux complexes et d'un polymère oxo, c'est-à-dire, dont le centre est occupé par un atome d'oxygène, avec respectivement une unité tétranucléaire [Cu₄ (μ_2 -Cl)₆ (μ_4 -O)] appelée, cage ou cœur de la structure et, une unité trinucléaire [Cu₃(μ -Cl)₃(μ_3 O)].

Nous allons insister dans ce chapitre, sur le mode de synthèse, qui plus est original, en effet ; ce sont des composés de coordination, qui ont tous été obtenus de façon identique, à savoir, en deux étapes :

- Chauffage en réacteur fermé homogène (phase liquide), aboutissant à une solution où l'atome de cuivre est réduit à un degré d'oxydation I (solution incolore);
- Réaction avec le second ligand, qu'est le dioxygène atmosphérique, par solubilisation de ce dernier dans la solution, c'est à ce moment, qu'interviennent les catalyseurs de formation des tétramères ou trimère, soient ; l'élévation de la température et pression, la solubilité de O₂ dans les alcools.

Dans la première étape, il s'est produit une N-méthylation du ligand 1H-pyrazole, nous allons établir un mécanisme réactionnel plausible et, tenter d'expliquer cette réaction.
Par conséquent ; nous trouverons dans ce chapitre ; un sous-chapitre relatif à l'historique des tétramères à base de cuivre, répertoriés dans la CSD 2019, ainsi qu'une partie expérimentale où, seront exposées toutes les manipulations, par la suite, nous ferons une interprétation et une analyse de toutes les réactions chimiques en présence.

Les sous-chapitres suivants, seront consacrés à l'étude spectrale IR et UV-Visible et, à l'étude par diffraction des rayons X, des trois structures.

II – Historique des complexes oxo de type [Cu₄OCl₆L₄] ayant pour ligands L : 1H-pyrazole ou 1H-imidazole et leurs dérivés

II – 1 Mise en contexte

Il faut savoir que, jusqu'à présent dans la littérature ; tous les complexes oxo sont à base de l'atome de cuivre et, il n'existe aucun complexe avec un autre métal de transition répertorié dans la CSDC 2019.

Nous sommes parvenus à produire, dans notre recherche, un trimère de cuivre, ceci étant nouveau, car dans la littérature aucun polymère oxo à base de cuivre, n'a été synthétisé et publié.

Dans le présent sous-chapitre, nous avons sélectionné de la CSDC 2019, quelques tétramères de cuivre, publiés, ayant pour ligands L les 1H-imidazole et leurs dérivés, ainsi que les dérivés du 1H-pyrazole. L'objectif de cette perspective historique étant, la comparaison du mode de synthèse, des conditions opératoires, des conditions de formation des tétramères, dont le temps, paramètre très important, de la couleur des composés de coordination, avec ceux que nous avons produits.

Dans un article publié par Sabine Becker [1], les auteurs ont effectué une recherche concernant, la couleur que pouvaient avoir les tétramères à base de cuivre, ils présument, car il s'agit d'une constatation purement expérimentale, que ces derniers, pouvaient prendre les couleurs jaunes, orange et rouge et, que les complexes oxo verts qu'ils avaient obtenus, avaient simplement co-cristallisé avec des complexes de type [CuL₂Cl₂] formés lors de la germination [1]. Aussi, dans le même article, nous avons retenu un point important, qui est la sensibilité des tétramères vis-à-vis de l'humidité et, peuvent être d'excellents catalyseurs dans des réactions d'oxydation d'alcools en aldéhydes [2] [3].

II – 2 Les complexes de coordination de type $[Cu_4OCl_6L_4]$ ayant pour ligands L le 1Himidazole ou ses dérivés (CSD 2019)

Dans la CSD 2019, nous avons sélectionnés, des 72 tétramères de cuivre avec des ligands L 1H-imidazoles ou bien leurs dérivés, douze, dont les données expérimentales, soient ; les réactifs de synthèse, les conditions opératoires et, le temps de formation des cristaux, ainsi que leur couleur, sont illustrés dans le tableau 1 ci-dessous.

Tableau 1 Données expérimentales des complexes ayant pour ligands L les 1Himidazoles ou leurs dérivés répertoriés dans la CSD 2019

Réactifs de	Conditions	Conditions, temps de	Couleur des				
synthèse	opératoires	formation	cristaux				
μ4-Oxo-hexa	-µ2-chlorotetrakis(im	idazole) tétracuivre(II), [Cu	$1_4OCl_6(C_4H_6N_2)_4$ [4]				
• 1H-imidazole		• Lente évaporation du					
• $CuCl_2.2H_2O$	• Température et	solvant	• Vert foncé				
 Méthanol 	Pression ambiantes	• Plusieurs jours					
μ4-Oxo-hexa-μ2	-chlorotetrakis(imida	zole) tétracuivre(II), [Cu ₄ O	$C_{16}(C_4H_6N_2)_4$ [4]				
$\bullet \left[Cu(C_4H_6N_2)_4 \right]$		• Lente évaporation du					
[CuCl ₃]. H ₂ O	• Température et	solvant	• Jaune-vert				
• Ethanol	Pression ambiantes	• Plusieurs jours					
Héxa-µ-cł	nloro-µ4-oxo-tétrakis	[1,2-diméthyle-imidazole-cu	uivre(II)];				
	$[Cu_4Cl_6(O)(C_5)]$	H ₈ N ₂) ₄]. 0.25 H ₂ O [6]					
• 1, 2diméthyl							
imidazole	• Température et	 Au mélange 	• Pas de mention				
• CuCl ₂ .H ₂ O	Pression ambiantes		dans l'article				
 Méthanol 							
• Ethanol							
• Triéthyle-							
orthoformate (agent							
déshydratant)							
Héxa-µ-chlorido	-μ4-oxido-tétrakis({1-	[(pyridine-2-yle)méthyle]-1]	H-benzimidazole-				
	кN3}cuivre(II)) ; [$[Cu_4Cl_6O(C_{13}H_{11}N_3)_4]$ [7]	кN3}cuivre(II)) ; [Cu ₄ Cl ₆ O(C ₁₃ H ₁₁ N ₃) ₄] [7]				

Benzimidazole-		• Lente évaporation du		
pyridine	• Température et	solvant		
● CH ₃ CN	Pression ambiantes	• Plusieurs jours	• Marron	
• CuCl ₂ .6H ₂ O				
• H ₂ O				
Héxa-µ-chl	oro-µ4-oxo-tétrakis [.	3-benzyle-benzimidazole-cu	ivre (II)] ; [Cu ₄ Cl ₆	
	(BBIm) ₄] avec L=BI	BIm=3-benzyle-benzimidaz	ole [8]	
• Benzimidazole				
• Chloro-benzyle	• Réacteur fermé	• Lente évaporation du		
• Pyridine	chauffé à 120°C	solvant	• Bleus	
• Solution aqueuse	pendant 36 heures	• 03 jours		
de CuSO ₄ .5H ₂ O ;				
Héxa-µ	-chloro-µ4-oxo-tétrak	is [1-méthylimidazole-cuiv	re (II)];	
	[Cu ₄ Cl ₆ (0	$O(C_6H_6N_2)_4][9]$		
• 1-méthyl				
imidazole	• Température et	• Mélange de 30 minutes	• Jaunes	
• CuCl ₂ .H ₂ O	Pression ambiantes			
 Méthanol 				
	$[H_2 C_{26} H_{32} N_4]^{2+} [C$	$u_4 OCl_{10}$] ⁴⁻ . CH ₃ NO ₂ [10]		
$\bullet C_{26}H_{32}N_4$				
(2- bis (1- propyle -				
benzimdazole – 2 -				
yle) cyclohéxane)	• Température et	 Au mélange 	• Rouges	
 Nitrométhane 	Pression ambiantes			
• CuCl ₂ .H ₂ O				
 Méthanol 				
μ4-Oxo-héx	α-μ2-chloro-tétrakis[(benzimidazole κN)cuivre(I	I)]Ethanol ;	
[Cu ₄ Cl ₆ O(C ₇ H ₆ N ₂) ₄].2C ₂ H ₅ OH [11]				
• 3-				
hydroxybenzoate	• Température et	• Lente évaporation du		
de sodium	Pression ambiantes	solvant	• Marron	
• Benzimidazole		• 05 jours		
• CuCl ₂ .H ₂ O,				

• Ethanol absolu ;			
4-phényle-1H-imida	azolium héxa-µ2-chloi	ro- chloro-µ4-oxo-tris[(4-ph	ényle-1H-imidazole
кN ¹)cuivre	e(II)] monohydraté ; ($C_{9}H_{9}N_{2})[Cu_{4}Cl_{7}O(C_{9}H_{8}N_{2})]$	3].H ₂ O [12]
• 4-phényle -1H -		• Lente évaporation du	
imidazole	• Température et	solvant	
• CuCl ₂ .H ₂ O	Pression ambiantes	• Plusieurs jours	• Bleus
 Méthanol 			
Héxa-µ2-c	hloro-tétrakis[(2-mét	hyle-1H-imidazole- κN ¹) μ4	-oxo-tétra-
cuivre(II	[)]méthanol.trisolvate	; [Cu ₄ Cl ₆ O(C ₄ H ₆ N ₂) ₄].3CH	₃ OH [12]
• 2-méthyle-1H-		• Lente évaporation du	
imidazole	• Température et	solvant	
• CuCl ₂ .H ₂ O	Pression ambiantes	• Plusieurs jours	• Bleus
 Méthanol 			
Héxachlorotétrakis(N-méthyle-imidazole	-N')oxotétra-cuivre(II), [Cu	$_{4}\text{OCl}_{6}(\text{C}_{4}\text{H}_{6}\text{N}_{2})_{4}][5]$
• [Cu (méthyle-	Réaction opérée		
imidazole) ₂ Cl ₂]	sous azote N ₂	• Lente évaporation du	• Jaune-vert
• Acétonitrile			
	• germination à	solvant	
• K ₂ [S ₂ -o-xyle]	 germination à température et 	solvant • Plusieurs jours	
• K ₂ [S ₂ -o-xyle] • Ethanol	• germination à température et pression ambiantes	solvant • Plusieurs jours	
 K₂[S₂-o-xyle] Ethanol Héxachlorotétrakis(N 	 germination à température et pression ambiantes N-méthyle-imidazole- 	solvant • Plusieurs jours N')oxotétra-cuivre(II) chlor	otétrakis(N-méthyle-
 K₂[S₂-o-xyle] Ethanol Héxachlorotétrakis(N imidazole-N') 	• germination à température et pression ambiantes N-méthyle-imidazole- cuivre(II)chlorure, [(solvant • Plusieurs jours N')oxotétra-cuivre(II) chlor Cu4OCl ₆ (C4H ₆ N ₂)4][Cu(C4H	otétrakis(N-méthyle- ⁷ 6N2)4Cl]Cl [5]
 K₂[S₂-o-xyle] Ethanol Héxachlorotétrakis(N imidazole-N') [Cu (méthyle- 	 germination à température et pression ambiantes N-méthyle-imidazole- cuivre(II)chlorure, [C Réaction opérée 	solvant • Plusieurs jours N')oxotétra-cuivre(II) chlor Cu4OCl ₆ (C4H ₆ N ₂)4][Cu(C4H	otétrakis(N-méthyle- 6N2)4Cl]Cl [5]
 K₂[S₂-o-xyle] Ethanol Héxachlorotétrakis(N imidazole-N') [Cu (méthyle- imidazole)₂Cl₂] 	 germination à température et pression ambiantes N-méthyle-imidazole-locuivre(II)chlorure, [C Réaction opérée sous azote N₂ 	solvant • Plusieurs jours N')oxotétra-cuivre(II) chlor Cu ₄ OCl ₆ (C ₄ H ₆ N ₂) ₄][Cu(C ₄ H • Lente évaporation du	otétrakis(N-méthyle- 6N2)4Cl]Cl [5] • Vert-foncé
 K₂[S₂-o-xyle] Ethanol Héxachlorotétrakis(Nimidazole-N') [Cu (méthyle-imidazole)₂Cl₂] Acétonitrile 	 germination à température et pression ambiantes N-méthyle-imidazole-locuivre(II)chlorure, [C Réaction opérée sous azote N₂ germination à 	solvant • Plusieurs jours N')oxotétra-cuivre(II) chlor Cu ₄ OCl ₆ (C ₄ H ₆ N ₂) ₄][Cu(C ₄ H • Lente évaporation du solvant	otétrakis(N-méthyle- 6N2)4Cl]Cl [5] • Vert-foncé
 K₂[S₂-o-xyle] Ethanol Héxachlorotétrakis(N imidazole-N') [Cu (méthyle- imidazole)₂Cl₂] Acétonitrile K₂[S₂-o-xyle] 	 germination à température et pression ambiantes N-méthyle-imidazole-locuivre(II)chlorure, [C Réaction opérée sous azote N₂ germination à température et 	solvant • Plusieurs jours N')oxotétra-cuivre(II) chlor Cu ₄ OCl ₆ (C ₄ H ₆ N ₂) ₄][Cu(C ₄ H • Lente évaporation du solvant • Plusieurs jours	otétrakis(N-méthyle- 6N2)4Cl]Cl [5] • Vert-foncé

II – 3 Les complexes de coordination de type $[Cu_4OCl_6L_4]$ ayant pour ligands L les dérivés du 1H-pyrazole (CSD 2019)

La recherche que nous avons effectué dans la Cambridge data base 2019, nous a conduit à trois complexes ayant pour ligands L, des dérivés du 1H-pyrazole, il s'agit de :

- **Complexe** $N^{\circ}1$: (μ_4 -Oxo)héxakis(μ -chloro)tétrakis(4,5-diméthyle-3-phénylepyrazole) tétracuivre(II) ou encore [Cu₄OCl₆(C₁₁H₁₂N₂)₄] [13];

- **Complexe** N°2: Héxa- μ -chloro- μ 4-oxo-tétrakis-{[5-(2,4,6-triméthyle-phényle)pyrazole- κ N2]cuivre(II) ou encore [Cu₄OCl₆(C₁₂H₁₄N₂)₄] [14] ;
- **Complexe** N°3: Héxa- μ_2 -chlorido- μ_4 -oxido-tétrakis [(3-méthyle-5-phényle-1H-pyrazole- κN^2)cuivre(II)] ou encore [Cu₄Cl₆O(C₁₀H₁₀N₂)₄] [15].

Comme pour les complexes avec les ligands imidazoles, nous avons rassemblé les données expérimentales des trois composés précités dans le tableau 2 ci-dessous.

Tableau 2 Données expérimentales des complexes ayant pour ligands L les dérivés du1H-pyrazole répertoriés dans la CSD 2019

Complexe	Réactifs de synthèse	Conditions	Conditions et temps	Couleur des
N°		opératoires	de formation	Cristaux
	• $CuCl_2.2H_2O$			
1 [13]	• 3,4-diméthyl-5-	• Température	• Plusieurs heures	• Verts
	phényle pyrazole	et Pression		
	●Ethanol	ambiantes		
2 [14]	● CuCl ₂ .H ₂ O ● 3-mésityle-pyrazole ● NaOH	• Température et Pression	 Lente évaporation du solvant Plusiours jours 	• Bleu foncé
	Méthanol			
3 [15]	 CuCl₂.H₂O, 5-méthyle-3- phényle-pyrazole Dichlorométhane 	• Température et Pression ambiantes	 Lente évaporation du solvant Sept jours 	• Marron
	 Méthanol 			

II – 4 Origine de l'atome central d'oxygène du tétramère et rôle du chlorure de cuivre dans la formation du complexe

Parmi les nombreux articles publiés, nous avons effectué une recherche sur l'origine de l'atome central d'oxygène et, le rôle joué par le réactif di-chlorure de cuivre comme catalyseur, dans la formation des tétramères, deux des plus récents, ont retenu notre attention ; il s'agit des travaux effectués par Sabine Becker [1] et, Sabine Löw [16].

Dans l'article [1], il est mentionné que les synthèses, menées avec succès, des complexes oxo, sont effectuées sous atmosphère inerte et, qu'elles sont difficiles, voire infructueuses, dans les conditions normales ; aussi, que ces derniers sont très sensibles à l'humidité [17], [18], [19].

Pour finir, la recherche effectuée, a mené les auteurs de l'article [1] à conclure que, l'atome central d'oxygène provient d'un réactif de départ à savoir le CuO (oxyde de cuivre) ; vu que la synthèse a été effectuée sous atmosphère inerte.

Dans le second article [16], il est stipulé que, la présence d'eau dans le sel de cuivre (CuCl₂. 2H₂O par exemple), est indispensable pour la formation de ce type de complexes, car c'est l'oxygène de la molécule d'eau qui est au cœur de la structure.

III – Synthèses de trois complexes oxo de type $[Cu_4OCl_6L_4]$ avec une unité tétranucléaire $[Cu_4 \ (\mu_2-Cl)_6 \ (\mu_4-O)]$ et, d'un polymère oxo avec une unité trinucléaire $[Cu_3(\mu-Cl)_3(\mu_3O)]$:

III – 1 Mise en contexte

Ce sous-chapitre concerne, tout ce qui à-trait à l'expérience, c'est-à-dire les manipulations et, les modes opératoires des synthèses que nous avons effectué.

Les composés de coordination que nous avons synthétisé et, allons présenter sont au nombre de quatre :

- **Complexe** N°1 : *Hexa* (μ_2 -*chloro*) (μ_4 -*oxo*) (*tétra-imidazole*) *tétra cuivre* (*II*), [Cu₄OCl₆(C₃H₃N₂)₄] structure connue et publiée [4] ;
- Complexe N°2 : Hexa (μ₂-chloro) (μ₄-oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol, [Cu₄OCl₆(C₃H₃N₂)₄].C₂H₅OH;
- Complexe N°3 : Hexa (μ₂-chloro) (μ₄-oxo) Tétra (1-méthyle-pyrazole) tétra cuivre(II), [Cu₄OCl₆(C₄H₆N₂)₄];

Polymère N°4 : Tri (μ-chloro) (μ₃-oxo) tri(μ₂-pyrazolo)bis(1H-pyrazole)tricuivre (II),
 {Cu₃OCl₃(L₁)₂ (L₂)₃}_n (avec L₁ = 1H-pyrazole, L₂= pyrazole).

Il faut savoir que, pour chaque composé de coordination, nous avons effectué plusieurs manipulations, ceci étant, par souci d'optimisation de la concentration, changement de température, en fait, ce sont des changements que nous avions effectués dans les conditions opératoires et de formation des composés. En conséquence, les synthèses que nous allons présenter, ont des paramètres opératoires optimisés, selon la qualité et quantité, des composés obtenus (cristaux).

III – 2 Synthèses du premier complexe : *Hexa* (μ_2 -*chloro*) (μ_4 -*oxo*) (*tétra-imidazole*) *tétra cuivre* (*II*) ou [Cu₄OCl₆(C₃H₃N₂)₄]

En opérant la synthèse de ce complexe, nous avions deux objectifs, à savoir former un tétramère et réaliser une N-méthylation du ligand 1H-imidazole.

Le complexe de coordination de cuivre a été obtenu selon trois modes opératoires différents où, les variables sont le temps de réaction, la proportion des réactifs, la température de chauffage et le temps de germination des cristaux.

Il faut savoir que ce tétramère de cuivre, a été synthétisé et publié, par l'auteur A. Atria [4], selon un mode opératoire différent du notre, raison pour laquelle, nous avons explicité les modes opératoires réalisés, pour confirmer que ce type de synthèse des complexes avec une unité tétranucléaire [Cu₄ (μ_2 -Cl)₆ (μ_4 -O)] peut être effectué différemment.

Le schéma de la réaction est comme suit :

Dans le tableau 3 suivant, nous avons illustré les modes opératoires des 3 synthèses effectuées :

	Synthèse N°1 (in-situ)	Synthèse N°2 (in-situ)	Synthèse N°3 (mélange)
	1H-imidazole=5mmoles,	1Himidazole =4mmoles	1H-midazole =5mmoles
Réactifs et	0.3404g	0.27232g	0.3404g
solvant	$CuCl_2.2H_2O = 5$ mmoles,	$CuCl_2.2H_2O = 4$ mmoles,	$CuCl_2.2H_2O = 3mmoles,$
	0.85235 g	0.68188 g	0.51141 g
	Méthanol =12 ml	Méthanol = 12 ml	Méthanol = 12 ml
Température			
et temps de	130°C et 24 Heures	155°C et 4 Heures	130°C et 24 Heures
chauffage			
	Verte, limpide, dépôt	Verte bouteille, limpide,	Verte bleutée, limpide,
Solution	poudreux vert clair,	fonce au contact du	fonce au contact du
obtenue	fonce au contact du	milieu ambiant	milieu ambiant
	milieu ambiant	PH=6	PH=7
	PH=6		
Conditions et	T=18°C et pression	T=18°C et pression	T=30°C et pression
temps de	ambiantes	ambiantes	ambiantes (soleil)
formation des	Lente évaporation du	Lente évaporation du	Lente évaporation du
cristaux	solvant	solvant	solvant
	t = 03 jours	t = 06 jours	t = 20 Heures
Prélèvement,	Rinçage au méthanol	Rinçage au méthanol	Pas de traitement
couleur des	Miel	Verte	Miel
cristaux			
Masse,	Petite quantité	Petite quantité	m = 0.3176g, R = 49.4%
rendement			
des cristaux			
	Non sensibles à	Non sensibles à	Non sensibles à
conservation	l'humidité, conservés	l'humidité, conservés	l'humidité, conservés
	1 an en Ependorff	1 an en Ependorff	1 an en Ependorff

Tableau 3 Les synthèses du complexe [Cu₄OCl₆(C₃H₃N₂)₄]

III – 3 Synthèses du second complexe de coordination : *Hexa* (μ_2 -*chloro*) (μ_4 -*oxo*) (*tétra-imidazole*) *tétra cuivre* (*II*). *Ethanol* ou [Cu₄OCl₆(C₃H₃N₂)₄]. C₂H₅OH

En opérant la synthèse de ce complexe, nous avions deux objectifs, à savoir ; former un tétramère et, réaliser une N-éthylation du ligand 1H-imidazole.

Nous avons opéré deux synthèses pour ce complexe, dans les conditions hydrothermales, c'est-à-dire à température constante et pression autogène en autoclave. Néanmoins, elles diffèrent par les proportions en réactifs et, le temps de germination des cristaux.

Pour la synthèse N°2, nous avons fait une mesure par analyse élémentaire, dont les résultats sont tabulés, après le mode opératoire.

Le schéma de la réaction est comme suit :

Le tableau 4 ci-dessous représente les synthèses du complexe [Cu₄OCl₆(C₃H₃N₂)₄].C₂H₅OH :

	Synthèse N°1 (in-situ)	Synthèse N°2 (mélange)	
Réactifs et solvant	1Himidazole =5mmoles, 0.3404g	1Himidazole =5mmoles, 0.27232g	
	CuCl ₂ .2H ₂ O=5mmoles, 0.85235g	$CuCl_2.2H_2O = 3mmoles, 0.51141 g$	
	Ethanol =12 ml	Ethanol = 12 ml	
Température et			
temps de	130°C et 24 Heures	130°C et 24 Heures	
chauffage			
	Verte herbe, limpide, dépôt	Verte bleutée, limpide,	
Solution obtenue	poudreux vert clair, fonce au	fonce au contact du milieu ambiant	
	contact du milieu ambiant	PH=7	
	PH=6		
Conditions et	T=35°C et pression ambiantes	T=35°C et pression ambiantes	
temps de	(soleil)	(soleil)	
formation des	Lente évaporation du solvant	Lente évaporation du solvant	
cristaux	t = 03 jours	t = 16 Heures	
Prélèvement,	Rinçage au méthanol	Pas de traitement	
couleur des	Miel	Miel	
cristaux			
Masse, rendement	Petite quantité	m = 0.4298g, R = 63%.	
des cristaux			
	Non sensibles à l'humidité,	Non sensibles à l'humidité,	
conservation	conservés 1 an en Ependorff	conservés 1 an en Ependorff	

Tableau 4 Les synthèses du complexe [Cu₄OCl₆(C₃H₃N₂)₄].C₂H₅OH

► Mesure par analyse élémentaire des cristaux formés dans la synthèse N°2:

Cette mesure a été effectuée, à l'université de Strasbourg en France, au laboratoire de recherche de CNRS-Unistra, sous la direction du Pr D. Matt.

Les résultats de l'analyse élémentaire du complexe $[Cu_4OCl_6(C_3H_3N_2)_4]$. C₂H₅OH, de masse molaire M = 797 g/mole, sont consignés dans le tableau 5 ci-dessous où, sont données, les valeurs théoriques obtenues par calcul des pourcentages à partir de, la masse molaire M du complexe et, les valeurs obtenues par analyse élémentaire soient, à partir de l'échantillon.

[Cu ₄ OCl ₆ (C ₃ H ₄ N ₂) ₄]. C ₂ H ₅ OH	C%	Н%	N%
Valeurs théoriques	20.97	2.75	13.98
Valeurs expérimentales	20.62	2.74	13.57
	20.59	2.75	13.51

Tableau 5 Analyse élémentaire du complexe [Cu₄OCl₆(C₃H₃N₂)₄]. C₂H₅OH

Les résultats donnés par cette mesure, sont en concordance avec ceux calculés théoriquement.

III – 4 Synthèses du troisième complexe de coordination : *Hexa* (μ_2 -chloro) (μ_4 -oxo) Tétra (1-méthyle-pyrazole) tétra cuivre(II) ou [Cu₄OCl₆(C₄H₆N₂)₄]

Le complexe obtenu de cette synthèse, s'est révélé très intéressant, mais ; en même temps a suscité beaucoup de questions quand à sa formation. En effet ; nous avons réalisé une N-méthylation du ligand 1H-pyrazole et synthétisé, à la fois un tétramère à base de cuivre.

Pour y répondre, nous avons dû clarifier certains points, et pour lever les ambigüités, nous avons effectués cinq synthèses différentes, à quelques variables près.

En conséquence ; nous avons effectuées la synthèse N°3, dans le but de vérifier, l'origine de l'atome d'oxygène central, nous avons pour ce faire, ouvert le réacteur en atmosphère inerte (Glove box). En opérant la synthèse N°5, nous voulions vérifier, si la réaction de N-méthylation pouvait s'effectuer, en l'absence du chlorure de cuivre CuCl₂.2H₂O.

Pour la synthèse N°4, nous avons réalisé une mesure par analyse élémentaire, dont les résultats sont donnés après son mode opératoire.

Le schéma de la réaction est comme suit :

Les tableaux 6 et 7 ci-après, représentent les 5 synthèses effectuées pour le complexe $[Cu_4OCl_6(C_4H_6N_2)_4].$

	SynthèseN°1 (in-situ)	Synthèse N°2 (in-situ)	Synthèse N°3 (in-situ)
	1H-pyrazole	1H-pyrazole	1H-pyrazole
Réactifs et	4mmoles	8mmoles	4mmoles
solvant	solvant 0.27232g 0.5		0.27232g
	CuCl ₂ .2H ₂ O	CuCl ₂ .2H ₂ O	CuCl ₂ .2H ₂ O
	1mmole, 0.17049g	2mmole, 0.34098g	1mmole, 0.17049g
	Méthanol =12 ml	Méthanol =24ml	Méthanol =12 ml
Température et			
temps de	180°C et 24 Heures	180°C et 4 Heures	180°C et 24 Heures
chauffage			
Solution obtenue	Incolore, limpide, se	Incolore, limpide, se	Incolore, limpide, pas
	colore en vert kaki au	colore en vert au	de contact avec le
	contact du milieu ambiant,	contact du milieu	milieu ambiant, reste
	dépôt poudreux	ambiant,	sous atmosphère inerte,
	PH=6	PH=6	pas de coloration
Conditions et	T=20°C et pression	T=25°C et pression	Pas de cristaux, solution
temps de	ambiantes	ambiantes	incolore
formation des	Lente évaporation du	Lente évaporation du	
cristaux	solvant	solvant	
	t = 06 jours	t = 08 jours	
Prélèvement,	Rinçage au méthanol	Sans traitement	Pas de cristaux
couleur des	Miel	Miel	
cristaux			
Masse,	Quantité moyenne	Petite quantité	
rendement des			
cristaux			
	Non sensibles à		
conservation	l'humidité, conservés		
	1 an en Ependorff		

Tableau 6 Synthèses N°1, 2 et 3 du complexe [Cu₄OCl₆(C₄H₆N₂)₄]

	SynthèseN°4 (in-situ)	Synthèse N°5 (in-situ)
	1Hpyrazole	1Hpyrazole
Réactifs et	4mmoles	4mmoles
solvant	0.27232g	0.54464g
	CuCl ₂ .2H ₂ O	Méthanol =12ml
	1mmole, 0.17049g	
	Méthanol =12 ml	
Température et		
temps de	180°C et 24 Heures	180°C et 4 Heures
chauffage		
Solution obtenue	Incolore, limpide, se colore en vert	Incolore, limpide
	kaki au contact du milieu ambiant,	
	dépôt poudreux	
	PH=6	
Conditions et	T=35°C et pression ambiantes	T=25°C et pression ambiantes
temps de	(soleil)	Lente évaporation du solvant
formation des	Lente évaporation du solvant	t = quelques heures
cristaux	t = 21 Heures	
Prélèvement,	Sans traitement	Sans traitement
couleur des	Miel	Transparente, c'est le 1H-pyrazole
cristaux	(voir photographies)	
Masse,	m = 0.3211g R = 89%	
rendement des		
cristaux		
	Non sensibles à l'humidité,	
conservation	conservés	
	1 an en Ependorff	

Tableau 7 Synthèses du complexe [Cu₄OCl₆(C₄H₆N₂)₄]

A travers les photographies ci-dessous, nous avons suivi, l'évolution de la couleur de la solution, pour la synthèse N°4.

A la sortie

Après 3 minutes

Après 6 minutes

Après 9 minutes

Après 30 minutes

Après 60 minutes

▶ Mesure par analyse élémentaire des cristaux formés dans la synthèse N°4:

Cette mesure a été effectuée, à l'université de Strasbourg en France, dans le laboratoire de recherche de CNRS-Unistra, sous la direction du Pr D. Matt.

Les résultats de l'analyse élémentaire du complexe $[Cu_4OCl_6(C_4H_6N_2)_4]$ de masse molaire M = 811 g/mole, sont consignés dans le tableau 8 ci-dessous où, sont données, les valeurs théoriques obtenues par calcul des pourcentages à partir de, la masse molaire M du complexe et, les valeurs obtenues par analyse élémentaire soient, à partir de l'échantillon.

$[Cu_4OCl_6(C_4H_6N_2)_4]$	C%	Н%	N%
Valeurs théoriques	23.67	2.96	13.81
Valeurs expérimentales	23.70	3.06	13.84
	23.63	3.06	13.72

Tableau 8 Analyse élémentaire du complexe de formule chimique [Cu₄OCl₆(C₄H₆N₂)₄]

Les résultats donnés par cette mesure, sont en concordance, avec ceux calculés théoriquement.

III – 5 Synthèse du polymère de coordination: *Tri* (μ -chloro) (μ_3 -oxo) tri(μ_2 pyrazolo)bis(1H-pyrazole)tricuivre (II) ou {Cu₃OCl₃(L₁)₂ (L₂)₃_n (avec L₁ = 1H-pyrazole, L₂= pyrazole)

III – 5 – 1 Mise en contexte

Nous avons décrit, dans le sous-chapitre III - 4, la synthèse d'un complexe avec une unité tétra nucléaire [Cu₄ (μ_2 -Cl)₆ (μ_4 -O)], avec le ligand 1H- pyrazole et, une réaction très intéressante qu'est la N-méthylation.

Et comme nous n'avons pas pu reproduire cette dernière avec le ligand 1H-imidazole, nous avons, gardé le même ligand soit le 1H-pyrazole et, ne changer que le solvant soit le méthanol par l'éthanol et le propanol-2, pour produire des complexes avec une unité tétra nucléaire [Cu₄ $(\mu_2$ -Cl)₆ $(\mu_4$ -O)] dont le ligand serait respectivement N-éthylé et N-propylé.

III – 5 – 2 Synthèse d'un tétramère de cuivre avec un ligand 1H-pyrazole qui serait Néthylé

Cette synthèse a été effectuée, dans les mêmes conditions opératoires et de formation, que le complexe héxa (μ_2 -chloro) (μ_4 -oxo) Tétra (1-méthyle-pyrazole) tétra cuivre(II), la seule différence, étant le solvant, soit l'éthanol.

Elle a été vaine, malgré le fait que nous ayons obtenus des cristaux de couleur miel, ils n'ont pas diffracté les rayons X, ils se sont dégradés, bien que les étapes de formation des cristaux du présumé complexe N-éthylé, photographiées ci-après, étaient identiques à celles du complexe $[Cu_4OCl_6(L_2)_4]$ (L_2 : 1-méthyle-pyrazole) :

III – 5 – 3 Synthèse du polymère $\{Cu_3OCl_3(L_1)_2 \ (L_2)_3\}_n$ (avec $L_1 = 1H$ -pyrazole, $L_2 = pyrazole$):

La deuxième tentative réactionnelle, visant l'obtention d'un complexe de cuivre oxo, avec une unité tétra nucléaire $[Cu_4(\mu_2-Cl)_6(\mu_4-O)]$ et, dont le ligand serait N-propylé, n'a pas été vaine, mais surprenante, nous y avons rencontré les aléas de la chimie, qui est loin d'être une science prévisible, nous n'avons certes, pas réussi à N-propyler le ligand 1H-pyrazole et, former un tétramère à base de cuivre, mais nous avons produit un polymère oxo avec une unité trinucléaire $[Cu_3(\mu-Cl)_3(\mu_3O)]$; structure originale et ne figurant pas dans la banque de données CSD 2019.

Le mode opératoire du polymère de coordination, de formule $\{Cu_3OCl_3(L_1)_2 (L_2)_3\}_n$ (avec $L_1 = 1H$ -pyrazole, $L_2 = pyrazole$), est le suivant :

Dans une chemise en téflon, sont introduits sans mélange préalable (in-situ), les réactifs et solvant suivants :

1H-Pyrazole : 4 mmoles \rightarrow 0.27232 g ;

CuCl₂.2H₂O : 1 mmole \rightarrow 0.17049 g ;

Solvant : 12 ml de propanol-2.

L'autoclave est introduit dans une étuve réglée à 180°C, puis chauffé durant 24 heures.

A la fin de la réaction et après refroidissement complet, nous avons obtenu une solution limpide, incolore de PH = 7 et qui se teinte en vert bleuté ; et fonce à mesure que le temps passe, par simple exposition aux conditions ambiantes, à savoir, laboratoire aéré et éclairé naturellement, dont la température dépasse 30° C avec une pression ambiante.

Le schéma de la réaction est comme suit :

Nous avons suivi l'évolution de la couleur en fonction de plusieurs temps arrêtés, puis ; la formation du polymère par le biais des photographies ci-dessous :

A la sortie

Après 3 minutes

Après 5 minutes

Après 20 minutes

Après 20 minutes

Après 35 minutes

Après 45 minutes

Après 100 minutes

Après 100 minutes

Aux vues de la dernière photographie, les particules cristallines de couleur bleue durs sous forme d'aiguilles, se sont formées après un temps estimé à 100 minutes, nous avons néanmoins, par souci de qualité des cristaux, attendu vingt heures de plus, pour les prélever en échantillon, tels quels, sans rinçage ni traitement et, en grande quantité (voir photographies), de masse m = 0.2493g et avec un rendement R = 86.6%.

III – 6 Observations, premières déductions de toutes les synthèses effectuées

III – 6 - 1 Résumé de toutes les synthèses effectuées

Ce sous-chapitre est destiné à, faire une synthèse de toutes les manipulations effectuées. Nous avons rassemblé, dans le tableau 9 suivant, les conditions opératoires de toutes les synthèses réalisées :

Tableau 9	Conditions	onératoires	de toutes	les synthèse	es des com	nosés de d	coordination
Lancau 2	Continuons	טווידי מנטוו כא	ue toutes	ics symmetry	es des com	ipuses ue u	LUUI UIIIAUUII

Manipulations	Proportions des Température de		Temps de chauffage			
	réactifs réaction (°C)		Heures			
Complexe N°1	Complexe N°1 Hexa (μ_2 -chloro) (μ_4 -oxo) (tétra-imidazole) tétra cuivre (II)					
1	5 : 5 (in-situ)	130	24			
2	4 : 4 (in-situ)	155	4			
3	5:3 (mélangés)	130	24			
Complexe N°2 <i>He</i> .	xa (μ ₂ -chloro) (μ ₄ -oxo)	(tétra-imidazole) tétra	cuivre (II).Ethanol			
1	5 : 5 (in-situ)	130	24			
2	5:3 (mélangés)	130	24			
Complexe N°3	Hexa (μ ₂ -chloro) (μ ₄ -o	xo) Tétra (1-méthyle-py	vrazole)tétra cuivre(II)			
1	4 : 1 (in-situ)	180	24			
2	8 : 2 (in-situ)	180	24			
3	4 : 1 (in-situ)	180	24			
4	4 : 1 (in-situ)	180	24			
5	4 (in-situ) 180 24		24			
Polymère N°4	: Tri(µ-chloro)(µ ₃ -oxo)	tri(µ ₂ -pyrazolo)bis(1H	-pyrazole)tricuivre (II)			
1	4 : 1 (in-situ)	180	24			

Nous avons répertoriés, les conditions de formation des quatre composés de coordination, dans le tableau 10 ci-dessous, elles représentent en fait, les paramètres du milieu ambiant, à savoir, température, pression, éclairage, aération (naturelle ou climatisation).

Nous avons rajouté dans ce même tableau, le temps de formation de chaque composé, pour distinguer l'impact de ces paramètres sur ce dernier.

Tableau 10 Conditions de formation des quatre composés de coordination

Manipulations	Température et	Eclairage et	Temps de	Couleur des
	pression	Aération	formation	cristaux
	ambiantes			
Complex	Complexe N°1 Hexa (μ_2 -chloro) (μ_4 -oxo) (tétra-imidazole) tétra cuivre (II)			
1	18°C, pression	lumière et	03 jours	Miel
	basse	aération		
		naturelles		
2	18°C, pression	lumière et	06 jours	Vert
	basse	aération		
		naturelles		
3	30°C, pression	Lumière et	20 heures	Miel
	haute	aération		
		naturelles		
Complexe N°2 Hexa (μ_2 -chloro) (μ_4 -oxo) (tétra-imidazole) tétra cuivre (II).Ethanol				
1	35°C, pression	Lumière et	03 jours	Miel
	haute	aération	5	
		naturelles		
2	35°C, pression	Lumière et	16 heures	Miel
	haute	aération		
		naturelles		
Complexe N°3 Hexa (µ ₂ -chloro) (µ ₄ -oxo) Tétra (1-méthyle-pyrazole)tétra cuivre(II)				
1	20°C, pression	lumière et	06 jours	Miel
	basse	aération		
		naturelles		

2	25°C, pression	lumière néon	08 jours	Miel
	négative	et aération par		
		climatisation		
3	Atmosphère inerte	Lumière néon	Pas de complexe	Pas de cristaux
		et pas		
		d'aération		
4	35°C, pression	lumière et	21 heures	Miel
	haute	aération		
		naturelles		
5	25°C, pression	lumière néon	Pas de N-	Transparents
	négative	et aération par	méthylation	
		climatisation		
Polymère N°4 : $Tri(\mu$ -chloro)(μ_3 -oxo) tri(μ_2 -pyrazolo)bis(1H-pyrazole)tricuivre (II)				
1	30°C, pression	lumière et	100 minutes	Bleu dur
	haute	aération		
		naturelles		

III – 6 – 2 Observations expérimentales

Les observations expérimentales, pour chaque structure, sont les suivantes :

► Complexe N°1 : [Cu₄OCl₆(C₃H₃N₂)₄]

Nous avons remarqué que, des trois manipulations effectuées, la N°1 et 3 avaient produit des cristaux de couleur miel, tandis que la N°2 avait des cristaux de couleur verts. En examinant les conditions opératoires, nous avons trouvé que le temps de la manipulation N°2 avait été écourté à 04 heures et le temps de chauffage augmenté à 155°C.

$\blacktriangleright \text{ Complexe } N^{\circ}2 : [Cu_4OCl_6(C_3H_3N_2)_4].C_2H_5OH$

Comparée à la synthèse N°1, dans la N°2 nous avons baissé la concentration en chlorure de cuivre di-hydraté de deux unités et, avons aussi, effectué le mélange des réactifs avant le chauffage. Les solutions obtenues étant, exposées aux mêmes conditions de germination, la N°2 a produit des cristaux en grande quantité, contrairement à la N°1.

► Complexe N°3 : [Cu₄OCl₆(C₄H₆N₂)₄]

• En comparant, les synthèses N°1 et 4, nous avons remarqué que l'augmentation de la température et de la pression, diminuait de façon remarquable, le temps de germination des cristaux ; en effet, il est respectivement de 06 jours et de 21 heures.

• Le temps de formation du complexe dans la synthèse N°2, est relativement longs, il est de 08 jours, nous avons cherché les conditions opératoires et environnementales, qui pourraient influencer ce dernier et, les avons énoncés comme suit :

- un système de ventilation dans le laboratoire à pression négative ;
- une température maintenue constante, d'environ 25°C, grâce à la climatisation ;
- un éclairage au néon.
- Le tétramère à base de cuivre, ne se forme pas sous atmosphère inerte.

• La réaction de N-méthylation, ne s'effectue pas en l'absence du di-chlorure de cuivre dihydraté.

► Polymère N°4 : $\{Cu_3OCl_3(L_1)_2 (L_2)_3\}_n$ (avec $L_1 = 1H$ -pyrazole, $L_2 = pyrazole$)

• Le temps de formation de ce polymère est beaucoup plus court, comparé avec celui des trois complexes précédents. Ayant les mêmes conditions de formation, la seule différence que nous avons observée, réside dans le solvant utilisé, c'est-à-dire le propanol-2.

• En substituant le méthanol par le propanol-2, nous n'avons pas obtenu un tétramère, mais un trimère à base de cuivre et, n'avons pas pu réaliser une N-propylation du ligand 1Hpyrazole.

Observations expérimentales communes aux composés de coordination avec le ligand 1H-imidazole

• Les manipulations N°1 et 2 visant la formation du complexe $[Cu_4OCl_6(C_3H_4N_2)_4].C_2H_5OH$, avaient pour proportions respectives, des réactifs de départ, 5 : 5 et 5 : 3 ; la solution obtenue après chauffage était colorée et au contact avec le milieu ambiant, elle a foncé.

Lorsque nous avons effectué des synthèses pour obtenir un tétramère N-méthylé avec le ligand 1H-imidazole, nous avions utilisé les proportions 4 : 2, 4 : 2 et 4 : 3 ; la solution obtenue après chauffage était pratiquement incolore et au contact avec le milieu ambiant, elle s'est teintée en vert.

Nous déduisons que, comme pour le 1H-pyrazole, après chauffage, les solutions se décolorent, et si nous avons récupéré des solutions colorées, c'est par rapport à la proportion de CuCl₂.2H₂O utilisée pour la synthèse.

► Observations expérimentales communes aux quatre composés de coordination

• Toutes les structures obtenues ont suivi, dans leur formation, deux étapes distinctes, à savoir ; un chauffage en autoclave ou réacteur fermé et, une exposition au milieu ambiant avec formation du composé de coordination, par lente évaporation du solvant.

• Toutes les solutions obtenues après chauffage en réacteur fermé, étaient soit, incolores ou alors teintées, dans tous les cas, au contact du milieu ambiant, il ya un changement de couleur. Le fait qu'elles soient incolores signifie que le degré d'oxydation de l'atome de cuivre est I, même légèrement teintées, nous pensons que c'est le même degré d'oxydation, et que la coloration est due au sel de cuivre en excès. Par conséquent, le chauffage en réacteur fermé, a réduit le cation de cuivre (II) en Cu (I).

• Lorsque la solution, récupérée après chauffage, est exposée au soleil, le temps de formation des tétramères est nettement réduit.

• Nous avons trouvé une corrélation entre la température, pression et, le solvant utilisé avec, le temps de formation des tétramères et trimère, nous les avons, par souci de clarté, tabulé comme suit :

Tableau 11 Mise en évidence de la corrélation entre la T° et P et le temps de formationdes composés de coordination

Tétramères ou trimère	Température et	Temps de	Solvant
	pression relative	formation	
$[Cu_4OCl_6(C_3H_3N_2)_4]$	35°C et pression	t = 20 heures	Méthanol
	conséquente		
[Cu ₄ Ocl ₆ (C ₃ H ₃ N ₂) ₄].EtOH	35°C et pression	t = 16 heures	Ethanol
	conséquente		
$[Cu_4Ocl_6(C_4H_6N_2)_4]$	35°C et pression	t = 21 heures	Méthanol
	conséquente		
${Cu_{3}OCl_{3}(L_{1})_{2}(L_{2})_{3}}_{n}$	30°C et pression	t = 100 minutes	Propanol-2
L ₁ =1H-pyrazole,	conséquente		
L ₂ =pyrazole			

De part le tableau 11 ci-dessus, nous voyons clairement que lorsque, la température et la pression augmentent et, que le nombre d'atomes de carbone de l'alcool utilisé, augmente ; le temps de formation des tétramères/trimère diminue, de façon remarquable.

III – 6 – 3 Premières déductions de la formation d'un composé oxo ayant pour ligands les 1H-imidazole ou 1H-pyrazole

▶ Le changement de couleur de la solution au contact du milieu ambiant

Après chauffage, les solutions étaient incolores et, au contact du milieu ambiant, se sont teintées et d'autres, ont foncé, comme nous l'avons mentionné dans les observations, c'était la grande concentration du CuCl₂.2H₂O qui en était la cause.

En conséquence ; la solution incolore, signifie que la réaction de chauffage, a provoqué la réduction du cation de cuivre (II) initial, contenu dans le sel CuCl₂.2H₂O, en cuivre (I) ; et que la coloration de la solution, au contact du milieu ambiant, est un phénomène d'oxydation, il est lié à deux paramètres, à savoir : l'intrusion et solubilisation du dioxygène atmosphérique dans la solution et, **l'oxydation** de l'atome Cu^+ en Cu^{++} .

Dans la synthèse N°3 du complexe N°3 (voir tableau 10), sous atmosphère inerte, il n'y a pas eu de changement de couleur, ni de formation du tétramère.

Par conséquent ; le ligand qu'est l'atome central de toutes les structures obtenues, est un constituant de l'air : il s'agit du dioxygène atmosphérique O_2 .

A partir de cette déduction ; nous pouvons affirmer qu'aucune structure, ne s'est formée pendant le chauffage en système fermé car ; il y aurait manqué un ligand à savoir, l'atome d'oxygène.

L'exposition au soleil

Après chauffage, l'exposition de la solution obtenue au soleil, accélère la formation des tétramères et trimères (voir tableau 10).

Le soleil agit comme un catalyseur de la réaction, en effet les UVA vont chauffer la solution, pour augmenter l'agitation des molécules dont, les collisions du dioxygène atmosphérique, favorisant sa solubilité.

Il faut savoir que cette dernière augmente dans les alcools, à mesure que le nombre de carbones augmente (voir chapitre I, sous-chapitre III -3 - 2 - 2) et, que la température augmente.

► La température et la pression

La température et la pression ont, un impact direct sur le temps de formation des tétramères et trimère, en effet ; lorsqu'elles augmentent, ce dernier diminue et inversement, soient, à température de 25°C et pression négative, il augmente et, atteint 08 jours.

► La N-méthylation du ligand 1H-pyrazole

La présence du réactif, di-chlorure de cuivre di-hydraté est impérative, pour que la Nméthylation du ligand 1H-pyrazole se produise, c'est donc un précurseur de réaction, dont nous expliciterons, le rôle dans le sous-chapitre IV ci-dessous. IV – Etablissement du chemin réactionnel, analyse et interprétation chimique de la formation des tétramères/trimère à base de cuivre :

IV – 1 Mise en contexte

A partir des observations et des premières déductions que nous avons établit ci-dessus, nous pouvons dire que, la synthèse des quatre structures, est divisée en deux étapes, à savoir :

- Le chauffage en réacteur fermé ;
- Le contact avec l'oxygène atmosphérique, le second ligand, suivi d'une réaction d'oxydation, catalysée ou inhibée par, des températures et pressions respectivement, hautes ou basses.

Pour pouvoir mener à bien, notre analyse et interprétation, des mécanismes réactionnels en présence, nous allons tenter d'expliquer, dans un premier lieu, ce qui se passe dans le réacteur, lors du chauffage ; puis en second lieu, le contact avec le milieu ambiant, soient l'oxygène atmosphérique, la température et la pression.

IV – 2 Le chauffage en système ou réacteur fermé

C'est la première étape du chemin réactionnel menant à la formation des tétramères/trimère à base de cuivre, pour l'expliciter, nous avons établi dans un ordre chronologique, les étapes de transformation des réactifs en système fermé.

IV – 2 – 1 La mise en contact des réactifs avec le solvant : la dissolution

De toutes les synthèses effectuées, les réactifs n'ont pas été mélangés (in-situ), à l'exception de deux, où nous avons effectués un mélange préalable.

Les solvants utilisés sont des alcools à savoir ; le méthanol, l'éthanol et le propanol-2 ; les réactifs, sont les ligands 1H-imidazole et 1H-pyrazole, ainsi que, le chlorure de cuivre dihydraté CuCl₂.2H₂O, lorsqu'ils ne sont pas mélangés (in-situ), la dissolution sera, légèrement retardée, jusqu'au début de chauffage. Sachant que, ce sont les forces ion-dipôle qui causent la dissolution des solides, c'est-à-dire des attractions qui s'exercent entre les dipôles des molécules de solvant et, les cations et anions, par conséquent ; en solution, se sont ces mêmes forces, qui vont désagréger, le système cristallin d'un composé ionique soluble et, diminuer la tendance des ions à retourner à l'état cristallin [20] (voir chapitre I, sous-chapitre II – 3 – 3 - 2).

D'une façon générale, les entités ioniques dissolues, des réactifs que nous retrouvons dans toutes les synthèses confondues, sont les suivantes :

• Cu²⁺, Cl⁻, H⁺, OH⁻, ces anions et cations sont ceux du sel de cuivre, ils seront soumis aux attractions ion-dipôle, avec les molécules d'alcools (méthanol, éthanol et propanol-2) [20].

• De la même façon, les particules ioniques des ligands 1H-imidazole et 1H-pyrazole, soient ; les cations H+ et les anions imidazolyle et pyrazolyle ; seront soumises aux attractions iondipôle, avec les molécules d'alcools (méthanol, éthanol et propanol-2) [20].

En solution et sans chauffage, ces formes ioniques, se retrouvent serrées les unes contre les autres et, les forces intermoléculaires sont suffisamment grandes, pour les maintenir à l'intérieur d'un volume fixe, mais non, pour leur donner une forme bien définie [20].

IV – 2 – 2 Transformation de la matière en système fermé

IV – 2 – 2 – 1 Action du chauffage sur les forces intermoléculaires

Le chauffage des solutions, en système fermé, à des températures élevées soient, 130, 155 et 180°C, en comparaison avec, les points d'ébullition et fusion des solvants et réactifs (voir tableau 12 ci-dessous) ; va générer une très grande agitation qui, à son tour, va produire un changement de phase, c'est le phénomène de vaporisation (voir le premier chapitre II -3 - 3 - 4) [20].

Solvants	Points d'ébullition (°C)
Méthanol	65.15 [23]
Ethanol	78.5 [23]
Propanol-2	82.4 [23]
Réactifs	Points d'ébullition et de fusion (°C)
1H-pyrazole	186, 70 [23]
1H-imidazole	257, 90 [23]
Chlorure de cuivre di-hydraté	630 [23]

Tableau 12 Points d'ébullition et fusion de tous les réactifs et solvants de synthèse

A mesure que la température augmente, nous atteignons le point critique (voir le premier chapitre, II - 3 - 3 - 4 - b) où, la pression du gaz qui s'exerce au dessus du liquide augmente continuellement, tandis que la vapeur s'accumule, de sorte que les bulles de vapeur qui se forment dans le liquide sont écrasés par la pression, à ce stade de la réaction, il devient impossible de distinguer les deux états, liquide et gazeux [20].

Les molécules sont, complètement libérées des forces intermoléculaires, qui les maintiennent en solution, leur réactivité dans ces conditions, ne sera régie que, par leurs propriétés chimiques [20].

Dans toute recherche expérimentale, nous ne pouvons pas prédire de façon exacte, ou encore, prévoir avec certitude, le comportement et la réactivité des particules chimiques, surtout, lorsqu'elles sont soumises, à des conditions drastiques de température et pression.

Néanmoins, nous pouvons prévoir, de façon théorique à partir de la littérature et, de leurs propriétés chimiques, leur réactivité dans des milieux bien définis.

IV – 2 – 2 – 2 Propriétés chimiques des formes réactives générées par chauffage

Le chauffage en réacteur fermé a libéré, les formes ioniques en solution, des forces intermoléculaires, les rendant réactives selon, leurs propriétés chimiques.

Dans toutes les synthèses que nous avons effectués, les réactifs et solvants que nous avons employés, sont des molécules organiques et inorganiques.

Dans ce qui suit, nous avons répertorié, les espèces réactives, avec quelques unes de leurs propriétés.

► Le cation cuivreux de source CuCl₂.2H₂O

Il s'agit d'un acide de Lewis, qui plus est, électrophile (voir chapitre I, sous-chapitre IV) [24], [25], [26].

► L'anion chlorure de source CuCl₂.2H₂O

L'anion chlorure est un nucléophile, c'est une base de Lewis [27].

De plus, c'est un des éléments les plus électronégatifs, avec une valeur de l'électronégativité calculée sur l'échelle de Pauling $\chi_p(Cl) = 3.2$ [27].

► Le proton H⁺

Les sources de ce cation sont multiples, à savoir :

*La molécule d'eau du sel CuCl₂.2H₂O ;

*Les ligands 1H-imidazole ou 1H-pyrazole, dont l'hydrogène est labile en solution [28];

*Les solvants, soient le méthanol, l'éthanol ou le propanol-2,

Ces alcools se dissocient en ion alcoolate et proton H^+ , en milieu basique ; donc nous ne pouvons retrouver H^+ , qu'à cette condition [25].

► L'anion OH⁻ de source CuCl₂.2H₂O

Cet anion à caractère basique, est nucléophile [22].

► Les ions générés par les solvants, méthanol, éthanol et propanol-2

Ces ions sont générés par des alcools dont, la réactivité est conditionnée par l'acidité ou la basicité du milieu, par conséquent, nous allons, dans ce qui suit, définir la réactivité des alcools.

Théoriquement, les caractéristiques du groupement fonctionnel des alcools qui déterminent leur réactivité sont : la polarisation des liaisons C-O et O-H.

Cette dernière est due, à la forte électronégativité de l'oxygène et, la présence sur ce dernier, de deux doublets libres :

Selon des conditions précises, les alcools peuvent réagir de deux façons :

- Par rupture de la liaison O-H

Se produisant en milieu basique (base forte), soit un milieu riche en nucléophiles. L'hydrogène « fonctionnel » présente une certaine labilité, ou aptitude à se laisser « arracher » par une base, sous la forme H^+ , avec la formation d'un ion alcoolate RO^- (B = base) :

$$RO-H+B$$
 \rightarrow RO $+BH$

Dans ce cas, les ions générés sont : le méthanolate, l'éthanolate et le propanolate-2.

- Par rupture de la liaison C-O, qui se produit en milieu acide.

La « protonation » de l'oxygène entraîne la formation d'un ion oxonium :

L'ion oxonium ainsi formé, a la possibilité :

- de conduire à la formation d'un carbocation R^+ et d'une molécule d'eau :

Les réactions associées à cette rupture de la liaison C-O résultent soit ; de la fixation d'un nucléophile sur R^+ , le bilan étant la substitution de OH par ce nucléophile, soit ; du départ d'un proton H^+ en α du carbone portant la charge +, le bilan étant l'élimination de H et OH et la formation d'une double liaison.

Cette rupture est d'autant plus facile que l'alcool est secondaire ou tertiaire.

- d'évoluer directement, sans formation du carbocation, par fixation d'un nucléophile sur le carbone lié à l'atome d'oxygène et, départ simultané de la molécule d'eau.

Cette rupture est d'autant plus facile que l'alcool est primaire.

Les alcools peuvent donc jouer le rôle d'un acide en présence d'une base, et celui d'une base en présence d'un acide ; ils sont amphotères. En milieu neutre, aucun des deux schémas n'est possible et les alcools sont pratiquement non réactifs [25]. ► Les anions imidazolyle et pyrazolyle de sources respectives, 1H-imidazole et 1Hpyrazole

- Les 1H-imidazoles sont des bases fortes, ainsi, en présence d'électrophiles, ils produisent le cation imidazolium ; tandis qu'avec des nucléophiles, ils donnent l'anion imidazolyle, par conséquent, se sont également des acides faibles, qui se comportent comme des systèmes amphotères ; c'est-à-dire qu'ils sont à la fois acides et basiques (voir chapitre I, sous-chapitre III 2 5 1) [29].
- Les 1H-pyrazoles sont des bases faibles, comparés à leurs homologues les 1H-imidazoles, ainsi ; avec leur hydrogène labile, ils sont acides, dans le même ordre de grandeur que, les 1H- imidazoles et, donnent l'anion pyrazolyle en présence de nucléophiles (voir chapitre I, sous-chapitre III 2 5 1) [29].

IV – 2 – 2 – 3 Acidité ou basicité d'une molécule en synthèse organique

a-Mise en contexte

En établissant les propriétés des espèces réactives, générées par chauffage, nous avons été confrontés, au problème des alcools, dont la réactivité était conditionnée par, l'acidité ou la basicité du milieu réactionnel.

Pour juger de l'acidité ou de la basicité, d'un milieu réactionnel, en chimie organique, nous allons introduire, un paramètre définissant la notion d'acidité d'une molécule ou, d'un groupement fonctionnel, il s'agit du produit de solubilité Pka, qui représente le logarithme de l'acidité a [30].

b-Notion d'acidité d'une molécule et Pka des réactifs et solvants utilisés en synthèse

Une des notions les plus importantes en chimie organique, est l'acidité d'une molécule.

En effet, de nombreuses réactions commencent par arracher un proton acide.

Contrairement à la chimie générale où, sont utilisés des acides et des bases, pour faire des dosages, en chimie organique, on les utilise pour la synthèse.

En chimie organique, l'échelle des Pka est plus grande et, plus étendue que celle utilisée en chimie générale (c'est-à-dire la chimie dans l'eau).

Ainsi, OH^{-} dont le Pka = 15.74, n'est pas une base forte en chimie organique.

En revanche, les bases de Pka > 30, sont des bases fortes, car on travaille dans des solvants organiques et, non plus dans l'eau.

Les Pka que nous allons représenter dans le tableau 13 suivant, concernent les alcools primaires, secondaires et tertiaires ; aussi que la molécule 1H-imidazole [30].

Tableau 13 valeurs des Pka des alcools et de la molécule 1H-imidazole [30]

Groupement ou	Forme acide	Forme basique	Pka
molécule			
Méthanol	CH ₃ OH	CH ₃ O ⁻	15.2
Ethanol	R ₁ OH R ₂	R_1 R_2 O^{\odot}	16.5
Propanol-2	R_1 R_2 OH R_3	$\begin{array}{c c} R_1 \\ R_2 \\ \hline \\ R_3 \\ \hline \\ \\ R_3 \\ \hline \\ \end{array} \\ \begin{array}{c} \Theta \\ \\ \Theta \\ \\ \Theta \\ \\ \\ \end{array} \\ \begin{array}{c} \Theta \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \Theta \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \Theta \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \Theta \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \Theta \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \Theta \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	17
1H-imidazole	[®] / ^H N N H	N N H	7
1H-imidazole	N N H		14.52

Remarques liées au tableau 13 :

- R₁, R₂, R₃ représentent des radicaux quelconques, dont l'influence sur la valeur du Pka, n'est pas notable.
- Pour la molécule 1H-imidazole, il y a deux Pka possibles, c'est-à-dire deux acidités.

La première, de Pka = 7, la plus acide concerne la protonation, la seconde, de Pka = 14.52 concerne la déprotonation [30].

Finalement, au vu de ce tableau, on constate que le plus important, n'est pas la valeur absolue du Pka d'une espèce, mais plutôt, les valeurs relatives du Pka des différentes espèces.

Ce qui, lors de la synthèse, permet de travailler sélectivement sur une fonction plutôt qu'une autre [30].

Avec ces données, nous pouvons déterminer l'acidité du milieu, en comparant les valeurs des produits de solubilité, en fonction des réactifs utilisés en synthèse.

IV – 2 – 3 Les réactions de N-méthylation, N-éthylation et N-propylation des ligands 1Himidazole et 1H-pyrazole

IV - 2 - 3 - 1 Mise en contexte

Dans le travail de recherche expérimental que nous avons effectué, nous n'avons réussi à effectuer la réaction de N-méthylation que, sur le ligand 1H-pyrazole.

Nous avons vérifié de façon expérimentale, que cette réaction ne pouvait être opérée que, dans un système fermé, dans des conditions de hautes température et pression.

Ce sous-chapitre est destiné à, expliquer chimiquement, en vue de l'aboutissement d'un mécanisme réactionnel plausible ; mais aussi, à justifier, en donnant les causes à l'origine de l'échec des synthèses, avec les réactifs et solvants : méthanol avec 1H-imidazole, éthanol avec 1H-pyrazole et enfin, propanol-2 avec 1H-pyrazole.

Nous tenons à souligner que, pour effectuer l'interprétation de la réaction, nous considérons tous les solvants, à savoir le méthanol, l'éthanol et le propanol-2 comme, étant aussi, des réactifs.

IV – 2 – 3 – 2 Les réactions de N-méthylation, N-éthylation et N-propylation du ligand 1H-pyrazole

► La réaction de N-méthylation du ligand 1H-pyrazole

Le milieu réactionnel est constitué de :

- Un ligand 1H-pyrazole de Pka = 14.52, base faible ;
- CuCl₂.2H₂O dont les formes ioniques sont: Cu²⁺ (acide de Lewis), 2Cl⁻ (nucléophile),
 2H⁺ (acide de Lewis), 2OH⁻ (base de Lewis) ;
- Le méthanol de Pka = 15.2.

En comparant les valeurs des Pka, du méthanol et du 1H-pyrazole, nous déduisons que ce dernier est plus acide que le méthanol. Aussi, dans le milieu réactionnel, nous retrouvons des cations Cu²⁺ soient, des acides de Lewis, en l'absence desquels, la réaction de N-méthylation ne s'effectue pas (voir synthèse N°5, sous-chapitre III - 4), ils ont donc, conféré au milieu, le caractère acide.

Ajoutés aux espèces présentes en solution, ils ont suffisamment augmenté l'acidité du milieu, pour permettre au méthanol de réagir, en rompant sa liaison C-O.

Le mécanisme réactionnel de la N-méthylation du ligand 1H-pyrazole, avec formation d'une molécule d'eau, est représenté par le schéma 1 suivant :

Schéma 1 Mécanisme réactionnel plausible de la réaction de N-méthylation du ligand 1H-pyrazole en système fermé

En conclusion, nous pouvons dire que la réaction de N-méthylation du ligand 1H-pyrazole, a été réalisée avec succès, grâce au cation de cuivre Cu^{2+} qui a été l'élément décisif, en conférant le caractère acide au milieu, provoquant ; la rupture de la liaison C-O du méthanol et, la fixation du radical méthyle sur le ligand 1H-pyrazole, avec formation d'une molécule d'eau.

► Les réactions de N-éthylation et N-propylation du ligand 1H-pyrazole

Les espèces présentes dans les deux milieux réactionnels, pour les deux synthèses sont, identiques à ceux de la réaction de N-méthylation, la seule différence réside dans les solvants éthanol et propanol-2.

Nous allons établir, de façon schématique (schéma 2), une comparaison des Pka, des trois alcools, voici ce que l'on peut observer pour les alcools à partir des valeurs données par le tableau 9 ci-dessus :

Schéma 2 Valeurs des Pka des alcools dans le sens de l'acidité [30]

Des trois alcools, c'est le méthanol le plus acide, nous déduisons que le milieu réactionnel des deux synthèses (N-éthylation et N-propylation) est moins acide.

Par conséquent, la proportion en sel de cuivre étant identique, le milieu n'était pas assez acide pour provoquer la rupture de la liaison C-O et, c'est la formation de l'ion alcoolate qui a été favorisée. Nous pensons, dans un proche avenir, réaliser des manipulations, avec des proportions en sel de cuivre augmentées, de façon progressive et, vérifier la faisabilité ; des réactions de N-éthylation et N-propylation.

IV – 2 – 3 – 3 Les réactions de N-méthylation et N-éthylation du ligand 1H-imidazole

Dans le milieu réactionnel nous retrouvons :

- CuCl₂.2H₂O dont les formes ioniques sont: Cu²⁺ (acide de Lewis), 2Cl⁻ (nucléophile),
 2H⁺ (acide de Lewis), 2OH⁻ (base de Lewis);
- Méthanol et éthanol : de Pka respectifs 15.2 et 16.5 [30]

C'est sur le ligand 1H-imidazole, que nous avons menés nos investigations, pour comprendre et expliquer, pourquoi les deux réactions n'ont pas pu s'effectuer.

Dans le premier chapitre (III -2 - 2 - 2 - b), nous avions dit que, le caractère amphotère de l'imidazole, non substitué en position 1 (ou 3), avait pour conséquence un transfert très rapide d'un proton de la position 1 (3) a la position 3 (1) et *vice versa* (tautomérie annulaire) [29] et, que l'atome d'azote, exerçait sur le cycle deux effets opposés :

- Un effet mésomère, qui se manifeste par la libération du doublet électronique, qui va conférer à l'hétérocycle la propriété d'une base forte.
- Un effet inductif lié à l'électronégativité de l'atome d'azote, qui aura pour effet le retrait du doublet et, conférer à l'hétérocycle la caractéristique d'une base faible.

Par conséquent, l'effet inductif et l'effet mésomère se retrouvent en « conflit », ainsi, dans le cas du 1H-imidazole, les azotes étant en position 1 et 3, l'effet mésomère va l'emporter sur l'effet inductif, le 1H-imidazole se comportera donc, comme une base forte [27].

C'est le caractère de base forte du ligand 1H-imidazole qui va primer, conférant au milieu réactionnel, la propriété de basicité, ceci va conduire le 1H-imidazole à une déprotonation de l'atome d'azote en position 1 et, à la réaction de l'atome d'azote en position 3 avec le cation de $Cu2^+$, menant à une liaison dative entre ces deux atomes.

Le ligand 1H-imidazole, en milieu basique est donc, déprotoné (voir chapitre I, sous-chapitre III -2-5), et c'est effectivement ce que l'on retrouve, dans les deux structures, celle connue et publiée [4] et, celle que nous avons synthétisé.

Par conséquent ; le méthanol réagira pour donner l'anion méthylate et, l'éthanol donnera, l'anion éthylate, il n y aura pas rupture de la liaison C-O des deux alcools et donc, pas de N-méthylation, ni de N-éthylation.

IV – 3 Réaction avec le deuxième ligand : le dioxygène atmosphérique et, formation des tétramères et trimère à base de cuivre

IV – 3 – 1 Mise en contexte

A la fin du chauffage, toutes les solutions récupérées ont été soumises, de façon inopinée, à une deuxième réaction qui s'est révélée très importante, car elle a conduit à la formation des complexes et du polymère oxo. Il s'agit de la réaction du dioxygène atmosphérique O_2 , avec les entités baignant en solution obtenues après chauffage.

Ces dernières avaient toutes un point commun : elles étaient incolores, ce qui signifie que l'atome de cuivre était mono-oxydé [31], même si certaines étaient teintées pour quelques manipulations, c'était du à la proportion de sel de cuivre utilisée, car en diminuant cette dernière, les solutions obtenues étaient incolores.

Plus concrètement, nous pouvons dire que l'étape de chauffage, constitue une mise en condition, dans laquelle le cation de cuivre (II) initial (CuCl₂.2H₂O), est réduit en cuivre (I), ce qui va le rendre très instable car, avide d'électrons, transformant ainsi, la solution en un milieu très réactif.

Au contact du milieu ambiant, c'est le dioxygène atmosphérique, qui va se solubiliser, réagir pour former les tétramères et trimère de cuivre.
Le fait que nous ayons, vérifié dans nos synthèses, avec certitude, que l'atome d'oxygène central de ces structures, provenait du dioxygène atmosphérique, va controverser tout ce qui a été avancé, quand à l'origine de cet atome, dans la littérature [voir III – 1 Historique], notre mérite sera d'avoir, non seulement, trouvé un nouveau mode opératoire, qui utilise des réactifs très peu nocifs, pour la synthèse de ces tétramères qui, existent depuis plus de 50 ans, mais aussi, d'avoir utilisé un ligand très abondant et, surtout gratuit.

IV - 3 - 2 Réaction du dioxygène atmosphérique O_2 avec la solution et formation des tétramères/trimère

Dans le premier chapitre théorique, nous avions abordé les facteurs influençant la solubilité d'un gaz en solution (sous-chapitre III -3 - 2 - 2), tels que la température et la pression.

Nous avions, aussi, évoqué la loi d'henry, qui stipule que, pour se dissoudre dans un liquide, les molécules d'un gaz doivent d'abord entrer en collision avec la surface du liquide.

Si la pression d'un gaz en contact avec une solution augmente, le nombre de molécules par unité de volume dans le gaz augmente, ce qui entraîne une fréquence plus élevée des collisions avec la surface du liquide [22].

Dans un premier temps, nous allons énoncer les étapes dans un ordre que nous avons établit, puis ; allons expliciter et justifier, chacune d'elles.

Les étapes de formation des composés oxo sont comme suit :

- Collision des molécules de dioxygène, à la surface de la solution causant leur solubilisation et pénétration, activée par la température (dont l'ensoleillement UVA) et, la pression atmosphérique ;
- 2- oxydation du Cu⁺ en Cu⁺⁺ causée par l'intrusion du dioxygène atmosphérique ; et, rupture homolytique de la molécule de dioxygène, donnant naissance à deux anions oxydes ;
- 3- liaison de l'anion oxyde avec trois /quatre, cations de cuivre II ;
- 4- début de formation des complexes ou polymère oxo.

1- Dans les conditions ordinaires de température et pression, une molécule d'un gaz subit environ 10^9 collisions par seconde avec une autre molécule, mais, la proportion de collisions efficaces est seulement de 1 pour 10^9 à 10^{12} . Les autres collisions s'assimilent à des chocs élastiques ; comme deux boules de billard qui se heurtent, les molécules sont seulement déviées de leurs trajectoires [25].

Pour qu'une collision soit efficace, deux conditions doivent être remplies :

- Au moment de la collision, les deux molécules doivent être favorablement orientées l'une par rapport à l'autre, de façon que les atomes appelés à se lier, entrent effectivement en contact.
- L'énergie cinétique, donc la vitesse des molécules, doit être suffisante pour que, malgré les forces de répulsion qui se manifestent aux très courtes distances, elles s'encastrent l'une dans l'autre (recouvrement des nuages électroniques) [25].

Les collisions des molécules O_2 , à la surface de la solution, ont été augmentées, de façon remarquable, avec l'augmentation de la température et pression, tandis que leur solubilité, est conditionnée, en plus, par la nature du solvant de synthèse utilisé.

Dans le chapitre I théorique (sous-chapitre III -3 - 2 - 2) [32], nous avions donné les solubilités, exprimées en fractions molaires, de l'eau (2.301.10⁻⁵), du méthanol (4.122 10⁻⁴), de l'éthanol (5.10 10⁻⁴) et du propanol-2 (7.745 10⁻⁴) [32] et, au vu de ces valeurs, la solubilité diminue dans le sens cité des solvants.

Cependant ; si la température augmente, les valeurs de la solubilité, s'inversent, c'est-à-dire que c'est la solubilité du propanol-2, qui sera la plus élevée [32].

Nous pouvons, d'ores et déjà, confirmer cet énoncé, avec le temps de formation de nos composés, selon le solvant employé. Pour ce faire, nous avons reporté dans le tableau 14 ci-dessous, les temps de formation de nos quatre composés de coordination et les solvants utilisés en synthèse.

Tétramères et trimère	Solvant	Temps de formation
$[Cu_4OCl_6(C_3H_3N_2)_4]$	Méthanol	t = 20 heures
$[Cu_4Ocl_6(C_3H_3N_2)_4].EtOH$	Ethanol	t = 16 heures
$[Cu_4Ocl_6(C_4H_6N_2)_4]$	Méthanol	t = 21 heures
${Cu_{3}Ocl_{3}(L_{1})_{2}(L_{2})_{3}}_{n}$	Propanol-2	t = 100 minutes
L ₁ =1H-pyrazole,		
L ₂ =pyrazole		

Tableau 14 Temps de formation des tétramères et trimère et solvants de synthèse

Nous voyons clairement, la corrélation existant entre, la solubilité de l'oxygène atmosphérique dans les solvants, de part, le temps de formation des composés de coordination.

La solubilité du dioxygène atmosphérique dans le propanol-2, est tellement élevée qu'elle a écourté de façon remarquable, le temps de formation du composé de coordination, mais encore ; associée aux conditions de hautes température (dont l'exposition au soleil) et pression (grande solubilité), elle a augmenté la réactivité d'une façon telle, que c'est un trimère, soit une polymérisation qui s'est effectué et, non la formation d'un tétramère à base de cuivre. En conséquence, la formation du polymère, est due à l'emploi du propanol-2, comme solvant pour la synthèse.

2-Le changement de couleur de la solution, signifie que le cation Cu⁺ (produit par chauffage) s'est oxydé en Cu⁺⁺, ceci suppose que, ce denier s'est d'abord oxydé, avant de se lier à un atome d'oxygène.

Cette réaction de coloration, est liée à la dissolution, mais aussi à la réaction du dioxygène atmosphèrique avec le cation de cuivre (II), or ; d'un point de vue chimique, une molécule de dioxygène atmosphérique, ne peut pas réagir, telle qu'elle, avec un cation Cu⁺⁺ et, encore moins avec trois ou quatre.

Logiquement ; la molécule O_2 s'est d'abord, dissociée en deux atomes O, par rupture homolytique de la liaison covalente, avec formation de deux ions oxydes d'oxygène [22], comme illustré dans le schéma 3 suivant :

Schéma 3 Rupture homolytique de la liaison covalente de la molécule O₂ [22]

Nous étions dans l'impossibilité de vérifier, ce qui a provoqué la rupture homolytique de la liaison O=O, nous n'avons pas trouvé de moyens pour le faire, en plus ; la grande vitesse de la réaction globale, a compliqué les choses.

Nous avons, néanmoins, émis deux suppositions, à savoir que la rupture, était peut être due, aux chocs violents subis par la molécule O_2 , lors de sa solubilisation, aussi, à l'instabilité du cation Cu^+ générant un milieu très réactif, vis à vis des nucléophiles.

Dans le chapitre I théorique, sous-chapitre (III-3-3), nous avions mentionné que l'O₂, pouvait réagir et se dissocier (coupure de liaison O-O), pour donner un complexe.

3- Il apparait clairement, dans le schéma 3 ci-dessus, que l'ion oxyde obtenu, peut fixer jusqu'à quatre cations de Cu^{2+} .

4-C'est la dernière étape où, physiquement, nous devrions voir l'apparition des premières particules cristallines, de nos tétramères/trimère à base de cuivre.

V – Etude des propriétés spectrales des trois composés de coordination: [Cu₄OCl₆(C₃H₃N₂)₄]. EtOH ; [Cu₄OCl₆(C₄H₆N₂)₄] ; {Cu₃OCl₃(L₁)₂ (L₂)₃}_n (avec L₁ = 1H-pyrazole, L₂= pyrazole)

Par souci de clarté, nous avons nommé les composés de coordination $[Cu_4OCl_6(C_3H_3N_2)_4]$. EtOH (1) ; $[Cu_4OCl_6(C_4H_6N_2)_4]$ (2); et $\{Cu_3OCl_3(L_1)_2 (L_2)_3\}_n$ (3).

Les spectres IR et UV-Visible enregistrés, des structures des composés de coordination (1), (2) et (3), ont été répertoriés, dans l'annexe II à la fin du manuscrit.

V - 1 Spectroscopie infrarouge (IR):

V - 1 – 1 Etude du spectre IR du complexe (1) :

Dans les méthodes structurales, du chapitre I, concernant les 1H-pyrazole et imidazole, et particulièrement (III -2 - 3 - 3 méthodes structurales, infra-rouge) ; nous avons spécifié que nous avions trois régions du spectre, avec des bandes d'absorptions caractéristiques, nous avons utilisés ces valeurs, pour interpréter le spectre obtenu.

Pour assigner la première bande qui se trouve à 3272.20 cm⁻¹, caractéristique de la molécule d'eau, dont la présence est probablement due à un peu d'humidité contenue dans le bromure de potassium (KBr), nous avons bien sûr utilisé la référence appropriée.

Nous avons reportés dans le tableau 15 suivant, toutes les fréquences des bandes d'absorption mesurées et leurs assignations respectives référencées, ainsi que les types de vibrations correspondantes du tétramère [$Cu_4OCl_6(C_3H_4N_2)_4$]. EtOH:

Tableau 15 Analyse du spectre IR du complexe de coordination [Cu₄OCl₆(C₃H₃N₂)₄]. EtOH

$\upsilon_{\text{Mesurée}}(\text{cm}^{-1}) \rightarrow \upsilon_{\text{Référence}}(\text{cm}^{-1})$	Vibrations correspondantes	Type de vibration
$3272(m) \rightarrow [3500-3200] [33]$	υ (H ₂ O)	Vibration d'élongation du
		groupement OH de la
		molécule d'eau
$3139.96(m) \rightarrow [3150-3050]$	υ (C-H aromatique)	Vibration d'élongation :
[34]		(Stretch)
2971. 16(w) ; 2869.18(w) →	υ (C-H solvant: éthanol)	Vibration d'élongation :
[3000-2850] [33]		(Stretch)
1612.88 (w)→[1650-1300]	υ (C=C Alcène)	Vibration d'élongation :
[33]		(Strech)
1541(m); 1508.64(m);	υ (C=C et C=N aromatique)	Vibration d'élongation :
1468.65(w) ; 1433.52(w) →		(Strech)
[1650-1300] [34]		
1328.95(w); 1258.79(m);	υ (C-N aromatique)	Vibration d'élongation:
1232.41(m); 1176.12(w);		(Strech)
1136.05(w) ; 1097.99 (s) ; 1061		
(s); 1035.05 (w) \rightarrow [1300-		
1000] [34]		
955.33(w); 919.26 (w);	υ (C-H aromatique)	Vibration de déformation
841.20 (w); 740 (m);		en dehors du plan, Bend
$650.21(s)$; $611.66 (m) \rightarrow en$		
dessous de 1000 [33]		
$569.21(m) \rightarrow [585(s) \text{ et}$	υ (Cu-O)	
583(s)];		
[568(m)] [35] ; [36] Vibrations		
caractéristiques de la cage		
Cu ₄ -O		

• s: strong = forte, m: medium = moyenne, w: weak = faible

V - 1 – 2 Etude du spectre IR du complexe (2) :

De la même manière que le composé précédent, nous nous sommes référés au chapitre I, sous chapitre III méthodes structurales, III - 2 - 3 - 3 infra-rouge, nous avons également utilisé d'autres références.

Dans l'intervalle [3200-3500] cm⁻¹, se trouve une vibration caractéristique de la molécule d'eau. Nous avons également localisé une bande caractéristique de -N-CH3 aromatique, vers 2880 cm⁻¹, car, dans cette structure le pyrazole porte un radical méthyle.

Dans le tableau 16 suivant, se trouvent toutes les bandes caractéristiques dans les trois régions du spectre, ainsi que leurs assignations respectives référencées ainsi que les modes de vibration correspondants :

$v_{\text{Mesurée}} (\text{cm}^{-1}) \rightarrow v_{\text{Référence}} (\text{cm}^{-1})$	Vibrations correspondantes	Type de vibration
$3443(m) \rightarrow [3500-3200] [33]$	υ (H ₂ O)	Vibration d'élongation du
		groupement OH de la
		molécule d'eau
3131(s); 3117 (s)→[3150-	υ (C-H des doubles liaisons	Vibration d'élongation :
3050] [34]	aromatiques)	(Stretch)
$2880 \text{ (w)} \rightarrow [2820-2810],$	υ (-N-CH3 aromatique)	Vibration d'élongation :
[2870-2860] [32] [2967-2857],		(Stretch)
[37]		
$1625(w) \rightarrow [1650-1300] [33]$	υ (C=C alcène)	Vibration d'élongation :
		(Strech)
1517(s); 1428 (s) ; 1350(s) →	υ (C=C et C=N aromatique)	Vibration d'élongation :
[1650-1300] [34]		(Strech)
$1272(s); 1077(s) \rightarrow [1300-$	υ (C-N aromatique)	Vibration d'élongation:
1000] [34]		(Strech)
$875(m)$; $752(s) \rightarrow$ en dessous	υ (C-H aromatique)	Vibration de déformation
de 1000 [33]		en dehors du plan, Bend
$654(s) \rightarrow [585(s) \text{ et } 583(s)];$	υ (Cu-O)	
[568(m)] [35]; [38] Vibrations		
caractéristiques de la cage		
Cu ₄ -O		

Tableau 16 Analyse du spectre IR du complexe de coordination [Cu₄OCl₆(C₄H₆N₂)₄]

• s: strong = forte, m: medium = moyenne, w: weak = faible

V - 1 – 3 Caractérisation par spectroscopie Infrarouge du polymère (3) :

Dans les méthodes structurales, du chapitre I, concernant le 1H-pyrazole, nous avons spécifié dans la partie des spectres infrarouge (III - 2 - 3 - 3), que nous avions trois régions du spectre, avec des bandes d'absorptions caractéristiques, nous avons utilisés ces valeurs pour interpréter le spectre obtenu.

Par conséquent, nous avons tabulé ci-après, tableau 17, ces bandes caractéristiques dans ces régions, ainsi que leurs assignations respectives référencées avec les modes de vibration correspondants:

Tableau 17 Analyse du spectre IR du polymère de coordination $\{Cu_3OCl_3(L_1)_2 (L_2)_3\}_n$ (avec L₁=1H-pyrazole, L₂= pyrazole)

$\upsilon_{\text{Mesurée}}(\text{cm}^{-1}) \rightarrow \upsilon_{\text{Référence}}(\text{cm}^{-1})$	Vibrations correspondantes	Type de vibration
$3319(s) \rightarrow [3500-3200] [33]$	υ (H ₂ O)	Vibration d'élongation du
		groupement OH de la
		molécule d'eau
3150 (w)→[3150-3050] [34]	υ (C-H des doubles liaisons	Vibration d'élongation :
	aromatiques)	(Stretch)
$1510(m) \rightarrow [1650-1300] [33]$	υ (C=C alcène)	Vibration d'élongation :
		(Strech)
1474(m); 1400(w) ; 1350(m)	υ (C=C et C=N aromatique)	Vibration d'élongation :
→ [1650-1300] [34]		(Strech)
$1260(w); 1129(s); 1051(s) \rightarrow$	υ (C-N aromatique)	Vibration d'élongation:
[1300-1000] [34]		(Strech)
$950(w)$; 667 (m) \rightarrow en dessous	υ (C-H aromatique)	Vibration de déformation
de 1000 [33]		en dehors du plan, Bend
$820(w)$; 758 (s) \rightarrow en dessous	υ (C-H aromatique avec	Vibration de déformation
de 1000 [33]	disubstitution)	en dehors du plan, Bend
$589(m) \rightarrow [585(s) \text{ et } 583(s)];$	υ (Cu-O)	
[568(m)] [35] ; [38] Vibrations		
caractéristiques de la cage		
Cu ₄ -O		

• s: strong = forte, m: medium = moyenne, w: weak = faible

V - 2 La spectroscopie d'absorption électronique : Ultraviolet/Visible

V – 2 – 1 Interprétation des spectres UV-Vis du tétramère (1) :

Dans le premier spectre, enregistré dans la gamme de longueur d'onde [200-300] ; nous avons rencontrés une bande très intense aux hautes énergies, avec un maximum à $\lambda \sim 209$ nm ; révélatrice d'une transition π - π * du ligand imidazole, qui concorde avec la théorie (chapitre I, sous- chapitre II – 2 - 3 - 3) où, $\lambda_{max} = 207$ -208 nm [39].

A λ = 250nm, nous avons un épaulement qui peut être du à l'effet du solvant ou éthanol où, λ augmente avec la polarité du solvant, c'est l'effet bathochrome.

Dans le second spectre, enregistré dans la gamme de longueur d'onde [400-900], nous observons une large bande dans l'intervalle [600-850] correspondant à la région du visible, avec un maximum à $\lambda = 720$ nm, qui correspond à la transition d-d, qui est typique des complexes colorés de métaux de transition de configuration d⁹ (chapitre I (IV – 3 - 2))[33],[35].

Le dernier spectre, a été enregistré dans le domaine de longueur d'onde [300-900], englobant les transitions π - π * et d-d, ceci étant, pour une solution de départ concentrée (le tracé de ce spectre est de couleur noire). A partir de cette solution, quatre dilutions ont été effectuées donnant naissance à quatre tracés, où nous remarquons la disparition progressive de la transition d-d ; à mesure que la concentration augmente, en effet la couleur s'estompe avec la dilution d'une solution.

V – 2 – 2 Interprétation du spectre UV-Vis du tétramère (2) :

Le spectre de ce tétramère, montre un pic d'absorption à $\lambda = 268$ nm, qui est normalement révélateur d'une transition électronique $\pi \rightarrow \pi^*$, du méthyle-pyrazole, qui absorbe théoriquement à $\lambda = 216$ nm (chapitre I (III – 2 – 3 - 2)), le déplacement vers de plus hautes longueurs d'ondes est du au transfert de charge du ligand au métal LMCT (ligand to metal charge transfert)[34].

Dans la région du violet, vers [350-400] nm, il ya un épaulement vers $\lambda = 360$ nm, qui est du à la polarité du solvant, c'est l'effet bathochrome [37].

Dans la région du visible ; nous observons une large bande d'absorption, qui est par ailleurs caractéristique des métaux de transitions (voir chapitre I (IV – 3 - 2)) et, par conséquent liée à la transition d-d du cuivre dans le domaine [600-900], avec un maximum d'absorption à $\lambda = 568$ nm.

V – 2 – 3 Interprétation du spectre UV-Vis du polymère (3)

Le spectre d'absorption électronique du polymère montre un pic intense dans la région du violet à $\lambda = 257$ nm, qui est révélateur d'un transfert de charge du ligand pyrazole au métal LMCT, aussi, il y a un épaulement à $\lambda = 215$ nm, qui est du à l'effet bathochrome du solvant (éthanol) [40]. Dans la région du visible, est observé une large bande caractéristique de la transition d-d du cuivre.

 $\label{eq:VI} VI - Etude \ par \ diffraction \ des \ rayons \ X \ des \ deux \ tétramères \\ [Cu_4OCl_6(C_3H_3N_2)_4]. \ EtOH \ ; \ [Cu_4OCl_6(C_4H_6N_2)_4] \ ; \ et \ du \ trimère \ ; \\ \{Cu_3OCl_3(L_1)_2 \ (L_2)_3\}_n \ (avec \ L_1 = 1H-pyrazole, \ L_2 = pyrazole) \end{cases}$

Dans tout ce qui va suivre, en vue d'alléger l'écriture, le complexe $[Cu_4OCl_6(C_3H_3N_2)_4]$. EtOH sera nommé (1) et $[Cu_4OCl_6(C_4H_6N_2)_4]$ sera nommé (2) et, le polymère $\{Cu_3OCl_3(L_1)_2 (L_2)_3\}_n$ (avec $L_1 = 1$ H-pyrazole, $L_2 = pyrazole$) sera nommé (3).

Les données expérimentales, cristallographiques ainsi que l'affinement, des complexes (1), (2) et du polymère (3), sont consignés dans le tableau 18 ci-dessous.

Tableau 18 Données expérimentales, cristallographiques et d'affinement des complexes (1), (2) et (3)

	Complexe 1	Complexe 2	Polymère 3
Formule chimique	$C_{14}H_{18}Cl_6Cu_4N_8O_4$	$C_{16}H_{24}Cl_6Cu_4N_8O$	$C_{48}H_{55}Cl_6Cu_9N_{30}O_4$
M _r	797.2	811.3	1960.87
Système cristallin,	Monoclinique,	Monoclinique,	Triclinique,
groupe d'espace	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /c	<i>P</i> 1
Temperature (K)	100 (2)	100 (2)	100 (2)
	a = 11.3197(1) Å	a = 10.5788(1)Å	a = 11.6872(4) Å
	b = 14.3110(2) Å	b = 12.5982(1) Å	b = 11.7186(5) Å
Paramètres de	c = 16.8454(2) Å	c = 21.3939(2) Å	c = 16.0280 (5) Å
maille	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 97.138(3)^{\circ}$
	$\beta = 96.3910(1)^{\circ}$	$\beta = 93.448(1)^{\circ}$	$\beta = 95.085 (3)^{\circ}$
	$\gamma = 90$	$\gamma = 90^{\circ}$	$\gamma = 110.959 \ (4)^{\circ}$
$V(\text{\AA}^3)$	2711.93 (3)	2846.09 (4)	2012.94 (38)
Z	4	4	1
D_x (Mg m ⁻³)	1.95	1.518	1.791
Radiation type	Cu Κα	Μο Κα	Μο Κα
μ (mm ⁻¹)	3.714	3.54	2.59
Forme du cristal, couleur	Prisme, miel	Prisme, miel	Prisme bleu
dimensions (mm)	$0.15 \times 0.10 \times 0.09$	$0.20 \times 0.10 \times 0.10$	$0.10 \times 0.10 \times 0.08$
Diffractomètre	AgilentSuperNova CCD diffractometer		
Correction d'absorption	Integration	Integration	Integration
T _{min} , T _{max}	0.908, 0.938	0.889, 0.940	0.708, 0.750
Reflections mesurées, independentes et	158545, 7917, 6890	147143, 10421, 8377	84921, 23524, 18123

observées				
(<i>I</i> >2 $\sigma(I)$)				
$R_{\rm int}^{a}$	0.055	0.056	0.074	
θ _{max} (°)	60	33	30.03	
Refinement on	F^2	F^2	F^2	
$R[F^2 > 2\sigma(F^2)]^{\mathbf{b}},$ $wR(F^2)^{\mathbf{c}}, S^{\mathbf{d}}$	0.053, 0.105, 1.04	0.057, 0.150, 1.08	0.045, 0.090, 0.98	
Nombre de reflections	7917 réflections	10421 réflections	23524 réflections	
Nombre de paramètres	307	316	916	
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \ (e \ \text{\AA}^{-3})$	0.60, -0.32	0.76, -0.61	0.62, -0.61	
${}^{a}R(int) = \Sigma(F_{o}^{2} - \langle F_{o}^{2} \rangle) \overline{] / \Sigma(F_{o}^{2})}; {}^{b}R1 = \Sigma F_{o}/-/F_{c} / \Sigma F_{o}/; {}^{c}wR2 = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}] / [\Sigma w(F_{o}^{2})^{2}]^{1/2}$				
^d Goodness-of-fit $S = [\Sigma w(F_o^2 - F_c^2)^2/(n-p)]^{1/2}$.				

Les tableaux des coordonnées atomiques et les paramètres d'agitation isotropiques (*) et équivalentes ($Å^2$); des paramètres d'agitation thermiques atomiques; des angles de torsions (°); des complexes oxo (1), (2) et (3); sont consignés dans les annexes respectives III, IV et V à la fin du manuscrit.

VI – 2 Description des structures des complexes oxo (1), (2) et (3)

VI – 2 – 1 Les Tétramères (1) et (2) :

VI - 2 - 1 - 1 Mise en contexte

Il s'agit de deux complexes de même type [CuOCl₆L₄], avec une unité tétra nucléaire [Cu₄(μ_2 -Cl)₆(μ_4 -O)], ne différant que par le ligand et, la présence d'une molécule d'éthanol, en effet ; l'un est lié au ligand imidazole et l'autre, au ligand 1-méthyle pyrazole.

Cette similitude, nous a amené à faire une description structurale commune qui, sera comparative.

Le complexe (1), à savoir $[Cu_4OCl_6(C_3H_3N_2)_4]$. EtOH, cristallise dans le système monoclinique avec le groupe d'espace $P2_1/n$, le complexe (2) $[Cu_4OCl_6(C_4H_6N_2)_4]$, cristallise dans le même système mais avec le groupe d'espace $P2_1/c$.

VI – 2 – 1 – 2 Les unités asymétriques des complexes (1) et (2):

Les unités asymétriques des complexes (1) et (2), sont formées toutes deux, d'un cœur commun (ou cage), constitué d'un atome central d'oxygène, lié à quatre atomes de cuivre, eux-mêmes liés chacun, à trois atomes de chlore qui, à leur tour pontent chacun deux atomes de cuivre.

Nous avons effectué une comparaison des distances Cu-O, des complexes (1) et (2) avec leurs homologues dans deux articles publiés par les auteurs F. S. Keij [13] et A. M. Atria [4], ayant respectivement des ligands 3, 4 diméthyle-5-phényle-pyrazole et imidazole.

Le ligand 3, 4 diméthyle-5-phényle-pyrazole, avec les deux cycles qu'il renferme, pourrait avoir des répercussions sur les distances interatomiques du cœur de la structure, à cause de l'encombrement stérique qu'il pourrait engendrer, ceci étant la raison de notre choix pour l'article [13].

Le second article [4], présente des similitudes avec notre structure (même ligand), donc une comparaison des distances pourrait, révéler l'effet de la présence du solvant, qu'est l'éthanol sur les distances. Nous avons assimilé le numéro des articles en nommant les structures, par complexes [13] et [4].

Dans le tableau 19 suivant, nous avons présenté les distances C-O des complexes (1), (2), [13] et [4].

	(1)	(2)	[13]	[4]
Cu-O (Å)	1.9066(14)	1.9130(13)	1.913	1.924
Cu-O (Å)	1.9089(14)	1.9050(13)	1.905	1.906
Cu-O (Å)	1.9090(14)	1.9101(13)		1.909
Cu-O (Å)	1.9044(14)	1.9189(13)		1.903

Tableau 19 Tableau comparatif des distances Cu-O des complexes (1), (2), [13] et [4]

Les valeurs des distances Cu-O, reportées dans le tableau 19, ne présentent pas de différences significatives, ce qui nous a mené à une autre comparaison, celle des distances Cu-Cu qui forment un tétraèdre autour de l'atome d'oxygène central, dans le but de juger de sa régularité, pour ce faire, nous avons illustré dans le tableau 20 ci-dessous les valeurs de ces distances comme suit :

Tableau 20 distances C	u-Cu formant un	tétraèdre autour de l	l'atome central o	l'oxygène
------------------------	-----------------	-----------------------	-------------------	-----------

(1) (Å)	(2) (Å)	[13] (Å)	[4] (Å)
Cu ₁ -Cu ₃ 3.139	Cu ₁ -Cu ₃ 3.143	Cu _I -Cu ₂ 3.097	Cu ₁ -Cu ₃ 3.126
Cu ₁ -Cu ₄ 3.135	Cu ₁ -Cu ₄ 3.127	$Cu_{l}-Cu_{1}$, 3.079	Cu_1 - Cu_4 3.167
Cu ₃ -Cu ₄ 3.088	Cu ₃ -Cu ₄ 3.110	Cu_1 - Cu_2 , 3.173	Cu ₃ -Cu ₄ 3.124
Cu ₃ -Cu ₂ 3.149	Cu ₃ -Cu ₂ 3.113	Cu_2 - Cu_2 , 3.083	Cu ₂ -Cu ₃ 3.125
Cu ₂ -Cu ₄ 3.079	Cu ₂ -Cu ₄ 3.084		Cu ₂ -Cu ₄ 3.061
Cu ₁ -Cu ₂ 3.095	Cu ₁ -Cu ₂ 3.151		Cu_1 - Cu_2 3.114

Dans chacune des structures, les distances Cu-Cu sont révélatrices, de la légère irrégularité du tétraèdre, formé par les atomes de cuivre autour de l'oxygène.

Toujours à l'intérieur de la cage, les angles formés par les angles Cu-O-Cu, ont des valeurs comprises dans l'intervalle [107- 111.11°] pour les complexes (1) et (2) et [107.4-112.41] pour le complexe [13] et enfin [106.8-111.7] pour [4].

Sachant que dans un tétraèdre régulier les valeurs des angles, sont autour de 109.28° [25], les valeurs données dans le tableau 21 suivant, mettent en évidence la légère irrégularité du tétraèdre dans les quatre complexes :

Tableau 21 Valeurs des angles Cu-O-Cu formant le tétraèdre des quatre tétramères

Angles (°)	Complexe (1)	Complexe (2)	Complexe [13]	Complexe [4]
Cu ₁ -O ₁ -Cu ₂	108.41 (7)	111.01 (6)	108.45 (4)	108.7 (2)
Cu ₁ -O ₁ -Cu ₃	110.70 (7)	110.83 (6)	107.8 (3)	109.5 (2)
Cu ₁ -O ₁ -Cu ₄	110.69 (7)	109.39 (6)	112.41 (4)	110.2 (2)
Cu ₂ -O ₁ -Cu ₃	111.11 (7)	109.38 (6)	107.4 (3)	110.0 (2)
Cu ₂ -O ₁ -Cu ₄	107.72 (7)	107.29 (6)		106.8
Cu ₃ -O ₁ -Cu ₄	108.17 (7)	108.85 (6)		111.7 (2)

Dans la figure 1 suivante, nous avons schématisé, selon les mêmes directions spatiales, les cœurs des deux tétramères (1) et (2), dont les distances et les angles, sont assez proches.

(a) complexe (1); (b) complexe (2)

L'unité asymétrique du complexe (1), est formée d'un cœur (voir figure 1 ci-dessus) où, chaque atome de cuivre forme une liaison dative avec le cycle imidazole et d'une molécule d'éthanol (voir figure 2).

Figure 2 Représentation de l'unité asymétrique du complexe (1) avec identification des atomes (ellipsoïdes à 50% de probabilité)

Comme pour le complexe (1), dans l'unité asymétrique du complexe (2), chaque atome de cuivre forme une liaison dative avec le ligand 1-méthyle pyrazole, l'ensemble étant illustré dans la figure 3.

Figure 3 Représentation de l'unité asymétrique du complexe (2) avec identification des atomes (ellipsoïdes à 50% de probabilité)

VI – 2 – 1 – 3 L'environnement de l'atome de cuivre:

Dans la structure des complexes (1) et (2), trois atomes de chlore entourent l'atome de cuivre en position équatoriale, et, en position apicale nous retrouvons, un atome d'oxygène et un atome d'azote du cycle imidazole pour (1) et, 1-méthyle pyrazole pour (2), le tout formant une géométrie penta-coordinée autour du cuivre, qui peut soit être, une pyramide à base carrée (sp : square pyramidal) ou bien, une bipyramide trigonale (tbp : trigonal bipyramid).

En 2015 l'auteur A. W. Addition, a défini l'indice de trigonalité $\tau = (\beta - \alpha)/60$; (où α et β sont les plus grands angles formés par l'atome de cuivre dans sa coordination, β étant supérieur à α , menant ainsi, aux deux possibilités suivantes : une géométrie bipyramide trigonale (tbp : trigonal bipyramid) où ; τ est proche ou égal à un, ou bien une géométrie pyramide à base carrée (sp : square pyramidal) où ; τ est proche ou égal à zéro [41] et [42]. Afin de déterminer la géométrie autour de chaque atome de cuivre, nous avons répertoriés dans le tableau 22 ci-dessous, les plus grandes valeurs des angles autour de chaque atome de cuivre et, avons également calculés les indices de trigonalité τ , pour les quatre atomes de cuivre constituant chacune des structures des complexes (1) et (2).

Tableau 22 Les plus grands angles autour des atomes de cuivre et leurs indices detrigonalité correspondants des complexes (1) et (2)

Complexe (1)			Complexe (2)		
Plus gran	ds angles (°)	τ	Plus gran	ds angles (°)	τ
Cl ₃ -Cu ₁ -Cl ₅	$\alpha = 130.94(2)$	$\tau_{Cu1}=0.76$	Cl_1 - Cu_1 - Cl_4	$\alpha = 128.32(2)$	$\tau_{Cu1}=0.8$
O_1 - Cu_1 - N_1	$\beta = 176.99(7)$	Bipyramide	O_1 - Cu_1 - N_1	$\beta = 176.84(7)$	Bipyramide
		trigonale			trigonale
Cl ₂ -Cu ₂ -Cl ₃	$\alpha = 141.31(2)$	$\tau_{Cu2} = 0.6$	Cl ₁ -Cu ₂ -Cl ₃	$\alpha = 126.51(2)$	$\tau_{Cu2} = 0.8$
O ₁ -Cu ₂ -N ₃	$\beta = 178.35$	Bipyramide	O_1 - Cu_2 - N_2	$\beta = 177.71$ (6)	Bipyramide
		trigonale			trigonale
Cl ₄ -Cu ₃ -Cl ₆	$\alpha = 125.35(2)$	$\tau_{Cu3}=0.8$	Cl ₃ -Cu ₃ -Cl ₅	$\alpha = 122.67(2)$	$\tau_{Cu3} = 0.9$
O_1 - Cu_3 - N_5	$\beta = 174.94(7)$	Bipyramide	O_1 - Cu_3 - N_3	$\beta = 178.44(7)$	Bipyramide
		trigonale			trigonale
Cl ₂ -Cu ₄ -Cl ₅	α = 133.29 (2)	$\tau_{Cu4}=0.7$	Cl_2 - Cu_4 - Cl_6	$\alpha = 134.98(2)$	$\tau_{Cu4}=0.7$
O ₁ -Cu ₄ -N ₇	$\beta = 177.14(7)$	Bipyramide	O ₁ -Cu ₄ -N ₄	$\beta = 178.18$ (6)	Bipyramide
		trigonale			trigonale

D'après le tableau 22, tous les indices de trigonalité τ calculés tendent vers 1; pour les deux complexes, par conséquent ; les atomes de cuivre dans les complexes (1) et (2) possèdent une coordinence de 5 et, sont de géométrie bipyramide trigonale présentant une légère irrégularité. Pour une géométrie bipyramide trigonale régulière, les valeurs des angles équatoriaux Cl-Cu-Cl doivent être égaux à 120°, mais pour le complexe (1), les angles varient entre 106.01° et 141.31°, confirmant l'irrégularité de la bipyramide trigonale (voir tableau 23).

Angles	Valeurs (°)
$Cl_1 - Cu_1 - Cl_3$	112.45 (2)
$Cl_1 - Cu_1 - Cl_5$	114.04 (2)
$Cl_3 - Cu_1 - Cl_5$	130.94 (2)
$Cl_2 - Cu_2 - Cl_3$	141.31 (2)
$Cl_2 - Cu_2 - Cl_6$	106.01 (2)
$Cl_3 - Cu_2 - Cl_6$	109.59 (2)
$Cl_1 - Cu_3 - Cl_4$	113.14 (2)
$Cl_1 - Cu_3 - Cl_6$	120.01 (2)
$Cl_4 - Cu_3 - Cl_6$	125.35 (2)
$Cl_2 - Cu_4 - Cl_4$	113.51 (2)
$Cl_2 - Cu_4 - Cl_5$	133.29 (2)
$Cl_4-Cu_4-Cl_5$	110.20 (2)

Tableau 23 Valeurs des angles équatoriaux mettant en évidence l'irrégularité de labipyramide trigonale pour le complexe (1)

De même, pour le complexe 2, nous avons mis en évidence, l'irrégularité de la bipyramide trigonale, à travers les valeurs des angles que nous avons illustrés dans le tableau 24 suivant :

Angles	Valeurs (°)
$Cl_1 - Cu_1 - Cl_4$	128.32 (2)
$Cl_1 - Cu_1 - Cl_6$	110.24 (2)
$Cl_4 - Cu_1 - Cl_6$	117.91 (2)
$Cl_1 - Cu_2 - Cl_2$	125.31 (2)
$Cl_1 - Cu_2 - Cl_3$	126.51 (2)
$Cl_2 - Cu_2 - Cl_3$	105.57 (2)
$Cl_3 - Cu_3 - Cl_4$	119.4 (2)
$Cl_3 - Cu_3 - Cl_5$	122.67 (2)
$Cl_4 - Cu_3 - Cl_5$	115.22 (2)
$Cl_2 - Cu_4 - Cl_5$	106.74 (2)
$Cl_2 - Cu_4 - Cl_6$	134.98 (2)
$Cl_5 - Cu_4 - Cl_6$	116.25 (2)

Tableau 24 Valeurs des angles équatoriaux mettant en évidence l'irrégularité de labipyramide trigonale pour le complexe (2)

Ainsi, pour le complexe (2), les valeurs des angles varient entre 106.74° et 134.98°.

Nous avons comparé les valeurs des angles Cl-Cu-Cl, avec la littérature, à travers les deux articles [13] et [4], ainsi ; pour le complexe [4], les angles varient entre $106.49^{\circ}(8)$ et $138.60^{\circ}(8)$, mais, pour le complexe [13] les valeurs des angles suggèrent une régularité de la bipyramide trigonale, en effet ; ils sont de : $121.03^{\circ}(6)$, $118.60^{\circ}(8)$, $118.0^{\circ}(1)$, $121.26^{\circ}(6)$, $118.1^{\circ}(1)$, $118.51^{\circ}(8)$.

En plus des valeurs des angles, en effectuant une comparaison, dans le proche environnement de l'atome de cuivre des quatre tétramères, et plus spécifiquement, le ligand de chacun, c'est le complexe [13] le plus encombré soit, le 3, 4 diméthyle-5-phényle-pyrazole, créant un effet d'encombrement stérique autour du cœur de la structure ; pour les autres ce sont, l'imidazole et le 1-méthyle pyrazole, nous pouvons conclure qu'un ligand encombrant, a eu pour effet, de stabiliser la bipyramide trigonale de la structure [13].

Toujours dans l'environnement de l'atome de cuivre, nous avons regardé de plus prés, la position des trois atomes de chlore par rapport à, l'axe formé par les atomes de cuivre et d'oxygène, exprimée par, les angles O-Cu-Cl qui, idéalement auraient une valeur égale à 90°, il s'est avéré que, ces valeurs d'angles pour les complexes (1) et (2) en étaient inférieures suggérant une distorsion (voir tableaux 25 et 26).

Angles	Valeurs (°)
$O_1 - Cu_1 - Cl_1$	86.31 (4)
$O_1 - Cu_1 - Cl_3$	84.33 (5)
$O_1 - Cu_1 - Cl_5$	83.81 (4)
$O_1 - Cu_2 - Cl_2$	85.18 (4)
$O_1 - Cu_2 - Cl_3$	84.49 (4)
$O_1 - Cu_2 - Cl_6$	83.13 (4)
$O_1 - Cu_3 - Cl_1$	84.05 (4)
$O_1 - Cu_3 - Cl_4$	86.84 (4)
$O_1 - Cu_3 - Cl_6$	86.75 (4)
$O_1-Cu_4-Cl_2$	83.79 (4)
$O_1 - Cu_4 - Cl_4$	84.96 (4)
$O_1 - Cu_4 - Cl_5$	84.40 (4)

Tableau 25 Mise en évidence de la déviation des angles O-Cu-Cl par rapport à la normale (90°) pour le complexe (1)

Tableau 26 Mise en évidence de la déviation des angles O-Cu-Cl par rapport à la normale (90°) pour le complexe (2)

Angles	Valeurs (°)
$O_1 - Cu_1 - Cl_1$	82.30 (4)
$O_1 - Cu_1 - Cl_4$	85.52 (5)
$O_1-Cu_1-Cl_6$	83.38 (4)
$O_1 - Cu_2 - Cl_1$	84.21 (4)
$O_1-Cu_2-Cl_2$	84.60 (4)
$O_1 - Cu_2 - Cl_3$	85.31 (4)
$O_1 - Cu_3 - Cl_3$	84.65 (4)
$O_1 - Cu_3 - Cl_4$	82.23 (4)
$O_1-Cu_3-Cl_5$	86.59 (4)
$O_1 - Cu_4 - Cl_2$	85.60 (4)
$O_1 - Cu_4 - Cl_5$	84.64 (4)
$O_1-Cu_4-Cl_6$	85.68 (4)

Cette distorsion a également été observée pour le complexe [4], comme illustré dans le tableau 27 ci-dessous.

Angles	Valeurs (°)
$O_1 - Cu_1 - Cl_2$	82.53 (13)
$O_1 - Cu_3 - Cl_5$	84.38 (14)
$O_1 - Cu_4 - Cl_4$	84.45 (14)
$O_1 - Cu_4 - Cl_2$	85.70 (2)
$O_1 - Cu_3 - Cl_6$	85.95 (14)
$O_1 - Cu_2 - Cl_4$	85.37 (13)
$O_1 - Cu_2 - Cl_3$	85.42 (14)
$O_1 - Cu_2 - Cl_5$	81.44 (14)
$O_1 - Cu_4 - Cl_6$	83.20 (2)
$O_1 - Cu_3 - Cl_1$	82.69 (14)

Tableau 27 Mise en évidence de la déviation des angles O-Cu-Cl par rapport à la normale (90°) pour le complexe [4]

Dans le même article [4], il est mentionné que, cette déviation des angles était observée, pour les tétramères de type $[Cu_4OCl_6L_6]$ et, que lorsque le ligand d'une structure, est le 2-méthylepyridine, la valeur des angles O-Cu-Cl variait, dans l'intervalle 76.9°-90.8°, les auteurs suggèrent, que la raison majeure de cette variation, est l'effet stérique intramoléculaire du groupement méthyle [43], [44], [45].

La figure 4, représente l'environnement de l'atome de cuivre dans les complexes (1) et (2) et, la bipyramide trigonale qu'il forme :

Figure 4 Environnement de l'atome de cuivre. (a) complexe (1) ; (b) complexe (2)

VI - 2 - 1 - 4 Enchainement des structures dans les complexes (1) et (2) :

Les 3 liaisons hydrogène du **complexe** (1) sont faibles, les atomes donneurs étant deux atomes de carbone du cycle imidazole et, l'atome d'oxygène de l'éthanol, les accepteurs étant des atomes de chlore, formant le cœur de la structure.

Nous avons illustrés, dans le tableau 28 suivant, les liaisons hydrogènes en présence ainsi que, leurs valeurs respectives.

D – HA	$\mathbf{D} - \mathbf{H}$	НА	DA	D – HA
$O_2-H_{02}\ldots Cl_6^{i}$	0.82	2.66	3.307 (2)	137
$C_2 - H_2 \dots Cl_4^{ii}$	0.93	2.68	3.556 (2)	157
$C_{12} - H_{12} \dots Cl_1^{iii}$	0.93	2.75	3.525 (2)	142

Tableau	28	liaisons	hydrogène	de la	structure d	ı com	plexe (1)
			J					. /

Codes de symétrie : i = 1-x,1-y,1-z ; ii = 1/2+x,1/2-y,-1/2+z ; iii = 1-x,-y,1-z.

Les molécules de la structure s'enchaînement, selon la rangée [-110], par le biais des liaisons électrostatiques C_2 - H_2 ----Cl₄ et O_2 - H_{02} ----Cl₆, comme illustré dans la figure 5 ci-après :

Figure 5 Enchainement des molécules du complexe (1) selon la rangée [-110]

En ce qui concerne le **tétramère** (2), les liaisons hydrogène sont également faibles, les donneurs étant les atomes de carbone des cycles 1-méthyle-pyrazole et, les accepteurs les atomes de chlore, il s'agit des liaisons : C_3 - H_3 - Cl_2 ; C_{10} - H_{10} - Cl_3 et C_{12} - H_{121} - Cl_6 .

Dans le tableau 29 ci-dessous, nous avons rassemblé, les interactions en présence, dans la structure du complexe (2).

Tableau	29	liaisons	hydro	ogène	de la	structure	du	complexe	(2))
---------	----	----------	-------	-------	-------	-----------	----	----------	--------------	---

D – HA	D – H	НА	DA	D – HA
$C_3-H_3Cl_2^{i}$	0.95	2.65	3.531 (2)	154
$C_{10} - H_{10} \dots C l_3^{ii}$	0.95	2.81	3.659 (3)	149
$C_{12} - H_{121} \dots Cl_6^{iii}$	0.98	2.80	3.567 (2)	136

Codes de symétrie : i = x,3/2-y,-1/2+z ; ii = -x,-1/2+y,1/2-z; iii = -1+x,y,z.

L'enchaînement selon l'axe b, de cette structure, est assuré par deux liaisons électrostatiques C_3 - H_3 - Cl_2 et C_{12} - H_{121} - Cl_6 , formant un cycle R constitué de quatre unités asymétriques, avec 4 atomes de carbone donneurs et, 4 atomes de chlore accepteurs et, un nombre d'atomes n formant le cycle $R_4^4(29)$ [46].

Dans les figures 6 et 7 ci-dessous, nous avons représenté respectivement, l'enchainement de la structure et, le cycle $R_4^4(28)$ formé par ce dernier.

Figure 6 Enchainement de la structure du complexe (2) selon [-110]

Figure 7 Cycle R₄⁴(28) formé par l'enchainement des molécules du complexe (2)

VI – 2 – 1 – 5 L'empilement des deux complexes de coordination (1) et (2)

Pour le complexe (1), c'est la faible interaction $C_{12} - H_{12} \dots Cl_1$, qui est responsable de l'empilement des couches, renforçant ainsi, la stabilité du réseau cristallin.

Dans la figure 8 suivante, nous avons représenté l'empilement des molécules en omettant les molécules d'éthanol, pour davantage de visibilité, des interactions en présence.

Figure 8 Empilement de la structure du complexe (1)

Cette même interaction, forme un cycle $R_2^2(10)$ [46], que nous avons mis en évidence dans la figure 9 suivante :

Figure 9 Cycle R₂²(10) [46] formé par les molécules empilées du complexe (1)

Dans le complexe (2), les couches s'empilent par le biais de la faible interaction, C_{10} -H₁₀-Cl₃. Dans la figure 10 suivante, par souci de clarté, nous avons enlevé des cycles 1-méthylepyrazole, pour représenter l'empilement des molécules de la structure du complexe (2).

Figure 10 Empilement de la structure du complexe (2)

Nous avons remarqué dans la figure 10 ci-dessus, que les chaines générées par la faible interaction C_{10} - $H_{10...}Cl_3$, étaient une fois orientées en avant, et une fois en arrière, ceci étant du à la rotation des molécules, la conséquence dans cet enchainement est un cheminement de ces molécules en forme de zig zag, que nous avons mis en évidence dans la figure 11 suivante :

Figure 11 Mise en évidence du zig zag formé par les molécules du complexe (2) dans leur empilement

VI - 2 - 2 Description de la structure du polymère de coordination (3) { $Cu_3OCl_3(L_1)_2$ (L_2)₃}_n (avec $L_1 = 1$ H-pyrazole, $L_2 = pyrazole$)

VI – 2 – 2 – 1 L'unité asymétrique du polymère de coordination (3) :

Le dit polymère, de type $\{Cu_3OCl_3L_5\}_n$ de structure inconnue jusqu'alors, est un trimère qui cristallise dans le système triclinique, avec un groupe d'espace *P*1.

Son unité asymétrique est constituée de trois sous-unités identiques (1), (2) et (3), une molécule d'eau et, deux molécules de propanol-2.

Chaque sous-unité, est liée à son adjacente par un atome de chlore et, est constituée d'un atome central d'oxygène lié à trois cations de cuivre II, liés à cinq ligands pyrazole et trois atomes de chlore. Les trois atomes de cuivre contenus dans chaque sous-unité, sont au sommet d'un triangle, dont les trois médianes concourent en l'atome d'oxygène (figure 12). Sur les cinq ligands pyrazole, trois sont liés avec leurs deux atomes d'azote et, sont de type LX alors que deux, sont liés par un seul atome d'azote donnant ainsi un ligand de type L.

Figure 12 Représentation d'une sous-unité du trimère

Les angles autour des atomes d'oxygène de type Cu-O-Cu, sont compris dans l'intervalle [103.90°-115.94°] et, sont donnés en valeurs par le tableau 30 ci-après :

Tableau 30 Valeurs des angles formés par les atomes de cuivre autour de l'atomed'oxygène

Liaisons Cu-O-Cu	Valeurs des angles (°)
Cu ₂ -O ₁ -Cu ₁	114.3 (2)
Cu ₂ -O ₁ -Cu ₃	115.4 (2)
Cu ₁ -O ₁ -Cu ₃	103.82 (18)
Cu ₅ -O ₂ -Cu ₄	114.6 (2)
Cu ₅ -O ₂ -Cu ₆	114.46 (19)
Cu ₆ -O ₂ -Cu ₄	103.3 (2)
Cu ₉ -O ₃ -Cu ₈	114.0 (2)
Cu ₉ -O ₃ -Cu ₇	116.0 (2)
Cu ₇ -O ₃ -Cu ₈	104.3 (2)

Nous remarquons dans le tableau 30 ci-dessus que, les valeurs des angles Cu-O-Cu sont en dessous de 120° (valeur de l'angle formé par 3 médianes d'un triangle), pour expliquer cette différence, nous avons regardé de plus prés chaque sous-unité et, il se trouve que les atomes de cuivre Cu₁, Cu₃, Cu₄, Cu₅, Cu₇ et Cu₈; sont tous porteurs d'un cycle 1H-pyrazole, par conséquent, ce ligand a eu pour effet le rapprochement des atomes de cuivre suscités, dans chaque sous-unité.

Dans le trimère oxo, nous avons observés une ligne de jonction liant les trois sous-unités; formée par des liaisons covalentes entre les atomes, $Cl_3-Cu_7-O_3-Cu_8-Cl_5-Cu_3-Cl_1-Cu_4-Cl_3-Cu_7$ où ; chacune d'elles s'unit à la suivante, par l'atome Cl_1 (pour les sous-unités (1) et (2)) et l'atome Cl_5 (pour les sous-unités (2) et (3)).

Nous avons mis en évidence cette ligne, dans la figure 13 ci-dessous, qui est une représentation de l'unité asymétrique ; où nous avons délibérément omis ; trois molécules de solvant (eau, propanol-2), ainsi que six cycles 1H-pyrazole en présence.

Figure 13 Ligne de jonction des 3 sous-unités formant le trimère

VI – 2 – 2 – 2 L'Environnement de chaque atome de cuivre et géométries respectives:

Les sous-unités (1), (2) et (3), présentent 3 coordinences des atomes de cuivre, à savoir 4, 5 et 6, explicitées comme suit :

► Coordinence 4 :

Ce sont les atomes de cuivre Cu_5 , Cu_2 et Cu_9 , des sous-unités respectives (1), (2) et (3) qui, sont concernés par la coordinence 4, ils possèdent le même environnement, en effet, chaque atome de cuivre est entouré, dans le prolongement du même axe par, un atome d'azote d'un cycle pyrazole saturé et un atome d'oxygène et perpendiculairement, toujours en position axiale, par un atome d'azote d'un cycle pyrazole saturé et un atome de chlore (voir figure 14).

Figure 14 Géométrie plan carrée autour des atomes de cuivre Cu₅, Cu₂ et Cu₉

Nous remarquons dans la figure 14 ci-dessus, que la liaison entre l'atome de cuivre et d'oxygène, que nous avons par ailleurs retrouvé pour les quatre atomes Cu, n'était pas en accord avec la normale, suggérant une irrégularité du plan carré.

Pour vérifier cette hypothèse, nous avons rassemblé dans le tableau 31 ci-dessous, les 3 valeurs des angles Cl-Cu-O (normalement égaux à 180°).

Tableau 31 Valeurs des angles	du plan carré autour	des atomes Cu ₂ ,	Cu ₆ et Cu ₉
-------------------------------	----------------------	------------------------------	------------------------------------

Angles	Valeurs (°)
Cl ₂ -Cu ₂ -O ₁	154.31 (13)
Cl ₄ -Cu ₅ -O ₂	153.16 (13)
Cl ₆ -Cu ₉ -O ₃	159.46 (13)

► Coordinence 5 :

Quatre atomes de cuivre, à savoir Cu_1 , Cu_6 , Cu_7 et Cu_8 sont dans un environnement de coordinence 5, où chacun d'eux forme en positions axiales, deux liaisons datives avec deux azotes de deux cycles pyrazole saturés et, deux liaisons avec l'atome central d'oxygène et l'atome d'azote d'un cycle 1H-pyrazole ; nous retrouvons, en position apicale, un atome de chlore.

Pour déterminer la géométrie autour de Cu₁, Cu₆, Cu₇ et Cu₈, nous allons calculer leurs indices de trigonalité respectifs τ_{Cu1} , τ_{Cu6} , τ_{Cu7} et τ_{Cu8} .

Dans le tableau 32 ci-dessous, nous avons sélectionnés les plus grands angles autour de chaque atome de cuivre, et avons calculés les τ correspondants.

Tableau 32 Les plus grands a	angles autour des atomes	de cuivre et leurs indices τ de
t	rigonalité correspondant	S

Grands angles (°) autour de		Indice de	Grands angles (°) autour de		Indice de
Cu ₁		trigonalité $ au$	Cu ₆		trigonalité $ au$
O ₁ -Cu ₁ -N _{9A}	β=176.03(19)	$\tau = 0.153$	O ₂ -Cu ₆ -N _{9B}	β=174.60(2)	$\tau = 0.111$
N _{5A} -Cu ₁ -N _{4A}	α=166.8 (2)	Pyramide à	N ₁₂ -Cu ₆ -N ₁₆	α=167.9(2)	Pyramide à
		base carrée			base carrée
Grands angles (°) autour de		Indice de	Grands angles (°) autour de		Indice de
Cu ₇		trigonalité $ au$	Cu ₈		trigonalité $ au$
N _{5C} -Cu ₇ -N _{2C}	β=176.4(2)	$\tau = 0.161$	N _{7C} -Cu ₈ -O ₃	β=175.1(2)	$\tau = 0.093$
N _{9C} -Cu ₇ -N _{2C}	α=166.7(2)	Pyramide à	N _{6C} -Cu ₈ -N _{4C}	α=169.5 (2)	Pyramide à
		base carrée			base carrée

D'après les valeurs calculées des indices de trigonalité τ , la géométrie autour des quatre atomes de cuivre, est donc, en faveur d'une pyramide à base carrée.

Nous avons représenté, dans la figure 15 ci-dessous, un des atomes de cuivre concerné par la géométrie pyramide à base carrée Cu_1 , avec son proche environnement.

Figure 15 Pyramide à base carrée formée autour de l'atome de cuivre Cu₁

► Coordinence 6 :

Ce sont les atomes Cu_3 et Cu_4 qui, dans leur proche environnement, sont concernés par la coordinence 6, ils joignent deux atomes de chlore en position axiale et, se trouvent en fait ; sur la chaine polymérique des sous-unités (1) et (2).

Chaque atome métallique a un environnement similaire, en effet nous observons en positions axiales : un atome d'azote du cycle 1H-pyrazole face à un atome central d'oxygène, deux atomes d'azote de deux cycles pyrazole saturés, et enfin deux atomes de chlore assurant la jonction du polymère, le tout formant une géométrie octaédrique irrégulière, au vu des valeurs des angles, que nous avons répertorié dans le tableau 33 ci-après :

Tableau 33 Valeurs des angles formant l'octaèdre autour des atomes Cu3 et Cu4

Angles	Valeurs (°)
N _{7A} -Cu ₃ -O ₁	169.38(19)
N _{2A} -Cu ₃ -N _{7A}	93.4(2)
N _{2A} -Cu ₃ -O ₁	88.97(19)
Cl ₁ -Cu ₃ -N _{2A}	97.94
Cl ₁ -Cu ₃ -N _{6A}	83.81(3)
Cl ₁ -Cu ₃ -N _{7A}	92.11(17)
Cl ₅ -Cu ₃ -O ₁	100.50(17)
Cl ₅ -Cu ₃ -N _{2A}	93.75(16)
Cl ₅ -Cu ₃ -N _{6A}	84.38 (9)
Cl ₅ -Cu ₃ -N _{7A}	89.70(2)
O ₁ -Cu ₃ -N _{2A}	88.97(19)
O ₁ -Cu ₃ -N _{6A}	88.37(14)
O ₁ -Cu ₃ -N _{7A}	169.38(2)
N _{2A} -Cu ₃ -N _{6A}	176.42 (14)
N _{2A} -Cu ₃ -N _{7A}	93.36(14)
Cl ₁ -Cu ₄ -N _{1B}	87.10(3)
Cl ₁ -Cu ₄ -N _{3B}	90.93(9)
Cl ₁ -Cu ₄ - N _{7B}	92.20(14)
Cl ₃ -Cu ₄ -O ₂	77.55 (14)
Cl ₃ -Cu ₄ -N _{1B}	86.74 (14)
Cl ₃ -Cu ₄ -N _{3B}	94.86 (9)
Cl ₃ -Cu ₄ -N _{7B}	93.30(14)
O ₂ -Cu ₄ -N _{1B}	87.46 (14)
O ₂ -Cu ₄ -N _{7B}	170.65 (14)
N _{1B} -Cu ₄ -N _{3B}	175.86 (17)
N _{1B} -Cu ₄ -N _{7B}	90.13(17)
N _{3B} -Cu ₄ -N _{7B}	93.58 (17)
Cl ₁ -Cu ₄ -Cl ₃	171.75
Cl ₁ -Cu ₄ -O ₂	96.70(19)
O ₂ -Cu ₄ -N _{3B}	89.16(19)

Nous pensons que ces écarts dans les valeurs, sont du à l'encombrement des ligands hétérocycliques. Dans la figure 16 suivante, nous avons illustrés l'environnement, identique, des atomes Cu_1 et Cu_4 , et, mis en évidence, l'irrégularité de l'octaèdre formé.

Figure 16 Octaèdre irrégulier formé autour de l'atome de cuivre (Cu₃ ou Cu₄)

VI – 2 – 2 – 3 Enchaînement, empilement des molécules du polymère et étude des interactions (les liaisons hydrogène et les interactions π - π et C-H.... π)

► Les liaisons hydrogène de la structure du polymère (3)

Toutes les liaisons hydrogène en présence, sont de type modérées et faibles, de type C-H...Cl, C-H...O et O-H...Cl. Les liaisons impliquant les atomes d'oxygène sont assurées par le biais de la molécule de solvant qui assure la jonction entre les chaînes polymériques.

Pour le cas des liaisons C-H...Cl, on observe deux types : une liaisons intra-trimère, entre un atome de carbone d'un ligand pyrazole d'une entité de base avec, un atome de chlore d'une autre entité, renforçant ainsi la chaîne polymérique; une autre inter-polymère, assurant la jonction entre ces chaînes 1D, suivant les trois directions de l'espace donnant ainsi ; un empilement tridimensionnel de notre structure.

Nous avons rassemblé, dans le tableau 34 suivant, toutes les liaisons hydrogène présentes dans la structure du polymère.
D – HA	$\mathbf{D} - \mathbf{H}$	НА	DA	D – HA
C_{12A} - H_{12A} O_4^{3i}	0.95	2.28	2.9872	131
Intra-trimère				
C _{13A} -H _{13A} Cl ₁	0.95	2.37	3.1024	134
Intra-trimère				
C _{13C} -H _{13C} Cl ₆ ⁴ⁱ	0.95	2.75	3.6549	160
Inter-polymère				
C _{15B} -H _{15B} Cl ₆ ⁵ⁱ	0.95	2.73	3.6418	162
Intra-trimère				

Tableau 34 Liaisons hydrogène de la structure du polymère (3)

Codes de symétrie: i = -1+x, y, z ; 2i = x, 1+y, z ; 3i = 1+x, 1+y, z ; 4i = 1+x, y, z ; 5i = x, y, -1+z.

Dans la figure 17 ci-dessous, nous avons représenté les liaisons hydrogène C-H...Cl intra et inter polymère. Vu la complexité de la structure, les atomes de chlore et, ceux du cuivre ont été représentés de la même couleur, pour faire ressortir la chaîne du polymère et, certains ligands ont été omis pour montrer plus clairement les liaisons hydrogène.

Figure 17 Liaisons C-H...Cl intra et inter polymères

► Les interactions C-H... π

La stabilité du réseau cristallin, est aussi assurée, en plus des liaisons hydrogènes, par quatre interactions électrostatiques de type C-H...Cg, que nous avons répertoriés dans le tableau 35 ci-dessous :

Tableau 35	Valeurs de	es interactio	ns électrostatio	jues de type C-H π
------------	------------	---------------	------------------	------------------------

C-HCg	HCg (Å)	C-HCg (°)	CCg (Å)
C_{3B} - H_{3B} Cg_{16}^{i}	2.94	149	3.7843
$C_{6A}-H_{6A}Cg_{23}^{2i}$	2.98	117	3.5142
C_{12C} - H_{12C} Cg_{16}^{i}	2.78	118	3.3396
C_{15C} - H_{15C} Cg_{20}^{3i}	2.86	137	3.6114

Codes de symétrie : i= x, y, z ; 2i= x, -1+y, z ; 3i= x, y, 1+z.

Les cycles générant les interactions C-H...Cg, sont les suivants : $Cg_{16}(N_{1A}/N_{2A}/C_{1A}/C_{2A}/C_{3A})$; $Cg_{20}(N_{3B}/N_{4B}/C_{4B}/C_{5B}/C_{6B})$; $Cg_{23}(N_{5B}/N_{6B}/C_{7B}/C_{8B}/C_{9B})$.

Dans la figure 18 suivante, nous avons illustré, les interactions C_{3B} - H_{3B} ... Cg_{16} et C_{12C} - H_{12C} ... Cg_{16} :

Figure 18 Représentation des interactions C_{3B} - H_{3B} ... Cg_{16} et C_{12C} - H_{12C} ... Cg_{16} générées par le cycle ($N_{1A}/N_{2A}/C_{1A}/C_{2A}/C_{3A}$)

VII Conclusion du chapitre

Nous sommes parvenus à synthétiser trois structures originales, non publiées en référence à la CSD 2019, qui plus sont, en cours de publication.

Il s'agit des deux complexes avec une unité tétranucléaire $[Cu_4 (\mu_2-Cl)_6 (\mu_4-O)]$, de type $[Cu_4OCl_6L_4]$ et, du polymère avec une unité trinucléaire Cu_3OCl_3 suivants :

- ► Hexa (μ_2 -chloro) (μ_4 -oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol
- ► Hexa (µ₂-chloro) (µ₄-oxo) Tétra (méthyle-1pyrazole) tétra cuivre(II)
- ► Tri (µ-chloro) (µ₃-oxo) tri (µ₂-pyrazolo) bis (1H-pyrazole) tricuivre (II)

La synthèse a été effectuée, en deux étapes, la première en réacteur fermé et, la seconde par réaction avec l'oxygène atmosphérique, qui représente en faite le deuxième ligand de ces structures.

Le chemin réactionnel de formation, est le même pour les trois structures, en effet à la sortie du réacteur, la solution est incolore, le degré d'oxydation du cuivre est I, elle est donc, très instable et réactive.

Ainsi ; dans la réaction de chauffage, il y a réduction de l'atome de cuivre (II) du sel CuCl₂.2H₂O, en cuivre (I).

Au contact du milieu ambiant, le Cu^+ s'oxyde en Cu^{++} et en même temps, l'oxygène atmosphérique commence à se solubiliser dans la solution, les facteurs catalysant cette solubilisation, sont, en paire, la température et la pression, en effet l'élévation de la température, aide la molécule O_2 à se solubiliser, en même temps que la pression (Loi d'henry). Une fois dans la solution la molécule O_2 , se dissocie par rupture homolytique, pour former deux ions oxydes, qui à leur tour vont réagir avec les cations de Cu^{2+} et former les tétramères et trimère oxo.

Nous avons également réalisé une étude spectrale IR et UV-visible et, une diffraction par rayons X, il faut savoir que cette dernière, a été la première caractérisation que nous avons effectué.

Dans la description structurale, nous avons fait une étude comparative des complexes $[Cu_4OCl_6(C_3H_4N_2)_4].C_2H_5OH$ (1) et $[Cu_4OCl_6(C_4H_6N_2)_4]$ (2), il en ressorti que ces structures : • possèdent le même système cristallin à savoir le système monoclinique, avec une légère différence dans la symétrie dans le groupe d'espace ; en effet (1) possède un groupe d'espace $P2_1/n$ et (2) $P2_1/c$;

► sont formées d'un cœur commun central, ne présentant pas de différences significatives, quand aux valeurs des distances et angles le constituant ;

► possèdent presque la même unité asymétrique, les différences résident, dans le ligand ; en effet, (1) a pour ligand l'imidazole et une molécule d'éthanol et (2) 1-méthyle-pyrazole ;

▶ ont une coordinence 5, avec une géométrie autour du cuivre, bipyramide trigonale.

Pour la troisième structure, l'étude par diffraction des rayons X, a révélé un polymère de coordination, inconnu jusqu'alors, il s'agit d'un trimère constitué de trois sous-unités (1), (2) et (3) identiques, chacune d'elles possédant un même cœur, formé d'un atome central d'oxygène lié à trois cations de cuivre II, liés à cinq ligands pyrazole et trois atomes de chlore.

Les trois atomes de cuivre contenus dans chaque sous-unité, sont au sommet d'un triangle, dont, les trois médianes concourent en l'atome d'oxygène. Sur les cinq ligands pyrazole, trois sont liés avec leurs deux atomes d'azote et, sont de type LX, alors que deux, sont liés par un seul atome d'azote donnant ainsi un ligand de type L.

L'unité asymétrique est constituée, en plus du cœur commun, de trois cycles 1H-pyrazole, de trois atome de chlore, cet ensemble forme une des trois sous unités, et enfin de trois molécules de solvant, deux de propanol-2, et une molécule d'eau.

Le trimère possède une ligne de jonction constituée d'atomes de chlore qui unissent les sousunités. Cette ligne est formée des atomes, liés de façon covalente, $Cl_3-Cu_7-O_3-Cu_8-Cl_5-Cu_3 Cl_1-Cu_4-Cl_3-Cu_7$, l'atome Cl_1 joint les sous-unités (1) et (2), tandis que l'atome Cl_5 joint les sous-unités (2) et (3).

La stabilité de la structure est assurée par des liaisons majoritairement électrostatiques, de type C-H...Cl, C-H...O et O-H...Cl; les liaisons O-H...Cl, concernent les molécules de solvant, tandis que, pour les liaisons de type C-H...Cl, il y a celles qui assurent la cohésion du trimère : intra-trimère ; et celles qui renforcent la stabilité de la structure : inter-polymère.

VIII – Les Références

[1] [S. Becker, M. Dürr, A. Miska, J. Becker, C. Gawlig, U. Behrens, I. I. Burmazovic, S.Schindler, Acs. Inorg Chem. 5b 02576, 2015]

[2] [H. Sun, K. Harms, J. Sundermeyer, J. Am. Chem. Soc. 126, 9550–9551, 2004]

[3] [L. Liang, G. Rao, H.-L. Sun, J.-L. Zhang, Adv. Synth. Catal, 352, 2371–2377, 2010]

[4] [A. M. Atria, A. M. Contreras, J. Valenzuela, and E. Spodine ; Inorg. Chem, 38, 5681-5685, 1999]

[5] [W. Clegg, J. R. Nicholson, D. Collison, C. D. Garner, Acta Cryst, C44, 453-461; 1988]
[6] [A. Erdonmez, J. H. VanDiemen, Rudolf, A. G. De Graaff, J. Reedijk; Acta Cryst. C46, 402-404, 1990]

[7] [Hui. Li, H. Jiang. H. Sun, Acta Cryst. E67, m1372, 2011]

[8] [F. Jian, P. Zhao, H. Xiao, H. Wang, Analytical Sciences, VOL. 20, The Japan society for analytical chemistry, 2004]

[9] [R. E. Norman, J. R. Norman, Acta Cryst. C45, 1707-1713, 1989]

[10] [R. T. Stibrany, J. A. Potenza, J Chem Crystallogr. 42:199-204, 2012]

[11] [Y-Q. Zhang, D-J. Xu, J-R. Su, Acta Cryst. E59, m919-m920, 2003]

[12] [P. Cortés, A. M. Atria, M. T. Garland, R. Baggio, Acta Crystallographica section C.C62, m311-m314, 2006]

[13] [F. S. Keij, J. G. Haasnoot, Ad. J. Oosterling, J. Reedijk; Inorganica Chimica Acta, 181, 185-193, 1991]

[14] [X. Liu, Colin. A. Kilner, M. A. Halcrow, Acta Cryst, C59, m100-m102, 2003]

[15] [Hongshan He, Acta Cryst. E67, m140, 2011]

[16] [S. Löw, J. Becker, C. Würtele, A. Miska, C. Kleeberg, U. Behrens, O. Walter, S. Shindler. Chem-Eur. J., 19, 5342-5351, 2013]

[17] [H. tom Dieck, H.-P. Brehm, Chem. Ber, 102, 3577–3583, 1969]

[18] [H. Bock, H. tom Dieck, H. Pyttlik, M. Schnöller, Z. Anorg. Allg. Chem, 357, 54–61, 1968]

[19] [H. Dieck, Inorg. Chim. Acta 1973, 7, 397–403, 1973]

[20] [J. W. Hill, R. H. Petrucci, M. Dion, M. Lamoureux, « Chimie générale »; Pearson Education. 2002]

[21] [http://www.bio safety.be/sites/default/files/press_neg_l3.pdf]

[22] [R. H. Petrucci, F. G. Herring, J. D. Madura, C. Bissonnette; "General chemistry"; Eleventh Edition, Pearson, 2017]

[23] [Robert. C. Weast, Melvin. J. Astle; "CRC Handbook of Chemistry and Physics", CRC
 Press, 62nd Edition, 1981-1982]

[24] [J. T. Guy, Jr. J. C. Cooper, R. D. Gilardi, J. L. Flippen-Anderson Inorganic Chemistry, Vol 27, N°4, 1988]

[25] [Les cours de Paul Arnaud.B. Jamart, J. Bodiguel, N. Brosse ; « Chimie organique »-Dunod- PARIS, 2009]

[26] [P. Atkins &J. De Paula, « Elements of physical chemistry », fifth Edition ; 2009]

[27] [L. Tresnard, N. Clatin, P. Jacq, « CHIMIE PCSI », Editions Belin 2004]

[28] [René. Milcent, François. Chau,"Chimie organique hétérocyclique", EDP Sciences, 2003]

[29] [R. R.Gupta, M. Kumar, V. Gupta; Heterocyclic chemistry II- Five-Membered Heterocycles; Springer-Verlag Berlin Heidelberg 1999]

[**30**] [Nicholas. Rabasso, "Chimie Organique, Hétéroéléments, stratégies de synthèse et chimie organométallique", Edition De boeck, 2006]

[**31**] [Catherine E. Housecroft and Alan G. Sharpe « Inorganic chemistry »Fourth Edition ; Pearson. 2012] [32] [A. S. Kertes, Solubility data series, volume7 « oxygen and ozone »; Pergamon press, 1981]

[33] [P. Atkins&J. De Paula, « Elements of physical chemistry », fifth edition ; 2009]

[34] [Alan R. Katritzky, Christopher A. Ramsden, John A. Joule, Viktor V. Zhdankin « Handbook of Heterocyclic Chemistry, Third Edition », Netherlands. 2010]

[**35**] [J. T. Guy, Jr., J. C. Cooper, R. D. Gilardi, J. L. Flippen-Anderson and C. F. George, Jr ; Inorganic chemistry, Vol. 27, N°4, 1988]

[36] [R. C. Dikinson, F. T. Helm, W. A. Baker, Jr, T. D. Black, W. H. Watson, Jr; Inorganic chemistry, vol 16, N°6, 1977]

[37] [G. EZerbi, C. Alberti ; Spectrochimica Acta, Vol. 18, pp. 407 to 423. 1962]

[**38**] [R. C. Dikinson, F. T. Helm, W. A. Baker, Jr, T. D. Black, W. H. Watson, Jr; Inorganic chemistry, vol 16, N°6, 1977]

[39] [D. Dal Monte, A. Mangini, and R. Passerini, Gazz. Chim. Ital. 86, 797 (1956).].

[40] [J. T. Guy, Jr., J. C. Cooper, R. D. Gilardi, J. L. Flippen-Anderson and C. F. George, Jr ; Inorganic chemistry, Vol. 27, N°4, 1988]

[**41**] [Addition and al., International Journal of Inorganic Chemistry, Volume 2015, Article ID 478380., 2015.]

[42] [A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc., Dalton Trans. 1349., 1984]

[43] [Bertrand J. A. Inorg. Chem. 6, 495, 1967]

[44] [Kilbowrn, B. T.; Dunitz J. D. Inorg. Chim. Acta, 1, 209, 1967]

[45] [Bertrand, J. A; Kelly, J. A. Inorg. Chem. 9, 1982, 1969]

[46] [J. Bernstein, R. E. Davis, L. Shimoni and N. L. Chang, .Patterns in hydrogen bonding: functionality and graph-set analysis in crystals. Angew. Chem. Int. Ed Engl. 34: 1555-73. 1995]

CHAPITRE III Le complexe Tétra-pyrazolesulfato-cuivre II. Monohydraté Etude par : Diffraction des rayons X, spectrale UV-Visible et réaction de couplage par catalyse Chan-Evans-Lam

CHAPITRE III

Le complexe Tétra-pyrazole-sulfato-cuivre II.Monohydraté : Etude par diffraction des rayons X, spectrale UV-Visible et réaction de couplage par catalyse Chan-Evans-Lam

I – Introduction

Les ligands hétérocycliques, particulièrement, les 1H-imidazole et 1H-pyrazole et leurs dérivés, ont fait l'objet de nombreuses recherches notamment, dans le domaine de la coordination, où il a été établit, qu'ils pouvaient donner naissance, avec les métaux de transition, à des composés de coordination très intéressants d'un point de vue structural.

Ces derniers, ont été synthétisés et publiés, par beaucoup de chercheurs notamment, Reedijk [1], Goodgame [2], Reiman [3] et enfin, Lundberg [4].

Dans un article publié par Reedijk [1], il a été établit qu'il pouvait exister deux types de complexes de coordination, le premier de forme : [M(II)LpX] et le second : [M(II)(L)p]Xm. Dans le premier type ; l'anion X est directement lié au métal, dans le second, l'anion X est impliqué dans un système de coordination, L représentant soit, le ligand 1H-imidazole ou 1H-pyrazole.

Le complexe [Cu(II)(Pz)₄SO₄.H₂O], avec Pz: 1H-Pyrazole et $X = SO_4^{2-}$, a été synthétisé et publié N. D. Phung [5], [6] à partir de solutions d'éthanol, par W.-Z. Shen [7] avec des réactions dans un mélange eau/méthanol, et enfin par, C. Di Nicola [8] par des réactions de clivage en milieu acide.

Dans le présent chapitre, notre recherche, va porter sur, la synthèse de ce même type de composé de coordination, moyennant, un autre chemin réactionnel, il s'agit d'une synthèse en réacteur fermé homogène monophasique (voir chapitre I, sous-chapitre II), sous pression autogène, dans un domaine de pression allant de 10 à 30 kbar [9].

Nous avons effectué, pour le complexe $[Cu(II)(Pz)_4SO_4.H_2O]$, avec Pz: 1H-Pyrazole, une étude cristallographique détaillée, une analyse élémentaire, une étude spectrale d'absorption électronique et, pour finir, nous avons déterminé une de ses propriétés, qui est son activité catalytique et ce, moyennant la réaction de couplage de Chan-Evans-Lam CEL [10].

Il s'agit d'un protocole rapide et efficace, qui utilise une réaction de couplage C-N (crosscoupling) entre, l'acide phényl-boronique et, une amine préalablement choisie dans, un solvant habilité à dissoudre les réactifs et, surtout le complexe, qui va jouer le rôle de catalyseur de la réaction.

II – Synthèse et étude par analyse élémentaire du complexe [Cu(Pz)₄.SO₄.H₂O] avec Pz : 1H-pyrazole

II – 1 Synthèse du complexe [Cu(Pz)₄.SO₄.H₂O]

La synthèse de ce complexe, a été réalisée dans un réacteur fermé homogène ; par voie solvothermale (voir chapitre I, sous-chapitre II) [9], in-situ, c'est-à-dire que tous les réactifs ont été introduits, sans mélange préalable [11], dans une chemise en téflon puis, dans le corps en acier inoxydable.

Les proportions des réactifs en question sont :

- 4mmoles \rightarrow 0.27232 g/mole de 1H-pyrazole ;
- 1 mmole $\rightarrow 0.25$ g/mole de CuSO₄.5H₂O ;
- 14ml de méthanol.

Le réacteur scellé est introduit, dans une étuve réglée à 180°C et ce, pour une durée de quatre heures. Nous avons représenté la réaction dans le schéma 1 ci-après:

Schéma 1 Réaction de synthèse du complexe [Cu(II)(Pz)₄SO₄.H₂O], Pz: 1H-Pyrazole

Après refroidissement lent de l'autoclave, à température ambiante, nous avons récupéré de la chemise en téflon, une solution limpide, sans dépôt de particules, de couleur bleue foncée et de PH, avoisinant la neutralité, de valeur 6.

Après six jours de lente évaporation du solvant, en milieu ambiant (T = 25° C environ), des cristaux exploitables, de couleur bleue dure sont apparus, en assez bonne quantité (m = 0.20g) avec un rendement de 45%.

II – 2 Analyse élémentaire

L'analyse élémentaire du complexe de formule, $C_{12}H_{16}CuN_8O_4S.H_2O$ et, de masse molaire M = 426.55 g/mole, a été effectuée à l'Université de Montréal, au sein du laboratoire de recherche de chimie inorganique, sous la responsabilité du professeur Frank. Hein. Schaper. Les résultats de cette analyse, sont consignés dans le tableau 1 ci-dessous où, sont données, les valeurs théoriques obtenues par calcul des pourcentages à partir de, la masse molaire M du complexe et, les valeurs obtenues par analyse élémentaire soient, à partir de l'échantillon.

Tableau 1 Analyse élémentaire du complexe de formule chimique C₁₂H₁₆CuN₈O₄S.H₂O

$C_{12}H_{16}CuN_8O_4S.H_2O$	С%	H%	N%	S%
Valeurs théoriques	32.03	4.03	24.90	7.13
Valeurs expérimentales	30.53	3.75	21.24	7.51

A travers les résultats du tableau 1 ci-dessus, nous avons observé des écarts, dans les pourcentages de souffre, en fait pouvant signifier, la présence d'impuretés dues probablement à, des traces de sulfate de cuivre n'ayant pas réagi.

III – Etude de la spectroscopie d'absorption électronique du composé de coordination, spectre Ultraviolet/Visible

Le spectre UV-Visible du complexe $[Cu(II)(Pz)_4SO_4.H_2O]$ avec, Pz : 1H-pyrazole, a été enregistré à l'université de Montréal, dans le laboratoire de recherche de chimie inorganique, sous la responsabilité du professeur Frank. Hein. Schaper.

L'enregistrement a été effectué, à température ambiante, dans le domaine de longueur d'onde [275 - 900], au moyen d'un spectrophotomètre, Cary 6000 Agilent Technologies.

Pour effectuer l'enregistrement, nous avons dissout le complexe dans l'éthanol, obtenant ainsi, une solution de concentration $1.5 \ 10^{-3}$ M et, de couleur bleue ciel.

Figure 1 Spectre d'absorption électronique du complexe [Cu(II)(Pz)₄SO₄.H₂O]

Le spectre d'absorption électronique, a révélé une large bande, dans la région du visible caractéristique des complexes des métaux de transition, avec un maximum d'absorption à $\lambda = 668$ nm, indiquant la présence d'une transition d - d.

Aussi ; nous avons observé, un pic de grande intensité à une longueur d'onde $\lambda = 295$ nm, révélant, un transfert de charge du ligand au métal (LMCT ligand to metal charge transfert) [12] (voir aussi chapitre I, sous-chapitre IV – 3 – 2).

Nous avons comparé cette valeur, soit $\lambda = 295$ nm, à celle donnée par la théorie (voir chapitre I, sous-chapitre III – 2 – 3 – 2) [13], [14] où, le ligand 1H-pyrazole, absorbe fortement à $\lambda = 210$ nm (transition π - π *), nous avons constaté, un déplacement vers les grandes longueurs d'onde, qui est probablement dû à, l'effet bathochrome (red schift) de l'éthanol [15].

IV – Caractérisation et étude par diffraction par Rayons X du complexe [Cu(Py)₄.SO₄.H₂O] avec Py : 1H-pyrazole

IV – 1 Mesure par diffraction des rayons X et enregistrement des intensités

Cette mesure a été effectuée à l'université de Montréal, dans le laboratoire de recherche de chimie inorganique, sous la responsabilité du Professeur Frank. Hein. Schaper et la collaboration de Madame Francine. Bélanger.

Le cristal de couleur bleue dure, a été isolé par rinçage au méthanol, puis, monté sur une fibre et, centré sur une tête goniométrique.

L'enregistrement des intensités de la structure, a été réalisé à l'aide d'un diffractomètre métaljet, Bruker Venture à Galium liquide (Ga K α), équipé d'un détecteur à photon 100 CMOS, d'un Helios MX optique et, d'un goniomètre Kappa.

La distance entre le détecteur et le cristal était de 4.00 cm et, la collecte des données de diffraction a été réalisée en mode 1024×1024 pixels.

Les programmes utilisés pour la résolution et l'affinement de la structure, sont portés dans l'annexe I des techniques expérimentales.

IV – 2 Résolution et affinement de la structure

Les données expérimentales, cristallographiques, ainsi que, l'affinement sont consignés dans le tableau 2 pour le complexe [Cu(II)(Pz)₄SO₄.H₂O].

Tableau 2 Données expérimentales, cristallographiques et d'affinement du complexe [Cu(II)(Pz)₄SO₄.H₂O]

Données cristallographiques			
Nom du complexeTétra-pyrazole-sulfato-cuivre I			
	Monohydraté		
Formule chimique	$C_{12}H_{18}CuN_8O_5S$		
Masse moléculaire (M _w)	899.91		
Facteur de structure F(000)	3696		
Système cristallin	Orthorhombique		

C II			
Groupe d'espace	Pbca		
Paramètres de maille	a [Å] = 16.4827 (5)		
	b [Å] = 15.2965 (5)		
	c [Å] = 28.0317 (9)		
Volume V (Å ³)	7067.6(4)		
Z	8		
d _{calcd.} (g/cm ³)	1.691		
Coefficient d'absorption μ (mm ⁻¹)	7.655		
$\theta_{\min}, \theta_{\max}$	2.749, 54.179		
Couleur du cristal	Bleu dur		
Dimension du cristal	0.12, 0.09, 0.08		
Enregis	trement		
Température de mesure (°K)	100 (2)		
Type de radiation et longueur d'onde	Ga k/a, λ = 1.34139 Å		
Source	Helios MX		
Diffractomètre	Goniomètre Kappa		
Correction d'absorption et Logiciel	Multi-scan, SADABS		
T _{min} , T _{max}	0.4602, 0.5795		
Méthode de mesure	ω scans		
h _{min, max} / k _{min, max} / l _{min, max}	-19, 16/ -18, 11/ -33, 27		
Réflections collectées	24838		
Réflections uniques	6342		
Réflections observées	4737		
Nombre de paramètres	492		
Affinement			
R _{int} ^a	0.0711		
$\mathbf{w}\mathbf{R}(\mathbf{F}^2)^{\mathbf{c}}$	0.1708		
$R\left[F^2 > 2\sigma(F^2)\right]^{\rm b}$	0.0843		
GooF S ^d (F ²)	1.098		
$\Delta \rho_{\min,\max}$ (e.Å ⁻³)	-1.125, 1.194		

$${}^{a}R(int) = \Sigma(F_{o}^{2} - \langle F_{o}^{2} \rangle)] / \Sigma(F_{o}^{2}); {}^{b}R1 = \Sigma / |F_{o}| - |F_{c}| / \Sigma |F_{o}|; {}^{c}wR2 = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}] / [\Sigma w(F_{o}^{2})^{2}]^{1/2}$$

$${}^{d}Goodness-of-fit S = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / (n-p)]^{1/2}.$$

• Données d'affinement

Tous les atomes (sauf les hydrogènes) de la structure, ont été affinés avec des paramètres anisotropiques, tous les hydrogènes ont été placés sur des positions géométriques, fixés, et affinés, avec des paramètres isotropiques, en relation avec, le paramètre équivalent de l'atome parent. Les atomes hydrogène des cycles aromatiques ont été affinés en tant que groupes rigides avec ; Uiso(H) = 1.2 Ueq (pour les atomes C et N) et, les autres atomes hydrogène avec Uiso(H) = 1.5 Ueq(O).

Lors de l'affinement de la structure, nous avons rencontrés deux problèmes de désordre, le premier concerne une molécule d'eau, occupant deux positions, le second, avec les groupements oxygènes des sulfates.

Ce désordre a été affiné en utilisant des contraintes spécifiques sur les atomes agités entre deux positions.

Les coordonnées atomiques et les paramètres d'agitation isotropiques (*) et équivalentes $(Å^2)$; les paramètres d'agitation thermiques atomiques; les angles de torsions (°) qui concernent le composé de coordination [Cu (II)(Pz)₄SO₄.H₂O]sont tabulés dans l'annexe VI à la fin du présent manuscrit.

IV – 3 Description de la structure du complexe [Cu(Py)₄.SO₄.H₂O]

Dans le but de présenter une structure sans ambigüités, et ce, en expliquant la coordination de l'atome de cuivre ainsi que, les interactions en présence, nous avons déterminé, dans un premier temps, la structure, par une analyse aux rayons X et, présentement, nous allons la décrire, il s'agit du complexe [Cu(Pz)₄.SO₄.H₂O].

IV – 3 – 1 L'unité asymétrique

La diffraction par rayons X a révélé, un composé de coordination qui cristallise dans le système orthorhombique, avec pour groupe d'espace *P*bca.

L'unité asymétrique du dit complexe, est formée de deux unités 1 et 2, la première ayant pour atome central Cu_1 et la seconde Cu_2 , chacune d'elles est formée d'un cation Cu(II), de quatre cycles 1H-pyrazole (ligands L) et, d'un anion sulfate (ligand X) et d'une molécule d'eau (figure 2).

Figure2 ORTEP de l'unité asymétrique (ellipsoïde avec 50% de probabilité) avec identification des atomes

IV – 3 – 2 Environnement de l'atome de cuivre

Dans chaque unité, l'environnement de l'atome de cuivre est constitué de, quatre atomes d'azote donneurs de doublets électroniques, appartenant à quatre cycles 1H-pyrazole (ligands L) et, d'un atome d'oxygène ou ligand X, donneur d'un électron lié à un anion sulfate $SO_4^{2^-}$, le tout formant une géométrie penta-coordinée, autour de l'atome de cuivre et, un complexe de type [ML₄X], ceci étant; nous sommes aux devants de deux possibilités quand au type de géométrie : bipyramide trigonale (tbp : trigonal bipyramid) ou, pyramide à base carrée (sp : square pyramid).

Pour calculer l'indice τ , nous avons sélectionné les plus grands angles autour de l'atome de cuivre et, les avons rassemblés, dans le tableau 3 ci-dessous :

Unité 1		Unité 2		
Angles	Valeurs (°)	Angles	Valeurs (°)	
$\alpha = N_{1B}-Cu_1-N_{1D}$	168.17(19)	$\alpha = N_{1E} - Cu_2 - N_{1G}$	169.8(2)	
$\beta = N_{1A} - Cu_1 - N_{1C}$	176.1(2)	$\beta = N_{1F}-Cu_2-N_{1H}$	175.8(2)	

Tableau 3 Valeurs de tous les angles (°) autour de l'atome de cuivre du complexe [Cu (II) (Pz)₄SO₄. H₂O]

Pour l'unité 1, ce sont les valeurs suivantes des angles α (N_{1B}-Cu₁-N_{1D}) = 168.17° et β (N_{1A}-Cu₁-N_{1C}) =176.1°, qui sont les plus élevées, par conséquent, le facteur de trigonalité τ = 0.1 ; de la même façon, pour l'unité 2, les valeurs des angles α (N_{1E}-Cu₂-N_{1G}) = 169.7° et β (N_{1F}-Cu₂-N_{1H}) = 175.7°, la valeur de τ = 0.1.

Pour les deux unités, nous constatons que les deux valeurs de τ , sont égales à 0.1 et donc, proches de 0. En conséquence ; la géométrie autour de l'ion de cuivre est en faveur d'une pyramide à base carrée [18], [19], [20].

Par conséquent, le complexe de cuivre est de géométrie pyramide à base carrée, avec un plan équatorial formé par les quatre atomes d'azote des cycles 1H-pyrazole et, une position axiale occupée par un atome d'oxygène de l'ion sulfate (figure 3).

Figure 3 Mise en évidence de la pyramide à base carrée autour de l'atome de cuivre

Nous avons regardé de plus prés, les valeurs des distances et des angles autour de l'atome de cuivre, il en est ressorti, pour les deux unités, que ces dernières, présentaient des écarts, que nous avons illustré dans le tableau 4 ci-après, et qui nous ont mené à la conclusion suivante : la géométrie autour de l'atome de cuivre est une pyramide à base carrée irrégulière.

Distances	Unité 1 (cycles A-D)	Unité 2 (cycles E-H)
Cu - N	1.988 (5), 2.002 (5), 2.013 (5),	2.003 (6), 2.004 (8), 2.016 (6),
	2.014 (5)	2.024 (5)
Cu - O	2.269 (5)	2.288 (8), 2.277 (7)
Angles	Unité 1 (cycles A-D)	Unité 2 (cycles E-H)
N – Cu - N _{cis}	88.4 (2) - 91.1 (2)	89.3 (3) – 90.9 (2)
N – Cu – N _{trans}	168.2 (2), 176.1 (2)	169.8 (2), 175.8 (2)
N – Cu - O	89.6 (2) – 102.2 (2)	83.1 (3) – 07.1 (3),
		82.2 (3) – 107.9 (3)

Tableau 4 Angles et distances autour de l'atome de cuivre [21]

IV – 3 – 3 Etude et analyse des interactions de la structure du complexe

IV – 3 – 3 – 1 Les liaisons hydrogène

D'un point de vue général, la cohésion de la structure est assurée par, les liaisons hydrogène majoritairement électrostatiques, $O - H \dots O$, $N - H \dots O$ et $C - H \dots O$.

En allant dans le détail, nous avons des liaisons hydrogène assurant la cohésion de l'unité asymétrique, celles qui concernent l'enchainement des unités 1 et 2 et enfin, celles qui sont responsables de l'empilement des couches.

► Liaisons hydrogène au sein de l'unité asymétrique

La cohésion de l'unité asymétrique, constituée de deux unités symétriquement dépendantes 1 et 2, ainsi qu'une molécule d'eau, est assurée par des liaisons hydrogène intra et intermoléculaires que nous avons tabulé comme suit :

Liaisons hydrogène intra-moléculaires					
D - HA	D – H (Å)	HA (Å)	D – A (Å)	D – HA (°)	
N _{2D} - H _{2D} O _{4A}	0.88	1.92	2.785(7)	169	
(Unité 1)					
N _{2H} - H _{2HA} O ₄	0.88	2.12	3.000(8)	175	
(Unité 2)					
C _{3E} - H _{3E} O ₃	0.95	2.05	2.971(12)	162	
(Unité 2)					
Liaisons hydrogène intermoléculaires impliquant la molécule d'eau					
O_{1W} - H_{1WA} O_4	0.87	1.94	2.777(7)	160	
O_{1W} - H_{1WB} O_{2A}	0.87	1.93	2.776(7)	162	
N_{2B} - H_{2B} O_{1W}	0.99(9)	2.06(9)	2.894(7)	141(7)	
(Unité 1)					

Tableau 5 Les liaisons hydrogène au sein de l'unité asymétrique du complexe [Cu(II)(Pz)₄SO₄. H₂O]

Nous avons schématisé, dans la figure 4 suivante, toutes les interactions au sein de l'unité asymétrique, avec représentation des graphes du modèle des liaisons $G^{a}_{d}(n)$ où, G = S (intramoléculaire) et R (cycle), a et d étant respectivement le nombre d'accepteurs et donneurs et n le nombre d'atome formant le graphe G [22].

De part cette même figure, nous voyons que les interactions électrostatiques, engendrées par la molécule d'eau soient, $O_{1W} - H_{1WA}...O_4$ et $O_{1W} - H_{1WB}...O_{2A}$, sont les points de jonction des deux unités, renforçant ainsi, la stabilité de l'unité asymétrique et donc, de la structure.

Aussi, nous avons observé dans les unités 1 et 2, des liaisons hydrogène modérées intramoléculaires $N_{2D} - H_{2D}...O_{4A}$, $N_{2H} - H_{2HA}...O_4$ et $C_{3E} - H_{3E}...O_3$ (figure 4 ci-dessous), formant chacune un graphe S(7) [22].

L'unité 1 est liée séquentiellement avec la molécule d'eau, formant un cycle de motif R_2^2 (9) [22], d'interactions constitutives N_{2B} - H_{2B}...O_{1W} et O_{1W} - H_{1WB}...O_{2A}; que nous avons mis en évidence, dans la figure 4 sous-schématisée.

Figure 4 Représentation des graphes S7 et $R_2^{2}(9)$ au sein de l'unité asymétrique

► L'enchainement de la structure

Les unités 1 et 2 s'enchainent séparément et de façon unidimensionnelle, en effet, les molécules formant l'unité 1 se lient selon l'axe b, moyennant les liaisons modérées N_{2A} - H_{2A} ... O_{3A} et N_{2C} - H_{2C} ... O_{2A} et celles formant l'unité 2, selon l'axe a et la liaison modérée N_{2F} - H_{2F} ... O_{22} . Nous avons rassemblés, en termes de valeurs, dans le tableau 6 ci-dessous, les trois interactions électrostatiques qui enchainent des unités 1 et 2 selon les axes respectifs b et a.

D - HA	D – H (Å)	HA (Å)	D – A (Å)	$D - HA(^{\circ})$
$N_{2A} - H_{2A} - O_{3A}^{ii}$	0.88	1.91	2.716(7)	151
N_{2C} - H_{2C} O_{2A} ⁱⁱ	0.88	1.96	2.820(7)	165
N_{2F} - H_{2F} O_{22}^{i}	0.82(7)	1.97(7)	2.782(11)	175(8)

les axes b et a

Codes de symétrie : i = 1/2+x, y, 3/2-z ; ii = 1/2-x, -1/2+y, z.

Dans la figure 5 ci-dessous, nous avons mis en évidence la séquence formée par l'enchainement des unités 1 selon l'axe b et révélant par le biais :

- de l'interaction intramoléculaire N_{2D} H_{2D} ... O_{4A} , un graphe S(7) ;
- des interactions intermoléculaires fortes N_{2A} $H_{2A}...O_{3A}$ et N_{2C} $H_{2C}...O_{2A},$ un cycle $R_2{}^2(10).$

Figure 5 Interactions N-H...O responsables de l'enchainement unidimensionnel des unités 1 selon l'axe b

De la même façon, nous avons mis en évidence, dans la figure 6 suivante, la séquence formée par l'enchainement unidimensionnel des unités 2, selon l'axe a.

Figure 6 Interaction N_{2F}-H_{2F}...O₂₂ responsable de l'enchainement unidimensionnel des unités 2 selon l'axe a

Nous avons schématisé dans la figure 7 ci-après, les chaines formées par les unités 1 et 2 dans le plan (a, b), où, nous voyons clairement qu'elles s'interceptent perpendiculairement.

Figure 7 Intersection des chaines formées par les unités 1 et 2 dans le plan (a, b)

▶ Empilement de la structure, le réseau tridimensionnel

A l'échelle tridimensionnelle, la stabilité de la structure du complexe, est assurée par de faibles interactions de type C-H...O que, nous avons rassemblé dans le tableau 7 ci-dessous :

D - HA	D – H (Å)	HA (Å)	D – A (Å)	D – HA (°)
C_{1B} - H_{1B} O_3	0.95	2.41	3.282(10)	153
$C_{2G}-H_{2GA}O_{3}^{i}$	0.95	2.39	3.246(12)	150
C_{3B} - H_{3B} O_{2A} ⁱⁱ	0.95	2.48	3.352(8)	153
C_{3D} - H_{3D} O_{4A} ⁱⁱ	0.95	2.45	3.391(8)	172
C_{2D} - H_{2DA} O_3^{ili}	0.95	2.41	3.360(10)	174

Tableau 7 Liaisons hydrogène formant le réseau à trois dimensions

Codes de symétrie : i = 1/2-x,1/2+y, z ; ii = 1/2-x,-1/2+y, z ; iii = 1/2-x,1-y,-1/2+z

Nous avons représenté les interactions faibles formant le réseau de la structure, au travers de deux figures 8 et 9 et ce, par souci de clarté, vu qu'elles renferment le même nombre de molécules et, qu'elles ont la même orientation (axe a), mais, elles diffèrent par l'orientation du plan (b, c).

Dans la figure 8 ci-dessous, nous avons remarqué que, les liaisons hydrogène suivantes empilaient :

- C_{3B} - H_{3B} ... O_{2A} et C_{3D} - H_{3D} ... O_{4A} \rightarrow unités 1 et 2 ;
- C_{1B} H_{1B} ... $O_{3\rightarrow}$ unités 1 ;
- C_{2G} - H_{2GA} ... O_{3} -unités 2.

Figure 8 Représentation des liaisons hydrogène du réseau tridimensionnel selon l'axe a

La figure 9 suivante, a mis en évidence, en plus des interactions représentées dans la figure 7 ci-dessus, la liaison C_{2D} - H_{2DA} ... O_3 qui est responsable de l'empilement des unités 1 et 2.

Figure 9 Représentation de l'empilement des unités 1 et 2 selon l'axe a

Nous avons représenté d'une façon générale, dans la figure 10 ci-après, le réseau tridimensionnel de la structure du complexe :

Figure 10 Réseau tridimensionnel de la structure du complexe

En regardant de plus près l'empilement des unités 1 et 2, nous avons remarqué la présence de trois cycles avec différents degrés.

Dans la figure 11 suivante, nous avons mis en évidence le cycle $R_2^2(10)$, formé par l'empilement de deux unités 1 ; aussi, le cycle $R_4^4(22)$, formé par l'empilement de deux unités 1 et deux unités 2.

Figure 11 Cycles de Bernstein formés par l'empilement des unités 1 et 2

Dans la figure 11 ci-dessus, nous avons enlevé la liaison $C_{3B} - H_{3B}...O_{2A}$, séparant les deux cycles $R_2^{\ 2}(10)$ et $R_4^{\ 4}(22)$ et, avons obtenu un grand cycle $R_4^{\ 4}(25)$, que nous avons illustré dans la figure 12 ci-après :

Figure 12 Grand cycle R₄⁴ (25) formé par l'empilement des unités 1 et 2

IV – 3 – 3 – 2 Etude des interactions de type π ... π et C-H... π du composé de coordination

En plus des liaisons hydrogène faibles et modérées en présence, la structure du complexe, est stabilisée par deux types d'interactions, à savoir ; $\pi \dots \pi$ et C-H... π , que nous avons rassemblé dans les tableaux 8 et 9 suivants :

Centroïde	Codes de symétrie	Distances
$Cg_{13} - Cg_{15}$	1-x,-1/2+y,3/2-z	3.754(5)
$Cg_{19} - Cg_{19}$	-x,1-y,1-z	3.678(4)

Tableau 8 Interactions π - π stacking de la structure du complexe

Tableau 9 Interactions C-H...Cg de la structure du complexe

Interactions	HCg (Å)	X-HCg (°)	XCg (Å)	Codes de symétrie
C_{1C} - H_{1C} Cg_{16}	2.98	138	3.739(7)	1-x, 1-y, 1-z
C_{1E} – H_{1E} … Cg_{14}	2.93	143	3.732(10)	1-x,-1/2+y,3/2-z
C_{1G} – H_{1G} … Cg_{14}	2.89	140	3.673(8)	1-x,1/2+y,3/2-z

En analysant le tableau 8 ci-dessus, les deux interactions $\pi...\pi$ stacking en présence sont modérées, la première avec une distance de 3.678Å, concerne les centroïdes Cg₁₉-Cg₁₉, générés par le cycle 1H-pyrazole N_{1A}/N_{2A}/C_{1A}/C_{2A}/C_{3A} et, la deuxième Cg₁₃-Cg₁₅ de distance 3.755Å concerne les centroïdes : Cg₁₃ généré par le cycle 1H-pyrazole N_{1E}/N_{2E}/C_{1E}/C_{2E}/C_{3E} et Cg₁₅ généré par le cycle 1H-pyrazole N_{1G}/N_{2G}/C_{1G}/C_{2G}/C_{3G}.

Dans les deux figures 13 et 14 suivantes, nous avons représenté les deux faibles interactions π - π des centroïdes respectifs Cg₁₉-Cg₁₉ et Cg₁₃-Cg₁₅.

Figure 13 Interaction $\pi - \pi$ des cycles $N_{1A}/N_{2A}/C_{1A}/C_{2A}/C_{3A}$

Figure 14 Interaction $\pi - \pi$ des cycles $N_{1E}/N_{2E}/C_{1E}/C_{2E}/C_{3E}$ et $N_{1G}/N_{2G}/C_{1G}/C_{2G}/C_{3G}$

La structure du complexe est renforcée par des interactions C-H... π modérées, avec des distances de 2.98, 2.39, 2.89Å, pour les liaisons respectives C_{1C} -H_{1C}... Cg_{16} (C_{1C} ... $N_{1H}/N_{2H}/C_{1H}/C_{2H}/C_{3H}$); C_{1E} -H_{1E}... Cg_{14} (C_{1E} ... $N_{1F}/N_{2F}/C_{1F}/C_{2F}/C_{3F}$); C_{1G} -H_{1G}... Cg_{14} (C_{1G} ... $N_{1F}/N_{2F}/C_{1F}/C_{2F}/C_{3F}$) (voir tableau 9 ci-dessus).

Nous avons représenté les trois interactions, dans l'ordre suscité, dans les trois figures respectives 15, 16 et 17 suivantes :

Figure 15 Représentation de l'interaction C_{1C}... N_{1H}/N_{2H}/C_{1H}/C_{2H}/C_{3H}

Figure 16 Représentation de l'interaction C_{1E}...N_{1F}/N_{2F}/C_{1F}/C_{2F}/C₃

Figure 17 Représentation de l'interaction C_{1G}...N_{1F}/N_{2F}/C_{1F}/C_{2F}/C_{3F}

V – Etude de la propriété catalytique du complexe par réaction de couplage Chan-Evans-Lam

V – 1 La catalyse, introduction et définitions

Etymologiquement, « catalyse » vient du mot grec « katalysis » qui, signifie action de dissolution, destruction et décomposition. Le mot a été inventé par le chimiste suédois Berzelius en 1936, pour qualifier certains faits expérimentaux, observés au cours de différentes réactions chimiques découvertes au du XIXème siècle [23].

Par définition, la catalyse est l'action par laquelle, une petite quantité d'une substance appelée catalyseur, accélère et oriente la transformation chimique de la matière sans être elle-même transformée. Un catalyseur est donc, une substance solide liquide ou gazeuse, qui accélère la vitesse d'une réaction chimique et, que l'on retrouve non transformée en fin de réaction.

En effet, ce dernier ne fait qu'augmenter, parfois de façon très importante, la vitesse d'une réaction; il n'a donc d'influence que sur la cinétique de la réaction chimique étudiée et, ne figure pas dans son équation stœchiométrique [24]. Par conséquent, lors d'une réaction, le catalyseur n'est pas consommé et, il peut être recyclé et réutilisé.

Il faut savoir qu'un même catalyseur, ne peut être efficace pour toutes les réactions, il opère pour un type de réaction chimique bien déterminé et, lui est spécifique [25], [26].

Aussi, il peut être sélectif si, à partir d'un système initial susceptible d'évoluer selon plusieurs réactions, il accélère préférentiellement l'une d'elles [27].

La catalyse présente de nombreux intérêts ; en effet, c'est un phénomène d'une importance économique considérable, puisque de très nombreux produits industriels sont fabriqués grâce à des catalyseurs : matières plastiques, carburants, détergents, solvants etc.....

Elle est également omniprésente dans le monde vivant, toutes les réactions métaboliques se faisant avec l'assistance de catalyseurs biologiques, dont la plupart sont des enzymes.

C'est aussi, un phénomène très vaste, car les mécanismes catalytiques relèvent de domaines très variés de la chimie.

Enfin, la catalyse est un domaine de recherche extrêmement actif, encore renforcé par la raréfaction des ressources pétrolières et le renchérissement général des matières premières. L'un des objectifs les plus cruciaux en chimie est, en effet, de trouver des catalyseurs, permettant non seulement, d'augmenter la vitesse des réactions, mais, également de favoriser les réactions intéressantes au détriment des réactions parasites [28].

Physiquement parlant, il existe deux types de catalyses : la catalyse homogène et la catalyse hétérogène, la catalyse enzymatique étant un intermédiaire entre les deux.

Une catalyse est dite **homogène**, lorsque le catalyseur est présent dans la même phase que les réactifs. Ceci peut être, par exemple, un gaz dans un mélange de gaz, ou bien un solide dissous dans un milieu liquide.

A l'inverse, lorsque le catalyseur se trouve dans une phase physique différente des réactifs, on parle de catalyse **hétérogène**.

En chimie organique, nous pouvons citer trois types de catalyse homogène soient :

- la catalyse acido-basique ;
- la catalyse redox ou d'oxydo-réduction [29];
- la catalyse de coordination ou organométallique [30].

Dans le présent sous-chapitre, c'est la catalyse de coordination qui nous a intéressés et que nous avons, par ailleurs, employé pour déterminer la propriété du complexe de cuivre en tant que catalyseur.

V - 2 Catalyse homogène par les complexes de métaux de transition : la catalyse de coordination

V – 2 – 1 Historique de la catalyse de coordination

Le premier grand procédé de catalyse homogène a été découvert en 1938 par O. Roelen ; il s'agit de la « synthèse oxo » ou hydroformylation, réaction permettant la synthèse d'aldéhydes à partir de mélanges d'oléfine, de monoxyde de carbone et de dihydrogène, en présence de catalyseurs à base de complexes carbonyles du cobalt.

Dés lors ; les découvertes de procédés catalytiques s'enchainèrent, à savoir :

- En 1955, K. Ziegler et G. Natta convertirent l'éthylène et le propène en polymères, par un procédé à basse pression et, en employant des catalyseurs mixtes soient, des halogénures des métaux de transition ;
- En 1959, J. Smith transforma la réaction de Phillips en processus catalytique visant la formation d'un aldéhyde, en utilisant un composé organométallique de palladium ;
- En 1971, le procédé Monsanto a permis de réaliser la synthèse catalytique de l'acide acétique par carbonylation du méthanol, en employant un composé de rhodium [31].

Au travers de toutes ces découvertes, nous avons remarqué qu'il existait un lien étroit entre la chimie organométallique et la catalyse homogène, ce qui nous a amené à examiner, des notions fondamentales quand à la réactivité des complexes de métaux de transition.

V – 2 – 2 La réactivité des complexes de coordination : notions de réactions élémentaires

V-2-2-1 Création d'un site « vacant » et coordination du substrat (réactif)

Un catalyseur doit être habilité à abaisser, la barrière ou énergie d'activation de la réaction et, interagir avec les réactifs ou substrats et donc, les activer afin qu'ils puissent réagirent entre eux; par conséquent, il doit impérativement avoir des sites vacants, car la catalyse métallique, ne prend effet, qu'avec la création de ces derniers et, l'activation des substrats s'effectue par son addition sur le centre métallique qui, possède un caractère acide ou base de Lewis, ou les deux. De ce fait, les réactions de catalyse de coordination, font intervenir des complexes précurseurs, comportant au plus seize électrons dans leur couche de valence [30].

Dans un processus catalytique, la première étape est, **la dissociation du complexe**, elle est nécessaire pour créer une position vacante accessible à un réactif.

A titre d'exemple ; la réaction d'une oléfine pour un complexe de type ML_n :

$$ML_{n} + \underbrace{\overset{R}{\longrightarrow}}_{Oléfine} \underbrace{L_{n-1}}_{R} M \underbrace{\overset{R}{\longleftarrow}}_{+} L$$

Nécessite au préalable que le complexe se dissocie en :

$$ML_n \Longrightarrow ML_{n-1} + L$$

La deuxième étape est la substitution de ligands en substrats L', c'est une réaction qui implique, très fréquemment, des ligands de type L, dont le schéma est comme suit :

 $L_nM - L + L' \longrightarrow L_nM - L' + L$

Dans les réactions de substitutions, nous pouvons distinguer, deux mécanismes extrêmes, un **associatif** et l'autre **dissociatif** [31].

Dans le mécanisme de dissociation, l'étape déterminante constitue la coupure de la liaison entre le métal et le ligand partant, puis l'occupation du site vacant par une molécule de solvant qui est très vite remplacée par le substrat. Ce schéma réactionnel est comparable à un processus SN_1 en chimie organique [30].

Nous avons schématisé le mécanisme de dissociation comme suit :

$$L - M - L \qquad Solvant \qquad L - M - Solvant + L$$

$$L - M - Solvant + S \qquad L - M - S \qquad (S: Substrat)$$

$$L - M - Solvant + S \qquad L - M - S \qquad (S: Substrat)$$

Schéma 1 Mécanisme dissociatif (SN1) d'un complexe ML4 plan carré [30]

Le mécanisme associatif, qui est apparenté à une réaction SN_2 en chimie organique, est un processus bi-moléculaire où, deux réactions simultanées ont lieu soient, la rupture de la liaison ligand-métal et, la formation de la liaison substrat-métal, comme illustré dans le schéma 2 ci-après représentant le processus pour un complexe plan carré [30] :

Schéma 2 Mécanisme associatif (SN₂) d'un complexe ML₄ plan carré [30]

V – 2 – 2 – 2 L'addition oxydante dissociative

Les trois réactions suivantes, représentent chacune une addition oxydante dissociative :

Schéma 3 Modèles de réactions oxydantes dissociatives [31]

NO : nombre d'oxydation

Ces trois réactions possèdent les caractéristiques suivantes :

- Il ya accroissement du degré d'oxydation formel, d'une ou deux unités.
- La molécule X-Y, existe indépendamment du produit de réaction.
- La liaison X-Y est complètement rompue lors de l'addition, et dans le produit final, l'un des fragments, ou les deux, restent au moins transitoirement, liés à M.

Pour l'essentiel, des quatre mécanismes existant quand à l'addition oxydante dissociative, nous ne retiendrons que le mécanisme SN_2 .
Ce mécanisme prévaut dans la première étape, dans le cas où, la liaison X-Y est établie entre des centres ou entités de polarités différentes (d'électronégativités différentes) ; le complexe se comporte alors, comme un substituant nucléophile [31].

Le mécanisme SN2 est schématisé comme suit :

$$L_n M + X - Y \longrightarrow L_n M - X + Y \longrightarrow L_n M$$

Schéma 4 Chemin réactionnel d'un mécanisme SN₂ [31]

V – 2 – 2 – 3 L'élimination réductrice

Sur le plan des concepts, la réaction d'élimination réductrice, correspond au processus inverse de la réaction d'addition oxydante, si bien que, nous retiendrons à priori les trois possibilités suivantes [31] :

Schéma 5 Chemins réactionnels d'éliminations réductrices [31]

V – 2 – 2 – 4 Etapes élémentaires et conditions de la catalyse homogène : notion de cycle catalytique

Dans une réaction catalytique, d'une façon générale, il y a lieu de distinguer plusieurs étapes :

- L'approche du (ou des) réactifs ;
- l'activation du réactif sur le métal ;
- l'approche du substrat et éventuellement son activation ;
- la réaction entre espèces activées ;
- l'élimination du produit.

Un système catalytique, peut être représenté par un ensemble de réactions connectées selon un chemin cyclique, de telle façon qu'un tour complet, corresponde à la transformation des substrats en produits.

En ce qui concerne le catalyseur proprement dit, dans la mesure où, à la fin de la dernière étape, le métal ou le complexe se trouve apte à renouveler la première, nous parlerons de cycle catalytique. L'écriture détaillée des étapes de ce cycle, représente le mécanisme de la catalyse [31].

V – 3 Les réactions de couplage de composés organiques par catalyse de coordination

V – 3 – 1 Perspective historique

La réaction de couplage entre réactifs organométalliques et agents organiques électrophiles, en présence de catalyseurs métalliques, notamment les complexes de nickel et palladium, constitue une méthode de choix pour, l'étude de processus de formation de liaisons telles que : C-C, C-H, C-N, C-O, C-S, C-P [32].

Actuellement, ce type de réactions, est classé comme une transformation par voie de synthèse, appelée communément : « réactions de couplage », dont l'historique réactionnel est illustré dans le schéma 6 ci-dessous :

Catalyseur [M] R - m + R' - X → R - R'

m = Li (par Muharashi)
Mg (par Kumada-Tamao, Corriu)
B (par Suzuki-Miyaura)
Al (par Nozaki-Oshima, Negichi)
Si (par Tamao-kumada, Hiyama-Hatanaka)
Zn (par Negishi)
Cu (par Normant)
Zr (par Negishi)
Sn (par Migita-kosugi, Stille)

[M] = Fe, Ni, Cu, Pd, Rh....X = I, Br, Cl

Schéma 6 Historique des réactions de couplage catalysées par des métaux de transition

Dés lors, la catalyse de coordination, a considérablement évolué avec des méthodes de synthèse, de plus en plus spécifiques, ainsi ; la réaction de couplage des réactifs de Grignard et chlorures de vinyle en présence de catalyseurs organométalliques, a vu naître un procédé avec trois réactions successives, à savoir, addition oxydante-trans-métallation-élimination réductrice ; ce qui développa significativement, la catalyse par réactions de couplage, en une nouvelle stratégie de formation de liaisons C-C, avec un gros impact sur la synthèse en chimie organique [33].

Il existe un processus de catalyse très fréquent, il s'agit de la réaction de couplage, entre halides organiques (R-X) et liaisons C-H ou hétéroatome-H (R'-H), catalysée par un complexe de palladium et, en milieu basique. A titre d'exemple la réaction illustrée dans le schéma 7 ci-dessous où, le mélange d'une base avec une liaison C-H ou un hétéroatome-H activé, génère in-situ des agents nucléophiles menant ainsi, au couplage des réactifs [34] :

Avec R-H: • $R \equiv C-H$ (Sonogashira-Hagihara)

- RO₂CCH₂CO₂R (Tuji- Trost)
- R₂N-H, RO-H (Buchwald, Hartwig)
- •RS-H (Murahashi)

Schéma 7 Réactions de couplage en milieu basique catalysées par un complexe de palladium [35]

Le cycle catalytique général d'une telle réaction, avec les trois mécanismes, à savoir l'addition oxydante, la trans-métallation et l'élimination réductrice [32], [36], [37] et [38], est représenté dans la figure 17 suivante :

Figure 17 Cycle catalytique général

Nous avons retenus deux réactions dans les réactions de couplage entre, composés organiques, halido-arylés et amines ; la première réaction a été effectuée par Ullmann-Goldberg, elle est catalysée par un complexe de cuivre, en présence d'une base et de chaleur, tandis que la deuxième, qui a été opérée par Buchwald-Hartwig, est catalysée par un complexe au palladium, avec les mêmes conditions opératoires (voir le schéma 8).

Schéma 8 Les réactions d'Ullmann-Goldberg et Buchwald-Hartwig [39-45]

V – 3 – 2 Réactions de couplage Chan-Evans-Lam (CEL)

V - 3 - 2 - 1 Mise en contexte :

Un des réactifs organiques de départ des réactions de couplage réalisées par, Chan-Evans-Lam, est un acide boronique R - B (OH)₂; par conséquent, nous avons jugé utile d'expliquer la réactivité de ce dernier, de façon générale, dans des processus de couplage impliquant un complexe de palladium comme catalyseur.

V - 3 - 2 - 2 Catalyse de coordination en présence d'un réactif organo-boronique et de catalyseur à base de Palladium

Les composés organo-boroniques, se sont révélés très intéressants dans les processus de couplage, catalysés par le palladium.

Actuellement, aussi bien, dans les laboratoires que, dans l'industrie, ce sont les acides boroniques qui sont les plus employés dans ce type de processus car, ce sont des réactifs surs, qui ne nécessitent pas de précautions lors des manipulations, ils sont stables thermiquement parlant et enfin, inertes vis-à-vis de l'eau et l'oxygène [46].

Le cycle catalytique de la réaction de couplage d'un composé organo-boronique, catalysée par un complexe de palladium (0), est généré par les réactions suivantes :

- une réaction d'addition oxydante entre halides organiques ou autres agents nucléophiles avec un complexe au palladium (0) ;
- une réaction de trans-métallation ;
- une réaction d'élimination réductrice, menant au couplage R-R' et régénérant le complexe de palladium(0) [46].

Le schéma 9 suivant, représente un cycle catalytique général, avec trois chemins réactionnels différents A, B et C, constitués chacun de réactions menant au couplage des réactifs et, différent par les conditions et les réactifs employés :

Schéma 9 Cycle catalytique général d'une réaction de couplage en présence de composés organo-boroniques [46]

V – 3 – 2 – 3 Présentation de la réaction de couplage Chan-Evans-Lam (CEL)

L'étude de la propriété catalytique de complexes à base de cuivre, en effectuant des réactions de couplage C-N et C-S, opérées à température ambiante, a fait l'objet d'un travail de recherche colossal, mené avec succés, par Chan-Evans-Lam (CEL) [10].

L'impact de ces réactions de couplage (CEL), en synthèse organique, est la construction de liaisons hétéro-carboniques par oxydation d'un acide organoboronique, à caractère nucléophile avec des amines nucléophiles (ou autres nucléophiles) [47], [48], [49], en présence d'une base et, dans des conditions opératoires douces comparativement à celles utilisées par Buchwald-Hartwig ou encore Ullman-Goldberg, qui nécessitent le chauffage [50-55], [45].

La réaction proprement dite, est réalisée en présence d'une quantité stœchiométrique, d'un complexe de cuivre (II) (catalyseur), généralement Cu(OAc)₂, re-oxydé par l'oxygène atmosphérique [56], [57], [58], qui est dissout dans un solvant (eau, méthanol, éthanol, cyanure de méthyle, DMSO) [10] et, à température ambiante, comme représenté dans le schéma 10 ci-après :

Schéma 10 Réaction de couplage Chan-Evans-Lam de l'acide boronique avec des amines [21]

V – 4 Etude de la propriété catalytique du complexe de coordination [Cu(II)(Pz)₄SO₄.H₂O] par catalyse homogène Chan-Evans-Lam (CEL)

V - 4 - 1 Introduction

Cette catalyse a été effectuée au laboratoire de recherche dirigé par le Professeur Frank Hein Schaper, au département de chimie, de l'Université de Montréal.

Les auteurs de la réaction de couplage CEL, ont utilisé comme catalyseur, un complexe à base de cuivre; les résultats avec divers solvants ont été probants, avec des temps de réaction assez court et, des rendements élevés et, surtout des conditions de réactions douces [10].

Avec des conditions opératoires aussi aisées, nous étions intéressés de réaliser cette réaction de couplage et donc, procéder à l'étude de la propriété du complexe de cuivre en tant que catalyseur.

V – 4 – 2 Procédure expérimentale

V - 4 - 2 - 1 Mode opératoire du processus catalytique du complexe [Cu(II)(Pz)₄SO₄.H₂O] Le mode opératoire que nous allons décrire présentement, est un procédé de réactions généralisé de la catalyse du complexe de coordination, que nous allons réitérer en faisant varier des paramètres opératoires, à savoir : les concentrations en catalyseur, les solvants et les amines.

La réaction de catalyse est réalisée à température ambiante, dans un endroit aéré, soit oxygéné et, sous agitation.

Nous avons choisi comme solvants pour la réaction, l'eau et le méthanol et ce, pour deux raisons majeures, ils dissolvent le complexe (catalyseur) ainsi que les réactifs aussi ; aux vues des bons rendements obtenus par les auteurs de la catalyse (CEL) [10].

Le mode opératoire de la réaction de couplage, est constitué d'étapes successives, que nous allons décrire par ordre de faisabilité, comme suit :

a) Première étape

Cette première étape représente la mise en contact des réactifs dans un contenant, leur mélange, puis le démarrage chronométré d'une agitation, durant laquelle et ce, à chaque temps t que nous fixerons, nous prélèverons 60µl d'échantillon.

► Mode opératoire général

Dans un petit flacon de 20 ml de contenance, muni d'un barreau magnétique, sont introduits dans l'ordre cité [59], les réactifs suivants :

- 1.5 mmoles (0.1829g) d'acide phényle boronique, dont la quantité sera identique pour toutes les réactions à venir ;
- 1 ml de solvant, soient l'eau ou le méthanol ;
- 1 mmole (93 μl) d'aniline, il s'agit de l'amine à coupler, les amines que nous avons employés pour la catalyse sont au nombre de trois : aniline ; 2,6-di-isopropyle-aniline ; 2 amino-pyridine ;
- 30 μl de méthoxy-benzène, ce n'est pas un réactif, mais un standard interne ou encore étalon interne, il ne participe à la réaction, mais sera utilisé dans la mesure par chromatographie gazeuse car il concerne l'appareil GC-MS ;
- le catalyseur ou [Cu(II)(Pz)₄SO₄.H₂O], de masse molaire 449.95 g/mole, avec deux proportions : 0.025 et 0.05 mmoles.

Après avoir mis tous les réactifs dans le flacon, il est soumis à une agitation de quelques secondes, temps nécessaire au mélange de ces derniers, avant de démarrer le chronomètre nous effectuons un prélèvement, qui servira à la mesure par GC-MS, il s'agit d'un blanc au temps t = 0, auxquels nous allons rajouter, un standard interne soit, le toluène.

A partir de t = 0, nous démarrons le chronomètre, la réaction de catalyse homogène prend naissance.

Dans ce qui suit, nous allons détailler les trois réactions de couplage réalisées avec les trois amines suivantes : l'aniline, la 2-Amino-pyridine et la 2,6- di-isopropyle-aniline.

Réaction N°1 : Couplage de l'aniline

En fait, la réaction 1 représente 08 manipulations, dont les réactifs de départ sont identiques soient, l'acide phényle boronique et l'aniline, ainsi que, le produit de couplage escompté, à savoir la diphényle-amine ; la différence réside dans les conditions opératoires, que nous avons explicité dans le tableau 10 ci-dessous :

Manipulations	Catalyseur	Solvant	Temps d'agitation
N°1	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Méthanol	0
N°2	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Méthanol	10 minutes
N°3	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Méthanol	20 minutes
N°4	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Méthanol	40 minutes
N°5	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Méthanol	2 heures
N°6	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.05 mmoles$	Méthanol	19 heures
N°7	$[Cu(OAc)_2]: 0.05 \text{ mmoles}$	Méthanol	19 heures
N°8	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.05 mmoles$	Eau	19 heures

Tableau 10 Conditions opératoires des réactions de couplage de l'aniline [21]

Le schéma réactionnel général, représentatif du couplage CEL de l'aniline est comme suit :

Schéma 11 Réaction de couplage de l'aniline avec l'acide phényle-boronique [21]

▶ Réaction N°2 : Couplage de la 2-Amino-pyridine

La réaction de couplage de la 2-Amino-pyridine avec l'acide phényle boronique, a été effectuée deux fois, avec des conditions opératoires rassemblées dans le tableau 11 suivant :

Tableau 11 Conditions opératoires des réactions de couplage de la 2-Amino-pyridine[21]

Manipulations	Catalyseur	Solvant	Temps d'agitation
N°1	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Méthanol	19 heures
N°2	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Eau	19 heures

Le schéma réactionnel adapté aux deux manipulations effectuées est représenté comme suit :

Schéma 12 Réaction de couplage de la 2-Amino-pyridine avec l'acide phényle-boronique

▶ Réaction N°3 : Couplage de la 2,6-di-isopropyle-aniline

Comme la réaction de couplage N°2 précédente, celle qui concerne la 2,6- di-isopropyleaniline avec l'acide phényle boronique, a été effectuée deux fois, avec des conditions opératoires rassemblées dans le tableau 12 suivant :

Tableau 12 Conditions opératoires des réactions de couplage de la 2-Amino-pyridine [21]

Manipulations	Catalyseur	Solvant	Temps d'agitation
N°1	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Méthanol	19 heures
N°2	$[Cu(II)(Pz)_4SO_4.H_2O]: 0.025 mmoles$	Eau	19 heures

Le schéma réactionnel des deux manipulations effectuées est le suivant :

Schéma 13 Réaction de couplage de la 2, 6-diisopropyle-aniline avec l'acide phényleboronique [21]

b) Deuxième étape

La seconde étape de la catalyse est en fait, une extraction où, seront séparées deux phases, à savoir la phase aqueuse et la phase organique. A un temps t fixé, nous prélevons 60 microlitre (μ l) d'échantillon, au moyen d'une pipette adaptée (de l'ordre du micro-litre), que nous déposons dans un flacon sec, auquel nous ajoutons, 0.5 ml de dichlorométhane (DCM) et 0.5 ml d'une solution saturée de chlorure d'ammonium NH₄Cl (base). Après avoir mélangé, manuellement la solution, nous effectuons l'extraction. Nous pouvons substituer le dichlorométhane par, le toluène ; en effet, ce sont tous les deux des solvants organiques, qui ne réagissent pas avec l'échantillon prélevé, mais la seule différence, que nous avons observé est, qu'avec l'emploi du dichlorométhane comme solvant, la phase organique est sous la phase acqueuse, tandis qu'avec le toluène c'est l'inverse qui se produit. Les quantités de solution étant très petites (de l'ordre du micro et ml), nous avons utilisé des seringues de 1ml pour prélever la phase organique et non, une ampoule à décanter pour séparer les phases.

La phase organique obtenue est ensuite filtrée, au travers d'un bouchon de silice, pour l'élimination, éventuelle des résidus du catalyseur de cuivre dans le mélange, puis soumise à un conditionnement pour l'analyse par GC-MS [21].

V – 4 – 2 – 2 Analyse par chromatographie gazeuse couplée à la spectroscopie de masse GC-MS

a- L'appareil de mesure GC-MS

La mesure par chromatographie gazeuse couplée à la spectroscopie de masse a été effectuée au laboratoire de recherche dirigé par le Professeur D. Zargarian, au département de chimie de l'Université de Montréal.

Il s'agit d'un appareil, système Network gaz chromatographe, des technologies Agilent 6890N, avec un type de colonne capillaire ZB5, de dimension 28x31x16 cm, avec un temps de répétition de 8.10^{-4} minutes. La température de l'injecteur est de 250° C, avec un débit du gaz vecteur (H₂) de 40 cm/sec à 35° C.

Le programme de température de la colonne, lors de l'analyse est comme suit :

- Chauffage à 35°C pendant 2 minutes ;
- Chauffage de 35°à 275°C, augmentation de la température de 5°C par minute ;
- Chauffage de 275°à 325°C, augmentation de la température de 10°C par minute.

Le temps de chauffage de la colonne est d'environ 55 minutes pour chaque échantillon, soumis à l'analyse.

b- La préparation des échantillons pour l'analyse :

Pour réaliser l'analyse par chromatographie couplée à la masse, les échantillons correspondant aux phases organiques extraites, sont introduits dans des petits flacons gradués spéciaux et adaptés à l'appareil de 1.5 ml de contenance, les quantités d'échantillons étant très petites et de l'ordre du micro-litre, on y rajoute du toluène en quantité suffisante pour que l'échantillon soit détectable par l'appareil qui, le prélève au moyen d'une aiguille.

c- Les spectres obtenus par analyse GC-MS

Dans les spectres obtenus par GC-MS, nous retrouvons des masses moléculaires représentées par des pics en ordonnée et, des temps de rétention en abscisse. C'est l'intégrale de la surface des pics qui donne en fait, la valeur du rendement des réactions en fonction du temps.

Cette opération est effectuée par un logiciel incorporé dans l'appareil, donnant ainsi, par calcul la valeur du rendement avec un pourcentage, du produit couplé.

Lors de la réaction de catalyse (voir V - 4 - 2 - 1), nous avons rajouté du méthoxy-benzène, solvant qui a joué le rôle de standard interne, ceci signifie que, nous allons le retrouver sur le chromatogramme et, dans le cas où, il ne parait pas, il ya forcément un problème avec l'appareil, nous y remédierons en répétant la mesure par exemple.

Dans le tableau 13 suivant, nous avons rassemblé tous les résultats obtenus par analyse GC-MS de toutes les réactions de couplage [21] :

Tableau 13 Réaction de couplage CEL de plusieurs amines avec l'acide phényle boronique catalysée par [Cu(II)(Pz)₄SO₄.H₂O]^a

Amines	Catalyseur Solvant		Temps	Rendement
Aniline	0.05 moles	Méthanol	19 Heures	100%
	$[Cu(II)(Pz)_4SO_4.H_2O]$			
Aniline	0.05 moles Cu(OAc) ₂	Méthanol	19 Heures	66%
Aniline	0.05 moles	Eau	19 Heures	90%
	$[Cu(II)(Pz)_4SO_4.H_2O]$			
Aniline	0.25 moles	Méthanol	19 Heures	100%
	$[Cu(II)(Pz)_4SO_4.H_2O]$			
Aniline	0.25 moles	Méthanol	10 Minutes	0%
	$[Cu(II)(Pz)_4SO_4.H_2O]$			
Aniline	0.25 moles	Méthanol	20 Minutes	2%

	[Cu(II)(Pz) ₄ SO ₄ .H ₂ O]			
Aniline	0.25 moles	Méthanol	40 Minutes	3%
	$[Cu(II)(Pz)_4SO_4.H_2O]$			
Aniline	0.25 moles	Méthanol	2 Heures	18%
	$[Cu(II)(Pz)_4SO_4.H_2O]$			
2-Amino-pyridine	0.25 moles	Méthanol	19 Heures	35%
	$[Cu(II)(Pz)_4SO_4.H_2O]$			
2, 6 Diisopropyle-	0.25 moles	Méthanol	19 Heures	36%
aniline	$[Cu(II)(Pz)_4SO_4.H_2O]$			
2-Amino-pyridine	0.25 moles	Eau	19 Heures	0%
	$[Cu(II)(Pz)_4SO_4.H_2O]$			
2, 6 Diisopropyle-	0.25 moles	Eau	19 Heures	4%
aniline	$[Cu(II)(Pz)_4SO_4.H_2O]$			

^a Conditions: 1 mmoles d'amine, 1.5 mmoles PhB(OH)₂, MeOH, air, Température ambiante.

V - 4 - 3 Mécanismes réactionnels de la catalyse homogène avec le complexe [Cu(II)(Pz)₄SO₄.H₂O]

Par mécanismes réactionnels, nous entendons toutes les réactions chimiques, que nous ne portons pas dans le schéma général de la catalyse.

Dans un premier temps, nous allons définir une caractéristique de l'atome de cuivre dans le complexe [Cu(II)(Pz)₄SO₄.H₂O], nous sommes donc en présence d'un complexe penta-coordiné de type [Cu(II)L₄X], avec un nombre d'électrons de valence NEV = 18.

Nous avions émis, avant de commencer la catalyse, une condition pour le choix du solvant, il fallait qu'il dissolve le complexe [Cu(II)(Pz)₄SO₄.H₂O], pour que la réaction engendrée, de cette mise en solution, soit la désagrégation du système cristallin soit, le catalyseur, en composé ionique [60].

La dissolution du complexe de cuivre dans l'eau ou le méthanol, va provoquer la création d'un **site vacant** ou **acide de Lewis**, qui va être occupé par une molécule de solvant, ceci va engendrer **l'activation du substrat** et ce, par son addition sur le centre métallique, oxydé deux fois et donc, appauvri de deux électrons avec un NEV = 16 (voir la création d'un site vacant V – 2 – 2 - 1). Il faut savoir que nous sommes en présence de deux substrats, pour les trois réactions de couplage, le premier est une des trois amines suivantes : l'aniline, la 2 amino-pyridine et la 2, 6 diisopropyle-aniline et le second est l'acide phényle boronique. Nous avons représenté, dans le schéma 14 suivant, la dissolution du complexe dans l'eau ou le méthanol et l'équilibre de dissociation anionique engendré [59] :

Schéma 14 Equilibre de dissociation du complexe de cuivre et solvant [59]

Dans la littérature [59], [61], c'est l'acide phényle boronique qui réagit en premier avec l'ion sulfate du catalyseur (1), il se dissocie de son radical phényle (2), mais les deux restent liés au métal. Dans la réaction suivante (3), c'est l'amine activée qui va réagir avec le complexe de cuivre (II), dans cette étape nous avons le départ de la molécule d'acide boronique avec l'anion du solvant, c'est-à-dire OH⁻ pour l'eau et CH3O⁻ pour le méthanol, et seules l'amine et le radical phényle, restent liés au complexe. Toutes ces réactions constituent les étapes d'addition oxydante dissociative et de transmétallation (voir schéma 15).

Schéma 15 Addition oxydante et transmétallation du processus catalytique de couplage [59]

Au bout d'un temps t défini, nous arrêtons l'agitation et procédons à une extraction et ce en ajoutant, du chlorure d'ammonium et du dichlorométhane.

Le dichlorométhane est un solvant destiné à la phase organique, par contre ; le chlorure d'ammonium est une base qui va réagir pour déprotoner l'amine et donc mettre fin ou arrêter la réaction de couplage [59], [61].

Nous avons représenté à travers le schéma 16 ci-dessous, la réaction de déprotonation de l'amine en présence d'une base soit, NH₄Cl.

Schéma 16 Déprotonation de l'amine par le chlorure d'ammonium [62]

La dernière étape de la catalyse est la réaction d'élimination réductrice, où ; s'effectuent le couplage des deux entités et la régénération du catalyseur [59], [61].

VI – Conclusion

En conclusion, nous pouvons dire que nous avons effectué la synthèse et l'étude structurale du complexe de coordination [Cu(II)(Pz)₄SO₄.H₂O], certes connu et publié, mais le chemin réactionnel que nous avons emprunté était différent, il s'agit de la synthèse par voie solvothermale, moyennant un réacteur fermé homogène.

Nous avons également, fait une analyse élémentaire révélant un composé avec des traces de sulfate de cuivre n'ayant pas réagi ; et une étude spectroscopique UV-Visible ayant mis en évidence la transition d-d caractéristique du complexe de cuivre.

Afin d'étudier la propriété du complexe de cuivre en tant que catalyseur, nous avons effectué une catalyse homogène, par réaction de couplage des auteurs CHAN-EVANS-LAM, pour laquelle nous avons choisi trois amines, à savoir, l'aniline, la 2-amino-pyridine, la 2,6 diisopropyle-aniline.

La conversion de l'aniline en diphényle-amine a eu une période d'induction assez longue, en effet ; au bout de 40 minutes il n'y a pas eu de couplage et, ce n'est qu'après 2 heures que le rendement était de 18%. Nous avons prolongé le temps à 19 heures et c'est la que nous avons obtenus 90% et 100% pour les solvants respectifs eau et méthanol.

Aux vues de ces résultats, nous pouvons dire que, le complexe de coordination de cuivre est un assez bon catalyseur pour coupler l'aniline, car le temps d'induction est de 19 heures.

Nous avons tenté la réaction de couplage avec des amines plus volumineuses, pour tester l'efficacité du complexe de cuivre, il s'est avéré qu'après 19 heures, la 2-amino-pyridine a donné un couplage de 35%, résultat satisfaisant comparativement à celui obtenu, avec le catalyseur pyridyle-iminocuivre [59], [61], qui n'a eu que 15% de rendement, avec une température de 50°C ; aussi avec l'acétata de cuivre le rendement n'a été atteint qu'à une température de 120°C [63].

L'amine 2,6 diisopropyle-aniline est un substrat relativement difficile à coupler, ceci est du à l'encombrement stérique qu'il génère, nous avons néanmoins réussi à obtenir un couplage avec 36% de rendement que nous avons jugé intéressant, en comparaison avec le catalyseur pyridyle-iminocuivre qui n'a réussi à coupler cette amine, qu'avec 12% de rendement, un temps de 12 heures à température ambiante [61].

Avec de telles rendements, nous concluons que le complexe $[Cu(II)(Pz)_4SO_4.H_2O]$, possède une bonne réactivité catalytique à température ambiante, par rapport aux catalyseurs sus-cités. Néanmoins, avec l'eau comme solvant, le complexe n'a pas montré de réactivité avec les deux amines précédentes [21].

VII - Références

[1] [J.Reedijk, Rec. Trav. Chim.Pays Bas, 88, 1451, 1969]

[2] [D. M. L. Goodgame, M. Goodgame, P. J. Hayward et C. W. Rayner, Inorg. Chem. 7, 2447, 1968]

[3] [A. Santoro, A. D. Mighell, M. Zocchi et C. W. Reiman, Acta Cryst., B25, 842, 1969.

[4] [B. K. S. Lundberg, ThesisUmeäUniversitet, Suède, 1972]

[5] [N. D. Phung, J. C. Tedenac, M. Maurin, J. Inorg. Chem., Vol. 38, pp. 2317-2319, 1976]

[6] [D. Nicholls, B. A. Warburton, J. Inorg. Nucl. Chem. 33, 1041–1045, 1971]

[7] [W.-Z. Shen, L. Yi, P. Cheng, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, Inorg. Chem Commun.7, 819–822, 2004]

[8] [C. Di Nicola, F. Garau, M. Gazzano, M. Monari, L. Pandolfo, C. Pettinari, R. Pettinari, Cryst. Growth Des. 10, 3120–3131, 2010]

[9] [P. Trambouze, J. P. Euzen; Les réacteurs chimiques (de la conception à la mise en oeuvre), Edition Technip, Paris, 2002]

[10] [S. Roy, M. J. Sarma, B. Kashyap and Prodeep-Phukan, Chem. Com, 52. 1170, 2016]

[11] [H. Zhao, Z-R. Qu, H-Y. Ye and R-G. Xiong; chem. Soc. rev, 37, 84-100, 2008]

[12] [E. Bernarducci, W.F. Schwindinger, J.L. Hughey, K. Krogh-Jespersen, H.J. Schugar, J.Am. Chem. Soc. 103, 1686–1691, 1981]

[13] [D. Dal Monte, A. Mangini, and R. Passerini, Gazz. Chim. Ital. 86, 797, 1956]

[14] [R. Huttel and J. Kratzer, Chem. Ber. 92. 2014, 1959]

[15] [Francis. Rouessac, Annick. Rouessac, Daniel. Cruché. « Analyse Chimique Méthodes et techniques instrumentales modernes », 6^{éme} Edition. Dunod. 2004]

[16] [Addition and al., International Journal of Inorganic Chemistry, Volume 2015, Article ID 478380, 2015]

[17] [A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc., Dalton Trans. 1349, 1984] [18] [R. Vafazadeh, M. Alinaghi, A. C. Willis, and A. Benvidi, ActaChim. Slov., 61, 121, 2014]

[19] [Journal for Inorganic, Organometallic and Bioinorganic Chemistry, Dalton transaction, Vol. 41, N°2, pp. 367-369, 2012]

[20] [M. Gupta, P. Mathur and R. J. Butcher, Inorganic Chemistry, Vol. 40, N°5, pp. 878-885, 2001]

[21] [A. L. Zerguini, A. Cherouana, V. Hardouin. Duparc, F. Schaper, Inorganic Chemistry Communications, 99. 36–39, 2019]

[22] [J. Bernstein, R. E. Davis, L. Shimoni and N. L. Chang, .Patterns in hydrogenbonding : functionality and graph-set analysis in crystals. Angew. Chem. Int. Ed Engl. 34 : 1555-73, 1995]

[23] [Lynch, John. « Analyse physico-chimique des catalyseurs industriels : manuel pratique de caractérisation». Editions Technip, 2001]

[24] [Perrin, Stéphane. « Modélisation de la cinétique de transformations non isothermes et (ou) non isobares. Application à la déshydroxylation de la kaolinite et à la réduction de l'octooxyde de triuranium par l'hydrogène ». Diss. Ecole Nationale Des Mines de Saint Etienne, 2002]

[25] [Delmon, Bernard. « Introduction à la cinétique hétérogène ». N°15. Editions Technip, 1969]

[26] [Le Page, J. F. »Catalyse de Contact : conception, préparation et mise en œuvre des catalyseurs industriels ». Editions Technip, 1978]

[27] [Scacchi, Gérard. « Cinétique et catalyse». Lavoisier, 2011]

[28] [Nicholas .Clatin « Cinétique chimique », BCPST1. Fenelon, 2007]

[29] [F. Rouquérol. G. Chambaud, « Chimie générale » ; 7^{ème} édition, 2006]

[**30**] [Piet. W. N. M. van Leeuwen, «Homogeneous Catalysis» Understanding the Art, Kluwer Academic Publishers, 2004]

[31] [J. M. Brégeault, « Catalyse homogène par les complexes des métaux de transition », Masson, Paris, 1992]

[**32**] [General reviews, see a) Hegedus. LS, « Organometallics in Organic Synthesis », Schlosser M (ed) Wiley, New York, p 383. 1994, b) Tuji. J, "Palladium Reagents and Catalysts: Innovations in Organic Synthesis", Wiley, Chichester. 1995, c) Geissler. H in: Beller. M, Bolm. C (eds) "Transition Metals for Organic Synthesis", Wiley-VCH, Weinheim, Vol 1, pp 158–193. 1998, d) Diederich. F, Stang. PJ (1998) « Metal-Catalyzed Cross-

Coupling Reactions", Wiley-VCH, Weinheim. 1998, e) Li. JJ, Gribble. GW, "Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist", Pergamon, Amsterdam, 2000] [**33**] [Tamao. K, Sumitani. K, Kumada. M, J Am Chem. Soc. 94 : 4374, 1972]

[**34**] [Cassar. L, J Organomet Chem 93 : 259, 1975], [Dieck. H. A, Heck. F. R, J Organomet Chem 93 : 259, 1975]

[**35**] [Norio. Miyaura, « Cross-Coupling reactions : A pratical guide », Springer-Verlag Berliin Heidelberg, 2002]

[36] [Yamamoto. A, J. Chem. Soc, Dalton Trans 1027, 1999]

[**37**] [Hartwig. JF, Synlett. 329, 1996 ; Hartwig. JF, Angew. Chem. Int, Ed 37 : 2046, 1998 ; Hartwig. JF, Acc. Chem. Res 31 : 852, 1998]

[**38**] [General reviews: a) Kochi. J. K, "Organometallic Mechanisms and Catalysis", Academic, New York, 1978. b) Heck. R. F, "Palladium Reagents in Organic Syntheses", Academic, New York, 1985. c) Hartley. F. R, Patai. S, « The Chemistry of Metal-Carbon Bond », Wiley New York, Vol 3, 1985]

[**39**] [S. Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang, D. Ma, Angew. Chem. Int. Ed. 56, 16136–16179, 2017]

[40] [P. Y. S. Lam, Synthetic Methods in Drug Discovery: Volume 1, vol. 1, The Royal Society of Chemistry, pp. 242–273, 2016]

[41] [S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 113, 6234–6458, 2013]

[42] [I. P. Beletskaya, A. V. Cheprakov, Organometallics 31. 7753–7808, 2012]

[**43**] [J. X. Qiao, P. Y. S. Lam, Boronic Acids, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 315–361, 2011]

[44] [G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 108. 3054–3131, 2008]

[45] [S. V. Ley, A. W. Thomas, Angew. Chem., Int. Ed. 42, pp. 5400–5449, 2003]

[46] [T. Kohei, N. Miyaura, « Cross-coupling reactions », Verlag Berlin Heidelberg, 2002]

[47] [D.M.T. Chan, K.L. Monaco, R. P. Wang, M.P. Winters, Tetrahedron Lett. 39. 2933–2936, 1998]

[48] [D.A. Evans, J. L. Katz, T. R. West, Tetrahedron Lett, 39. 2937–2940, 1998]

[49] [P.Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D. M. T. Chan, A. Combs, Tetrahedron Lett, 39. 2941–2944, 1998]

[50] [S. Bhunia, G.G. Pawar, S. V. Kumar, Y. Jiang, D. Ma, Angew. Chem. Int. Ed. 56. 16136–16179, 2017]

[51] [P.Y. S. Lam, Synthetic Methods in Drug Discovery: Volume 1, vol. 1, The Royal Society of Chemistry, pp. 242–273, 2016]

[52] [S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 113. 6234–6458, 2013]

[53] [I. P. Beletskaya, A. V. Cheprakov, Organometallics 31. 7753–7808, 2012]

[54] [J. X. Qiao, P. Y. S. Lam, Boronic Acids, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 315–361, 2011]

[55] [G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 108. 3054–3131, 2008]

[56] [J. P. Collman, M. Zhong, Org. Lett, 2. 1233–1236, 2000]

[57] [J. P. Collman, M. Zhong, C. Zhang, S. Costanzo, J. Org. Chem, 66. 7892–7897, 2001]

[58] [A. E. King, B. L. Ryland, T. C. Brunold, S. S. Stahl, Organometallics, 31. 7948–7957, 2012]

[59] [V. Hardouin Duparc, G. Bano, F. Schaper, ACS Catal, 8 7308–7325. (accepted, cs-2018-01881n), 2018]

[60] [J. W. Hill, R. H. Petrucci, M. Dion, M. Lamoureux, « Chimie générale »; Pearson Education. 2002]

[61] [V. Hardouin Duparc, F. Schaper, Organometallics. 36, 3053–3060, 2017]

[62] [Didier. Astruc, « Chimie organométallique et catalyse », EDP Sciences 2013]

[63] [J. Chen, K. Natte, N. Y. T. Man, S. G. Stewart, X. F. Wu, Tetrahedron Lett. 56. 4843–4847, 2015]

CHAPITRE IV Le complexe Dichloro--tétra-pyrazole Cobalt(II) Etude par : Diffraction par rayons X, Spectroscopie d'absorption électronique, Spectrofluorimétrie et Calcul des énergies relatives aux bandes spectrales

CHAPITRE IV

Le complexe *Dichloro-tétra-pyrazole Cobalt(II)* Etude par diffraction par rayons X, spectroscopie d'absorption électronique et fluorimétrie

I – Introduction au chapitre

De part la recherche que nous avons effectué, nous sommes parvenus à synthétiser des tétramères à base de cuivre, avec une unité tétranucléaire identique $[Cu_4 (\mu_2-Cl)_6(\mu_4O)]$, de type $[Cu_4OCl_6L_4]$ et ne différant donc, que par le ligand L, qui est soit le 1H-pyrazole ou le 1H-imidazole.

En utilisant le même chemin de synthèse, nous nous fixé comme objectif, l'obtention d'un tétramère de cobalt, de type $[Co_4OCl_6(C_3H_4N_2)_4]$, L étant le 1H-pyrazole, et ce en employant les mêmes, proportions en réactifs et conditions opératoires.

Cependant, la tentative a été vaine car, nous n'avons pas obtenu un tétramère au cobalt mais, le composé de coordination *Dichloro-tétra-1H-pyrazole-Cobalt (II)*, il s'agit d'une structure originale et ne figurant pas dans la banque de données structurale Cambridge CSD (Cambridge structural database 2018), qui fera l'objet d'une publication.

Le présent chapitre fera donc l'objet de l'étude de cette structure, où, serons détaillés le mode de synthèse, l'étude par diffraction des rayons X, ainsi qu'une étude spectrale par absorption électronique et fluorimètrie.

II – Synthèse du complexe [CoCl₂(C₃H₄N₂)₄]

Le complexe dichloro-tétra-pyrazole Cobalt(II), a été synthétisé par voie solvothermale, moyennant un autoclave ou bombe hydrothermale, formé d'un corps en acier inoxydable, muni d'une chemise en téflon, de contenance 23 ml et supportant une température de 220°C. Il faut savoir que la réaction de synthèse a été effectuée in-situ, c'est-à-dire, que les réactifs n'ont pas subi de mélange préalable.

Dans une chemise en téflon, nous avons introduit : le ligand 1H-pyrazole (0.27g, 4mmoles), le chlorure de cobalt héxa-hydraté CoCl₂.6H₂O (0.118965g, 0.5mmoles), dans 12ml de méthanol. L'autoclave est ensuite scellé, puis introduit dans une étuve, préalablement réglée et chauffée à 150°C, et ce pour une durée de 03 heures, au bout desquelles, il est retiré et laissé à température ambiante (environ 25°C), pour un refroidissement lent.

Le temps a été fixé à trois heures, à titre d'essai et si réaction il ya, nous prolongeons ce dernier au même nombre d'heures que pour l'obtention des tétramères de cuivre.

A l'ouverture, nous avons observé au fond de la chemise en téflon, des cristaux en forme d'aiguilles et de couleur rose violacée, baignant dans une solution de couleur beige, turbide et de PH très acide ayant pour valeur 3 ; que nous avons prélevés directement de la solution sans rinçage ou filtration.

La masse de l'échantillon récolté étant égale à 0.1529 g, le rendement de la réaction a une valeur de 39%, il faut savoir que ce calcul est effectué après diffraction par rayons X.

Les cristaux de couleur rose violacée, ont manifesté une bonne résistance dans le milieu ambiant, ils ne se sont pas dégradés, car nous avons pu les conserver durant une année.

III – Caractérisation et étude par diffraction des rayons X du composé de coordination :

III – 1 Résolution et affinement de la structure:

Les aiguilles roses violacés formant le complexe *Dichloro-tétra-pyrazole Cobalt(II)*, cristallisent dans le système monoclinique, avec pour groupe d'espace *C2/c*.

Les détails, concernant l'analyse par diffraction des rayons X, sont consignés à la fin du manuscrit, dans l'annexe I des techniques expérimentales.

Les données expérimentales, cristallographiques ainsi que, l'affinement de la structure du complexe $[CoCl_2(C_3H_4N_2)_4]$, sont présentés dans le tableau 1 ci-dessous :

Données cristallographiques					
Nom du complexe	Dichloro-tétra-pyrazole Cobalt(II)				
Formule	$C_{48}H_{64}N_{32}Cl_8Co_4$				
Masse moléculaire (M _w)	201.1				
Facteur de structure F(000)	819.7				
Système cristallin	Monoclinique				
Groupe d'espace	C2/c				
	$a = 13.3859 (11)$ $\alpha = 90.000 (0)$				
Paramètres de maille	$b = 9.2315 (11) \qquad \beta = 116.530 (4)$				
(Å, °)	$c = 14.6877 (15) \qquad \gamma = 90.000 (0)$				
Volume V (Å ³)	1623.87 (36)				
Z	8				
d _{calcd}	1.64				
Coefficient d'absorption μ (mm ⁻¹)1.397					
$\theta_{\min}, \theta_{\max}$	2.8, 35.5				
Couleur du cristal	Rose violacé				
Dimension du cristal 0.2, 0.4, 0.1					
Enregistrement					
Température de mesure (°K)	100				
Radiation utilisée	Kα (Mo) 0.71073Å				
h _{min, max} / k _{min, max} / l _{min, max}	-21, 18/ -14, 15/ -23, 23				
Réflections collectées	25529				
Réflections uniques	3522				
Réflections observées	3173				
Nombre de paramètres	107				
Affine	Affinement				
R _{int} ^a	0.047				
$\mathbf{w}\mathbf{R}(\mathbf{F}^2)^{\mathbf{c}}$	0.130				
$R\left[F^2 > 2\sigma(F^2)\right]^{\rm b}$	0.045				

Tableau 1 Données expérimentales, cristallographiques et d'affinement du complexe dichloro-tétra-pyrazole Cobalt(II)

GooF S ^d (F ²)	1.069		
$\Delta \rho_{\min,\max} (e. \text{\AA}^{-3})$	-1.094, 1.218		

 ${}^{a}R(int) = \Sigma(F_{o}^{2} - \langle F_{o}^{2} \rangle)] / \Sigma(F_{o}^{2}); {}^{b}R1 = \Sigma / |F_{o}| - |F_{c}| / \Sigma |F_{o}|; {}^{c}wR2 = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}] / [\Sigma w(F_{o}^{2})^{2}]^{1/2}$ ${}^{d}Goodness-of-fit S = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / (n-p)]^{1/2}.$

Les coordonnées atomiques et les paramètres d'agitation thermiques (Å) ; les angles de torsions (°) qui concernent le complexe de coordination dichloro-tétra-pyrazole Cobalt(II) ; sont tabulés dans le chapitre des annexes (annexe VII), à la fin de ce manuscrit.

III – 2 Coordination du complexe $[CoCl_2(C_3H_4N_2)_4]$

L'étude par diffraction par rayons X, a identifié un complexe de géométrie octaédrique, aussi, le spectre UV-visible, a révélé deux bandes correspondant à des transitions d-d de l'ion cobalt (II). Par conséquent, nous avons déduit que, le complexe était de configuration d⁷ et que le métal était dans un état d'oxydation de deux Co(II) [1].

Partant de ces données, nous nous sommes fixé pour objectifs de tenter de comprendre le type de liaison de coordination qui s'est établit entre l'ion cobalt (II) et les ligands qui l'entourent, à savoir les quatre cycles 1H-pyrazole et les deux ions chlorure.

Nous allons tout d'abord, identifier et décrire les éléments constituant notre complexe ; ainsi nous sommes en présence :

► d'un centre métallique cationique, avec un degré d'oxydation de +2 : (Co²⁺) [1]

► de deux ligands anioniques chlorure Cl⁻, radicalaires X, donneurs chacun d'un électron [1].

► de quatre cycles 1H-Pyrazole, qui sont des ligands neutres L, donneurs d'un doublet électronique, ils forment ainsi chacun, une liaison dative avec le cation Cobalt(II).

La théorie de Werner stipule qu'un ion métallique donné, pouvait avoir deux types de valence, la première, étant relative au nombre de groupements anioniques qui étaient liés au métal, dans notre cas, ce sont les ions chlorures liés au cobalt (II) et, donc la valence primaire du cobalt est de deux et, il se lie aux deux ions chlorure de cette façon : Co^{2+} - 2Cl^- .

Par conséquent, en actualisant les termes, nous dirons que la valence primaire de Werner correspond à l'état d'oxydation du métal [2].

Pour déterminer la charge du complexe, nous allons effectuer, une dissociation fictive de tous les ligands, en supposant que, chacun d'eux L ou X, prend avec lui la paire d'électrons ayant crée la liaison métal-ligand. Après cette décomposition, la charge restante sur le métal, est le degré d'oxydation du métal dans le complexe.

Dans cette dissociation fictive, un ligand L tel que le 1H-pyrazole, forme la liaison avec les 2 électrons qu'il a lui-même fournit, ainsi, le nombre d'électrons du métal reste inchangé.

Par contre, un ligand de type X tel que le chlore, qui a fournit un seul électron pour effectuer la liaison, une fois la liaison formée avec le métal, il est dans sa forme anionique Cl^- , emportant avec lui, les deux électrons de la liaison $Co^{2+} - 2Cl^-$.

Par conséquent, chaque ligand X (Cl⁻), oxyde le métal en lui prenant un électron, donc, le degré d'oxydation DO est de +2 [3].

La charge q du complexe est nulle car, de part la formule, $DO = n_x + q$ donc $q = Do - n_x$

= +2 - (2) = 0; avec $n_x = 2$ (2Cl⁻ valeur algébrique) et DO = +2 [1].

Le nombre d'électrons de valence du complexe est NEV = 19, il devrait être égal à 18, ce nombre correspond à la structure électronique $ns^2 (n - 1) d^{10} np^6$ du gaz rare suivant l'élément de transition sur la même ligne du tableau périodique, mais, ceci constitue beaucoup plus une tendance, qu'une règle [1].

Le complexe $[CoCl_2(C_3H_4N_2)_4]$ avec sa géométrie octaédrique et un nombre de coordination 6 a pour hybridation des orbitales de l'ion de cobalt Co^{2+} : [Ar] $3d^7 4s^0 4p^0 4d^0$.

Le modèle de Pauling utilise l'hybridation des orbitales de l'ion cobalt (II) pour rendre compte de la structure et des propriétés magnétiques dans le complexe [4].

L'orbitale hybride formée par l'ion cobalt pour former le complexe, selon Pauling, se fait comme dans le schéma 1 suivant :

Schéma 1 Orbitale hybride du complexe formée par remplissage des orbitales 4s 4p et 4d de l'ion Cobalt (II)

De part le schéma 1, nous remarquons que, les orbitales hybrides mises en jeu sont : s, p_x , p_y , p_z , d_{z2} , d_{x2-y2} ; et que l'orbitale hybride formée est sp³d², et ce en respectant de la règle de Hund, lors du remplissage des orbitales de l'ion cobalt (II) [4].

Par conséquent, le complexe formé est paramagnétique avec trois électrons célibataires [4].

III – 3 Etude cristallographique de la structure du complexe [CoCl₂(C₃H₄N₂)₄]

III – 3 – 1 L'unité asymétrique :

L'unité asymétrique du complexe, est constituée d'un atome de cobalt situé sur un centre d'inversion (i), relié à deux ligands pyrazole et un atome de chlore.

Par l'effet de ce centre d'inversion, le métal de cobalt se retrouve coordinné à quatre ligands pyrazole et deux atomes de chlore, lui conférant ainsi une géométrie octaédrique, comme représenté dans figure 1 ci-dessous.

Figure 1 ORTEP du complexe [CoCl₂(C₃H₄N₂)₄] (ellipsoïde avec 50% de probabilité) (*i*) : 1-x, 1-y, 1-z

III – 3 – 2 Environnement de l'ion de cobalt :

L'atome de cobalt est au centre d'une sphère de coordination formée par :

► quatre ligands cycliques 1H-pyrazole, donneurs chacun d'un doublet électronique, ce sont des ligands L neutres qui forment une liaison dative avec l'ion cobalt.

► deux ions chlorure Cl⁻, ce sont des ligands X anioniques, donneurs d'un électron [1].

Nous sommes donc en présence d'un complexe de coordination de type [ML₄X₂].

La géométrie autour de l'atome de cobalt est en faveur d'un octaèdre, dont nous avons jugé la régularité, avec des distances et des angles qui sont très proches, le tout étant répertorié dans les tableaux 2 et 3 suivants :

Tableau 2 Valeurs des distances interatomiques autour de l'atome de cobalt

Atomes	Valeurs (Å)
Co ₁ -Cl ₁	2.5631(6)
Co ₁ -N ₁	2.1023 (15)
Co ₁ -N ₃	2.1173(16)

Tableau 3 Valeurs des angles autour de l'atome de cobalt

Atomes	Angles (°)	Atomes	Angles (°)
Cl ₁ -Co ₁ -N ₁	89.57(4)	Cl ₁ -Co ₁ -N ₃	88.84(5)
Cl ₁ -Co ₁ -N _{1i}	90.43(4)	Cl ₁ -Co ₁ -N _{3i}	91.16(5)
N ₁ -Co ₁ -N ₃	92.70(6)	N ₁ -Co ₁ -Cl _{1i}	90.43(4)
N ₁ -Co ₁ -N _{3i}	87.30(6)	N ₃ -Co ₁ -Cl _{1i}	91.16(5)
N3-Co1-N1i	87.30(6)	Cl1i-Co1-N1i	89.57(4)
Cl _{1i} -Co ₁ -N _{3i}	88.84(5)	N _{1i} -Co ₁ -N _{3i}	92.70(6)

Pour mettre en évidence la régularité de l'octaèdre formé par le complexe, nous l'avons schématisé au travers de la figure 2 ci-après :

Figure 2 Octaèdre régulier formant la géométrie du complexe

 $\label{eq:III-3-3} III-3-3 \mbox{ Analyse et étude des interactions en présence de la structure du complexe} \\ [CoCl_2(C_3H_4N_2)_4]$

III – 3 – 3 – 1 Les liaisons hydrogène :

La structure présente deux liaisons hydrogène de type faible, dont les donneurs sont des atomes de carbone et d'azote cycliques, et les accepteurs des atomes de chlore, que nous avons regroupé dans le tableau 4 ci-dessous :

D-HA	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
C_4 - H_4 Cl_1	0.95	2.65	3.2424 (19)	121
N_4 - H_{4N} $Cl_1^{(i)}$	0.88	2.77	3.321 (2)	122
(i) = 1 - x, 1 - y, 1 - z.				

Tableau 4 Liaisons hydrogène de la structure

Les molécules formant la structure, s'enchainent et se croisent, selon deux directions séparées d'un angle d'une valeur de 75.50°, la première est selon la rangée [110] et, la seconde selon la rangée [1-10], que nous avons illustré dans la figure 3 ci-dessous.

Dans cette même figure 3, nous avons noté que c'était la liaison modérée C_4 - H_4 ... Cl_1 , qui était responsable de la formation de cycles $R_2^2(10)$ [5] et ce, le long des deux rangées en zigzag [110] et [1-10], et que la liaison hydrogène impliquant l'atome d'azote du cycle 1Hpyrazole, liait ces deux rangées formant également un cycle $R_2^2(10)$ [5].

Figure 3 Enchainement des molécules selon les rangées croisées [110] et [1-10]

Le réseau cristallin est constitué d'un empilement de couches, qui sont formées chacune d'un enchainement de molécules qui se croisent selon les rangées [110] et [1-10]. Nous avons représenté dans la figure 4 suivante une couche de l'empilement de la structure,

où les molécules s'enchainent selon les liaisons C_4 - H_4 ... Cl_1 et N_4 - H_{4N} ... Cl_1 .

Figure 4 Représentation d'une couche de l'empilement de la structure du complexe de coordination

Aussi, nous avons noté dans la figure 4 ci-dessus, que chaque molécule est liée dans son enchainement, à deux adjacentes par le biais des interactions modérées C_4 - H_4 ... Cl_1 et N_4 - H_{4N} ... Cl_1 .

III – 3 – 3 – 2 Etude des interactions électrostatiques du complexe de coordination :

La stabilité de la structure est assurée par des interactions stacking de type C-H... π , modérée C₂-H₂...Cg₂, impliquant le centroïde Cg₂ qui est généré par le cycle 1H-pyrazole (N₃-N₄-C₆-C₅-C₄), avec une distance d'une valeur égale à 2.620 Å, renforçant ainsi, la cohésion du système cristallin (voir figure 5).

Figure 5 Interactions Cg1-Cg1 et C2-H2...Cg2 du système cristallin

IV – Etude par spectroscopies d'absorption électronique et Fluorimétrie du complexe de coordination

IV – 1 Mise en contexte

Nous allons, dans ce chapitre, procéder à l'étude des spectres d'absorption électronique et de fluorimétrie du complexe de coordination $[CoCl_2(C_3H_4N_2)_4]$.

La diffraction par rayons X, ayant révélé la structure du complexe, par conséquent, l'interprétation des spectres UV-Visible et de fluorimétrie se fera en connaissance de cause.

IV – 2 Spectroscopie d'absorption électronique

L'enregistrement du spectre d'absorption a été effectué, à température ambiante, dans le domaine de longueur d'onde du visible [400-900].

Nous avons enregistré deux spectres moyennant deux solutions de concentration différentes, la première à 0.33M (1mmole) et la seconde à 0.66M (2 mmoles), avec l'éthanol comme solvant.

Figure 6 Spectres d'absorption électronique du complexe [CoCl₂(C₃H₄N₂)₄] à 0.33 et 0.66 M

Lors de l'enregistrement, la région de l'ultra-violet n'a pas été explorée, ceci n'étant pas de notre ressort vu que ; l'analyse n'a pas été effectuée à notre niveau.

La région du visible des deux spectres d'absorption a manifesté deux larges bandes d'absorption ; en effet nous avons observé dans le domaine de longueur d'onde [500-700], deux maximums aux valeurs de λ = 577, 655 nm pour le spectre à 0.33 M et, λ = 576, 630 nm pour le spectre à 0.66 M.

Il s'agit de deux transitions d-d correspondant à deux états d'excitation de l'ion cobalt, qui nous ont permis de part cette manifestation spectrale que, ce dernier avait un degré d'oxydation de (II) et qu'il était de configuration d⁷ [4], aussi que, les complexes octaédriques ayant cette configuration, peuvent manifester sur le spectre jusqu'à trois larges absorptions principales d-d (voir chapitre I, sous-chapitre IV – 3 – 2) [4].

IV – 3 Etude par spectrofluorimé1trie d'absorption-émission moléculaire

IV – 3 – 1 La fluorescence d'absorption-émission moléculaire

IV - 3 - 1 - 1 Principe

Certains composés organiques ou minéraux, liquides ou solides (cristaux moléculaires ou ioniques), qu'ils soient purs ou en solution, émettent de la lumière lorsqu'ils sont excités par des photons du domaine du visible ou du proche ultraviolet.

Parmi les applications en analyse de ce phénomène, baptisé photoluminescence, se trouve la **fluorimétrie**, une méthode à la fois sélective et très sensible permettant de très nombreux dosages. L'intensité de fluorescence étant en rapport avec la concentration de l'analyte, les dosages sont faits à l'aide de fluorimètres ou spectrofluorimètres.

L'extinction extrêmement rapide de l'intensité lumineuse lorsque l'excitation cesse, fait également l'objet de mesures à des fins analytiques [6].

IV - 3 - 1 - 2 Définition

Beaucoup de composés, lorsqu'ils sont excités par une source lumineuse du domaine du visible ou du proche ultraviolet, absorbent de l'énergie pour la restituer par la suite sous forme d'un rayonnement. Certains présentent la faculté plus ou moins prononcée de réémettre quasi-instantanément à une longueur d'onde plus grande que celle de la lumière d'origine. Ils sont dits **fluorescents**.

Sur le spectre d'absorption-émission d'un composé, la longueur d'onde d'absorption correspond à une excitation et la longueur d'onde d'émission correspond à la fluorescence [6].

IV – 3 – 1 – 3 Origine de la fluorescence

Soumise à l'excitation lumineuse, la molécule du composé (le soluté, dans l'état électronique fondamental), est portée dans son premier état électronique excité.

Ses électrons et ceux des molécules environnantes de solvant, se rééquilibrent quasiment instantanément ; mais les positions des noyaux des atomes en revanche restent identiques à ce qu'elles sont dans l'état fondamental (c'est le principe de Franck-Condon).

Le système soluté/cage de solvant étant ainsi hors-équilibre, il va évoluer vers une conformation plus stable de l'état électronique excité. Très rapidement, (au bout de 10^{-12} s), par des processus dits de conversion interne, les molécules rejoignent, sans émettre de photons, l'état vibrationnel du niveau excité. Si ce niveau est compatible avec le niveau fondamental, le système peut y redescendre par une étape de fluorescence (de durée 10^{-11} à 10^{-8} s) au cours de laquelle, les molécules retournent dans un des états vibrationnels de l'état initial en émettant des photons. Au cours de la fluorescence qui accompagne le retour à l'état initial, la molécule peut conserver une partie de l'énergie reçue sous forme d'énergie vibrationnelle. Cet excès d'énergie de vibration est dissipé par, collisions ou autres processus non radiatifs baptisés, mécanismes de relaxation vibrationnelle. Il peut se produire également une émission de photons beaucoup moins énergétiques, à l'origine d'une fluorescence située dans le moyen infrarouge [6].

IV – 3 – 1 – 4 Molécules privilégiées par la fluorimétrie

La sensibilité en fluorimétrie est souvent 1 000 fois supérieure à celle que l'on connaît en absorption UV/visible. Cependant l'usage correct de ces techniques exige une bonne connaissance du phénomène afin d'éviter de nombreuses sources d'erreurs. La fluorescence est souvent le privilège des molécules cycliques, rigides et possédant des Liaisons π. Elle est augmentée par la présence de groupes électro-donneurs et diminuée avec les groupes électro-attracteurs. Elle dépend également du pH et du solvant.
Les molécules non rigides par contre, perdent facilement la totalité de l'énergie absorbée par dégradation et relaxation vibrationnelle. Par analogie, on peut comparer ce phénomène à l'effet que produit un coup de marteau soit, sur un bloc mou, caoutchouc par exemple, soit sur quelque chose de dur, comme une enclume. Sur le caoutchouc, l'énergie se disperse dans la masse (échauffement) et aucun bruit n'est émis, en revanche, sur l'enclume, une partie de l'énergie mécanique est retransmise vers l'extérieur (rayonnement sonore), phénomène comparable à la fluorescence [6].

La structure faisant l'objet de cette analyse, est constituée de ligands pyrazole qui, sont des cycles rigides et constituent des groupes électro-donneurs. Compte tenu des faits que, nous n'avons pas enregistré de spectre d'absorption électronique dans la région de l'ultra-violet, et que, les ligands en présence sont un des privilèges de la méthode ; nous avons jugé indispensable de procéder à une analyse par spectrofluorimétrie.

IV – 3 – 2 Appareillage utilisé et préparation des échantillons

Le spectrophotomètre utilisé pour la mesure est un Cary Eclipse Fluorescence photomètre des technologies Agilent. L'enregistrement du spectre a été effectué au centre de recherche de Biotechnologie CRBT à Constantine, sous la responsabilité et la collaboration du Dr Issaad Fatima.

Parce que la fluorescence d'un composé dépend du solvant utilisé, à condition bien sûr qu'il dissolve les cristaux du complexe [6], nous avons effectué l'enregistrement de deux spectres d'absorption-émission, le premier avec l'eau comme solvant et le second avec l'éthanol, optimisant ainsi, le choix des spectres d'excitation-émission et l'interprétation conséquente.

Les domaines de longueurs d'onde, utilisés pour l'enregistrement des spectres respectifs d'absorption et émission sont [200- 600], [350 - 750] nm.

L'enregistrement des spectres a été réalisé à température ambiante, avec deux solutions, contenant 10 mg de cristaux du complexe et 3ml d'eau/éthanol, les solutions respectives obtenues étaient de couleurs blanche/bleue dur et, de même concentrations 1.4 10⁻⁴moles/l.

IV - 3 - 3 Interprétation des spectres d'absorption-émission du complexe [CoCl₂(C₃H₄N₂)₄]

Les deux spectres d'absorption-émission dans l'eau et l'éthanol, sont illustrés par les figures respectives 7 et 8 ci-dessous :

Figure 7 Spectre de Fluorescence du complexe [CoCl₂(C₃H₄N₂)₄] dans l'eau

Figure 8 Spectre de Fluorescence du complexe [CoCl₂(C₃H₄N₂)₄] dans l'éthanol

Le premier spectre représenté par la figure 7 ci-dessus a révélé, en réponse à une excitation de 267.96 nm (absorption), une émission (fluorescence) avec une longueur d'onde de 545.97 nm, exprimée sur le spectre par une bande très intense.

Dans le second spectre représenté par la figure 8, nous avons observé, en réponse à une excitation (absorption) de 267.03 nm, une émission (fluorescence) avec une longueur d'onde de 542.98 nm, exprimée sur le spectre par une bande intense.

Le ligand 1H-pyrazole absorbe fortement (transition $\pi - \pi^*$) dans la région de l'ultra-violet à $\lambda = 210$ nm (voir chapitre I, sous-chapitre III -2 - 3 - 2) [6], [7] le fait que l'absorption se soit effectué à 267.96 et 267.03 nm (pour les deux spectres), est du à *l'effet bathochrome* (red shift) des solvants. Il faut savoir que, pour les composés peu polaires l'effet de solvant est faible. Cependant si le moment dipolaire du chromophore augmente au cours de la transition, l'état final sera plus solvaté. Des solvants polaires tels que l'eau et l'éthanol, vont ainsi, stabiliser la forme excitée, ce qui favorise la transition ; nous allons donc observer sur le spectre, un déplacement de la valeur de λ vers les grandes longueurs d'onde, comparativement au spectre obtenu dans un solvant non polaire. C'est *l'effet bathochrome* [6].

Les deux spectres d'émission ont révélé une fluorescence à $\lambda = 545.97$ nm (pour l'eau) et $\lambda = 542.98$ nm (pour l'éthanol); en conséquence, nous pouvons dire que le complexe [CoCl₂(C₃H₄N₂)₄] est un bon émetteur de lumière verte [8].

V – Conclusion

Nous ne sommes pas parvenus à une structure escomptée, soit un tétramère au cobalt, néanmoins, nous avons effectué la synthèse et, produit le complexe $[CoCl_2(C_3H_4N_2)_4]$.

Il s'agit d'une structure qui cristallise dans le système monoclinique, avec pour groupe d'espace C2/c. La diffraction par rayons X, a révélé un atome de cobalt sur un centre d'inversion i, et de ce fait, qui se retrouve lié à quatre ligands 1H-pyrazole et deux ions chlorure, le tout formant une géométrie octaédrique.

L'étude du spectre d'absorption électronique, a montré deux transitions d-d typiques des complexes des métaux de transition, ceci étant, nous avons déduit que le dit complexe avait un degré d'oxydation de (II) et qu'il était de configuration d^7 [4].

L'analyse par fluorimètrie a exploré la région de l'ultra-violet donc, celle qui concerne le ligand 1H-pyrazole, et a révélé, en concordance avec la littérature [8], que le complexe était un bon émetteur de lumière verte et, que les valeurs déplacées des excitations étaient dues à l'effet bathochrome du solvant.

La structure du complexe *dichloro-tétra-1H-pyrazole-Cobalt (II)*, étant originale elle fera l'objet, très prochainement, d'une publication.

VI – Références

[1] [Didier.Astruc, « Chimie organométallique et catalyse », EDP Sciences, 2013]

[2] [Yves. Jean, « Molecular Orbitals of Transition Metal Complexes », English version © [4]

[3] [M. Gerloch, E.G. Constable, «Transition Metal Chemistry», VCH VerlagsgesellschaftmbH, D-69451, Weinheim, 1994]

Oxford University Press, 2005]

[4] [Catherine E. Housecroft and Alan G. Sharpe « Inorganic chemistry »Fourth Edition ; Pearson,2012]

[5] [J. Bernstein, R. E. Davis, L. Shimoni and N. L. Chang, .Patterns in hydrogen bonding : functionality and graph-set analysis in crystals. Angew. Chem. Int. Ed Engl. 34 : 1555-73, 1995]

[6] [Francis. Rouessac, Annick. Rouessac, Daniel. Cruché. « Analyse Chimique Méthodes et techniques instrumentales modernes », 6^{éme} Edition. Dunod, 2004]

[7] [A. R. Katritzky, W. L. F. Armarego, « Physical methods in heterocyclic chemistry » volume III; Academic press, New York and London, 1971]

[8] [Hong. Zhao, Zhi-Rong. Qu, Heng-Yun. Ye and Ren-Gen Xiong, Chem. Soc. Rev. 37, 84–100, 2008]

CONCLUSION GENERALE

CONCLUSION GENERALE

Notre travail a porté essentiellement, sur la synthèse de tétramères à base de cuivre avec, pour l'un d'entre eux, une réaction de N-méthylation du ligand 1H-pyrazole.

Les synthèses de tous les tétramères, à base de cuivre, ont été effectuées par voie solvothermale, nous avons également fait une caractérisation par diffraction des rayons X avec une étude structurale, une étude spectrale IR et UV-visible.

Il s'agit de deux tétramères à base cuivre ayant pour unité tétranucléaire $[Cu_4 (\mu_2-Cl)_6 (\mu_4-O)]$ et, de type $[Cu_4OCl_6(L)_4]$ et d'un trimère oxo avec une unité trinucléaire $[Cu_3 (\mu-Cl)_3 (\mu_3-O)]$, très originaux, au vu de leur, mode de synthèse et, surtout des conditions de leurs formation :

- Hexa (µ₂-chloro) (µ₄-oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol ;
- Hexa (µ₂-chloro) (µ₄-oxo) Tétra (méthyle-1pyrazole) tétra cuivre(II) ;
- Tri (µ-chloro) (µ₃-oxo) tri (µ₂-pyrazolo) bis (1H-pyrazole) tricuivre (II).

L'analyse et interprétation du chemin réactionnel de formation de ces composés, a été effectuée, sur la base que ces complexes et polymère, ont été obtenus, selon le même mode opératoire.

Nous y avons observé deux étapes distinctes, en effet ; dans la première étape du chauffage en réacteur fermé homogène, nous avons obtenu des solutions incolores, impliquant donc ; la réduction du cation Cu^{2+} en Cu^+ ; tandis que la seconde étape, concerne la formation du tétramère, par réaction avec le second ligand, qu'est le dioxygène atmosphérique, en milieu ambiant.

La formation des tétramères et trimère, a été catalysée par l'élévation des, température et pression ambiantes, ainsi que ; l'exposition aux rayons solaires, qui ont suscité un chauffage suffisant, pour augmenter l'agitation des molécules en solution et, donc favorisé la solubilité du dioxygène atmosphérique.

Nous avons aussi, dans cette même partie, expliqué que, l'atome d'oxygène avait pour source, le dioxygène atmosphérique et, ce pour toutes les structures.

Il faut savoir que dans la littérature, l'origine de cette molécule, n'a pas été encore été établit, ni confirmé.

Les trois structures obtenues, ont été caractérisées par diffraction des rayons X, leurs descriptions structurales, nous ont menés aux déductions suivantes :

► Le complexe héxa (μ_2 -chloro) (μ_4 -oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol est de coordinence 5, de géométrie bipyramide trigonale irrégulière et, cristallise dans le système monoclinique, avec pour groupe d'espace $P_{21/n}$.

L'enchainement bidimensionnel, ainsi que l'empilement de la structure, sont assurés par des liaisons hydrogène, dont les atomes donneurs sont l'oxygène et le carbone et, les atomes accepteurs les atomes de chlore, soient de type O-H-Cl et C-H-Cl.

► L'originalité du complexe Héxa (μ_2 -chloro) (μ_4 -oxo) Tétra (méthyle-1pyrazole) tétra cuivre(II), réside dans le fait que, nous ayons pu effectuer une N-méthylation sur le ligand 1H-pyrazole, le radical méthyle ayant pour origine la molécule de méthanol, avec formation d'une molécule d'eau. Ceci n'étant pas conventionnel, car dans la littérature, la réaction de N-méthylation, s'effectue en milieu acide, donc le méthanol a joué le double rôle de, solvant et réactif, et c'est le cation de cuivre qui a été le précurseur de cette réaction, car il a conféré à la solution, le caractère acide.

Ce complexe est de coordinence 5, de géométrie bipyramide trigonale irrégulière et cristallise dans le système monoclinique, avec pour groupe d'espace *P*21/c.

L'enchainement bidimensionnel, ainsi que, l'empilement de la structure, sont assurés par des liaisons hydrogène, dont l'atome donneur est le carbone et l'atome accepteur est le chlore soit, de type C-H-Cl.

L'enchaînement bidimensionnel de cette structure assuré par deux liaisons hydrogène de type C-H-Cl où ; nous avons observé le cycle $R_4^4(29)$.

Dans l'empilement, deux liaisons hydrogène de type C-H-Cl ont été observées, renforçant la stabilité de la structure, en formant un cycle $R_2^2(10)$.

► Le polymère tri (µ-chloro) (µ₃-oxo) tri (µ₂-pyrazolo) bis (1H-pyrazole) tricuivre (II),

L'unité asymétrique de ce polymère, est constituée de trois sous-unités (1), (2) et (3), dans chacune d'elles nous avons observé, trois coordination différentes de l'atome de cuivre, à savoir 4, 5 et 6; respectivement plan carrée, pyramide à base carrée et octaédrique, il cristallise dans le système triclinique et, est de groupe d'espace P1.

Toutes les liaisons hydrogène en présence, sont de type modérées ou faibles, de type C-H...Cl, C-H...O et O-H...Cl.

La stabilité du réseau cristallin, est aussi assurée, en plus des liaisons hydrogènes, par quatre interactions électrostatiques de type C-H...Cg.

Pour chacune des trois structures, une étude spectroscopique IR et UV-Visible a été effectuée.

► Le troisième chapitre de cette thèse, concerne une structure connue et publiée, il s'agit du complexe [Cu(Py)₄.SO₄.H₂O].

Nous avons effectué une diffraction par rayons X, une étude structurale, une analyse élémentaire et une étude de la spectroscopie électronique.

Enfin, nous avons réalisé, une recherche sur l'activité catalytique du dit complexe, avec la réaction de couplage de Chan-Evans-Lam.

C'est une réaction de couplage C-N (cross-coupling) rapide et efficace, qui utilise comme réactifs, l'acide phényl boronique avec des amines sélectionnées et le complexe, en tant que catalyseur de réaction.

En comparaison avec la littérature, notre complexe s'est révélé être, un bon catalyseur pour coupler 3 amines (aniline, 2-amino-pyridine, 2, 6-diisopropyle-amine) avec l'acide phényle boronique.

► Le dernier chapitre, a concerné l'étude par diffraction des rayons X, par spectroscopie UVvisible et fluorimétrie, de la structure du complexe $[CoCl_2(C_3H_4N_2)_4]$.

La caractérisation par diffraction des rayons X, a révélé que la structure du complexe cristallise dans le système monoclinique, avec pour groupe d'espace C2/c.

La description de la coordination du complexe $[CoCl_2(C_3H_4N_2)_4]$ a révélé :

- un centre métallique cationique, avec un degré d'oxydation de +2 : (Co²⁺);
- deux ligands anioniques chlorure Cl⁻, radicalaires X, donneurs chacun d'un électron ;
- quatre cycles 1H-Pyrazole, qui sont des ligands neutres L, donneurs d'un doublet électronique, ils forment ainsi chacun, une liaison dative avec le cation Cobalt(II).

L'unité asymétrique du complexe, est constituée d'un atome de cobalt situé sur un centre d'inversion (i), relié à deux ligands pyrazole et un atome de chlore.

Les molécules formant la structure, s'enchainent et se croisent, selon deux directions séparées d'un angle d'une valeur de 75.50°, la première est selon la rangée [110] et, la seconde selon la rangée [1-10]. C'est la liaison hydrogène de type C-H...Cl, qui est responsable de la formation de cycles $R_2^2(10)$ [5] et ce, le long des deux rangées croisées [110] et [1-10].

Ce sont les liaisons hydrogène de type C-H...Cl et N-H...Cl, qui sont à l'origine de l'empilement des couches, elles même formées d'un enchainement de molécules, qui se croisent selon les rangées [110] et [1-10].

La stabilité de la structure est assurée par des interactions stacking de type π - π et C-H... π .

Le spectre d'absorption électronique du complexe, a révélé deux larges bandes, caractéristiques de la configuration d^7 et de la transition d-d du cobalt (II).

Les spectres de fluorimétrie, ont montré que le composé $[CoCl_2(C_3H_4N_2)_4]$, était un bon émetteur de lumière verte.

Pour conclure, le travail de recherche que nous effectué, est constitué de 5 structures, dont quatre originales et une cinquième publiée.

La plus grande partie, a concerné, la synthèse et l'analyse du chemin réactionnel de la formation de 2 tétramères et, d'un trimère à base de cuivre et, la réaction de N-méthylation du ligand 1H-pyrazole, qui a été réalisée, dans un alcool et, non en milieu acide comme mentionné dans la littérature.

A propos de la quatrième structure connue, nous avons fait une catalyse homogène Chan-Evans-Lan, le complexe s'est révélé, en comparaison avec les mêmes réactions dans la littérature, être un bon catalyseur pour trois amines.

ANNEXE I DES TECHNIQUES EXPERIMENTALES

ANNEXE I

TECHNIQUES EXPERIMENTALES

I – ANALYSE ELEMENTAIRE

La mesure par analyse élémentaire (C, H, N, S), du complexe Tétra-pyrazole-sulfato-cuivre II. Monohydraté, a été effectuée sur un appareil Thermo scientific FlashSmart Elemental Analyser, du laboratoire d'analyse élémentaire de l'Université de Montréal au Canada, sous la supervision de, Mme Francine Bélanger.

La mesure de deux échantillons par analyse élémentaire, à savoir les complexes $[Cu_4OCl_6(C_3H_3N_2)_4]$.EtOH et $[Cu_4OCl_6(C_4H_6N_2)_4]$, a été effectuée au moyen de l'appareil, Flash EA 1112 (Thermofinnigan), du laboratoire d'analyse élémentaire de l'Université de Strasbourg en France.

II – SPECTROSCOPIE INFRA-ROUGE

La mesure par spectroscopie IR, a été effectuée dans le laboratoire CRM² à Nancy en France, avec la collaboration du professeur défunt Slimane. Dahaoui, et de Mr Pierrick. Durand. Les spectres infrarouge, ont été enregistrés sur le spectrophotomètre Perkin Elmer FT-IR, spectrum 1000, où l'échantillon, réduit à l'état de poudre, a été mélangé au bromure de potassium (KBr) avec une concentration de 1%, puis comprimé sous forme de pastille. La gamme utilisée pour l'enregistrement est comprise dans le domaine [400-4000] cm⁻¹.

III – SPECTROSCOPIE UV- VISIBLE

La mesure a été effectuée au laboratoire de recherche CRM² à l'université de Lorraine dans la ville de Nancy en France, sous la responsabilité du Professeur défunt S. Dahaoui, avec la collaboration de Mr P. Durand.

L'enregistrement du spectre d'absorption a été effectué, à température ambiante, au moyen d'un spectrophotomètre, Cary 4000 varian technologies.

Les solvants utilisés pour toutes les mesures sont : le méthanol et l'éthanol.

Trois domaines de longueur d'onde, ont été utilisés pour l'enregistrement des spectres des différents échantillons, à savoir [400-900], [250-900] et [200-900].

IV – DIFFRACTION DES RAYONS X SUR MONOCRISTAL

La mesure par diffraction des rayons X, a été effectuée au sein du laboratoire de recherche CRM², à l'université de Lorraine à Nancy en France, avec la collaboration du professeur défunt Slimane. Dahaoui.

Tous les monocristaux soumis à la caractérisation par DRX, ont d'abord été isolés puis, sélectionnés pour être montés sur une tige de verre, et centrés, sur une tête goniométrique puis, mis en contact d'un jet d'azote à 100 K.

IV – 1 Appareil utilisé pour la mesure par DRX du monocristal

L'enregistrement des intensités, a été réalisé à l'aide d'un diffractomètre monocristal Agilent Technologies (Oxford Diffraction) « Super-Nova ». C'est un diffractomètre équipé d'une double longueur d'onde, utilisé pour l'étude des structures macromoléculaires. C'est un appareil idéal pour la diffraction, de très petits cristaux, sous contrôle de la température, dans un intervalle de 80 à 500 °K, à l'aide d'un système Oxford Cryostream.

Les caractéristiques techniques du SUPERNOVA sont :

- Type de l'anode : micro source (rayonnement Kα (Mo) et Kα (Cu)), 40 Kv/1.5 mA ;
- Détecteur de rayons X : Atlas de type CCD (charge Coupled Device) ;
- Optique à rayons X : monochromateur multicouches.

IV – 2 Logiciels utilisés pour la mesure et la résolution des structures

- •Les programmes utilisés pour :
- La collecte des données : APEX2 [1].
- La réduction des données : SAINT [2].
- La correction d'absorption : SADABS [3].

- Les programmes utilisés pour la résolution et l'affinement de la structure:
- SHELXT [4].
- SHELXL2014 [5].
- Les graphiques moléculaires: SHELXTL [6].
- Programme utilisé pour la préparation de la publication : SHELXL 2014 [7].

V - Références

- [1] [APEX2, Release 2.1-0, Bruker AXS Inc., Madison, USA, 2006]
- [2] [SAINT, Release 7.34A, Bruker AXS Inc., Madison, USA, 2006]
- [3] [G. M. Sheldrick, Sadabs, Bruker AXS Inc., Madison, USA, 1996 & 2004]
- [4] [G. Sheldrick, , Acta Crystallogr. Sect. A: Found. Crystallogr. 71, 3–8, 2015]
- [5] [G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr. 71, 3–8, 2015]
- [6] [G. M. Sheldrick, Acta Crystallogr. A64, 112–122, 2008]
- [7] [G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr. 71, 3–8, 2015]

ANNEXE II

Spectres Infra-Rouge et UV-Visible de toutes les structures

ANNEXE II

Spectres Infra-Rouge et d'absorption électronique de toutes les structures

I - Spectres IR et UV-Visible du complexe [$Cu_4OCl_6(C_3H_3N_2)_4$]. EtOH

I – 1 Spectre IR

Par souci de clarté dans le spectre, les valeurs numériques correspondant à tous les pics n'ont pas été transcrites.

Spectre IR du complexe [Cu₄OCl₆(C₃H₄N₂)₄]. EtOH

Spectres d'absorption du complexe [Cu₄OCl₆(C₃H₃N₂)₄]. EtOH

II – Spectres IR et UV-Visible du complexe [Cu₄OCl₆(C₄H₆N₂)₄] II – 1 Spectre IR

Par souci de clarté du spectre, les valeurs numériques correspondant à, tous les pics n'ont pas été transcrites.

Spectre IR du complexe [Cu₄OCl₆(C₄H₆N₂)₄]

II – 2 Spectre d'absorption électronique : Ultraviolet/Visible

Spectre UV-Visible du complexe [Cu₄OCl₆(C₄H₆N₂)₄]

III – Spectres IR et UV-Visible du polymère $\{Cu_3OCl_3(L_1)_2(L_2)_3\}_n$ (avec $L_1=1H$ -pyrazole, $L_2=$ pyrazole)

Spectre IR du polymère de coordination {Cu₃OCl₃(L₁)₂ (L₂)₃}_n (avec L₁=1H-

pyrazole, L₂= pyrazole)

Spectre UV-Visible du polymère de coordination $\{Cu_3OCl_3(L_1)_2 (L_2)_3\}_n$ (avec L₁=1H-pyrazole, L₂= pyrazole)

ANNEXE III

Du complexe Hexa (μ₂chloro) (μ₄-oxo) (tétraimidazole) tétra cuivre (II), dans l'éthanol

ANNEXE III DU TETRAMERE

Hexa (μ₂-chloro) (μ₄-oxo) (tétra-imidazole) tétra cuivre (II), Ethanol

Tableau 1 Coordonnées atomiques et paramètres d'agitationanisotropiques (*) et équivalentes (Ų)

Atomes	X	у	Z	$U_{eq}(\text{\AA}^2)/U_{iso}(*)$
Cu ₃	0.41273(2)	0.201631(17)	0.505361(14)	0.01237(5)
Cu ₄	0.18884(2)	0.189131(18)	0.383031(15)	0.01362(6)
Cu ₂	0.28660(2)	0.383666(17)	0.433277(15)	0.01298(6)
Cu ₁	0.42847(2)	0.259453(18)	0.327103(15)	0.01360(6)
Cl ₃	0.42976(5)	0.42404(4)	0.34660(3)	0.01848(10)
Cl_4	0.26693(5)	0.08123(4)	0.48905(3)	0.01831(10)
Cl_5	0.27670(4)	0.15678(3)	0.26227(3)	0.01391(9)
Cl ₆	0.39028(5)	0.34879(4)	0.57155(3)	0.01736(10)
Cl_1	0.57683(4)	0.18016(3)	0.41852(3)	0.01569(9)
Cl ₂	0.09410(4)	0.32380(4)	0.43132(3)	0.02008(10)
O ₂	0.77540(19)	0.49979(14)	0.34216(11)	0.0326(4)
H _{O2}	0.7402	0.5115	0.3810	0.049*
N ₈	-0.11825(17)	0.06772(14)	0.28414(12)	0.0210(4)

N ₅	0.50802(16)	0.14432(12)	0.59466(10)	0.0150(3)
N ₇	0.04058(16)	0.12499(14)	0.35374(11)	0.0181(4)
N ₃	0.24417(16)	0.51251(13)	0.45212(11)	0.0173(3)
N ₆	0.60700(18)	0.03625(14)	0.66628(11)	0.0207(4)
O ₁	0.33088(12)	0.25811(10)	0.41233(8)	0.0113(3)
N ₄	0.26603(18)	0.66202(14)	0.47783(13)	0.0237(4)
C ₁₀	0.5939(2)	0.18703(16)	0.64703(14)	0.0204(4)
H ₁₀	0.6072	0.2511	0.6512	0.024*
C ₁	0.5251(2)	0.33121(18)	0.18107(14)	0.0233(5)
H ₁	0.4834	0.3873	0.1801	0.028*
N ₂	0.6404(2)	0.21873(19)	0.14987(13)	0.0320(5)
C ₉	-0.00884(19)	0.10224(15)	0.28151(13)	0.0174(4)
H ₉	0.0276	0.1093	0.2350	0.021*
N ₁	0.52018(17)	0.26125(13)	0.23652(11)	0.0182(4)
C ₆	0.3201(2)	0.57888(16)	0.47714(16)	0.0233(5)
H ₆	0.4007	0.5692	0.4923	0.028*
C ₀₂	0.8565(3)	0.3833(3)	0.26518(18)	0.0404(7)
H ₁₇	0.8097	0.4075	0.2187	0.061*
H ₁₅	0.8676	0.3173	0.2590	0.061*
H ₁₆	0.9324	0.4138	0.2716	0.061*
C ₁₂	0.5191(2)	0.05327(15)	0.60747(13)	0.0176(4)
H ₁₂	0.4728	0.0076	0.5798	0.021*

C ₅	0.1485(2)	0.64875(17)	0.45088(15)	0.0245(5)
H ₅	0.0895	0.6942	0.4448	0.029*
C ₈	-0.0423(2)	0.1033(2)	0.40525(15)	0.0297(6)
H ₈	-0.0322	0.1119	0.4603	0.036*
C ₄	0.1353(2)	0.55607(16)	0.43480(14)	0.0209(4)
H ₄	0.0646	0.5268	0.4153	0.025*
C ₇	-0.1406(2)	0.06749(19)	0.36276(16)	0.0267(5)
H ₇	-0.2094	0.0469	0.3827	0.032*
C ₁₁	0.6558(2)	0.12025(17)	0.69149(14)	0.0232(5)
H ₁₁	0.7188	0.1297	0.7311	0.028*
C ₂	0.6006(2)	0.30516(19)	0.12799(14)	0.0265(5)
H ₂	0.6210	0.3399	0.0849	0.032*
C ₀₁	0.7936(2)	0.4008(2)	0.33721(17)	0.0321(6)
H ₁₄	0.7179	0.3684	0.3323	0.039*
H ₁₃	0.8412	0.3786	0.3849	0.039*
C ₃	0.5909(2)	0.1936(2)	0.21585(15)	0.0287(5)
H ₃	0.6043	0.1373	0.2429	0.034*

Tableau 2 Paramètres d'agitation thermiques atomiques (A^2)

Atome	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu ₃	0.01351(11)	0.01251(11)	0.01085(11)	0.00096(8)	0.00032(8)	0.00034(9)
Cu ₄	0.01091(11)	0.01762(12)	0.01255(11)	-0.00173(9)	0.00227(8)	-0.00233(9)
Cu ₂	0.01219(11)	0.01204(11)	0.01529(12)	0.00012(9)	0.00416(9)	0.00159(9)
Cu ₁	0.01457(11)	0.01514(12)	0.01223(11)	0.00024(9)	0.00663(9)	0.00009(9)
Cl ₃	0.0239(2)	0.0138(2)	0.0197(2)	-0.00005(18)	0.01115(19)	-0.00192(18)
Cl ₄	0.0174(2)	0.0181(2)	0.0189(2)	0.00526(18)	-0.00015(18)	-0.00489(18)
Cl ₅	0.0141(2)	0.0166(2)	0.01103(19)	-0.00039(16)	0.00140(15)	0.00137(16)
Cl ₆	0.0213(2)	0.0159(2)	0.0141(2)	-0.00342(17)	-0.00132(17)	0.00454(18)
Cl ₁	0.0132(2)	0.0167(2)	0.0176(2)	0.00159(17)	0.00383(17)	0.00258(17)
Cl ₂	0.0115(2)	0.0184(2)	0.0311(3)	-0.0033(2)	0.00576(19)	0.00064(17)
O ₂	0.0400(11)	0.0350(10)	0.0227(9)	0.0007(8)	0.0030(8)	0.0072(9)
N ₈	N8 0.0168(8)	0.0223(9)	0.0235(9)	-0.0013(8)	0.0003(7)	-0.0042(7)
N ₅	0.0179(8)	-0.0141(8)	0.0125(7)	0.0000(6)	0.0009(6)	0.0004(6)
N ₇	0.0142(8)	0.0244(9)	0.0161(8)	-0.0025(7)	0.0033(6)	-0.0045(7)
N ₃	0.0159(8)	0.0155(8)	0.0212(9)	0.0012(7)	0.0057(7)	0.0027(7)
N ₆	0.0246(9)	0.0195(9)	0.0177(9)	0.0019(7)	0.0009(7)	0.0064(8)
O ₁	0.0110(6)	0.0135(6)	0.0100(6)	0.0002(5)	0.0031(5)	0.0002(5)
N_4	0.0234(10)	0.0157(9)	0.0332(11)	-0.0009(8)	0.0090(8)	-0.0002(7)
C ₁₀	0.0225(10)	0.0182(10)	0.0191(10)	-0.0022(8)	-0.0037(8)	-0.0005(8)
C ₁	0.0268(11)	0.0255(11)	0.0191(10)	0.0022(9)	0.0089(9)	-0.0046(9)
N ₂	0.0281(11)	0.0472(14)	0.0233(10)	-0.0044(10)	0.0140(9)	0.0026(10)
N ₁	0.0187(8)	0.0210(9)	0.0162(8)	-0.0012(7)	0.0079(7)	-0.0014(7)

C ₆	0.0176(10)	0.0177(10)	0.0353(13)	-0.0017(9)	0.0060(9)	0.0004(8)
C ₀₂	0.0326(14)	0.0552(19)	0.0339(15)	0.0015(14)	0.0057(12)	0.0144(14)
C ₄	0.0183(10)	0.0191(10)	0.0252(11)	-0.0009(9)	0.0013(8)	0.0039(8)
C ₁₂	0.0218(10)	0.0143(9)	0.0164(9)	-0.0009(7)	0.0004(8)	0.0017(8)
C ₅	0.0248(11)	0.0185(10)	0.0307(12)	0.0018(9)	0.0056(9)	0.0060(9)
C ₈	0.0225(11)	0.0478(16)	0.0203(11)	-0.0046(11)	0.0092(9)	-0.0133(11)
C ₇	0.0176(10)	0.0352(13)	0.0286(12)	-0.0047(10)	0.0077(9)	-0.0088(9)
C ₁₁	0.0222(11)	0.0265(11)	0.0192(10)	-0.0004(9)	-0.0049(8)	0.0026(9)
C ₂	0.0260(12)	0.0388(14)	0.0161(10)	0.0003(10)	0.0092(9)	-0.0101(10)
C ₀₁	0.0253(12)	0.0388(15)	0.0325(14)	0.0057(11)	0.0044(10)	0.0045(11)
C ₃	0.0311(13)	0.0352(14)	0.0223(11)	0.0005(10)	0.0142(10)	0.0080(11)

Tableau 3 Angles de torsions (•)

Angles	Valeurs (°)	Angles	Valeurs (°)
O ₁ -Cu ₂ - Cl ₃ -Cu ₁	7.93(4)	N ₁ -Cu ₂ - Cl ₃ -Cu ₁	-171.77(6)
Cl ₂ -Cu ₂ - Cl ₃ -Cu ₁	-67.27(4)	O_1 - Cu_1 - Cl_3 - Cu_2	-7.94(4)
Cl ₆ -Cu ₂ - Cl ₃ -Cu ₁	88.62(2)	N_1 - Cu_1 - Cl_3 - Cu_2	169.03(6)
Cl ₅ -Cu ₁ -Cl ₃ -Cu ₂	68.79(3)	Cl ₆ -Cu ₁ -Cl ₃ -Cu ₂	-91.56(2)
O ₁ -Cu ₃ -Cl ₄ -Cu ₄	-4.96(4)	N ₅ -Cu ₃ -Cl ₄ -Cu4	179.33(6)
Cl ₆ -Cu ₃ -Cl ₄ -Cu ₄	78.80(2)	Cl ₁ -Cu ₃ -Cl ₄ -Cu ₄	-87.11(2)
O ₁ -Cu ₄ -Cl ₄ -Cu ₃	4.98(4)	N ₇ -Cu ₄ -Cl ₄ -Cu ₃	-172.80(6)
Cl ₂ -Cu ₄ -Cl ₄ -Cu ₃	-75.99(2)	Cl ₅ -Cu ₄ -Cl ₄ -Cu ₃	87.11(2)

O ₁ -Cu ₄ -Cl ₅ -Cu ₁	-3.05(4)	O ₁ -Cu ₄ -Cl ₅ -Cu ₁	-3.05(4)
Cl ₂ -Cu ₄ -Cl ₅ -Cu ₁	72.96(3)	Cl ₄ -Cu ₄ -Cl ₅ -Cu ₁	-85.56(2)
O ₁ -Cu ₁ -Cl ₅ -Cu ₄	3.05(4)	N ₁ -Cu ₁ -Cl ₅ -Cu ₄	-174.97(6)
C ₁₃ -Cu ₁ -Cl ₅ -Cu ₄	-73.91(3)	Cl ₁ -Cu ₁ -Cl ₅ -Cu ₄	86.20(2)
O_1 -Cu ₃ -Cl ₆ -Cu ₂	0.75(4)	N ₅ -Cu ₃ -Cl ₆ -Cu ₂	176.03(6)
Cl ₄ -Cu ₃ -Cl ₆ -Cu ₂	-83.05(2)	Cl ₁ -Cu ₂ -Cl ₆ -Cu ₂	81.97(2)
O ₁ -Cu ₂ -Cl6-Cu3	-0.75(4)	N ₃ -Cu ₂ -Cl ₆ -Cu ₃	-179.33(6)
Cl ₂ -Cu ₂ -Cl ₆ -Cu ₃	82.20(2)	Cl ₁ -Cu ₂ -O ₁ -Cu ₃	130.09(6)
Cl ₃ -Cu ₂ -Cl ₆ -Cu ₃	-82.39(2)	O ₁ -Cu ₁ -Cl ₁ -Cu ₃	-0.87(4)
N ₁ -Cu ₁ -Cl ₁ -Cu ₃	-179.62(6)	Cl ₃ -Cu ₁ -Cl ₁ -Cu ₃	81.44(2)
Cl ₅ -Cu ₁ -Cl ₁ -Cu ₃	-82.416(19)	O ₁ -Cu ₃ -Cl ₁ -Cu ₁	0.87(4)
O ₁ -Cu ₃ -Cl ₁ -Cu ₁	0.87(4)	N ₅ -Cu ₃ -Cl ₁ -Cu ₁	-178.35(5)
Cl ₄ -Cu ₃ -Cl ₁ -Cu ₁	84.85(2).	Cl ₆ -Cu ₃ -Cl ₁ -Cu ₁	-81.89(2)
O ₁ -Cu ₂ -Cl ₂ -Cu ₄	-9.57(4)	N ₃ -Cu ₂ -Cl ₂ -Cu ₄	169.19(6)
Cl ₃ -Cu ₂ -Cl ₂ -Cu ₄	65.39(4)	Cl ₆ -Cu ₂ -Cl ₂ -Cu ₄	-91.00(2)
O ₁ -Cu ₄ -Cl ₂ -Cu ₂	9.62(4)	N ₇ -Cu ₄ -Cl ₂ -Cu ₂	-169.62(6)
Cl ₅ -Cu ₄ -Cl ₂ -Cu ₂	-66.64(3)	Cl ₄ -Cu ₄ -Cl ₂ -Cu ₂	91.35(2)
-Cu ₃ -N ₅ -Cl ₂	-91.9(8)	Cl ₄ -Cu ₃ -N ₅ -Cl ₂	30.28(19)
Cl ₆ -Cu ₃ -N ₅ -Cl ₂	156.66(18)	Cl ₁ -Cu ₃ -N ₅ -Cl ₂	-83.10(18)
O ₁ -Cu ₃ -N ₅ -Cl ₁	74.2(8)	Cl ₄ -Cu ₃ -N ₅ -Cl ₀	-163.63
Cl ₆ -Cu ₃ -N ₅ -Cl ₀	-37.25(19)	Cl ₁ -Cu ₃ -N ₅ -Cl ₀	82.99(18)
O ₁ -Cu ₄ -N ₇ -C ₉	98.4(14)	Cl ₂ -Cu ₄ -N ₇ -C ₉	113.7(2)

Cl ₅ -Cu ₄ -N ₇ -C ₉	-20.7(2)	Cl ₄ -Cu ₄ -N ₇ -C ₉	-132.2(2)
O ₁ -Cu ₄ -N ₇ -C ₈	-73.5(14)	Cl ₂ -Cu ₄ -N ₇ -C ₈	-58.2(2)
Cl ₅ -Cu ₄ -N ₇ -C ₈	167.4(2)	Cl ₄ -Cu ₄ -N ₇ -C ₈	56.0(2)
O ₁ -Cu ₂ -N ₃ -C ₆	-64(3)	Cl ₂ -Cu ₂ -N ₃ -C ₆	163.72(19)
Cl ₃ -Cu ₂ -N ₃ -C ₆	-53.8(2)	Cl ₆ -Cu ₂ -N ₃ -C ₆	56.6(2)
O ₁ -Cu ₂ -N ₃ -C ₄	108(3)	Cl ₂ -Cu ₂ -N ₃ -C ₄	-24.0(2)
Cl ₃ -Cu ₂ -N ₃ -C ₄	118.54(19)	Cl ₆ -Cu ₂ -N ₃ -C ₄	-131.08(19)
N ₇ -Cu ₄ -O ₁ -Cu ₁	-115.3(14)	Cl ₂ -Cu ₄ -O ₁ -Cu ₁	-130.63(7)
Cl ₅ -Cu ₄ -O ₁ -Cu ₁	4.09(6)	Cl ₄ -Cu ₄ -O ₁ -Cu ₁	115.01(6)
N ₇ -Cu ₄ -O ₁ -Cu ₂	3.0(14)	Cl ₂ -Cu ₄ -O ₁ -Cu ₂	-12.26(5)
Cl ₅ -Cu ₄ -O ₁ -Cu ₂	122.46(6)	Cl ₄ -Cu ₄ -O ₁ -Cu ₂	-126.62(6)
N ₇ -Cu ₄ -O ₁ -Cu ₃	123.2(14)	Cl ₂ -Cu ₄ -O ₁ -Cu ₃	107.93(6)
Cl ₅ -Cu ₄ -O ₁ -Cu ₃	-117.35(6)	Cl ₄ -Cu ₄ -O ₁ -Cu ₃	-6.43(6)
N ₁ -Cu ₁ -O ₁ -Cu ₄	36.9(14)	Cl ₃ Cu ₁ -O ₁ -Cu ₄	128.24(7)
Cl ₅ -Cu ₁ -O ₁ -Cu ₄	-4.07(6)	Cl ₁ -Cu ₁ -O ₁ -Cu ₄	-118.75(6)
N ₁ -Cu ₁ -O ₁ -Cu ₂	-81.0(14)	Cl ₃ -Cu ₁ -O ₁ -Cu ₂	10.30(6)
Cl ₅ -Cu ₁ -O ₁ -Cu ₂	-122.01(6)	Cl ₁ -Cu ₁ -O ₁ -Cu ₂	123.31(6)
N ₁ -Cu ₁ -O ₁ -Cu ₃	156.8(14)	Cl ₃ -Cu ₁ -O ₁ -Cu ₃	-111.82(6)
Cl ₅ -Cu ₁ -O ₁ -Cu ₃	115.88(6)	Cl ₁ -Cu ₄ -O ₁ -Cu ₃	1.20(6)
N ₃ -Cu ₂ -O ₁ -Cu ₄	-120(3)	Cl ₂ -Cu ₂ -O ₁ -Cu ₄	12.52(6)
Cl ₃ -Cu ₂ -O ₁ -Cu ₄	-130.15(6)	Cl ₆ -Cu ₁ -O ₁ -Cu ₄	119.32(6)
N ₃ -Cu ₂ -O ₁ -Cu ₁	0(3)	Cl ₂ -Cu ₂ -O ₁ -Cu ₁	132.34(6)

Cl ₃ -Cu ₂ -O ₁ -Cu ₁	-10.33(6)	Cl ₆ -Cu ₂ -O ₁ -Cu ₁	-120.86(6)
N ₃ -Cu ₂ -O ₁ -Cu ₃	122(3)	Cl ₂ -Cu ₂ -O ₁ -Cu ₃	-105.80(6)
Cl ₃ -Cu ₂ -O ₁ -Cu ₃	111.54(6)	Cl ₆ -Cu ₂ -O ₁ -Cu ₃	1.00(6)
N ₅ -Cu ₃ -O ₁ -Cu ₄	129.1(8)	Cl ₄ -Cu ₃ -O ₁ -Cu ₄	6.61(6)
Cl ₆ -Cu ₃ -O ₁ -Cu ₄	-119.09(6)	Cl ₁ -Cu ₃ -O ₁ -Cu ₄	120.28(6)
N ₅ -Cu ₃ -O ₁ -Cu ₁	7.7(8)	Cl ₄ -Cu ₃ -O ₁₋ Cu ₁	-114.83(6)
Cl_6 - Cu_3 - O_1 - Cu_1	119.47(6)	Cl ₁ -Cu ₃ -O ₁ -Cu ₁	-1.16(6)
N ₅ -Cu ₃ -O ₁ -Cu ₂	-112.8(8)	Cl ₄ -Cu ₃ -O ₁ -Cu ₂	124.65(6)
Cl ₆ -Cu ₃ -O ₁ -Cu ₂	-1.05(6)	Cl ₁ -Cu ₃ -O ₁ -Cu ₂	-121.68(6)
Cl ₂ -N ₅ -Cl ₀ -Cl ₁	-0.3(3)	Cu ₃ -N ₅ -Cl ₀ -Cl ₁	-168.52
C ₈ -N ₇ -C ₉ -N ₈	0.2(3)	Cu ₄ -N ₇ -C ₉ -N ₈	-172.91(16)
C ₇ -N ₈ -C ₉ -N ₇	-0.4(3)	C ₂ -C ₁ -N ₁ -C ₃	-0.9(3)
C_2 - C_1 - N_1 - Cu_1	179.43(17)	0 ₁ -Cu ₄ -N ₁ -C ₃	-117.7(14)
Cl ₃ -Cu ₁ -N ₁ -C ₃	151.2(2)	Cl ₅ -Cu ₁ -N ₁ -C ₃	-76.9(2)
Cl ₁ -Cu ₁ -N ₁ -C ₃	37.8(2)	O ₁ -Cu ₁ -N ₁ -C ₁	61.9(15)
Cl ₃ -Cu ₁ -N ₁ -C ₁	-29.1(2)	Cl ₅ -Cu ₁ -N ₁ -C ₁	102.7(2)
Cl ₁ -Cu ₁ -N ₁ -C ₁	-142.56(19)	C ₄ -N ₃ -C ₆ -N ₄	0.8(3)
Cu ₂ -N ₃ -C ₆ -N ₄	174.55(16)	C ₅ -N ₄ -C ₆ -N ₃	-0.7(3)
Cl ₀ -N ₅ -Cl ₂ -N ₆	0.8(3)	Cu ₃ -N ₅ -Cl ₂ -N ₆	169.26(15)
Cl ₁ -N ₆ -Cl ₂ -N ₅	-1.0(3)	C ₆ -N ₄ -C ₅ -C ₄	0.2(3)
C ₉₋ N ₇ -C ₈ -C ₇	0.1(3)	Cu ₄ -N ₇ -C ₈ -C ₇	173.49(19)
N ₄ -C ₅ -C ₄ -N ₃	0.2(3)	C ₆₋ N ₃ -C ₄ -C ₅	-0.6(3)

Cu ₂ -N ₃ -C ₄ -C ₅	-174.06(17)	N ₇ -C ₈ -C ₇ -N ₈	-0.4(3)
C9-N ₈ -C ₇ -C ₈	0.5(3)	N ₅ -Cl ₀ -Cl ₁ -N ₆	-0.3(3)
Cl ₂ -N ₆ -C ₁₁ -C ₁₀	0.8(3)	C ₃ -N ₂ -C ₂ -C ₁	-0.8(3)
N ₁ -C ₁ -C ₂ -N ₂	1.1(3)	C ₁ -N ₁ -C ₃ -N ₂	0.3(3)
Cu ₁ -N ₁ -C ₃ -N ₂	-179.96(17)	C ₂ -N ₂ -C ₃ -N ₁	0.3(3)

ANNEXE IV Du complexe Hexa(µ2-chloro)(µ4-oxo) Tétra(méthyle-1pyrazole) tétra cuivre(II)

ANNEXE IV du Tétramère Hexa(μ₂-chloro) (μ₄-oxo) tétra(méthyle-1pyrazole)tétra cuivre(II)

Tableau 1 Coordonnées atomiques et paramètres d'agitationanisotropiques (*) et équivalentes (Ų)

Atomes	X	У	Z	Ueq(Å ²)/Uiso(*)
Cu ₁	0.83804(2)	0.21025(2)	0.01754(1)	0.0172(1)
Cu ₂	0.73634(2)	0.41180(2)	0.08583(1)	0.0145(1)
Cu ₃	0.66721(2)	0.18592(2)	0.13192(1)	0.0156(1)
Cu ₄	0.94213(2)	0.27193(2)	0.15257(1)	0.0144(1)
Cl ₁	0.80051(5)	0.39229(4)	-0.01794(2)	0.0208(1)
Cl ₂	0.87684(5)	0.44743(4)	0.17736(2)	0.0185(1)
Cl ₃	0.54383(4)	0.34782(4)	0.12558(2)	0.0215(1)
Cl ₄	0.68845(5)	0.07844(4)	0.03651(3)	0.0263(2)
Cl ₅	0.82138(5)	0.15037(4)	0.21600(2)	0.0217(1)
Cl ₆	1.04783(5)	0.19477(4)	0.07039(2)	0.0220(1)
O ₁	0.79456(12)	0.26895(10)	0.09587(6)	0.0134(3)
N ₁	0.89274(19)	0.15192(15)	-0.06225(8)	0.0238(5)
N ₂	0.67866(16)	0.55832(14)	0.07206(8)	0.0178(4)

N ₃	0.53278(16)	0.10349(14)	0.16833(9)	0.0207(5)
N ₄	1.09629(15)	0.27501(14)	0.20821(8)	0.0175(4)
N ₁₁	0.8431(2)	0.17199(17)	-0.12118(9)	0.0292(6)
N ₁₂	0.75527(17)	0.64185(14)	0.06170(8)	0.0200(5)
N ₁₃	0.41338(17)	0.09089(15)	0.14255(9)	0.0242(5)
N ₁₄	1.20007(16)	0.33523(14)	0.19931(8)	0.0207(5)
C ₁	0.9988(3)	0.09605(18)	-0.06960(11)	0.0284(7)
C ₂	1.0173(3)	0.0803(2)	-0.13304(12)	0.0340(7)
C ₃	0.9166(3)	0.1299(2)	-0.16405(11)	0.0340(7)
C_4	0.7185(3)	0.2188(3)	-0.13327(12)	0.0398(8)
C ₅	0.5600(2)	0.59564(18)	0.06475(10)	0.0229(6)
C ₆	0.5610(2)	0.7032(2)	0.04989(12)	0.0297(7)
C ₇	0.6868(2)	0.72989(19)	0.04875(11)	0.0273(6)
C ₈	0.89278(19)	0.63222(18)	0.06323(11)	0.0240(6)
C ₉	0.5326(2)	0.05938(19)	0.22517(11)	0.0280(6)
C ₁₀	0.4145(2)	0.0177(2)	0.23593(14)	0.0365(8)
C ₁₁	0.3411(2)	0.0405(2)	0.18281(14)	0.0338(7)
C ₁₂	0.3757(2)	0.1268(2)	0.07960(12)	0.0302(7)
C ₁₃	1.1276(2)	0.21272(18)	0.25735(10)	0.0220(5)
C ₁₄	1.2507(2)	0.2338(2)	0.28040(11)	0.0273(6)
C ₁₅	1.2939(2)	0.3119(2)	0.24225(11)	0.0268(6)
C ₁₆	1.2008(2)	0.41686(19)	0.15099(11)	0.0277(6)

H_1	1.05380	0.07060	-0.03620	0.0340*
H ₂	1.08470	0.04340	-0.15080	0.0410*
H ₃	0.90130	0.13390	-0.20820	0.0410*
H _{4A}	0.68620	0.24320	-0.09380	0.0600*
H _{4B}	0.66070	0.16560	-0.15240	0.0600*
H _{4C}	0.72450	-0.16180	-0.16180	0.0600*
H ₅	0.48580	0.55450	0.06910	0.0280*
H ₆	0.49000	0.74850	0.04220	0.0360*
H ₇	0.71950	0.79830	0.0330	0.0330*
H ₉	0.60390	0.05690	0.25430	0.0340*
H ₁₀	0.39000	-0.01870	0.27220	0.0440*
H ₁₁	0.25400	0.02360	0.17560	0.0410*
H ₁₃	1.07330	0.16130	0.27410	0.0260*
H ₁₄	1.29550	0.20120	0.31510	0.0330*
H ₁₅	1.37550	0.34360	0.24560	0.0320*
H ₈₁	0.91610	0.57770	0.03330	0.0360*
H ₈₂	0.92500	0.61210	0.10550	0.0360*
H ₈₃	0.92970	0.70040	0.05190	0.0360*
H ₂₁	0.28990	0.10150	0.06790	0.0450*
H ₂₂	0.43460	0.09850	0.05010	0.0450*
H ₂₃	0.37720	0.20450	0.07830	0.0450*
H ₆₁	1.16350	0.38830	0.11150	0.0410*

H ₆₂	1.15120	0.47810	0.16360	0.0410*
H ₆₃	1.28820	0.43910	0.14540	0.0410*

Tableau 2 Paramètres d'agitation thermiques atomiques (A^2)

Atome	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu ₂	0.0141(1)	0.0155(1)	0.0141(1)	0.0006(1)	0.0024(1)	0.0010(1)
Cu ₃	0.0131(1)	0.0183(1)	0.0157(1)	0.0017(1)	0.0029(1)	-0.0028(1)
Cu ₄	0.0122(1)	0.0176(1)	0.0134(1)	0.0007(1)	0.0009(1)	-0.0002(1)
Cl_1	0.0277	0.0208(2)	0.0143(2)	0.0021(2)	0.0054(2)	0.0038(2)
Cl ₂	0.0214(2)	0.0179(2)	0.0157(2)	-0.0027(2)	-0.0027(2)	0.0017(2)
Cl ₃	0.0150(2)	0.0209(2)	0.0295(2)	0.0003(2)	0.0080(2)	0.0006(2)
Cl_4	0.0265(2)	0.0263(3)	0.0270(3)	-0.0097(2)	0.0090(2)	-0.0107(2)
Cl ₅	0.0189(2)	0.0279(2)	0.0182(2)	0.0078(2)	0.0005(2)	-0.0043(2)
Cl ₆	0.0171(2)	0.0300(3)	0.0191(2)	-0.0015(2)	0.0039(2)	0.0058(2)
O ₁	0.0133(6)	0.0157(6)	0.0115(6)	0.0004(5)	0.0025(4)	-0.0010(5)
N ₁	0.0345(10)	0.0221(9)	0.0155(8)	-0.0041(6)	0.0081(7)	-0.0039(7)
N ₂	0.0168(7)	0.0181(8)	0.0186(8)	0.0015(6)	0.0027(6)	0.0012(6)
N ₃	0.0150(7)	0.0214(8)	0.0262(9)	0.0052(7)	0.0048(6)	-0.0034(6)
N ₄	0.0148(7)	0.0200(8)	0.0176(8)	0.0026(6)	0.0007(6)	-0.0015(6)
N_1	0.0360(11)	0.0174(8)	0.0174(8)	-0.0071(8)	0.0076(7)	-0.0115(9)
N ₂	0.0218(8)	0.0190(8)	0.0193(8)	0.0037(6)	0.0028(6)	0.0007(6)

N ₃	0.0157(8)	0.0223(9)	0.0349(10)	-0.0010(7)	0.0046(7)	-0.0042(7)
N ₄	0.0166(8)	0.0211(8)	0.0242(9)	0.0017(7)	-0.0012(6)	-0.0029(6)
C ₁	0.0407(13)	0.0183(10)	0.0278(11)	-0.0032(8)	0.0143(10)	-0.0018(9)
C ₂	0.0454(14)	0.0265(12)	0.0325(12)	-0.011(10)	0.0226(11)	-0.0115(10)
C ₃	0.0464(14)	0.0373(13)	0.0200(10)	-0.0102(9)	0.0164(10)	-0.0177(11)
C ₄	0.0426(15)	0.0538(17)	0.0225(11)	-0.0094(11)	-0.0032(10)	-0.0004(13)
C ₅	0.0185(9)	0.0262(10)	0.0241(10)	0.0024(8)	0.0011(7)	0.0055(8)
C ₆	0.0270(11)	0.0301(12)	0.0319(12)	0.0069(9)	0.0018(9)	0.0106(9)
C ₇	0.0309(11)	0.0213(10)	0.0297(11)	0.0078(8)	0.0016(9)	0.0050(9)
C ₈	0.0181(9)	0.0227(10)	0.0317(11)	0.0053(8)	0.0048(8)	-0.0015(8)
C ₉	0.0245(10)	0.0272(11)	0.0331(12)	0.0112(9)	0.0080(9)	0.0016(9)
C1 ₀	0.0299(12)	0.0328(13)	0.0486(15)	0.0177(11)	0.0177(11)	-0.0026(10)
C1 ₁	0.0204(10)	0.0286(12)	0.0539(16)	0.0040(16)	0.0136(10)	-0.0062(9)
C1 ₂	0.0194(10)	0.0372(13)	0.0335(12)	-0.0058(10)	-0.0025(8)	-0.0030(9)
C1 ₃	0.0209(9)	0.0255(10)	0.0193(9)	0.0042(8)	-0.0001(7)	0.0024(8)
C1 ₄	0.0211(10)	0.0364(13)	0.0237(10)	0.0029(9)	-0.0055(8)	0.0018(9)
C1 ₅	0.0176(9)	0.0330(12)	0.0290(11)	0.0007(9)	-0.0056(8)	-0.0006(8)
C1 ₆	0.0200(10)	0.0282(11)	0.0347(12)	0.0096(9)	0.0005(8)	-0.0058(8)

ANNEXE V Du polymère Tri (µ-chloro) (µ₃-oxo) tri (µ₂-pyrazolo) bis (1H-pyrazole) tricuivre (II)
ANNEXE V du Polymère Tri (μ-chloro) (μ₃-oxo) tri(μ₂-pyrazolo)bis (1H-pyrazole)tricuivre (II)

Tableau 1 Coordonnées atomiques et paramètres d'agitationisotropiques (*) et équivalentes (Ų)

Atomes	X	У	Z	$U_{iso}(*)/U_{eq}(\text{\AA}^2)$
Cu ₉	-0.41143(6)	0.03036(7)	0.95857(5)	0.01922(16)
Cu ₄	-0.07984(7)	0.02237(7)	0.39135(5)	0.01821(16)
Cu ₈	-0.38853(7)	-0.24975(7)	0.93854(5)	0.02386(18)
Cu ₂	-0.11231(7)	-0.33387(7)	0.59652(5)	0.01973(16)
Cu ₅	0.14393(7)	0.28690(7)	0.36176(5)	0.02131(17)
Cu ₆	-0.15740(6)	0.24450(6)	0.34989(4)	0.01625(15)
Cu ₁	0.13094(6)	-0.06600(7)	0.65371(5)	0.01915(16)
Cu ₃	-0.12824(7)	-0.07435(7)	0.70489(5)	0.01931(16)
Cu ₇	-0.16880(7)	-0.02254(7)	1.05556(5)	0.02178(17)
Cl ₃	-0.15998(14)	0.06430(14)	0.22605(9)	0.0219(3)
Cl ₆	-0.51182(15)	0.16041(16)	0.93788(11)	0.0276(4)

Cl ₅	-0.18864(14)	-0.12202(14)	0.86994(10)	0.0223(3)
Cl ₁	-0.01686(13)	0.00773(14)	0.55686(9)	0.0205(3)
Cl ₂	-0.19768(15)	-0.54316(15)	0.55118(12)	0.0297(4)
Cl ₄	0.34714(16)	0.41059(18)	0.37665(13)	0.0383(4)
O ₄	-0.0033(4)	0.3145(4)	0.5740(3)	0.0245(10)
H ₄	0.016268	0.298296	0.526051	0.037 *
N _{1B}	-0.2348(4)	0.0285(4)	0.4235(3)	0.0166(10)
O ₅	0.0122(5)	-0.2320(5)	0.8375(3)	0.0374(13)
H5	-0.055085	-0.227213	0.848440	0.056 *
N _{1C}	-0.2543(5)	0.1669(5)	1.0018(3)	0.0203(11)
N _{7B}	-0.1603(5)	-0.1641(5)	0.3590(3)	0.0240(12)
C1 _{3A}	0.2683(5)	0.1312(5)	0.5666(3)	0.0142(11)
H _{13A}	0.189638	0.127652	0.542366	0.017 *
N _{7A}	-0.2124(5)	0.0477(5)	0.7096(3)	0.0198(11)
N _{4A}	0.1409(5)	-0.2036(5)	0.5771(3)	0.0211(11)
O ₂	-0.0150(3)	0.2106(4)	0.4060(2)	0.0148(8)
N _{2B}	-0.2658(4)	0.1270(5)	0.4112(3)	0.0175(10)
N _{2A}	-0.2763(5)	-0.2112(5)	0.6450(3)	0.0198(11)
N _{9A}	0.2848(5)	0.0567(5)	0.6201(3)	0.0205(11)
N _{10B}	-0.3172(5)	0.2400(5)	0.1978(3)	0.0233(12)
N _{6B}	0.0827(5)	0.4025(5).	0.3158(3)	0.0239(12)
N _{4C}	-0.5143(5)	-0.2178(5)	0.8649(3)	0.0234(12)

N _{5A}	0.1342(4)	0.0540(5)	0.7503(3)	0.0192(11)
N _{9B}	-0.2996(5)	0.2689(5)	0.2833(3)	0.0222(12)
C1 _{5A}	0.4684(6)	0.1894(6)	0.5976(4)	0.0247(14)
H _{15A}	0.555155	0.232174	0.600645	0.030 *
N _{5B}	-0.0383(5)	0.3867(5)	0.3111(3)	0.0205(11)
O ₃	-0.3523(4)	-0.0851(4)	1.0138(3)	0.0198(9)
N _{3C}	-0.5336(5)	-0.1098(5)	0.8817(3)	0.0210(11)
N _{10A}	0.4067(5)	0.0908(6)	0.6389(4)	0.0407(16)
H _{10A}	0.443577	0.056504	0.672538	0.049 *
N ₉	0.0159(5)	0.0273(5)	1.0688(3)	0.0222(11)
N _{7C}	-0.4140(5)	-0.4063(5)	0.8574(3)	0.0255(12)
C _{8B}	0.0561(7)	0.5519(7)	0.2539(5)	0.0352(18)
H _{8B}	0.071744	0.622945	0.227270	0.042 *
H _{5C}	-0.737668	-0.257410	0.725703	0.043 *
C _{5C}	-0.6715(7)	-0.2287(7)	0.7715(5)	0.0359(18)
N _{2C}	-0.1561(5)	0.1429(5)	1.0365(3)	0.0215(11)
C _{14B}	-0.4579(6)	0.3159(6)	0.2304(4)	0.0268(15)
H _{14B}	-0.524737	0.343975	0.226855	0.032 *
N _{1A}	-0.2703(5)	-0.3149(5)	0.6006(3)	0.0213(11)
N _{6A}	0.0227(5)	0.0549(5)	0.7682(3)	0.0204(11)
N _{4B}	0.1752(5)	0.1362(5)	0.3611(3)	0.0226(12)
C _{2A}	-0.4656(6)	-0.3290(6)	0.5756(4)	0.0289(15)

H _{2A}	-0.551581	-0.358214	0.555141	0.035 *
C _{12C}	-0.3653(5)	-0.4012(5)	0.7849(4)	0.0157(12)
H _{12C}	-0.313808	-0.326808	0.768395	0.019 *
C _{8A}	0.1688(7)	0.2173(7)	0.8493(5).	0.0338(17)
H _{8A}	0.209936	0.290655	0.889863	0.041 *
N _{6C}	-0.2855(5)	-0.2863(5)	1.0264(3)	0.0245(12)
C _{15B}	-0.4114(6)	0.2683(6)	0.1650(4)	0.0278(15)
H _{15B}	-0.440799	0.257338	0.106208	0.033 *
C _{6C}	-0.5975(6)	-0.2906(7)	0.7980(4)	0.0290(15)
H _{6C}	-0.604241	-0.371058	0.773095	0.035 *
N _{3A}	0.0451(5)	-0.3142(5)	0.5555(3)	0.0196(11)
C _{12A}	-0.1841(5)	0.1405(5)	0.6646(3)	0.0111(10)
H _{12A}	-0.136545	0.146431	0.619069	0.013 *
C _{5A}	0.1946(7)	-0.3254(6)	0.4830(4)	0.0299(16)
H _{5A}	0.240307	-0.355620	0.445909	0.036 *
N _{5C}	-0.1924(5)	-0.1896(5)	1.0751(3)	0.0238(12)
C _{10A}	-0.2321(6)	0.2238(6)	0.6926(5)	0.0292(16)
H _{10B}	-0.224522	0.297033	0.670045	0.035 *
O ₁	-0.0287(4)	-0.1827(4)	0.6823(3)	0.0186(9)
N _{10C}	0.0761(6)	0.0295(6)	1.0019(4)	0.0355(15)
C _{4A}	0.2331(6)	-0.2118(6)	0.5337(4)	0.0280(15)
H _{4A}	0.312412	-0.148100	0.537809	0.034*

C _{2B}	-0.4140(6)	-0.0002(7)	0.4724(4)	0.0286(15)
H _{2B}	-0.487228	-0.034594	0.496909	0.034 *
N _{3B}	0.0834(5)	0.0274(5)	0.3647(3)	0.0230(12)
C _{3B}	-0.3220(6)	-0.0492(6)	0.4604(4)	0.0253(14)
H _{3B}	-0.321681	-0.124765	0.475871	0.030 *
C ₂	0.1062(6)	0.3544(6)	0.6389(4)	0.0259(14)
H ₂	0.113846	0.278651	0.657202	0.031 *
C ₃	0.0891(7)	0.4315(7)	0.7145(4)	0.0344(17)
H _{3D}	0.007828	0.389210	0.731141	0.052 *
H _{3E}	0.094321	0.512111	0.700435	0.052*
C _{1A}	-0.3938(6)	-0.2187(6)	0.6304(4)	0.0248(14)
H _{1A}	-0.423846	-0.158122	0.653748	0.030 *
C _{15C}	0.1001(7)	0.0662(7)	1.1388(5)	0.0362(18)
H _{15C}	0.083666	0.073913	1.195772	0.043*
C _{3A}	-0.3848(6)	-0.3852(6)	0.5581(4)	0.0280(15)
H _{3A}	-0.405402	-0.462249	0.521665	0.034 *
C _{7A}	0.2216(6)	0.1505(7)	0.7992(5)	0.0312(16)
H _{7A}	0.308085	0.170971	0.799876	0.037 *
C _{4C}	-0.6286(6)	-0.1163(7)	0.8258(5)	0.0306(16)
H _{4C}	-0.661543	-0.053286	0.823765	0.037 *
C _{6A}	0.0758(6)	-0.3862(6)	0.4974(4)	0.0249(14)
H _{6A}	0.023230	-0.467312	0.470297	0.030 *

C _{2C}	-0.0974(6)	0.3449(6)	1.0366(4)	0.0268(15)
H _{2C}	-0.048707	0.431124	1.045845	0.032 *
C ₁	0.2204(7)	0.4202(7)	0.6024(5)	0.0362(17)
H _{1D}	0.222873	0.502527	0.594378	0.054 *
H _{1E}	0.219615	0.372365	0.547502	0.054 *
H _{1F}	0.293560	0.428710	0.641376	0.054 *
N _{8C}	-0.4785(6)	-0.5260(6)	0.8567(4)	0.0475(18)
H _{8C}	-0.520251	-0.556147	0.897144	0.057 *
C _{10C}	-0.4702(7)	-0.5956(7)	0.7831(5)	0.0371(18)
H _{10D}	-0.507328	-0.683133	0.766935	0.045 *
C _{7B}	0.1409(7)	0.5020(7)	0.2810(5)	0.0340(17)
H _{7B}	0.226521	0.533174	0.275747	0.041 *
C _{14A}	0.3749(6)	0.2096(7)	0.5519(4)	0.0278(15)
H _{14A}	0.385137	0.269922	0.515829	0.033 *
C _{11A}	-0.2933(6)	0.1864(7)	0.7584(5)	0.0300(16)
H _{11A}	-0.336102	0.227028	0.790970	0.036 *
C ₆	-0.0861(8)	-0.4451(8)	0.8612(6)	0.047(2)
H _{6D}	-0.121016	-0.466632	0.800838	0.071 *
H _{6E}	-0.146521	-0.429413	0.894896	0.071 *
H _{6F}	-0.066590	-0.513947	0.878899	0.071 *
C ₅	0.0311(7)	-0.3297(7)	0.8748(5)	0.0322(16)
H _{5D}	0.095627	-0.351431	0.847120	0.039 *

H _{1C}	0.019654	0.259784	1.081004	0.040 *
C _{9C}	-0.1309(7)	-0.2363(7)	1.1269(5)	0.0364(18)
H _{9C}	-0.062355	-0.188104	1.169040	0.044 *
C _{11B}	-0.3046(10)	-0.3472(8)	0.3095(7)	0.066(3)
H _{11B}	-0.375986	-0.409970	0.276476	0.079 *
C _{5B}	0.2541(7)	-0.0096(9)	0.3468(5)	0.043(2)
H _{5B}	0.309658	-0.051285	0.338759	0.051 *
C _{3C}	-0.2175(6)	0.2877(6)	1.0011(4)	0.0263(15)
H _{3C}	-0.267929	0.328112	0.978937	0.032 *
C _{1B}	-0.3737(6)	0.1095(6)	0.4403(4)	0.0275(15)
H _{1B}	-0.416491	0.164708	0.439147	0.033 *
C _{6B}	0.1308(7)	-0.0618(7)	0.3576(5)	0.0351(17)
H _{6B}	0.086864	-0.146841	0.359739	0.042 *
C _{4B}	0.2789(6)	0.1117(8)	0.3499(4)	0.0321(17)
H _{4B}	0.357072	0.171753	0.345028	0.039 *
C _{8C}	-0.1801(7)	-0.3623(7)	1.1109(5)	0.0390(19)
H _{8CA}	-0.153170	-0.418132	1.137532	0.047 *
C _{13B}	-0.3839(6)	0.3137(6)	0.3042(4)	0.0215(13)
H _{13B}	-0.393340	0.340481	0.360717	0.026 *
C_4	0.0788(9)	-0.2850(9)	0.9684(5)	0.058(3)
H _{4D}	0.017124	-0.262405	0.996734	0.087 *
H _{4E}	0.156127	-0.212432	0.975711	0.087 *

H _{4F}	0.094146	-0.351213	0.993564	0.087 *
C _{14C}	0.2161(8)	0.0932(8)	1.1128(7)	0.059(3)
H _{14C}	0.293495	0.122715	1.148612	0.071*
C _{9A}	0.0446(7)	0.1541(6)	0.8275(4)	0.0287(15)
H _{9A}	-0.017476	0.177167	0.850932	0.034 *
C _{12B}	-0.2299(10)	-0.3620(8)	0.3743(6)	0.054(3)
H _{12B}	-0.236094	-0.436986	0.393793	0.065 *
C _{7C}	-0.2777(8)	-0.3905(7)	1.0472(5)	0.0368(18)
H _{7C}	-0.331596	-0.471984	1.021706	0.044 *
C _{9B}	-0.0550(6)	0.4775(6)	0.2734(4)	0.0273(15)
H _{9B}	-0.131458	0.488090	0.262288	0.033 *
C _{13C}	0.1978(8)	0.0697(8)	1.0273(7)	0.055(3)
H _{13C}	0.260178	0.079832	0.991510	0.066 *
C _{11C}	-0.3981(7)	-0.5136(7)	0.7387(5)	0.0333(17)
H _{11C}	-0.375223	-0.532701	0.684874	0.040 *
N _{8A}	-0.2794(6)	0.0747(7)	0.7676(4)	0.0438(17)

Tableau 2 Les distances interatomiques (Å)

Atomes	Distances (Å)	Atomes	Distances (Å)
Cu ₁ -C ₁₁	2.6581	Cu ₁ -O ₁	2.0112
Cu ₁ -N _{4A}	1.9464	Cu ₁ -N _{5A}	1.9456
Cu ₁ -N _{9A}	2.0264	Cu ₂ -Cl ₂	2.2841
Cu ₂ -O ₁	1.9753	Cu ₂ -N _{1A}	1.9425
Cu ₂ -N _{3A}	1.9540	Cu ₃ -Cl ₁	2.9100
Cu ₃ -Cl ₅	2.8679	Cu ₃ -O ₁	2.0278
Cu ₃ -N _{2A}	1.9555	Cu ₃ -N _{6A}	1.9551
Cu ₃ -N _{7A}	2.0033	Cu ₄ -Cl ₁	2.7325
Cu ₄ -Cl ₃	2.8896	Cu ₄ -O ₂	2.0348
Cu ₄ -N _{1B}	1.9494	Cu ₄ -N _{3B}	1.9736
Cu ₄ -N _{7B}	2.0225	Cu ₅ -Cl ₄	2.2692
Cu ₅ -O ₂	1.9880	Cu ₅ -N _{4B}	1.9258
Cu ₅ -N _{6B}	1.9333	Cu ₆ -Cl ₃	2.7021
Cu ₆ -O ₂	2.0082	Cu ₆ -N _{2B}	1.9438
Cu ₆ -N _{5B}	1.9626	Cu ₆ -N _{9B}	2.0209
Cu ₇ -O ₃	2.0204	Cu ₇ -N _{2C}	1.9560
Cu ₇ -N _{5C}	1.9468	Cu ₇ -N _{9C}	2.0078
Cu ₇ -Cl _{3b}	2.7744	Cu ₈ -Cl ₅	2.6962
Cu ₈ -O ₃	2.0262	Cu ₈ -N _{4C}	1.9724

Cu ₈ -N _{6C}	1.9583	Cu ₈ -N _{7C}	2.0237
Cu ₉ -Cl ₆	2.2684	Cu ₉ -O ₃	1.9877
Cu ₉ -N _{1C}	1.9518	Cu ₉ -N _{3C}	1.939
N _{1A} -N _{2A}	1.3581	N _{1A} -C _{3A}	1.3578
N _{1B} -N _{2B}	1.3574	N _{1B} -C _{3B}	1.3400
N _{1C} -N _{2C}	1.3638	N _{1C} -C _{3C}	1.3264
N _{2A} -C _{1A}	1.3417	N _{2B} -C _{1B}	1.3386
N_{2C} - C_{1C}	1.3196	N _{3A} -N _{4A}	1.3547
N _{3A} -C _{6A}	1.3371	N _{3B} -N _{4B}	1.3536
N _{3B} -C _{6B}	1.3447	N _{3C} -N _{4C}	1.3616
N _{3C} -C _{4C}	1.3364	N _{4A} -C _{4A}	1.3582
N _{4B} -C _{4B}	1.3630	N _{4C} -C _{6C}	1.3490
N _{5A} -N _{6A}	1.3623	N _{5A} -C _{7A}	1.3222
N _{5B} -N _{6B}	1.3525	N _{5B} -C _{9B}	1.3500
N _{5C} -N _{6C}	1.3510	N _{5C} -C _{9C}	1.3394
N _{6A} -C _{9A}	1.3389	N _{6B} -C _{7B}	1.3399
N _{6C} -C _{7C}	1.3356	N _{7A} -N _{8A}	1.3459
N _{7A} -C _{12A}	1.3386	N _{7B} -N _{8B}	1.3354
N _{7B} -C _{10B}	1.3137	N _{7C} -N _{8C}	1.3309
N _{7C} -C _{12C}	1.3368	N _{8A} -C _{11A}	1.3995
N _{8B} -C _{12B}	1.3652	N _{8C} -C _{10C}	1.3795
N _{9A} -N _{10A}	1.3293	N _{9A} -C _{13A}	1.3462

N _{9B} -N _{10B}	1.3479	N _{9B} -C _{13B}	1.3205
N _{9C} -N _{10C}	1.3319	N _{9C} -C _{15C}	1.3381
N _{10A} -C _{15A}	1.4038	N _{10B} -C _{15B}	1.3422
N _{10C} -C _{13C}	1.3345	C _{1A} -C _{2A}	1.3994
C _{1B} -C _{2B}	1.3825	C _{1C} -C _{2C}	1.3898
C _{2A} -C _{3A}	1.3599	C _{2B} -C _{3B}	1.4046
C _{2C} -C _{3C}	1.3542	C _{4A} -C _{5A}	1.3690
C _{4B} -C _{5B}	1.3387	C _{4C} -C _{5C}	1.3822
C _{5A} -C _{6A}	1.3709	C _{5B} -C _{6B}	1.3869
C _{5C} -C _{6C}	1.3823	C _{7A} -C _{8A}	1.3846
C _{7B} -C _{8B}	1.3834	C _{7C} -C _{8C}	1.3762
C _{8A} -C _{9A}	1.3620	C _{8B} -C _{9B}	1.3690
C _{8C} -C _{9C}	1.3592	C _{10A} -C _{11A}	1.3572
C _{10A} -C _{12A}	1.3411	C _{10B} -C _{11B}	1.3651
C _{10C} -C _{11C}	1.3549	C _{11B} -C _{12B}	1.3650
C _{11C} -C _{12C}	1.3329	C _{13A} -C _{14A}	1.3189
C _{13B} -C _{14B}	1.4111	C _{13C} -C _{14C}	1.3463
C _{14A} -C _{15A}	1.3684	C _{14B} -C _{15B}	1.3707
C _{14C} -C _{15C}	1.3921		

Tableau 3 Les angles de torsions (•)

Angles	Valeurs (°)	Angles	Valeurs (°)
Cl ₁ -Cu ₁ -O ₁ -Cu ₂	7.30(5)	Cl ₁ -Cu ₁ -O ₁ -Cu ₃	129.07(6)
Cl ₁ -Cu ₁ -O ₁ -Cu ₄	-110.91(6)	Cl ₄ -Cu ₁ -O ₁ -Cu ₂	-122.36(6)
Cl ₄ -Cu ₁ -O ₁ -Cu ₃	-0.60(5)	Cl ₄ -Cu ₁ -O ₁ -Cu ₄	119.43(6)
Cl ₆ -Cu ₁ -O ₁ -Cu ₂	118.85(6)	Cl ₆ -Cu ₁ -O ₁ -Cu ₃	-119.39(6)
Cl ₆ -Cu ₁ -O ₁ -Cu ₄	0.63(5)	Cl ₁ -Cu ₁ -N ₁ -C ₁	128.60(19)
Cl ₄ -Cu ₁ -N ₁ -C ₁	-101.12(18)	Cl ₆ -Cu ₁ -N ₁ -C ₁	17.60(19)
O ₁ -Cu ₁ -Cl ₆ -Cu ₄	-0.49(4)	Cl ₁ -Cu ₁ -Cl ₆ -Cu ₄	78.75(2)
Cl ₄ -Cu ₁ -Cl ₆ -Cu ₄	-81.84(2)	Cl ₁ -Cu ₁ -N ₁ -N ₁₁	-40.99(19)
N ₁ -Cu ₁ -Cl ₆ -Cu ₄	178.22(6)	N ₁ -Cu ₁ -Cl ₄ -Cu ₃	178.52(6)
N ₁ -Cu ₁ -Cl ₁ -Cu ₂	177.64(6)	Cl ₄ -Cu ₁ -N ₁ -N ₁₁	89.29(19)
Cl ₆ -Cu ₁ -N ₁ -N ₁₁	-152.00(18)	Cl ₆ -Cu ₁ -Cl ₄ -Cu ₃	80.51(2)
O ₁ -Cu ₁ -Cl ₄ -Cu ₃	0.44(4)	Cl ₁ -Cu ₁ -Cl ₄ -Cu ₃	-76.07(3)
Cl ₄ -Cu ₁ -Cl ₁ -Cu ₂	72.49(3)	Cl ₆ -Cu ₁ -Cl ₁ -Cu ₂	-85.53(5)
O ₁ -Cu ₁ -Cl ₁ -Cu ₂	-5.54(4)	Cl ₂ -Cu ₂ -O ₁ -Cu ₁	-133.86(6)
Cl ₁ -Cu ₂ -N ₂ -C ₅	105.49(18)	Cl ₂ -Cu ₂ -N ₂ -C ₅	-128.33(18)
Cl ₃ -Cu ₂ -N ₂ -N ₁₂	165.34(15)	Cl ₁ -Cu ₂ -O ₁ -Cu ₃	-130.09(6)

Cl ₁ -Cu ₂ -O ₁ -Cu ₄	111.99(6)	O ₁ -Cu ₂ -Cl ₁ -Cu ₁	5.53(4)
N ₂ -Cu ₂ -Cl ₁ -Cu ₁	-174.53(5)	Cl ₃ -Cu ₂ -O ₁ -Cu ₄	-120.54(6)
Cl ₃ -Cu ₂ -O ₁ -Cu ₃	-2.62(5)	Cl ₃ -Cu ₂ -Cl ₁ -Cu ₁	-74.27(2)
Cl ₃ -Cu ₂ -O ₁ -Cu ₁	119.98(6)	Cl ₁ -Cu ₂ -O ₁ -Cu ₁	-7.48(5)
Cl ₂ -Cu ₂ -Cl ₁ -Cu ₁	84.71(2)	Cl ₁ -Cu ₂ -N ₂ -N ₁₂	58.81(15)
Cl ₂ -Cu ₂ -O ₁ -Cu ₄	-14.39(5)	O ₁ -Cu ₂ -Cl ₂ -Cu ₄	11.18(4)
Cl ₁ -Cu ₂ -Cl ₂ -Cu ₄	-67.80(2)	Cl ₃ -Cu ₂ -Cl ₂ -Cu ₄	94.78(2)
Cl ₁ -Cu ₂ -Cl ₃ -Cu ₃	81.22(2)	N ₂ -Cu ₂ -Cl ₂ -Cu ₄	-166.93(5)
N ₂ -Cu ₂ -Cl ₃ -Cu	-179.83(5)	Cl ₁ -Cu ₂ -N ₂ -N ₁₂	-67.36(15)
Cl ₂ -Cu ₂ -Cl ₃ -Cu ₃	-81.08(2)	O ₁ -Cu ₂ -Cl ₃ -Cu ₃	1.97(4)
Cl ₂ -Cu ₂ -O ₁ -Cu ₃	103.53(6)	Cl ₃ -Cu ₂ -N ₂ -C ₅	-21.81(18)
O ₁ -Cu ₃ -Cl ₄ -Cu ₁	-0.44(4)	N ₃ -Cu ₃ -Cl ₃ -Cu ₂	178.45(6)
Cl ₅ -Cu ₃ -Cl ₄ -Cu ₁	-82.94(2)	Cl ₅ -Cu ₃ -Cl ₃ -Cu ₂	80.49(2)
Cl ₃ -Cu ₃ -O ₁ -Cu ₄	119.54(6)	O ₁ -Cu ₃ - Cl ₃ -Cu ₂	-1.98(4)
Cl ₅ -Cu ₃ -N ₃ -N ₁₃	179.72(16)	Cl ₅ -Cu ₃ -O ₁ -Cu ₄	-3.74(5)
Cl ₄ -Cu ₃ -N ₃ -N ₁₃	-63.97(17)	Cl ₃ -Cu ₃ -Cl ₄ -Cu ₁	78.90(2)
Cl ₅ -Cu ₃ -N ₃ -C ₉	8.31(19)	Cl ₃ -Cu ₃ -O ₁ -Cu ₂	2.60(5)
Cl ₃ -Cu ₃ -N ₃ -N ₁₃	56.48(17)	N ₃ -Cu ₃ -Cl ₄ -Cu ₁	178.03(5)

Cl ₅ -Cu ₃ -O ₁ -Cu ₁	116.60(6)	Cl ₄ -Cu ₃ -Cl ₅ -Cu ₄	82.57(2)
Cl ₄ -Cu ₃ -Cl ₃ -Cu ₂	-79.94(2)	N ₃ -Cu ₃ -Cl ₅ -Cu ₄	-176.16(5)
Cl ₄ -Cu ₃ -O ₁ -Cu ₄	-119.77(6)	Cl ₄ -Cu ₃ -N ₃ -C ₉	124.63(19)
Cl ₅ -Cu ₃ -O ₁ -Cu ₂	-120.68(6)	Cl ₃ -Cu ₃ -O ₁ -Cu ₁	-120.12(6)
Cl ₄ -Cu ₃ -O ₁ -Cu ₂	123.29(6)	O ₁ -Cu ₃ -Cl ₅ -Cu ₄	2.81(4)
Cl ₄ -Cu ₃ -O ₁ -Cu ₁	0.57(5)	Cl ₃ -Cu ₃ -N ₃ -C ₉	-114.93(19)
Cl ₃ -Cu ₃ -Cl ₅ -Cu ₄	-78.61(2)	N ₄ -Cu ₄ -Cl ₂ -Cu ₂	167.18(5)
Cl ₅ -Cu ₄ -O ₁ -Cu ₁	-117.57(6)	Cl ₂ -Cu ₄ -Cl ₆ -Cu ₁	-78.89(3)
Cl ₂ -Cu ₄ -O ₁ -Cu ₃	-103.64(6)	O ₁ -Cu ₄ -Cl ₆ -Cu ₁	0.49(4)
N ₄ -Cu ₄ -Cl ₆ -Cu ₁	-178.74(5)	Cl_2 - Cu_4 - O_1 - Cu_2	14.63(5)
Cl ₅ -Cu ₄ -Cl ₆ -Cu ₁	82.35(2)	O_1 - Cu_4 - Cl_2 - Cu_2	-11.12(4)
Cl ₂ -Cu ₄ -Cl ₅ -Cu ₃	80.96(2)	N ₄ -Cu ₄ -Cl ₅₋ Cu ₃	178.33(5)
Cl ₂ -Cu ₄ -O ₁ -Cu ₁	135.14(6)	O ₁ -Cu ₄ .Cl ₅ -Cu ₃	-2.80(4)
Cl ₅ -Cu ₄ .Cl ₂ -Cu ₂	-94.17(2)	Cl ₅ -Cu ₄ -O ₁ -Cu ₃	3.66(5)
Cl ₆ -Cu ₄ -Cl ₂ -Cu ₂	68.30(3)	Cl ₆ -Cu ₄ -O ₁ -Cu ₂	-121.16(6)
Cl ₆ -Cu ₄ -O ₁ -Cu ₃	120.58(6)	Cl ₆ -Cu ₄ -O ₁ -Cu ₁	-0.65(5)
Cl ₅ -Cu ₄ -N ₄ -N ₁₄	-176.68(15)	Cl_6 - Cu_4 - $N_{4-}N_{14}$	66.48(15)
Cl ₂ -Cu ₄ -N ₄ -C ₁₃	118.82(18)	Cl ₅ -Cu ₄₋ N ₄ -C ₁₃	11.26(18)

Cl ₆ -Cu ₄ -C ₁₅ -Cu3	-85.29(2)	Cl ₆ -Cu ₄₋ N ₄₋ C ₁₃	-105.58(18)	
C ₁₅ -Cu ₄ -O ₁ -Cu ₂	121.92(6)	Cl ₂ -Cu ₄ .N ₄ .N ₁₄	-69.13(16)	
C ₁₋ N ₁₋ N ₁₁₋ C ₄	171.6(2)	Cu ₁ -N ₁ -N ₁₁ -C ₄	-17.2(3)	
N ₁₁ .N ₁ -C ₁ -C ₂	0.0(3)	C ₁ -N ₁ -N ₁₁₋ C ₃	-0.2(3)	
Cu ₁ -N ₁ -N ₁₁₋ C ₃	171.12(17)	Cu ₁ -N ₁ -C ₁ -C ₂	-171.47(17)	
Cu ₂ -N ₂ -N ₁₂ -C ₈	-3.6(3)	Cu ₂ -N ₂ -N ₁₂ -C ₇	174.78(15)	
N ₁₂ -N ₂ -C ₅ -C ₆	-0.2(2)	C ₅ -N ₂ -N ₁₂ -C ₈	-177.84(19)	
C ₅ -N ₂ -N ₁₂ -C ₇	0.6(2)	Cu ₂ -N ₂ -C ₅ -C ₆	-174.09(16)	
C ₉ -N ₃ -N ₁₃ -C ₁₂	-178.7(2)	Cu ₃ -N ₃ -N ₁₃ -C ₁₂	8.3(3)	
C ₉₋ N ₃ -N ₁₃ -C ₁₁	0.3(2)	Cu ₃ -N ₃ -C ₉ -C ₁₀	173.28(16)	
N ₁₃ -N ₃ -C ₉ -C ₁₀	0.5(3)	Cu ₃ -N ₃ -N ₁₃ -C ₁₁	-172.75(16)	
Cu ₄ -N ₄ -N ₁₄ -C ₁₅	-174.10(15)	Cu ₄₋ N ₄ -N ₁₄₋ C ₁₆	9.0(3)	
Cu ₄ -N ₄ -C ₁₃ -C ₁₄	173.96(15)	C ₁₃₋ N ₄ -N ₁₄₋ C ₁₆	-177.44(19)	
N ₁₄ -N ₄ -C ₁₃ -C ₁₄	0.7(2)	C ₁₃ -N ₄ -N ₁₄ -C ₁₅	-0.6(2)	
C ₄ - N ₁₁ -C ₃₋ C ₂	-171.1(2)	N ₁ -N ₁₁ -C ₃₋ C ₂	0.2(3)	
C ₈ -N ₁₂₋ C ₇ -C ₆	177.6(2)	N ₂ .N ₁₂ -C ₇ .C ₆	-0.7(3)	
C ₁₂ -N ₁₃ -C ₁₁ -C ₁₀	177.9(2)	N ₃ -N ₁₃₋ C ₁₁₋ C ₁₀	-1.0(3)	
C ₁₆ -N ₁₄ -C ₁₅ -C ₁₄	176.9(2)	N ₄ -N ₁₄ -C ₁₅ -C ₁₄	0.2(3)	

N ₁ -C ₁ -C ₂ -C ₃	0.1(3)	C ₁ -C ₂ -C ₃ -N ₁₁	-0.2(3)
N ₂ -C ₅ -C ₆ -C ₇	-0.3(3)	C ₅ -C ₆ -C ₇ -N ₁₂	0.6(3)
N ₃ -C ₉₋ C ₁₀₋ C ₁₁	-1.1(3)	C ₉ -C ₁₀ -C ₁₁ -N ₁₃	1.3(3)
N ₄₋ C ₁₃₋ C ₁₄ -C ₁₅	-0.6(3)	C ₁₃ -C ₁₄ -C ₁₅ -N ₁₄	0.2(3)

ANNEXE VI

Du complexe Tétra-pyrazolesulfato-cuivre II. Monohydraté

ANNEXE VI du complexe Tétra-pyrazole-sulfato-cuivre (II). Monohydraté

Tableau 1 Coordonnées atomiques et paramètres d'agitationisotropiques (*) et équivalentes (Ų)

Atomes	X	У	Z	Ueq/Uiso*
Cu ₂	0.44217(6)	0.73471(8)	0.69530(3)	0.0293(4)
S_{1B}	0.22664(9)	0.73944(12)	0.69288(6)	0.0231(5)
O ₁	0.3072(5)	0.7675(6)	0.7020(3)	0.023(2)
O ₂	0.2392(5)	0.8414(5)	0.7021(3)	0.018(3)
O _{2W}	0.6045(6)	0.7599(6)	0.6891(4)	0.020(3)
O_3	0.2301(5)	0.6356(5)	0.6989(3)	0.023(2)
O_{3W}	0.6057(6)	0.7048(6)	0.6878(4)	0.021(3)
O_4	0.1967(3)	0.7457(3)	0.64442(17)	0.0337(17)
O ₁₁	0.3071(4)	0.7034(6)	0.6956(3)	0.021(3)
O ₂₂	0.1685(6)	0.7644(8)	0.7296(3)	0.023(3)
O ₃₃	0.1691(6)	0.7110(8)	0.7273(4)	0.028(4)
N _{1E}	0.4513(4)	0.6041(5)	0.6935(2)	0.0370(10)
N _{1F}	0.4430(3)	0.7334(4)	0.76750(19)	0.0250(17)

N _{1G}	0.4544(3)	0.8650(4)	0.69484(19)	0.0300(19)
N _{1H}	0.4324(4)	0.7357(5)	0.6236(2)	0.0463(16)
N _{2E}	0.5204(4)	0.5559(5)	0.6890(2)	0.0370(10)
N _{2F}	0.5078(3)	0.7363(4)	0.79660(19)	0.0187(17)
N _{2G}	0.5230(4)	0.9121(4)	0.6899(2)	0.036(2)
N _{2H}	0.3618(4)	0.7358(5)	0.5997(2)	0.0463(16)
C _{1E}	0.5033(5)	0.4695(6)	0.6875(3)	0.0370(10)
C _{1F}	0.4852(4)	0.7345(4)	0.8426(2)	0.0210(19)
C _{1G}	0.5076(5)	0.9981(5)	0.6893(3)	0.031(3)
C _{1H}	0.3710(5)	0.7365(7)	0.5525(3)	0.047(3)
C _{2E}	0.4203(5)	0.4640(6)	0.6913(3)	0.0370(10)
C _{2F}	0.4030(4)	0.7291(5)	0.8440(3)	0.029(2)
C _{2G}	0.4263(5)	1.0069(7)	0.6944(3)	0.042(2)
C _{2H}	0.4531(4)	0.7369(4)	0.5445(2)	0.024(2)
C _{3E}	0.3912(5)	0.5488(6)	0.6950(3)	0.0370(10)
C _{3F}	0.3790(4)	0.7288(5)	0.7969(3)	0.034(3)
C _{3G}	0.3952(5)	0.9217(6)	0.6974(3)	0.042(2)
C _{3H}	0.4877(4)	0.7355(4)	0.5900(2)	0.0187(19)
Cu ₁	0.24513(5)	0.52455(6)	0.44955(3)	0.0147(3)
S _{1A}	0.21915(9)	0.75733(9)	0.44208(5)	0.0119(4)
O _{1A}	0.2355(3)	0.6707(3)	0.46221(16)	0.0247(16)
O _{2A}	0.1496(3)	0.7967(3)	0.46778(16)	0.0233(14)

O _{3A}	0.2905(3)	0.8135(4)	0.44681(18)	0.0397(17)
O _{4A}	0.1980(3)	0.7474(3)	0.39074(15)	0.0197(12)
N _{1A}	0.1236(3)	0.5110(3)	0.44826(19)	0.0150(17)
N _{1B}	0.2458(3)	0.5050(3)	0.51967(17)	0.0137(17)
N _{1C}	0.3671(3)	0.5306(3)	0.44820(19)	0.0150(17)
N _{1D}	0.2466(3)	0.5174(3)	0.37824(18)	0.0153(16)
N _{2A}	0.0874(3)	0.4326(3)	0.44444(19)	0.0193(17)
N _{2B}	0.2158(3)	0.5626(4)	0.5514(2)	0.0213(17)
N _{2C}	0.4184(3)	0.4611(3)	0.44608(19)	0.0180(16)
N _{2D}	0.2385(3)	0.5876(3)	0.34953(18)	0.0183(17)
C _{1A}	0.0068(4)	0.4429(4)	0.4386(2)	0.021(2)
C _{1B}	0.2230(4)	0.5339(4)	0.5959(2)	0.026(2)
C _{1C}	0.4953(4)	0.4878(4)	0.4392(2)	0.0170(19)
C _{1D}	0.2447(4)	0.5657(4)	0.3037(2)	0.024(2)
C _{2A}	-0.0091(4)	0.5299(4)	0.4383(2)	0.0203(19)
C _{2B}	0.2595(5)	0.4541(4)	0.5946(2)	0.028(2)
C _{2C}	0.4942(4)	0.5775(4)	0.4366(2)	0.022(2)
C _{2D}	0.2575(4)	0.4778(4)	0.3013(2)	0.021(2)
C _{3A}	0.0657(4)	0.5703(4)	0.4449(2)	0.0177(19)
C _{3B}	0.2717(4)	0.4387(4)	0.5462(2)	0.028(2)
C _{3C}	0.4124(4)	0.6009(4)	0.4424(2)	0.0163(19)
C _{3D}	0.2583(4)	0.4500(4)	0.3489(2)	0.0213(19)

O_{1W}	0.1219(3)	0.7222(3)	0.55660(17)	0.0260(17)
H _{2FA}	0.36926	0.72615	0.87145	0.0350*
H _{1E}	0.54077	0.42265	0.68448	0.0440*
H_{1F}	0.52039	0.73659	0.86945	0.0250*
H _{1G}	0.54613	1.04383	0.68591	0.0370*
H_{1H}	0.32924	0.73676	0.52909	0.0570*
H _{2HA}	0.31412	0.73544	0.61381	0.0560*
H _{2E}	0.56954	0.57812	0.68729	0.0440*
H _{2F}	0.555(4)	0.742(4)	0.788(2)	0.018(19) *
H _{2G}	0.57180	0.88920	0.68733	0.0430*
H _{2H}	0.48039	0.73787	0.51469	0.0280*
H _{2GA}	0.39647	1.05998	0.69559	0.0510*
H _{3E}	0.33566	0.56432	0.69823	0.0440*
H _{3F}	0.32422	0.72568	0.78660	0.0410*
H _{3G}	0.33946	0.90737	0.70086	0.0510*
H _{3H}	0.54443	0.73454	0.59593	0.0220*
H _{2EA}	0.38891	0.41190	0.69129	0.0440*
H _{3WA}	0.63639	0.70518	0.71302	0.0320
H _{3WB}	0.62762	0.73688	0.66563	0.0320*
H _{2WA}	0.62102	0.72384	0.66705	0.0300*
H _{2WB}	0.63243	0.75138	0.71498	0.0300*
H _{1A}	-0.03192	0.39731	0.43526	0.0250*

H _{1B}	0.20580	0.56391	0.62379	0.0310*
H _{1C}	0.54177	0.45138	0.43664	0.0210*
H _{1D}	0.24084	0.60453	0.27731	0.0290*
H _{2A}	0.11257	0.38192	0.44559	0.0230*
H _{2B}	0.194(6)	0.618(6)	0.538(3)	0.07(3) *
H _{2C}	0.40333	0.40611	0.44883	0.0220*
H _{2D}	0.23006	0.64120	0.35981	0.0220*
H _{3A}	0.07397	0.63172	0.44664	0.0210*
H _{3B}	0.29572	0.38715	0.53363	0.0330*
H _{3C}	0.39254	0.65918	0.44223	0.0200*
H _{3D}	0.26607	0.39122	0.35883	0.0250*
H _{2CA}	0.53909	0.61546	0.43189	0.0270*
H _{2DA}	0.26445	0.44310	0.27351	0.0250*
H _{2AA}	-0.06037	0.55737	0.43447	0.0250*
H _{2BA}	0.27340	0.41736	0.62071	0.0330*
H _{1WA}	0.14462	0.74258	0.58231	0.0390*
H _{1WB}	0.13491	0.75503	0.53236	0.0390*

Tableau 2 Paramètres d'agitation thermiques atomiques (A^2)

Atomes	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu ₂	0.0163(5)	0.0566(8)	0.0149(5)	0.0087(5)	-0.0030(4)	-0.0024(5)
S _{1B}	0.0080(7)	0.0446(10)	0.0166(8)	-0.0065(7)	-0.0027(6)	0.0040(7)
O ₁	0.020(4)	0.015(3)	0.035(4)	-0.001(3)	-0.005(3)	-0.003(3)
O ₂	0.012(4)	0.019(5)	0.023(5)	-0.009(4)	-0.002(4)	0.002(4)
O _{2W}	0.016(5)	0.027(5)	0.017(5)	0.002(5)	-0.001(4)	-0.003(5)
O ₃	0.020(4)	0.015(3)	0.035(4)	-0.001(3)	-0.005(3)	-0.003(3)
O _{3W}	0.015(5)	0.028(5)	0.020(5)	0.011(5)	0.003(4)	0.001(5)
O ₄	0.029(3)	0.045(3)	0.027(3)	0.005(2)	-0.007(2)	-0.002(2)
O ₁₁	0.012(5)	0.024(5)	0.027(5)	0.003(4)	-0.001(4)	-0.002(4)
O ₂₂	0.015(5)	0.033(6)	0.021(5)	0.006(5)	0.002(4)	0.005(5)
O ₃₃	0.020(6)	0.026(6)	0.039(7)	0.004(6)	0.000(5)	0.002(5)
N _{1E}	0.0238(16)	0.063(2)	0.0241(17)	0.0074(17)	-0.0041(14)	-0.0143(15)
N _{1F}	0.016(3)	0.039(3)	0.020(3)	0.006(3)	-0.001(2)	0.000(3)
N _{1G}	0.017(3)	0.061(4)	0.012(3)	0.006(3)	-0.002(2)	-0.017(3)
N _{1H}	0.015(2)	0.104(4)	0.020(2)	0.011(3)	-0.0027(18)	-0.003(3)
N _{2E}	0.0238(16)	0.063(2)	0.0241(17)	0.0074(17)	-0.0041(14)	-0.0143(15)
N _{2F}	0.011(3)	0.027(3)	0.018(3)	-0.001(2)	0.001(2)	-0.002(2)
N _{2G}	0.026(3)	0.052(4)	0.030(4)	0.008(3)	0.002(3)	-0.003(3)
N _{2H}	0.015(2)	0.104(4)	0.020(2)	0.011(3)	-0.0027(18)	-0.003(3)
C _{1E}	0.0238(16)	0.063(2)	0.0241(17)	0.0074(17)	-0.0041(14)	-0.0143(15)

C _{1F}	0.027(4)	0.020(3)	0.016(3)	0.000(3)	-0.001(3)	0.001(3)
C _{1G}	0.034(4)	0.042(5)	0.016(4)	0.004(3)	-0.005(3)	-0.003(3)
C _{1H}	0.021(4)	0.104(8)	0.016(4)	0.003(4)	-0.006(3)	-0.003(4)
C _{2E}	0.0238(16)	0.063(2)	0.0241(17)	0.0074(17)	-0.0041(14)	-0.0143(15)
C _{2F}	0.025(4)	0.037(4)	0.025(4)	0.000(3)	0.008(3)	0.001(3)
C _{2G}	0.019(3)	0.087(5)	0.021(3)	-0.004(3)	-0.005(2)	0.014(3)
C _{2H}	0.029(4)	0.018(3)	0.024(4)	0.000(3)	0.000(3)	-0.005(3)
C _{3E}	0.0238(16)	0.063(2)	0.0241(17)	0.0074(17)	-0.0041(14)	-0.0143(15)
C _{3F}	0.012(4)	0.064(5)	0.026(4)	0.009(4)	0.004(3)	0.003(3)
C _{3G}	0.019(3)	0.087(5)	0.021(3)	-0.004(3)	-0.005(2)	0.014(3)
C _{3H}	0.014(3)	0.017(3)	0.025(4)	-0.002(3)	-0.007(3)	-0.002(3)
Cu ₁	0.0086(5)	0.0205(5)	0.0151(5)	0.0032(4)	-0.0006(4)	0.0010(4)
S _{1A}	0.0114(7)	0.0090(7)	0.0153(7)	-0.0003(6)	-0.0007(6)	-0.0017(5)
O _{1A}	0.028(3)	0.013(2)	0.033(3)	-0.0001(19)	-0.005(2)	0.0065(19)
O _{2A}	0.030(3)	0.018(2)	0.022(2)	0.0014(19)	-0.002(2)	0.011(2)
O _{3A}	0.037(3)	0.048(3)	0.034(3)	-0.007(2)	0.001(2)	-0.034(3)
O _{4A}	0.022(2)	0.017(2)	0.020(2)	-0.0015(18)	-0.0059(19)	0.0041(19)
N _{1A}	0.016(3)	0.015(3)	0.014(3)	0.003(2)	0.001(2)	-0.006(2)
N _{1B}	0.015(3)	0.014(3)	0.012(3)	0.003(2)	0.000(2)	0.008(2)
N _{1C}	0.012(3)	0.013(3)	0.020(3)	0.004(2)	-0.001(2)	0.001(2)
N _{1D}	0.014(3)	0.015(2)	0.017(3)	0.003(2)	0.001(2)	0.003(2)
N _{2A}	0.020(3)	0.015(3)	0.023(3)	-0.001(2)	0.007(2)	0.004(2)

N _{2B}	0.025(3)	0.017(3)	0.022(3)	-0.004(2)	0.000(3)	0.000(2)
N _{2C}	0.022(3)	0.010(2)	0.022(3)	0.001(2)	-0.002(2)	-0.003(2)
N _{2D}	0.021(3)	0.011(3)	0.023(3)	0.003(2)	0.003(2)	0.002(2)
C _{1A}	0.016(3)	0.024(4)	0.024(4)	-0.005(3)	0.000(3)	-0.003(3)
C _{1B}	0.031(4)	0.022(4)	0.024(4)	-0.007(3)	-0.001(3)	0.000(3)
C _{1C}	0.018(3)	0.014(3)	0.019(4)	0.003(3)	0.000(3)	-0.001(3)
C _{1D}	0.027(4)	0.030(4)	0.016(3)	0.005(3)	0.003(3)	0.004(3)
C _{2A}	0.013(3)	0.021(3)	0.027(4)	0.005(3)	0.001(3)	0.005(3)
C _{2B}	0.038(4)	0.024(4)	0.021(4)	0.009(3)	0.000(3)	0.007(3)
C _{2C}	0.020(4)	0.023(4)	0.023(4)	0.004(3)	-0.001(3)	-0.003(3)
C _{2D}	0.020(4)	0.026(4)	0.017(3)	-0.008(3)	0.000(3)	0.001(3)
C _{3A}	0.013(3)	0.013(3)	0.027(4)	0.005(3)	-0.003(3)	0.002(2)
C _{3B}	0.037(4)	0.019(3)	0.028(4)	-0.002(3)	0.001(3)	0.013(3)
C _{3C}	0.015(3)	0.014(3)	0.020(4)	0.001(3)	0.001(3)	0.002(3)
C _{3D}	0.019(3)	0.017(3)	0.028(4)	0.002(3)	-0.001(3)	0.004(3)
O _{1W}	0.027(3)	0.025(3)	0.026(3)	0.003(2)	-0.003(2)	-0.004(2)

Tableau 3 Les angles de torsions (•)

Angles	Valeurs (°)	Angles	Valeurs (°)
O_{2W} - Cu_2 - O_1 - S_{1B}	155.6(8)	O_{2W} - C_{u2} - O_1 - O_2	9.2(17)
$O_{2W} - C_{u2} - O_{1} - O_{11}$	172.5(8)	$O_{11} - C_{u2} - O_{1} - S_{1B}$	-16.9(7)

$O_{11} - Cu_2 - O_1 - O_2$	-163.3(15)	$N_{1E}-Cu_{2}-O_{1}-S_{1B}$	-26.4(10)
N_{1E} , Cu_2 , O_1 , O_2	-172.8(10)	$N_{1E} - Cu_2 - O_1 - O_{11}$	-9.5(7)
$N_{1F} _ Cu_2 _ O_1 _ S_{1B}$	-116.0(10)	$N_{1F} _ Cu_2 _ O_1 _ O_2$	97.6(11)
N_{1F} , Cu_2 , O_1 , O_{11}	-99.1(7)	N_{1G} - $Cu_2 \cdot O_1 \cdot S_{1B}$	152.6(10)
$N_{1G} _ Cu_2 _ O_1 _ O_2$	6.2(10)	N_{1G} - Cu_2 - O_1 - O_{11}	169.5(7)
$N_{1H} - Cu_2 - O_1 - S_{1B}$	63.0(10)	N_{1H} , Cu_2 , O_1 , O_2	-83.4(11)
N_{1H} - $Cu_2 \cdot O_1 \cdot O_{11}$	79.9(7)	$O_1 _ Cu_2 _ O_{2W} _ O_{3W}$	179.4(10)
$N_{1E} - Cu_2 - O_{2W} - O_{3W}$	1.2(11)	$N_{1F} _ Cu_2 _ O_{2W} _ O_{3W}$	92.3(11)
N_{1G} - $Cu_2 - O_{2W} - O_{3W}$	-177.6(11)	N_{1H} - $Cu_2 - O_{2W} - O_{3W}$	-88.2(11)
O_{11} , Cu_2 , O_{3W} , O_{2W}	171.4(10)	$N_{1E} _ Cu_2 _ O_{3W} _ O_{2W}$	-178.7(11)
N_{1F} · Cu_2 · O_{3W} · O_{2W}	-88.8(11)	$N_{1G} _ Cu_2 _ O_{3W} _ O_{2W}$	2.3(11)
N_{1H} Cu_2 O_{3W} O_{2W}	92.0(11)	$O_1 - Cu_2 O_{11} S_{1B}$	16.3(7)
O_1 - Cu_2 - O_{11} - O_3	-162.7(17)	O_{3W} - Cu_2 - O_{11} - S_{1B}	-163.2(8)
O_{3W} - $Cu_2 \cdot O_{11} \cdot O_1$	-179.5(8)	O_{3W} - Cu_2 - O_{11} - O_3	17.9(18)
$N_{1E} Cu_2 O_{11} S_{1B}$	-172.9(9)	$N_{1E} - Cu_2 - O_{11} - O_1$	170.8(7)
N_{1E} , Cu_2 , O_{11} , O_3	8.1(12)	$N_{1F} - Cu_2 - O_{11} - S_{1B}$	96.3(9)
N_{1F} Cu_2 O_{11} O_1	80.0(7)	N_{1F} Cu_2 O_{11} O_3	-82.7(12)
N_{1G} , Cu_2 , O_{11} , S_{1B}	5.3(10)	N_{1G} - Cu_2 - O_{11} - O_1	-11.0(7)
$N_{1G} - Cu_2 - O_{11} - O_3$	-173.7(12)	N_{1H} , Cu_2 , O_{11} , S_{1B}	-83.0(9)
$N_{1H} - Cu_2 - O_{11} - O_1$	-99.3(7)	$N_{1H} - Cu_2 - O_{11} - O_3$	98.0(13)
O_1 Cu_2 N_{1E} N_{2E}	178.9(5)	$O_1 _ Cu_2 _ N_{1E} _ C_{3E}$	1.1(7)
O_{2W} - Cu_2 - N_{1E} - N_{2E}	-1.8(6)	$O_{2W} _ Cu_2 _ N_{1E} _ C_{3E}$	-179.6(7)

O_{3W} - Cu_2 - N_{1E} - N_{2E}	-1.4(5)	$O_{3W} - Cu_2 - N_{1E} - C_{3E}$	-179.2(7)
O ₁₁ - Cu _{2 -} N _{1E} - N _{2E}	174.8(6)	O_{11} , Cu_2 , N_{1E} , C_{3E}	-2.9(6)
$N_{1F} - Cu_2 - N_{1E} - N_{2E}$	-95.2(5)	$N_{1F} - Cu_2 - N_{1E} - C_{3E}$	87.0(6)
$N_{1H} - Cu_2 - N_{1E} - N_{2E}$	89.0(5)	N_{1H} - Cu_2 - N_{1E} - C_{3E}	-88.8(7)
O_1 - Cu_2 - N_{1F} - N_{2F}	-164.4(6)	O_1 - Cu_2 - N_{1F} - C_{3F}	16.1(7)
O_{2W} - Cu_2 - N_{1F} - N_{2F}	-5.3(6)	O_{2W} - Cu_2 - N_{1F} - C_{3F}	175.2(6)
O_{3W} - Cu_2 - N_{1F} - N_{2F}	12.5(6)	$O_{3W} - Cu_2 - N_{1F} - C_{3F}$	-167.0(6)
O_{11} , Cu_2 , N_{1F} , N_{2F}	170.7(6)	$O_{11} - Cu_2 - N_{1F} - C_{3F}$	-8.8(7)
$N_{1E} Cu_2 N_{1F} N_{2F}$	88.5(6)	$N_{1E} - Cu_2 - N_{1F} - C_{3F}$	-91.0(6)
N_{1G} - Cu_2 - N_{1F} - N_{2F}	-81.4(6)	N_{1G} - Cu_2 - N_{1F} - C_{3F}	99.1(6)
O_1 - Cu_2 - N_{1G} - N_{2G}	-177.6(6)	$O_1 _ Cu_2 _ N_{1G} _ C_{3G}$	-0.6(6)
$O_{2W} - Cu_2 - N_{1G} - N_{2G}$	3.5(5)	O_{2W} , Cu_2 , N_{1G} , C_{3G}	-179.6(7)
O_{3W} - Cu_2 - N_{1G} - N_{2G}	2.8(6)	O_{3W} - Cu_2 - N_{1G} - C_{3G}	179.7(6)
O_{11} - Cu_2 - N_{1G} - N_{2G}	-172.9(5)	O_{11} - Cu_2 - N_{1G} - C_{3G}	4.0(7)
N_{1F} - C_{u2} - N_{1G} - N_{2G}	96.8(5)	$N_{1F} - Cu_2 - N_{1G} - C_{3G}$	-86.3(6)
$N_{1H} - Cu_2 - N_{1G} - N_{2G}$	-87.4(5)	$N_{1H} - Cu_2 - N_{1G} - C_{3G}$	89.5(6)
$O_1 - Cu_2 - N_{1H} - N_{2H}$	-12.9(7)	$O_1 - Cu_2 - N_{1H} - C_{3H}$	167.9(8)
O_{2W} - Cu_2 - N_{1H} - N_{2H}	-172.0(7)	$O_{2W} _ Cu_2 _ N_{1H} _ C_{3H}$	8.7(8)
O_{3W} - Cu_2 - N_{1H} - N_{2H}	170.2(7)	O_{3W} - Cu_2 - N_{1H} - C_{3H}	-9.1(8)
O_{11} - Cu_2 - N_{1H} - N_{2H}	12.0(7)	O_{11} - Cu_2 - N_{1H} - C_{3H}	-167.2(8)
$N_{1E} - Cu_2 - N_{1H} - N_{2H}$	94.2(7)	N_{1E} , Cu_2 , N_{1H} , C_{3H}	-85.0(8)
N_{1G} - Cu_2 - N_{1H} - N_{2H}	-96.0(7)	N_{1G} - Cu_2 - N_{1H} - C_{3H}	84.8(7)

$O_{1A} - Cu_1 - N_{1D} - N_{2D}$	-3.3(5)	O_{1A} - Cu_1 - N_{1D} - C_{3D}	173.5(5)
$N_{1A} - Cu_1 - N_{1D} - N_{2D}$	88.6(4)	N_{1A} - Cu_1 - N_{1D} - C_{3D}	-94.6(6)
$N_{1C} - Cu_1 - N_{1D} - N_{2D}$	-94.6(4)	N_{1C} - Cu_1 - N_{1D} - C_{3D}	82.2(6)
O_{1A} - Cu_1 N_{1B} - N_{2B}	22.4(5)	O_{1A} - Cu_1 - N_{1B} - C_{3B}	-158.7(6)
N _{1A} -Cu ₁ - N _{1B} - N _{2B}	-69.6(5)	$N_{1A} - Cu_1 - N_{1B} - C_{3B}$	109.4(6)
N_{1C} - Cu_1 - N_{1B} - N_{2B}	114.0(5)	$N_{1A} - Cu_1 - O_{1A} - S_{1A}$	-76.4(6)
N_{1B} - Cu_1 - O_{1A} - S_{1A}	-166.9(6)	$N_{1C} \cdot Cu_1 \cdot O_{1A} \cdot S_{1A}$	102.0(6)
$N_{1D} - Cu_1 - O_{1A} - S_{1A}$	13.3(6)	$O_{1A} - Cu_1 - N_{1A} - N_{2A}$	-175.8(5)
$O_{1A} - Cu_1 - N_{1A} - C_{3A}$	13.5(6)	$N_{1B} - Cu_1 - N_{1A} - N_{2A}$	-86.1(5)
N_{1B} - Cu_1 - N_{1A} - C_{3A}	103.1(6)	$N_{1B} - Cu_1 - N_{1C} - N_{2C}$	83.7(5)
N_{1D} - Cu_1 - N_{1A} - N_{2A}	82.1(5)	N_{1B} - Cu_1 - N_{1C} - C_{3C}	-106.7(5)
N_{1D} , Cu_{1} , N_{1A} , C_{3A}	-88.7(6)	$N_{1D} - Cu_1 - N_{1C} - N_{2C}$	-84.5(5)
$O_{1A} - Cu_1 - N_{1C} - C_{3C}$	-17.1(5)	N_{1D} Cu_1 N_{1C} C_{3C}	85.1(5)
N_{1C} - Cu_1 - N_{1B} - C_{3B}	-67.1(6)	$O_{11} _ S_{1B} _ O_1 _ Cu_2$	17.4(7)
$O_{1A} - Cu_1 - N_{1C} - N_{2C}$	173.3(5)	$O_{11} \cdot S_{1B} \cdot O_{1} \cdot O_{2}$	177.9(8)
$O_4_S_{1B_}O_1_O_2$	84.4(5)	$O_{22} _ S_{1B} _ O_1 _ Cu_2$	144.5(9)
$O_{4}S_{1B}O_{1}O_{1}O_{11}$	-93.5(7)	$O_3 _ S_{1B} _ O_{11} _ Cu_2$	-179.5(11)
$O_3 _ S_{1B} _ O_{11} _ O_1$	-162.3(8)	$O_{22} \cdot S_{1B} \cdot O_{11} \cdot Cu_2$	-95.6(11)
$O_4 . S_{1B} . O_{11} . Cu_2$	89.6(9)	$O_{22} - S_{1B} - O_{11} - O_1$	-78.4(10)
$O_4 _ S_{1B} _ O_{11} _ O_1$	106.7(7)	$O_{22} - S_{1B} - O_{11} - O_3$	83.9(8)
$O_4 S_{1B} O_{11} O_3$	-90.9(5)	$O_{33} - S_{1B} - O_{11} - Cu_2$	-132.2(9)
$O_{22} _ S_{1B} _ O_1 _ O_2$	-55.0(7)	$O_{33} - S_{1B} - O_{1} - O_{11}$	91.3(9)

O_{22} , S_{1B} , O_{1} , O_{11}	127.1(8)	$O_4 _ S_{1B} _ O_2 _ O_1$	-117.5(5)
O_{33} - S_{1B} - O_1 - Cu_2	108.7(10)	$O_{11} _ S_{1B} _ O_2 _ O_1$	-1.4(6)
O_{33} - S_{1B} - O_{1} - O_{2}	-90.8(8)	$O_{22} S_{1B} O_{2} O_{1}$	128.7(6)
O_{33} - S_{1B} - O_2 - O_1	123.3(6)	$O_4 \cdot S_{1B} \cdot O_3 \cdot O_{33}$	-113.5(5)
$O_1 S_{1B} O_3 O_{11}$	-11.8(6)	O_{11} S_{1B} O_{3} O_{33}	135.9(6)
$O_1 . S_{1B} . O_3 . O_{33}$	124.0(6)	$O_{22} . S_{1B} . O_{3} . O_{11}$	-130.9(5)
$O_4 . S_{1B} . O_3 . O_{11}$	110.7(4)	$O_{22} - S_{1B} - O_3 - O_{33}$	4.9(6)
$O_{33} S_{1B} O_{3} O_{11}$	-135.9(6)	$O_2 S_{1B} O_{11} O_1$	2.0(8)
$O_1 S_{1B} O_{11} Cu_2$	-17.1(7)	$O_2 S_{1B} O_{11} O_3$	164.3(5)
$O_{1} - S_{1B} - O_{11} - O_{3}$	162.3(8)	$O_2 _ S_{1B} _ O_1 _ Cu_2$	-160.5(11)
$O_2 S_{1B} O_{11} Cu_2$	-15.2(10)	$O_2 S_{1B} O_1 O_{11}$	-177.9(8)
$O_3_S_{1B}_O_1_Cu_2$	34.0(10)	$O_4 S_{1B} O_{33} O_3$	91.7(5)
$O_3 - S_{1B} - O_1 - O_2$	-165.6(5)	$O_4 . S_{1B} . O_{33} . O_{22}$	-97.1(10)
$O_3 S_{1B} O_1 O_{11}$	16.5(8)	$O_{11} - S_{1B} - O_{33} - O_3$	-45.5(6)
$O_4_S_{1B}_O_1_Cu_2$	-76.1(10)	$O_{33} - S_{1B} - O_{11} - O_1$	-115.0(8)
O_{33} - S_{1B} - O_{11} - O_{3}	47.3(7)	$O_4 . S_{1B} . O_{22} . O_{33}$	98.9(10)
$O_1 _ S_{1B} _ O_{22} _ O_{33}$	-120.4(10)	$O_{11} S_{1B} O_{22} O_{33}$	-75.9(12)
$O_2 S_{1B} O_{22} O_{33}$	-170.3(11)	$O_1 S_{1B} O_{33} O_3$	-93.0(7)
$O_3 S_{1B} O_{22} O_{33}$	-8.5(11)	$O_1 S_{1B} O_{33} O_{22}$	78.2(11)
$O_2 - S_{1B} - O_{33} - O_3$	-161.5(5)	O_{2A} - S_{1A} - O_{1A} - Cu_1	120.6(5)
$O_2 S_{1B} O_{33} O_{22}$	9.6(11)	O_{3A} S_{1A} O_{1A} Cu_1	-118.8(6)
O_{11} - S_{1B} - O_{33} - O_{22}	125.7(10)	$O_{4A} - S_{1A} - O_{1A} - Cu_1$	1.5(7)

$O_{22} - S_{1B} - O_{33} - O_3$	-171.2(11)	$S_{1B} - O_1 - O_{11} - Cu_2$	170.1(4)
$Cu_2 _ O_1 _ O_2 _ S_{1B}$	159.8(11)	$O_2 \cdot O_1 \cdot O_{11} \cdot S_{1B}$	-2.7(10)
$O_{11} \cdot O_{1} \cdot O_{2} \cdot S_{1B}$	2.8(11)	$S_{1B} - O_1 - O_{11} - O_3$	-19.8(9)
$Cu_2 _ O_1 _ O_{11} _ S_{1B}$	-170.1(4)	$O_2 \cdot O_1 \cdot O_{11} \cdot Cu_2$	167.4(11)
$Cu_2 \cdot O_1 \cdot O_{11} \cdot O_3$	170.1(10)	$O_2 . O_1 . O_{11} . O_3$	-22.5(18)
S_{1B} - O_3 - O_{33} - O_{22}	-12.2(15)	$O_{33} - O_{3} - O_{11} - S_{1B}$	-32.5(5)
$S_{1B} - O_3 - O_{11} - Cu_2$	179.3(13)	$O_{33} - O_{3} - O_{11} - O_{1}$	-11.6(12)
$S_{1B} - O_{3} - O_{11} - O_{1}$	20.9(10)	$O_{11} - O_{3} - O_{33} - S_{1B}$	33.7(5)
$O_{33} - O_{3} - O_{11} - Cu_2$	146.8(11)	O ₁₁ - O ₃ - O ₃₃ - O ₂₂	21.5(18)
$S_{1B} - O_{22} - O_{33} - O_3$	10.9(13)	$N_{2E} - N_{1E} - C_{3E} - C_{2E}$	-0.3(9)
$Cu_2 . N_{1E} . N_{2E} . C_{1E}$	-177.9(5)	$Cu_2 - N_{1F} - N_{2F} - C_{1F}$	179.8(5)
$C_{3E} N_{1E} N_{2E} C_{1E}$	0.2(8)	$C_{3F} N_{1F} N_{2F} C_{1F}$	-0.6(8)
$Cu_2 N_{1E} C_{3E} C_{2E}$	177.9(5)	$Cu_2 - N_{1F} - C_{3F} - C_{2F}$	179.8(5)
N_{2F} , N_{1F} , C_{3F} , C_{2F}	0.2(8)	$N_{2G} - N_{1G} - C_{3G} - C_{2G}$	-0.4(8)
$Cu_2 N_{1G} N_{2G} C_{1G}$	177.4(5)	$Cu_2 N_{1H} N_{2H} C_{1H}$	-180.0(7)
C_{3G} - N_{1G} - N_{2G} - C_{1G}	0.0(8)	$C_{3H} - N_{1H} - N_{2H} - C_{1H}$	-0.6(10)
$Cu_2 N_{1G} C_{3G} C_{2G}$	-177.9(5)	$Cu_2 N_{1H} C_{3H} C_{2H}$	-179.7(5)
$N_{2H} N_{1H} C_{3H} C_{2H}$	1.0(8)	$N_{1H} \cdot N_{2H} \cdot C_{1H} \cdot C_{2H}$	0.0(11)
N_{1E} , N_{2E} , C_{1E} , C_{2E}	-0.1(8)	$Cu_1 . N_{1A} . C_{3A} . C_{2A}$	171.2(4)
N_{1F} , N_{2F} , C_{1F} , C_{2F}	0.8(8)	$Cu_{1} - N_{1A} - N_{2A} - C_{1A}$	-172.6(4)
$N_{1G} N_{2G} C_{1G} C_{2G}$	0.5(9)	$C_{3A} \cdot N_{1A} \cdot N_{2A} \cdot C_{1A}$	0.1(7)
$N_{2A} - N_{1A} - C_{3A} - C_{2A}$	-0.6(7)	$Cu_1 - N_{1B} - C_{3B} - C_{2B}$	-180.0(5)

N_{2B} - N_{1B} - C_{3B} - C_{2B}	-0.8(7)	$Cu_1 . N_{1C} . N_{2C} . C_{1C}$	171.7(4)
$Cu_{1} - N_{1B} - N_{2B} - C_{1B}$	179.6(4)	$C_{3C} - N_{1C} - N_{2C} - C_{1C}$	0.3(7)
C_{3B} - N_{1B} - N_{2B} - C_{1B}	0.4(7)	$Cu_1 - N_{1C} - C_{3C} - C_{2C}$	-171.5(4)
C_{3D} - N_{1D} - N_{2D} - C_{1D}	0.1(7)	$N_{2C} - N_{1C} - C_{3C} - C_{2C}$	-0.2(7)
$Cu_1 . N_{1D} . C_{3D} . C_{2D}$	-177.3(4)	$Cu_1 . N_{1D} . N_{2D} . C_{1D}$	177.6(4)
N_{2D} , N_{1D} , C_{3D} , C_{2D}	-0.1(7)	$N_{2F} - C_{1F} - C_{2F} - C_{3F}$	-0.6(8)
$N_{1A} - N_{2A} - C_{1A} - C_{2A}$	0.5(7)	$N_{2G} - C_{1G} - C_{2G} - C_{3G}$	-0.7(9)
$N_{1B} - N_{2B} - C_{1B} - C_{2B}$	0.3(8)	$N_{2H} - C_{1H} - C_{2H} - C_{3H}$	0.6(9)
$N_{1C} \cdot N_{2C} \cdot C_{1C} \cdot C_{2C}$	-0.2(7)	$C_{1E} \cdot C_{2E} \cdot C_{3E} \cdot N_{1E}$	0.2(10)
N_{1D} , N_{2D} , C_{1D} , C_{2D}	-0.1(7)	$C_{1F} \cdot C_{2F} \cdot C_{3F} \cdot N_{1F}$	0.3(9)
$N_{2E} C_{1E} C_{2E} C_{3E}$	-0.1(9)	$C_{1G} - C_{2G} - C_{3G} - N_{1G}$	0.7(10)
$C_{1H} - C_{2H} - C_{3H} - N_{1H}$	-1.0(9)	$N_{2C} \cdot C_{1C} \cdot C_{2C} \cdot C_{3C}$	0.0(6)
$N_{2A} - C_{1A} - C_{2A} - C_{3A}$	-0.8(6)	$N_{2D} - C_{1D} - C_{2D} - C_{3D}$	0.0(7)
N _{2B} - C _{1B} - C _{2B} - C _{3B}	-0.8(8)	$C_{1A} - C_{2A} - C_{3A} - N_{1A}$	0.9(7)
C_{1B} - C_{2B} - C_{3B} - N_{1B}	1.0(8)	$C_{1D} - C_{2D} - C_{3D} - N_{1D}$	0.0(8)
C_{1C} - C_{2C} - C_{3C} - N_{1C}	0.1(7)		

ANNEXE VII Du complexe Dichloro--tétra-pyrazole Cobalt(II)

ANNEXE VII du Complexe Dichloro-tétra-1H-pyrazole-Cobalt (II)

Tableau 1 Coordonnées atomiques et paramètres d'agitationisotropiques (*) et équivalentes (Ų)

Atomes	Х	У	Z	Ueq/Uiso*
Co ₁	0.50000	0.50000	0.50000	0.0109(1)
Cl ₁	0.58720(4)	0.33791(4)	0.41295(3)	0.0178(1)
N_1	0.56274(12)	0.68342(15)	0.45786(11)	0.0131(3)
N ₂	0.54698(15)	0.82545(18)	0.46373(14)	0.0204(4)
N ₃	0.64710(13)	0.47516(16)	0.63830(11)	0.0134(3)
N_4	0.66853(15)	0.5359(2)	0.72794(13)	0.0202(4)
C ₁	0.61871(14)	0.67237(17)	0.40141(13)	0.0130(4)
C ₂	0.63893(18)	0.8027(2)	0.37210(16)	0.0202(5)
C ₃	0.59354(16)	0.90521(19)	0.41109(15)	0.0181(4)
C_4	0.73752(14)	0.39633(18)	0.65403(14)	0.0153(4)
C ₅	0.81654(17)	0.4058(2)	0.7528(2)	0.0292(6)
C ₆	0.7737(2)	0.4954(2)	0.80120(16)	0.0277(6)
H_1	0.64130	0.58300	0.38430	0.0160*
H ₂	0.67720	0.82060	0.33220	0.0240*
H _{2N}	0.51200	0.86370	0.49640	0.0250*

H ₃	0.59380	1.00740	0.40380	0.0220*
H ₄	0.74550	0.34110	0.60310	0.0180*
H _{4N}	0.62250	0.59330	0.73880	0.0240*
H ₅	0.88740	0.35950	0.78230	0.0350*
H ₆	0.80880	0.52390	0.87060	0.0330*

Tableau 2 Paramètres d'agitation thermiques atomiques (A^2)

Atomes	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Co ₁	0.0133(2)	0.0093(2)	0.0117(2)	-0.0002(1)	0.0071(1)	-0.0019(1)
Cl_1	0.0247(2)	0.0122(2)	0.0225(2)	-0.0014(1)	0.0160(2)	-0.0009(1)
N ₁	0,0154(6)	0,0113(5)	0,0150(6)	-0.0004(4)	0.0090(5)	-0.0017(4)
N ₂	0.0241(7)	0.0159(7)	0.0256(8)	0.0001(5)	0.0150(6)	-0.0008(5)
N ₃	0.0147(6)	0.0116(5)	0.0146(6)	0.0007(4)	0.0073(5)	-0.0008(4)
N_4	0.0236(7)	0.0215(7)	0.0167(6)	-0.0014(6)	0.0101(6)	-0.0033(6)
C ₁	0.0188(7)	0.0080(6)	0.0198(7)	0.0004(5)	0.0154(6)	-0.0011(5)
C ₂	0.0275(9)	0.0142(7)	0.0275(9)	0.0031(6)	0.0200(8)	-0.0014(6)
C ₃	0.0225(8)	0.0114(6)	0.0252(8)	0.0037(6)	0.0149(7)	-0.0001(5)
C_4	0.0139(6)	0.0102(6)	0.0228(7)	0.0004(5)	0.0090(6)	0.0002(5)
C ₅	0.0169(8)	0.0202(9)	0.0401(12)	0.0136(8)	0.0035(8)	0.0004(6)
C ₆	0.0299(10)	0.0313(11)	0.0137(8)	0.0046(7)	0.0024(7)	-0.0129(8)

Tableau 3 Les distances interatomiques (Å)

Atomes	Distance Å	Atomes	Distance Å
Co ₁ -Cl ₁	2.5631(6)	N ₁ -N ₂	1.337(2)
Co ₁ -N ₁	2.1023(15)	N ₁ -C ₁	1.347(3)
Co ₁ -N ₃	2.1173(16)	N ₂ -C ₃	1.400(3)
Co ₁ -Cl ₁	2.5631(6)	N ₃ -N ₄	1.339(2)
Co ₁ -N ₁	2.1023(15)	N ₃ -C ₄	1.341(3)
Co ₁ -N ₃	2.1173(16)	N ₄ -C ₆	1.388(3)
C ₁ -C ₂	1.345(3)	N ₂ -H _{2N}	0.8800
C ₂ -C ₃	1.380(3)	N ₄ -H _{4N}	0.8800
C ₄ -C ₅	1.364(3)	C ₃ -H ₃	0.9500
C ₅ -C ₆	1.372(3)	C ₄ -H ₄	0.9500
C ₁ -H ₁	0.9500	C ₅ -H ₅	0.9500
C ₂ -H ₂	0.9500	C ₆ -H ₆	0.9500

Tableau 4 Les angles de liaisons (•)

Atomes	Angles (°)	Atomes	Angles (°)
Cl ₁ -Co ₁ -N ₁	89.57(4)	Cl ₁ -Co ₁ -N ₃	91.16(5)
Cl ₁ -Co ₁ -N ₃	88.84(5)	N ₁ -Co ₁ -N3	92.70(6)
Cl ₁ -Co ₁ -Cl ₁	180.00	Cl ₁ -Co ₁ -N ₁	90.43(4)
Cl ₁ -Co ₁ -N ₁	90.43(4)	N ₁ -Co ₁ -N ₁	180.00
N ₁ -Co ₁ -N ₃	87.30(6)	Cl ₁ -Co ₁ -N ₁	89.57(4)
Cl ₁ -Co ₁ -N ₃	91.16(5)	Cl ₁ -Co ₁ -N ₃	88.84(5)
N ₁ -Co ₁ -N ₃	87.30(6)	N ₁ -Co ₁ -N ₃	92.70(6)
N ₃ -Co ₁ -N ₃	180.00	Co ₁ -N ₁ -N ₂	132.50(14)
Co ₁ -N ₁ -C ₁	121.70(11)	Co ₁ -N ₃ -C ₄	127.24(12)
N ₂ -N ₁ -C ₁	105.14(15)	N ₄ -N ₃ -C ₄	106.11(16)
N ₁ -N ₂ -C ₃	111.00(18)	N ₃ -N ₄ -C ₆	110.31(19)
Co ₁ -N ₃ -N ₄	126.66(14)	C ₃ -N ₂ -H _{2N}	125.00
C ₆ -N ₄ -H _{4N}	125.00	N ₁ -N ₂ -H _{2N}	124.00
N ₁ -C ₁ -C ₂	112.08(17)	C ₄ -C ₅ -C ₆	106.5(2)
C ₁ -C ₂ -C ₃	107.0(2)	N ₄ -C ₆ -C ₅	105.94(19)
N ₂ -C ₃ -C ₂	104.82(16)	N ₁ -C ₁₋ H ₁	124.00
N ₃ -C ₄ -C ₅	111.10(17)	C ₂ -C ₁ -H ₁	124.00
C ₅ -C ₄ -H ₄	124.00	C ₁ -C ₂ -H ₂	126.00
C ₄ -C ₅ -H ₅	127.00	C ₃ -C ₂ -H ₂	127.00
C ₆ -C ₅ -H ₅	127.00	N ₂ -C ₃ -H ₃	128.00
--	--------	--	--------
N ₄ -C ₆ -H ₆	127.00	C ₂ -C ₃ -H ₃	128.00
C ₅ -C ₆ -H ₆	127.00	N ₃ -C ₄ -H ₄	124.00

Tableau 5 Les angles de torsions (•)

Atomes	Angles (°)	Atomes	Angles (°)
Cl ₁ -Co ₁ -N ₁ -N ₂	171.92(17)	N ₃ -Co ₁ -N ₁ -N ₂	80.74(17)
Cl ₁ -Co ₁ -N ₁ -C ₁	2.73(14)	N ₃ -Co ₁ -N ₁ -C ₁	-88.45(14)
N ₃ -Co ₁ -N ₁ -N ₂	-99.26(17)	Cl ₁ -Co ₁ -N ₃ -N ₄	178.50(16)
N ₃ -Co ₁ -N ₁ -C ₁	91.55(14)	Cl ₁ -Co ₁ -N ₃ -C ₄	-1.26(15)
Cl ₁ -Co ₁ -N ₁ -N ₂	-8.08(17)	N ₁ -Co ₁ -N ₃ -N ₄	88.99(16)
Cl ₁ -Co ₁ -N ₁ -C ₁	-177.27(14)	N ₁ -Co ₁ -N ₃ -C ₄	-90.78(16)
N ₁ -Co ₁ -N ₃ -C ₄	89.22(16)	Cl ₁ -Co ₁ -N ₃ -N ₄	-1.50(16)
Co ₁ -N ₁ -N ₂ -C ₃	-170.72(14)	Cl ₁ -Co ₁ -N ₃ -C ₄	178.74(15)
C ₁ -N ₁ -N ₂ -C ₃	-0.2(2)	N ₁ -Co ₁ -N ₃ -N ₄	-91.02(16)
Co ₁ -N ₁ -C ₁ -C ₂	172.03(14)	C ₄ -N ₃ -N ₄ -C ₆	0.1(2)
N ₂ -N ₁ -C ₁ -C ₂	0.3(2)	Co ₁ -N ₃ -C ₄ -C ₅	179.88(14)
N ₁ -N ₂ -C ₃ -C ₂	0.1(2)	N ₄ -N ₃ -C ₄ -C ₅	0.1(2)
Co ₁ -N ₃ -N ₄ -C ₆	-179.68(14)	N ₃ -N ₄ -C ₆ -C ₅	-0.3(2)
N ₁ -C ₁ -C ₂ -C ₃	-0.2(2)	N ₃ -C ₄ -C ₅ -C ₆	-0.3(2)
C ₁ -C ₂ -C ₃ -N ₂	0.0(2)	C ₄ -C ₅ -C ₆ -N ₄	0.3(2)

PUBLICATION

InorganicChemistryCommunications

journal homepage: <u>www.elsevier.com/locate/inoche</u>

Synthesis, crystal structure and Chan-Evans-Lam C-N cross coupling

 $catalys is of monohydrated tetrapy razole copper ({\tt II}) sulfate$

https://doi.org/10.1016/j.inoche.2018.10.016

Received 10 July 2018; Received in revised form 5 October 2018; Accepted 10 July 2018; Control 10 July 2018;

9October2018

*Correspondingauthors.

Emailaddresses:C_Aouatef@yahoo.fr(A.Cherouana),Frank.Schaper@

umontreal.ca(F.Schaper).

Inorganic Chemistry Communications 99 (2019) 36–39

Available online 22 October 2018 1387-7003/ © 2018 Published by Elsevier B.V.

Résumé :

Toutes les synthèses effectuées, et rapportées dans cette thèse, comportent deux étapes, la première est une réaction de chauffage en réacteur fermé homogène, la seconde est la formation du composé de coordination par, exposition au milieu ambiant et lente évaporation du solvant. L'ossature de la thèse comprend quatre chapitres, le premier a été consacré à la théorie de tout ce qui attrait à la synthèse (réactifs, solvants, réacteurs).

Le deuxième chapitre, concerne la synthèse, accompagnée d'une réaction de N-méthylation du ligand pour le second composé, étude spectrale IR et UV-visible, caractérisation par rayons X et analyse élémentaire, des trois structures suivantes :

- Hexa (μ_2 -chloro) (μ_4 -oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol
- Hexa (µ₂-chloro) (µ₄-oxo) Tétra (méthyle-1pyrazole) tétra cuivre(II)
- Tri (µ-chloro) (µ₃-oxo) tri (µ₂-pyrazolo) bis (1H-pyrazole) tricuivre (II)

Il s'agit de deux tétramères oxo avec une unité tétranucléaire $[Cu_4 (\mu_2-Cl)_6 (\mu_4-O)]$ appelée cœur de la structure, de type $[Cu_4OCl_6L_4]$ et, d'un polymère oxo avec une unité trinucléaire $[Cu_3(\mu-Cl)_3(\mu_3O)]$, dont le mode de synthèse est nouveau. En effet ; pendant la réaction de chauffage en système fermé, l'atome de cuivre du sel CuCl₂.2H₂O est réduit en cuivre I, pour s'oxyder, au contact du dioxygène atmosphérique (milieu ambiant), dissous en solution et former le tétramère ou trimère.

La réaction de N-méthylation du ligand 1H-pyrazole, s'est effectué en système fermé, en présence de méthanol, qui aura joué le rôle d'un réactif et solvant, contrairement à ce qui est rapporté dans la littérature où, elle ne s'effectue qu'en milieu acide. Le précurseur de cette réaction est le cation cuivre II, qui a conféré à la solution le caractère acide et a permis la rupture homolytique de la liaison C-O du méthanol.

La structure du troisième chapitre est connue et publiée, c'est le complexe $[Cu(Py)_4.SO_4.H_2O]$, nous l'avons caractérisée par diffraction des rayons X, par spectroscopie UV-visible et avons testé ses propriétés catalytiques par réaction de couplage C-N de Chan-Evans-Lam. En comparaison avec la littérature, le complexe est un bon catalyseur, pour les trois amines : aniline, 2-amino-pyridine et 2,6-diisopropyle-amine.

Le dernier chapitre concerne la synthèse, caractérisation par rayons X et par spectroscopie UV-visible et fluorimétrie du complexe $[CoCl_2(C_3H_4N_2)_4]$. L'étude par fluorimétrie, a montré que le complexe était un bon émetteur de lumière verte.

Mots-clé : Réacteur fermé, Tétramère, trimère, oxygène atmosphérique, N-méthylation, unité tétranucléaire, unité trinucléaire, catalyse homogène, catalyseur de cuivre, C-N cross-coupling, Chan-Evans-Lam.

Abstract :

The syntheses, done and repported in the present thesis, consists of two steps, the first one is a heating reaction, in an homogenus batch reactor, the second is the formation of a coordination compound, by environmental exposure and slow evaporation of solvent.

This thesis is made of four chapters, the first one is dedicated to the theory of the reactants, solvents and reactors. The second, is made of the synthesis, with a N-methylation of the ligand of the second compound, spectral IRm UV-visible study and a caracterisation by X-Ray, with elementary analysis of the following three structures:

- Hexa (μ_2 -chloro) (μ_4 -oxo) (tétra-imidazole) tétra copper (II), in ethanol
- Hexa (µ₂-chloro) (µ₄-oxo) Tétra (méthyle-1pyrazole) tétra copper(II)
- Tri (µ-chloro) (µ₃-oxo) tri (µ₂-pyrazolo) bis (1H-pyrazole) tricopper (II)

Its about two tetramers, with a tetranucleic unit and of type $[Cu_4OCl_6L_4]$, and a polymer with a trinucleic unit $[Cu_3(\mu-Cl)_3(\mu_3O)]$, of which the synthesis mode is original and new.

Indeed, while the heating of the solution in the batch reactor, the copper atom of the $CuCl_2.2H_2O$ salt, is reducted in copper I, then oxyded, by simple contact of atmospheric dioxygen of the environment, dissolved in solution, to form the oxo copper tetramer or trimer.

The N-methylation reaction of the 1H-pyrazole ligand, was performed in a batch reactor, in the presence of methanol, playing the double role of reactant and solvent, this is in contrast with literature, where the reaction is only performed in acidic environment.

The reaction precursor is the copper cation Cu^{++} , who conferred the acidic character to the solution, allowing the hemolytic rupture of the C-O bond of methanol.

The structure madding the third chapter, is known and published, it is about the complex $[Cu(Py)_4.SO_4.H_2O]$, witch was characterized by Xray, UV-visible spectra, at least, it was about the study of its catalytic properties, by the mean of a cross-coupling reaction C-N, called Chan-Evans-Lam reaction. In comparison with literature, this complex is a good catalyst for the three following amines, aniline, 2-amino-pyridin and 2, 6 diisopropyl-anilin.

The last chapter concerns the synthesis, X-ray characterization, Uv-visible and flurimetry studies of the main coordination complex $[CoCl_2(C_3H_4N_2)_4]$, who was found to be a good green light emitter.

Key-words : Batch reactor, Tetramer, trimer, atmospheric dioxygen, N-methylation, tetra nucleic unit, trinucleic unit, homogenus catalysis, copper catalyst, C-N cross-coupling, Chan-Evans-Lam.

ملخص الأطروحة

جميع التجارب التي أجريت وذكرت في هذه الأطروحة تتكون من مرحلتين, الأولى تفاعل تسخين بمفاعل مغلق ومتجانس, الثانية تشمل مركب التنسيق في وسط مع تبخر البطئ للمذيب. هبكل هذه الأطر وحة بشمل أربعة فصول الفصل الأول يرتكز على الجانب النضري يعتمد على (كواشف مذيبات متفاعلات) الفصل الثاني يعتمد على التحليل مصحوب بتفاعل مثيلة N للمخلب للمركب الثاني الى جانب در اسة مطيافية UV . IR المرئية و در اسة تحليلية عن طريق انحر اف الأشعة السينية Xللمر كبات الثلاثة التالي: Hexa (μ_2 -chloro) (μ_4 -oxo) (tétra-imidazole) tétra cuivre (II), dans l'éthanol Hexa (μ_2 -chloro) (μ_4 -oxo) Tétra (méthyle-1pyrazole) tétra cuivre(II) - Tri (μ -chloro) (μ_3 -oxo) tri (μ_2 -pyrazolo) bis (1H-pyrazole) tricuivre (II) يتعلق الأمر باثنينtétranucléaire [Cu₄ (µ₂-Cl)₆ (µ₄-O)] مع وحدة tétramères oxo trinucléaire [Cu₃(μ -Cl)₃(μ_3 O)] المسماة قلب البنية من نوع Cu₄OCl₆L₄] والبلومير أوكيو مع وحدة (Cu₃(μ -Cl)₃(μ_3 O) أين طريقة التحليل جديدة بالطبع خلال تفاعل التسخين في النظام المغلق ذرة نحاس الملح أرجعت الى Iللتأكسد, نحاس عند ملامسة ثنائي أكسجين الجوي (وسط معتدل المذاب في المحلول وتشكل رباعي او ثلاثي) للمخلب 1H-pyrazole , تمت في وسط مغلق في وجود الميثاتول ,الذي يلعب دور كاشف و مذيب على تفاعل N مثيلة عكس ما وجد في المراجع أين يتم التفاعل في وسط حامضي مقدمة هذا التفاعل هو كاتيون II الذي يمنح للمحلول النحاس الطابع الحامضي حيث يسمح بكس تموضع الرابطة للميثاتولC-O الفصل الثالث معروف و منشور , هو المعقد [Cu(Py)₄.SO₄.H₂O] والذي قمنا بتحيده بانحراف الاشعة X و مطيافية IR و أشعة UV المرئية و التي قمنا باختبار خصائصه المحفزة السبنية بواسطة تفاعل تزاوج C-N ل: Chan-Evans-Lam -بالمقارنة بالمراجع المعقد هو محفز جيد بالنسبة للأمينات الثلاثة aniline, 2-amino-pyridine et 2,6-diisopropyle-amine و الفصل الثالث مخصص للتحليل. وصف بالأشعة السينيةX ومضيافية UV و المرئية fluorimétrie للمعقد [CoCl₂(C₃H₄N₂)₄] هذه الأخبرة اثبتت ان المعقد باعث جبد للضوء الأخضر المفاتيح Tétramère, trimère, Chan-Evans-Lam

مفاعل مغلق الأكسجين الجوي مثيلة N,وحدة رباعية نووية وحدة ثلاثية نووية محفز متجانس محفز النحاس عبر اقتران