RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ FRÈRES MENTOURI/ CONSTANTINE 1 FACULTÉ DES SCIENCES EXACTES DÉPARTEMENT DE CHIMIE

N° d'ordre : 141/DS/2018

Série : 14/CH/2018

THÈSE PRESENTEE POUR OBTENIR LE DIPLÔME DE DOCTORAT EN SCIENCES EN CHIMIE

Option : CHIMIE CRISTALLOGRAPHIE

Synthèse et caractérisation d'imines et benzoquinoléines, active biologiquement

Présenté par : GHICHI Nadir

Soutenue le : 10/07/2018

Devant la commission d'examen :

Président	Prof.	H. MERAZIG	Université Constantine 1
Encadreur	Prof.	A. BENBOUDIAF	Université Constantine 1
Examinatrice	Prof.	F. SETIFI	Université Ferhat abbes Setif
Examinatrice	Prof.	Ch. BENHAMIDECHE	Université 20Août, 1955 Skikda

Remerciements

En préambule, je souhaite rendre grâce à Dieu, le clément et Miséricordieux de m'avoir donné la force, le courage et la patience de mener à bien ce modeste travail scientifique.

Je tiens à remercier mon encadreur Pr. **BENBOUDIAF ALI**, Professeur à l'université frères Mentouri Constantine1, de m'avoir suivi tout au long de la réalisation de ce thèse. Je le remercie aussi pour la confiance qu'il en a placée à moi.

Je suis très honoré que Mr. **MERAZIG HOCINE**, Professeur et directeur de l'unité de recherche CHEMS, Université frères Mentouri Constantine1 a accepté la présidence de ce jury et je le remercie vivement.

Je remercie également Melle. **SETIFI FATIMA**, professeur à l'université ferhat abbes setif, et Melle. **BENHAMIDECHE CHAHRAZED**, professeur à l'université 20 Août 1955 Skikda, pour l'importance qu'elles ont accordé à mon travail en acceptant d'être membres de jury.

Enfin, mes remerciements à tous ceux et celles qui, de prés ou de loin, m'ont apporté aide et encouragement.

Ghichi Nadir

Sommaire

INTRODUCTIO	ON GÉNÉRALE	. 1
RÉFÉRENCES		2

Chapitre I

Généralités sur les quinoléines, benzoquinoléines. Synthèse et antioxydante activité de deux dérivés de quinoléines.

I-Introduction et notions sur les quinoléines et benzoquinoléines	3
II-Intérêt et applications de quinoléines	4
III-Les composés hybrides de la quinoléine: quelques exemples	10
IV-Synthèse des dérivés de la quinoléine	.12
IV-1-Condensation des anilines	12
IV-2-La synthèse des quinoléines par la méthode de Vilsmeir	15
-A partir des anilides	.15
V-Réactions des dérivés de la quinoléine préparé par la méthode de Vilsmeir	.16
VI-Synthèse, spectroscopique et activité antioxydante de deux dérivés de	
quinoléine	18
VI-1-Introduction	18
VI-2-Préparation des dérivés du quinoléine à partir des anilide	
quinoléines	.18
VI-2-a-Préparation de composé Q3	.18
VI-2-b-Analyse spectroscopique du composé Q3	.18
VI-3-a-Préparation de composé Q4	.21
VI-3-a-Analyse spectroscopique du composé Q4	.21
Partie expérimentale	.23
- Préparation de deux composés Q3 et Q4	.23

VII-Généralités sur les activités antioxydantes2	5
VII-1-Méthode du DPPH2	5
VII-2-Piégeage de l'ABTS (2,2'-azinobis-[3-ethylbenzothiazoline-6-sulfonic	•
acid])2	7
VII-3-Test de la capacité antioxydante par réduction du cuivre (CUPRAC)29	9
VII-4-Activité de pouvoir réducteur29	9
VII-5-Matériels et méthodes30	0
VII-5-1-Activités antioxydante	0
VII-5-2-Activité antiradicalaire au DPPH30	0
VII-5-3-Test de la capacité antioxydante par réduction du cuivre (CUPRAC)3	0
VII-5-4-Activité du piégeage de l'ABTS	1
VII-5-5-Activité pouvoir réducteur	1
VII-5-6-Résultats des activités antioxydante de deux composés Q3 et Q432	2
VII-5-6-1-Activité antiradicalaire au DPPH des composés Q3 et Q4 32	2
VII-5-6-2-Test de la capacité antioxydante par réduction du cuivre	
(CUPRAC) des composés Q3 et Q4	3
VII-5-6-3-Activité antiradicalaire au ABTS de composé Q334	4
RÉFÉRENCES	5

Chapitre II

Généralités sur les bases de Schiff, synthèse et antioxydante activité de dérivés d'imines et un imidazole.

Introduction générale	43	
I-Les composés azotés	44	
II-Les bases de Schiff	44	
II-1-Classification des bases de Schiff	47	
II-1-a-base de Schiff monodentate	47	
II-1-b-bases de Schiff bidentate	48	
II-1-c-base de Schiff tridentate		

II-1-d-base de Schiff tétradentate	50
-Type NNOO (N2O2) donneurs	. 50
-Type NNNO (N3O) donneurs	51
II-1-e-base de Schiff pentadentate	. 51
-Type NNOOO (N2O3) donneurs	51
-Type (N3O2) donneurs	. 51
II-1-f-base de Schiff hexadentate	52
II-1-g-base de Schiff heptadentate (N4O3) donneurs	52
III-Quelques domaines d'application des bases de Schiff et de leurs compl	exes
isolés á l'état solide	52
III-1-Applications des bases de Schiff en corrosion	53
III-2-Applications des complexes de bases de Schiff en catalyse	55
III-3-Applications des bases de Schiff et de leurs complexes en biologie	. 56
IV-Résultats et discussion	62
IV-1-Synthèse, étude spectroscopique de sept dérivés d'imines	62
IV-1-1-Introduction	62
IV-1-2-Préparation des dérivés d'imines et un imidazole	62
IV-1-2-Préparation des dérivés d'imines et un imidazole IV-1-2-a-Préparation de composé 1	62 62
IV-1-2-Préparation des dérivés d'imines et un imidazole IV-1-2-a-Préparation de composé 1 IV-1-2-b-Analyse spectroscopique de composé 1	62 62 . 62
 IV-1-2-Préparation des dérivés d'imines et un imidazole IV-1-2-a-Préparation de composé 1 IV-1-2-b-Analyse spectroscopique de composé 1 IV-2-2-b-Préparation de composé 2 	62 62 . 62 64
 IV-1-2-Préparation des dérivés d'imines et un imidazole. IV-1-2-a-Préparation de composé 1. IV-1-2-b-Analyse spectroscopique de composé 1. IV-2-2-b-Préparation de composé 2. IV-3-2-c-Préparation de composé 3. 	62 62 . 62 64 66
 IV-1-2-Préparation des dérivés d'imines et un imidazole. IV-1-2-a-Préparation de composé 1. IV-1-2-b-Analyse spectroscopique de composé 1. IV-2-2-b-Préparation de composé 2. IV-3-2-c-Préparation de composé 3. IV-4-2-d-Préparation de composé 4. 	62 62 62 64 66 68
 IV-1-2-Préparation des dérivés d'imines et un imidazole. IV-1-2-a-Préparation de composé 1. IV-1-2-b-Analyse spectroscopique de composé 1. IV-2-2-b-Préparation de composé 2. IV-3-2-c-Préparation de composé 3. IV-4-2-d-Préparation de composé 4. IV-5-2-e-Préparation de composé 5. 	62 62 62 64 66 68 70
 IV-1-2-Préparation des dérivés d'imines et un imidazole. IV-1-2-a-Préparation de composé 1. IV-1-2-b-Analyse spectroscopique de composé 1. IV-2-2-b-Préparation de composé 2. IV-3-2-c-Préparation de composé 3. IV-4-2-d-Préparation de composé 4. IV-5-2-e-Préparation de composé 5. IV-6-2-f-Préparation de composé 6. 	62 62 62 64 66 68 70 72
 IV-1-2-Préparation des dérivés d'imines et un imidazole. IV-1-2-a-Préparation de composé 1. IV-1-2-b-Analyse spectroscopique de composé 1. IV-2-2-b-Préparation de composé 2. IV-3-2-c-Préparation de composé 3. IV-4-2-d-Préparation de composé 4. IV-5-2-e-Préparation de composé 5. IV-6-2-f-Préparation de composé 6. IV-7-2-g-Préparation de composé 7. 	62 62 62 64 66 68 70 72 74
IV-1-2-Préparation des dérivés d'imines et un imidazole.IV-1-2-a-Préparation de composé 1.IV-1-2-b-Analyse spectroscopique de composé 1.IV-2-2-b-Préparation de composé 2.IV-3-2-c-Préparation de composé 3.IV-4-2-d-Préparation de composé 4.IV-5-2-e-Préparation de composé 5.IV-6-2-f-Préparation de composé 6.IV-7-2-g-Préparation de composé 7.	62 62 62 64 66 68 70 72 74 . 76
 IV-1-2-Préparation des dérivés d'imines et un imidazole. IV-1-2-a-Préparation de composé 1. IV-1-2-b-Analyse spectroscopique de composé 1. IV-2-2-b-Préparation de composé 2. IV-3-2-c-Préparation de composé 3. IV-4-2-d-Préparation de composé 4. IV-5-2-e-Préparation de composé 5. IV-6-2-f-Préparation de composé 6. IV-7-2-g-Préparation de composé 7. Partie expérimentale. -Préparation la série de composé de 1 à 7. 	62 62 62 64 66 68 70 72 74 . 76 76
 IV-1-2-Préparation des dérivés d'imines et un imidazole	62 62 62 64 66 68 70 72 74 . 76 76 79
 IV-1-2-Préparation des dérivés d'imines et un imidazole	62 62 64 64 66 68 70 72 74 . 76 76 79 6 et

V-1-a-Activité antiradicalaire au DPPH de composé 1	79
V-1-b-1-Test de la capacité antioxydante par réduction du cuivre (CUPRAC	2)
de composé 1, 4 avec1mg, 6 et 7 avec 4mg	80
V-1-b-2-Test de la capacité antioxydante par réduction du cuivre (CUPRAC	2)
de composé 1 et 4 avec 0.5mg	81
V-1-c-Test de la capacité antioxydante par réduction du ferre (pouvoir	
réducteur) de composé 1	82
RÉFÉRENCES	84

Chapitre III

Généralités, étude structurale par DRX de sept dérivés d'imines.

I-Diffraction des rayons X	88
I-1-Analyse par diffraction des rayons X sur monocristal	. 89
I-1-1-Choix du monocristal	. 89
I-1-2-Étude sur un diffractomètre	89
II-Logiciels utilisés pour la détermination des structures cristallines	. 90
II-1-Le SHELX-97	. 91
II-1-a-Présentation du SHELX-97	. 91
II-1-b-Description de SHELX-97	92
II-1-b-1-Le programme Xcad4	93
II-1-b-2-Le programme SHELXS	93
II-1-b-3-Le programme SHELXL	95
II-2-Les avantages du programmes SHELX-97	. 100
III-Étude cristallographique	101
III-1-a-Résolution de la structure $C_{20}H_{16}CINO_3$ 1 a partir des données de	
diffraction du monocristal	101
III-1-b-Description et discussion de la structure C ₂₀ H ₁₆ ClNO ₃ 1	107
III-2-a-Résolution de la structure $C_{24}H_{22}N_2O_2$ 2 a partir des données de	

diffraction du monocristal	112
III-2-b-Description et discussion de la structure $C_{24}H_{22}N_2O_2$ 2	119
III-3-a-Détermination et affinement de la structure $C_{21}H_{19}NO_33$	124
III-3-b-Description de la structure $C_{21}H_{19}NO_3$ 3 et discussion	133
III-4-a-Résolution de la structure $C_{20}H_{18}N_2O_2$ 4 a partir des données de	
diffraction du monocristal	137
III-4-b-Description et discussion de la structure $C_{20}H_{18}N_2O_2A_{12}$	143
III-5-a-Résolution de la structure $C_{31}H_{24}N_2O_4$ 5 a partir des données de	
diffraction du monocristal	148
III-5-b-Description et discussion de la structure $C_{31}H_{24}N_2O_45$	161
III-6-a-Détermination et affinement de la structure C ₂₀ H ₁₆ ClNO ₂ 6	164
III-6-b-Description de la structure $C_{20}H_{16}CINO_2$ 6et discussion	.170
III-7-a-Détermination et affinement de la structure $C_{34}H_{28}N_2O_47$.173
III-7-b-Description de la structure $C_{34}H_{28}N_2O_47$ et discussion	179
IV-Étude par DFT	184
IV-1-Théorie de la fonctionnelle de la densité DFT	184
IV-2-Étude optimisation, comparaison et confirmative de la structure $C_{21}H_{19}N$	O ₃ 3
par la méthode DFT	186
IV-3-Étude comparaison et optimisation de la structure C ₂₀ H ₁₆ ClNO ₃ 1 par	
méthode DFT	190
RÉFÉRENCES	193
CONCLUSION GÉNÉRALE	195

Introduction générale

INTRODUCTION GÉNÉRALE

Née dans les premières années du dix-neuvièmes siècle pour essayer de comprendre la chimie du vivant, la chimie organique est devenue un outil indispensable de notre vie quotidienne. Les produits chimiques essentiellement organiques sont à la base de notre nourriture, notre habillement, notre transport..... donc de notre confort et bien être, ainsi que de notre santé. La synthèse organique a connu un grand essor ces dernières années grâce à la modification des méthodologies de synthèse classiques et l'utilisation de nouveaux milieux réactionnels, de nouveaux catalyseurs et autres solvants, et surtout ces réactions sont devenues plus performantes et moins coûteuses. Dans ce contexte, le développement de procédés simples, efficaces, et de mise en œuvre facile pour la préparation des composés hétérocyclique représente le grand challenge de la chimie moderne. La synthèse d'hétérocycles fonctionnalisés ont été depuis plusieurs années l'une des préoccupations des chimistes organiciens dans la recherche de molécules susceptibles de trouver des applications dans des domaines déverses tels que le domaine pharmaceutique, biologique et / ou industriel. Un certain nombre de composés comportant principalement des hétérocycles contenant les atomes d'azote et / ou d'oxygène tel que le noyau pyrazole, oxazole, coumarine, pyrrole, imidazole...,ont montré une activité pharmacologique remarquable [1].

C'est immédiatement a prés la découverte de la diffraction des rayons X par les solide, en 1912, que l'importance de la diffraction par les poudre est apparue. Son rôle dans l'identification des solides a constitué l'une des propriétés la plus utilisées dans les sciences de la matière cristallisée.

La détermination structurale de monocristaux, à partir de données de diffraction des rayons X ou des neutrons, reste la méthode la plus aisée et la plus efficace à mettre en œuvre pour caractériser les propriétés structurales des solides cristallins. Cependant, il est parfois impossible d'obtenir des monocristaux de qualité et de taille suffisantes. Si la description de la structure est nécessairement moins fine qu'à partir de données sur monocristaux, la diffraction des rayons X sur poudres réussi à décrite de manière

satisfaisante la conformation moléculaire, les interactions intermoléculaires, ainsi que l'arrangement tridimensionnel de l'empilement **[2]**.

Ce travail est divisé en trois chapitres. Le premier chapitre de cette thèse a été consacrée à des généralités et données bibliographiques, et une présentation générale sur les quinoléine/benzoquinoléine [mode de synthèse, intérêt et application]. Dans la fin de ce chapitre, ont été synthétisée deux type de dérivés de quinoléine, sous formes des amides, et étudié le potentiel et l'activité antioxydante. Le deuxième chapitre a été consacré aux généralités sur les dérivés d'imine [base de Schiff], intérêt et application, et aussi la synthèse de sept composés cycliques originaux, et ont été étudiés l'activité antioxydante de ces composés. Le troisième chapitre a été consacré totalement pour l'étude structurale de sept composés organiques [calcule, interactions et figures] par la méthode DRX sur un monocristal. Enfin ont été calculé, optimisé et comparé deux structures par deux déférentes méthodes [DRX et DFT].

Références:

[1]: (a)D. Castagnolo, F. Manetti, M. Radi, B. Bechi, M. Pagano, A. De logu, R. Meleddu, M. Saddi, M. Botta, *Biooerg. Med. Chem.*2009, 17, 5716-5721 ; (b) E. J. Iwanowicz, S. H. Waterson, J. Guo, W. J. Pitts, T. G. Murali Dhar, Z. Shen, P. Chem, H. H. Gu, C. A. Fleener, K. A. Rouleau, D. L. Cheny, R. M. Townsend. D. L. Hollenbaugh, *Bioorg. Med. Chem. Lett.*2003, 13, 2059-2063 ; (c) S. S. Kargaoker, P. H. Patil, M. T. Shah, H. H. Parekh, *Indian J. Pharm. Sci.*1996, 58, 222-225.
[2]: C. Trifa, Thèse de magister 2005, département de chimie, faculté des sciences exactes, université constantine 1.

Chapitre I

Généralités sur les quinoléines, benzoquinoléines. Synthèse et antioxydante activité de deux dérivés de quinoléines.

La quinoléine et ses dérivés

I-Introduction et notions sur les quinoléines et benzoquinoléines

La quinoléine **[1-2]** (benzopyridine **[3-4]** ou azanaphtalène **[5]** est décrite comme étant une base hétérocyclique ayant une formule brute C_9H_7N . Elle est la résultante de la jonction d'un noyau benzénique et d'un noyau pyridique.

Alors que la benzoquinoléine ou la naphtopyridine (naphtoquinoléine) **[6]** est un nom donné à deux isomères α et β de formule brute C₁₃H₉N, est défini comme étant le produit de condensation d'une mole de pyridine sur une mole de naphtalène.

Le deuxième isomère est le : 7,8-Benzoquinoléine(Benzo(h)quinoléine).

II-Intérêt et applications des quinoléines

La quinoléine ou bonze(*b*) pyridine est un motif structural hétérocyclique rencontré dans une large variété de produits naturels **[7]**, et il est aussi présent dans de nombreux composés à activités biologiques confirmée **[8]**. La quinoléine fut obtenue, pour la première fois, par F. Runge en 1834 à partir de goudron de houille, sa structure chimique a été connue en 1908 et sa synthèse totale réalisée en 1944. Depuis, de nombreuses molécules contenant la sous structure quinoléine ont été découvertes par synthèse, et dont certaines présentent des activités biologiques et thérapeutiques remarquable et très diverses. Ces molécules peuvent être issues d'origine végétale (A), microbien (B), animal (C) **[9]** ou d'origine synthétiques **[10]**. La glycocitridine 1 est un anticancéreux, les benzastadines 2 possèdent un effet antioxydant comparable à celui de la vitamine E **[11]**, alors que le composé (+)-N-quinaldyl-L-arginine 3 est utilisé comme nourriture répulsive et dissuasive contre les fourmis**[8]**. Très récemment, un groupe de chercheurs chinois a procédé à la synthèse et l'évaluation de l'activité anti hépatite B d'une série de neuf dérivés de 4-aryl-6-chloroquinoléine 4 **[10]**.

Quelques exemples sont représentés dans la figure 1

H₂N CH₃ CH₃ CH₃ CH₃ CH₃

(B) Benzastatine C:R=Cl Benzastatine D:R=OH Extrait de treptomyces nitrosporeux 30643 **2**

Glycocitradine Extrait des feuilles de Glycosmis citrifolia **1**

(C) (+)-Nά-quinaldyl-L-arginie
 obtenu de la occinelle subcoccinella
 24-punctata 3

(D) 2-[6-Chloro-4-(2-Chloro phenyl)-2-méthoxy quinoléin-3-yl]éthanol 4

Dés lors, toute une bibliothèque de dérivés de la quinoléine qu'ils soient d'origine naturelle, par semi-synthétique ou synthétique a vu le jour et ne cesse de s'enrichir chaque année. Les composés que nous représenterons dans ce qui suit ne constituent qu'une infime partie des dérivés actifs dans le domaine biologique et/ ou thérapeutique.

En effet, certains de ces composés sont utilisés comme antipaludéens [12], antibactériens [13], antifongiques [14], anti-tumoraux [15], anti-inflammatoires [16], antibiotiques [17] et herbicides [18].

La quinine **1.1** est le premier des alcaloïdes extraits de l'écorce du quinquina (cinchona succirula, Rubiaceae), un arbre de la famille des rubiacées originaire d'Amérique du Sud. La quinine, premier antipaludéen naturel, demeure le médicament de référence de cette maladie endémique des régions tropicales ou subtropicales, et qui reste la prière cause de mortalité en Afrique. Elle est aussi utilisée comme régulateur de la pression sanguine coronarienne ainsi que dans le traitement de certaines atrophies du muscle cardiaque. Depuis une trentaine d'années que d'alcaloïdes ont été décrits à partir de cette écorce, dont plusieurs sont actifs in *vitro* sur les souches de *Plasmodium falciparum*, un des quatre espèces du parasite *Plasmodium* responsable de la malaria. Les quatre alcaloïdes les plus connus sont la quinine, la quinidine **1.2** et leurs dérivés non méthoxyles, la cinchonine **1.3** et la chonidine **1.4[19]**. La quinidine, énantiomère de la quinine, est un régulateur du

6

rythme cardiaque **[20]**. Le sulfate de la quinidine est employé dans le traitement des tachycadies et de l'arythmie.

Cinchonine 1.3

Cinchonidie 1.4

Les aminoquinoléines sont particulièrement actives contre le parasite de la malaria tel que les 8-amino-quinoleines (tafénoquine et primaquine) et les amino-alcools quinoléines (méfloquine, halofantrine, luméfantrine). Les 4-aminoquinoleines, dont un des représentent est l'amodiaquine 1.5 découverte en 1944 [21], est utilisée également dans le traitement du paludisme. De structure proche de la chloroquine1.6 (Nivaquine R), mais de faible coût, elle est utilisée dans le traitement des accès palustres et conserve une activité sur de nombreuses souches de *Plasmodiumfalciparum* résistantes à la chloroquine [22]. Ce produit est commercialisé sous le nom de Camoquine R ou Flavoquine R.

Les hydroxyquinoléines etleurs dérivés sont des composés qui ont montré une activité anti-oxydante et des propriétés chélatrices du fer avérées [23]. Les plus connus sont le 8-quinolinol 1.7 utilisé dans le traitement de cancer du sein [24], et le *clioquinol* 1.8 dans le traitement de pathologies telle la maladie d*Alzheimer*, de *Parkinson* ou d'*Huntington*[25]. Le 7-chloro(fluoro)-4-quinolinol 1.9 est utilisé en chimie comme anticancéreux (en phase clinique) [26], alors que 5-nitro-8-quinolinol 1.10, commercialisé sous le nom de *Nibiol*, possède des propriétés antibactériennes démontrées, et il est largement utilisé pour traiter les infections urinaires [27].

8-quinolol 1.7

7-Chloro-4-quinolinol 1.9

Clioquinol 1.8

La famille de quinolone forme une large classe de composés quinoléiques de synthèse dont quelques dérivés ont prouvé des activités thérapeutiques déverse **[28]**. L'acide nalidixique (*Negram*) **1.11** qui constitue le chef de file historique de quinolones, est un antiseptique, désinfectent et antibiotique, découvert en 1962. En 1985, l'insertion de l'atome de fluor a permis d'augmenter fortement la diffusion cellulaire des quinolones (jusqu'à 200 fois plus), ce fut la naissance des fluoroquinolones qui sont de puissant antibiotiques capables de lutter contre une grande variété de germes chez l'homme et l'animal tels que les salmonelles, les colibacilles et autres streptocoques **[29]**, la *norfloxacine***1.12** en est un exemple.

D'un autre coté, certaines fonctionnalités telles les carboxamides associées à un noyau quinoléique ont montré diverses activités biologiques. Les complexes qui noleine-carboxamide de cuivre II, ont montré une cytotoxicité remarquable envers les cellules lencémiques P-388 et HL-60 [30]. Le *Linomide*1.13 ou LS-2616 possède une action inhibitrice contre l'angiogenèse, les métastases, et l'infiltration des macrophages dans les cancers de la prostate de rat [31]. Le *Tasquinimod* (ABR-215050,54682876CID) 1.14[32], un nouveau médicament administré par voie orale, est actuellement en études chimiques (phase III) pour le traitement de tumeurs solides.

Intéressés par les propriétés pharmacologiques de ce type de composés, Shivaraj *et al.* ontsynthétisé et évalué l'activité antibactérienne *in vitro* contre *Escherichia coli* et *Staphylococus* aureus d'une sérié de 2-chloroquinolin-4-carboxamide et -6-carboxamide (Schéma.1) **[33]**. Les résultats obtenus indiquent que la majorité des composés préparés sont actifs, à l'échelle du milligramme, contre les microorganismes testés.

Schéma 1

BOP : Benzotriazole -1-yl-oxy-tri(diméthylamino)-phosphonium exafluorophosphate TEA (ET_3N) : Triéthylamine

TA : Température ambiante

POCl₃ : Trichlorure de phosphoryle

DMF: N,N-diméthylformamide

III-Les composés hybrides de la quinoléine : quelques exemples

Ces dernières années, plusieurs laboratoires de la recherche se sont intéressés à la synthèse de nouvelles molécules possédant des activités biologiques potentielles par combinaison de deux pharmacophore. Ce procédé représente une nouvelle approche qui pourra permettre la conception de médicaments plus puissants avec une double activité [34]. En outre sur le plan thérapeutique, l'administration d'un médicament composé d'une seule le molécule agissant sur plusieurs cibles est nettement plus attractive du point de vue efficacité et économie que la combinaison de plusieurs médicaments [35].

Dans ce cadre, *Desai*et al. ont rapporté la synthèse d'une série de nouveaux composés hybrides quinoléine thiazole à partir de la 2-chloro-3-formylquinoléine **[36]**. L'évaluation de l'activité antimicrobienne et antifongique a été réalisé sur plusieurs souches en prenant respectivement la *Gentamycine* et le *Nystatin* comme médicaments standards. Les résultats obtenus ont montré que les composés **1.17a 1.17b** sont actifs contre *E. coli* et *P.aeruginosa* respectivement, tandis que le composé **1.17c** possède une haute activité contre *P.aeruginosa*.

1.17

Encouragés par les activités anticancéreuses et antiinflamatoires expérimentalement prouvées des noyaux quinolones et thiazolidinones [37], Kumar Suthar*et al.* ont introduit une substitution supplémentaire sur ces squelettes pour en améliorer l'activité [38]. Dans ce but, ils ont synthétisé et évalué l'activité anti-inflammatoire et anticancéreuse d'une bibliothèque de trente et un composés hybrides quinoleine-thizolidinones 1.18. La séquence réactionnelle est composée de deux étapes: la première fournit, par cyclocondensattion du m-phénylènediamine avec l'acétoacétate d'éthyle, le 7-amino-4-méthylquinolein-2(IH)-one. La réaction one-pot qui s'en suit: addition de différents aldéhydes et de l'acide thioglycolique en présence du dicyclohexylcarbodiimide (DDC), conduit aux composés hybrides. Schéma 2.

Schéma.2

Ar : Aryle DCC : N,N'-Dicyclohéxylcarbodi-imide

THF : Tétrahydrofurane

IV-Synthèse des dérivés de la quinoléine

IV-1-Condensation des anilines

Dans l'ensemble des méthodes utilisées pour accéder aux quinoléines, on peut distinguer deux grandes voies de synthèse:

I-Condensation d'une aniline *ortho*-substituée avec une autre unité qui apporte les deux carbones manquants à la construction du bicycle. Ce sont les synthèses de Friedländer [39], Pfitzinger [40] et Niementowski [41].

Ainsi par exemple la première synthèse de quinoléine, réalisée par Friedlander en 1882 : schéma.3

Schéma.3

De manière générale, cette méthode permet d'accéder à toutes les quinoléines de type I. Schéma.4

Schéma.4

Le plus souvent, un catalyseur basique (NaOH, KOH, pipéridine) est utilisé. La réaction peut également être réalisée en absence de catalyseur. Dans ce cas, elle est menée sans solvant, et le milieu réactionnel est chauffé à 150°-200° afin de permettre la déshydratation finale.

Ces conditions ne sont pas toujours compatibles avec l'utilisation de substrats élaborés, et de nombreuses améliorations de ce couplage ont vu le jour.

Cyclisation oxydante catalysée au ruthénium du 2-aminobenzylalcool avec diverses cétones [42]. Schéma.5

Hydroamination d'alcynes terminaux par des anilines catalysée au ruthénium [43]. Schéma.6

2-Condensation d'une aniline avec un ou plusieurs réactifs apportant les trois carbones nécessaires à la construction du bicycle. On trouve les synthèses de Skaup [44] (schéma 98 4), combes [45] et Doebner-Miller [46]. Schéma.7

Schéma.7

Couplage d'anilines et d'alkylvinyl cétones en présence de chlorure d'indium (III) adsorbé sur gel de silice [47]. Schéma.8

Schéma.8

Condensation et cyclisation d'une aniline avec un sel de « vinamidinum »bistetrafuoroborate [48]. Schéma.9

Schéma.9

Couplage cyclisent catalysé au rhodium de chlorures de Naryltrifluoroacétimidoyle avec des alcynes [49].

Schéma.10

Ph : phényle

Il y a aussi une autre méthode pour accèdes au dérivés de quinoléine, cette méthode est basé sur le complexe de Vilsmeir.

IV-2-La synthèse des quinoléines par la méthode de Vilsmeir

-A partir des anilides [50-51]

Depuis 1977, O-Meth-Cohn et coll. Ont mis au point une nouvelle technique de cyclisation des amides à partir du complexe de Vilsmeir. Ce complexe est préparé à partir de 7 moles de POCl₃ et 3 moles de DMF à froid et sous agitation pendant 30 minutes. En suite, on ajoute au mélange 1mole d'acetanilide ; le tout est chauffé à 75° C pendant deux heures environ.

Cette réaction donne le 3-formylaquinoléine **[52-53]1** ou le 3-formol thinopyridine **2**. schéma.11.

Schéma.11

Dans le cas où le noyau aromatique des anilides serait non substituent, ou obtiendrait le formamidine **3** à la place des composés **4** et **5**. La cyclisation ne se produit pas. Si on réduit le DMF de 3à 1.5 moles, gardant 7moles de POCl₃, on obtiendra 2-chloro-3,7-substitué quinoléine [**53**]. Schéma.12

Schéma.12

En remplaçant le complexe de Vilsmeir par le N-nitrodialkylamine, on obtiendrait les mêmes conditions, des quinoquasalinates **5**, mais avec un rendement faible. Schéma.13

Schéma.13

V-Réactions des dérivés de la quinoléine préparés par la méthode de Vilsmeir

La réaction de Vilsmeir est une formulation de composés aromatiques ou hétérocycliqes par addition de N,N-diméthylformamide (DMF) sur l'oxychlorure de phosphore pour donner un ion chloronium, qui joue le rôle d'électrophile réactif. En chauffant le composé 6 dans l'acide acétique pendant deux heures, on obtient le composé 7 qui réagit, à son tour, avec un mélange de potasse (alcool (10%) pendant deux heures pour donner le feroquinoléine. Le composé 6 peut aussi réagir à chaud avec la thiourée [54] pour donner la thioquinoléine. Schéma.14

Schéma.14

VI-Synthèse, étude spectroscopique et activité biologique (activité antioxydante) de deux dérivés de la quinoléine

VI-1-Introduction

Cette partie et est consacré à l'étude spectroscopique des deux dérivés de la quinoléine, à savoir : le 3-chloro-*N*-(quinolin-8-yl)propanamide chlorid **Q3** et le 4-chloro-*N*-(quinolin-8-yl)butanamide **Q4**. Ils ont été obtenus, par voie de synthèse selon la méthode proposée par Meth-Cohn et all. **[50-51]**, en deux étapes. La première consiste à préparer l'anilide par une réaction sur le composé aromatique qui possède la fonction amine (NH₂). Ensuite on fait une étude biologique sur les deux composés organique synthétisés ou niveau de laboratoire, cette étude est basé sur l'éficasité et l'activité antioxydant. On fait trois activités antioxydant, DPPH-ABTS-CUPRAC et enfin le pouvoir de réducteur, et on utilise deux concentration sur les produit, le 0.5 mg et le 4 mg.

VI-2-Préparation des dérivés de la quinoléine à partir des anilides quinoléines VI-2-a-Préparation de composé Q3

La méthode de préparation choisie consiste à préparer la dérivé de quinoléine à partir des amides obtenus par une formation de l' α -quinoléine amine avec un chlorure d'acide, résultant de l'addition du 3-chloropropylchloride à l' α -quinoléine amine disoute dans l'éther-diéthylique anhydre à froid (mélange à froid et température normale). On laisse le mélange sous agitation pendant 15minutes.

Schéme1: Formation d'un dérivé de quinoléine

VI-2-b-Analyse spectroscopique du composé Q3

Nous avons utilisé la spectroscopie R.M.N.¹H **[55]** à hauts champs (250MHz) ainsi que la R.M.N.¹³C sont utilisées et finalement confirmé par la méthode de DRX. Le spectre R.M.N.¹H (voir tableau 1) donne un triplet à 3.3 ppm correspondant au

groupement C<u>H₂</u>Cl et un autre triplet mais à 2.2 ppm correspondant au groupement CH₂C=O, ainsi qu'un multiplet entre 7.2 et 8 ppm correspondant aux 6H aromatiques. Le spectre R.M.N.¹³C (voir tableau 2) nous confirme l'existence de deux carbones sp³: l'un à 39.72 ppm et l'autre à 40.18 ppm qui correspondent, respectivement, aux groupements CH₂C=O et CH₂Cl, ainsi l'existence d'un carbone sp² à 169.86 ppm correspond au groupement C=O.

Tableau-1 : $R.M.N.^{1}H$

δ(ppm)	Signal	n°: Hydrogène	Identification
3.3	t	2H	-C <u>H</u> 2-C=O
2.2	t	2H	-C <u>H</u> 2-Cl
7.2-8	m	6H	aromatique
10.9	S	1H	-N <u>H</u>
Tableau-2:	R.M.N. ¹³ C		
δ(ppm)			Identification
39.72			-CH ₂ -C=O
40.18			-CH ₂ -Cl
169.86			C=O

Les spectres R.M.N de proton et R.M.N carbone 13 et Ortep de l'unité asymétrique du composé **Q3** sous présenté dans les Figure-1, Figure-2 et Figure-3.

Figure-1 : *Ortep* de l'unité asymétrique de la structure $C_{12}H_{11}N_2O_1Cl_2$ Q3. Les ellipsoïdes d'agitation thermique sont donnés avec une probabilité de 50 %.

Figure 2. Spectre ¹H RMN. Composé Q3

Figure 3. Spectre ¹³C RMN. Composé Q3

VI-3-a-Préparation de composé Q4

Ce composé a été préparé et synthétisé suivant la méthode et le protocole de préparation du composé Q3 mais on été changé le 3-chloropropylchloride par le 3-chlorobutylchloride.

Schéme2 : Formation d'un dérivé de quinoléine

VI-3-b-Analyse spectroscopique du composé Q4

Les caractéristiques des spectres R.M.N.¹H et R.M.N.¹³C sont présentées dans les tableaux 3 et 4 respectivement.

Tableau-3 : $R.M.N.^{1}H$

δ(ppm)	Signal	n°: Hydrogène	Identification
0.0		211	CU
2.3	q	2H	-C <u>H</u> 2
3	t	2H	-C <u>H</u> 2-C=O
3.7	t	2H	-CH ₂ -Cl
7.2-8	m	6H	aromatique
10.9	S	1H	-N <u>H</u>

Tableau-4 : $R.M.N.^{13}C$

δ(ppm)	Identification
28.29	$-CH_2$
34.51	-CH ₂ -C=O
44.38	-CH ₂ -Cl
172.36	C=O

Les spectre R.M.N de proton et R.M.N carbone 13du composé Q4 sous présenté dans les Figure-4, Figure-5.

Figure 4. Spectre ¹H RMN. Composé Q4

Figure 5. Spectre ¹³C RMN. Composé Q4

6-2-5-Partie Expérimentale

condition opératoire

Les réactions de synthèse qui nous avons fait ont été effectuées dans des conditions normale et à température ambiante.

Analyse spectroscopique

Les spectres R.M.N.¹H et R.M.N.¹³C ont été enregistrés dans le chloroforme deutéré (CDCl₃) à dilution infinie à haut champs (250MHz pour la R.M.N.¹H et R.M.N.¹³C) sur un spectrophotomètre de type Bruker Avence DPX250. Les déplacements chimiques " δ " sont exprimés en ppm par rapport au signal de résonance du tétraméthylsilane (T.M.S) pris comme référence interne et la position des pics est donnée en échelle δ (δ =0 pour le T.M.S). Les abréviations utilisées sont les suivantes :

s= singulet, d= doublet, t= triplet, q= quadruplait, m= multiplet, j= constante de couplage (Hz).

Préparation de deux composés Q3 et Q4

A une solution de quinolin-8-amine aromatique dissoute dans un volume de l'éther diéthylique, on ajoute le 3-chloropropylchloride pour composé **Q3** et le 3-chlorobutylchloride pour composé **Q4**. Le mélange est laissé sous agitation à la température ambiante pendant 15 minutes, le précipité est formés. un benzaldéhydes dissoute dans le même solvant. Schéma.3.

Schéma.3 : présentation de deux (02) composés organique synthétisés.

On résume les détailles et le mode de synthèse de deux 2 composés organique dans le tableau.1.

Composé organique	Mode de synthèse et temps de réaction	Solvant utilisé	Forme de produit et couleur	Méthode spectro- scopique utilisé/ RMN ¹ H et ¹³ C
Composé Q3	Synthèse à température ambiante (T° a l'air libre)	Éther diéthylique	poudre de couleur jaune pale	2.2 ; 3.3 ;[7.2-8]; 10.9 39.72;40.18;169.86.
Composé Q4	Synthèse à température ambiante (T° a l'air libre)	Éther diéthylique	poudre de couleur orange	2.3; 3; 3.7;[7.2-8]; 10.9. 28.29;34.51; 44.38; 172.36.

Activité antioxydante

VII-Généralités sur les activités antioxydantes

Plusieurs méthodes sont utilisées pour évaluer, *in vitro* et *in vivo*, l'activité antioxydante par piégeage de radicaux différents, comme les peroxydes ROO[•] par les méthodes ORAC (Oxygen Radical Absorbance Capacity) et TRAP (Total Radical-Trapping Antioxidant Parameter) [56]; les ions ferriques par la méthode FRAP (ferric ion Reducing Antioxident Parameter) [57] ou les radicaux ABTS[•] (Sel d'ammonium de l'acide 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonique) [58], ainsi que la méthode utilisant le radical libre DPPH[•] (diphényl-picrylhydrazyle) [59].

Compte tenu de la complexité des processus d'oxydation et la nature diversifiée des antioxydants, avec des composants à la fois hydrophiles et hydrophobes, il n'y a pas une méthode universelle par laquelle l'activité antioxydante peut être mesurée quantitativement d'une façon bien précise. Le plus souvent il faut combiner les réponses de tests différents et complémentaires pour avoir une indication sur la capacité antioxydante de l'échantillon à tester [60-62];

VII-1-Méthode du DPPH

De point de vue méthodologique, le test au radical libre DPPH• est recommandé pour des composés contenant, SH⁻, NH⁻ et OH⁻[63]. Il s'effectue à température ambiante, les groupes permettant d'éliminer tout risque de dégradation thermique des molécules thermolabiles. Le test est largement utilisé au niveau de l'évolution des extraits hydrophiles en provenance de thé vert, des jus de fruits et de raisins, pépins et pulpes, très riches en composés phénoliques [64-75].

-Réaction entre le radical libre DPPH' et l'antioxydant

Le DPPH (2,2-diphényl-1-picryl hydrazyl) est un radical stable de couleur violette en solution. Lorsqu'il est réduit en présence d'une substance réductrice (par un mécanise combinant le transfert d'un atome d'hydrogène et le transfert d'électrons), la couleur de la solution devient jaune. Plus la substance est antioxydante et plus la coloration violette initiale va disparaître. On apprécie ce changement de couleur grâce à un enregistrement à la longueur 540 nm (à l'aide d'un spectrophotomètre) (Schéma.1).

Schéma.1. Transformation du radical DPPH[•] en DPPHH.

Le piégeage des radicaux libres par des antioxydants est tributaire de deux types de mécanismes: (i) la libération de l'atome d'hydrogène du groupement hydroxyle (cinétique rapide de certains acides et dérivés phénoliques); (ii) la libération d'un électron (cinétique lente des dérivés glycosylés et des anthocyanes) **[76-77]**.

Dans le cas des composés phénolique (Φ -OH), le mécanisme principal d'action est le piégeage des radicaux libres par le transfert de l'atome H sur le DPPH[•] alors transformé en une molécule stable DPPHH [**78-79**].

 $DPPH^{\bullet} + \Phi - OH \rightarrow DPPHH + \Phi O^{\bullet}$

plusieurs voies réactionnelles sont alors possibles qui forment des structures plus au moins stables:

 $\Phi O' + \Phi O' \rightarrow \Phi O - O \Phi$ DPPH' + $\Phi O' \rightarrow \Phi O - DPPH$ $\Phi O'($ semi-quinone)^{-H} $\rightarrow \Phi = O$ (quinone)

La capacité anti-radicalaire (capacité à fixer des radicaux libres, donc à arrêter la propagation de la réaction en chaîne) ne peut être mesurée directement, mais par contrôle de l'effet de la réactivité. Plusieurs facteurs influent sur le potentiel antioxydant et la cinétique de réduction, notamment les conditions de la réaction
(temps, rapport Antioxydant (DPPH[•], type de solvant, pH) et le profil phénolique en particulier **[80]**.

VII-2-Piégeage de l'ABTS (2,2'-azinobis-[3-ethylbenzothiazoline-6-sulfonic acid])

Dans la méthode TEAC (Trolux equivalent antioxidant capacity), l'activité antioxydante totale d'une molécule est déduite de sa capacité à inhiber ABTS[•] +, obtenu à partir de l'ABTS (Sel d'ammonium de l'acide 2,2'-azinobis-(3-éthylbenzothiazoline-6-sulfonique)) comparativement à un antioxydant de référence : le Trolox (acide 6-hydroxy-2,5,7,8-tétramethylchroman-2-carboxylique), dont la structure moléculaire cyclique est similaire à celle de la vitamine E.

L'obtention du radical cation résulte du contact de l'ABTS avec une enzyme de peroxydation (peroxydase metmyoglobine **[81]** ou horseradish peroxidase) **[82]** en présence de H_2O_2 ou d'un oxydant (dioxyde de manganèse **[83-84]** ou persulfate de potassium **[85]**. Le radical ABTS⁺⁺, en contact avec un donneur de H^{*} conduit à l'ABTS⁺ et à la décoloration à 734 nm de la solution **[86]**.

D'autres auteurs utilisent l'acide 2 ,2'-azinobis-(3-éthlbezothiazoline-6-sulfonique), ou ABTS, à la place de son sel d'ammounium et analysent l'inhibition du radical ABTS, produit par un initiateur de radicaux thermolabiles, l'ABAP (2,2'-azobis-2amidinopropane) HCl **[87]**. La cinétique de réaction de 'antioxydant étudié doit être examinée préalablement pour déterminer la fin de réaction. La capacité antioxydante en équivalent Trolox (TEAC) correspond à la concentration (mmole/l ou mg/l) de Trolox[®] ayant la même activité qu'une même concentration unitaire de substance à tester, jus de fruit par exemple **[81]** (Schéma.2).

ABTS : Sel d'ammonium de l'acide 2,2'-azinobis-(3-éthylbenzothiazoline-6-sulfonique)

Schéma.2.Formation et piégeage du radical ABTS⁺par un antioxydant donneur de H[•]

VII-3-Test de la capacité antioxydante par réduction du cuivre (CUPRAC)

La méthode CUPRAC (cupric ion Reducing Antioxidant Capacity) est basée sur le suivie de la diminution de l'absorbance accrue du complexe Néocuproéne (Nc), cuivre $(Cu^{+2})Nc_2$ - Cu^{+2} . En effet, en présence d'un agent antioxydant, le complexe cuivre-neocuproéne est réduit et cette réaction est quantifié spectrophotometriquement a une longueur d'onde de 450 nm **[88]**.Le principe de ce test se base sur la conversion des hydroxyles phénoliques en quinones à travers la réduction du complexe Cu^{+2} -Nc, produisant ainsi un complexe chromogène de Cu^{+2} -Nc qui absorbe à 450 nm Schéma.3.

Schéma.3. Réduction du complexe chromogène de Cu⁺²-Nc

VII-4-Activité de pouvoir réducteur

L'activité pouvoir réducteur est déterminée par la méthode de Oyaizu **[89]** avec une légère modification.

VII-5-Matériels et méthodes

VII-5-1-Activités antioxydante

L'étude de l'activité antioxydante des différents composés synthétisés est testée selon quatre **4** méthodes : piégeage du radical libre DPPH, piégeage de l'ABTS, méthode CUPRAC et pouvoir réducteur.

VII-5-2-Activité antiradicalaire au DPPH

L'activité du DPPH a été mesuré selon le protocole décrit par Blois **[90]**, le principe de cette méthode est la réduction du DPPH (2,2-diphenyl-1-picryl hydrazyl) de couleur violette en 2,2-diphenyl-1-picryl hydrazine de couleur jaune. Le DPPH absorbe à 517 nm, mais lors de la réduction par un antioxydant, son absorption diminue. Brièvement, une solution de 0,4 mM de DPPH préparée dans le méthanol et 160 μ l de cette solution ont été ajoutés à 40 μ l d'échantillon dilué dans des solutions de DMSO deutéré des concentrations différentes. Trente minutes plus tard, l'absorbance a été mesurée à 517 nm. Le BHT et l' α -tocophérol ont été utilisés comme normes antioxydantes, pour la comparaison de l'activité avec les produits utilisés. La faible valeur d'absorbance de la réaction du mélange indique une activité de piégeage des radicaux libres supérieure. La capacité à piéger le radical DPPH a été calculée selon l'équation suivante

Inhibition (%) =
$$\frac{A_{controle} - A_{Extrait}}{A_{Controle}} \times 100$$

A_{blanc} est l'absorbance de la réaction ne contenant que les réactifs.

A_{extrait} est l'absorbance de la réaction contenant les réactifs et l'extrait.

VII-5-3-Test de la capacité antioxydante par réduction du cuivre (CUPRAC)

Laréduction du cuivre a été déterminée par la méthode CUPRAC décrite par Apak et al **[88]**. Une solution est préparé avec le mélange des volumes de: 50 μ l Cu (II) (10 mM), 50 μ l neocuprine (7,5 mM) et 60 μ l de solution tampon (1 M, pH = 7,0). Différentes concentrations d'extrait ont été ajoutées au mélange initial afin de rendre le volume final de 200 μ l. Les micro-plaques de 96 puits ont été mises à l'abri de la lumière, et après 1 h, l'absorbance est mesurée à 450 nm. La capacité de réduction des produits a été comparée à celles de l' α -tocophérol et du BHT. Les résultats ont été calculés à titre de A_{0.5} (µg / ml) correspondant à la concentration indiquant 0,50 d'absorbance.

VII-5-4-Activité du piégeage de l'ABTS

L'analyse spectrophotométrique de l'activité de piégeage de l'ABTS⁺⁺ a été déterminée selon le procédé de Re et al **[58]**, avec de légères modifications. l'ABTS⁺⁺ a été produit par la réaction entre 7 mM de l'ABTS dans l'eau et 2,45 mM de persulfate de potassium est stockée dans l'obscurité à température ambiante pendant 12 h. L'oxydation de l'ABTS commence immédiatement mais l'absorption n'est pas maximale et se stabilise après 6 heures de temps. Le radical cation est stable sous cette forme depuis plus de 2 jours dans le stockage dans l'obscurité à la température ambiante. Avant utilisation, l'ABTS a été dilué pour obtenir une absorbance de 0,A708 ± 0,025 à 734 nm avec de l'éthanol. Ensuite, 160 µl de la solution de l'ABTS⁺⁺ ont été ajoutés à 40 µl de la solution d'extrait dissout dans le méthanol à différentes concentration. Après 30 min, l'absorbance a été mesurée à 734 nm en utilisant un lecteur de micro-plaques à 96 puits.

Les pourcentages d'inhibition ont été calculés pour chaque concentration par rapport à une absorbance à blanc de méthanol. La capacité de piégeage des l'ABTS⁺ a été calculée en utilisant l'équation suivante :

ABTS inhibition (%) =
$$\frac{A_{controle} - A_{Extrait}}{A_{Controle}} \times 100$$

VII-5-5-Activité pouvoir réducteur

10 µl extrait + 40 µl phosphate buffer (pH 6.6) + 50 µl potassium ferricyanide (1%) $K_3Fe[CN]_6$ (1g de $K_3Fe[CN]_6$ dans 100 ml H₂O) + incubé à 50°C pendant 20 mn + 50

 μ l trichloro acetic acid [TCA] (10%) (1g de TCA dans 10ml H₂O) + 40 μ l H₂O + 10 μ l ferric chloride FeCl₃ (0.1%) (0.1 g de FeCl₃ dans 100 ml H₂O) + lecture à 700 nm.

VII-5-6-Résultats des activités antioxydantes de deux composés Q3 et Q4

Trois méthodes ont été utilisées pour évaluer l'activité antioxydante des quelques produits synthétisés au niveau de laboratoire.

VII-5-6-1-Activité antiradicalaire au DPPH des composés Q3 et Q4

Les résultats de l'activité antiradicalaire au DPPH sont représentés par les pourcentages d'inhibition pour chaque concentration ainsi que les valeurs de la concentration d'inhibition de 50% (Tableau.1).

Le composé **Q4** a présenté une moyenne activité antiradicalaire ($CI_{50} = 65,25\pm4,16 \ \mu g.mL^{-1}$), en comparaison avec les standards BHA ($CI_{50} = 6,14\pm0,41 \ \mu g.mL^{-1}$); BHT ($CI_{50} = 12,99\pm0,41 \ \mu g.mL^{-1}$) et le standard α -tocopherol ($CI_{50} = 13,02\pm5,17 \ \mu g.mL^{-1}$) (Tableau.1) avec 4mg, et une activité mieux, mais avec 0,5mg, le $CI_{50} = 29,97\pm0,45 \ \mu g.mL^{-1}$ de **Q4**, en comparaison avec les standards utilisées [BHA ($CI_{50} = 6,82\pm0,49 \ \mu g.mL^{-1}$)].

	Inhibition%						C	$2I_{50}/\mu g.mL^{-1}$
Concentration	12,5	25	50	100	200	400	800	
µg.mL ⁻¹								
Composé Q4	$30,76\pm$	$34,74\pm$	44,51±	$46,98\pm$	49,16±	$50,30\pm$	$46,79\pm$	65.25±4.16
	1,08	1,89	1,30	0,91	0,91	0,72	1,03	
BHT	$49{,}09{\pm}$	$72,63\pm$	$88{,}73{\pm}$	94,00±	$94{,}97{\pm}$	$95,38\pm$	$95,02\pm$	12.99±0.41
	0,76	2,06	0,89	0,31	0,08	0,41	0,23	
BHA	76,55 \pm	$79,89\pm$	81,73±	$84,\!18\pm$	$87,13\pm$	89,36±	$90,14\pm$	6.14±0.41
	0,48	0,26	0,10	0,10	0,17	0,19	0,00	
α-Tocopherol	37,21±	$81,53\pm$	$89,23\pm$	$89,38\pm$	$89,45\pm$	89,99±	$89,52\pm$	13.02±5.17
	1,82	1,51	0,12	0,19	0,22	0,23	0,33	

Tableau-1: Inhibition du radical DPPH par le composé Q4

Le composé **Q3** a présenté une faible activité antiradicalaire ($CI_{50}>100 \ \mu g.mL^{-1}$), en comparaison avec les standards BHA ($CI_{50} = 6,14\pm0,41 \ \mu g.mL^{-1}$); BHT ($CI_{50} = 12,99\pm0,41 \ \mu g.mL^{-1}$) et le standard α -tocopherol ($CI_{50} = 13,02\pm5,17 \ \mu g.mL^{-1}$). (Tableau.2).

	Inhibition%							CI ₅₀ / µg.mL ⁻¹	
Concentration	1,5625	3,125	6,25	12,5	25	50	100		
µg.mL ⁻¹									
Composé Q3	$2,85\pm$	2,15±	2,29±	$1,02\pm$	$14,81\pm$	29,73±	47,27±	>100	
	0,96	0,45	2,50	1,20	2,70	0,65	1,78		
BHT	47,77±	56,93±	$72,83\pm$	$78,46\pm$	79,48 \pm	80,03±	80,10±	6.82±0.49	
	1,22	1,84	1,23	1,01	0,31	1,62	0,66		
BHA	22,21±	31,73±	54,89±	$67,\!60\pm$	76,77±	78,67±	79,01±	6.82±0.49	
	1,24	1,22	3,60	1,13	0,54	1,31	0,89		

Tableau-2: Inhibition du radical DPPH par le composé Q3 avec 0.5 mg

VII-5-6-2-Test de la capacité antioxydante par réduction du cuivre (CUPRAC)

Le composé **Q3** a montré une faible activité inhibition du COPRAC ($A_{0.50}>100$) que celle de standard BHT ($A_{0.50}=8,97\pm3,94 \ \mu g.mL^{-1}$) (Tableau II. Figure II). Le composé **Q4** a montré une meilleure activité inhibitrice du CUPRAC ($A_{0.50}=3,42\pm2,90\ \mu g.mL^{-1}$) que celle des standards BHA (Tableau.3).

	Absorbance						$A_{0.50}/\mu g.mL^{-1}$		
Concentration	12,5	25	50	100	200	400	800		
µg.mL ⁻¹									
Composé Q3	$0,15\pm$	$0,20\pm$	$0,28\pm$	$0,\!40\pm$	$0,70\pm$	$1,19\pm$	1,77±	>100	
	0,00	0,02	0,01	0,02	0,03	0,10	0,24		
Composé Q4	$0,73\pm$	$0,97\pm$	1,59±	2,94±	3,53±	4,27±	$4,11\pm$	15.03±1.50	
	0,03	0,06	0,17	0,23	0,36	0,10	0,11		
BHT	1,41±	2,22±	2,42±	$2,50\pm$	2,56±	2,86±	3,38±	8.97±3.94	
	0,03	0,05	0,02	0,01	0,05	0,07	0,13		

Tableau-3: Inhibition du CUPRAC par les composés Q3 etQ4.

VII-5-6-3-Activité antiradicalaire au ABTS de composé Q3

Le composé Q3 a montré une activité inhibitrice du radicalABTS^{\cdot} plus faible que celle des deux standards, le BHA et α -tocopherol (Tableau.4).

	Inhibition%						CI ₅₀ / µg.mL ⁻¹	
Concentration	12,5	25	50	100	200	400	800	
μg.mL ⁻¹								
Composé Q3	6,01±	17,32±	32,97±	57,97±	76,01±	82,64±	$87,30\pm$	>50
	1,57	1,19	2,70	1,65	0,12	0,82	0,51	
BHT	69,21±	78,23±	88,12±	88,76±	90,85±	90,95±	96,68 \pm	1.29±0.30
	0,40	1,34	1,28	3,07	1,74	0,51	0,39	
BHA	92,83±	94,68±	$94,95\pm$	$95,32\pm$	$95,59\pm$	95,83±	$95,86\pm$	1.81±0.10
	1,42	0,42	0,90	0,25	0,47	0,15	0,10	

Tableau-4. Inhibition du radical ABTS par les composé Q3

Figure.01: Inhibition de composé Q3 par a port au standards BHT et BHA BHT : Butylhydroxytoluène BHA : Butylhudroxyanisol α-tocopherol : équivalent de vitamine E

Références:

- [1]. Gautier Villars et Hammond. Chimie organique. 1986, p. 822.
- [2]. A.R. Katrizky J. M. Lagowsky. Principes de la chimie de composés

hétérocycliques, Gautier Villars. pp. 56-58.

- [3]. a) R. H. F. Manske. Chem. Rev., 1942, 30, 113;
- a) F. W. Bergstrom. Chem. Rev., 1944, 35, 77;
- a) R. C. Elderfield. *Heterocyclic compounds*, Wiley, New-YORK, Chapman.

[4]. N. Campbell, in "Rods chemistry of Carbon compounds", ed. S. Coffeg, Elseiver, Amsterdam, 2nd ed., **1976**, Vol. 4F. p. 231.

- [5]. F. F. Runge. Ann. Phys. Chem., 1834, 31(2), 65.
- [6]. C. Duval, R. Duval. Dictionnaire de la chimie et de ses applications. 3^{ème} édition.
 Dictionary of organic Compounds, Sixth Edition p. 647
- Lewis, R. J., Sax's Dangerous, Properties of Industrial Materials, 8 th edn., Van Nastrand Rein hold, **1992**, BDC 000.
- Nasipuri, detal, Indian j. Chem., Sect. B, 1976, 14, 819' synth).
- [7]. (a) R. G. Sundberg: «Cmprehensive Heterocyclic Chemistry»; A. R. Katritzky, C.
- W. Rees, Ed.; Pergamon: Oxford, 1984, Vol.4, p. 313; (b) M. Ito, H. Shimura, N.
- Watanabe, M. Tamai, A. Takahashi, Y. Tanaka, I. Arai, K. Hanada, *Agri. Biol. Chem.***1991**, 55, 2117-2121.
- [8]. (a) D. O'Hagan, Nat. Prod. Rep. 2000, 17, 435-446; (b) M. Croisy-Delcey, A.

Croisy, D. Carrez, C. Huel, A. Chiaroni, P. Ducrot, E. Bisagni, L. Jin, G. Leclercq, *Bioorg. Med. Chem.***2000**, 8, 2629-2641.

- [9]. J. P. Michael, Nat. Prod. Rep. 1997, 14, 21-41.
- [10]. R. -H. Guo, Q. Zhang, Y. -B. Ma, X. -Y. Huang, J. Luo, L. -J. Wang, C. -A.
- Geng, X. -M. Zhang, J. Zhou, Z. -Y. Jiang, J. -J. Chem, *Bioorg. Med. Chem.*2011, 19, 1400-1408.
- [11]. W. -G. Kim, J. -P. Kim, C. -J. Kim, K. -H. Lee, I. -D. Yoo, *J. Antibio*.1996, 49, 20-25.

[12]. W. Cunico, C. Cechinel, H. Bonacorso, M.Martins, N. Zannata, N. de Sousa, I. Freitas, R. Soares, A. Krettli, Bioorg. *Med. Chem. Lett.*2006, 16, 649-653.

[13]. (a) M. Kidwa, K. Bhushan, P. Sapra, R. Saxena, R. Gupta, Bioorg. Med.

*Chem.***2000**, 8, 69-72; (b) A. Lilienkampf, J. Mao, B. Wan, Y. Wang, S. G.

Franzblau, A. P. Kozikowski, J. Med. Chem. Lett. 2009, 52, 2109-2118; (c) X. Ma,

W. Zhou, R. Brun, Bioorg. Med. Chem. Lett. 2009, 19, 986-989.

[14]. (a) R. Musiol, J. Jampilek, V. Buchta, L. Silva, H. Niedbala, B. Podeszwa, A.

Palka, k. Majerz-Maniecka, B. Oleksyn, J. Polanski, Bioog. Med. Chem. 2006, 14,

3592-3598; (b) S. Kumar, S. Bawa, S. Drabu, B. P. Panda, *Med. Chem. Res.***2011**, 20, 1340-1348.

[15]. (a) P. Rodriguez-Loaiza, A. Quintero, R. Rodiguez-Sotres, J. -D. Solano, A.

Lira-Rocha, Eur. J. Med. Chem., 2004, 39, 5-10; (b) Y. Chen, C. Huang, Z. Tseng, F.

Chang, S. -Z. Yang, S. Lin, C. Tzeng, Bioorg. Med. Chem., 2006, 14, 3098-3105.

[16]. M. Hong, C. Cai, W. B. Yi, J. Fluorine Chem. 2010, 131, 111-114.

[17]. A. Mahamoud, J. Chevalier, A. Davin-Regli, J. Baebe, J. M. Pages, *Curr. Drugs. Targets*, 2006, 7, 843-847.

[18]. (a) Z. O. Liu, A. Fer, F. M. Lecoco, Weed Research, 1991, 31, 33-40; (b) B. P.

Bandgar, P. E. More, V. T. Kamble, J. V. Totrey, ARKIVOK, 2008, (xv), 1-8.

[19]. M. L. Willcox, G. Bodeker, Brit. Med. J.2004, 329, 1156-1159.

[20]. N. L. Allinger, M. P. Cava, D. C. De Jong, C. R. Johnson, N. A. Lebel, C. A. Stevens, *«Chimie organique»*; Ed.; science, Mc Graw-Hill, **1975**, pp. 774.

[21]. D. Camus, C. Slomianny, J. Savel, *«Biologie de plasmodium. Encyclopédie Médico-chirurgicale»*; Ed.; Elsevier: Paris, **1997**, A-10, pp. 802-807.

[22]. (a) W. M. Watkins, M. Percy, J. M. Crampton, S. Ward, D. K. Koech, R. E. Howells, *Trans. R. Soc. Trop. Med. Hyg.*1988, 82(1), 21-26; (b) C. G. Nevill, F. H. Verhoeff, C. G. Munafu, W. R. Ten Hove, H. J. Van Der Kaay, J. B. O. Were, *Méd.*

Afr. Noire, **1992**, 39(10), 697-701.

[23]. G. -X. Li, Z. -Q. Liu, X. -Y. Luo, Eur. J. Med. Chem. 2010, 45, 1821-1827.

[24]. P. Jia, R. Sheng, J. Zhang, L. Fang, Q. He, B. Yang, Y. Hu, *Eur. J. Med. Chem.*2009, 44, 772-784.

[25]. S. Bolognin, D. Drago, L. Messori, P. Zatta, Med. Res. Rev. 2009, 29, 547-570.

[26]. F. Gao, K. R. Bales, R.C. Dodel, J. Liu, X. Chen, H. Hample, M. R. Farlow, S. M. Paul, Y. Du, *Mol. Brain Res.*2002, 105, 108-114.

[27]. F. Dorvault, «L'officine», XXIème édition, Ed. ;Vigot: Paris, 1982, p.346.

[28]. (a) P. Cheng, Q. Zhang, Y. B. Ma, Z. Y. Jiang, X. M. Zhang, F. X. Zhang, J. J.

Chen, Bioorg. Med. Chem. Lett. 2008, 18, 3787-3789; (b) B. Batanero, F. Barba, J.

Org. Chem. 2003, 68, 3706-3709; (c) L. Xie, X. Qian, J. Cui, Y. Xiao, K. Wang, P.

Wu, L. Cong, *Bioorg. Med. Chem. Lett.***2008**, 16, 8713-8718; (d) J. J. Pocidalo, *«Les nouvelles quinolones»*, Ed. ; Arnette: Paris, 1985.

[29]. P. R. Mc Guirk, M. R. Jefsen, D. D. Mann, N. C. Eliot, P. Chang, *J. Med. Chem.*1992, 35, 611-620.

[**30**]. J. Zhang, X. Ke, C. Tu, J. Lin, J. Ding, L. Lin, H. K. Fun, X. You, Z. Guo, *Biometals*, **2003**, 16, 485-496.

[31]. J. Vukanovic, J. T. Isaacs, *Cancer Res.*1995, 55(7), 1499-1504.

[32]. (a) P. Bjork, A. Bjork, T. Vogl, M. Stenstrom, D. Liberg, A. Olsson, J. Roth, F.

Ivars, T. Leanderson, *PloS biology*, **2009**, 7, 97; (b) J. T. Isaacs, *Expert Opin*.

Investig. Drugs, 2010, 19, 1235-1243; (c) A. Olsson, A. Björk, J. Vallon-

Christersson, J. T. Isaacs, T. Leanderson, Mol. Cancer, 2010, 9, 107.

[**33**]. Y. Shivaraj, M. H. Naveen, G. R. Vijayakumar, D. B. Aruna kumar, *J. Korean Chem. Soc.***2013**, 57(2), 241-245.

[34]. (a) M. Koufaki, E. Theodorou, D. Galaris, L. Nousis, E. S. Katsanou, M. N.

Alexis, J. Med. Chem. 2006, 49, 300-306; (b) A. Antonello, A. Tarozzi, F. Morroni,

A. Cavalli, M. Rosini, P. Hrelia, M. L. Bolognesi, C. Melchiorre, J. Med. Chem. 2006,

49, 6642-6645; (c) S. R. Venkatachalam, A. Salaskar, A. Chattopadhyay, A. Barik, B.

Mishra, R. Gangabhagirathi, K. I. Priyadarsini, *Bioorg. Med. Chem.***2006**, 14, 6414-6419.

[**35**]. (a) V. Weber, C. Rubat, E. Duroux, C. Lartigue, M. Madesclaire, P. Coudert, *Bioorg. Med. Chem.***2005**, 13, 4552-4564; (b) J. M. Contreras, J. J. Bourguignon, *«The Practice of Medicinal Chemistry»*; C. G. Werouth, Ed.; Academic Press:

London, 2003, pp. 251-273.

[**36**]. C. Desai, N. Shihory, K. Rajpara, A. Dodiya, *Indian J. Chem.***2012**, 51B, 508-513.

[37]. (a) A. Verma, S. K. Saraf, Eur. J. Med. Chem. 2008, 43, 897-905; (b) V.

Gududuru, E. Hurh, J. T. Dalton, D. D. Miller, J. Med. Chem. 2005, 48, 2584-2588;

(c) F. M. Ruiz, R. Gil-Redondo, A. Morreale, A. R. Ortiz, C. Fabrega, J. Bravo, J. *Chem. Inf. Model.***2008**, 48, 844-854.

[**38**]. S. Kumar Suthar, V. Jaiswal, S. Lohan, S. Bansal, A. Chaudhary, A. Tiwari, A. Treasa Alex, A. Joesph, *Eur. J. Med. Chem.***2013**, 63, 589-602.

[39]. Cheng, C-C.; Yan, S-J. Org. Reactions1982, 28, 37.

[40]. Jones, G. in The Chemistry of Heterocyclic Compounds, 1977, 32, Weissberger,

A.; Taylor, E. C., Eds. Wiley Interscience : London.

[41]. Manske, R. H. Chem. Rev. 1942, 30, 113.

[42]. Cho, C. S. ; Kim, B. T. ; Kim, T-J. ; Shim, S. C. Chem. Commun. 2001, 2576-2577.

[43]. Tokunaga, M. ; Eckert, M. ; Wakatsuki, Y. Angew. *Chem. Int. Ed.*1999, 38, 3222-3225.

[44]. Manske, R. H. F. ; Kulka, M. ; *Org. Reactions*, Adams, R., Ed. ; Wiley : New York, **1953**, 7, 59.

[45]. Bergstrom, F. W. Chem. Rev. 1944, 35, 156.

[46]. Bergstrom, F. W. Chem. Rev. 1944, 35, 153.

[47]. Ranu, B. C.; Hajra, A.; Jana, U. Tetrahedron Lett. 2000, 41, 531-533.

[48]. Tom, N. J.; Ruel, E. M. Synthesis2001, 9, 1351-1355.

[49]. Amii, H.; Kishikawa, Y.; Uneyama, K. Org. Lett. 2001, 3, 1109-1112.

[50]. Marie Robert de Maheas. Mise au point. *Bull soc chimie française* (1962). p. 1990.

[51]. B. Narine and O. Meth-cohn. *Tetrahedron letters*.

a) (1978), p. 2045;

b) (**1979**), p: 3111.

[52]. O. Meth-cohn. S. Rhouati and B. Tarnowski. *Tetrahedron letters* (1979). p. 4885.

[53]. O. Meth-cohn, B. Narine B. Tarnowski. J. C. S. Perkin I. 1981. p. 1521 et 1531.

[**54**]. O. Meth-cohn. S. Rhouati. B. Tarnowski. And Robunson *J. C. S. Trans I*, **1981**. p. 1520, 1537, 2509.

[55]. M. L. Martin and G. J. Martin, *Manuel de résonance magnétique nucléaire*. Ed.A. Zoulay 1971, 40.

[56]. J.M. Ricardo da Silva, N. Darmon, Y. Fernandez, S. Mitjavila. Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. *J. Agric. & Food Chem.*, **1991**, 39, 549-1552.

[**57**]. I. F. Benzie, J. Strain. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. *Analytical Biochemistry.*, **1996**, 239, 70-76.

[58]. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans,

1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. *Free Radic. Biol & Med.*, 26, 1231-1237.

[**59**]. P. Sharma Om, T.K. Bhat. DPPH antioxidant assay revisited. *Food chem.*, **2009**, 113(4), 1202.

[60]. J. Tabart, C. Kevers, J. Pincemail, J. Defraigne, J. Dommes. Comparative antioxidant capacities of phenolic compounds meausured by various tests. *Food Chem.*, 2009, 113, 1226-1233.

[61]. S. C. Degaulejac, N. Provost, N. Vivas. Comparative study of polyphenol scavenging activities assessed by different methods, *J. Agric. & Food Chem.*, 1999, 47, 425-431.

[62]. L. Hua, W. Xiaoyu, L. Peihong, L. Yong, W. Hua. Comparative Study of Antioxidant Activity of Grape (*Vitis vinifera*) Seed Powder Assessed by Different Methods. *J. Food & Drug Anal.*, 2008, 16 (6), 67-73.

[63]. N. Salah, N. J. Miller, G. Paganga, L. Tijburg, G.P. Bolwell, C. A. Rice-Evans, 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chainbreaking antioxidants. *Arch. Biochem & Biophys.*, 339-346.

[64]. Y. Z. Cai, M. Sun, J. Xing, Q. Luo, H. Corke. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. *Life Sci.*, 2006, 78, 2872-2888.

[65]. L. I. Mensor, F. S. Menezes, G. G. Leitao, A. S. Reis, T. dos Santos, C. S.

Coube, S. G. Leitao. Screening of Brazillian plant extracts for antioxidant activity by the use of DPPH free radical method. *Phytother. Res.*, **2001**, 15, 127-130.

[66]. F. Nanjo, K. Goto, R. Seto, M. Suzuki, M. Sakai, Y. Hara. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. *Free Radic. Biol. Med.*, **1996**, 21(6), 895-902

[67]. B. S. Maataoui, A. Hmyene, S. Hilati. Avtivites anti-radicalaires d'extraits de jus de fruits du figuier de Barbarie (*Opuntia ficus indica*). *Libanese Sci. J.*, 2006, 7, 3-7.

[68]. M. Sendra Jose, E. Sentandreu, L. Navarro Jose. Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) for determination of the antiradical activity of Citrus juices. *Eur. Food Res. & Technol.*, 2006, 223, 615-624.
[69]. J.K. Cherif, I. M'Rabet, M. El Habiri, R. Abidi. Albrecht-Gary Anne-Marie. Mesure de l'activité antiradicalaire du jus et des peaux d'oranges tunisiennes par le radical DPPH. *Fruits*, 2006, 61, 99-104.

[70]. G. Angelov, L. Boyadzhiev, S. Georgieva, Antioxydant properties of some Bulgarian wines. Journal of International Scientific Publication: Materials, Methods and Technologies, V.3

[71]. D. P. Makris, G. Boskou, N. K. Andrikopoulos. Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. *Bioress. Technol.*, **2007**, 98, 2963-2967.

[72]. P. Iacopini, M. Baldi, P. Storchi, L. Sebastiani. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. *J. Food Compos. & Anal.*, **2008**, 21, 589-598.

[73]. B. Bozan, G. Tosun, D. Ozcan. Study on polyphenol content in the seeds of red grape (*Vitis vinifera L*) varieties cultivated in Turkey and their antioxydant activity. *Food Chem.*, 2008, 209, 426-430.

[74]. Y. Yilmaz, R. T. Toledo. Major flavonoids in grape seeds: antioxidant capacity of catechin, epicatechin and gallic acid. *J. Agric & Food Chem.*, **2004**, 52, 255-260.

[**75**]. E. F. Hatzidimitriou, N. Nenadis, M. Z. Tsimidou. Changes in the catechin and epicatechin content of grape seeds on storage under different water activity (aw) conditions. *Food Chem.*, **2007**, 105, 1504-1511

[76]. D. Huang, B. Ou, R. L. Prior. The chemistry behind antioxidant capacity assays. *J. Agric & Food Chem.*, 2005, 53, 1841-1856.

[77]. F. Nanjo, K. Goto, R. Seto, M. Suzuki, M. Sakai, Y. Hara. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. *Free Radic. Biol. Med.*, **1996**, 21, 895-902

[78]. P. Molyneux. The use of stable free radical diphenylpicrilhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin. *J. Sci. Technol.*, **2004**, 26, 211-219.

[**79**]. C. Sanchez-Moreno, A. Larrauri Jose, F. Saura-Calixto. A procedure to measure the antiradical efficiency of polyphenols. *J. Sci. Food & Agric.*, **1998**, 76, 270-276.

[80]. P. Molyneux. The use of stable free radical diphenylpicrilhydrazyl (DPPH) for estimating antioxidant activity. Song klanakarin *J. Sci. Technol.*, **2004**, 26, 211-219.

[81]. N. J. Miller, C. A. Rice-Evans. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and black currant drink. *Food Chem.*, **1997**, 60, 331-337.

[82]. M. B. Arnao, A. Cano, M. Acosta. The hydrophilic and lipophilic contribution tototal antioxidant activity. *Food Chem.*, **2001**, 73, 239-244.

[83]. O. Benavente-Garcia, J. Castillo, J. Lorente. Antioxidant activity of phenolics extracted from *Olea europaea* L. leaves. *Food Chem.*, **2000**, 68, 457-462.

[84]. N. J. Miller, J. Sampson, L. P. Candeias. Antioxidant activities of carotenesand xanthophylles. *FEBS Lett.*, **1996**, 384, 242.

[**85**]. R. Re, N. Pellegrini, A. Proteggente. Antioxidant activity applying animproved ABTS radical cation decolorization assay. *Free Radic. Biol. Med*, **1999**, 26, 1231-1237.

[**86**]. E. J. Lien, S. Ren, H. H. Bui, R. Wang. Quantitative structure-activity relationshipanalysis of phenolic antioxidants. *Free Radic. Biol. Med.*, **1999**, 26, 285-294.

[87]. R. Van Den Berg, G. R. Haenen, H. Van Den Berg. The predictive value of the antioxidant capacity of structurally related flavonoids using the trolox equivalent antioxidant capacity (TEAC) assay. *Food Chem*, **2000**, 70, 391-395.

[88]. R. Apak, K. Guclu, M. Ozyurek, S.E. Karademir. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, Using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. *Food. Chem.*, 2004, 52, 7970–7981

[**89**]. Oyaizu, M. Studies on products of browning reactions : antioxidative activities of browning reaction prepared from glucosamine. *Japanese Journal of Nutrition*, (**1986**), 44, 307-315.

[90]. M.S. Blois. Antioxidant determinations by the use of a stable free radical, *Nature*, **1958**, 181, 1199-1200.

Chapitre II

Généralités sur les bases de Schiff, synthèse et antioxydante activité de dérivés d'imines et un imidazole.

Introduction générale

La chimie des complexes a fait l'objet de plusieurs recherches. Parmi elles, celle concernant la complexation des ions métalliques par des molécules organiques, base de Schiff. Ces ligands, peuvent se présenter sous forme de différents types ayant des sites coordinats de nature varie et se définissent comme un ensemble de produits chimiques comportant un ou plusieurs groupements imines. Ils sont largement utilisés en médecine pour le traitement de plusieurs maladies [1-2] en biologie et en industrie dans la lutte contre la corrosion [3-4]. Ils peuvent aussi avoir une vaste application dans le domaine du traitement des eux à cause de leur grande capacité de complexation des métaux de transition notamment dans la récupération des métaux lourds dans les effluents nocifs industriels ou des éléments radioactif dans les déchets nucléaire.

I-Les composés azotés

Les molécules contenant un atome d'azote forment un groupe de composés de très grande importance en pharmacologie **[5]**. En effet, plusieurs molécules azotés ont des effets biologiques très puissants sur les êtres humains et les animaux. Il suffit de penser à la benzidine (Figure-1).

Figure 1 : molécule de la benzidine

Le 4.4'-Diamino1-1'-diphényle (benzidine) est un composé bien connu. Dans le passé il a été employé couramment dans différents secteurs scientifiques. En tant matériaux primaires dans la fabrication des teintures azotées [6]. Les dérivés de benzidines jouent également un rôle important dans la biologie de cellules et l'essai clinique comme objet de valeur souillant des réactifs [7-9] particulièrement en raison de leurs propriétés redox, ce composé a été également utilisé avec succès comme composé clé de proton ou électron-conduites des machines moléculaires.

II-Les bases de Schiff

C'est en 1864 que la première synthèse des composés iminiques fut réalisée par Schiff **[10]**. C'est ainsi que ces composés ont prés ensuite son nom (bases de Schiff). Une base de Schiff est définie comme étant le produit d'une réaction d'amine primaire avec une cétone ou un aldéhyde. Le produit obtenu suivant la séquence réactionnelle ci-dessous, renferme une fonction iminique.

Schéma-1 : Réaction de formation d'une base de Schiff [11]

On note que dans cette réaction, l'élimination de l'eau est nécessaire pour pouvoir déplacer l'équilibre vers la formation de la fonction iminique; qui est la base de Schiff.

La mobilité d'hydrogène lié à l'azote permet également des condensations avec les aldéhydes aliphatiques : il se forme des imines stables « les bases de Schiff » **[12]** Cette réaction s'appelle l'addition nucléophile des amines sur les aldéhydes ou cétones, où au cours de la première étape, le carbonyle est protoné (catalyse acide). Analysons la réaction du propanol sur l'ammonium. Comme exemple :

Schéma-2 : Exemple de formation d'imine [13]

Un autre exemple d'imine dans un milieu acide :

Schéma-3: Mécanisme de formation de base de Schiff dans un milieu acide [14]

II-1-Classification des bases de Schiff

A la basse de nombreux sites de coordination, on peut classer les ligands, bases de Schiff, selon plusieurs structures : mono,bi,tri,tétra,penta,hexa et heptadentate comme suit:

II-1-a-base de Schiff monodentate

C'est une molécule qui possède un seul site de fixation à l'atome métallique, elle cède au métal central un doublet non liant avec création d'une liaison.

Cette basse est illustrée par l'exemple qui suit à savoir la réaction de la méthyl-amine avec le benzaldéhyde suivie par une déshydratation:

Schéma-4 : Exemple d'une base de Schiff monodentate.

Signalons toutefois que dans ce type de ligands, la présence d'un seul atome d'azote (N) comme donneur d'électron ne peut stabiliser le complexe **[15]**, bien que Kuzmina et coll **[16]** aient pu former, avec les ligands illustrés en (Figure-2), un complexe de palladium stabilisé par l'interaction : pdH.

Figure-2: Complexe de Pd à base de Schiff monodentate

II-1-b- Base de Schiff bidentate

Ce genrede base de Schiff peut exister sous forme de plusieurs types. Les bidentates peuvent être O,O ou bien N,N tels que les composés suivants :

Figure-3: Exemples des bases de Schiff bidentate [17]

Figure-4: Exemple de base Schiff bidentate NN donneurs (a,b:Conformes) De plus, on peut trouver des ligands bases de Schiff contenant des sites N,O donneurs:

Figure-5: Exemple de base de Schiff bidentate NO donneurs [18]

II-1-c-Base de Schiff tridentate

L'utilisation des ligands tridentates dans la chimie de coordination fournit un moyen facile pour stabiliserLes métaux de transition et les éléments donneurs qui profitent de l'effet chélente **[19]**. i.e les ligands tridentates qui ont un site (ONO) donneur réagissent avec les métaux de transition pour donner des hétérocycles stables **[20]**.

Figure-5: Base de Schiff tridentate (ONO donneurs) [21]

On peut trouver également une base de Schiff tridentate (NON) qui peut être présentée par la réaction du salicylaldéhyde avec le méthylène diamine dans un rapport 1:1.

Schéma-5: Base de Schiff tridentate (NON donneurs) [22]

II-1-d-Base de Schiff tétradentate

Les bases de Schiff tétradentates sont les plus étudiées en vue de l'obtention des complexes car elles présentent une grande habilité à coordiner les ions métalliques, et les complexes ainsi formés s'avèrent être stabilisé par leur structures relatives. Un grand nombre de ces bases de Schiff dérivé de l'acétophénone, de salicylaldéhyde ou autres composés apparentés.

> Type NNOO (N2O2) donneurs

Schéma-6: Exemple d'une base de Schiff tetradentate (NNOO donneurs) [23]

> Type NNNO (N3O) donneurs

Figure-6: Exemple d'une base de Schiff tetradentate (NNNO donneurs) **[24] II-1-e-Base de Schiff pentadentate**

> Type NNOOO donneurs (N2O3)

Figure-7: base de Schiff pentadentate (N₂O₃ donneurs) [25]

> Type (N3O2) donneurs

Figure-8: base de Schiff pentadentate (N₃O₂ donneurs) [26]

II-1-f-Base de Schiff hexadentate

Figure-9: Exemple d'une base de Schiff hexadentate [27-28]

II-1-g- Base de Schiff heptadentate (N4O3 donneurs)

Figure-10: base de Schiff heptadentate (N4O3) donneurs [29]

III-Quelques domaines d'application des bases de Schiff et de leurs complexes isolés à l'état solide

De part la diversité de leurs structures et de leurs denticités, l'étérogénéité de leurs sites de coordination ainsi que toutes les propriétés qui en découlent, les bases de Schiff demeurent des ligands de choix, capables de coordiner toute une myriade de cations métalliques divers (alcalins, métaux de transition, terres rares,...).

L'engouement sans cesse grandissant suscité par ces ligands et par leurs complexes métalliques se justifie par ailleurs, par le nombre et la diversité de leurs domaines d'application. Nous évoquerons dans ce qui suit, quelques uns de ces domaines, ils exploitent les nombreuses potentialités, aussi bien des bases de Schiff organiques que de leurs complexes métalliques.

III-1/Applications des bases de Schiff en corrosion

De nombreuses études récemment réalisées sur les bases de Schiff ont mis en exergue pour ces systèmes, d'excellentes propriétés inhibitrices de corrosion, vis-à-vis de matériaux divers tels, l'acier [30-33], le cuivre [34], l'aluminium [35-36] et le Zinc [37].

Tel est le cas par exemple de certaines bases de Schiff dérivés de l'aldéhyde de benzoique dont, la benzylidène-pyrimidine-2-yl-amine, la (4-méthyl-benzylidène)-pyrimidine-2-yl-amine et la (4-chlorobenzylidène)-pyrimidine-2-yl-amine, qui se sont révélé d'excellents inhibiteurs de corrosion de l'acier doux, en milieu chlorhydrique (Figure.11) **[38]**.

Figure.11: Bases de Schiff dérivées de l'aldéhyde benzoique, inhibitrices de corrosion de l'acier doux **[38]**

De nombreuses benzylidènneanilines différemment substitués, issues de la condensation de l'acide sulfanilique et de la sulfanilamide ont par ailleurs été élaborées par *S. Chitra* et cool. Et leurs vertus anticorrosives établies électrochimiquement, vis-a-vis du acier doux en solution acide sulfurique. L'efficacité inhibitrice s'est en outre avérée augmenter avec la concentration en base de Schiff et diminuer avec la température (Figure-12) **[39]**.

Figure.12: Bases de Schiff anticorrosives, dérivées de l'acide sulfanilique. **[39]** Les vertus inhibitrices de corrosion de certaines bases de Schiff dérivées de l'isatine dont, la bis-(isatine)éthylènediamine (*BIED*), la bis-(isatine)hexane 1,4diamine(*BIHD*) et la bis-(isatine)thiocarbohydrazide(*BITC*) ont été explorées par *A*. *K. Sigh* et coll. Vis-à-vis de certains aciers mous, en milieu fortement acide (Figure. 13) **[40]**. Un pouvoir inhibiteur notable a particulièrement été mis en exergue pour la *BITC* composée à ces autres analogues.

Figure.13 :Bases de Schiff dérivées de l'isatine, inhibitrices de corrosion des aciers mous. **[40]**

L'utilisation de bases de Schiff tétradentés telles, la N,N'-bis(salicylidène)-1,2-

diaminoéthane(H2salen) et la N,N'-bis(3-méthoxysalicylidène)-1,2-

diaminoéthane(Msalen) comme agents inhibiteurs de corrosion, vis-a-vis de l'alliage

d'aluminium AA6063, en présence d'acide de chlorhydrique 1M a été étudie par P.F.Sanaulla et coll. (Figure.14) **[41]**.

L'introduction du groupement méthoxy en position *ortho* de l'hydroxyle s'est avérée améliorer notablement les vertus anticorrosives de la base de Schiff.

Figure.14: Bases de Schiff tétradentées de type H_2 Salen, inhibitrices de corrosion de l'alliage d'aluminium AA6063. [41]

III-2/Applications des complexes de bases de Schiff en catalyse

Les complexes de base de Schiff ont révélé une bonne activité catalytique dans de nombreuses réactions organiques tells, la polymérisation, la réaction de *Heck*, la réaction de *Diels Adler*, la carbonylation, l'alddolisation, l'oxydation, la réduction des cétones en alcools ou l'alkylation des substrats allyliques **[42-43]**.

Soh et al. ont procédé durant l'année 2018 à l'élaboration et l'étude d'une complexe base de Schiff de palladium, est utilisé comme catalyseur de Mizoroki-Heck réaction (Figures.15) **[44]**.

Figure.15: Structure et activité catalytique du complexe base de Schiff palladium [44]

De nombreux complexes métalliques issus de diimines polydentées et de *H2Saldien* notamment ont été élaborés, élucidés sur le plan structural et utilisés comme catalyseurs dans des réactions d'oxydation de substrats organiques divers.

M.M.T. Khan et coll. ont préparé en 1992 les complexes de ruthénium(III) d'une sérié de bases de Schiff polydentées dont, la bis(salicylaldéhyde)-diéthylènetriiminé(*H2-Salen*), la bis(picolinaldéhyde)éthylènediimine(*Picen*) et la bis(Picolinaldéhyde)diéthylènetriimine(*Picdien*), en présence d'ions chlorure dimidazole (*In*) et de 2-méthylimidazole(2-*MeIm*) en guise de ligands axiaux **[45]**. Une affinité particulière de ces complexes a été observée envers le dioxygène et les constantes d'oxygénation établies se sont révélées augmenter avec le pouvoir donneur des substituants portés par la base de Schiff.

M.R. Maurya et coll. ont procédé durant les années 2002-2003 à l'élaboration et l'étude structurale d'une série de complexes de bases de Schiff polydentées dont, la N,N'-bis(salicylidène)propane-1,3-diamine(*H2-Salpn*), la N,N'-bis(salicylidène)diéth ylenetriamine(*H2-Saliden*) et la N,N'-bis(salicylidène)-diéthylenediamine(*H2-Salen*), avec Cu(II), Ni(II), Zn(II), Cr(III), Fe(III), (Bi(III), et avec l'oxovanadium(IV). A prés encapsulation au sein de la zéolite-Y, l'entité obtenue a été utilisée comme catalyseur d'oxydation du phénol à l'aide de H₂O₂. Différents paramètres réagissent la réaction d'oxydation ont ainsi été optimisés tels, le milieu, la température, la concentration en substrat, etc... A prés optimisation de ces paramètres, la réaction s'est révélée particulièrement sélective et a conduit à un mélange de catéchol et d'hydroquinone final, avec une large prédominance du premier **[46-48]**.

III-3/Applications des bases de Schiff et de leurs complexes en biologie

La lutte contre les maladies infectieuses constitue de nos jours un enjeu planétaire de la plus haute importance. Les problèmes infectieux demeurent en effet des plus préoccupants, du fait du surcout hospitalier qui en découle, de l'émergence de bactéries multi-résistantes(*BMR*) et du taux de mortalité dont elles sont responsables. Pour cela, la recherche de nouvelles molécules dotées de propriétés antibactériennes,

antifongiques et anti-inflammatoires demeure un sujet d'actualité, qui revêt une importance sans cesse grandissante avec le temps.

Les composés organiques de type base de Schiff et leurs complexes métalliques constituent de nos jours des systèmes dont l'importance et l'efficacité thérapeutique en tant qu'agents antiviraux et anticancéreux demeurent avérée.

Nous citrons dans ce qui suit, quelques unes des références bibliographiques les plus récentes, ayant porté sur l'élaboration de bases de Schiff analogues aux nôtres et sur la mise en évidence de leurs propriétés bio-actives ainsi que celles de leur complexes avec différents cations métalliques.

Dans ce cadre, *Rathelot* et coll. ont synthétisé une série de base de Schiff dérivées de la 5-nitroisoquinolèine, parmi les quelles le systèmes représenté en figure .16 demeure le seul à avoir manifesté une activité appréciable envers la malaria **[49]**.

Figure.16: Base de Schiff à effet antimalarial. [49]

Heam et coll. ont décrit en 2004 la mise au point d'une base de Schiff dérivée d'isoniazide, dotée de vertus thérapeutiques intéressantes (Figure.17) **[50]**. Celle -ci a en effet révélé une excellente activité antituberculeuse, autrement plus puissante que celle de l'hydrazide isoni cotinique de référence. Ces propriétés bioactives ont corrélées avec la présence dans ce composé du cycle hexylique saturé.

Figure.17 : Base de Schiff à vertu antituberculeuse, dérivée de l'isoniazide. **[50]** *Rehman* et coll. ont par ailleurs réussi à inhiber la croissance de certains champignants phytopatogènes affectent la production de la plupart des cultures de crucifères (brocoli, chou-fleur,navet etc.), par utilisation des vertus antimicrobiennes d'une base de Schiff de type *N*-(salicylidène)-2-hydroxyaniline (Figure.18) **[51]**. Le taux d'inhibition s'est avéré atteindre 70%, avec une concentration de 500 ppm en base de Schiff.

Figure.18 : Base de Schiff de type N-(salicylidène)-2-hydroxyaniline à effet inhibiteur sur les champignons phytttopathogènes. **[51]**

En 2005, *Panneerselvam* et coll. ont décrit la synthèse de trois bases de Schiff dérivées de l'aldéhyde salicylique, du 4-hydroxybenzaldehyde et 2-chlorobenzal dehyde (Figure.19)[**52**]. Ils ont ensuite évalué leurs activités antibactériennes in vitro, vis-à-vis de souches bactériennes diverses dont, *Staphylococcus aureus*, *Micrococcus luteus*, *Streptococcus epidermidis*, *Bacillus cereus*, *Escherichi coli*, *staphylococcus aureus* et *Micrococcus luteus*, qui se sont avérés etre particulièrement sensibles à la base de Schiff dérivée du 2-chlorobenzaldéhyde. *Sistreptococcus epidermidis* s'est avéré être sensible au système comportant un groupement hydroxyle en position

ortho, Bacillus cerrus et *Escherichia coli* semblent quant à eux manifester une plus grande sensibilité à la base de Schiff para-hydroxylée.

Figure.19 : Bases de Schiff issuesde l'aldéhyde salicylique et de ses dérivés, explorées par Panneer selvam et coll. **[52]**

Les mêmes auteurs ont en outre testé positivement la synergie de deux autres bases de Schiff contre la croissance de deux champignons à savoir, *Candida albicans* et *Aspergillus niger* (Figure.20) **[53]**.

Figure.20 : Base de Schiff testées contre Candida albicaus et Aspergillus niger. **[53]** La *N*-salicylidène-2-hydroxyaniline a été élaborée par *Souza* et coll. en 2007 et ces propriétés bioactives explorées (Figure.21) **[54]**. Une activité antituberculeuse remarquable a alors été mise en exergue pour composé organique.

Figure.21 : N-salicylidène-2-hydroxyaniline explorée par Sousa et coll. [54]

Durant la même année, *L. Shi* et coll. ont révélé un effet antituberculeux important associé à la présence d'une délocalisation électronique importante dans certaines bases de Schiff à noyaux aromatique (Figure.22) **[55]**.

Figure.22 : Base de Schiff à noyaux aromatiques, dotés de propriétés antituberculeuses. **[55]**

Khan et al. ont élaboré durant l'année 2016, une série de quatre complexes bases de Schiff à base de Cu(II), Co(II), Ni(II) et de Zn(II) et évalue leurs activités antibactérienne (Figure.23) **[56]**. Le ligand et leur complexes base de Schiff ont manifesté une activité antibactérienne importante.

Figure.23 : complexes base de Schiff à effet anti-bactérienne, explorées par Khan et al. **[56]**

Valarmathy et al. ont élaboré durant l'année 2018, une notre série de deux complexes bases de Schiff à base de Co(II) et de Mn(II) et évalue leurs activités antibactérienne et anticancéreuse (Figure.24) [**57**]. Les deux complexes base de Schiff ont manifesté une activité antibactérienne et anticancéreuse importante.

Figure.24 : complexes base de Schiff à effet anti-inflammatoire et anticancéreuse, explorées par Valarmathy et al. **[57]**
I-Résultats et discussion

IV-1-Synthèse, étude spectroscopique de sept dérivés d'imines

IV-1-1-Introduction

Cette partie et est consacré à l'étude spectroscopique de sept composés , à savoir: la sérié de composé **1** à **7**. Ils ont été obtenus, par voie de synthèse selon la méthode classique proposée par Schiff et all. **[10]**, en seul étape mais avec une légère modification avec deux composé. Cette étape consiste à préparer les dérivés d'imines par une réaction d'un amine aromatique qui possède la fonction amine (NH₂) ou double fonction amine sur un benzaldéhyde.

IV-1-2-Préparation des dérivés d'imines et un imidazole

IV-1-2-a-Préparation de composé 1, le 6(Z)-3-(benzyloxy)-6-[(5-chloro-2hydroxyaniline) methylidene]cyclohexa-2,4-dien-1-one]. Composé 1

La méthode de préparation choisie consiste à préparer les dérivés d'imine (bases de Schiff) à partir d'un réaction entre un amine et un benzaldéhyde, dissoute dans l'éthanol ou méthanol. On laisse le mélange sous agitation et un montage de reflux.

Schéme1 : Formation d'un dérivé d'imine [bases de Schiff type ortho-hydroxy tridentatedentate NOO].

IV-1-2-b-Analyse spectroscopique de composé 1

Nous avons utilisé la R.M.N.¹H **[58]** à hauts champs (250MHz) ainsi que la R.M.N.¹³C sont utilisées. Le composé **1** présente, en spectroscopie R.M.N.¹H (voir tableau 1) donne dans la rangé de 5.7-6-3 ppm des pics faible correspondant au (NH) et (CH), un singulet entre 8.5-8.7 ppm correspondant au groupement OH et un autre

δ(ppm)	Signal	n°: hydrogène	Identification
5.7-6.3	S	1H	NH
5.7-6.3	S	1H	CH
6.6-7.6	m	11H	H aromatiques
5.1-5.2	S	2H	СН2-О
8.5-8.7	S	1H	OH

singulet entre 5.1-5.2 ppm correspondant au groupement CH2-O, ainsi qu'un multiplet entre 6.6-et 7.6 ppm correspondant aux 12H aromatiques.

Tableau-1 : R.M.N.¹H

Le spectre R.M.N de proton et de carbone 13 du composé **1** sous présenté dans les Figure-1 et Figure 2.

Figure 1 : Spectre proton 1 H de composé 1.

Figure 2 : Spectre carbone 13 de composé 1.

IV-2-2-b-Préparation de composé 2, le (*E*)-5-benzyloxy-2-({2-(1*H*-indol-3-yl)eth yl]iminiumyl}methyl)phenolate. Composé 2.

Ce composé a été préparé et synthétisé suivant la méthode et le protocole de préparation du composé **1** mais on été changé l'amine aromatique.

Schéma.2: Formation d'un dérivé d'imine[type bidentate NO].

Les caractéristiques des spectres R.M.N.¹H et R.M.N.¹³C sont présentées dans les tableaux 2 et 3 respectivement.

Tableau-2: R.M.N.¹H

δ(ppm)	Signal	n°: hydrogène	Identification
7.8-8	d	1H	-CH=N H
8.2-8.4	d	1H	-C <u>H</u> =NH
5-5.1	S	2H	-C H ₂ -O
6.4-7.7	m	13H	H aromatiques
14.1-14.4	S	1H	-OH
Tableau-3 : F	R.M.N. ¹³ C		
δ(ppm)			Identification
163.39-163.6	1		- C H=NH et C-OH
69.98			- C H ₂ -O
122-141			C=C aromatique

Le spectre R.M.N de proton et carbone 13 du composé 2 sous présenté dans les Figure-3 et Figure 4.

Figure 3 : Spectre ¹H RMN. Composé **2**.

Figure 4 : Spectre 13 C RMN. Composé 2.

IV-3-2-c-Préparation de composé 3, *(E)*-5-benzyloxy-2-{[(4-methoxyphenyl) imino] methyl}phenol. Composé 3

Ce composé a été préparé et synthétisé suivant la méthode et le protocole de préparation du composé **1** mais on été changé le amine aromatique.

Schéma.3: Formation d'un dérivé d'imine[type bidentate NO].

les caractéristiques des spectres R.M.N.¹H et R.M.N.¹³C sont présentées dans les tableaux 5 et 6 respectivement.

Tableau-4 : R.M.N.¹H

δ(ppm)	Signal	n°: hydrogène	Identification
8.5-8.7	S	1H	-C <u>H</u> =N
5-5.1	S	2H	-C H ₂ -O
6.4-7.7	m	12H	H aromatique
13.8-14	S	1H	-O H
3.8-3.9	S	2H	-C H ₃ -O
Tableau-5 : I	R.M.N. ¹³ C		
δ(ppm)			Identification
158.53-163.7	7		-CH=NH et C-OH
70.17			- C H ₂ -O
55.65			- C H ₃ -O
122-141			-C=C- aromatique

Le spectre R.M.N de proton du composé 3 sous présenté dans la Figure-5.

Figure 5 : Spectre ¹H RMN. Composé **3**.

IV-4-2-d-Préparation de composé 4, le 2-{(*E*)-[(2-aminophenyl)imino]methyl}-5-(benzyloxy) phenol. Composé 4.

Ce composé a été préparé et synthétisé suivant la méthode et le protocole de préparation du composé **1** mais on été changé le amine aromatique.

Schéme4 : Formation d'un dérivé de d'imine[type tridentate NNO].

Les caractéristiques des spectres R.M.N.¹H et R.M.N.¹³C sont présentées dans les tableaux 6 et 7 respectivement.

Tableau-6 : R.M.N.¹H

δ(ppm)	Signal	n°: hydrogène	Identification
8.5-8.7	S	1H	-C <u>H</u> =N
5-5.1	S	2H	-C H ₂ -O
6.6-7.6	m	12H	12 H aromatique
13.4-13.7	S	1H	-O H
4	S	2H	$-NH_2$
Tableau-7 : R	M.N. ¹³ C		
δ(ppm)			Identification
161.58-163.20)		-CH=NH et C-OH
70.22			- C H ₂ -O
55.65			- C H ₃ -O
127.73-140.66	5		-C=C- aromatique

Le spectre R.M.N de proton et carbone 13 du composé **4** sous présenté dans les Figure-6 et Figure 7.

Figure 6 : Spectre ¹H RMN. Composé **4**.

Figure 7 : Spectre ¹³C RMN. Composé 4.

IV-5-2-e-Préparation de composé 5, le 2-(4-methoxynaphthalen-1-yl)-1-((4-meth oxynaphthalen-1-yl)methyl)-1*H*-benzo[*d*]imidazole, éthanol. Composé 5.

Ce composé a été préparé et synthétisé suivant la méthode et le protocole de préparation du composé **1** mais on été changé l'amine aromatique. Le composé **5** est transféré on dérivé imidazole par ce que l'atome d'azote est criée une liaison avec le carbone , et donc fermé le cycle.

Schème 5 : Formation d'un dérivé d'imidazole.

Les caractéristiques des spectres R.M.N.¹H et R.M.N.¹³C sont présentées dans les tableaux 8 et 9 respectivement.

Tableau-8 : $R.M.N.^{1}H$

δ(ppm)	Signal	n°: hydrogène	Identification
2.1-2.4	S	2H	-C H ₂ -N
6.5-8.4	m	12H	16 H aromatique
3.9-4.0	S	2H	-C H ₃ -O
Tableau-9 :	R.M.N. ¹³ C		
δ(ppm)			Identification
70.22			- C H ₂ -O
55.70-55.60			- C H ₃ -O
120.10-128.7	78		-C=C- aromatique

Le spectre R.M.N de proton et carbone 13 du composé 5 sous présenté dans les Figure-8 et Figure 9.

Figure 8: Spectre ¹H RMN. Composé **5**

Figure 9 : Spectre ¹³C RMN. Composé **5**

IV-6-2-f-Préparation de composé 6, le (*E*)-5-benzyloxy-2-{[(4-chlorophenyl) imino]methyl} phenol. Composé 6.

Ce composé a été préparé et synthétisé suivant la méthode et le protocole de préparation du composé **1** mais on a été changé l'amine aromatique.

Schème 6 : Formation d'un dérivé d'imine [base de Schiff type bidentate NO] Les caractéristiques des spectres R.M.N.¹H et R.M.N.¹³C sont présentées dans les tableaux 10 et 11 respectivement.

Tableau-10 : R.M.N.¹H

δ(ppm)	Signal	n°: hydrogène	Identification
8.5-8.6	S	1H	-C <u>H</u> =N
5-5.1	S	2H	-CH ₂ -O
6.6-7.6	m	12H	12 H aromatique
13.5-13.7	8	1H	-OH
Tableau-11 :	R.M.N. ¹³ C		
δ(ppm)			Identification
161.98-163.73	3		-CH=N et -C-OH
70.22			- C H ₂ -O-
127.73-140.66	5		-C=C- aromatique

Le spectre R.M.N de proton et carbone 13 du composé **6** sous présenté dans les Figure-10 et Figure 11.

Figure 10: Spectre ¹H RMN. Composé 6

Figure 11: Spectre ¹³C RMN. Composé 6

IV-7-2-g-Préparation de composé 7, de 2,2'-{(1*E*, 1'*E*)-[1,2-phenyl-enbis (azaney lylidene)] bis (methaneylylidene)}bis(5-benzyloxy)phenol. Composé 7

Ce composé a été préparé et synthétisé suivant la méthode et le protocole de préparation du composé **1** mais on été changé le amine aromatique.

Schéme7 : Formation d'un dérivé d'imine[type tetradentate NNOO]. Les caractéristiques des spectres R.M.N.¹H et R.M.N.¹³C sont présentées dans les tableaux 12 et 13 respectivement.

Tableau-12 : R.M.N.¹H

δ(ppm)	Signal	n°: hydrogène	Identification
8.5-8.7	S	1H	-C <u>H</u> =N
5-5.1	S	2H	-C H ₂ -O
6.6-7.6	m	20H	aromatique
13.5-13.7	S	1H	-OH
Tableau-13 :	R.M.N. ¹³ C		
δ(ppm)			Identification
162.23-164.34	ł		-CH=N- et -C-OH
70.22			- C H ₂ -O-
120.33-142.32	2		-C=C- aromatique

Le spectre R.M.N de proton et carbone 13 du composé 7 sous présenté dans les Figure-12 et Figure 13.

Figure 12: Spectre ¹H RMN. Composé **7**

Figure 13: Spectre ¹³C RMN. Composé**7**

Partie Expérimentale

condition opératoire

Les réaction de synthèse qui nous avons fait ont été effectuées dans des conditions normale et à température ambiante.

Analyse spectroscopique

Les spectres R.M.N.¹H et R.M.N.¹³C ont été enregistrés dans le chloroforme deutéré (CDCl₃) à dilution infinie à haut champs (250MHz pour la R.M.N.¹H et R.M.N.¹³C) sur un spectrophotomètre de type Bruker Avence DPX250. Les déplacements chimiques " δ " sont exprimés en ppm par rapport au signal de résonance du tétraméthylsilane (T.M.S) pris comme référence interne et la position des pics est donnée en échelle δ (δ =0 pour le T.M.S). Les abréviations utilisées sont les suivantes:

s= singulet, d= doublet, t= triplet, q= quadruplait, m= multiplet, j= constante de couplage (Hz).

Préparation la sérié de composés de 1 à 7

A une solution de amines aromatiques (R) dissoute dans le méthanol ou l'éthanol, on ajoute un benzaldéhydes dissoute dans le même solvant. Le mélange est raccordé sur un montage de reflux et sur agitation à l'air température (Figure. 14).

Figure.14: présentation de 7 composés organique synthétisés. On résume les détailles et le mode de synthèse de la série de sept 7 composés organique dans le tableau.14.

Composé organique	Mode de synthèse et temps de réaction	Solvant utilisé	Forme de cristaux et couleur	Méthode spectro-scopique utilisé/ RMN ¹ H et ¹³ C
Composé 1	Synthèse à reflux/ léq amine+léq benzaldéhyde	Éthanol	Plaquette de couleur orange	[5.7-6.3];[8.5-8.7]. 119.95;127.67;128.81.
Composé 2	Synthèse à reflux/ 1éq amine+1éq benzaldéhyde	Éthanol	Plaquette de couleur orange	[7.8-8];[8.2-8.4]. 163.39;163.61; 69.98.
Composé 3	Synthèse à reflux/ 1éq amine+1éq benzaldéhyde	Éthanol	Aiguille de couleur verte	[8.5-8.7];[5-5.1]. 158.53;163.77;70.17.122.
Composé 4	Synthèse à froid/1éq amine+1éq benzaldéhyde	Éthanol	Plaquette de couleur jaune	[8.5-8.7];[5-5.1]; 4. 161.58;163.20;70.22. 127.71.
Composé 5	Synthèse à reflux/ 1éq amine+2éq benzaldéhyde	Éthanol	Plaquette carré de couleur marron clair	[2.1-2.4];[6.5-8.4]. 70.22;55.70;55.60.
Composé 6	Synthèse à froid/ 1éq amine+1éq benzaldéhyde	Méthanol	Block de couleur verte	[8.5-8.6];[6.6-7.6]. 161.98;163.73;70.22.
Composé 7	Synthèse à reflux/ 1éq amine+1éq benzaldéhyde	Éthanol	Petite carré attaché de couleur jaune	[8.5-8.7];[6.6-7.6]. 162.23;164.34;142.32.

NB : éq/ équivalent.

V-Activités antioxydantes

L'étude de l'activité antioxydante de quelques composés synthétisées sont testée selon quatre 4 méthodes: piégeage du radical libre DPPH, piégeage de l'ABTS et méthode CUPRAC et pouvoir réducteur.

V-1-Résultats des activités antioxydante de composé 1, composé 4, composé 6 et composé 7.

quatre méthodes ont été utilisées pour évaluer l'activité antioxydante des quelques produits synthétisés.

V-1-a-Activité antiradicalaire au DPPH de composé 1

Le résultat de l'activité antiradicalaire au DPPH est représenté par les pourcentages d'inhibition pour chaque concentration ainsi que les valeurs de la concentration d'inhibition de 50% (Tableau.1).

Le composé **1** a montré une activité inhibition du DPPH ($CI_{50} = 56,72\pm5,29\mu g.mL^{-1}$) deux fois moins faible que celle du BHT ($CI_{50} = 22,32\pm1,19\mu g.mL^{-1}$), et faible par rapport valeur de standard BHA ($CI_{50} = 5,73\pm0,41\mu g.mL^{-1}$), (Tableau.1).

Inhibition%								CI ₅₀ / µg.mL ⁻¹
Concentration	3,125	6,25	12,5	25	50	100	200	
µg.mL ⁻¹								
Composé 1	$10,25\pm$	10,63±	19,24±	25,59±	38,85±	57,81±	85,09±	56.72±5.29
	10,26	3,07	3,45	1,63	2,26	6,24	0,53	
BHT	11,69±	22,21±	37,12±	52,63±	56,02±	83,60±	$87,28\pm$	22.32±1.19
	1,88	1,30	1,80	2,70	0,53	0,23	0,26	
BHA	$28,95\pm$	54,33±	76,76±	84,09±	87,53±	87,73±	88,43±	5.73±0.41
	1,16	1,59	1,65	0,35	0,82	0,15	0,23	

Tableau-1: Inhibition du radical DPPH par le composé 1

V-1-b-1-Test de la capacité antioxydante par réduction du cuivre (CUPRAC) de composé 1 et 4 avec 1mg et 6, 7 avec 4mg

Le composé **1** a montré une meilleure activité inhibitrice du COPRAC $(A_{0.50}=6,10\pm0,26\mu g.mL^{-1})$ que celle de standards BHT $(A_{0.50}=9,62\pm0,87 \ \mu g.mL^{-1})$ et BHA $(A_{0.50}=3,64\pm0,19 \ \mu g.mL^{-1})$. Le composé **4** a montré une meilleure activité inhibitrice du COPRAC $(A_{0.50}=7,41\pm0,21\mu g.mL^{-1})$ que celle de standards BHT $(A_{0.50}=9,62\pm0,87 \ \mu g.mL^{-1})$ et BHA $(A_{0.50}=3,64\pm0,19 \ \mu g.mL^{-1})$. (Tableau.2)

Tableau-2: Inhibition du CUPRAC par les composé 1 et 4.

Absorbance							A _{0.50} /μg.mL ⁻¹	
Concentration	3,125	6,25	12,5	25	50	100	200	
μg.mL ⁻¹								
Composé 1	0,30±	0,46±	$0,78\pm$	1,12±	$1,84\pm$	$2,34\pm$	4,39±	6.10±0.26
	0,00	0,01	0,01	0,07	0,19	0,12	0,04	
Composé 4	$0,28\pm$	0,46±	$0,76\pm$	$1,55\pm$	$2,60\pm$	3,81±	4,33±	7.41±0.21
	0,01	0,00	0,03	0,04	0,14	0,15	0,04	
BHT	11,69±	22,21±	37,12±	$52,63\pm$	$56,02\pm$	83,60±	$87,28\pm$	22.32±1.19
	1,88	1,30	1,80	2,70	0,53	0,23	0,26	
BHA	$28,95\pm$	54,33±	76,76 \pm	84,09±	$87,53\pm$	87,73±	88,43±	5.73±0.41
	1,16	1,59	1,65	0,35	0,82	0,15	0,23	

Le composé **6** a montré une faible activité inhibition du COPRAC $(A_{0.50}>100 \ \mu g.mL^{-1})$ que celle de standards BHT $(A_{0.50}=9,62\pm0,87 \ \mu g.mL^{-1})$ et BHA $(A_{0.50}=3,64\pm0,19 \ \mu g.mL^{-1})$. Le composé **7** a montré une moyenne activité inhibitrice du COPRAC $(A_{0.50}=15,03\pm1,50 \ \mu g.mL^{-1})$ que celle de standards BHT $(A_{0.50}=9,62\pm0,87 \ \mu g.mL^{-1})$. (Tableau.3)

Absorbance							1	A _{0.50} /μg.mL ⁻¹
Concentration	12,5	25	50	100	200	400	800	
μg.mL ⁻¹								
Composé 6	$0,18\pm$	0,23±	0,31±	$0,\!47\pm$	$0,\!67\pm$	1,14±	2,38±	>100
	0,00	0,01	0,01	0,01	0,07	0,14	0,25	
Composé 7	0,39±	0,59±	0,91±	1,42±	1,84±	3,12±	4,29±	15.03±1.50
	0,01	0,01	0,03	0,02	0,36	0,25	0,11	
BHT	1,41±	2,22±	$2,42\pm$	$2,50\pm$	2,56±	2,86±	$3,38\pm$	8.97±3.94
	0,03	0,05	0,02	0,01	0,05	0,07	0,13	

Tableau-3: Inhibition du CUPRAC par les composé 6 et7.

V-1-b-2-Test de la capacité antioxydante par réduction du cuivre (CUPRAC) de composé 1et 4 avec 0.5mg

Le composé **1** a montré une bonne activité inhibitrice du COPRAC $(A_{0.50}=11,42\pm0,48\mu g.mL^{-1})$ que celle de standards BHT $(A_{0.50}=9,62\pm0,87 \ \mu g.mL^{-1})$ et BHA $(A_{0.50}=3,64\pm0,19 \ \mu g.mL^{-1})$. Le composé **4** a montré une meilleure activité inhibitrice du COPRAC $(A_{0.50}=6,54\pm0,46\mu g.mL^{-1})$ que celle de standards BHT $(A_{0.50}=9,62\pm0,87 \ \mu g.mL^{-1})$ et BHA $(A_{0.50}=3,64\pm0,19 \ \mu g.mL^{-1})$ mais avec un dosage de 0,5mg. (Tableau.4)

Absorbance							A _{0.50} /µg.mL ⁻¹	
Concentration	1,5625	3,125	6,25	12,5	25	50	100	
μg.mL ⁻¹								
Composé 1	0,16±	$0,22\pm$	$0,32\pm$	$0,54\pm$	$0,95\pm$	$1,80\pm$	3,14±	11.42±0.48
	0,01	0,00	0,01	0,02	0,02	0,04	0,42	
Composé 4	0,19±	$0,27\pm$	$0,42\pm$	$0,65\pm$	$0,98\pm$	1,63±	3,23±	6.54±0.46
	0,01	0,00	0,03	0,04	0,14	0,15	0,04	
BHT	0,11±	0,19±	0,33±	$0,66\pm$	$1,03\pm$	$1,\!48\pm$	2,04±	9.62±0.87
	0,04	0,01	0,04	0,07	0,007	0,09	0,14	
BHA	0,23±	0,46±	$0,78\pm$	1,34±	2,36±	3,45±	3,76±	3.64±0.19
	0,07	0,00	0,01	0,08	0,17	0,02	0,03	

Tableau-4: Inhibition du CUPRAC par les produit 1 et4 avec 0.5mg.

Figure.03 : Inhibition de composé 1 et 4 par a port au standards BHA et BHT

V-1-c-Test de la capacité antioxydante par réduction du ferre (pouvoir réducteur) de composé 1

Le composé **1** (Tableau.5) a montré une faible activité inhibition du pouvoir réducteur ($A_{0.50}$ >100 µg.mL⁻¹) que celle de standard α -tocopherol ($A_{0.50}$ = 34,93±2,38 µg.mL⁻¹).

	1	A _{0.50} /µg.mL ⁻¹						
Concentration	3,125	6,25	12,5	25	50	100	200	
μg.mL ⁻¹								
Composé 1	$0,05\pm$	$0,05\pm$	$0,05\pm$	$0,07\pm$	0,12±	$0,25\pm$	$0,\!64\pm$	>100
	0,00	0,00	0,00	0,00	0,00	0,02	0,03	
a-Tocopherol	$0,11\pm$	0,16±	0,21±	$0,35\pm$	$0,73\pm$	$1,37\pm$	$1,81\pm$	34,93±2.38
	0,00	0,00	0,03	0,03	0,03	0,08	0,09	

Tableau-5: Inhibition du pouvoir réducteur par le composé **1**.

Figure.04 : Inhibition de composé 1 par a port au standard α -tocopherol

BHT : Butylhydroxytoluène

BHA : Butylhudroxyanisol

 α -tocopherol : équivalent de vitamine E

Références:

[1]. M. Procetto, W. Liu , A. Hagenbach , U.Abram , R. Gust ; *Europen Journal of Medicinal Chemistry*. **2012**, 53, 168-175.

[2]. M. Nath; P Kumar Saini; A. Kumar; *Journal of Organometallic Chemistry*. 2010, 695, 1353-1362.

[3]. Mohammed Qasim Mohammed ; *Journal of Basrah Researches (Sciences)*. 2011, 37, 116-130.

[4]. K.C. Emregul, R. Kurtaran, O. Atakol; *Corrosion science*. 2003, 45, 2803-2817.

[5]. K. B. G. Torssell; Natural Product Chemistry, a Mechanistic and biosynthetic approch to secondary metabolism, Wiley & Sons, Bath, UK, (**1983**), 401.

[6]. A.I. Vogel; Practical Organic Chemistry(5th ed.), Longnan, London, (1991), 49.

[7]. B. Vaisman, A. M. Konijin et E. Fibach ; Acta Haematol, (1999), 101(3), pp 135-139.

[8]. Y. Jing, S. Nakajo, L. Xia, K. Nakaya, Q. Fang, S. Waxmain et R. Han; *Leuk. Res*, (1999), 23, 43-50.

[9]. L. Liu, Z. Yulan et X. Qian; *Dayes Pigments*, (2004), 60, 17-21.

[10]. H.S. Schiff; Ann. Chim., (Paris), (1964), 131, 118.

[11]. S.Dyagi, et Y. Degani ; The chemistry of the carbone–nitrogen double band, (1970), 71.

[12]. N. L. Allinger et call ; Chimie organique, Edition M^C Graw-Hill, Paris, (1976).

[13]. C. Ouahes ; Chimie inorganique, sciences biomédicaux et sciences de la nature, (1988).

[14]. C. Ouahes, Chimie inorganique, Ed., O. P. U., (1988), 307.

[15]. R.J. Burt, Leigh et C. J. Pickett ; J. Chem. Soc. Chem. Comm., (1996), 940.

[16]. B. F. Watkins, J. R. Behling, E. Kariv et L.L. Miller ; *J. An. Chem. Soc.*, (1975), 97, 3549.

[17]. Université de Fribourg ; Chimie générale, campus virtuel suisse (CVS), Copyright (2005).

[18]. S. Dutta et A. Chakratvorty ; *Polyhedron*, (1994), 13, 1811.

- [19]. C. Y. Wong et R. M^C Donald ; *Inorg. Chem.*, (1996), 35, 325.
- [20]. Y. Li, Y. Liu, W. Buo, J. Guo, et Y. Wang; Chem. Cummun, (2000), 155.
- [21]. V. Barda, J. Vasquez, F. Lopez, R. Santillan, et N. Farfan ; *J. Org-met. Chem.*, (2005), 690, 23.
- [22]. R. Manchauda; Coord. Chem. Rev., (1995), 1, 144.
- [23]. T.L.Sidall, N.Miyaura, J.C.Huffman et J.K..Kouchi; *J. Chem. Soc. Chem. Com.*, (1983), 1185.
- [24]. M.S.Ray, R.Bha Hacharya, S.Chaudhuri, L.Rigi, G.Bocelli, et Mukhopadhyay, A.Ghsoshi ; *Polyhedron*, (2003), 22, 617.
- [25]. M.Mikuriya et A.Kawamori ; *Chem. Lett.*, (1995), 1095.
- [26]. M. Amirnasr, K.J.Schenk, Schenk, S. meghdani, et M. Morshedi ; *Polyhedron* (2005).
- [27]. L. Salmon et call ; *Chem. Com.*, (2003), 762.
- [28]. T. Le Borgne et call ; *Chem. Eur. J.*, (2002), 8, 773-783.
- [29]. S. Salehzadeh, S.M. Nouri, H. Keypour, et M. Bagherzadeh; *Polyhedron*, (2005), 24, 1478.
- [30]. K. C. Emregul et O. Atakol, Mater. Chem. Phys., (2003), 82, 188.
- [31]. S. Bilgic et N. Kliskan, Appl. Surf. Sci., (1999), 152, 107.
- [32]. H. Shokry, M. Yuasa, I. Sekine et R. M. Issa, Corros, Sci, (1998), 40, 2173.
- [33]. M. G. Husseini, S. F. L. Mertens, M. Gorbani et M. R. Arshadi, *Mater. Chem. Phys.*, (2003), 78, 800.
- [34]. S. Li. S. Chen et S. Lei, Corros. Sci., (1999), 41, 1273.
- [35]. G. K. Gomma et M. N. Wahan, Mater. Chem. Phys., (1995), 39, 209.
- [36]. A. Bansiwal, P. Anthony, S. P. Mathur, Br. Corros. J., (2000), 35, 301.
- [37]. Y. K. Agrawal, J. D. Talati, M. D. Shah, M. N. Desai et N. K. Shah, *Corros. Sci.*, (2004), 46, 633.
- [38]. H. Ashassi-Sorkhabi, B. Shassbani et D. Seifzadeh, *Electrochimica Acta.*, (2005), 50, 3446.

- [**39**]. S. Chitra, K. Parameswari, C. Sivakami, A. Selvarri, *Chem. Eng. Res. Bull.*, (**2010**), 14, 1.
- [40]. A. K. Singh et M. A. Quraishi, Int. J. Electrochem. Sci., (2012), 7, 3222.
- [**41**]. P. F. Sanaulla, H. B. Lokesh., H. Cananda Murthy et V. Bheema Raju, *J. APPL. Chem.*, (**2012**), 2(5), 37.
- [42]. T. Langger et G. Hulmchem, *Tetrahedron Lett.* (1996), 37, 1381.
- [43]. H. Brunner, M. Schonherr, M. Zabel, *Tetrahedron Asym.* (2003), 14, 1115.
- [44]. S. K. C. Soh et M. Shamsuddin. *Asian Journal of Chemistry*; (2018), Vol. 30, No.1, 81-84.
- [45]. M. M. T. Khan, S. A. Mizra, Z. A. Shaikh, C. Sreelatha, P. Paul, R. S. Shkla, D. Srinivas, A. P. Rao et S. H. R. Abdi ; *Polyhedron*. (1992), 11 (14), 1821.
- [46]. M. R. Maurya, S. J. J. Titinshi et S. Chand ; *Applied Catalysis A : General*, (2002), 228 issue 1-2, 177.
- [47]. M. R. Maurya, M. Kumar, J. J. T. Salam, S. H. Abbo, S. Chand; *Catalysis Letters*, (2003), 86 issue 1-3, 97.
- [48]. M. R. Maurya, S. J. J Titinchi et S. Chand ; *Journal of Molecular Catalysis A : Chemical* (2003), 193 issue 1-2, 165.
- [**49**]. P. Rathelot, P. Vanelle, M. Gasquet, F. Delmas, M. P. Crozet et P. Timon David. *Eur. J. Med. Chem*; (**1995**), 30(5), 503.
- [50]. M. J. Hearn et M. H. Cynamon, J. Antimicro. Chemother; (2004), 53(2), 185.
- [**51**]. W. Rehman, M. K. Baloch, B. Muhammad, A. Badshah et K. M. Khan. *Chin. Sci. Bull.*, (**2004**), 49, (2), 119.
- [**52**]. P. Panneerselvam, R. P. Nair, G. Vijayalakshmi, E. H. Subramanian, S. K. Srid-Har. *Eur. J. Med. Chem*; (**2005**), 40(2), 225.
- [53]. P. Pannerselvam, R. P. Nair, G. Vijayalakshmi, E. H. Subramanian, S. K. Srid-Har. *Eur. J. Med. Chem*; (2005), 40(2), 225.
- [**54**]. A. O. De Souza, F. C. S. Galetti, C. L. Silva, B. Bicallo, M. M. Parma et S. F. Fonseca, *Quin Nova*; (**2007**), 30(7), 1563.

[55]. L. Shi, H. M. Ge, S. H. Tan, H. Q. Li, Yi, Y. C. Song, H. L. Zhu et R. X. Tan, *Eur. J. Med. Chem*, (2007), 42, 558.

[56]. F. Khan, F. Syed, A. Iqbal, Z. U. H. Khan, H. Ullah et S. Khan. Asian Journal of

Chemistry; (2016), Vol. 28, No. 8, 1658-1660.

[57]. G. Valarmathy, R. Subbalakshmi, R. Eenganathan et R. Kokila. Asian Journal of

Chemistry; (2018), Vol. 30, No. 3, 645-650.

[**58**]. M.L. Martin and G.J. Matin, Manuel de résonance magnétique nucléaire. Ed. A. Zoulay **1971**, 40.

Chapitre III

Généralités, étude structurale par DRX de six dérivés d'imines et un imidazole.

I-Diffraction des rayons x

Cette techniques de base pour la caractérisation cristallographique de la matière repose sur le fait que les distances interatomiques sont de l'ordre de grandeur d'onde des rayons X ($0.2\text{\AA} < \lambda < 2\text{\AA}$). La périodicité spatiale des structures cristallines est à l'origine d'interférences constructives des rayonnements diffusés par les différents atome. Les rayons X qui sont des ondes électromagnétiques interagissant avec les électrons des atomes. Ainsi, les résultats de la diffraction x permettront d'avoir accès aux cartes de densité électronique dans la maille cristalline. En effet, chaque atome de Z contient Z électrons qui sont distribués autour du noyau. Chaque électron j a sa propre densité électronique $\rho_{(r)j}$ et un facteur de forme f_e. Le facteur de forme atomique ou facteur de diffusion atomique f_a est la somme des facteurs de forme des électrons de l'atome :

 $f_a = \sum f_e(Q) = \sum \rho_{(r)j} e^{iQr} dV_{(r)}$

Ce facteur de diffusion atomique est la transformé de fourier de la densité électronique de l'atome. Pour un angle de diffraction $2\theta = 0$, le facteur de diffusion atomique est égale au nombre d'électrons Z. Lorsque l'angle de diffraction augmente, f_a diminue puisque des interférences destructives apparaissent en raison de la dispersion spatiale du nuage électronique.

Sur l'ensemble de la maille l'amplitude diffractée dans une direction donnée correspond à la somme des amplitudes complexes f_a diffusés par les atomes. Cette amplitude diffractée par tous les atomes est appelée facteur de structure et peut être écrite :

$$F_{hkl} = \sum N_j F_j \exp(-B_j (\sin \theta / \lambda)^2) \cdot \exp(i2\pi (hx_j + lz_j))$$

Avec N_j-nombre d'atomes.

F_j-Facteur de diffusion de l'atome.

exp(-B(sin $\theta/\lambda)$ 2) -transformée de Fourier du nuage de probabilité de Gauss remplaçant la position ponctuelle de l'atome et ou B_j est le Facteur de déplacement atomique isotrope de l'atome j. $exp(i2\pi(hx_i+ky_i+lz_i)-phase des ondes diffusées avec :$

x_j, y_j, z_j- coordonnées réduites de l'atome j.

Par définition, l'intensité diffractée correspond au carré du module du facteur de structure :

$$I_{\rm hkl} = |F_{\rm hkl}|^2$$

I-1-Analyse par diffraction des rayons X sur monocristal

La radiocristallographie et l'étude des solides cristallisés à l'aide des rayons X. En rencontrant un cristal, ces rayonnements subissent, en particulier, le phénomène de diffraction. L'interprétation de ce phénomène permet de déduire deux types d'informations :

- Analyse de la symétrie : caractéristique de la maille, réseau, groupe ponctuel et groupe spatial.
- L'architecture des molécules d'une part, et l'agencement des molécules entre elles d'autre part, autrement dit la détermination de l'arrangement atomique dans l'espace tridimensionnel.

L'étude de la structure cristalline fait intervenir :

- Choix du monocristal
- Étude sur un diffractomètre
- Résolution et affinement de la structures

I-1-1-Choix du monocristal

Il faut commencer par choisi un monocristal, sans macles ni inclusions apparentes, c'est à dire un cristal sans angles rentrants et d'un aspect homogène. Au préalable, les cristaux sont triés à l'aide d'un microscope optique est testé pour vérifier leur cristallinité et l'absence de macles, une taille suffisante nécessaire pour obtenir des bonnes intensités de diffraction et leur forme géométrique simple permet d'indexer leur faces et obtenir une bonne correction d'absorption.

I-1-2-Étude sur un diffractomètre

Nous avons utilisé une seul diffractomètre pour diffracté les sept structures: diffractomètre automatique Bruker Apex II.

• Diffractomètre automatique Bruker Apex II:

L'enregistrement de données de diffraction par un monocristal de sept 7 structures organiques ont été réalisé à l'aide d'un diffractomètre automatique Bruker Apex II présenté ci-dessous (Figure-1). Ce dernier est équipé :

d'un détecteur CCD 2 dimensions fonctionnant à la température de -60°C, la quelle est attente par un dispositif à effet Peletier.

Figure-1: Diffractomètre automatique Bruker Apex II

- d'un microscope vidéo CCD pour visualisation directe du monocristal et obtention des paramètres nécessaires aux corrections d'absorption numériques.
- d'une station de travail avec écran plat 19" Pentium IV.
- d'un logiciel incluant les programmes de contrôle et d'acquisition des images APEX 2 par interface utilisateur graphique, stratégies de mesure, algorithmes 3D d'intégration des donnés générant les images et les jeux de données pour la résolution des structures cristallographiques et leurs affinement.

II-Logiciels utilisés pour la détermination des structures cristallines [1]

Durantces dernières années, la mécanique de précision et l'informatique ont considérablement évoluées permettant ainsi l'amélioration de la résolution structurale sur les monocristaux. Cette révolution a permis la résolution de structures complexes (protéines) dans un minimum de temps, chose qui prenait avant des mois.

Plusieurs logiciels ont montré leur efficacité dans les différentes étapes de résolution structurale pour les données de la diffraction des RX par des monocristaux.

Ces logiciels se basent sur les deux méthodes les plus utilisées dans la résolution structurale pour les monocristaux, incluant aussi leurs amélioration les plus récentes, à savoir: la méthode de l'atome lourd (interprétation de la fonction de Patterson) et les méthodes directes.

L'affinement des structures est habituellement effectué par des synthèse de Fourier appliquées aux " $|F_{obs}|$ ". Peu de programmes sont capables de donner une synthèse de Fourier comme un résultat.

II-1-Le SHELX-97

II-1-a-Présentation du SHELX-97

SHELX-97 est un logiciel de résolution et d'affinement des structures cristallines. Il est utilisé principalement pour les monocristaux et les poudres cristallines.

La première version de SHELX a été écrite en 1970, afin de résoudre et d'affiner les structures moléculaires de petites dimensions. Basé sur les méthodes directes et la méthode de Patterson, l'évolution de ces méthodes, a permis la résolution des macromolécules (maximum 200 atomes) en utilisant la version améliorée de SHELX-97.

Actuellement, l'amélioration des surfaces des détecteurs a abouti à une meilleure collection des données et a conduit à une augmentation rapide des macromolécules de haute résolution. Par conséquent, le SHELX-97 a eu une large utilisation et un intérêt potentiel aux milieu des cristallographes.

SHELX-97 est un logiciel assez performant, qui comporte un ensemble de programmes permettant :

a- le contrôle du groupe d'espace,

b-l'interprétation de la fonction de Patterson,

c-l'utilisation des méthodes directes pour la détermination de la phase,

d- l'affinement des structures,

e- l'analyse géométrique des structures (distances interatomiques, angles, angles de torsion), la méthode des moindres carrés (matrice complète, bloc diagonal) avec la

possibilité d'attribuer l'action d'anisotropie des vibrations thermiques des atomes, des extinctions secondaires,

f- l'affichage des différents résultats.

II-1-b-Description de SHELX-97

SHELX-97 contient les six programmes exécutables suivants :

-SHELXS : pour la solution de la structure par les Patterson et les méthodes directes,

-SHELXL : pour l'affinement de la structure,

-SHELXH : pour l'affinement des structures très grandes,

-CIFTAB pour l'obtention des tables de publication en CIF [2],

-SHELXA : pour la correction d'absorption,

-SHELXPRO : programme d'interface pour les protéines.

Seulement le SHELXS et le SHELXL sont utilisés pour la résolution. Pour les exécuter, on a besoin de deux fichiers d'entrée standards (sous forme ASCII) : un fichier des réflexions (*.hkl) et un fichier qui contient les informations et les instructions (*.ins).

A prés l'exécution de SHELXS ou SHELXL, deux fichiers sont crées : le premier fichier (*.res) contient les résultats. Ce dernier peut être renommé à (*.ins) pour sevir à un prochain affinement, si les résultats son insuffisants. Le deuxième est (*.lst) où sont stockés les détails des affinements.

-Le fichier *.hkl

Le fichier *.hkl se compose d'une ligne par réflexion écrite en format (I4, 2F8.2, I4) pour h, k, l, F_{obs}^2 , $\sigma(F_{obs}^2)$, et facultativement le batch number (numéro séquentiel). Ce fichier doit être terminé par une ligne à : h = k = 1 =0, $F_{obs}^2 = 0$, $\sigma(F_{obs}^2) = 0$. Le batch number sert à distinguer les groupes de réflexions mesurées indépendamment pour lesquelles des facteurs d'échelle sont différents. Ce fichier est lu quand l'instruction HKLF est présente à la fin du fichier *.ins. En général, le fichier *.hkl doit contenir toutes les réflexions mesurées sans rejet des absences systématiques ou des réflexions équivalentes.

-Le fichier *.ins

C'est un fichier d'instructions dans lequel sont respectées les conditions suivantes :

1- toutes les instructions débutent avec un mot de quatre caractères (ou moins),

2- les chiffres et toute autre information suivent un format libre,

3- l'instruction désirée peut etre écrite en majuscule ou en minuscule.

Les instructions TITL, CELL, ZEER, LATT, SYMM, SFAC, et UNIT doivent être données dans cet ordre, et toutes les instructions complémentaires doivent être insérées entre UNIT et la dernière instruction qui est toujours HKLF.

II-1-b-1-Le programme Xcad4

Dans le cas où les données expérimentales sont enregistrées initialement dans un format autre que celui adopté par SHELX, il faut procéder à un changement de format des données. Un petit programme, appelé Xcad4 crée par le professeur K. Harms [3], permet de convertir les données vers le format spécifique de SHELX. Ce programme donne directement les F^2_{obs} et $\sigma(F^2_{obs})$ corrigées du facteur de Lorenz-polarisation suivant les relations :

$$F_{obs}^{2} = \frac{I_{raw}}{LP}$$
$$(F_{obs}^{2}) = \frac{A\sqrt{C^{2} + R^{2}.B}}{NPI \times LP}$$

σ

D'autre informations telles que les paramètres du cristal (a, b, c, α , β , γ) et leurs écart type sont aussi données et stockées dans le fichier*.p4p, nécessaire pour le SHELX. Par contre, les paramètres d'enregistrement (h_{min}, h_{max}, ..., θ min, θ max, la matrice d'orientation) sont stockés dans un 2^{ème} fichier xcad4.lst.

II-1-b-2-Le programme SHELXS

SHELXS 97 est un programme concu pour la résolution des structures moléculaires (maximum 200 atomes) [4]. Il est utilisé pour localiser les atomes lourds, soit par la méthode de Patterson, soit par les méthodes directes. Il est valable pour tous les groupes d'espaces.

-Programme et organisation du fichier

Avant d'exécuter le SHELXS, il faut préalablement préparer le fichier *.ins. La méthode d'exécuter (UNIX, MS DOS, VMS, ...). Pour le système MS DOS, SHELXS peut être exécuté au moyen de la commande : shelxs *, où* définit le nom de fichier (sans extension) qui correspond à une structure cristalline particulier, par exemple, shelxs bq2. Par conséquent, les fichiers *.ins et *.hkl deviendront respectivement bq2.ins et bq2.hkl.

-Chronologie des instructions dans le fichier *.ins

Deux fichiers peuvent être exécutés par SHELXS, l'un pour les méthodes directes et l'autre pour la méthode de Patterson. La structure de fichier «.ins est semblable, à quelques détails prés, pour les deux types de fichiers. Les instructions dans les fichier «.ins respectent la chronologie présentée dans le tableau 1 :

Méthodes directes	Méthodes de Patterson			
TITL	TITL			
CELL	CELL			
ZERR	ZERR			
LATT	LATT			
SYMM	SYMM			
SFAC	SFAC			
UNIT	UNIT			
TREF	PATT			
HKLF	HKLF			

Tableau 1 : Instructions dans les deux types de fichier *.ins

Remarque : Le fichier «.hkl est le même pour les deux cas.

Exemples

-Cas de	la méthoc	le de Patt	erson							
TITL	bq2 in P21/c									
CELL	0.71073	11.5628	8.7237	12.9575	90.000	97.996	90.000			
ZERR	4	0.000	0.000	0.000	0.000	0.000	0.000			
LATT	1									
SYMM	-X, 1/2+Y, 1/2-Z									
SFAC	C H Cl N									
UNIT	60 44 8	3 4								
PATT										
HKLF	4									
-Cas de	s méthode	s directes	5							
TITL	bq2 in P21/c									
CELL	0.71073	11.5628	8.7237	12.9575	90.000	97.996	90.000			
ZERR	4	0.000	0.000	0.000	0.000	0.000	0.000			
LATT	1									
SYMM	-X, 1/2+Y, 1/2-Z									
SFAC	C H Cl N									
UNIT	60 44 8 4									
TREF										
HKLF	4									

II-1-b-3-Le programme SHELXL

Le SHELXL est un programme pour l'affinement des structures cristallines **[5-6]**, valable pour tous les groupes d'espace et types de composés (organique, organométalliques et inorganiques), ce programme peut aussi traiter les problèmes de maclage, de désordre et de structure absolue.

Le SHELXL nécessite pour son exécution les deux fichiers *.ins et *.hkl. Une fois exécuté, le SHELXL calcule automatiquement l'intensité moyenne des réflexions équivalentes et élimine les absences symétriques. Les résultats de l'affinement sont

reportés dans deux fichier *.lst et *.res crées automatiquement par SHELXL. Dans le fichier *.lst, on retrouve les résultats des différents cycles d'affinement (Fourier-Différence, distances interatomiques, angles de liaison et les facteurs de reliabilité). Ce fichier peut être édité, examiné et imprimé facilement. Alors que dans le fichier *.res on retrouve les instructions du fichier *.ins, ainsi que les résultats d'affinement des coordonné ses atomiques avec le facteur d'échelle et le schéma de pondération. Ce fichier peut être renommé en *.ins pour servir à un prochain affinement.

-Fichier *.ins

Ce fichier est le même que celui utilisé dans le SHELXS, mais il comporte d'autres instructions qui sont :

L.S Pour définir le nombre des cycles d'affinements.

BOND Pour le calcul des distances interatomiques et les angles de liaisons.

FMAP 2 Pourle calcul de la synthèse de la densité électronique différence.

PLAN n Pour faire ressortir les n premiers pics intenses de la synthèse de Fourier différence.

OMIT Permet d'éliminer des réflexion.

ACTA Pour créer les fichier «.fcf et «. cif dans lesquels sont groupés les résultats de la résolution structurale dans un format désiré à publier le travail.

Ces instructions sont nécessaires pour l'exécution du premier affinement.

-Affinement par SHELXL en fonction de F^2

Habituellement, la plupart des structures cristallines ont été affinées en fonction de F. Pour les monocristaux, les paramètres cristallins sont obtenus par l'affinement en fonction de F où les valeurs de F_{obs} , telles que $F_{obs} < 3\sigma(F_{obs}^2)$, sont négligées.

Les valeurs des facteurs de reliabilité obtenus par un affinement basé sur toutes les F_{obs}^2 sont supérieures à celles obtenus es par un affinement en fonction des valeurs F> $4\sigma(F)$. Il est difficile d'affiner en fonction de toutes les valeurs de F en raison de la difficulté d'estimer $\sigma(F)$ à partir de $\sigma(F^2)$ quand les F² sont nulles ou, en raison des erreurs expérimentales, négatives.
Lors de la collecte des données expérimentales, les intensités de réflexions sont mesurées ainsi que leurs écart type, qui après les diverses corrections, donnent F^2_{obs} et $\sigma(F^2_{obs})$. L'instruction HKLF 3 permet à SHELXL, dans le cas d'un fichier des données expérimentales basées sur, de transformer ces $F_{obs}(F^2)$ en $F^2_{obs}(\sigma(F^2))$ et d'effectuer l'affinement.

Remarque

L'utilisation d'un seul, pour ignorer des réflexions de faibles densités, peut présenter des influences qui affecte principalement les paramètres d'agitation thermique. Dans l'affinement final, toute donnée expérimentale doit être utilisée sans les omettre les réflexions au-dessous d'un seuil donné, excepté les réflexions qui souffrent des erreurs systématiques.

-Traitement initial des intensités des réflexions

SHELXL rejette automatiquement les réflexions systématiquement absentes. Les réflexions restantes sont moyennées et contrôlées par l'instruction MERG. Habituellement, l'instruction MERG 2 est utilisée par défaut et convient à des structures de petites molécules. Les intensités z des réflexions équivalentes sont moyennées et les indices sont convertis en équivalents par symétrie. Deux critères définis par:

$$R_{sigma} = \frac{\sum \sigma[(F^2_{obs})]}{\sum F^2}$$

Et

$$R_{int} = \frac{\sum |F^{2}_{obs} - F^{2}_{obs}|}{\sum |F^{2}_{obs}|}$$

sont utilisés respectivement pour s'assurer de la bonne qualité du monocristal étudie lors du choix du groupe d'espace. Pour des valeurs de R_{int} < 0.1, le choix du groupe d'espace est judicieux. Pour des valeurs de R_{sigma} > 0.1, les intensités des réflexions sont très faibles et les résultats obtenus peuvent ne pas refléter la réalité.

-Facteurs de reliabilité et les schémas de pondération

La détermination des structures cristallines consiste, en général, à comparer les intensités des réflexions observées expérimentalement avec les intensités des réflexions calculées à partir d'un modèle proposé. Pour vérifier la convergence des deux models, des facteurs de reliabilité sont définis par :

$$R_{1} = \frac{\sum \left\| F_{obs} \right| - \left| F_{cal} \right\|}{\sum \left| F_{obs} \right|}$$
$$\omega R_{2} = \left\{ \frac{\sum \left[\omega \left(F_{obs}^{2} - F_{cql}^{2} \right)^{2} \right]}{\sum \left[\omega \left(F_{obs}^{2} \right)^{2} \right]} \right\}^{\frac{1}{2}}$$

Plus la concordance entre les F_{obs} et les F_{cal} est meilleure plus les valeurs de R_1 et de ωR_2 tendent vers zéro. Le facteur de pondération

$$\omega = \frac{1}{\left[\sigma^{2}(F_{obs}^{2}) + (aP)^{2} + bP\right]} \quad \text{ou} \quad P = \frac{2F_{cal}^{2} + Max(F_{obs}^{2}, 0)}{3}$$

a et b sont des constantes utilisées pour mieux juger la convergence entre le modèle expérimental et le modèle théorique proposé.

Un autre facteur défi ni par :

$$GoF = S = \left\{ \frac{\sum \left[\omega \left(F_{obs}^2 - F_{cal}^2 \right)^2 \right]}{(n-p)} \right\}^{\frac{1}{2}}$$
(GoF=Goodness of Fit)

où n : nombre de réflexions

p : nombre des paramètres affinés, permet d'apprécier la qualité de l'affinement effectué.

Plus sa valeur est petite plus l'affinement est bon.

-Tableaux

Lors des affinements intermédiaires plusieurs paramètres peuvent être édité sous de tableau à l'aide des instruction suivantes.

BOND pour afficher les longueurs de liaisons et les angles de liaisons,

- **CONF** pour afficher les angles de torsions,
- BIND pour ajouter des liaisons spécifiques,
- FREE pour éliminer des liaisons spécifiques,
- **EQIV** pour déclarer n'importe quel atome équivalent par symétrie.

-La correction d'absorption

L'utilisation du programme WinGX **[7]** permet d'effectuer plusieurs types de corrections d'absorption et de comparer les résultats entre eux.

Les principaux Facteurs affectés par la correction d'absorption sont les paramètres thermiques anisotropiques [8].

Il y a trois méthodologies des base pour appliquer une correction d'absorption aux intensités des réflexions enregistrés.

1-Correction numérique exacte : analytique [9], Gaussienne [10], sphérique et cylindriqiue.

2-Correction Semi-empiriques : Psi-Scans [11]. CAMEL-JOCKEY [12] et Multiscan [13].

3-Correction affinée : DIFABS, XABS2 [14] et SHELXA.

-Les méthodes numériques

Il est consenti généralement que les meilleures corrections d'absorption sont Fourier par les méthodes analytiques ou Gaussienne. Ces deux méthodes exigent l'indexation des faces cristallines.

Les corrections sphériques et cylindriques sont aussi des méthodes numériques, elles s'appliquent aux cristaux dont la morphologie externe est sphériques ou cylindrique, elles sont peu utilisées vu que les cristaux peuvent être broyés sous

former sphérique, mais beaucoup de composés ne supportent pas ce traitement mécanique.

-Les méthodes Semi-Empiriques

Les méthodes semi-empiriques Multiscan de Blessing, CAMEL-JOCKEY et Psi-Scan de North et al sont basées sur des mesures d'intensités expérimentales supplémentaires qui doivent être effectuées pendant l'enregistrement.

La méthode Multiscan est implantée dans les programmes utilisant la correction d'absorption : PLATON [15], SORTAV [16] et SADABS [17]. La méthode la plus utilisée est Psi-Scan de North et al vu la facilité d'acquisition des mesures expérimentales exigées.

-Les Corrections affinées

Les méthodes de correction d'absorption affinées DIFABS, XABS2 et SHELXA sont seulement utilisées dans les derniers cycles de l'affinement de la structure, car elles utilisent des données calculées sur la base du model de structure proposé.

II-2-Les avantages du programmes SHELX-97

L'usage d'un logiciel particulier dépend de plusieurs facteurs :

Coût et fonds disponibles, facilité d'usage, données expérimentaux nécessaires.

Les principaux avantages de SHELX-97 sont :

- Performantes des méthodes (directes, Patterson) utilisées.
- Possibilité de combiner méthodes directes et méthode de Patterson.
- Méthode d'affinement récemment améliorée.
- Facilité d'exécution des instructions.
- Création des fichier name. Cif destinés à la publication. Et l'échange à travers les réseaux informatique.
- Utilisé pour les structures de petite et des grandes molécules.

A cause de tous ces avantage, SHELX prend la première place parmi les logiciels utilisés pour la résolution et l'affinement des structures cristallines.

III-Étude cristallographique

III-1-a-Résolution de la structure de $C_{20}H_{16}CINO_3$ 1 a partir des données de diffraction du monocristal

L'enregistrement des intensités de diffraction du composé $C_{20}H_{16}CINO_3$ a été effectué sur un monocristal à l'aide d'un diffractomètre Bruker Apex-II équipé d'un détecteur bidimensionnel de type CCD. L'acquisition de données, la mise à l'échelle des intensités l'aide de programme SAINT [18]. Un monocristal de dimensions suffisamment petites, pour que les corrections d'absorption puissent être négligées, a été pour l'enregistrement des intensités diffractées, sur diffractomètre automatique Bruker Apex-II.

La structure de $C_{20}H_{16}CINO_3$ a été déterminée sur la base de 13513 réflexions, parmi lesquelles 2490 réflexions ont été considérées comme observables selon le critère de conservation $I > 2\sigma(I)$. Les réflexions ont été mesurées dans le domaine angulaire $2.6 \le \theta \le 25.5$, donnantlieu aux limites des indices de Miller suivants: $-6 \le h \le 7$; $-9 \le k \le 9$; $-21 \le l \le 21$. Les données cristallographiques et les conditions d'enregistrement sont présentées dans le tableau I.1.

La structure cristalline de ce composé a été résolue dans le système **Triclinique** avec le groupe d'espace **P**–1, les paramètres de maille sont consignés dans le tableau I.1. Les atomes ont été localisés par examen des cartes de Fourrier différence au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXT2017 [19] etSHELXL2017[20] et le PLATON[21].

L'affinement des 238 paramètres a conduit aux facteurs d'accord R_1 = 0.042 et wR_2 =0.1032.Les résultats de la résolution et de l'affinement structural sont regroupés dans le tableau I.1. Les coordonnées atomiques et les paramètres de déplacement atomique isotropes équivalents sont consignés dans le tableau I.2. Le tableau I.3 regroupe les valeur significatives des distances et angles de liaison.

Les illustrations graphiques ont été réalisées à l'aide des programmes de dessin: Ortep [22] et Mercury [23-24]. Tableau I.1: Données Cristallographiques du composé $C_{20}H_{16}CINO_3$.

Données Cristallographiques				
Formule empirique $C_{20} H_{16} Cl N O_3$	Température (K) 293(2)			
Système cristallin Triclinique	Longueur d'onde Mo Ka (Å) 0.71073			
Groupe d'espace P-1	Coefficient d'absorption 0.249			
a(Å) 5.9590(2)	linéaire (mm ⁻¹)			
b(Å) 7.8710(3)	Masse molaire (g mol ⁻¹) 353.79			
c(Å) 17.9743(6)	Z 2			
α(°) 98.381(2)	Densité calculé (mg.m ⁻³) 1.412			
β(°) 93.817(2)	Couleur orange			
γ(°)90.294(2)				
V(Å ³)832.11(5)				

Acquisition des données

Réflexions enregistrées $-6 \le h \le 7$

 $-9 \le k \le 9$

 $-21 {\leq} 1 {\leq} 21$

Réflexions mesurées 13513

Réflexions indépendantes 3052

Réflexions $I > 2\sigma(I)$ 2490

R_{int} 0.025

Domaine de θ (°)2.6-25.5

Affinement structural

Nombre de paramèt	res 238	$(\Delta \setminus \sigma)_{\max}$	0.000
$R_1[F^2 > 2\sigma(F^2)]$	0.042	$\Delta \rho_{\min}(e \text{ Å}^{-3})$	-0.186
$\mathrm{wR}_{2}[F^{2} > 2\sigma(F^{2})]$	0.133	$\Delta \rho_{\text{max}}(e \text{ Å}^{-3})$	0.161
GoF	1.10		

	X	У	Z	U éq
Cl1	0.93492 (8)	0.93423 (7)	-0.13197 (3)	0.0533 (2)
O1	0.1309 (2)	0.6289 (2)	0.14736 (7)	0.0518 (5)
O2	0.1581 (3)	0.5583 (2)	-0.05318 (9)	0.0546 (5)
O3	0.3158 (2)	0.7742 (2)	0.41212 (7)	0.0520 (5)
N1	0.4214 (3)	0.7241 (2)	0.05641 (8)	0.0382 (5)
C1	0.4780 (3)	0.7305 (2)	-0.01782 (10)	0.0348 (5)
C2	0.3343 (3)	0.6417 (2)	-0.07572 (10)	0.0381 (6)
C3	0.3805 (3)	0.6429 (3)	-0.15011 (10)	0.0444 (6)
C4	0.5643 (3)	0.7329 (3)	-0.16776 (10)	0.0433 (6)
C5	0.7028 (3)	0.8202 (2)	-0.11011 (10)	0.0374 (6)
C6	0.6635 (3)	0.8205 (2)	-0.03551 (10)	0.0371 (5)
C7	0.5388 (3)	0.7860 (2)	0.11873 (10)	0.0394 (6)
C8	0.4718 (3)	0.7766 (2)	0.19092 (10)	0.0380 (5)
C9	0.2627 (3)	0.6945 (2)	0.20317 (10)	0.0380 (5)
C10	0.2119 (3)	0.6906 (3)	0.27886 (10)	0.0426 (6)
C11	0.3535 (3)	0.7669 (3)	0.33778 (10)	0.0409 (6)
C12	0.5562 (3)	0.8502 (3)	0.32557 (11)	0.0481 (7)
C13	0.6123 (3)	0.8526 (3)	0.25418 (11)	0.0465 (6)
C14	0.1117 (4)	0.6974 (3)	0.43003 (11)	0.0572 (8)
C15	0.1044 (4)	0.7217 (3)	0.51439 (10)	0.0474 (7)
C16	-0.0740 (4)	0.8010 (3)	0.54911 (14)	0.0632 (8)
C17	-0.0843 (5)	0.8143 (3)	0.62686 (15)	0.0719 (9)
C18	0.0817 (5)	0.7470 (3)	0.66975 (12)	0.0631 (8)
C19	0.2599 (5)	0.6690 (4)	0.63599 (13)	0.0677 (9)

Tableau I.2: Coordonnées atomiques et paramètres de déplacement atomique isotropiques (Å $^2)$

	X	У	Z	U éq
C20	0.2723 (4)	0.6576 (3)	0.55862 (12)	0.0621 (8)
H1	0.299 (4)	0.674 (3)	0.0639 (13)	0.057 (7)*
H2	0.080 (5)	0.509 (4)	-0.0877 (18)	0.086 (10)*
Н3	0.28678	0.58262	-0.18855	0.0530*
H4	0.59415	0.73465	-0.21778	0.0520*
H6	0.75959	0.88004	0.00245	0.0450*
H7	0.686 (4)	0.840 (3)	0.1147 (11)	0.043 (5)*
H10	0.08097	0.63559	0.28872	0.0510*
H12	0.64933	0.90248	0.36612	0.0580*
H13	0.74667	0.90542	0.24615	0.0560*
H14A	0.10695	0.57595	0.41018	0.0690*
H14B	-0.01698	0.75127	0.40768	0.0690*
H16	-0.18852	0.84600	0.52046	0.0760*
H17	-0.20480	0.86928	0.64988	0.0860*
H18	0.07282	0.75461	0.72159	0.0760*
H19	0.37329	0.62325	0.66483	0.0810*
H20	0.39585	0.60591	0.53619	0.0740*

	Distance in	nteratomiques(Å)	
Cl1—C5	1.7423 (18)	C14—C15	1.504 (3)
O1—C9	1.277 (2)	C15—C20	1.380 (3)
O2—C2	1.351 (2)	C15—C16	1.375 (3)
O3—C11	1.363 (2)	C16—C17	1.392 (4)
O3—C14	1.432 (3)	C17—C18	1.370 (4)
N1—C1	1.406 (2)	C18—C19	1.363 (4)
N1—C7	1.309 (2)	C19—C20	1.387 (3)
O2—H2	0.80 (3)	С3—Н3	0.9300
C1—C2	1.403 (2)	C4—H4	0.9300
C1—C6	1.389 (2)	С6—Н6	0.9300
N1—H1	0.86 (2)	С7—Н7	0.98 (2)
C2—C3	1.384 (3)	C10—H10	0.9300
С3—С4	1.381 (3)	C12—H12	0.9300
C4—C5	1.378 (3)	C13—H13	0.9300
С5—Сб	1.376 (3)	C14—H14A	0.9700
С7—С8	1.395 (3)	C14—H14B	0.9700
C8—C13	1.422 (3)	C16—H16	0.9300
С8—С9	1.445 (2)	C17—H17	0.9300
C9—C10	1.418 (3)	C18—H18	0.9300
C10—C11	1.373 (3)	C19—H19	0.9300
C11—C12	1.416 (3)	C20—H20	0.9300
C12—C13	1.350 (3)		

Tableau I.3: Distances interatomiques (Å) et angles de liaison (°) dans la structure du composé $C_{20}H_{16}CINO_3$

	Angles (degrés)			
C11—O3—C14	117.35 (14)	C15—C16—C17	120.4 (2)	
C1—N1—C7	127.15 (17)	C16—C17—C18	120.5 (2)	
C2—O2—H2	113 (2)	C17—C18—C19	119.6 (2)	
N1—C1—C6	123.47 (16)	C18—C19—C20	120.1 (2)	
C2—C1—C6	119.86 (16)	C15—C20—C19	121.1 (2)	
N1—C1—C2	116.67 (16)	С2—С3—Н3	120.00	
C1—N1—H1	119.4 (15)	C4—C3—H3	120.00	
C7—N1—H1	113.4 (15)	C3—C4—H4	121.00	
C1—C2—C3	119.57 (16)	C5—C4—H4	121.00	
O2—C2—C3	124.73 (17)	C1—C6—H6	121.00	
O2—C2—C1	115.70 (16)	С5—С6—Н6	121.00	
C2—C3—C4	120.61 (17)	N1—C7—H7	118.2 (12)	
C3—C4—C5	118.97 (17)	С8—С7—Н7	117.5 (12)	
Cl1—C5—C4	119.22 (14)	C9—C10—H10	120.00	
Cl1—C5—C6	118.73 (13)	C11—C10—H10	120.00	
C4—C5—C6	122.05 (17)	C11—C12—H12	121.00	
C1—C6—C5	118.93 (16)	C13—C12—H12	120.00	
N1—C7—C8	124.28 (17)	C8—C13—H13	119.00	
C9—C8—C13	119.22 (16)	C12—C13—H13	119.00	
С7—С8—С9	121.97 (16)	O3—C14—H14A	110.00	
C7—C8—C13	118.80 (16)	O3—C14—H14B	110.00	
01—C9—C8	120.48 (16)	C15—C14—H14A	110.00	
O1—C9—C10	122.15 (16)	C15—C14—H14B	110.00	
C8—C9—C10	117.36 (16)	H14A—C14—H14B	108.00	
C9—C10—C11	120.87 (17)	C15—C16—H16	120.00	
C10—C11—C12	121.61 (17)	C17—C16—H16	120.00	

Angles (degrés)		
113.29 (16)	C16—C17—H17	120.00
125.09 (17)	C18—C17—H17	120.00
119.03 (18)	C17—C18—H18	120.00
121.89 (18)	C19—C18—H18	120.00
108.26 (17)	C18—C19—H19	120.00
121.1 (2)	C20—C19—H19	120.00
120.6 (2)	С15—С20—Н20	119.00
118.32 (19)	C19—C20—H20	119.00
	Angles (degrés) 113.29 (16) 125.09 (17) 119.03 (18) 121.89 (18) 108.26 (17) 121.1 (2) 120.6 (2) 118.32 (19)	Angles (degrés)113.29 (16)C16—C17—H17125.09 (17)C18—C17—H17119.03 (18)C17—C18—H18121.89 (18)C19—C18—H18108.26 (17)C18—C19—H19121.1 (2)C20—C19—H19120.6 (2)C15—C20—H20118.32 (19)C19—C20—H20

III-1-b-Description et discussion de la structure C₂₀H₁₆ClNO₃1

La structure moléculaire de $C_{20}H_{16}CINO_3$ est représentée sur la Figure 1; la molécule est constituée de trois cycles sous forme des cycles aromatiques définis par les atomes C1/C6, C8/C13 et C15/C20. Les différents cycles de la molécule ont des distances et des angles presque normaux, une différence de 0.03 Å.

La structure moléculaire de composé $C_{20}H_{16}CINO_3 1$ illustré dans la Figure.1 peut être influencés par de liaison hydrogène intramoléculaire ; N—H···O contact. Ce liaison hydrogène former de motif en anneau *S*(6) comme montré sur la figure.1. Dans la structure de composé 1, l'atome N est protoné et La configuration de la liaison C=N imine est *E* dans le composé 1,lalongueur de liaison C9=O1 est de valeur 1.277(2) Å, confirme que c'est une double liaison. L'*o*-hydroxy Schiff base de 1 a une configuration Z sur le double liaison C7=C8, et la molécule adopte la forme **Keto-imine** tautomérique, avec la longueur de liaison N1—C7 étant 1.309(2) Å. La présentation de la maille élémentaire est illustrée dans la Figure.2. La molécule n'est pas plane (Figure.3), l'anneau benzénique central (C8/13) est incliné les deux anneaux benzéniques extérieur (C1/C6 et C15/C20) par 5.11(9) et 58.42(11)°, respectivement. L'ensemble des distances C—H aromatique a une valeur moyenne de 0.93Å très proche de celle que l'on trouve habituellement par des affinements d'atomes d'hydrogène à partir des données de diffraction des rayons x **[25]**. La Figure.1 représente un diagramme *Ortep* d'une structure $C_{20}H_{16}CINO_3$ avec numérotation des atomes carbone, hydrogène, oxygène, chlore et azote.

Figure.1: Vue de la structure moléculaire du composé $C_{20}H_{16}CINO_3$. Les ellipsoïdes d'agitation thermique sont donnés avec une probabilité de 50%.

Figure.2: présentation *Mercury* de la maille élémentaire du composé $C_{20}H_{16}CINO_3$

Figure.3: Représentation Mercury avec les trois plans et les déférentes angles.

La structure de composé $C_{20}H_{16}CINO_3$ (1), contient des forte liaisons hydrogène O2—H2…O1ⁱ (voir tableau.1) et Figure.4, former des dimères d'inversion qui entourent R_2^2 (18) anneaux. Celles-ci combiner avec des liaisons hydrogène C7—H7…Cl plus faibles, qui génèrent également des dimères d'inversion mais avec R_2^2 (14) motifs.

Les inversions contacts C14—H14A····Cg3ⁱⁱ liés à la formation de feuilles de molécules parallèles à (-120), figure.2, qui sont empilé approximativement le long de la direction de l'axe b. L'ensemble de l'empilement pour cette structure est représenté sur la figure.5.

Figure.4: Représentation *Mercury*. Feuilles de molécules de $C_{20}H_{16}CINO_3$ parallèles à (-120). Des liaisons hydrogène D—H···A et les centroïdes C—H··· π du composé $C_{20}H_{16}CINO_3$.

Figure.5: Représentation *Mercury*.Empilementglobal pour la structure de composé $C_{20}H_{16}CINO_3$ vu le long de la direction de l'axe b. Des liaisons hydrogène D—H···A et les centroïdes C—H··· π du composé $C_{20}H_{16}CINO_3$.

Les distances entre donneur D et accepteur A (D—A), l'atome d'hydrogène et l'accepteur A(H···A) ainsi que les angles D—H···A sont rassemblés dans le tableau 1.

Tableau.1: Distances et angles caractérisant les liaisons hydrogène D—H···A au sein du structure $C_{20}H_{16}CINO_3$.

D—H···A	D—H	$H \cdots A$	$D{\cdots}A$	D—H···A
N1—H1…O1	0.86 (2)	1.93 (2)	2.637 (2)	139 (2)
N1—H1…O2	0.86 (2)	2.27 (2)	2.620 (2)	104.5 (18)
O2— $H2$ ···O1 ⁱ	0.80 (3)	1.84 (3)	2.619 (2)	165 (3)
C7— $H7$ ··· $Cl1$ ⁱⁱ	0.98 (2)	2.84 (2)	3.7971 (18)	164.5 (17)
C14—H14 A ···· $Cg3^{iii}$	0.97	2.71	3.569 (3)	148

Codes de symétrie:(i) -x;-y + 1;-z; (ii) -x + 2;-y + 2;-z (iii) -x;-y + 1;-z + 1. **III-2-a-Résolution de la structure de C**₂₄H₂₂N₂O₂ 2 a partir des données de

diffraction du monocristal:

L'enregistrement de données de diffraction du composé $C_{24}H_{22}N_2O_2$ a été effectué sur un monocristal à l'aide d'un diffractomètre Bruker Apex-II équipé d'un détecteur bidimensionnel de type CCD (Charged Coupled Device). L'acquisition de données, la mise à l'échelle des intensités l'aide de programme SAINT [18]. Un monocristal de dimensions suffisamment petites, pour que les corrections d'absorption puissent être négligées, a été pour l'enregistrement des intensités diffractées, sur diffractomètre automatique Bruker Apex-II.

La structure de $C_{24}H_{22}N_2O_2$ 2 a été déterminée sur la base de 17491 réflexions, parmi lesquelles 2304 réflexions ont été considérées comme observables selon le critère de conservation $I > 2\sigma(I)$. Les réflexions ont été mesurées dans le domaine angulaire $3.7 \le \theta \le 27.5$, donnantlieu aux limites des indices de Miller suivants: $-6 \le h \le 7$; -20 $\le k \le 26$; $-22 \le l \le 21$. Les données cristallographiques et les conditions d'enregistrement sont présentées dans le tableau I.4.

La structure cristalline de ce composé a été résolue dans le système **Monoclinique** avec le groupe d'espace $P2_1/c$, les paramètres de maille sont consignés dans le tableau I.4. Les atomes ont été localisés par examen des cartes de Fourrier différence

au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXT2017 [19] et SHELXL2017[20] et le PLATON[21].

L'affinement des 261 paramètres a conduit aux facteurs d'accord \mathbf{R}_1 =0.047 et $w\mathbf{R}_2$ =0.124.Les résultats de la résolution et de l'affinement structural sont regroupés dans le tableau I.4. Les coordonnées atomiques et les paramètres de déplacement atomique isotropes équivalents sont consignés dans le tableau I.5. Le tableau I.6 regroupe les valeur significatives des distances et angles de liaison.

Les illustrations graphiques ont été réalisées à l'aide des programmes de dessin: Ortep [22] et Mercury [23-24].

	Données Cris	stallographiques			
Formule empirique C ₂₄ H ₂₂ N ₂ O ₂		Température (K)	293(2)		
Système cristallin Mono	oclinique	Longueur d'onde Mo Ka (À	Longueur d'onde Mo Kα (Å) 0.71073		
Groupe d'espace $P 2_1/c$	2	Coefficient d'absorption	0.084		
a(Å) 5.5265(6)		linéaire (mm ⁻¹)			
b(Å) 20.1714(19)		Masse molaire (g mol ⁻¹)	370.43		
c(Å)17.027(2)		Z 4			
α(°) 90		Densité calculé (mg.m ⁻³)	1.307		
β(°)97.216(5)		Couleur orange			
γ(°)90					
V(Å ³) 1883.1(4)					
	Acquisitio	n des données			
Réflexions mesurées	17491	Réflexions enregistrées –	$6 \le h \le 7$		
Réflexions indépendantes 4255		$-20 \le k \le 26$			
Réflexions $I > 2\sigma(I)$	2304	$-22 \le 1 \le 21$			
R _{int}	0.053				
Domaine de θ (°)3.716-2	27.498				

Tableau I.4: Données Cristallographiques du composé $C_{24}H_{22}N_2O_2$.

Affinement structural		
Nombre de paramètres	265	$(\Delta \setminus \sigma)_{\rm max} < 0.001$
$R_1[F^2 > 2\sigma(F^2)]$	0.047	$\Delta \rho_{min}(e \text{ Å}^{-3}) = -0.16$
$wR_2[F^2>2\sigma(F^2)]$	0.124	$\Delta \rho_{\text{max}}(e \text{ Å}^{-3}) = 0.14$
GoF	1.00	

Tableau I.5: Coordonnées atomiques et paramètres de déplacement atomique isotropiques $(Å^2)$

	X	У	Z	U éq
01	0.4706 (2)	-0.02601 (6)	0.07995 (7)	0.0650 (5)
O2	0.2598 (2)	-0.07547 (6)	0.33695 (7)	0.0583 (4)
N1	0.8488 (3)	0.05404 (7)	0.07254 (10)	0.0556 (6)
N2	1.3886 (3)	0.23680 (8)	-0.09864 (10)	0.0562 (6)
C1	1.0855 (3)	0.20232 (8)	-0.03230 (10)	0.0472 (6)
C2	1.2742 (3)	0.18243 (9)	-0.07135 (11)	0.0541 (6)
C3	1.3252 (3)	0.35979 (9)	-0.08998 (10)	0.0553 (6)
C4	1.1802 (4)	0.40612 (10)	-0.06064 (11)	0.0599 (7)
C5	0.9873 (4)	0.38760 (9)	-0.02008 (10)	0.0598 (7)
C6	0.9357 (3)	0.32199 (9)	-0.00793 (10)	0.0529 (6)
C7	1.0829 (3)	0.27313 (8)	-0.03608 (9)	0.0436 (5)
C8	1.2754 (3)	0.29322 (9)	-0.07754 (10)	0.0456 (6)
C9	0.9184 (3)	0.16023 (9)	0.00909 (12)	0.0554 (6)
C10	1.0162 (3)	0.09284 (9)	0.03068 (12)	0.0614 (7)
C11	0.8718 (4)	0.04992 (9)	0.14913 (13)	0.0550 (7)
C12	0.7144 (3)	0.01537 (8)	0.19354 (10)	0.0479 (6)
C13	0.5134 (3)	-0.02203 (8)	0.15551 (10)	0.0488 (6)

	X	У	Z	U éq
C14	0.3631 (3)	-0.05484 (9)	0.20536 (10)	0.0514 (6)
C15	0.4034 (3)	-0.04853 (8)	0.28556 (10)	0.0482 (6)
C16	0.6007 (4)	-0.01132 (9)	0.32228 (11)	0.0553 (6)
C17	0.7519 (4)	0.01853 (9)	0.27684 (11)	0.0557 (7)
C18	0.0976 (3)	-0.12825 (9)	0.30843 (11)	0.0555 (6)
C19	0.2329 (3)	-0.19171 (9)	0.29849 (10)	0.0468 (6)
C20	0.4546 (3)	-0.20537 (10)	0.34351 (10)	0.0551 (7)
C21	0.5697 (3)	-0.26495 (10)	0.33539 (12)	0.0633 (7)
C22	0.4657 (4)	-0.31237 (10)	0.28371 (12)	0.0650 (7)
C23	0.2467 (4)	-0.29912 (10)	0.23859 (12)	0.0639 (8)
C24	0.1331 (3)	-0.23922 (10)	0.24611 (11)	0.0562 (7)
H2N	1.506 (4)	0.2359 (10)	-0.1260 (11)	0.069 (6)*
H2	1.31882	0.13859	-0.07844	0.0650*
H1N	0.692 (5)	0.0289 (12)	0.0442 (16)	0.124 (9)*
H3	1.45310	0.37232	-0.11740	0.0660*
H4	1.21088	0.45089	-0.06789	0.0720*
H5	0.89146	0.42023	-0.00084	0.0720*
H6	0.80493	0.31023	0.01861	0.0630*
H9A	0.88553	0.18281	0.05692	0.0670*
H9B	0.76469	0.15557	-0.02483	0.0670*
H10A	1.04499	0.06948	-0.01707	0.0740*
H10B	1.17118	0.09713	0.06398	0.0740*
H11	1.010 (3)	0.0728 (8)	0.1783 (9)	0.050 (5)*
H14	0.23468	-0.08114	0.18269	0.0620*
H16	0.62682	-0.00730	0.37710	0.0660*
H17	0.88535	0.04199	0.30136	0.0670*

	X	У	Z	U éq
H18A	0.00844	-0.11556	0.25795	0.0670*
H18B	-0.01974	-0.13537	0.34543	0.0670*
H20	0.52553	-0.17406	0.37934	0.0660*
H21	0.71946	-0.27329	0.36514	0.0760*
H22	0.54258	-0.35297	0.27933	0.0780*
H23	0.17556	-0.33064	0.20306	0.0770*
H24	-0.01436	-0.23062	0.21512	0.0670*

Tableau I.6: Distances interatomiques (Å) et angles de liaison (°) dans la structure du composé $C_{24}H_{22}N_2O_2$

	Dist	ances interatomiques(Å)	
O1—C13	1.281 (2)	C19—C24	1.376 (3)
O2—C15	1.366 (2)	C19—C20	1.389 (2)
O2—C18	1.437 (2)	C20—C21	1.375 (3)
N1—C10	1.464 (2)	C21—C22	1.376 (3)
N1—C11	1.297 (3)	C22—C23	1.376 (3)
N2—C2	1.376 (2)	C23—C24	1.375 (3)
N2—C8	1.368 (2)	C2—H2	0.9300
C1—C2	1.366 (2)	С3—Н3	0.9300
C1—C7	1.430 (2)	C4—H4	0.9300
C1—C9	1.495 (2)	С5—Н5	0.9300
N1—H1N	1.07 (3)	С6—Н6	0.9300
N2—H2N	0.85 (2)	С9—Н9А	0.9700
С3—С8	1.392 (3)	С9—Н9В	0.9700
C3—C4	1.366 (3)	C10—H10A	0.9700
C4—C5	1.392 (3)	C10—H10B	0.9700

	Distances interatomiques(Å)					
C5—C6	1.375 (3)	C11—H11	0.974 (16)			
С6—С7	1.400 (2)	C14—H14	0.9300			
С7—С8	1.408 (2)	C16—H16	0.9300			
C9—C10	1.492 (3)	C17—H17	0.9300			
C11—C12	1.407 (3)	C18—H18A	0.9700			
C12—C17	1.409 (3)	C18—H18B	0.9700			
C12—C13	1.429 (2)	C20—H20	0.9300			
C13—C14	1.423 (2)	C21—H21	0.9300			
C14—C15	1.362 (2)	C22—H22	0.9300			
C15—C16	1.404 (3)	C23—H23	0.9300			
C16—C17	1.350 (3)	C24—H24	0.9300			
C18—C19	1.503 (3)					

Angles (degrés)						
C15—O2—C18	117.81 (13)	C19—C24—C23	121.45 (17)			
C10—N1—C11	122.40 (17)	N2—C2—H2	125.00			
C2—N2—C8	109.25 (15)	C1—C2—H2	125.00			
C2—C1—C7	106.00 (15)	С4—С3—Н3	121.00			
C2—C1—C9	128.14 (16)	С8—С3—Н3	121.00			
C7—C1—C9	125.83 (15)	C3—C4—H4	119.00			
C10—N1—H1N	124.2 (15)	C5—C4—H4	119.00			
C11—N1—H1N	113.3 (15)	C4—C5—H5	119.00			
N2—C2—C1	109.98 (16)	C6—C5—H5	119.00			
C2—N2—H2N	125.9 (14)	С5—С6—Н6	120.00			
C8—N2—H2N	124.8 (14)	С7—С6—Н6	120.00			

	Angles (d	legrés)	
C4—C3—C8	117.90 (16)	С1—С9—Н9А	109.00
C3—C4—C5	121.26 (18)	C1—C9—H9B	109.00
C4—C5—C6	121.28 (18)	С10—С9—Н9А	109.00
C5—C6—C7	119.05 (16)	С10—С9—Н9В	109.00
C6—C7—C8	118.49 (15)	H9A—C9—H9B	108.00
C1—C7—C8	107.82 (15)	N1—C10—H10A	109.00
C1—C7—C6	133.69 (16)	N1—C10—H10B	109.00
N2—C8—C7	106.94 (15)	C9—C10—H10A	109.00
C3—C8—C7	122.01 (16)	C9—C10—H10B	109.00
C15—O2—C18	117.81 (13)	C19—C24—C23	121.45 (17)
N2—C8—C3	131.04 (16)	H10A—C10—H10B	108.00
C1—C9—C10	114.06 (14)	N1—C11—H11	117.0 (9)
N1—C10—C9	112.07 (14)	C12—C11—H11	117.3 (9)
N1—C11—C12	125.67 (19)	C13—C14—H14	119.00
C11—C12—C13	121.06 (16)	C15—C14—H14	119.00
C11—C12—C17	119.73 (17)	C15—C16—H16	120.00
C13—C12—C17	119.20 (16)	C17—C16—H16	120.00
O1—C13—C14	121.46 (15)	C12—C17—H17	119.00
C12—C13—C14	117.00 (15)	C16—C17—H17	119.00
O1—C13—C12	121.55 (15)	O2—C18—H18A	109.00
C13—C14—C15	121.36 (16)	O2—C18—H18B	109.00
C14—C15—C16	121.10 (16)	C19—C18—H18A	109.00
O2—C15—C14	124.77 (15)	C19—C18—H18B	109.00
O2—C15—C16	114.12 (15)	H18A—C18—H18B	108.00
C15—C16—C17	119.03 (17)	C19—C20—H20	120.00
C12—C17—C16	122.24 (18)	C21—C20—H20	120.00

	Angles (de	egrés)	
O2—C18—C19	111.79 (13)	C20—C21—H21	120.00
C18—C19—C20	121.59 (16)	C22—C21—H21	120.00
C18—C19—C24	120.10 (15)	C21—C22—H22	120.00
C20—C19—C24	118.26 (17)	C23—C22—H22	120.00
C19—C20—C21	120.34 (17)	С22—С23—Н23	120.00
C20—C21—C22	120.71 (17)	C24—C23—H23	120.00
C21—C22—C23	119.32 (19)	C19—C24—H24	119.00
C22—C23—C24	119.91 (19)	C23—C24—H24	119.00

III-2-b-Description et discussion de la structure C24H22N2O22

La structure moléculaire de $C_{24}H_{22}N_2O_2$ est représentée sur la Figure.6; la molécule est constituée de trois cycles sous forme des cycles aromatiques définis par les atomes C1/C8, C12/C17 et C19/C24.

La structure moléculaire de composé $C_{24}H_{22}N_2O_2 2$, illustré dans la figure.6, peut être influencés par des liaison hydrogène intramoléculaire; N⁺—H···O⁻ (voir tableau.2). Ce liaisons hydrogène former des motifs en anneau *S*(6) comme montré sur la figure.4. En composé 2,l'atome N est protoné et la longueur de la liaison C13—O1 (C—O⁻) est de 1.281(2) Å. La présentation de la maille élémentaire du composé est illustrée dans la Figure.7.

La configuration de la liaison C=N imine est *E* dans le composé **2**,et la longueur de la liaison C11=N1 est de 1.297(3) Å. La molécule n'est pas plane (Figure.8), l'anneau benzénique central (C12/C17) fait des angles dièdres de 89.59(9) et 72.27(7)°, respectivement, avec anneau benzénique externe (C19/C24) et le plan noyau du système d'anneau indole (N2/C—C8, r.m.s écart = 0.011 Å).

L'ensemble des distances C—H aromatique a une valeur moyenne de 0.93 Å, très proche de celle que l'on trouve habituellement par des affinements d'atomes d'hydrogène à partir des données de diffraction des rayons x **[25]**.

La Figure.6 représente un diagramme *Ortep* d'une structure $C_{24}H_{22}N_2O_2$ avec numérotation des atomes carbone, hydrogène, oxygène et azote.

Figure.6: *Ortep* de l'unité asymétrique de la structure $C_{24}H_{22}N_2O_2$. Les ellipsoïdes d'agitation thermique sont donnés avec une probabilité de 50%.

Figure.7 : présentation *Mercury* de la maille élémentaire du composé $C_{24}H_{22}N_2O_2$

Figure.8: Représentation *Mercury* avec les trois plans et les déférentes angles de composé $C_{24}H_{22}N_2O_2$

Dans la structure cristalline de composé $C_{24}H_{22}N_2O_2$, N—H··· π interactions est prédominent, voir le tableau.2.

Dans le cristal de structure $C_{24}H_{22}N_2O_2$, les molécules sont liées par paires de liaisons hydrogène C—H···O, formant des dimères d'inversions. Les dimères sont liés par des liaisons hydrogène C—H···O et C—H··· π interactions et un faible N—H··· π , formant des colonnes se propageant dans la direction de l'axe a. Le différent liaisons hydrogène et X—H··· π (X=C, N) interactions sont illustrée à la Figure.9, et l'empilement moléculaire de $C_{24}H_{22}N_2O_2$ de structure est illustrée à la Figure.10. Il n'y a pas d'autre intermoléculaire significatif contacts présents dans la structure cristalline.

Figure.9: Représentation *Mercury*. Une vue des liaisons hydrogène (lignes pointillées) et C—H··· π et faible, N—H··· π interactions (flèches blues) dans la structure cristallines du composé $C_{24}H_{22}N_2O_2$; le centre Cg1 est bleu, le centre Cg2 est vert et le centre Cg4 est rouge (voir le tableau.2). Seuls les atomes H impliqués dans ces interactions ont été inclus.

Figure.10: Représentation *Mercury*. Une vue selon l'axe a de l'empilement de cristaux du composé $C_{24}H_{22}N_2O_2$. Les liaisons hydrogène et les C—H··· π interactions sont représentées par des lignes pointillées (voir tableau.2) et seuls les atomes H impliqués dans ces interactions ont été inclus.

Tableau.2: Distances et angles caractérisant les liaisons hydrogène D—H···A au sein du structure $C_{24}H_{22}N_2O_2$. Cg1, Cg2 et Cg4 sont les centroïdes des cycles N2/C1/C2/C7/C8; C3/C8 et C19/C24,

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1 <i>N</i> …O1	1.07 (3)	1.81 (3)	2.657 (2)	133 (2)
N1—H1 <i>N</i> …O1 ⁱ	1.07 (3)	2.19 (3)	3.004 (2)	131 (2)
C2—H2···O1 ⁱⁱ	0.93	2.55	3.467 (2)	167
C23—H23…Cg2 ⁱ	0.93	2.95	3.716 (2)	141
C24—H24…Cg1 ⁱ	0.93	2.70	3.465 (3)	140
N2—H2N…Cg4 ⁱⁱ	0.85 (2)	3.03 (2)	3.75 (3)	145 (2)
codes de symétrie: (i	i) -x+1;-y;-z;	(ii) -x+2; -y; -z.		

III-3-a-Détermination et affinement de la structure $C_{21}H_{19}NO_3$ 3

respectivement.

L'enregistrement des intensités de diffraction du composé $C_{21}H_{19}NO_3 3$ a été effectué sur un monocristal à l'aide d'un diffractomètre Bruker Apex-II équipé d'un détecteur bidimensionnel de type CCD. L'acquisition de données, la mise à l'échelle des intensités l'aide de programme SAINT [18]. Un monocristal de dimensions suffisamment petites, pour que les corrections d'absorption puissent être négligées, a été pour l'enregistrement des intensités diffractées, sur diffractomètre automatique Bruker Apex-II.

La structure de $C_{21}H_{19}NO_33$ a été déterminée sur la base de **17066** réflexions, parmi lesquelles **4362** réflexions ont été considérées comme observables selon le critère de conservation $I > 2\sigma(I)$. Les réflexions ont été mesurées dans le domaine angulaire $3.272 \le \theta \le 28.745$, donnantlieu aux limites des indices de Miller suivants: $-25 \le h \le$ 25; $-19 \le k \le 15$; $-8 \le l \le 6$. Les données cristallographiques et les conditions d'enregistrement sont présentées dans le tableau I.7.

La structure cristalline de ce composé a été résolue dans le système **Monoclinique** avec le groupe d'espace **P2₁/c**, les paramètres de maille sont consignés dans le

tableau I.7. Les atomes ont été localisés par examen des cartes de Fourrier différence au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXT2017 [19] et SHELXL2017[20] et le PLATON[21].

L'affinement des 230 paramètres a conduit aux facteurs d'accord R_1 = 0.0573 et wR_2 = 0.1738.Les résultats de la résolution et de l'affinement structural sont regroupés dans le tableau I.7. Les coordonnées atomiques et les paramètres de déplacement atomique isotropes équivalents sont consignés dans le tableau I.8. Le tableau I.9 regroupe les valeur significatives des distances et angles de liaison.

Les illustrations graphiques ont été réalisées à l'aide des programmes de dessin: [22] et Mercury [23-24].

Données Cristallographiques					
Formule empirique	C ₂₁ H ₁₉ NO ₃	Température (K)	293(2)		
Système cristallin	Monoclinique	Longueur d'onde Mo Ka (Å) 0.71073		
Groupe d'espace	$P2_{1}/c$	Coefficient d'absorption	0.087		
a(Å) 18.859(4)		linéaire (mm ⁻¹)			
b(Å) 14.612(3)		Masse molaire (g mol ⁻¹)	333.37		
c(Å) 6.2133(12)		Z 4			
α(°) 90		Densité calculé (mg.m ⁻³)	1.306		
β(°) 97.965(8)		Couleur verte			
y(°)90 V(Å ³) 1695.7(6)					
Acquisition des données					

Tableau I.7: Données	Cristallographiqu	ies du composé	$C_{21}H_{19}NO_3$
----------------------	-------------------	----------------	--------------------

Réflexions mesurées 17066	Réflexions enregistrées $-25 \le h \le 25$
Réflexions indépendantes 4362	$-19 \le k \le 15$
Réflexions $I > 2\sigma(I)$ 2182	$-8 \le 1 \le 6$
R _{int} 0.051	
Domaine de θ (°) 3.272-28.745	

Nombre de paramètres 230 $R_1[F^2 > 2\sigma(F^2)] \quad 0.0573$ $wR_2[F^2 > 2\sigma(F^2)] \quad 0.1738$ GoF 0.979

 $\begin{array}{l} (\Delta \backslash \sigma)_{max} & 0.000 \\ \Delta \rho_{min}(e \ \text{\AA}^{-3}) \ -0.22 \\ \Delta \rho_{max}(e \ \text{\AA}^{-3}) & 0.19 \end{array}$

Tableau I.8: Coordonnées atomiques et paramètres de déplacement atomique isotropiques ($Å^2$)

	X	У	Z	Uéq
01	0.32621(7)	0.57025(10)	0.4231(2)	0.0617(5)
O2	0.68879(7)	0.61711(10)	1.2133(2)	0.0587(5)
O3	0.07740(6)	0.63277(8)	0.40993(17)	0.0441(4)
N1	0.41132(8)	0.61829(10)	0.7730(2)	0.0434(5)
C1	0.48062(9)	0.62197(11)	0.8954(3)	0.0394(6)
C2	0.53577(10)	0.57957(13)	0.8094(3)	0.0454(6)
C3	0.60417(10)	0.57817(13)	0.9184(3)	0.0462(6)
C4	0.61930(9)	0.62136(12)	1.1174(3)	0.0418(6)
C5	0.56511(10)	0.66567(14)	1.2046(3)	0.0508(7)
C6	0.49683(10)	0.66597(13)	1.0933(3)	0.0515(7)
C7	0.35544(10)	0.64215(13)	0.8537(3)	0.0429(6)
C8	0.28460(9)	0.63763(11)	0.7341(3)	0.0369(5)
C9	0.27182(9)	0.60048(12)	0.5225(3)	0.0403(6)
C10	0.20303(9)	0.59560(12)	0.4121(3)	0.0410(6)
C11	0.14657(9)	0.63067(11)	0.5064(3)	0.0358(5)
C12	0.15827(10)	0.66912(12)	0.7132(3)	0.0403(6)

	X	У	Z	U éq
C13	0.22597(10)	0.67058(12)	0.8239(3)	0.0408(6)
C14	0.06067(10)	0.59387(14)	0.1978(3)	0.0487(7)
C15	-0.01744(9)	0.60666(12)	0.1224(3)	0.0412(6)
C16	-0.04032(11)	0.66141(14)	-0.0528(3)	0.0562(7)
C17	-0.11219(12)	0.67017(16)	-0.1289(3)	0.0640(8)
C18	-0.16182(11)	0.62513(14)	-0.0293(3)	0.0537(7)
C19	-0.13988(10)	0.57125(14)	0.1471(3)	0.0521(7)
C20	-0.06843(10)	0.56251(13)	0.2221(3)	0.0493(7)
C21	0.70725(12)	0.66005(17)	1.4184(3)	0.0712(9)
H1	0.36401	0.57667	0.50443	0.0930
H2	0.52632	0.55127	0.67444	0.0540
H3	0.64031	0.54821	0.85853	0.0550
H5	0.57481	0.69516	1.33804	0.0610
H6	0.46074	0.69643	1.15226	0.0620
H7	0.3573(10)	0.6660(13)	1.002(3)	0.056(5)
H10	0.19478	0.56885	0.27514	0.0490
H12	0.12033	0.69355	0.77525	0.0480
H13	0.23319	0.69440	0.96400	0.0490
H14A	0.08852	0.62371	0.09793	0.0580
H14B	0.07237	0.52919	0.20214	0.0580
H16	-0.00691	0.69302	-0.12115	0.0670
H17	-0.12685	0.70702	-0.24891	0.0770
H18	-0.21031	0.63099	-0.08089	0.0640
H19	-0.17350	0.54048	0.21637	0.0620
H20	-0.05411	0.52597	0.34287	0.0590
H21A	0.75744	0.65182	1.46662	0.1070

	X	У	Z	U éq
H21B	0.68013	0.63313	1.52194	0.1070
H21C	0.69666	0.72424	1.40528	0.1070

Tableau I.9: Distances interatomiques (Å) et angles de liaison (°) dans la structure ducomposé $C_{21}H_{19}NO_3$

Distances interatomiques(Å)		
01—C9	1.343(2)	
O2—C4	1.364(2)	
O2—C21	1.420(2)	
O3—C11	1.358(2)	
O3—C14	1.430(2)	
N1—C1	1.419(2)	
N1—C7	1.277(2)	
O1—H1	0.8200	
C1—C2	1.380(3)	
C1—C6	1.384(3)	
C2—C3	1.372(3)	
C3—C4	1.382(3)	
C4—C5	1.382(3)	
C5—C6	1.375(3)	
C7—C8	1.438(3)	
C8—C13	1.392(3)	
C8—C9	1.412(3)	
C9—C10	1.383(2)	
C10—C11	1.383(2)	

Distances interatomiques(Å)		
C11—C12	1.392(3)	
C12—C13	1.364(3)	
C14—C15	1.494(3)	
C15—C20	1.375(3)	
C15—C16	1.372(3)	
C16—C17	1.378(3)	
C17—C18	1.361(3)	
C18—C19	1.366(3)	
C19—C20	1.369(3)	
С2—Н2	0.9300	
С3—Н3	0.9300	
С5—Н5	0.9300	
С6—Н6	0.9300	
С7—Н7	0.981(19)	
C10—H10	0.9300	
С12—Н12	0.9300	
С13—Н13	0.9300	
C14—H14A	0.9700	
C14—H14B	0.9700	
C16—H16	0.9300	
С17—Н17	0.9300	
C18—H18	0.9300	
С19—Н19	0.9300	
С20—Н20	0.9300	
C21—H21A	0.9600	
C21—H21B	0.9600	

Distances interatomiques(Å)

C21—H21C

0.9600

Angles (degrés)		
C4—O2—C21	118.25(15)	
C11—O3—C14	118.26(13)	
C1—N1—C7	121.88(14)	
C9—O1—H1	109.00	
N1—C1—C2	117.58(16)	
C2—C1—C6	117.84(17)	
N1—C1—C6	124.58(16)	
C1—C2—C3	121.54(17)	
C2—C3—C4	119.89(17)	
O2—C4—C3	115.90(16)	
O2—C4—C5	124.61(17)	
C3—C4—C5	119.49(17)	
C4—C5—C6	119.75(17)	
C1—C6—C5	121.45(17)	
N1—C7—C8	122.89(17)	
C7—C8—C13	120.66(17)	
C9—C8—C13	117.63(16)	
C7—C8—C9	121.71(16)	
O1—C9—C10	118.60(16)	
C8—C9—C10	120.61(16)	
O1—C9—C8	120.79(15)	
C9—C10—C11	119.69(17)	

Angles (degrés)		
03—C11—C12	114.71(15)	
C10-C11-C12	120.52(17)	
O3—C11—C10	124.76(16)	
C11—C12—C13	119.31(17)	
C8—C13—C12	122.18(17)	
O3—C14—C15	108.74(15)	
C14—C15—C16	120.65(17)	
C16—C15—C20	117.95(17)	
C14—C15—C20	121.38(17)	
C15—C16—C17	120.85(19)	
C16—C17—C18	120.31(19)	
C17—C18—C19	119.50(19)	
C18—C19—C20	120.07(18)	
C15—C20—C19	121.31(17)	
С1—С2—Н2	119.00	
C3—C2—H2	119.00	
С2—С3—Н3	120.00	
С4—С3—Н3	120.00	
C4—C5—H5	120.00	
С6—С5—Н5	120.00	
С1—С6—Н6	119.00	
С5—С6—Н6	119.00	
N1—C7—H7	122.8(11)	
С8—С7—Н7	114.3(11)	
С9—С10—Н10	120.00	
C11—C10—H10	120.00	

120.00
120.00
119.00
119.00
110.00
110.00
110.00
110.00
108.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
119.00
119.00
109.00
109.00
109.00
109.00
109.00
109.00
III-3-b-Description de la structure C₂₁H₁₉NO₃ 3 et discussion

La structure moléculaire de $C_{21}H_{19}NO_3$ est représentée sur la Figure 11; la molécule est constituée de trois cycles sous forme des cycles aromatiques définis par les atomes C1/C6, C8/C13 et le cycle aromatique C15/C20. Les différents cycles de la molécule ont des distances et des angles normaux.

La structure moléculaire de composé $C_{21}H_{19}NO_3$ 3, illustré dans la Figure.11, peut être influencés par des liaison hydrogène intramoléculaire; O—H…N(voir tableau.3). Ce liaisons hydrogène former des motifs en anneau *S*(6) comme montré sur la figure.7. La présentation de la maille élémentaire du composé est illustrée das la Figure.12.

La configuration de la liaison C=N imine est *E* dans la structure de composé **3** comme la structure de composé **2**,et la longueur de la liaison C7=N1 est de 1.277(2) Å confirme la double liaison. Comme les deux structure **1** et **2**, la molécule n'est pas plane, l'anneau benzénique central (C8/C13) fait des angles dièdres de 6.63(9) et $63.95(9)^\circ$, respectivement, avec anneau benzénique externe (C1/C6) et le cycle aromatique (C15/C20).

Les angles de liaison C1—N1—C7 sont également proches de $120^{\circ}[121.88(14)^{\circ}]$, et le groupe imine C1—N1—C8 a un angle de torsion de $-178.97(16)^{\circ}$.

L'ensemble des distances C—H aromatique a une valeur moyenne de 0.93 Å très proche de celle que l'on trouve habituellement par des affinements d'atomes d'hydrogène à partir des données de diffraction des rayons x **[25]**.

La Figure.11 représente un diagramme *Ortep* d'une structure $C_{21}H_{19}NO_3$ avec numérotation des atomes carbone, hydrogène, oxygène et azote.

Figure.11: *Ortep* de l'unité asymétrique de la structure $C_{21}H_{19}NO_3$. Les ellipsoïdes d'agitation thermique sont donnés avec une probabilité de 50%.

Figure.12 : présentation *Mercury* de la maille élémentaire du composé $C_{21}H_{19}NO_3$

Dans la structure cristalline de composé $C_{21}H_{19}NO_3$, N—H··· π interactions est prédominent, voir le tableau.3.

Dans la structure de composé $C_{21}H_{19}NO_33$, contient des forte liaisons hydrogène O1—H1…N1(voir tableau.3).

Dans le cristal de structure $C_{21}H_{19}NO_3$, les molécules sont contient de impaires de liaisons hydrogène O—H…N, formant des dimères. Les dimères sont liés par des liaisons hydrogène O—H…N et C—H… π interactions. Le différent liaisons hydrogène et C—H… π interactions sont illustrée à la Figure.13, et l'empilement moléculaire de $C_{21}H_{19}NO_3$ de structure est illustrée à la Figure.14. Les court contacts C3—H3…O1 crées une chaîne de zig-zag, a long de la direction de l'axe b, comme illustré à la Figure.14. Il n'y a pas d'autre intermoléculaire significatif contacts présents dans la structure cristalline de composé **3**.

Figure.13: Représentation *Mercury*. Une vue des liaisons hydrogène (lignes pointillées) et C—H··· π interactions (flèches blues) dans la structure cristallines du composé C₂₁H₁₉NO₃ suivant l'axe b; le centre Cg1 est bleu, le centre Cg2 est vert et le centre Cg3 est rouge (voir le tableau.2). Seuls les atomes H impliqués dans ces interactions ont été inclus.

Figure.14: Représentation *Mercury*. Empilement global pour la structure de composé **3** etC3—H3···O1 court contact vu le long de la direction de l'axe b.

Tableau.3: Distances et angles caractérisant les liaisons hydrogène D—H···A au sein du structure $C_{21}H_{19}NO_3$.

Cg1, Cg2 et Cg3 sont les centroïdes des cycles ; et C19/C24, respectivement.

<i>D</i> —H··· <i>A</i>	D—H	Н…А	$D^{\dots}A$	<i>D</i> —H···· <i>A</i>
O1—H1…N1	0.8200	1.8800	2.6131(19)	148.00
C5—H5····Cg1 ⁱ	0.9300	2.9300	3.6540(2)	136.00
C13—H13····Cg2 ⁱ	0.9300	2.7200	3.4141(2)	132.00
C14—H14B····Cg3 ⁱⁱ	0.9700	2.6800	3.5030(2)	143.00
C19—H19…Cg2 ⁱⁱⁱ	0.9300	2.9000	3.7010(2)	146.00

codes de symétrie: (i) -x,-y+3/2,z+1/2; (ii) -x,-y+1,-z;(iii) -x, -y+1, -z+1.

III-4-a-Résolution de la structure de $C_{20}H_{18}N_2O_2$ 4 a partir des données de diffraction du monocristal

L'enregistrement de données de diffraction du composé $C_{20}H_{18}N_2O_2 4$ a été effectué sur un monocristal à l'aide d'un diffractomètre Bruker Apex-II équipé d'un détecteur bidimensionnel de type CCD (Charged Coupled Device). L'acquisition de données, la mise à l'échelle des intensités l'aide de programme SAINT [18]. Un monocristal de dimensions suffisamment petites, pour que les corrections d'absorption puissent être négligées, a été pour l'enregistrement des intensités diffractées, sur diffractomètre automatique Bruker Apex-II.

La structure de $C_{20}H_{18}N_2O_24$ a été déterminée sur la base de 18218 réflexions, parmi lesquelles 1915 réflexions ont été considérées comme observables selon le critère de conservation $I > 2\sigma(I)$. Les réflexions ont été mesurées dans le domaine angulaire $3.429 \le \theta \le 27.497$, donnant lieu aux limites des indices de Miller suivants: $-45 \le h \le$ 45; $-9 \le k \le 9$; $-16 \le l \le 17$. Les données cristallographiques et les conditions d'enregistrement sont présentées dans le tableau I.10.

La structure cristalline de ce composé a été résolue dans le système **Monoclinique** avec le groupe d'espace **C2/c**, les paramètres de maille sont consignés dans le tableau I.10. Les atomes ont été localisés par examen des cartes de Fourrier différence au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXT2017 **[19]** etSHELXL2017 **[20]** et le PLATON **[21]**.

L'affinement des 221 paramètres a conduit aux facteurs d'accord R_1 =0.1267et wR_2 =0.1343. Les résultats de la résolution et de l'affinement structural sont regroupés dans le tableau I.10. Les coordonnées atomiques et les paramètres de déplacement atomique isotropes équivalents sont consignés dans le tableau I.11. Le tableau I.12 regroupe les valeur significatives des distances et angles de liaison.

Les illustrations graphiques ont été réalisées à l'aide des programmes de dessin: Ortep [22] et Mercury [23-24]. Tableau I.10: Données Cristallographiques du composé $C_{20}H_{18}N_2O_2$.

Données	Cristallographiques

Formule empirique C ₂₀ H ₁₈ N ₂ O ₂	Température (K)	293(2)
Système cristallin Monoclinique	Longueur d'onde Mo Ka (Å)	0.71073
Groupe d'espace C 2/c	Coefficient d'absorption	0.083
a(Å) 35.1343(12)	linéaire (mm ⁻¹)	
b(Å) 7.2564(2)	Masse molaire (g mol ⁻¹)	318.36
c(Å) 13.1450(5)	Z 8	
α(°) 90	Densité calculé (mg.m ⁻³)	1.268
β(°) 95.553(2)	Couleur jaune	
γ(°)90		
V(Å ³) 3335.57(19)		

Acquisition des données

Réflexions mesurées 18218 Réflexions indépendantes 3811 Réflexions $I > 2\sigma(I)$ 1915; Réflexions enregistrées $-45 \le h \le 45$ $-9 \le k \le 9$ $-16 \le l \le 17$

R_{int} 0.0721

Domaine de θ (°)3.429-27.497

Affinement structural

es 221	$(\Delta \setminus \sigma)_{\max}$	0.001
0.1267	$\Delta \rho_{\min}(e \text{ Å}^{-3})$	-0.150
0.1343	$\Delta \rho_{max}(e \text{ Å}^{-3})$	0.172
1.001		
	es 221 0.1267 0.1343 1.001	es 221 $(\Delta \setminus \sigma)_{max}$ 0.1267 $\Delta \rho_{min}(e \ \text{Å}^{-3})$ 0.1343 $\Delta \rho_{max}(e \ \text{Å}^{-3})$ 1.001 $\Delta \rho_{max}(e \ \text{Å}^{-3})$

	X	У	Z	U éq
01	0.00836 (4)	-0.03108 (16)	0.12180 (11)	0.0578 (5)
O2	0.10314 (4)	0.43746 (16)	0.17382 (10)	0.0513 (5)
N1	-0.06331 (5)	0.0754 (2)	0.08936 (12)	0.0477 (6)
N2	-0.09669 (6)	-0.1879 (3)	0.19901 (17)	0.0913 (9)
C1	-0.10273 (6)	0.0392 (2)	0.06599 (15)	0.0458 (7)
C2	-0.12530 (6)	0.1274 (3)	-0.01145 (17)	0.0529 (8)
C3	-0.16347 (7)	0.0816 (3)	-0.03355 (19)	0.0653 (9)
C4	-0.17934 (7)	-0.0518 (3)	0.0237 (2)	0.0708 (10)
C5	-0.15720 (7)	-0.1400 (3)	0.1008 (2)	0.0683 (10)
C6	-0.11880 (6)	-0.1003 (3)	0.12233 (17)	0.0553 (8)
C7	-0.05090 (6)	0.2425 (3)	0.09311 (14)	0.0436 (7)
C8	-0.01110 (5)	0.2870 (2)	0.11319 (14)	0.0396 (6)
C9	0.01726 (6)	0.1499 (2)	0.12587 (14)	0.0411 (7)
C10	0.05547 (6)	0.1960 (2)	0.14368 (15)	0.0452 (7)
C11	0.06603 (5)	0.3795 (2)	0.15199 (14)	0.0410 (6)
C12	0.03863 (6)	0.5185 (2)	0.13959 (14)	0.0431 (7)
C13	0.00105 (6)	0.4708 (2)	0.12065 (14)	0.0421 (7)
C14	0.13205 (6)	0.2969 (3)	0.18376 (19)	0.0617 (9)
C15	0.16990 (6)	0.3854 (2)	0.21507 (18)	0.0490 (7)
C16	0.18486 (7)	0.3842 (3)	0.3151 (2)	0.0623 (9)
C17	0.22001 (7)	0.4634 (3)	0.3441 (2)	0.0693 (10)
C18	0.24053 (7)	0.5423 (3)	0.2725 (2)	0.0698 (10)
C19	0.22599 (7)	0.5434 (3)	0.1723 (2)	0.0715 (10)
C20	0.19090 (6)	0.4654 (3)	0.14359 (19)	0.0617 (9)

Tableau I.11: Coordonnées atomiques et paramètres de déplacement atomique isotropiques (Å $^2)$

	X	У	Z	U éq
H1	-0.01490	-0.04310	0.11149	0.0870*
H2	-0.11464	0.21904	-0.04924	0.0640*
H2A	-0.10663	-0.27019	0.23540	0.1100*
H2B	-0.07285	-0.16065	0.21082	0.1100*
H3	-0.17822	0.14023	-0.08652	0.0780*
H4	-0.20504	-0.08226	0.01022	0.0850*
H5	-0.16836	-0.22861	0.13952	0.0820*
H7	-0.0691 (5)	0.349 (3)	0.0810 (13)	0.045 (5)*
H10	0.07401	0.10419	0.15006	0.0540*
H12	0.04583	0.64178	0.14416	0.0520*
H13	-0.01720	0.56385	0.11238	0.0510*
H14A	0.12613	0.20744	0.23476	0.0740*
H14B	0.13296	0.23331	0.11913	0.0740*
H16	0.17121	0.32937	0.36425	0.0750*
H17	0.22971	0.46292	0.41244	0.0830*
H18	0.26425	0.59506	0.29182	0.0840*
H19	0.23986	0.59698	0.12325	0.0860*
H20	0.18125	0.46665	0.07518	0.0740*

	Distances interatomiques(Å)			
01—C9	1.3498 (19)	C14—C15	1.498 (3)	
O2—C11	1.374 (2)	C15—C20	1.378 (3)	
O2—C14	1.437 (3)	C15—C16	1.368 (3)	
N1—C1	1.414 (3)	C16—C17	1.382 (3)	
N1—C7	1.288 (3)	C17—C18	1.366 (4)	
01—H1	0.8200	C18—C19	1.366 (4)	
N2—C6	1.368 (3)	C19—C20	1.376 (3)	
C1—C2	1.385 (3)	C2—H2	0.9300	
C1—C6	1.405 (3)	С3—Н3	0.9300	
N2—H2A	0.8600	C4—H4	0.9300	
N2—H2B	0.8600	C5—H5	0.9300	
С2—С3	1.385 (3)	С7—Н7	1.01 (2)	
C3—C4	1.377 (3)	C10—H10	0.9300	
C4—C5	1.375 (4)	C12—H12	0.9300	
С5—С6	1.382 (3)	C13—H13	0.9300	
С7—С8	1.435 (3)	C14—H14A	0.9700	
С8—С9	1.407 (2)	C14—H14B	0.9700	
C8—C13	1.401 (2)	C16—H16	0.9300	
C9—C10	1.381 (3)	C17—H17	0.9300	
C10-C11	1.384 (2)	C18—H18	0.9300	
C11—C12	1.393 (2)	C19—H19	0.9300	
C12—C13	1.364 (3)	C20—H20	0.9300	

Tableau I.12: Distances interatomiques (Å) et angles de liaison (°) dans la structure du composé $C_{20}H_{18}N_2O_2$

	Angles (d	egrés)	
C11—O2—C14	116.75 (13)	C17—C18—C19	119.6 (2)
C1—N1—C7	120.27 (16)	C18—C19—C20	120.3 (2)
C9—O1—H1	109.00	C15—C20—C19	120.7 (2)
N1—C1—C2	123.57 (17)	C1—C2—H2	119.00
C2—C1—C6	119.33 (19)	C3—C2—H2	119.00
N1—C1—C6	117.04 (17)	С2—С3—Н3	120.00
H2A—N2—H2B	120.00	С4—С3—Н3	120.00
C6—N2—H2B	120.00	C3—C4—H4	120.00
C1—C2—C3	121.1 (2)	C5—C4—H4	120.00
C6—N2—H2A	120.00	C4—C5—H5	119.00
C2—C3—C4	119.3 (2)	C6—C5—H5	119.00
C3—C4—C5	120.0 (2)	N1—C7—H7	120.6 (11)
C4—C5—C6	121.7 (2)	С8—С7—Н7	116.7 (11)
N2—C6—C5	121.8 (2)	C9—C10—H10	120.00
C1—C6—C5	118.5 (2)	C11—C10—H10	120.00
N2	119.7 (2)	C11—C12—H12	121.00
N1—C7—C8	122.64 (19)	C13—C12—H12	121.00
С7—С8—С9	121.96 (15)	C8—C13—H13	119.00
C7—C8—C13	120.81 (17)	C12—C13—H13	119.00
C9—C8—C13	117.23 (17)	O2—C14—H14A	110.00
O1—C9—C10	117.38 (16)	O2—C14—H14B	110.00
C8—C9—C10	120.97 (14)	C15—C14—H14A	110.00
01—C9—C8	121.65 (17)	C15—C14—H14B	110.00
C9—C10—C11	119.68 (16)	H14A—C14—H14B	108.00
C10—C11—C12	120.70 (17)	C15—C16—H16	120.00
O2—C11—C10	123.57 (15)	C17—C16—H16	120.00

Angles (degrés)				
O2—C11—C12	115.72 (14)	C16—C17—H17	120.00	
C11—C12—C13	118.90 (14)	C18—C17—H17	120.00	
C8—C13—C12	122.50 (16)	C17—C18—H18	120.00	
O2—C14—C15	108.77 (16)	C19—C18—H18	120.00	
C14—C15—C16	120.6 (2)	C18—C19—H19	120.00	
C14—C15—C20	120.9 (2)	C20—C19—H19	120.00	
C16—C15—C20	118.5 (2)	C15—C20—H20	120.00	
C15—C16—C17	120.8 (2)	C19—C20—H20	120.00	
C16—C17—C18	120.1 (2)			

III-4-b-Description et discussion de la structure $C_{20}H_{18}N_2O_24$

La structure moléculaire de $C_{20}H_{18}N_2O_2$ 4 est représentée sur la Figure 15; la molécule est constituée de trois cycles sous forme des cycles aromatiques définis par les atomes C1/C6, C8/C13 et C15/C20.

La structure moléculaire de composé $C_{20}H_{18}N_2O_2$ 4 illustré dans la Figure.15 peuvent être influencés par de contact liaison hydrogène intramoléculaire; O—H…N, tableau .4. Ce liaison hydrogène former de motif en anneau *S*(6) comme montré sur la figure.15. Dans le composé 4, cependant, la longueur de la liaison C9—O1 est de 1.3498(19) Å, indique une simple liaison. Ce composé 4 est adopte à la forme **enolimine** tautomerique, et la La configuration de la liaison C7=N1 imine est *E* dans le composé 4 etlalongueur de liaison est de 1.288(3) Å pour C7=N1, confirme la double liaison de groupe azométhine. La présentation de la maille élémentaire du composé est illustrée dans la Figure.16. La molécule n'est pas plane (Figure.17), l'anneau benzénique central (C8/13) est incliné les deux anneaux benzéniques extérieur (C1/C6 et C15/C20) par 46.80(10) et 78.19(10)°, respectivement. L'ensemble des distances C—H aromatique a une valeur moyenne de 0.93Å très proche de celle que l'on trouve habituellement par des affinements d'atomes d'hydrogène à partir des données de diffraction des rayons x **[25]**.

La Figure.15 représente un diagramme *Ortep* d'une structure $C_{20}H_{18}N_2O_2$ avec numérotation des atomes carbone, hydrogène, oxygène et azote.

Figure.15: *Ortep* de l'unité asymétrique de la structure $C_{20}H_{18}N_2O_2$. Les ellipsoïdes d'agitation thermique sont donnés avec une probabilité de 50%.

Figure.16 : présentation *Mercury* de la maille élémentaire du composé $C_{20}H_{18}N_2O_2$

Figure.17: Représentation *Mercury* avec les plans et les angles du composé $C_{20}H_{18}N_2O_2$

Dans le cristal de composé $C_{20}H_{18}N_2O_2$, fortes liaisons hydrogène N2—H2A···O2, voir tableau.4, forment des chaînes de molécules zig-zag le long de l'axe b. Figure. 18. C—H··· π est décalé π — π empiler, les interactions Cg2···Cg2 Plus faible et, avec une distance de centroïde à centroïde de 3.8151(11)Å, contribuent également à l'empilement Figure.19. [Cg2 est le centroïde de l'anneau phényle central C8/C13, code de symétrie: -x, y, -z+1/2]. L'empilement de cristal globale pour cette structure est représentée sur la Figure.20.

Figure.18: zig-zag chaînes de molécules de $C_{20}H_{18}N_2O_2$, le long de la direction de l'axe b. Les liaisons hydrogène sont dessinées en pointillés bleus.

Figure.19: C—H^{...} π et π — π contacts, lignes vertes en pointillés, dans la structure cristalline de C₂₀H₁₈N₂O₂

Figure.20: Représentation *Mercury*.L'empilement global pour $C_{20}H_{18}N_2O_2$, vu le long de la direction de l'axe b.

Les distances entre donneur D et accepteur A (D—A), l'atome d'hydrogène et l'accepteur A(H···A) ainsi que les angles D—H···A sont rassemblés dans le tableau.4. Tableau.1: Distances et angles caractérisant les liaisons hydrogène D—H···A au sein du structure $C_{20}H_{18}N_2O_2$.

<i>D</i> —H··· <i>A</i>	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N1	0.8200	1.9000	2.629(2)	147.00
$N2 - H2A - O2^{i}$	0.8600	2.4300	3.211(3)	151.00
C14—H14B····Cg1 ⁱⁱ	0.9700	2.7400	3.704(3)	171.00
C16—H16…Cg1 ⁱⁱⁱ	0.9300	2.9600	3.792(3)	150.00
C18—H18 Cg3 ^{iv}	0.9300	2.9400	3.620(2)	131.00

Cg1 et Cg3 sont les centroïdes des cycles C1/C6 et C15/C20, respectivement.

codes de symétrie: (i) -x,y-1,-z+1/2; (ii) -x,-y,-z; (iii) -x, y, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2.

III-5-a-Résolution de la structure de $C_{32}H_{30}N_2O5$ a partir des données de diffraction du monocristal

L'enregistrement des intensités de diffraction du composé $C_{32}H_{30}N_2O5$ a été effectué sur un monocristal à l'aide d'un diffractomètre Bruker Apex-II équipé d'un détecteur bidimensionnel de type CCD (Charged Coupled Device). L'acquisition de données, la mise à l'échelle des intensités l'aide de programme SAINT [18]. Un monocristal de dimensions suffisamment petites, pour que les corrections d'absorption puissent être négligées, a été pour l'enregistrement des intensités diffractées, sur diffractomètre automatique Bruker Apex-II.

La structure de $C_{32}H_{30}N_2O5$ a été déterminée sur la base de **23928** réflexions, parmi lesquelles **4129** réflexions ont été considérées comme observables selon le critère de conservation $I > 2\sigma(I)$. Les réflexions ont été mesurées dans le domaine angulaire **3.359** $\leq \theta \leq$ **27.499**, donnantlieu aux limites des indices de Miller suivants:

 $-13 \le h \le 13$; $-14 \le k \le 14$; $-16 \le l \le 16$. Les données cristallographiques et les conditions d'enregistrement sont présentées dans le tableau I.13.

La structure cristalline de ce composé a été résolue dans le système **Triclinique** avec le groupe d'espace **P-1**, les paramètres de maille sont consignés dans le tableau I.13. Les atomes ont été localisés par examen des cartes de Fourrier différence au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXT2017 **[19]** etSHELXL2017 **[20]** et le PLATON **[21]**.

L'affinement des **334** paramètres a conduit aux facteurs d'accord \mathbf{R}_1 =0.0649 et $w\mathbf{R}_2$ =0.2107.Les résultats de la résolution et de l'affinement structural sont regroupés dans le tableau I.13. Les coordonnées atomiques et les paramètres de déplacement atomique isotropes équivalents sont consignés dans le tableau I.14. Le tableau I.15 regroupe les valeur significatives des distances et angles de liaison.

Les illustrations graphiques ont été réalisées à l'aide des programmes de dessin: Ortep [22] et Mercury [23-24].

Tableau I.13: Données Cristallographiques du composé $C_{32}H_{30}N_2O5$.

Données Crist	Données Cristallographiques			
Formule empirique C ₃₂ H ₃₀ N ₂ O	Température (K) 293(2)			
Système cristallin Triclinique	Longueur d'onde Mo Ka (Å) 0.71073			
Groupe d'espace P-1	Coefficient d'absorption 0.081			
a(Å) 10.7065(3)	linéaire (mm ⁻¹)			
b(Å)10.9434(3)	Masse molaire (g mol ⁻¹) 490.58			
c(Å)12.8256(4)	Z 2			
α(°)69.0290(10)	Densité calculé (mg.m ⁻³) 1.257			
β(°) 82.8710(10)	Couleur jaune			
γ(°)67.5150(10)				
V(Å ³)1296.37(7)				

Acquisition des données

Réflexions mesurées 2	3928	Réflexions enregistrées	$-13{\le}h{\le}13$
Réflexions indépendant	ntes 5833		$-14 \le k \le 14$
Réflexions $I > 2\sigma(I)$ 41	29		$-16 \le l \le 16$
R _{int}	0.0235		
Domaine de θ (°)3.359	9-27.499		

Affinement structural

Nombre de paramètres 334 $R_1[F^2 > 2\sigma(F^2)] 0.0649$ $wR_2[F^2 > 2\sigma(F^2)] = 0.2107$ GoF 1.054

 $(\Delta \setminus \sigma)_{\max}$ 0.000 $\Delta \rho_{min}(e \text{ Å}^{-3}) = 0.350$ $\Delta \rho_{max}(e \text{ Å}^{-3}) 0.509$

≤14

Tableau I.14: Coordonnées atomiques et paramètres de déplacement atomique isotropiques ($Å^2$) du composé $C_{32}H_{30}N_2O$ 5.

	X	У	Z	U éq
01	1.09569(15)	0.26975(16)	0.17896(16)	0.0716(6)
O2	0.20485(15)	0.42262(15)	0.44793(14)	0.0645(5)
N1	0.55074(14)	0.80568(15)	0.15886(13)	0.0428(4)
N2	0.45651(15)	0.91114(16)	0.28496(14)	0.0486(5)
C1	0.59970(17)	0.91225(18)	0.13827(16)	0.0442(5)
C2	0.6901(2)	0.9545(2)	0.05910(18)	0.0555(6)
C3	0.7192(2)	1.0643(2)	0.0624(2)	0.0627(7)
O3	0.6297(3)	0.1042(3)	0.4882(2)	0.1171(10)
C4	0.6628(2)	1.1296(2)	0.1419(2)	0.0612(7)
C5	0.5742(2)	1.0871(2)	0.2202(2)	0.0557(6)
C6	0.54119(17)	0.97601(18)	0.21756(16)	0.0443(5)

	X	У	Z	U éq
C7	0.58184(19)	0.71442(19)	0.09331(17)	0.0474(5)
C8	0.71904(17)	0.59744(18)	0.11949(15)	0.0431(5)
C9	0.8028(2)	0.5758(2)	0.20141(17)	0.0512(6)
C10	0.9306(2)	0.4663(2)	0.22509(18)	0.0546(6)
C11	0.97436(19)	0.37905(18)	0.16374(18)	0.0507(6)
C12	0.9366(2)	0.3102(2)	0.00956(19)	0.0583(7)
C13	0.8574(3)	0.3287(2)	-0.0734(2)	0.0658(8)
C14	0.7289(3)	0.4339(2)	-0.09404(19)	0.0649(8)
C15	0.6821(2)	0.5205(2)	-0.03147(17)	0.0542(7)
C16	0.76250(18)	0.50635(18)	0.05486(15)	0.0435(5)
C17	0.89229(19)	0.39690(18)	0.07639(16)	0.0465(6)
C18	1.1805(3)	0.2443(3)	0.2670(3)	0.0827(9)
C19	0.46516(16)	0.81083(18)	0.24740(15)	0.0423(5)
C20	0.39600(18)	0.70953(18)	0.29619(15)	0.0435(5)
C21	0.47075(19)	0.5693(2)	0.34369(18)	0.0514(6)
C22	0.4109(2)	0.4694(2)	0.39553(18)	0.0535(6)
C23	0.27312(19)	0.5112(2)	0.40013(16)	0.0488(6)
C24	0.0465(2)	0.7002(2)	0.34935(18)	0.0542(6)
C25	-0.0307(2)	0.8379(2)	0.2963(2)	0.0604(7)
C26	0.0299(2)	0.9369(2)	0.24378(19)	0.0576(6)
C27	0.16742(19)	0.89731(19)	0.24473(16)	0.0481(5)
C28	0.25156(17)	0.75526(18)	0.29729(14)	0.0423(5)
C29	0.18946(18)	0.65565(19)	0.34997(15)	0.0441(5)
C30	0.2839(3)	0.2779(2)	0.4999(2)	0.0759(9)
C31	0.7676(5)	0.0841(4)	0.4732(4)	0.1237(17)
C32	0.7876(6)	0.2069(5)	0.4060(5)	0.159(3)

				TIća
	X	У	Z	U eq
H2	0.72851	0.91037	0.00677	0.0670
H3	0.77815	1.09640	0.01037	0.0750
H4	0.68563	1.20354	0.14175	0.0740
H5	0.53745	1.13063	0.27315	0.0670
H7A	0.51315	0.67329	0.10605	0.0570
H7B	0.57781	0.77055	0.01480	0.0570
H9	0.77463	0.63542	0.24325	0.0610
H10	0.98474	0.45375	0.28227	0.0650
H12	1.02172	0.23925	0.02281	0.0700
H13	0.88872	0.27106	-0.11686	0.0790
H14	0.67468	0.44528	-0.15068	0.0780
H15	0.59614	0.58978	-0.04594	0.0650
H18A	1.26232	0.16549	0.26947	0.1240
H18B	1.13458	0.22426	0.33664	0.1240
H18C	1.20197	0.32594	0.25432	0.1240
H21	0.56456	0.53957	0.34139	0.0620
H22	0.46461	0.37496	0.42670	0.0640
H24	0.00503	0.63553	0.38507	0.0650
H25	-0.12434	0.86606	0.29527	0.0730
H26	-0.02367	1.03025	0.20796	0.0690
H27	0.20637	0.96445	0.21043	0.0580
H30A	0.22516	0.22614	0.53040	0.1140
H30B	0.33829	0.26781	0.55875	0.1140
H30C	0.34143	0.24219	0.44560	0.1140
H3A	0.59345	0.16381	0.51809	0.1750
H31A	0.81049	0.05140	0.54548	0.1490

	X	У	Z	U éq
H31B	0.81050	0.01196	0.43935	0.1490
H32A	0.88279	0.18864	0.39795	0.2390
H32B	0.74694	0.23868	0.33381	0.2390
H32C	0.74692	0.27810	0.43990	0.2390

Tableau I.15: Distances interatomiques (Å) et angles de liaison (°) dans la structure du composé $C_{32}H_{30}N_2O$ 5.

Distances interatomiques(Å)		
01—C11	1.365(3)	
O1—C18	1.419(4)	
O2—C23	1.362(3)	
O2—C30	1.424(3)	
N1—C1	1.385(3)	
N1—C7	1.447(3)	
N1—C19	1.371(2)	
N2—C6	1.390(3)	
N2—C19	1.317(3)	
C1—C2	1.394(3)	
C1—C6	1.389(3)	
C2—C3	1.367(3)	
C3—C4	1.398(3)	
O3—C31	1.406(7)	
C4—C5	1.375(3)	
C5—C6	1.402(3)	
С7—С8	1.512(3)	
С8—С9	1.363(3)	

Distances intera	atomiques(Å)
C8—C16	1.428(3)
C9—C10	1.410(3)
C10—C11	1.362(3)
C11—C17	1.422(3)
C12—C13	1.353(4)
C12—C17	1.413(3)
C13—C14	1.396(4)
C14—C15	1.369(3)
C15—C16	1.415(3)
C16—C17	1.424(3)
C19—C20	1.478(3)
C20—C21	1.371(3)
C20—C28	1.432(3)
C21—C22	1.399(3)
C22—C23	1.368(3)
C23—C29	1.431(3)
C24—C29	1.418(3)
C24—C25	1.367(3)
C25—C26	1.398(3)
C26—C27	1.367(3)
C27—C28	1.418(3)
C28—C29	1.415(3)
С2—Н2	0.9300
С3—Н3	0.9300
O3—H3A	0.8200
C4—H4	0.9300

Distances interato	omiques(Å)
С5—Н5	0.9300
С7—Н7В	0.9700
С7—Н7А	0.9700
С9—Н9	0.9300
C10—H10	0.9300
C12—H12	0.9300
C13—H13	0.9300
C14—H14	0.9300
C15—H15	0.9300
C18—H18B	0.9600
C18—H18A	0.9600
C18—H18C	0.9600
C21—H21	0.9300
C22—H22	0.9300
C24—H24	0.9300
С25—Н25	0.9300
C26—H26	0.9300
С27—Н27	0.9300
C30—H30B	0.9600
C30—H30A	0.9600
C30—H30C	0.9600
C31—C32	1.393(8)
C31—H31A	0.9700
C31—H31B	0.9700
C32—H32A	0.9600
C32—H32B	0.9600

Distances interatomiques(Å	.)
----------------------------	----

С32—Н32С

0.9600

Angles (d	egrés)
C11	117.0(2)
C23—O2—C30	117.0(2)
C1—N1—C7	124.76(16)
C1—N1—C19	106.50(16)
C7—N1—C19	128.67(17)
C6—N2—C19	105.24(16)
N1—C1—C2	131.28(18)
N1—C1—C6	105.77(17)
C2—C1—C6	122.94(19)
C1—C2—C3	116.5(2)
C2—C3—C4	121.8(2)
C3—C4—C5	121.5(2)
C4—C5—C6	117.8(2)
N2—C6—C1	109.86(17)
N2—C6—C5	130.68(19)
C1—C6—C5	119.45(19)
N1—C7—C8	113.93(17)
C7—C8—C9	122.93(18)
C7—C8—C16	118.25(17)
C9—C8—C16	118.81(18)
C8—C9—C10	122.4(2)
C9—C10—C11	119.6(2)

Angles (degrés)		
01—C11—C10	124.9(2)	
01—C11—C17	114.45(18)	
C10-C11-C17	120.67(19)	
C13—C12—C17	121.1(2)	
C12—C13—C14	120.3(2)	
C13—C14—C15	120.5(2)	
C14—C15—C16	121.1(2)	
C8—C16—C15	122.73(18)	
C8—C16—C17	119.42(17)	
C15—C16—C17	117.85(18)	
C11—C17—C12	121.85(19)	
C11—C17—C16	119.01(17)	
C12—C17—C16	119.13(19)	
N1—C19—N2	112.63(17)	
N1—C19—C20	122.39(17)	
N2—C19—C20	124.94(17)	
C19—C20—C21	119.76(19)	
C19—C20—C28	121.26(17)	
C21—C20—C28	118.96(18)	
C20—C21—C22	122.3(2)	
C21—C22—C23	119.7(2)	
O2—C23—C22	124.40(19)	
O2—C23—C29	114.94(19)	
C22—C23—C29	120.6(2)	
C25—C24—C29	120.2(2)	
C24—C25—C26	120.6(2)	

Angles (de	egrés)
C25—C26—C27	120.4(2)
C26—C27—C28	120.94(19)
C20—C28—C27	122.28(18)
C20—C28—C29	119.39(17)
C27—C28—C29	118.31(18)
C23—C29—C24	121.53(19)
C23—C29—C28	118.94(19)
C24—C29—C28	119.51(18)
С1—С2—Н2	122.00
С3—С2—Н2	122.00
С2—С3—Н3	119.00
С4—С3—Н3	119.00
С31—О3—НЗА	110.00
C5—C4—H4	119.00
C3—C4—H4	119.00
С6—С5—Н5	121.00
C4—C5—H5	121.00
N1—C7—H7A	109.00
С8—С7—Н7А	109.00
С8—С7—Н7В	109.00
N1—C7—H7B	109.00
Н7А—С7—Н7В	108.00
С10—С9—Н9	119.00
С8—С9—Н9	119.00
С9—С10—Н10	120.00
C11—C10—H10	120.00

Angles (degrés)		
С13—С12—Н12	119.00	
C17—C12—H12	119.00	
C14—C13—H13	120.00	
C12—C13—H13	120.00	
C15—C14—H14	120.00	
C13—C14—H14	120.00	
C14—C15—H15	119.00	
C16—C15—H15	119.00	
O1—C18—H18B	109.00	
O1—C18—H18C	109.00	
O1—C18—H18A	109.00	
H18A—C18—H18C	109.00	
H18B—C18—H18C	110.00	
H18A—C18—H18B	110.00	
C20—C21—H21	119.00	
C22—C21—H21	119.00	
C21—C22—H22	120.00	
C23—C22—H22	120.00	
C29—C24—H24	120.00	
C25—C24—H24	120.00	
C26—C25—H25	120.00	
C24—C25—H25	120.00	
C25—C26—H26	120.00	
C27—C26—H26	120.00	
С26—С27—Н27	120.00	
C28—C27—H27	120.00	

Angles (degrés)			
O2—C30—H30B	109.00		
O2—C30—H30C	109.00		
H30A—C30—H30B	109.00		
H30A—C30—H30C	109.00		
H30B—C30—H30C	110.00		
O2—C30—H30A	109.00		
O3—C31—C32	112.2(4)		
O3—C31—H31A	109.00		
O3—C31—H31B	109.00		
C32—C31—H31A	109.00		
C32—C31—H31B	109.00		
H31A—C31—H31B	108.00		
C31—C32—H32A	109.00		
C31—C32—H32B	109.00		
C31—C32—H32C	109.00		
H32A—C32—H32B	109.00		
H32A—C32—H32C	109.00		
H32B—C32—H32C	109.00		

III-5-b-Description et discussion de la structure C₃₂H₃₀N₂O 5

La structure moléculaire de $C_{32}H_{30}N_2O5$ est représentée sur la Figure.21; la molécule est constituée de trois groupe de cycles naphtalène sous forme des cycles aromatiques définis par les atomes N1/C19/N2/C1/C2/C3/C4/C5/C6, le groupe deux est constitué de C8/C9/C10/C11/C12/C13/C14/C15/C16/C17, et le troisième double cycle aromatique définis par les atomes C20/C21/C22/C23/C24/C26/C27/C28 et l'atome C29. La présentation de la maille élémentaire du composé est illustrée dans la Figure.22. La molécule n'est pas plane, le double cycle N1/C19/C6 est incliné les deux double cycle aromatique (C8/C17) et (C20/C28) par 77.68(7) et 64.82(7)°, respectivement.

L'ensemble des distances C—H aromatique a une valeur moyenne de 0.93Å très proche de celle que l'on trouve habituellement par des affinements d'atomes d'hydrogène à partir des données de diffraction des rayons X **[25]**.

La Figure.21 représente un diagramme *Ortep* d'une structure $C_{32}H_{30}N_2O$ 5 avec numérotation des atomes carbone, hydrogène, oxygène et azote.

Figure.21: *Ortep* de l'unité asymétrique de la structure $C_{32}H_{30}N_2O$ **5**. Les ellipsoïdes d'agitation thermique sont donnés avec une probabilité de 50%.

Figure.22 : présentation *Mercury* de la maille élémentaire du composé $C_{32}H_{30}N_2O$ Dans la structure cristalline de composé $C_{32}H_{30}N_2O5$, les C—H··· π interactions prédominent, voir tableau.5 pour plus de détails de composé 5, les molécules sont liées par C—H··· π interactions Cg2ⁱ [centroïde de C7—H7B··· π ; code de symétrie:(i):-x+1,-y+2,-z] comme illustré dans la Figure.23, et Cg6ⁱⁱ; Cg5ⁱⁱ [centroïde de C13—H13··· π et C14—H14··· π ; code de symétrie:(ii): -x+1,-y+1,-z comme illustré dans la Figure.24, il y a aussi une notre centroïde Cg9ⁱⁱ [centroïde de C13—H13··· π ; code de symétrie:(ii): -x+1,-y+1,-z], mais concernant le double cycle C20/C21/C22/C23/C24/C25/C26/C27/C28 et le carbone C29. I l'y a des interactions

 π — π , mais oublié [distance plus de 4Å]. Il n'y a pas d'autre intermoléculaire significative contacts présents dans la structure cristalline.

Figure.23: Représentation *Mercury*. Les centroïdes C—H^{\dots} π cristallin au sein du composéC₃₂H₃₀N₂O 5, projection suivant la direction bc.

Figure.24: Représentation *Mercury*. Les centroïdes C—H^{...} π cristallin au sein du composé C₃₂H₃₀N₂O 5, projection suivant la direction ac.

Les distances entre donneur D et accepteur A (D—A), l'atome d'hydrogène et l'accepteur A(H···A) ainsi que les angles D—H···A sont rassemblés dans le tableau.5. Tableau.1: Distances et angles caractérisant les liaisons hydrogène D—H···A au sein du structure $C_{32}H_{30}N_2O$ 5.Cg2, Cg6, Cg9 et Cg5 sont les centroïdes des cycles C1/C6/;C24/C29/;C20/C29 et C20/21/22/23/C28/29, respectivement.

D—H···A	D—H	H···A	D···A	D—H···A
C7—H7B…Cg2 ⁱ	0.97	2.85	3.602 (2)	135
C13—H13…Cg6 ⁱⁱ	0.93	2.66	3.528 (3)	155
C13—H13…Cg9 ⁱⁱ	0.93	2.89	3.560 (3)	130
C14—H14…Cg5 ⁱⁱ	0.93	2.82	3.627 (3)	146

codes de symétrie: (i) -x+1;-y+2;-z; (ii) -x+1;-y+1;-z.

III-6-a-Détermination et affinement de la structure C20H16ClNO26

L'enregistrement de données de diffraction du composé $C_{20}H_{16}CINO_2$ 6 a été effectué sur un monocristal à l'aide d'un diffractomètre Bruker Apex-II équipé d'un détecteur bidimensionnel de type CCD (Charged Coupled Device). L'acquisition de données, la mise à l'échelle des intensités l'aide de programme SAINT [18]. Un monocristal de dimensions suffisamment petites, pour que les corrections d'absorption puissent être négligées, a été pour l'enregistrement des intensités diffractées, sur diffractomètre automatique Bruker Apex-II.

La structure de $C_{20}H_{16}CINO_26$ a été déterminée sur la base de **13108** réflexions, parmi lesquelles **2066** réflexions ont été considérées comme observables selon le critère de conservation $I > 2\sigma(I)$. Les réflexions ont été mesurées dans le domaine angulaire **2.2** $\leq \theta \leq$ **26.0**,donnant lieu aux limites des indices de Miller suivants: $-7\leq$ **h** \leq **6**; $-9\leq$ **k** \leq **9**; $-45\leq$ **l** \leq **45**. Les données cristallographiques et les conditions d'enregistrement sont présentées dans le tableau I.16.

La structure cristalline de ce composé a été résolue dans le système Monoclinique avec le groupe d'espace $P2_1/n$, les paramètres de maille sont consignés dans le

tableau I.16. Les atomes ont été localisés par examen des cartes de Fourrier différence au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXL97 **[19] et SHELXL2017 [20]** et le PLATON **[21]**.

L'affinement des 221 paramètres a conduit aux facteurs d'accord R_1 =0.053 et wR_2 =0.153.Les résultats de la résolution et de l'affinement structural sont regroupés dans le tableau I.16. Les coordonnées atomiques et les paramètres de déplacement atomique isotropes équivalents sont consignés dans le tableau I.17. Le tableau I.18 regroupe les valeur significatives des distances et angles de liaison.

Les illustrations graphiques ont été réalisées à l'aide des programmes de dessin: Ortep [22] et Mercury [23-24].

Données Cristallographiques			
Formule empirique C ₂₀ H ₁₆ ClNO ₂	Température (K)293(2)		
Système cristallin Monoclinique	Longueur d'onde Mo Ka (Å) 0.71073		
Groupe d'espace P $2_1/n$	Coefficient d'absorption 0.245		
a(Å) 6.056(2)	linéaire (mm ⁻¹)		
b(Å)7.363(3)	Masse molaire (g mol ⁻¹) 337.79		
c(Å) 36.761(12)	Z 4		
α(°)90	Densité calculé (mg.m ⁻³) 1.369		
β(°) 91.30(2)	Couleur verte		
γ(°)90			
V(Å ³) 1638.6(10)			

Tableau I.16: Données Cristallographiques du composé C₂₀H₁₆ClNO₂.

Acquisition d	es données
---------------	------------

Réflexions mesurées 13108	Réflexions enregistrées $-7 \le h \le 6$
Réflexions indépendantes 3161	$-9 \le k \le 9$
Réflexions $I > 2\sigma(I)$ 2066	$-45 \le 1 \le 45$
R _{int} 0.0525	
Domaine de θ (°)2.217 $\leq \theta \leq 25.999$	

Nombre de paramètres 221 $R_1[F^2>2\sigma(F^2)] = 0.053$ $wR_2[F^2>2\sigma(F^2)] = 0.153$ GoF = 1.05 $(\Delta \setminus \sigma)_{max} < 0.001$ $\Delta \rho_{min}(e \text{ Å}^{-3}) -0.22$ $\Delta \rho_{max}(e \text{ Å}^{-3}) -0.35$

Tableau I.17: Coordonnées atomiques et paramètres de déplacement atomique isotropiques (Å²)

	X	У	Z	U éq
C11	1.14818 (15)	0.25490 (13)	0.48315 (2)	0.0818 (3)
O1	0.2926 (3)	0.2500 (3)	0.30360 (5)	0.0557 (7)
O2	0.3778 (3)	0.3501 (2)	0.17647 (4)	0.0492 (6)
N1	0.6324 (3)	0.3275 (3)	0.34598 (5)	0.0424 (7)
C1	0.7583 (4)	0.3110 (3)	0.37880 (6)	0.0397 (8)
C2	0.9632 (4)	0.2267 (3)	0.37907 (7)	0.0436 (8)
C3	1.0823 (4)	0.2078 (3)	0.41147 (7)	0.0480 (8)
C4	0.9972 (5)	0.2739 (4)	0.44320 (7)	0.0504 (9)
C5	0.7914 (4)	0.3564 (4)	0.44332 (7)	0.0514 (9)
C6	0.6721 (4)	0.3727 (3)	0.41101 (6)	0.0464 (8)
C7	0.7282 (4)	0.3864 (3)	0.31744 (6)	0.0411 (8)
C8	0.6226 (4)	0.3874 (3)	0.28193 (6)	0.0367 (7)
C9	0.4121 (4)	0.3121 (3)	0.27590 (6)	0.0389 (7)
C10	0.3232 (4)	0.2973 (3)	0.24089 (6)	0.0402 (8)
C11	0.4436 (4)	0.3603 (3)	0.21186 (6)	0.0393 (8)
C12	0.6490 (4)	0.4408 (3)	0.21739 (6)	0.0435 (8)
C13	0.7361 (4)	0.4520 (3)	0.25213 (6)	0.0445 (8)

	X	У	Z	U éq
C14	0.1774 (4)	0.2582 (4)	0.16730 (7)	0.0530 (9)
C15	0.1428 (4)	0.2742 (3)	0.12690 (6)	0.0440 (8)
C16	-0.0498 (4)	0.3482 (4)	0.11281 (7)	0.0538 (9)
C17	-0.0834 (5)	0.3639 (4)	0.07556 (8)	0.0638 (11)
C18	0.0762 (5)	0.3076 (4)	0.05245 (7)	0.0613 (10)
C19	0.2689 (5)	0.2336 (4)	0.06624 (8)	0.0597 (10)
C20	0.3032 (4)	0.2173 (4)	0.10328 (7)	0.0517 (9)
H1O	0.36110	0.26625	0.32283	0.0830*
H2	1.02053	0.18292	0.35751	0.0520*
H3	1.21931	0.15070	0.41176	0.0580*
H5	0.73435	0.40013	0.46490	0.0620*
H6	0.53266	0.42571	0.41093	0.0560*
H7	0.889 (4)	0.431 (3)	0.3166 (6)	0.055 (7)*
H10	0.18449	0.24578	0.23697	0.0480*
H12	0.72641	0.48643	0.19784	0.0520*
H13	0.87466	0.50422	0.25581	0.0530*
H14A	0.05497	0.31303	0.17984	0.0640*
H14B	0.18748	0.13143	0.17434	0.0640*
H16	-0.15821	0.38799	0.12846	0.0650*
H17	-0.21464	0.41268	0.06628	0.0760*
H18	0.05454	0.31939	0.02744	0.0730*
H19	0.37694	0.19433	0.05046	0.0720*
H20	0.43446	0.16793	0.11241	0.0620*

Distances interatomiques(Å)			
Cl1—C4	1.718 (3)	C15—C20	1.383 (3)
O1—C9	1.343 (3)	C15—C16	1.378 (4)
O2—C11	1.354 (3)	C16—C17	1.385 (4)
O2—C14	1.423 (3)	C17—C18	1.366 (4)
N1—C1	1.418 (3)	C18—C19	1.374 (4)
N1—C7	1.286 (3)	C19—C20	1.378 (4)
01—H10	0.8200	C2—H2	0.9300
C1—C2	1.387 (3)	С3—Н3	0.9300
C1—C6	1.382 (3)	C5—H5	0.9300
С2—С3	1.385 (4)	С6—Н6	0.9300
C3—C4	1.375 (4)	С7—Н7	1.03 (2)
C4—C5	1.387 (4)	C10—H10	0.9300
C5—C6	1.381 (3)	C12—H12	0.9300
С7—С8	1.441 (3)	C13—H13	0.9300
C8—C13	1.390 (3)	C14—H14A	0.9700
С8—С9	1.403 (3)	C14—H14B	0.9700
C9—C10	1.388 (3)	C16—H16	0.9300
C10—C11	1.386 (3)	C17—H17	0.9300
C11—C12	1.389 (3)	C18—H18	0.9300
C12—C13	1.373 (3)	C19—H19	0.9300
C14—C15	1.500 (3)	C20—H20	0.9300

Tableau I.18: Distances interatomiques (Å) et angles de liaison (°) dans la structure du composé $C_{20}H_{16}CINO_2$
	Angles (d	legrés)	
C11—O2—C14	118.99 (18)	C18—C19—C20	120.5 (3)
C1—N1—C7	118.7 (2)	C15—C20—C19	120.1 (2)
C9—O1—H1O	109.00	C1—C2—H2	120.00
N1—C1—C2	120.5 (2)	C3—C2—H2	120.00
C2—C1—C6	119.8 (2)	С2—С3—Н3	120.00
N1—C1—C6	119.7 (2)	С4—С3—Н3	120.00
C1—C2—C3	120.0 (2)	C4—C5—H5	120.00
C2—C3—C4	119.7 (2)	С6—С5—Н5	120.00
Cl1—C4—C3	119.6 (2)	C1—C6—H6	120.00
Cl1—C4—C5	119.6 (2)	С5—С6—Н6	120.00
C3—C4—C5	120.8 (2)	N1—C7—H7	125.3 (12)
C4—C5—C6	119.2 (2)	С8—С7—Н7	111.9 (12)
C1—C6—C5	120.5 (2)	C9—C10—H10	120.00
N1—C7—C8	122.8 (2)	C11—C10—H10	120.00
C7—C8—C13	119.9 (2)	C11—C12—H12	120.00
C9—C8—C13	118.3 (2)	C13—C12—H12	120.00
С7—С8—С9	121.6 (2)	C8—C13—H13	119.00
O1—C9—C10	118.2 (2)	C12—C13—H13	119.00
C8—C9—C10	120.6 (2)	O2—C14—H14A	110.00
01—C9—C8	121.2 (2)	O2—C14—H14B	110.00
C9—C10—C11	119.2 (2)	C15—C14—H14A	110.00
O2—C11—C12	114.0 (2)	C15—C14—H14B	110.00
C10—C11—C12	121.0 (2)	H14A—C14—H14B	109.00
O2—C11—C10	124.9 (2)	C15—C16—H16	120.00
C11—C12—C13	119.1 (2)	C17—C16—H16	120.00
C8—C13—C12	121.7 (2)	C16—C17—H17	120.00

Angles (degrés)			
O2—C14—C15	107.2 (2)	C18—C17—H17	120.00
C14—C15—C16	120.1 (2)	C17—C18—H18	120.00
C16—C15—C20	119.0 (2)	C19—C18—H18	120.00
C14—C15—C20	120.9 (2)	C18—C19—H19	120.00
C15—C16—C17	120.6 (2)	C20—C19—H19	120.00
C16—C17—C18	120.0 (3)	C15—C20—H20	120.00
C17—C18—C19	119.9 (3)	C19—C20—H20	120.00

I-6-b-Description de la structure $C_{20}H_{16}ClNO_26$ et discussion

La structure moléculaire de $C_{20}H_{16}CINO_2$ est représentée sur la Figure 25; la molécule est constituée de trois cycles sous forme des cycles aromatiques définis par les atomes C1/C6, C7/C12, C13/C19.

La structure moléculaire de composé $C_{20}H_{18}N_2O_26$ illustré dans la figure.25 peuvent être influencés par de contact liaison hydrogène intramoléculaire; O—H…N, tableau .6. Ce liaison hydrogène former de motif en anneau *S*(6) comme montré sur la Figure.25. La présentation de la maille élémentaire du composé est illustrée dans la Figure.26. Ce composé **6** est adopte à la forme **enol-imine** tautomerique, et la configuration de la liaison C7=N1 imine est *E* dans le composé **6**. La longueur de liaison est de 1.286(3) Å pour C7=N1. La molécule n'est pas plane comme les structures précédents, l'anneau benzénique central (C8/13) est incliné les deux anneaux benzéniques extérieur (C1/C6 et C15/C20) par 53.52(11) et 49.91(12)°, respectivement.

L'ensemble des distances C—H aromatique a une valeur moyenne de 0.93Å très proche de celle que l'on trouve habituellement par des affinements d'atomes d'hydrogène à partir des données de diffraction des rayons x **[25]**.

La Figure.25 représente un diagramme *Ortep* d'une structure $C_{20}H_{16}CINO_2$ avec numérotation des atomes carbone, hydrogène, oxygène et azote.

Figure.25: *Ortep* de l'unité asymétrique de la structure $C_{20}H_{16}CINO_2$. Les ellipsoïdes d'agitation thermique sont donnés avec une probabilité de 50%.

Figure.25 : présentation *Mercury* de la maille élémentaire du composé $C_{20}H_{16}CINO_2$

Dans la structure cristalline de composé $C_{20}H_{16}CINO_2$, les C—H··· π interactions prédominent, voir le tableau.6 pour plus de détails de structure. Dans le cristal de $C_{20}H_{16}CINO_2$, les molécules sont liées par C—H··· π interactions, formant des dalles parallèles à le plan (001), comme illustré dans la Figure.27. Il n'y a pas d'autre intermoléculaire significatif contact présent dans la structure cristalline.

Figure.27: Représentation *Mercury*. Une vue selon l'axe a de l'empilement de cristaux du composé $C_{20}H_{16}CINO_2$. Le liaison hydrogène O—H…N intramoléculaire et les C—H… π interaction sont représentées par des lignes discontinues (voir le tableau.6), et seulement les atomes H (boules grises) impliqués dans ces interactions ont été inclus.

Les distances entre donneur D et accepteur A(D—A), l'atome d'hydrogène et l'accepteur A($H \cdots A$) ainsi que les angles D— $H \cdots A$ sont rassemblés dans le tableau.6

Tableau.6: Distances et angles caractérisant les liaisons hydrogène D—H···A au sein du structure $C_{20}H_{16}CINO_2$.

Cg1 et Cg3 sont les centroïdes des cycles C1/C6 et C15/C20, respectivement.

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D^{\dots}A$	D—H···A
01—H10 […] N1	0.82	1.89	2.616 (3)	147
C3—H3··· <i>Cg</i> 3 ⁱ	0.93	2.85	3.593 (3)	138
C6—H6 Cg3 ⁱⁱ	0.93	2.82	3.520 (3)	133
C13—H13…Cg2 ⁱⁱⁱ	0.93	2.79	3.419 (3)	126
and an de manufation	(i) = 1/2/2 = 1/2	-1/2. (::)	-1/2 $-1/2$ $-1/2$ $-1/2$	(:::) $(2/2)$

codes de symétrie: (i) -x+3/2,y-1/2,-z+1/2; (ii) -x+1/2,y+1/2,-z+1/2; (iii) -x+3/2,y+1/2,-z+1/2; (iii) -x+3/2,y+1/2,-z+1/2,-z+1/2; (iii) -x+3/2,y+1/2,-z+1/2; (iii) -x+3/2,y+1/2,-z+1/2,-z+1/2,-z+1/2,-z+1/2,-z+1/2,-z+1/2,-z+1/2,-z+1/2,-z+

III-7-b-Détermination et affinement de la structure $C_{34}H_{28}N_2O_4$ 7

L'enregistrement des intensités de diffraction du composé $C_{34}H_{28}N_2O_4$ 7 a été effectué sur un monocristal à l'aide d'un diffractomètre Bruker Apex-II équipé d'un détecteur bidimensionnel de type CCD. L'acquisition de données, la mise à l'échelle des intensités l'aide de programme SAINT [18]. Un monocristal de dimensions suffisamment petites, pour que les corrections d'absorption puissent être négligées, a été pour l'enregistrement des intensités diffractées, sur diffractomètre automatique Bruker Apex-II.

La structure de $C_{34}H_{28}N_2O_47$ a été déterminée sur la base de 4493 réflexions, parmi lesquelles 1691 réflexions ont été considérées comme observables selon le critère de conservation $I > 2\sigma(I)$. Les réflexions ont été mesurées dans le domaine angulaire $2.217 \le \theta \le 25.999$, donnant lieu aux limites des indices de Miller suivants: $-7 \le h \le 6$; $-9 \le k \le 9$; $-45 \le l \le 45$. Les données cristallographiques et les conditions d'enregistrement sont présentées dans le tableau I.19. La structure cristalline de ce composé a été résolue dans le système **Orthorhombique** avec le groupe d'espace **Cmc2**₁, les paramètres de maille sont consignés dans le tableau I.19. Les atomes ont été localisés par examen des cartes de Fourrier différence au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXT 2017 [**19**] etSHELXL2017 [**20**] et le PLATON [**21**].

L'affinement des **185** paramètres a conduit aux facteurs d'accord \mathbf{R}_1 =0.053 et $w\mathbf{R}_2$ = 0.158.Les résultats de la résolution et de l'affinement structural sont regroupés dans le tableau I.19. Les coordonnées atomiques et les paramètres de déplacement atomique isotropes équivalents sont consignés dans le tableau I.20. Le tableau I.21 regroupe les valeur significatives des distances et angles de liaison.

Les illustrations graphiques ont été réalisées à l'aide des programmes de dessin: Ortep [22] et Mercury [23-24].

Tableau I.19: Données Cristallographiques du composé C₃₄H₂₈N₂O₄.

Données Cristallographiques				
Formule empirique $C_{34}H_{28}N_2O_4$	Température (K)293(2)			
Système cristallin Orthorhombique Longueur d'onde Mo Kα (Å)				
Groupe d'espace $Cmc2_1$	Coefficient d'absorption 0.245			
a(Å) 35.297 (3)	linéaire (mm ⁻¹)			
b(Å) 9.3902 (6)	Masse molaire (g mol ⁻¹) 528.58			
c(Å) 8.3603 (5)	Z 4			
α(°) 90	Densité calculé (mg.m ⁻³) 1.267			
β(°) 90	Couleur jaune			
γ(°) 90				
V(Å ³) 2771.0 (3)				

Acquisition des données

Réflexions mesurées 13108

Réflexions indépendantes 3161

Réflexions $I > 2\sigma(I)$ 2066

 $R_{int} \qquad 0.0525$

Domaine de θ (°)2.217 $\le \theta \le 25.999$

Affinement structural

Nombre de paramètres 185 $R_1[F^2>2\sigma(F^2)] = 0.053$ $wR_2[F^2>2\sigma(F^2)] = 0.158$ GoF 1.01 $(\Delta \setminus \sigma)_{max} = 0.000$ $\Delta \rho_{min}(e \text{ Å}^{-3}) = 0.24$ $\Delta \rho_{max}(e \text{ Å}^{-3}) = 0.29$

 $-9 \le k \le 9$

 $-45 \le 1 \le 45$

Réflexions enregistrées $-7 \le h \le 6$

Tableau I.20: Coordonnées atomiques et paramètres de déplacement atomique isotropiques ($Å^2$)

	X	У	Z	U éq
01	0.05052 (9)	0.2350 (3)	0.3234 (5)	0.0693 (13)
O2	0.15676 (8)	0.0288 (3)	0.5919 (4)	0.0546 (9)
N1	0.03881 (9)	0.5084 (4)	0.3640 (5)	0.0487 (10)
C1	0.01955 (13)	0.8879 (4)	0.2654 (7)	0.0639 (15)
C2	0.03890 (12)	0.7645 (4)	0.2985 (6)	0.0567 (14)
C3	0.01982 (11)	0.6379 (4)	0.3322 (5)	0.0481 (11)
C4	0.06841 (12)	0.5103 (4)	0.4519 (6)	0.0495 (14)
C5	0.09057 (11)	0.3828 (4)	0.4833 (5)	0.0454 (11)
C6	0.08042 (11)	0.2506 (4)	0.4207 (5)	0.0475 (11)
C7	0.10168 (11)	0.1285 (4)	0.4566 (5)	0.0488 (11)
C8	0.13349 (11)	0.1401 (4)	0.5523 (5)	0.0463 (12)

	X	У	Z	U éq
С9	0.14420 (12)	0.2710 (4)	0.6146 (6)	0.0560 (16)
C10	0.12269 (12)	0.3889 (4)	0.5813 (5)	0.0560 (16)
C11	0.14781 (12)	-0.1086 (4)	0.5260 (6)	0.0547 (16)
C12	0.17886 (11)	-0.2104 (4)	0.5695 (5)	0.0449 (11)
C13	0.17544 (12)	-0.2993 (4)	0.6998 (6)	0.0543 (16)
C14	0.20330 (16)	-0.3988 (4)	0.7345 (6)	0.0677 (17)
C15	0.23502 (14)	-0.4070 (5)	0.6404 (7)	0.0700 (19)
C16	0.23920 (14)	-0.3165 (6)	0.5124 (7)	0.0697 (17)
C17	0.21118 (13)	-0.2190 (5)	0.4765 (6)	0.0617 (17)
H1	0.03276	0.97121	0.24301	0.0770*
H1O	0.04038	0.31254	0.30933	0.1040*
H2	0.06524	0.76529	0.29851	0.0680*
H4	0.0777 (10)	0.604 (4)	0.509 (5)	0.041 (9)*
H7	0.09442	0.04030	0.41635	0.0580*
H9	0.16571	0.27872	0.67824	0.0670*
H10	0.12968	0.47594	0.62529	0.0670*
H11A	0.12385	-0.14214	0.56862	0.0660*
H11B	0.14557	-0.10203	0.41061	0.0660*
H13	0.15420	-0.29259	0.76516	0.0650*
H14	0.20047	-0.45974	0.82141	0.0810*
H15	0.25371	-0.47378	0.66311	0.0840*
H16	0.26095	-0.32099	0.44979	0.0840*
H17	0.21407	-0.15860	0.38915	0.0740*

	Distances int	teratomiques(Å)	
O1—C6	1.341 (5)	C12—C13	1.378 (6)
O2—C8	1.370 (5)	C13—C14	1.387 (6)
O2—C11	1.438 (5)	C14—C15	1.371 (8)
N1—C3	1.414 (5)	C15—C16	1.374 (8)
N1—C4	1.278 (6)	C16—C17	1.381 (7)
01—H10	0.8200	C1—H1	0.9300
C1–C1 ⁱ	1.380 (6)	C2—H2	0.9300
C1—C2	1.373 (6)	C4—H4	1.05 (4)
C2—C3	1.395 (5)	С7—Н7	0.9300
C3—C3 ⁱ	1.399 (5)	С9—Н9	0.9300
C4—C5	1.454 (5)	C10—H10	0.9300
C5—C10	1.400 (6)	C11—H11A	0.9700
C5—C6	1.394 (5)	C11—H11B	0.9700
C6—C7	1.403 (5)	C13—H13	0.9300
С7—С8	1.383 (6)	C14—H14	0.9300
С8—С9	1.388 (6)	C15—H15	0.9300
C9—C10	1.371 (6)	C16—H16	0.9300
C11—C12	1.499 (6)	C17—H17	0.9300
C12—C17	1.383 (6)		

Tableau I.21: Distances interatomiques (Å) et angles de liaison (°) dans la structure du composé $C_{34}H_{28}N_2O_4$

Angles (degrés)			
C8—O2—C11	117.4 (3)	C12—C17—C16	120.5 (5)
C3—N1—C4	118.9 (4)	C2—C1—H1	120.00
C6—O1—H1O	109.00	C1 ⁱ —C1—H1	120.00
C1 ⁱ —C1—C2	119.8 (4)	C1—C2—H2	119.00

Angles (degrés)			
C1—C2—C3	121.3 (4)	C3—C2—H2	119.00
N1—C3—C3 ⁱ	118.3 (3)	N1—C4—H4	122 (2)
C2—C3—C3 ⁱ	118.9 (4)	C5—C4—H4	116 (2)
N1—C3—C2	122.8 (4)	С6—С7—Н7	120.00
N1—C4—C5	122.2 (4)	C8—C7—H7	120.00
C4—C5—C10	120.5 (4)	С8—С9—Н9	120.00
C6—C5—C10	117.7 (3)	С10—С9—Н9	120.00
C4—C5—C6	121.8 (4)	C5—C10—H10	119.00
O1—C6—C7	117.5 (3)	C9—C10—H10	119.00
C5—C6—C7	120.7 (4)	O2-C11-H11A	110.00
O1—C6—C5	121.8 (3)	O2—C11—H11B	110.00
С6—С7—С8	119.6 (4)	C12—C11—H11A	110.00
O2—C8—C9	115.0 (4)	C12—C11—H11B	110.00
С7—С8—С9	120.5 (4)	H11A—C11—H11B	108.00
O2—C8—C7	124.5 (3)	C12—C13—H13	120.00
C8—C9—C10	119.2 (4)	C14—C13—H13	120.00
C5—C10—C9	122.3 (4)	C13—C14—H14	120.00
O2—C11—C12	108.6 (3)	C15—C14—H14	120.00
C11—C12—C13	120.9 (4)	C14—C15—H15	120.00
C13—C12—C17	118.8 (4)	C16—C15—H15	120.00
C11—C12—C17	120.3 (4)	C15—C16—H16	120.00
C12—C13—C14	120.8 (4)	C17—C16—H16	120.00
C13—C14—C15	119.8 (4)	C12—C17—H17	120.00
C14—C15—C16	120.0 (5)	C16—C17—H17	120.00
C15—C16—C17	120.2 (5)		

III-7-b-Description de la structure C₃₄H₂₈N₂O₄7 et discussion

La structure moléculaire de $C_{34}H_{28}N_2O_4$ est représentée sur la Figure 28; la molécule est constituée de cinq cycles sous forme des cycles aromatiques définis par les atomes C1/C1ⁱ, C5/C10, C5ⁱ/C10ⁱ, C12/C17 et C12ⁱ/C17ⁱ.

La structure moléculaire du composé $C_{34}H_{28}N_2O_47$ est illustré en Figure.28. L'unité asymétrique consiste en une demi-molécule, avec molécule entière étant générée par symétrie miroir, à savoir le miroir coupe l'anneau central de benzène, les bondes C1—C1ⁱ et C3—C3ⁱ [code de symétrie:(i) -x,y,-z]. Dans la molécule il y a deux liaisons hydrogène O—H…N intramoléculaires présent (tableau.7), qui forment des motifs en anneau *S*(6) comme indiqué dans la figure.18. La configuration des liaisons imines C4=N1 est *E*, la longueur de la liaison C4=N1est de 1.278(6) Å confirme la double liaison. La présentation de la maille élémentaire du composé est illustrée dans la Figure.29.

Les angles de liaison O3—N1=C4 sont inférieurs à $120^{\circ}[118.9(4)^{\circ}]$, et le groupe imine a un angle de torsion [C3—N1—C4] de $-176.8(4)^{\circ}$. La molécule est en forme de V et les deux bras sont non planaires; l'anneau benzénique central forme des angles dièdres de 41.9(2) et 43.6(2)° avec le cycle phénol (C5/C10) et l'anneau benzéloxy (C12/C17), respectivement. Les deux derniers anneaux sont presque normale les uns aux autres, avec un angle de dièdre de 84.4(2)°.

L'ensemble des distances C—H aromatique a une valeur moyenne de 0.93 Å très proche de celle que l'on trouve habituellement par des affinements d'atomes d'hydrogène à partir des données de diffraction des rayons x **[24]**.

La Figure.28 représente un diagramme *Ortep* d'une structure $C_{34}H_{28}N_2O_4$ avec numérotation des atomes carbone, hydrogène, oxygène et azote.

Figure.28: *Ortep* de l'unité asymétrique de la structure $C_{34}H_{28}N_2O_4$. Les ellipsoïdes d'agitation thermique sont donnés avec une probabilité de 50%.

Figure.29 : présentation *Mercury* de la maille élémentaire du composé $C_{34}H_{28}N_2O_4$

Dans le cristal de composé $C_{34}H_{28}N_2O_4$ 7, les molécules sont liées par C—H··· π interactions (voir tableau.7), forment des couches parallèles au plan (001), comme illustré à la Figure. 30. Il y a aussi des interaction π — π dans cette structure, mais ils sont oublié par ce que la distance entre les centroïdes et plus de 4 Å. Il n'y a pas d'autres contacts intermoléculaires significatifs présents dans la structure cristalline de composé 7.

Figure.30: Représentation *Mercury*. Une vue selon l'axe a de l'empilement de cristaux du composé $C_{34}H_{28}N_2O_4$. Le liaison hydrogène O—H…N intramoléculaire et les C—H… π interaction sont représentées par des lignes discontinues (voir le tableau.6), et seulement les atomes H (boules grises) impliqués dans ces interactions ont été inclus.

Les distances entre donneur D et accepteur A(D—A), l'atome d'hydrogène et l'accepteur A($H \cdot \cdot \cdot A$) ainsi que les angles D— $H \cdot \cdot \cdot A$ sont rassemblés dans le tableau.7.

Tableau.7: Distances et angles caractérisant les liaisons hydrogène D—H…A au sein du structure $C_{34}H_{28}N_2O_4$.

Cg1 et Cg3 sont les centroïdes des cycles C1/C6 et C15/C20, respectivement.

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D^{\dots}A$	<i>D</i> —H··· <i>A</i>
01—H1 <i>0</i> …N1	0.82	1.89	2.616 (3)	147
C3—H3··· <i>Cg</i> 3 ⁱ	0.93	2.85	3.593 (3)	138
C6—H6… <i>Cg</i> 3 ⁱⁱ	0.93	2.82	3.520 (3)	133
C13—H13··· $Cg2^{iii}$	0.93	2.79	3.419 (3)	126

codes de symétrie: (i) -x+3/2,y-1/2,-z+1/2; (ii) -x+1/2,y+1/2,-z+1/2; (iii) -x+3/2, y+1/2, -z+1/2;

Calcul théorique Optimisation par méthode DFT et étude comparaison de deux structure 1 et 3

IV-ÉTUDE PAR DFT

IV-1-Théorie de la Fonctionnelle de la Densité (DFT)

L'approche DFT fait partie de la famille des calculs couramment appelés *a b initio*. Ces calculs, basés uniquement sur les équations de la mécanique quantique, tirent leur nom de l'absence présumé de tout paramètre ajustable dans leur formulation.Ils consistent à résoudre une équation de type Schrödinger indépendante du temps.

 $\hat{H}\psi = E\psi$

1.1

Avec

$$\hat{H} = \hat{T}_e + \hat{T}_N + \hat{V}_{ee} + \hat{V}_{eN} + \hat{V}_{NN}$$

1.2

où les deux premiers termes correspondent respectivement à l'opérateur énergie cinétique des électrons et des noyaux. Les trois termes suivants désignent respectivement les potentiels d'interaction entre électrons, entre électrons et noyaux et enfin entre noyaux.

L'approximation introduite par Born-Oppenheimer, encore appelée hypothèse adiabitique, permet une première simplification du problème. En raison de la grande différence entre la masse d'un électron (m_e) et la masse d'un noyau (M), ce dernier est considéré comme immobile : son énergie cinétique est alors nulle et l'énergie d'interaction noyau-noyau est une constante notée E_{NN} .

 $\hat{H} = \hat{T}_e + \hat{V}_{ee} + \hat{V}_{eN} + E_{NN}$

1.3

Pourtant, si la promesse d'un calcul totalement ab initio est extrêmement séduisante, elle est imposible à mettre en pratique pour des systèmes à N électrons en présence de leurs noyaux. L'approche DFT, développé par Hohenberg et Kohn dés 1964 puis Kohn et Sham en 1965, rentre dans ce cadre [**26-27**]. Elle propose en effet de ramener le problème insoluble d'une interaction à N électrons en présence des noyaux atomiques à un problème basé sur variable unique : la densité électronique du système notée n(r). Ces travaux fondateurs ont permis l'essor considérable des calculs *ab initio* et ont d'ailleurs valu à W. Kohn le prix Nobel de chimie 1998. Le nouveau système est alors constitué d'un électron en interaction avec un potentiel extérieur noté V_{ext} . Son énergie E_{KS} peut se décomposer de la manière suivante, tous les termes étant des fonctionnelles de la densité électronique n(r):

$$E_{KS} = T_s[n] + \int d\mathbf{r} V_{ext}(\mathbf{r}) n(\mathbf{r}) + E_{Hartree}[n] + E_{NN} + E_{xc}[n]$$

1.4

 T_s est l'énergie cinétique de l'électron indépendant, V_{ext} est le potentiel externe dû aux noyaux on à tout autre champ externe(effet Zeeman ...), E_{NN} est l'énergie d'interaction noyau-noyau constante. $E_{Hartree}$ provient de l'interaction entre les densités électroniques en r et r' traitée comme une interaction coulombienne:

$$E_{Hartree}[n] = \frac{1}{2} \int d^3r d^3r' \frac{n(r)n(r')}{|r-r'|}$$

1.5

Enfin E_x est l'énergie d'échange et corrélation. Elle contient des corrections à l'énergie cinétique mais aussi l'erreur commise dans l'énergie d'interaction entre électrons, décrite par la seule interaction de Hartree:

$$E_{xc}[n] = \langle \hat{T}_e \rangle - T_s[n] + \langle \hat{V}_{ee} \rangle - E_{Hartree}[n]$$

1.6

L'enjeu du calcul DFT est alors de déterminer E_{KS} à l'aide d'une procédure autocohérente. Ainsi, à partir d'une densité électronique initiale $n_a(r)$, souvent approximée par la combinaison linéaire des densités dues à chaque atome considéré indépendamment, il est possible de calculer une première valeur $E_{KS}[n_0]$ et de déterminer une nouvelle densité électronique $n_I(r)$. La procédure d'auto-cohérence se poursuit de cette manière jusqu'à la convergence de n(r) et donc la minimisation de $E_{KS}[n]$. Nous accédons alors à l'état fondamental électronique d'une structure donné. De plus, le théorème d'Hellmann-Feynman [28] permet de calculer, à partir de la dérivée de l'énergie totale, les forces sur chacun des atomes de la structure. La minimisation de ces forces par une procédure de relaxation des positions atomiques conduit à l'état fondamental atomique du système.

Dans cette belle mécanique de la DFT, seule l'expression d' E_x n'est pas comme exactement. Elle doit etre approximée par une fonctionnelle de la densité subtilement choisie: c'est la principale approximation de la DFT.

IV-2-Étude optimisation et comparaison de la structure par méthode DFT du composé $C_{21}H_{19}NO_3$ 3.

Les calculs de la chimie quantique DFT ont été effectués au niveau de la fonctionnelle hybride B3LYP [29-30], avec la base 6-311+G(d). L'optimisation DFT de la structure de composé $C_{21}H_{19}NO_3 3$ a été réalisée à partir de la géométrie des rayons x et des valeurs de distance géométrique (Tableau.1), d'angle (Tableau.2) et de torsion (Tableau.3) comparées aux valeurs expérimentales. A partir de ces résultats, nous pouvons conclure que l'ensemble de base 6-311+G(d) convient bien dans son approche des données cristallographiques expérimentales. Les paramètres optimisés, tels que les longueurs et les angles de liaison, sont généralement bons (la plus grande déviation de longueur de liaison est inférieur à 0.03Å) avec les données expérimentales cristallographiques (Tableau.1). L'angle de torsion calculé et C3-C2-C1-C1 est 179.96 et 178.62°, respectivement expérimental pour (Tableau.3). La structure 3 calculé par la méthode DFT et par la méthode DRX est comparée dans la Figure.1. L'étude DFT de 3 montre que les HOMO et LUMO sont localisés dans le plan allant du cycle méthoxybenzène à l'anneau central du phénol. La distribution électrique des niveaux d'énergie HOMO-1, HOMO et LUMO+1 est montrée dans la Figure.2, L'orbitale moléculaire HOMO et HOMO-1 est dominée par la densité π -orbitale. Le LUMO est principalement composé de densité σ tandis

que LUMO+1 est dominé par la densité électrique σ et caractérisé dans le groupe benzéloxy. L'écart HOMO-LUMO a été trouvé à 0.1451 a.u, et les énergies orbitales moléculaires à frontière, E_{HOMO} et E_{LUMO} sont -5.646 eV et -1.696 eV, respectivement.

Figure.1:comparaison des structures de **3** obtenues à partir de (a) par DRX et (b) par les calculs DFT.

Figure.2:distribution d'électrons dans le HOMO-1, HOMO, LUMO et LUMO+1 niveaux d'énergie pour composé **3**.

Liaison	DRX	B3LYP/6-311+G(d)
N1—C7	1.277 (2)	1.291
O2—C4	1.364 (2)	1.365
01—С9	1.343 (2)	1.342
O3—C14	1.430 (2)	1.438
C7—C8	1.438 (3)	1.445
O2—C21	1.420 (2)	1.419
O3—C11	1.358 (2)	1.358
C9—C10	1.383 (2)	1.399
C14—C15	1.494 (3)	1.504
C11—C12	1.392 (3)	1.409
C12—C13	1.364 (3)	1.377
C10-C11	1.383 (2)	1.393

Tableau.1: Longueurs de liaisons expérimentales (DRX) et calculées (DFT) pour le composé **3**. [Å].

Angle	DRX	B3LYP/6-311+G(d)
C1—N1—C7	121.88 (14)	121.38
O2—C4—C5	124.61 (17)	124.72
С7—С8—С9	121.71 (16)	121.78
C1—C2—C3	121.54 (17)	121.03
C4—O2—C21	118.25 (15)	118.58
C7—C8—C13	120.66 (17)	120.34
C11—O3—C14	118.26 (13)	118.95
O3—C14—C15	108.74 (15)	108.29
C8—C13—C12	122.18 (17)	122.06
C9—C10—C11	119.69 (17)	119.93
C17—C18—C19	119.50 (19)	119.83
O3—C14—H14A	110	109.14
O3—C14—H14B	110	109.17

Tableau.2: Angles de liaisons expérimentales (DRX) et calculées (DFT) pour le composé **3**. [Å].

Tableau.3: Torsions de liaisons expérimentales (DRX) et calculées (DFT) pour lecomposé 3. [Å].

Torsion	DRX	B3LYP/6-311+G(d)
O2—C4—C5—C6	179.74 (17)	179.99
N1—C1—C6—C5	179.07 (17)	179.27
C7—C8—C9—C10	178.99 (17)	179.98
C7—C8—C13—C12	178.59 (17)	179.96

IV-3-Étude optimisation, comparaison et confirmative de la structure par méthode DFT du composé $C_{20}H_{16}CINO_3$ 1.

Les calculs chimiques quantique DFT ont été effectuées sur molécule $C_{20}H_{16}CINO_3$ 1, utilisant le B3LYP fonctionnel hybride [29-30], et avec la base 6-311+G(d). La DFT optimisation de la structure de composé 1 a été réalisée à partir de géométrie des rayons X. La structure calculée par la méthode DFT et par la méthode DRX est comparée dans la Figure.3. Les valeurs calculées des longueurs de liaison (Tableau.4) comparer avec les valeurs expérimentales, avec le plus grand déviation de longueur de liaison, [écart de longueur étant inférieur à 0.031Å de ceux trouvés dans la structure cristalline. L'adoption de la forme Keto-imine tautomerique est également prédite par ces calculs. L'étude montre également que le HOMO et LUMO sont localisés dans le plan s'étendant de l'anneau de chlorohydroxybenzène à anneau central de phénol. La distribution d'électrons du HOMO-1, les niveaux HOMO, LUMO et LUMO+1 sont présentés en Figure.4. Les orbitales occupes sont principalement le LUMO et de caractère de σ , tandis que LUMO+1 est principalement de σ . L'écart HOMO-LUMO est de 0.12449 a.u, avec la frontière moléculaire énergies orbitales, E_{HOMO} et E_{LUMO} de -5.622 et -2.234 eV, respectivement.

Figure.3:comparaison des structures de **1** obtenues à partir de (a) par DRX et (b) par les calculs DFT.

Figure.4:distribution d'électrons dans le HOMO-1, HOMO, LUMO et LUMO+1 niveaux d'énergie pour composé **1**.

B3LYP/6-311+G(d)
1.399
1.340
1.254
1.364
1.355
1.439
1.410
1.398
1.389
1.394
1.759
1.385
1.411
1.373
1.358
1.504
1.393
1.393

Tableau.4: Longueurs de liaisons expérimentales (DRX) et calculées (DFT) pour le composé **1**. [Å].

Références:

[1]. M.S. Mahboub. Thèse de magister, institut de physique, université de Constantine (2000).

[2]. CIF FORMAT – S.R. Hall, F.H. Allen, I.D. Brown. *Acta Crystallogr., Sect A*1991, 47, pp. 655-685.

[**3**]. XCAD4 – CAD4 Data Reduction. K. Hams and S. Wocadlo, University of Marburg, Maburg, Germany, **1995**.

a) M.S. Lehman, F.K. Larsen. Acta. Crystallogr. Sect A, 1974, 30, 580.

b) V.A. Strel'tsov, V.E. Zavodnik. Sov. Phys. Crystallogr. 1989, 3, pp. 824-828.

c) V.A. Strel'tsov, V.E. Zavodnik. Sov. Phys. Crystallogr. 1990, 35, 281.

[4]. PHASE ANNEALING in SHELXS – G.M. Sheldrick. *Acta Crystallogr., Sect A*1990, 46, pp. 467-473.

[5]. SHELX93 – Program for Crystal Structure Refinement. G. M. Sheldrick, Institüt für Anorganische Chimie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1993.

[6]. SHELX97 [Includes SHELXS97, SHELXL97, CIFTAB (and SHELXA)] -

Programs for Crystal Structure Analysis (Release 97-2). G. M. Sheldrick, Institüt für Anorganische Chimie der Universität, Tammanstrasse 4, D-3400 Göttingen,

Germany, 1998.

[7]. (a) L. J. Farrugia. WINGX version 1.64 036, *J. Appl. Cryst.* (1999), 32,, 832-838.
(b) L. J. Farrugia. *J. Appl. Cryst.* (2012), 45, 849-854.

[8]. K. N. Trueblood, H. B. Burgi, H. Burzlaff, J. D. Dunitz, C. M. Gramaccioli, H.

H. Schulz, U. Shmueli and S. C. Abrahams, *Acta Crystallogr.*, Sect. *A*, **1996**, 52, 770-781.

[9]. J. de Meulennar and H. Tompa, Acta Crystallogr., Sect. A, 19, 1965, 1014-1018.

[10]. P. Coppens in Crystallographic Computing ed F. R. Ahmed, S. R. Hall and C. P. Huber, Copenhagen, Munksgaard, (1970) pp 255-270.

[11]. A. C. T. North, D. C. Phillips and F. SS. Mathews, *Acta. Crystallogr.*, *Sect A*,24 **1968**, 351-359.

[12]. H. D. Flack, Acta Crystallogr., Sect A, 30, 1974, 569-573. (b) H. D. Flack, J.

Appl. Crystallogr. **1975**,8, 520-521. (c) H. D. Flack, *Acta Crystallogr., Sect A*, **1977**, 33, 890-898.

[13]. R. H. Blessing, Acta Crystallogr., Sect A, 1995, 51, 33-38.

[14]. S. Parkin, B. Moezzi and H. Hope, J. Appl. Crystallogr 1995, 28, 53-56.

[15]. A. L. Spek, Acta Crystallogr., Sect A, 1990, 46, C34. (b) PLATON, A

Multipupose Crystallographic Tool, Utrecht Universitu, Utrecht, The Netherlands, A. L. pek, **1998**.

[16]. R. H. Blessing, Cryst. Rev. 1, 1987, 3-58. (b) R. H. Blessing and D. A. Langs, *J. Appl. Crystallogr.* 1987, 20, 427-428.

[17]. SADABS: Area-Detector Absorption Correction; Siemens Industrial Automatic, INC, Madison, WI, 1996.

[18]. Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

[19]. G. M.Sheldrick. Acta Cryst. (2015a), A71, 3-8.

[20]. G. M. Sheldrick. Acta Cryst. (2015b), C71, 3-8.

[21]. Spek, A. L. Acta Cryst. (2009), D65, 148–155.

[22]. L. J. Farrugia, J. Appl. Cryst., (1997), 30, 565.

[23]. CCDC (2002). Mercury. Cambridge Crystallographic Data Center, 12 Union, Cambridge, England.

[24]. C. F., Macrae, Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe,

P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. J.

Appl. Cryst. (2008), 41, 466–470.

[25]. M.R. Churchill. Inorg. Chem., (1973), 12, 1213.

[26]. P. Hohenberg and W. Kohn, *Phys. Rev.* (1994), B136, B864.

[27]. W. Kohn and L. Sham, *Phys. Rev.* (1965), 140, 1133.

[28]. R. Feynman, *Phys. Rev.* (1939), 56, 340.

[29]. A. D. Becke. J. Chem. Phys. (1993), 98, 5648–5652.

[30]. C. Lee, Yang, W. & Parr, R. G. Phys. Rev. (1988), B, 37, 785–789.

Conclusion générale

Au cours de ce travail, nous avons synthétisé dans le chapitre I, deux composés organique de la famille de quinoléine.

Nous avons exploité les réactions de synthèse pour l'obtention des dérivés de quinoléine a base des amide, en utilisant la méthode de Vilsmeir, mais seulement dans la première étape de synthèse [synthèse des amides].

Le résultat a donné les composé suivants:

-Le 3-chloro-*N*-(quinolin-8-yl)propanamide Q3.

-Le 4-chloro-*N*-(quinolin-8-yl)butanamide Q4.

Les résultats d'étude de l'activité biologique [activité antioxydante] avec les test CUPRAC (Q3 et Q4), DPPH (Q3 et Q4) et ABTS (Q3) ont montrée une faible activité avec le test antiradicalaire DPPH et ABTS avec 4mg, mais avec 0.5mg (Q3) donne une moyene activité avec le test DPPH, et une bonne activité de Q4 et faible [plus de 100] de Q3 avec CUPRAC.

Dans le deuxième et le troisième chapitre , nous avons synthétisée sept dérivés d'imines [Base de Schiff], avec déférent types de coordination [type NO, NNO, NOO et NNOO], par la méthode classique de H. Schiff.

Les sept composés organique ont été étudié par la méthode de diffraction des rayons X [DRX], à base de monocristal. On a étudié et identifié pour chaque cristal, les calculs et les interactions moléculaire possible. On a fait une étude comparative pour deux structure [composé **1** et **3**] par la méthode DFT, et on a comparées les calculs obtenu par la méthode expérimentale (DRX) et la méthode théorique (DFT) à base hybride B3LYP/6-311+G(d).

Les résultats d'étude de l'activité biologique [activité antioxydante] avec les test CUPRAC [composé 1, 4 et 7], DPPH [composé 4] et l'activité pouvoir réducteur [composé 1] ont montré une meilleur activité [composé 1, 4 et 7], et une faible activité avec DPPH et pouvoir réducteur.

ملخص

الهدف الرئيسي من هذه الرسالة يستند على تركيب اثنين من مشتقات الكينولين القائم على أميد، وسبعة المركبات العضوية الأصلية المستمدة من إمين [قاعدة شيف] ثنائي NN وثلاثي NNO، NOO، NOO، NOO طريقة المستمدة من إمين [قاعدة شيف] ثنائي NN تم التعرف على هذه المركبات العضوية بواسطة NMR طريقة البروتون والكربون 13، وتم تحضير هذه المركبات حسب الطرق المنشورة المركبة وفقاً لطرق معروفة . وقد تم تحديد بنية الجزياءات بواسطة RX للوحدة البلورية. نتائج دراسة النشاط الحيوي [نشاط مضاد للأكسدة] هي كما يلي: أظهرت المشتقات الإيمنية [المركب 1 و 4 و 7] والمركب العضوي Q4 أفضل نشاط مع اختبار . أظهر المركب 1 العضوية مع اختبار ABTS أظهر المركب 1 العضوية و 20 هم المركب العضوي 20 أفضل نشاط مع اختبار . القهر المركب 1 العضوية المركب 1 و 4 و 7] والمركب العضوي 24 أفضل نشاط مع اختبار . القهر المركب 1 العضوية (المركب 1 و 4 و 7) والمركب العضوي 24 أفضل نشاط مع اختبار . القهر المركب 1 العضوية (المركب 1 و 4 و 7) والمركب العضوي 24 أفضل نشاط مع اختبار . القهر المركب 10 الخفاض نشاط الأكسدة مع اختبار ABTS.

الكلمات المفتاحية: قواعد شيف ، NMR ، XRD ، البلور الأحادي ، مضادات الأكسدة ، DPPH CUPRAC ، ABTS.

Summary

The principal objective of this thesis is based on the synthesis of two amide-based quinoléine dérivatives, and seven original organic compounds of imine derivatives [Shiff's base] of bidentate NO type, tridentate NOO and NNO, tetradentate NNOO. These organic compounds were identified by the proton and carbon 13 NMR mthod. The synthesized compounds were prepared according to known methods.

The imine derivative structures were determined from the diffraction data measured on single crystal.

The results of study of biological activity [antioxidant activity] are as follows :

- The imine derivatives [compound 1, 4 and 7] and the organic compound Q4 showed the best activity with the CUPRAC test.

-Compound Q3 showed low trapping activity with the ABTS test.

-The organic compounds Q3 and Q4, and the imine derivative 4 showed a low antiradical activity with the standard DPPH test.

Key words : Shiff bases, NMR, XRD, single crystal, antioxidant, DPPH, CUPRAC, ABTS.

Résumé

L'objectif principal de ce thèse repose sur la synthèse de deux dérivés de quinoléine a base d'amide , et sept composés organiques originaux de dérivés d'imine [Base de Schiff] de type bidentate NO, tridentate NOO et NNO, tétradentate NNOO. Ces composés organiques ont été identifié par la méthode RMN du proton et du carbone 13. Les composés synthétisés ont été préparé selon des méthode connues.

Les structures de dérivés d'imines ont été déterminée à partir des données de diffraction mesurées sur monocristal.

Les résultats d'étude d'activité biologique [activité antioxydante] sont comme suit:

- Les dérivés d'imine [composé 1, 4 et 7] et le composé organique Q4 ont manifesté la meilleure activité avec le test CUPRAC.

- Le composé Q3 a montré une faible activité du piégeage avec le test du ABTS.

- Les composés organiques Q3 et Q4 et le dérivé d'imine 4 ont montré une faible activité antiradicalaire avec le test du DPPH par rapport au standards.

Mots clés : Bases de Schiff, RMN, DRX, monocristal, antioxydante, DPPH, CUPRAC, ABTS.