REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE DES FRERES MENTOURI-CONSTANTINE FACULTE DES SCIENCES EXACTES DEPARTEMENT DE CHIMIE

N° d'ordre :177/Ds/2017 Série :27/Ch/2017

THESE

Présentée en vue de l'obtention du diplôme du Doctorat en Sciences Spécialité : Chimie organique

Etude phytochimique et évaluation du potentiel biologique de

Salsola tetragona Del. et Traganum nudatum Del.

(Amaranthaceae ex. Chenopodiaceae)

Par

M^{me} Hamida GHORAB Epouse BOUHEDJAR

Devant le jury :

Pr. Ahmed KABOUCHE	(U. des frères Mentouri-Constantine)	Président
Pr. Zahia KABOUCHE	(U. des frères Mentouri-Constantine)	Rapporteur
Pr. Salah AKKAL	(U. des frères Mentouri-Constantine)	Examinateur
Pr. Zahia AIT KAKI-SEMRA	(U. Salah Boubnider-Constantine 3)	Examinateur
Pr. Amar ZELLAGUI	(U. Larbi ben M'hidi-Oum El-Bouaghi)	Examinateur
Pr. Abdelmalik BELKHIRI	(U. Salah Boubnider-Constantine 3)	Examinateur

Soutenue le 28 Septembre 2017

Dédicaces

Je dédie cette thèse

À la mémoire de ma chère mère

À mon cher père

À mes frères et Sœurs

À mon cher mari

À tous mes amis

Hamida

Remerciements

Avant tout je remercie mon **DIEU** Tout Puissant, Qui m'A Donné, la volonté, le courage et la patience durant mes années de recherches.

Je tiens particulièrement à remercier Madame la Professeure **Zahia KABOUCHE** pour m'avoir fait confiance, et m'avoir encouragée et conseillé toute au long de la réalisation de ce travail dans le Laboratoire d'Obtention de Substances Thérapeutiques (LOST), pour son soutien et sa grande générosité, qu'elle soit rassurée de ma profonde gratitude.

Mes vifs remerciements vont également à Monsieur le Professeur **Ahmed KABOUCHE** de l'Université des frères Mentouri Constantine, pour son aide, ses conseils et pour l'honneur qu'il me fait en acceptant de présider le jury de soutenance.

Je tiens à remercier Monsieur le Professeur Salah AKKAL de l'université des frères Mentouri Constantine, Madame la Professeure Zahia AIT KAKI-SEMRA de l'université Salah Boubnider-Constantine 3, Monsieur le Professeur Amar ZELLAGUI de l'Université Larbi Ben M'hidi (OEB) et Monsieur le Professeur Abdelmalik BELKHIRI de l'université Salah Boubnider-Constantine 3 d'avoir accepté de juger ce travail.

Je voudrais remercier Madame la Professeure **Zahia AIT KAKI-SEMRA** et Monsieur le professeur **Kadour BELABED**, pour m'avoir accueillie dans le laboratoire de bactériologie (CHU-Benbadis Constantine, Algérie).

Mes remerciements vont aussi à mon mari **Khaled BOUHEDJAR** et Dr. **Chawki BENSOUICI** (CRBt, Ali-Mendjeli) pour leur aide dans la réalisation des activités biologiques et j'aimerais également remercier Monsieur le professeur **Mehmet Öztürk** (Université Sitki Koçman-Turquie) pour son aide dans la réalisation des analyses LC-MS/MS.

J'exprime mes remerciements aux professeurs Laurence VOUTQUENNE-NAZABADIOKO et Abdulmagid ALABDUL MAGID pour leur aide dans la réalisation des analyses spectrales.

Mes remerciements vont enfin à tous mes collègues du Laboratoire d'Obtention de Substances Thérapeutiques (LOST).

Table des Matières

Introduction générale	1
PARTIE 1 : REVUE BIBLIOGRAPHIQUE	
CHAPITRE 1 : Aperçu bibliographique sur les Amaranthaceae	
1. Généralités sur les Amaranthaceae	3
1.1. Introduction	3
1.2. Description botanique	3
1.3. Répartition géographique des Amaranthaceae	4
1.4. Classification	4
1.5. Utilisation des Amaranthaceae	5
Espèces médicinales	5
Espèces alimentaires	7
Espèces ornementales	7
1.6. Composition chimique des Amaranthaceae	7
1.6.1. Flavonoïdes	7
1.6.2. Tannins	10
1.6.3. Alcaloïdes	11
1.6.4. Saponosides	12
1.6.5. Divers composés	16
2. Aperçu bibliographique sur le genre Salsola	
2.1. Présentation du genre Salsola	
2.2. Description botanique	
2.3. Répartition géographique	
2.4. Utilisations en médecine traditionnelle d'espèces Salsola	19
3. L'espèce Salsola tetragona Del	20
3.1. Description botanique	20
3.2. Place dans la systématique	21
3.3. Travaux antérieurs sur l'espèce Salsola tetragona	21
3.4. Utilisation en médecine traditionnelle	21
4. Métabolites isolés du genre Salsola	

• Flavonoïdes		
• Saponosides et	triterpènes	27
 Génine 	triterpénique	27
 Génine 	stéroïdique	
• Phytostérols		
• Les acides phér	noliques	
> Les ació	les hydrobenzoïques	
 Les acid 	des hydroxycinnamiques	34
5. Aperçu bibliograph	nique sur le genre Traganum	
5.1. Description be	otanique	
5.2. Répartition gé	éographique	
6. L'espèce Traganun	n nudatum Del	
6.1. Description bo	otanique	
6.2. Répartition gé	ographique	
6.3. Place dans la s	systématique	
6.4. Travaux antéri	eurs sur l'espèce Traganum nudatum	40
6.5. Utilisation en	médecine traditionnelle	40

CHAPITRE 2 : Aperçu bibliographique sur les cardénolides

1. Les cardénolides	. 41
1.1. Définition	. 41
1.2. Les sucres des cardénolides	. 41
1.3. Localisation et répartition dans le règne végétal	. 43
1.4. Intérêts thérapeutiques des cardénolides	. 67

CHAPITRE 3 : Généralités sur la LC-MS/MS

1. Introduction bibliographique à la spectrométrie de masse	68
1.1. Appareillages de la spectrométrie de masse	68
1.1.1. La source d'ionisation	68
1.1.2. Les analyseurs	68
1.1.3. Le détecteur	68

2. La chromatographie	
2.1. Les méthodes chromatographiques	69
3. La LC-MS/MS	69
4. Identification des flavonoïdes par LC-MS/MS	69
4.1. Nomenclature	69
4.2. Fragmentation des flavonoïdes	70
4.2.1. Fragmentation de la génine en mode positif	70
4.2.2. Fragmentation de la génine en mode négatif	73

CHAPITRE 4 : Dosage des polyphénols et Activités biologiques

77
77
77
77
77
77
78
79
79
79
80
80
81
81
81
81
81
81
82
82
83
83

4.5.1. Définition	. 83
4.5.2. Détermination des indices de protection solaire	. 84
4.5.2.1. Méthodologies in vitro de détermination du facteur de protection solaire (FPS)	. 84

PARTIE 2 : MATÉRIEL ET MÉTHODES

CHAPITRE 1 : Matériel utilisé, Analyse LC-MS/MS, Extractions, Séparations et Purifications

1. Matériel végétal	85
2. Matériel chromatographique	85
2.1. Chromatographie sur couche mince (CCM)	85
2.2. Chromatographie sur colonne ouverte (CC)	85
2.3. Chromatographie liquide sous vide (VLC)	85
2.4. Chromatographie liquide haute performance (CLHP)	86
3. Appareils utilisés	86
3.1. Spectroscopie de RMN	86
3.2. Spectrophotométrie UV-Visible	86
3.3. Spectrométrie de masse	87
3.4. Analyses LC-MS/MS	87
3.5. Spectrométrie Infra-Rouge (IR)	88
3.6. Lecteur de microplaques à 96 puits	88
3.7. Polarimétrie	88
4. Extractions et purifications de la plante Salsola tetragona	88
4.1. Extraction	88
4.2. Séparation et purification	91
4.2.1. Fractionnement et purification de l'extrait dichlorométhane	91
4.2.2. Fractionnement et purification de l'extrait butanolique	93
5. Extraction et purification de la plante <i>Traganum nudatum</i>	99
5.1. Extraction	99
5.2. Séparation et purification	101
5.2.1. Fractionnement et purification de l'extrait butanolique	101

CHAPITRE 2 : Dosage des polyphénols et Activités biologiques

1. Dosage des polyphénols	104
2. Activité antioxydante	104
2.1. Test du 1,1-diphényl-2-picryl-hydrazyl (DPPH)	104
2.2. Test du radical ABTS ⁺⁺	104
2.3. Test de blanchissement du β - carotène	105
2.4. La réduction cuprique (CUPRAC)	105
3. Activité antibactérienne	105
3.1. Les souches bactériennes	105
3.2. Méthode de diffusion en milieu gélosé (Antibiogramme)	106
3.2.1. Préparation de l'inoculum	106
3.2.2. Ensemencement	106
3.2.3. Incubation	106
3.3. Détermination de la concentration minimale inhibitrice (CMI)	106
3.3.1. Préparation de l'inoculum	106
3.3.2. Préparation de la gamme de concentration des extraits	107
4. Activité photoprotectrice	107
4.1. Détermination du facteur de protection solaire (FPS)	107
5. Analyses statistiques	107

PARTIE 3 : RÉSULTATS ET DISCUSSION

CHAPITRE 1 : Détermination structurale des composés isolés

1. Détermination structurale des composés isolés de Salsola tetragona Del	
1.1. Détermination structurale du composé St1	
1.2. Détermination structurale du composé St2	
1.3. Détermination structurale du composé St3	
1.4. Détermination structurale du composé St4	
1.5. Détermination structurale du composé St5	148
1.6. Détermination structurale du composé St6	154
1.7. Détermination structurale du composé St7	
1.8. Détermination structurale du composé St8	164
1.9. Détermination structurale du composé St9	166
1.10. Détermination structurale du composé St10	

 1.11. Détermination structurale du composé St11
 2. Détermination structurale des composés isolés de Traganum nudatum
 2.1. Détermination structurale du composé Tn1
 2.2. Détermination structurale du composé Tn2

CHAPITRE 2 : Analyses LC-MS/MS

1.	Résultats d'Analyses LC-MS/MS des standards	194
2.	Résultats d'analyses LC-MS/MS de Traganum nudatum Del	197

CHAPITRE 3 : Dosage des polyphénols et Activités biologiques

1. Dosage des polyphénols totaux	200
2. Activité antioxydante	200
2.1. Activité antioxydante déterminée par la méthode du DPPH	200
2.2. Activité antioxydante déterminée par la méthode d'ABTS ^{•+}	202
2.3. Test de blanchissement du β-carotène	203
2.4. Activité antioxydante déterminée par la méthode du CUPRAC	204
3. Activité antibactérienne	206
4. Activité photoprotectrice déterminée par la méthode FPS in vitro	207
5. Conclusion	209
Conclusion générale	210
Références bibliographiques	212

Liste des figures

Figure 1 : Espèce Chenopodium album L et fleur actinomorphe de Chenopodium album L	3
Figure 2 : Coupe schématique d'une fleur d'Amaranthaceae	4
Figure 3 : Répartition géographique des espèces de la famille des Amaranthaceae	4
Figure 4 : Structures des flavonoïdes isolés de la famille Amaranthaceae	10
Figure 5 : Structures des tannins isolés de la famille Amaranthaceae	11
Figure 6 : Structures des alcaloïdes isolés de la famille Amaranthaceae	12
Figure 7 : Structures des saponosides isolés de la famille Amaranthaceae	16
Figure 8 : Structures des divers composés isolés de la famille Amaranthaceae	17
Figure 9 : Salsola fruticosa	18
Figure 10 : Espèce Salsola tetragona Del	21
Figure 11 : Structures des flavonoïdes isolés du genre Salsola	27
Figure 12 : Structures des saponosides et triterpènes isolés du genre Salsola	30
Figure 13 : Structures des stérols isolés du genre Salsola	33
Figure 14 : Structures des acides phénoliques isolés du genre Salsola	37
Figure 15 : Espèce Traganum nudatun Del	38
Figure 16 : Répartition géographique de l'espèce <i>Traganum nudatum</i>	39
Figure 17 : Squelettes des cardénolides et des bufadiénolides	41
Figure 18 : Les différents sucres rencontrés dans les cardénolides	42
Figure 19 : Cardénolides isolés des différentes familles	66
Figure 20 : Fragments des flavonoïdes selon la nomenclature de Ma et al (1997 ; 2000) en m	node
négatif	70
Figure 21 : Fragments des flavonoïdes <i>O</i> -glycosylés	70
Figure 22 : Voies de fragmentations caractéristiques en mode positif des flavones, flavonols,	,
flavanones, flavanes et flavanols selon Wolfender et al (2000)	72
Figure 23 : Fragmentations proposées par Fabre et al (2001) pour l'anion flavone (lutéoline)	73
Figure 24 : Fragmentations proposées par Fabre et al (2001) pour l'anion flavonol(quercétin	e) 74
Figure 25 : Fragmentations en mode négatif de l'isoramnétine selon Yeqing et al. (2015)	76
Figure 26 : Antioxydants naturels	78
Figure 27 : Antioxydants synthétiques	79
Figure 28 : Réduction du radical DPPH	79
Figure 29 : Réaction de CUPRAC	80

Figure 30 : Schéma général d'extraction des parties aériennes de l'espèce S. tetragona	90
Figure 31 : Schéma de fractionnement de l'extrait CH ₂ Cl ₂ de Salsola tetragona	92
Figure 32 : Schéma de fractionnement de l'extrait butanolique de S. tetragona	94
Figure 33 : Schéma général d'extraction des parties aériennes de l'espèce T. nudatum	100
Figure 34 : Schéma de fractionnement de l'extrait butanolique de T. nudatum	102
Figure 35 : Spectre IR du composé St1	108
Figure 36 : Spectre UV du composé St1 dans le MeOH	109
Figure 37 : Spectre de RMN ¹ H (500 MHz, Acétone) du composé St1	110
Figure 38 : Spectre de RMN ¹³ C (125 MHz, Acétone) du composé St1	111
Figure 39 : Structure de cardénolide	111
Figure 40 : Corrélations ² <i>J</i> _{H-H} observées sur le spectre COSY du composé St1	112
Figure 41 : Spectre COSY du composé St1.	113
Figure 42 : Spectre COSY du composé St1	113
Figure 43 : Spectre HSQC du composé St1	114
Figure 44 : Spectre HSQC du composé St1	115
Figure 45 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 3, 8 et 19 observés sur le spectre HMBC	116
Figure 46 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 15, 16, 17 et 18 observés sur le spectre HM	IB. 116
Figure 47 : Spectre HMBC du composé St1	117
Figure 48 : Spectre HMBC du composé St1	118
Figure 49 : Spectre HMBC du composé St1	118
Figure 50 : Effets nOe observés sur le spectre NOESY des protons du composé St1	119
Figure 51 : Spectre NOESY du composé St1	120
Figure 52 : Structure de l'uzarigenine (St1)	122
Figure 53 : Spectres de RMN ¹ H (500 MHz, CD ₃ OD) et ¹³ C (125 MHz, CD ₃ OD) du comp	osé
St2	123
Figure 54 : Spectre COSY de la partie osidique du composé St2.	124
Figure 55 : Spectre HSQC du composé St2.	125
Figure 56 : Spectre HMBC du composé St2.	126
Figure 57 : Structure du composé St2	128
Figure 58 : Spectre de masse HR-ESI-MS du composé St3	128
Figure 59 : Spectres de RMN ¹ H (500 MHz, CD ₃ OD) et ¹³ C (125 MHz, CD ₃ OD) du comp	osé
St3	130
Figure 60 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 19 observés sur le spectre HMBC	130
Figure 61 : Spectre HMBC du composé St3	131

Figure 62 : Spectre HSQC du composé St3	131
Figure 63 : Spectre HSQC du composé St3	
Figure 64 : Effets nOe observés sur le spectre NOESY des protons du composé St3	
Figure 65 : Spectre NOESY du composé St3	
Figure 66 : Spectre NOESY du composé St3	
Figure 67 : Spectre COSY de la partie osidique du composé St3	
Figure 68 : Spectre NOESY de la partie osidique du composé St3	
Figure 69 : Spectre HMBC de la partie osidique du composé St3	
Figure 70 : Structure du composé St3	138
Figure 71 : Spectres de RMN ¹ H (500 MHz, CD ₃ OD) et ¹³ C (125 MHz, CD ₃ OD) du con	nposé
St4	140
Figure 72 : Corrélations HMBC observées sur le cycle A du composé St4	140
Figure 73 : Spectre HMBC du composé St4	141
Figure 74 : Spectre COSY de la partie osidique du composé St4	142
Figure 75 : Spectre ROESY de la partie osidique du composé St4	142
Figure 76 : Spectre HSQC de la partie osidique du composé St4	
Figure 77 : Spectre HMBC de la partie osidique du composé St4	144
Figure 78 : Effets rOe observés sur le spectre ROESY des protons du composé St4	145
Figure 79 : Spectre ROESY du composé St4	145
Figure 80 : Spectre ROESY du composé St4.	146
Figure 81 : Structure du composé St4	148
Figure 82 : Spectre de RMN ¹ H (500 MHz, DMSO) du composé St5	148
Figure 83 : Spectre de RMN ¹³ C (125 MHz, DMSO) du composé St5	149
Figure 84 : Spectre HMBC du composé St5	149
Figure 85 : Spectre COSY de la partie osidique du composé St5	150
Figure 86 : Spectre HMBC de la partie osidique du composé St5	151
Figure 87 : Spectre HSQC de la partie osidique du composé St5	151
Figure 88 : Spectre HSQC de la partie osidique du composé St5	152
Figure 89 : Spectre NOESY de la partie osidique du composé St5	152
Figure 90 : Structure du composé St5	153
Figure 91 : Spectre de RMN ¹ H (500 MHz, CDCl ₃) du composé St6	154
Figure 92 : Spectre de ¹³ C (125 MHz, CDCl ₃) du composé St6	155
Figure 93 : Corrélations HMBC et COSY du composé St6	155
Figure 94 : Spectre HMBC du composé St6	156

Figure 95 : Spectre COSY du composé St6	
Figure 96 : Spectre HSQC du composé St6	
Figure 97 : Structure du composé St6	
Figure 98 : Spectres de RMN ¹ H (500 MHz, CD ₃ OD) et ¹³ C (125 MHz, CD ₃ OD) de	s composés
St7 et St8	
Figure 99 : Corrélations HMBC du composé St7	
Figure 100 : Spectre HMBC des composés St7 et St8	
Figure 101 : Spectre HMBC des composés St7 et St8	
Figure 102 : Spectre COSY des composés St7 et St8	
Figure 103 : Spectre HSQC des composés St7 et St8	
Figure 104 : Spectre HSQC du composés St7 et St8	
Figure 105 : Structure du composé St7	
Figure 106 : Corrélations HMBC du composé St8	
Figure 107 : Structure du composé St8	
Figure 108 : Spectre de RMN ¹ H (500 MHz, CD ₃ OD) du composé St9	
Figure 109 : Spectre de RMN ¹³ C (125 MHz, CD ₃ OD) du composé St9	
Figure 110 : Spectre COSY du composé St9	
Figure 111 : Spectre HSQC du composé St9	
Figure 112 : Spectre HMBC du composé St9	
Figure 113 : Structure du composé St9	
Figure 114 : Spectre de RMN ¹ H (500 MHz, CDCl ₃) du composé St10	
Figure 115 : Spectre de RMN ¹³ C (125 MHz, CDCl ₃) du composé St10	
Figure 116 : Spectre COSY du composé St10	
Figure 117 : Spectre HSQC du composé St10	
Figure 118 : Spectre HMBC du composé St10	
Figure 119 : Structure du composé St10	
Figure 120 : Spectre de RMN ¹ H (500 MHz, CDCl ₃) du composé St11	
Figure 121 : Spectre de RMN ¹³ C (125 MHz, CDCl ₃) du composé St11	
Figure 122 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 1, 2 et 3 observés sur les spectres 1	HMBC et
COSY	
Figure 123 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 2', 3', 14', 15' et 16' observés sur le	s spectres
HMBC et COSY.	
Figure 124 : Spectre HMBC du composé St11	
Figure 125 : Spectre COSY du composé St11	

Figure 126 : Spectre HSQC du composé St11	179
Figure 127 : Structure du composé St11	180
Figure 128 : Spectre de RMN ¹ H (600 MHz, CD ₃ OD) du composé Tn1	180
Figure 129 : Spectre de RMN ¹³ C (150 MHz, CD ₃ OD) du composé Tn1	181
Figure 130 : Spectre COSY du composé Tn1	182
Figure 131 : Spectre COSY du composé Tn1	182
Figure 132 : Spectre HSQC du composé Tn1	183
Figure 133 : Spectre HSQC du composé Tn1	183
Figure 134 : Spectre HMBC du composé Tn1	184
Figure 135 : Structure du composé Tn1	186
Figure 136 : Spectre de RMN ¹ H (500 MHz, CD ₃ OD) du composé Tn2	186
Figure 137 : Spectre de RMN ¹³ C (125 MHz, CD ₃ OD) du composé Tn2	187
Figure 138 : Spectre COSY du composé Tn2.	188
Figure 139 : Spectre HSQC du composé Tn2	189
Figure 140 : Spectre HMBC du composé Tn2	190
Figure 141 : Spectre HMBC du composé Tn2	191
Figure 142 : Structure du composé Tn2	193
Figure 143 : Chromatogramme LC-MS des standards	194
Figure 144 : Chromatogramme LC-MS de l'extrait hydrométhanolique de Traganum nudatum	n
Figure 145 : Structures des composés de l'extrait hydrométhanolique de <i>Traganum nudatum</i> 1	197 199
Figure 146 : Courbe de pourcentage d'inhibition de l'extrait hydrométhanolique de <i>T. nudatur</i>	m
et des standards contre le radical DPPH	201
Figure 147 : Courbe de pourcentage d'inhibition de l'ABTS par l'extrait hydrométhanolique d	de
T. nudatum	202
Figure 148 : Pourcentages d'inhibition de la peroxydation lipidique par l'extrait	
hydrométhanolique de <i>T. nudatum</i>	203
Figure 149 : Courbe de pourcentage d'inhibition du CUPRAC par l'extrait hydrométhanoliqu	le
de T. nudatum	204

Liste des tableaux

Tableau 1 : Classification sous familiale phylogénétique des Amaranthaceae	5
Tableau 2 : Flavonoïdes isolés de la famille Amaranthaceae	7
Tableau 3 : Saponosides isolés de la famille Amaranthaceae	12
Tableau 4 : Propriétés thérapeutiques de quelques espèces du genre Salsola	19
Tableau 5 : Flavonoïdes isolés du genre Salsola	22
Tableau 6 : Saponosides et triterpènes isolés du genre Salsola	28
Tableau 7 : Stérols isolés du genre Salsola	30
Tableau 8 : Principaux acides hydroxybenzoïques	33
Tableau 9 : Principaux acides hydroxycinnamiques	34
Tableau 10 : Acides phénoliques isolés du genre Salsola	34
Tableau 11 : Cardénolides isolés des différentes familles	43
Tableau 12 : Ions fragments obtenues en mode positif pour les différentes classes de	
flavonoïdes	71
Tableau 13 : Ions fragments observés en mode négatif pour les différentes classes de	
flavonoïdes	75
Tableau 14 : Les différentes catégories de protection solaire	83
Tableau 15 : Rendements des extractions	. 89
Tableau 16 : Conditions opératoires de séparation	91
Tableau 17 : Fractionnement de l'extrait dichlorométhane	92
Tableau 18 : Conditions opératoires de séparation	93
Tableau 19 : Conditions opératoires du fractionnement VLC	93
Tableau 20 : Fractionnement de l'extrait butanolique	94
Tableau 21 : Conditions opératoires de séparation	96
Tableau 22 : Fractionnement de la fraction F2	96
Tableau 23 : Conditions opératoires de purification	97
Tableau 24 : Fractionnement de la fraction F3	97
Tableau 25 : Conditions opératoires de purification	
Tableau 26 : Fractionnement de la fraction F4	98
Tableau 27 : Conditions opératoires de fractionnement	101
Tableau 28 : Fractionnement de l'extrait butanolique	101
Tableau 29 : Conditions opératoires de séparation	103

Tableau 30 : Fractionnement de la fraction F2103
Tableau 31 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé St1 dans l'acétone
Tableau 32 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé St2 dans CD ₃ OD 127
Tableau 33 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé St3 dans CD ₃ OD 138
Tableau 34 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé St4 dans CD ₃ OD 147
Tableau 35 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé St5 dans le DMSO153
Tableau 36 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé St6 dans CDCl ₃ 157
Tableau 37 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé St7 CD ₃ OD 163
Tableau 38 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé St8 dans CD ₃ OD 165
Tableau 39 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) de St9
dans CD ₃ OD 170
Tableau 40 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) de St10
dans CDCl ₃ 175
Tableau 41 : Déplacements chimiques en RMN ¹ H (500 MHZ) et RMN ¹³ C (125 MHz) du
composé 11 dans CDCl ₃ 179
Tableau 42 : Déplacements chimiques en RMN ¹ H (600 MHz) et RMN ¹³ C (150 MHz) du
composé Tn1 dans CD ₃ OD 183
Tableau 43 : Déplacements chimiques en RMN ¹ H (500 MHz) et RMN ¹³ C (125 MHz) du
composé Tn2 dans CD ₃ OD 192
Tableau 44 : Standards analysés par LC-MS/MS en mode négatif et positif
Tableau 45 : Identification par LC/MS/MS des polyphénols de l'extrait hydrométhanolique de
Traganum nudatum
Tableau 46 : Teneur en polyphénols totaux de l'extrait hydrométhanolique de T. nudatum200
Tableau 47 : Inhibition du radical DPPH par l'extrait étudié
Tableau 48 : Inhibition de l'ABTS' ⁺ par l'extrait de <i>T. nudatum</i>

Tableau 49 : Pouvoir d'inhibition (CI ₅₀) de l'extrait étudié sur le β -carotène / acide linoléique
Tableau 50 : Inhibition du CUPRAC par l'extrait étudié 204
Tableau 51 : Activité antioxydante de Traganum nudatum par les méthodes DPPH, ABTS,
CUPRAC et β-carotène205
Tableau 52 : Activité antibactérienne (Zones d'inhibition) des extraits de Salsola tetragona et de
Traganum nudatum
Tableau 53 : Activité antibactérienne (CMI) des extraits de Salsola tetragona et de Traganum
nudatum
Tableau 54 : Valeurs du facteur de protection solaire (FPS) de l'extrait hydrométhanolique de T.
nudatum et des standards207
Tableau 55 : Valeurs de FPS et pourcentage correspondant de blocage des rayons UV

Abréviations

Solvants et réactifs	
ABTS	2,2°-azinobis-(3-éthylbenzothiazoline-6-sulfonique)
BCC	Bouillon Coeur cervelle
BHA	Butylhydroxyanisole
BHT	Butylhydroxytoluène
CUPRAC	Cupric ion Reducing Antioxidant Capacity
DMSO-d ₆	Diméthylsulfoxyde deutéré
DPPH	1,1-diphényl-2-picryl-hydrazyl
FC	Folin-Ciocalteu
M-H	Mueller-Hinton
Nc	Néocuproine
TMS	Tétraméthylsilane
Techniques chromatographiques	5
ССМ	Chromatographie sur Couche Mince
CC	Chromatographie sur Colonne ouverte de silice
C18	Silice greffée
LC-MS/MS	Liquid chromatography tandem-mass spectrometry
VLC	Chromatographie liquide sous vide
Détermination structurale	
Api	Apiose
Ac	Acetyl
All	Allose
allme	Allomethylose
Boi	Boivinose
Dgl	Digitalose
Dgn	Diginoside
Dgx	Digitoxoside
Cym	Cymarose
Fuc	Fucoside
Glc	Glucose
Gal	Galactose
Glume	Glucomethylose
Gume	Gulomethylose
Rha	Rhamnose
Sar	Sarmentose
Thv	Thevetose
Xyl	Xylose
COSY	COrrelated SpectroscopY
d	doublet
dd	doublet de doublet
ddd	doublet de doublets de doublets
dl	doublet large
dt	doublet de triplet
dq	doublet de quadruplet
dm	doublet multiplet

HMBC	Heteronuclear Multiple Bonding Connectivity
HSQC	Heteronuclear Single Quantum Connectivity
J (Hz)	constante de couplage exprimée en Hertz
m	multiplet
noe	nuclear Overhauser effect
NOESY	Nuclear Overhauser Effect SpectroscopY
ppm	parties par million
RMN	Résonance Magnétique Nucléaire
RMN ¹³ C	Résonance Magnétique Nucléaire du carbone
RMN ¹ H	Résonance Magnétique Nucléaire du proton
rOe	rotation Overhauser
ROESY	ROtating Overhauser effect SpectroscopY
S	singulet
sl	singulet large
t	triplet
td	triplet de doublet
tt	triplet de triplet
tq	triplet de quadruplet
δ_{C}	Déplacement chimique du carbone en ppm
$\delta_{\rm H}$	Déplacement chimique du carbone en ppm
ESI	ElectroSpray Ionization (ionisation par électrospray)
HR	haute résolution
m/z	masse/charge d'un ion
SM	Spectrométrie de Masse
UV	Ultra-Violet
λmax	longeur d'onde maximale
[α]D	Pouvoir rotatoire spécifique
Activité biologique	
CMI	Concentration Minimale Inhibitrice
FPS	Facteur de protection solaire
IC ₅₀	Concentration Inhibitrice à 50%
UV	rayons ultraviolets

Introduction générale

A l'origine, la nature est constituée d'êtres végétaux qui permettent d'alimenter les animaux et les hommes, mais à côté de cette fonction nutritionnelle, les plantes médicinales sont utilisées pour guérir plusieurs maladies. Le pouvoir de guérison des plantes est connu depuis les temps reculés.

Les propriétés thérapeutiques des plantes médicinales sont dues à la présence de centaines métabolites secondaires. L'utilisation de ces derniers a contribué au développement et à la découverte moderne des médicaments qui n'ont commencé qu'au 20^{ème} siècle, aube de 1'ère de chimiothérapie. Plus de 70% des médicaments ont une origine végétale et 25% d'entre eux contiennent au moins une molécule active d'origine végétale. Parmi les métabolites secondaires, les polyphénols sont largement présents dans le règne végétal. Ils ont suscité ces dernières années un grand intérêt dû à la reconnaissance de leurs propriétés antioxydantes (Plaza *et al.*, 2014).

Par ailleurs la technique LC-MS/MS permet l'identification des produits naturels. Cette méthode plus sensible et facile à mettre en œuvre, est utilisée dans de nombreux laboratoires de phytochimie pour identifier des composés sans avoir à les isoler, particulièrement les polyphénols.

En plus des polyphénols, les cardénolides sont largement représentés dans plus 200 espèces appartenant à 55 genres et 12 familles. Ils sont connus depuis de nombreuses années, notamment grâce aux digitaliques. Ces composés ont longtemps fait partie de l'arsenal thérapeutique des médecins pour traiter les maladies cardiaques. L'utilisation des digitaliques a débuté par la découverte des vertus thérapeutiques des plantes à hétérosides comme la digitale. Le cardénolide le plus connu est la digitaline, actuellement appelée digitoxine. Il est trouvé dans les graines, les feuilles et les fleurs de la digitale pourpre (*Digitalis purpurea*) (Bruneton, 2009).

Depuis la fin du dix-huitième siècle, la digitaline a été utilisée pour ses propriétés thérapeutiques dans le traitement de maladies cardio-vasculaires comme l'athérosclérose (Hopkins, 1995).

La flore algérienne compte plus de 3 000 espèces réparties dans près de 150 familles parmi lesquelles près de 653 espèces sont endémiques. Ce potentiel floristique constitué d'espèces présentant divers intérêts, est très peu exploré du point de vue chimique et pharmacologique (Quezel et Santa, 1963). Le présent travail est une contribution dans la valorisation de la flore algérienne, par la recherche de nouveaux métabolites secondaire à intérêt thérapeutique.

Le choix des plantes est basé essentiellement sur l'endémisme et l'utilisation éventuelle en médecine traditionnelle en vue d'une investigation phytochimique et biologique. Pour cela nous nous sommes intéressés à l'étude phytochimique et biologique de deux plantes algériennes appartenant à la famille des Amaranthaceae : *Salsola tetragona* et *Traganum nudatum*.

Le manuscrit comprend trois parties :

• La première partie est une revue bibliographique divisée en quatre chapitres :

Le premier chapitre est consacré à une recherche bibliographique, comportant les connaissances botaniques, phytochimiques et l'utilisation thérapeutique de la famille des Amaranthaceae et des genres *Salsola* et *Traganum*.

Le deuxième chapitre présente un aperçu bibliographique sur les cardénolides.

Le troisième chapitre comprend des généralités sur les activités antioxydante, antibactérienne et antisolaire.

Le quatrième chapitre est consacré à des généralités sur la méthode LC-MS/MS.

• La deuxième partie est divisée en deux chapitres :

Le premier chapitre décrit le matériel et les méthodes d'extraction et de purification des métabolites secondaires des deux plantes (*Salsola tetragona* et *Traganum nudatum*).

Le deuxième chapitre décrit les méthodes d'évaluation des activités antioxydante, antibactérienne et antisolaire.

• La troisième partie est divisée en trois chapitres :

Le premier chapitre présente la détermination structurale des produits isolés de deux plante (*Salsola tetragona* et *Traganum nudatum*).

Le deuxième chapitre comprend la discussion des résultats obtenus par LC-MS/MS de l'extrait hydrométhanolique de *Traganum nudatum*.

Le troisième chapitre présente la discussion des résultats des activités biologiques effectuées.

Le manuscrit se termine par une conclusion générale.

PARTIE 1

REVUE BIBLIOGRAPHIQUE

CHAPITRE 1

Aperçu bibliographique sur les

Amaranthaceae

1. Généralités sur les Amaranthaceae

1.1. Introduction

La famille des Amaranthaceae (ex- Chenopodiaceae) est une famille de plantes dicotylédones comprenant près de 2500 espèces réparties en 180 genres (Müller *et al.*, 2005). Parmi les principaux genres, on peut citer *Atriplex* (300 espèces), *Gomphrena* (120 espèces), *Salsola* (120 espèces), *Suaeda* (100 espèces), *Chenopodium* (100 espèces), *Alteranthera* (100 espèces), *Ptilotus* (100 espèces), *Amaranthus* (60 espèces) (Botineau, 2010).

1.2. Description botanique

Les Amaranthaceae sont des plantes herbacées, arbustes, succulentes ou grimpantes. Les feuilles sont alternes ou opposées, simple, entières ou ondulées, parfois dentées-serrées ou lobées, à nervation pennée (nervures souvent peu visibles). Elles n'ont pas de stipules. Les inflorescences sont déterminées, terminales et axillaires. Les bractées sont herbacées ou scarieuses. Les fleurs sont actinomorphes, hermaphrodites ou unisexuées (Figure 1). Elles possèdent 5 tépales (libres ou soudés) et 3-5 étamines (opposées aux tépales à anthères 2 ou seulement à 1 loge et à filets libres ou légèrement à fortement soudés). Les grains de pollen sont 7 à polyporés, à pores répartis sur toute la surface du grain. Les carpelles sont 2 ou 3, soudés. L'ovaire est supère, à placentation basale. Le fruit est un akène, un utricule ou une pyxide, associé au périanthe et/ou aux bractéales persistants, charnus ou secs (Walter *et al.*, 2002) (Figure 2).

Figure 1 : (à gauche) Espèce *Chenopodium album* L, (à droite) Fleur actinomorphe de *Chenopodium album* L. (<u>https://www.google.dz/search?q=Chenopodium+album</u>)

Figure 2 : Coupe schématique d'une fleur d'Amaranthaceae (https://www.google.dz/search Coupe schématique d'une fleur d'Amaranthaceae)

1.3. Répartition géographique des Amaranthaceae

Les Amaranthaceae sont distribuée dans les régions tropicales, subtropicales et tempérées mais surtout en Amérique et en Afrique. Beaucoup d'entre elles se trouvent dans les steppes, les déserts et dans les côtes marines. Elles sont des halophytes ou rudérales nitrophiles (Figure 3) (Botineau, 2010).

Figure 3 : Répartition géographique des espèces de la famille des Amaranthaceae. (http://www.plantes-botanique.org/famille_amaranthaceae)

1.4. Classification

La famille des Amaranthaceae est divisée en dix sous-familles selon la classification phylogénétique APG III. Elle comprend près de 2500 espèces réparties en 180 genres (Tableau 1) (Müller *et al.*, 2005).

Sous famille Nombre genres		Nombres d'espèces	Distribution
Amaranthoideae	57	330	Amérique tropicale, Sud de l'Afrique, Australie.
Gomphrenoideae	19	300-400	Amérique du Sud, Mexique, Amérique centrale
Betoideaes	5	13-20	Europe de l'Ouest et du Sud, Méditerranée et de l'Asie du Sud-Ouest.
Camphorosmoideae	20	179	Australie, Afrique du Nord, Amérique du Nord
Chenopodioideae	27	1400	Asie, Europe, Amérique du Nord
Corispermoideae	3	73	Dans le monde entier
Polycnemoideae	4	13	Asie centrale et moyen-Orient, Europe centrale, Afrique du Nord et du Sud, Amérique, Australie
Salsoloideae	11	107	Dans le monde entier
Salicornioideae	35	317	Asie centrale et moyen-Orient, Méditerranée, Europe centrale, Afrique du Nord et du Sud, Amérique, Australie
Suaedoideae	2	85	Régions sèches et arides

Tableau 1 : Classification sous familiale phylogénétique des Amaranthaceae.

1.5. Utilisation des Amaranthaceae

• Espèces médicinales

En Allemagne, *Kochia scoparia* Shard est utilisée comme carminatif, diurétique, dépuratif et antirhumatismal (Baillon, 1988). Ses fruits sont utilisés en médecine traditionnelle chinoise pour traiter les prurit, l'eczéma, la rubéole, la dysurie, l'urticaire et d'autres maladies (Dai *et al.*, 2002).

L'espèce *Chenopodium ambrosioide* est utilisée en médecine traditionnelle comme antispasmodique, diaphorétique, stomachique, antirhumatismal (Ragbau, 1973), vermifuge et anthelminthique (Adjanohoun *et al.*, 1985, 1989; Kerharo *et al.*, 1974; Lavergne *et al.*, 1989). Elle est aussi utilisée sous forme de bains contre la gale. Ses feuilles sont utilisées pour traiter les abcès, l'épilepsie, les vomissements (Adjanohoun *et al.*, 1986), les dermatoses cutanées et les névralgies

intercostales (Adjanohoun *et al.*, 1998; 1989). L'essence de cette plante est utilisée contre les ankylostomes et les ascaris (Ragbau, 1973). Au Chili, l'espèce *Chenopodium ambrosioide* est employée comme stimulant et emménagogue (Holmes, 1898). Au Mexique, elle est utilisée contre l'hémoptysie (Virey, 1815).

La célosie (*Celosia argentea* L.) est conseillée contre les troubles gastro-intestinaux (Ragbau, 1973), la jaunisse et la fièvre. Elle est utilisée pour traiter les plaies. Ses feuilles sont utilisées pour traiter les inflammations, la fièvre et les démangeaisons (Kirtikar, 1935).

Les graines de l'Anabasis tamariscifolia possèdent des propriétés anthelmintiques (Baillon, 1988).

La Basella rubra L. est préconisé en Chine comme remède contre la dysenterie (Jahresb et al., 1878).

Au Nigéria, *Gomphrena celosioides* est utilisée pour le traitement de diverses affections de la peau (Onocha *et al*, 2005). Elle a également des propriétés analgésiques, toniques, carminatives et diurétiques. (Gessler *et al.*, 1994). Au Bénin, cette plante est utilisée dans le traitement des ictères, du paludisme, des dysménorrhées et des maladies hépatiques (Adjanohoun *et al.*, 1989; Sangare *et al.*, 2012).

La plante *Achyranthes aspera* Linn. (Chirchira) est utilisée en médecine traditionnelle indienne comme laxatif, stomachique, carminatif. Elle est aussi utilisée pour traiter les vomissements, la bronchite, les maladies cardiaques, l'ascite, la dyspepsie, la dysenterie, les maladies du sang et les douleurs abdominales (Dwivedi *et al.*, 2008). Ses feuilles sont employées pour soigner les ulcères buccaux (Ragbau, 1973).

Amaranthus spinosus est réputée comme fébrifuge et sudorifique. Ses feuilles sont utilisées dans le traitement des troubles du cycle menstruel, l'eczéma et la colique. Cette espèce est utilisée en médecine traditionnelle Indienne comme laxatif, diurétique, stomachique et antipyrétique. Elle est aussi utilisée pour traiter la bronchite, la lèpre et la morsure de rat (Ayethan *et al.*, 1996).

On emploie *Fredolia aretioides* comme antirhumatismal, diurétique, hypoglycémiant et antidote des poisons (El-Mansouri *et al.*, 2011).

Alternanthera sessilis est utilisée pour traiter l'hépatite, la bronchite, l'asthme et d'autres troubles pulmonaires. Ses feuilles sont utilisées comme remède antihypertenseur (Acharya *et al.*, 2006). Elle est réputée comme fébrifuge, cholagogue et galactogogue (Hosamani *et al.*, 2004).

6

• Espèces alimentaires

Les Amaranthaceae ont une importance économique considérable, de nombreuses espèces étant utilisées dans l'alimentation. Citons par exemple *Beta vulgaris* L, *Spinacia oleracea, Alternanthera sessilis, Amaranthus cruentus, Amaranthus blitum, Chenopodium quiona, Chenopodium album, Salicornia, Celosia trigyna* L., *Cilosia argentea* et *Digera muricata* (L.) Mart (Grubben *et al.*, 2004).

• Espèces ornementales

Certaines Amarnathaceae sont cultivées comme ornementales telles que : la queue de renard (*Amaranthus caudatus*) et la Crête de coq (*Celosia cristata*) (Botineau, 2010).

1.6. Composition chimique des Amaranthaceae

La recherche bibliographique réalisée sur la famille des Amaranthaceae montre que la majorité des études phytochimiques effectuées révèle sa richesse en composés phénoliques (flavonoïdes, tanin, coumarines), alcaloïdes et triterpènes.

1.6.1. Flavonoïdes

Le tableau 2 résume les flavonoïdes isolés de quelques espèces de la famille Amaranthaceae.

Tableau 2 : Flavonoïdes isolés de la famille Amaranthaceae.

Nom du composé	Espèces	Réf	
Quercétine (1)	Chenopodium murale	El-sayed <i>et</i> <i>al</i> , 1999	
Quercétine-3- <i>O</i> -(6"-caffeoyl)-sophoropyranoside (2)	Bassia muricata	Kamel <i>et</i> <i>al.</i> , 2010	
Quercétine-3- <i>O</i> -(6"-feruloyl)- sophoropyranoside (3)			
Quercétine-4'- O - β -D-galactopyranoside (4)	Cornulaca monacantha	Fayez <i>et al.</i> , 2001	
Kaempférol (5)	Chenopodium murale	El-sayed <i>et</i>	
Kaempférol 3- O - α -L-rhamnopyranoside-7- O - β -D-xylopyranosyl (1 \rightarrow 2)- O - α -L-rhamnopyranoside (6)		aı., 1999	

Kaempférol-3,7-dirhamnopyranoside (7)	Chenopodium murale	Ahmed <i>et</i> <i>al.</i> , 2000	
Kaempférol-3- O - β -D-glucopyranoside-7- O - α -L- rhamnopyranoside (8)			
Kaempférol-3- O -[4- β -D-apiofuranosyl]- α -L- rhamnopyranoside-7- O - α -L-rhamnopyranoside (9)			
Kaempférol-3- O -[4- β -D-xylopyranosyl]- α -L- rhamnopyranoside-7- O - α -L-rhamnopyranoside (10)			
Isorhamnétine 3- O - β -D-glucopyranoside (11)	Climacoptera	Balakyz <i>et</i> <i>al.</i> , 2012	
Isorhamnétine 3- <i>O</i> -[α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside] (narcissine) (12)	obtusijona		
Lutéoline-7- <i>O</i> -rhamnopyranoside (13)	Cornulaca monacantha	Fayez et al.,	
		2001	
Lutéoline-7- <i>O</i> -glucopyranoside (14)		2001	
Lutéoline-7- O -glucopyranoside (14) Patuletine-3- O - β -gentiobiopyranoside (15)	Chenopodium foliosum	2001 Zlatina <i>et</i>	
Lutéoline-7- <i>O</i> -glucopyranoside (14) Patuletine-3- <i>O</i> -β-gentiobiopyranoside (15) 6-methoxykaempférol-3- <i>O</i> -β-D-gentiobiopyranoside (16)	<i>Chenopodium foliosum</i> Asch	2001 Zlatina <i>et</i> <i>al.</i> , 2011	
Lutéoline-7- <i>O</i> -glucopyranoside (14) Patuletine-3- <i>O</i> -β-gentiobiopyranoside (15) 6-methoxykaempférol-3- <i>O</i> -β-D-gentiobiopyranoside (16) Spinacétine-3- <i>O</i> -β-gentiobiopyranoside (17)	<i>Chenopodium foliosum</i> Asch	2001 Zlatina <i>et</i> <i>al.</i> , 2011	
Lutéoline-7- O -glucopyranoside (14) Patuletine-3- O - β -gentiobiopyranoside (15) 6-methoxykaempférol-3- O - β -D-gentiobiopyranoside (16) Spinacétine-3- O - β -gentiobiopyranoside (17) Gomphrenol-3- O - β -D-gentiobiopyranoside (18)	<i>Chenopodium foliosum</i> Asch	2001 Zlatina <i>et</i> <i>al.</i> , 2011	

$R_3 \xrightarrow{O} \xrightarrow{R_4} R_5$ $R_2 \xrightarrow{O} \xrightarrow{R_4} R_6$								
	R ₁	R ₂	R 3	R4	R 5	R ₆		
1	ОН	Н	ОН	Н	ОН	OH		
2	6"-caffeoyl- <i>O</i> -β-D-Glc(1→2)- β-D-Glc	Н	OCH ₃	ОН	ОН	Н		
3	6"-feruloyl- <i>O</i> -β-D-Glc(1→2)- β-D -Glc	Н	ОН	ОН	ОН	Н		
4	ОН	ОН Н		ОН	<i>O-β-</i> D- Gal	Н		
5	ОН	Н	ОН	Н	ОН	Н		
6	<i>O</i> -α-L-Rha	Н	$O-\beta$ -D-Xyl (1 \rightarrow 2)- O - α -L-Rha	Н	ОН	Н		
7	<i>O</i> -α-L-Rha	Н	<i>O</i> -α-L-Rha	Н	ОН	Н		
8	<i>O-β</i> -D-Glc	Н	<i>O</i> -α-L-Rha	Н	ОН	Н		
9	<i>O</i> -4-β-D-Api-Rha	Н	<i>O</i> -α-L-Rha	Н	ОН	Н		
10	<i>O</i> -4-β-D-Xyl-Rha	Н	<i>O</i> -α-L-Rha	Н	ОН	Н		
11	<i>O-β</i> -D-Glc	Н	ОН	OCH ₃	ОН	Н		
12	<i>O</i> -α-L-Rha-(1→6)-β-D-Glc	Н	ОН	OCH ₃	ОН	Н		
13	Н	Н	<i>O</i> -α-L-Rha	ОН	Н	Н		
14	Н	Н	<i>O-β</i> -D-Glc	ОН	Н	Н		
15	$O-\beta$ -D-Glc(1 \rightarrow 6)- β -D-Glc	OCH ₃	ОН	ОН	ОН	Н		
16	$O-\beta$ -D-Glc(1 \rightarrow 6)- β -D-Glc	OCH ₃	ОН	Н	ОН	Н		

17	O - β -D-Glc(1 \rightarrow 6)- β -D-Glc	OCH ₃	ОН	OCH ₃	ОН	Н
18	O - β -D-Glc(1 \rightarrow 6)- β -D-Glc			Н	ОН	Н
19	O - α -L-Rha- $(1 \rightarrow 2)$ - β -D-Glc- $(1 \rightarrow 6)$ - β -D-Glc		0	Н	ОН	Н

Figure 4 : Structures des flavonoïdes isolés de la famille Amaranthaceae.

1.6.2. Tannins

Les monacanthine A et B (**20**, **21**), le penta-*O*-galloyl- β -D-glucose (**22**) et le 1,2,3,6-tetra-*O*-galloyl- β -D-glucose (**23**) sont les tannins les plus répandus dans l'espèce *Cornulaca monacantha* (*Amaranthaceae*) (Figure 5) (Fayez *et al.*, 2001).

Figure 5 : Structures des tannins isolés de la famille Amaranthaceae.

1.6.3. Alcaloïdes

Les alcaloïdes sont des composés qui proviennent des végétaux. La plupart possèdent une activité biologique importante. Ils sont utilisés contre diverses maladies telles que le paludisme et le cancer.

Une étude phytochimique effectuée sur le genre *Haloxylon articulatum* (*Amaranthaceae*) a permis d'isolé quatre alcaloïdes : Carnegine (24), *N*-méthylisosalsoline (25), Salsolidine (26), 2-méthyle-1,2,3,4-tetrahydro- β -carboline (27) (El-Shazly *et al.*, 2003).

Figure 6 : Structures des alcaloïdes isolés de la famille Amaranthaceae.

1.6.4. Saponosides

Les différentes espèces de la famille Amarantaceae renferment aussi des saponosides en particulier à squelette pentacyclique de type oléanane (Tableau 3).

Nom du composé	Espèces	Réf	
Mi-saponine A(28)	Bssia butyracea	Li et al., 1994	
Butyroside C (29)			
Butyroside D (30)			
Madlongiside A(31)	Bassia longifolia	Yoshikawa <i>et al.</i> , 2000	
Madlongiside B (32)			
Madlongiside C (33)			
Madlongiside D (34)			
Mi-saponine A (28)			
Acide 3β -[(<i>O</i> - β -D-glucopyranosyl-(1 \rightarrow 3)- α -L- arabinopyranosyl) oxy]-23-oxo-olean-12-en-28-oique β -D-glucopyranoside (35)	<i>Chenopodium quinoa</i> Willd	Kuljanabhagavad et al., 2008	
Acide 3β -[(<i>O</i> - β -D-glucopyranosyl-(1 \rightarrow 3)- α -L- arabinopyranosyl) oxy]-27-oxo-olean-12-en-28-oique- β -D-glucopyranoside (36)			
Acide 3- O - α -L-arabinopyranosyl serjanique 28- O - β -D-glucopyranosyl ester (37)			

Acide 3- O - β -D-glucuronopyranosyl serjanique 28- O - β -D-glucopyranosyl ester (38)		
Acide 3- <i>O</i> - β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl-(1 \rightarrow 3)- α -L-arabinopyranosyl serjanique 28- <i>O</i> - β -D-glucopyranosyl ester (39)		
Acide 3- <i>O</i> - β -D-glucopyranosyl-(1 \rightarrow 3)- α -L- arabinopyranosyl serjanique 28- <i>O</i> - β -D-glucopyranosyl ester (40)		
Quinoside D (41)		
Quinoa saponine 7 (42)		
acide 3- <i>O</i> - β -D-glucopyranosyl- $(1\rightarrow 3)$ - α -L- arabinopyranosyl oleanolique 28- <i>O</i> - β -D-glucopyranosyl ester (43)		
Chikusetsusaponine (44)		
Quinoa saponine 4 (45)		
Quinoa saponine 3 (46)		
Quinoa saponine 5 (47)		
Quinoa saponine 8 (48)		
Acide 3- O - β -D-glucopyranosyl- $(1\rightarrow 4)$ - O - β -D-glucopyranosyl- $(1\rightarrow 4)$ - O - β -D-glucopyranosyl phytolaccagenique 28- O - β -D-glucopyranosyl ester (49)		
Quinoa saponine 2 (50)		
Hedera nepalensis saponine F (51)		
Quinoa saponine 9 (52)		
Quinoa saponine 1 (53)		
Acide 3- <i>O</i> - β -D-glucopyranosyl-(1 \rightarrow 3)- α -L- arabinopyranosyl 3 β ,23,30-trihydroxy olean-12-en-28- oic 28- <i>O</i> - β -D-glucopyranosyl ester (54)		
Gypsogénine 3- O -[β -D-xylopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside]-28- O -[β -D-glucopyranosyl]ester (55)	Climacoptera obtusifolia	Balakyz <i>et al.</i> , 2012

	· · · · · · · · · · · · · · · · · · ·
Hédéragénine 3- O -[β -D-xylopyranosyl-(1 \rightarrow 3)- β -D-	
glucopyranoside]-28- O -[β -D-glucopyranosyl]ester (56)	
	1

	R_1 R_2 R_2 R_3 R_4 R_4 R_5 R_5 R_6								
	R 1	R ₂	R 3	R 4	R 5	R ₆	R ₇		
28	ОН	β-D-Glc	CH ₂ OH	ОН	CH ₃	α -L-Rha $(1\rightarrow 3)$ - β -D- Xyl $(1\rightarrow 4)$ - α -L- Rha $(1\rightarrow 2)$ - α -L-Rra	CH ₃		
29	OH	β-D-AGlc	CH ₂ OH	OH	CH ₃	α -L-Rha(1 \rightarrow 3)- β -D- Xyl(1 \rightarrow 4)- α -L- Rha(1 \rightarrow 2)- α -L-Ara	CH ₃		
30	ОН	β-D-AGlc	CH ₂ OH	ОН	CH ₃	β -D-Api(1 \rightarrow 3)- β -D- Xyl(1 \rightarrow 4)- α -L- Rha(1 \rightarrow 2)- α -L-Ara	CH ₃		
31	С=О	C=O	CH ₂ OH	OH	CH ₃	α-L-Ara	CH ₃		
32	Н	β-D-Glc	CH ₂ OH	OH	CH ₃	α-L-Ara	CH ₃		
33	OH	Н	CH ₂ OH	OH	CH ₃	α-L-Ara	CH ₃		
34	OH	Н	CH ₂ OH	OH	CH ₃	α-L-Rha-α-L-Ara	CH ₃		
35	Н	β -D-Glc(1 \rightarrow 3)- α - L-Ara	СНО	Н	CH ₃	β-D-Glc	CH ₃		
36	Н	β -D-Glc(1 \rightarrow 3)- α - L-Ara	CH ₃	Н	СНО	β-D-Glc	CH ₃		
37	Н	α-L-Ara	CH ₃	Н	CH ₃	β -D-Glc	COOCH ₃		
38	Н	β-D-GlcA	CH ₃	Н	CH ₃	β -D-Glc	COOCH ₃		
39	Н	$\beta\text{-D-Glc}(1\rightarrow 2)\text{-}\beta\text{-}$ D-Glc $(1\rightarrow 3)\text{-}\alpha\text{-}\text{L-}$ Ara	CH ₃	Н	CH ₃	β -D-Glc	COOCH ₃		
----	---	---	--------------------	---	-----------------	----------------	---------------------		
40	Н	β -D-Glc(1 \rightarrow 3)- α - L-Ara	CH ₃	Н	CH ₃	β-D-Glc	COOCH ₃		
41	Н	β -D-Xyl(1 \rightarrow 3)- β -D-GlcA	CH ₃	Н	CH ₃	β -D-Glc	CH ₃		
42	Η	β -D-Glc(1 \rightarrow 2)- β -D-Glc(1 \rightarrow 3)- α - L-Ara	CH ₃	Н	CH ₃	β-D-Glc	CH ₃		
43	Н	β -D-Glc(1 \rightarrow 3)- α -L-Ara	CH ₃	Н	CH ₃	β -D-Glc	CH ₃		
44	Η	β -D-GlcA	CH ₃	Н	CH ₃	β -D-Glc	CH ₃		
45	Н	β -D-Glc(1 \rightarrow 3)- α -L-Ara	CH ₂ OH	Н	CH ₃	β -D-Glc	COO CH ₃		
46	Η	α-L-Ara	CH ₂ OH	Н	CH ₃	β -D-Glc	COOCH ₃		
47	Н	β -D-Glc(1 \rightarrow 3)- β - D-Gal	CH ₂ OH	Н	CH ₃	β -D-Glc	COOCH ₃		
48	Н	β -D-Glc(1 \rightarrow 2)- β - D-Glc(1 \rightarrow 3)- α -L - Ara	CH ₂ OH	Н	CH ₃	β-D-Glc	COOCH ₃		
49	Η	β -D-Glc(1 \rightarrow 4)- β - D-Glc(1 \rightarrow 4)- β -D- Glc	CH ₂ OH	Η	CH ₃	β-D-Glc	COOCH ₃		
50	Н	β -D-Glc(1 \rightarrow 3)- β - D-Gal	CH ₂ OH	Н	CH ₃	β -D-Glc	CH ₃		
51	Н	α-L-Ara	CH ₂ OH	Н	CH ₃	β -D-Glc	CH ₃		
52	Н	β-D-GlcA	CH ₂ OH	Н	CH ₃	β-D-Glc	CH ₃		
53	Н	β -D-Glc(1 \rightarrow 3)- α -L-Ara	CH ₂ OH	Н	CH ₃	β-D-Glc	CH ₃		
54	Н	β -D-Glc(1 \rightarrow 3)- α -L-Ara	CH ₂ OH	Н	CH ₃	β-D-Glc	CH ₂ OH		

55	Н	β -D-Xyl-(1 \rightarrow 3)- β -D-Glc	СНО	Н	CH ₃	β -D-Glc	CH ₃
56	Н	β -D-Xyl-(1 \rightarrow 3)- β -D-Glc	CH ₂ OH	Н	CH ₃	β -D-Glc	CH ₃

Figure 7 : Structures des saponosides isolés de la famille Amaranthaceae.

1.6.5. Divers composés

Des dérivés phénoliques ont été également identifiés à partir des espèces de la famille Amarantaceae : Umbelliférone (**57**) (*Amaranthus paniculatus*), Acide 3,4-dihydroxy cinnamique (**58**) (*Halocnemum strobilaculatum*) (Simon, 1999), N-*trans*-féruloyle 4'-*O*-méthyldopamine (**59**), N-*trans*-féruloyle 3'-*O*-méthyldopamine (**60**), N-*trans*-féruloyle tyramine (**61**), N-*trans*-4-*O*méthylféruloyle 3',4'-*O*-diméthyldopamine (**62**), N-*trans*-4-O-Méthylcafféoyle 3'-*O*méthyldopamine (**63**), N-*trans*-4-*O*-Méthylféruloyle 4'-*O*-méthyldopamine (**64**) et N-*trans*féruloyle tryptamine (**65**) (*Chenopodium album*) (Francesca *et al.*, 2003).

Figure 8 : Structures des divers composés isolés de la famille Amaranthaceae.

2. Aperçu bibliographique sur le genre Salsola

2.1. Présentation du genre Salsola

Les soudes (*Salsola*) sont des plantes de la famille Amaranthaceae (ex- Chenopodiaceae ou Salsolaceae). Elles se trouvent dans le long des rivages marins des pays tempérés. Le nom de *Salsola* est dérivé du latin *salsus*, «salé», en référence à l'habitat (Blondeau *et al.*, 2007).

2.2. Description botanique

Le genre *Salsola*, a été décrit par Linnaeus en 1753, il est classé dans la sous famille des Salsoloideae et à la tribu des Salsoleae (Linné, 1753).

Les soudes sont des arbustes ou des plantes herbacées. Les feuilles sont opposées ou alternes, planes ou cylindriques. Les fleurs sont axillaires ou terminales, verdâtres, à un périanthe persistant à 5 divisions ; à 5 étamines opposées aux divisions du périanthe, et à un style divisé en 2 ou 3 parties. (Loiseleur Deslongchanpa, 1815). Le fruit à péricarpe membraneux ou épais-subcharnu. La graine est horizontale, rarement verticale, orbiculaire, exalbuminée, à tégument membraneux, et possède un embryon de couleur vert, de forme spirale, plan ou conique, à radicule centrifuge (Maire, 1962) (Figure 9).

Figure 9 : Salsola fruticosa (https://www.google.dz/search salsola fruticosa).

2.3. Répartition géographique

Les soudes sont répandues presque partout dans le monde et principalement en Asie, en Europe et en Afrique (Delafosse *et al.*, 1827).

En Algérie, on peut trouver les espèces suivantes : *S. brevifolia* Desf., *S. cruciata* Chevall., *S. foetida* Del., *S. kali* L., *S. longifolia* Forsk., *S. mollis* Desf., *S. oppositifolia* Desf., *S. pachoi* Volk., *S. paletzkiana* Litv., *S. pruinosa* Lange., *S. richteri* M., *S. sieberi* Presl., *S. soda* L., *S. spinescens* Moq., *S. tetragona* Del., *S. tetrandra* Forsk., *S. vermiculata* L. (Quezel et Santa, 1963).

2.4. Utilisations en médecine traditionnelle d'espèces Salsola

Salsola foelida (Del) permet de traiter l'hypertension (EL Rhaffari *et al.*, 2004), les démangeaisons, les inflammations (Al-Saleh *et al.*, 1993) et l'arythmie (EL Rhaffari *et al.*, 2004). Elle est aussi utilisée comme vermifuge, diurétique (Al-Saleh *et al.*, 1993) et antioxydante (Ahmad *et al.*, 2008). L'extrait aqueux de cette espèce est utilisé comme contraceptif oral en Namibie et en Afrique du Sud (Swart *et al.*, 2003).

Salsola longifolia et Salsola vermiculafa sont utilisées pour traiter les boutons, les maux d'estomac, les gastrites, les vers intestinaux, les infections microbiennes. Elles sont également utilisées dans les soins des cheveux (EL Rhaffari *et al.*, 2004).

Salsola tetrandra est utilisée pour traiter les infections cutanées. Elle est également utilisée pour soigner les plaies (Volpato et al., 2012).

Salsola rigida est employée pour traiter les vers intestinaux (Bahmani et al., 2010).

Salsola collina Pall est connue en médecine traditionnelle chinoise pour traiter l'hypertension, les maux de tête, les vertiges (Jin *et al.*, 2011), les maladies du foie et l'allergie (Saratikov *et al.*, 1990).

Le tableau 4 regroupe les propriétés thérapeutiques de différentes espèces du genre Salsola.

Espèce	Propriété thérapeutique	Référence
S. collina	Antifongique	Jin et al., 2011
S. kali	Antioxydante	Aniss et al., 2014
S. baryosma	Antioxydante	Sharma et al., 2014
	Anticholinestérase	Zaheer et al., 2008
	Antispasmodique	Ahmed et al., 2006

Tableau 4 : Propriétés thérapeutiques de quelques espèces du genre Salsola.

S. oppositifolia	Anticholinestérase	Tundis et al., 2009
	Antioxydante	
	Activité cytotoxique	
S. soda S. tragus	Antioxydante Anticholinesterase	
S. tetrandra	Antibactérienne	Oueslati et al., 2006
	Antioxydante	Beyaoui et al., 2012
S. rosmarinus	Antimicrobienne	Mahmoud et al., 1989
S. inermis	Antioxydante Anti-inflammatoire Antinociceptive	Elsharabasy et al., 2013
S. foetida	Antioxydante Anti-tyrosinase	Khan <i>et al.</i> , 2003
	Anti-inflammatoire	Al-Saleh et al., 1993

3. L'espèce Salsola tetragona Del.

3.1. Description botanique

Cette plante est un arbrisseau de 20-40 cm de hauteur, tortueux, dont les rameaux sont noueux, opposés cylindriques, un peu cotonneux. Les feuilles sont charnues, presque globuleuses, opposées, sessiles. Le fruit consiste en une graine roulée verticalement en spirale, embrassée dans la base du calice (Panckouckf, 1968). Les fleurs sont solitaires et sessiles à l'aisselle des feuilles entre deux bractéoles (Figure 10). Le périanthe est constitué d'un calice à 5 sépales. La graine est subglobuleuse déprimée, horizontale, à tégument membraneux, lisse, de 2,5 mm de diamètre, albuminée, non constellée, à embryon vert, enroulé en escargot (Maire, 1962).

Figure 10 : Espèce Salsola tetragona Del.

(http://www.floramaroccana.fr/salsola-tetragona.html)

3.2. Place dans la systématique

Le classement de *Salsola tetragona* dans la systématique est comme suit : (<u>http://zipcodezoo.com/index.php/Salsola_tetragona</u>)

Règne	Plantae
Embranchement	Radiatopes
Sous embranchement	Euphyllophytina
Sous classe	Caryphyllidae
Ordre	Caryophyllales
Famille	Chénopodiacées
Genre	Salsola
Espèce	Salsola tetragona

3.3. Travaux antérieurs sur l'espèce Salsola tetragona

Jusqu'à présent, Salsola tetragona n'a fait l'objet d'aucune étude phytochimique ni biologique.

3.4. Utilisation en médecine traditionnelle

Au Maroc, le fruit et les feuilles de Salsola tetragona sont prescrits contre le diabète (Ghourri et al., 2013).

4. Métabolites isolés du genre Salsola

Les flavonoïdes, les acides phénoliques, les triterpènes, les phytostérols et les saponosides sont les principaux métabolites secondaires du genre *Salsola* (Munir *et al.*, 2014).

• Flavonoïdes

Les flavonoïdes représentent un groupe très important de métabolites secondaires des plantes. Ils sont classés en divers familles qui incluent les flavones, les flavanones, les flavonols, les anthocyanes, les chalcones et les aurones.

Les flavonoïdes sont présents dans tous les organes de la plante : les feuilles, les fleurs, les racines, les tiges, les graines et l'écorce (Lee *et al*, 1994). Ils possèdent différentes propriétés biologiques : antioxydante, anti-inflammatoire, antithrombotique, antibactérienne, antihépatotoxique, antitumorale, antihypertensive, antivirale et antiallergique (Andersson *et al.*, 1996).

Les flavonoïdes présents dans le genre *Salsola* sont essentiellement des flavonols des isoflavones et des flavones. Le tableau 5 représente les dérivés des flavonoïdes isolés de quelques espèces du genre *Salsola*.

N°	Flavonoïde	Espèce	Référence
66	Isorhamnétine	S. komarovii	Lee et al., 2012;
		S. collina	Zaikov <i>et al.</i> , 1992; Syrchina <i>et al.</i> , 1989 ; Jin <i>et al.</i> , 2011
67	Isorhamnétine 3- O - β -D-glucopyranoside	S. collina	Xiang et al., 2007;
			Syrchina et al., 1989
		S. oppositifolia	Tundis et al., 2008
		S. kali	Tomas et al., 1985
		S. macera	Mnatsakanyan <i>et al</i> ., 1981
		S. imbricata	Osman <i>et al.</i> , 2016
68	Isorhamnétine 7- O - β -D-glucopyranoside	S. collina	Xiang <i>et al.</i> , 2007

Tableau 5 : Flavonoïdes isolés du genre Salsola.

69	Isorhamnétine 3- O - β -D-rutinopyranoside	S. oppositifolia S. Kali	Tundis <i>et al.</i> , 2008 Tomas <i>et al.</i> , 1985
70	Isorhamnétine-3- O - β -D-glucuronyl (1''' \rightarrow 4'') glucuronide	S. imbricata	Osman et <i>al.</i> , 2016
71	Isorhamnétine-3- O - β -D-diglucuronate dimethyl ester		
72	Isorhamnetine-3- O - β -D-galactopyranoside		
73	Isorhamnétine 3- <i>O</i> - α -L-arabinopyranosyl- (1 \rightarrow 6)- β -D-glucopyranoside	S. imbricata	Osman <i>et al.</i> , 2016
5	Kaempférol	S. baryosma S. collina S. tetrandra S. dendroides S. stelulata S. ruthnica	Kaur <i>et al.</i> , 2012 Zaikov <i>et al.</i> , 1992 Rasheed <i>et al.</i> , 2013 Melkumyan <i>et al.</i> , 1969
74	Kaempférol 3- O - β -D-glucopyranoside	S. komarovii	Lee et al., 2012
1	Quercétine	S. baryosma S. collina S. macera S. vermiculata	Kaur <i>et al.</i> , 2012 Zaikov <i>et al.</i> , 1992 Jin <i>et al.</i> , 2011 Mnatsakanyan <i>et al.</i> , 1981 Rasheed <i>et al.</i> , 2013
75	Quercétine-3- O - β -D-glucopyranoside	S. collina	Zaikov et al., 1992
76	Quercétine-3- O - β -D-rutinopyranoside	S. collina	Zaikov <i>et al.</i> , 1992 Jin <i>et al.</i> , 2011
77	Tricine	S. collina	Syrchina <i>et al.</i> , 1989; Xiang <i>et al.</i> , 2007; Yunxue <i>et al.</i> , 2005; Jin <i>et al.</i> , 2011
78	Tricine 7- O - β -D-glucopyranoside	S. collina	Xiang <i>et al.</i> , 2007 Yunxue <i>et al.</i> , 2005

			Syrchina et al., 1989
			Wang et al., 2011
			Jin et al., 2011
79	Tricine 4'- O - β -D-apiofuranoside	S. collina	Xiang et al., 2007
			Syrchina et al., 1992
80	Tricine 7- O - β -D-apiofuranoside (1 \rightarrow 2)- β -D-glucopyranoside	S. collina	Xiang <i>et al.</i> , 2009
81	<i>Erythro</i> -4'- O -(β -guaiacylglyceryl) tricine	S. collina	Syrchina et al., 1992
82	<i>Threo</i> -4'- O -(β -guaiacylglyceryl) tricine		
83	5,3'-dihydroxy-6,7,2'-trimethoxyisoflavone	S. somalensis	Abegaz et al., 1991
84	5,8,3'-trihydroxy-7,2'-dimethoxyisoflavone		
85	8,3'-dihydroxy-5,7,2'-trimethoxyisoflavone		
86	5,6,3-trihydroxy-7,2'-dimethoxyisoflavone		
87	6,7,3-trihydroxy-5,2'-dimethoxyisoflavone		
88	5,8,3'-trihydroxy-2'-methoxyi-6,7- methylendioxyisoflavone		
89	3'-hydroxy-5,6,7,2'-tetramethoxyisoflavone		
90	7,3'-dihydroxy-5,6,2'-trimethoxyisoflavone		
91	6,3'-dihydroxy-5,7,2'-trimethoxyisoflavone		
92	5,3'-dihydroxy-7,8,2'-trimethoxyisoflavone	S. somalensis	Woldu et al., 1990
93	5,3'-dihydroxy-,2'-methoxy-6,7- methylenedioxyisoflavone		
94	5,3'-dihydroxy-6,7,8,2' tetramethoxyisoflavone		
95	5,2'-dihydroxy-5'-methoxy-6,7- methylenedioxy-isoflavone	S. tetrandra	Beyaoui et al., 2012
96	5,2'-dihydroxy-6,7-methylenedioxy- isoflavone	S. collina	Wang <i>et al.</i> , 2011; Jin <i>et al.</i> , 2011

97	Chrysoériol 7- O - β -D-glucopyranoside	S. baryosma	Ahmad et al., 2006
98	Salisoflavane	S. imbricata	Saleem et al., 2009

	R_2 C R_4 R_5 R_5 C C R_1 C C C C C R_1 C							
	R 1	\mathbf{R}_2	R 3	R 4	R 5			
66	ОН	ОН	OCH ₃	ОН	Н			
67	<i>O-β</i> -D-Glc	ОН	OCH ₃	ОН	Н			
68	ОН	<i>O-β</i> -D-Glc	OCH ₃	ОН	Н			
69	<i>O-β-</i> D-Rut	ОН	OCH ₃	ОН	Н			
70	$\begin{array}{c} O{-\beta}{\text{-D-GlcA}} (1'''{\rightarrow}4''){-}O{-}\\ \beta{\text{-D-GlcA}} \end{array}$	ОН	OCH ₃	ОН	Н			
71	$O-\beta$ -D-Glc methyl ester, (1''' \rightarrow 4'')-Glc methyl ester	ОН	OCH ₃	ОН	Н			
72	<i>O-β-</i> D-Gal	ОН	OCH ₃	ОН	Н			
73	<i>O</i> -α-L-Ara-(1→6)-Glc	ОН	OCH ₃	ОН	Н			
74	<i>O-β</i> -D-Glc	ОН	Н	ОН	Н			
75	<i>O-β</i> -D-Glc	ОН	ОН	ОН	Н			
76	<i>O</i> -Rut	ОН	ОН	ОН	Н			
77	Н	ОН	OCH ₃	ОН	OCH ₃			
78	Н	<i>O-β</i> -D-Glc	OCH ₃	ОН	OCH ₃			

79	Н	ОН	OCH ₃	<i>O</i> -Api	OCH ₃
80	Н	O -Api(1 \rightarrow 2)Glc	OCH ₃	ОН	OCH ₃
81	Н	ОН	OCH ₃	<i>Erythro</i> -4'- <i>O</i> -(β-guaiacylglyceryl	Н
82	Н	ОН	OCH ₃	<i>Threo-</i> 4'- <i>O-(β –</i> guaiacylglyceryl	Н
97	Н	<i>O</i> -Glc	OCH ₃	ОН	Н

	R ₁	R 2	R3	R 4	R 5
83	ОН	ОН	OCH ₃	OCH ₃	Н
84	ОН	ОН	Н	OCH ₃	ОН
85	ОН	OCH ₃	Н	OCH ₃	ОН
86	ОН	ОН	OH	OCH ₃	Н
87	ОН	OCH ₃	OH	ОН	Н
89	ОН	OCH ₃	OCH ₃	OCH ₃	Н
90	ОН	OCH ₃	OCH ₃	ОН	Н
91	ОН	OCH ₃	OH	OCH ₃	Н
92	ОН	ОН	Н	OCH ₃	OCH ₃
94	ОН	ОН	OCH ₃	OCH ₃	OCH ₃

26

Figure 11 : Structures des flavonoïdes isolés du genre Salsola.

• Saponosides et triterpènes

Les saponosides sont des métabolites secondaires hétérosidiques à poids moléculaire élevé qui comprend deux parties, la partie aglycone ou génine et la partie osidique. La génine est soit triterpénique (C-30) soit stéroïdique (C-27).

➢ Génine triterpénique

Les saponosides à génine triterpénique sont tétracycliques (dammarane, cucurbitane, lanostane) ou pentacycliques (oléanane, ursane, lupane, friedelane, hopane, holostane).

➢ Génine stéroïdique

Les saponosides à génine stéroïdique sont des squelettes hexacyclique (spirostane) ou pentacyclique (furostane).

Des études phytochimiques réalisées sur quatre espèces du genre *Salsola* ont conduit à l'isolement et l'identification de 9 saponosides (**99-107**) et 5 triterpènes (**108-112**) de type olèanane à l'aide des analyses spectrales et des méthodes chimiques (Tableau 6).

Tableau 6 : Saponosides et triterpènes isolés du ge	enre Salsola.
---	---------------

Composés	Espèce	Référence
Acide 3- O - β -D-xylopyranosyl- $(1 \rightarrow 2)$ - O - β -D- glucuronopyranosyl-akebonique 28- O - β -D- glucopyranoside (99)	S. imbricata	Hamed <i>et al.</i> , 2011
Acide 3- O - β -D-xylopyranosyl- $(1 \rightarrow 2)$ - O - β -D-glucuronopyranosyl-29-hydroxyoleanolique 28- O - β -D-glucopyranoside (100)		
Silphioside G (101)		
Pseudoginsenoside RT1 (102)		
Boussingoside A2 (103)		
Acide oléanolique 28- <i>O</i> - β -D-glucopyranoside 3- <i>O</i> -[<i>O</i> - β -D-xylopyranosyl-(1 \rightarrow 4)- β -D-glucuropyranoside] (104)	S. micranthera	Annaev <i>et al.</i> , 1983, 1984
Hédéragénine 28- <i>O</i> - β -D-glucopyranoside 3- <i>O</i> - [<i>O</i> - β -D-xylopyranosyl-(1 \rightarrow 4)- β -D- glucuropyranoside] (105)		
Acide oléanolique 3- $[O-\beta-D-xy]$ opyranosyl- (1 \rightarrow 4)- $O-\beta$ -D-glucopyranosyl(1 \rightarrow 2)]- $O-\beta$ -D- glucuronopyranoside,28- $O-\beta$ -D- glucopyranoside (106)		
Acide 3- O -[β -D-glucopyranosyl]oléanolique (107)	S. inermis	Elsharabasy <i>et al.</i> , 2013
Oléan-12-en-3,28-diol (108)		
Acide oléan-12-en-28-oique (109)		

Salsoline A (110)	S. baryosma	Zaheer et al., 2008
Salsoline B (111)		
Acide $2\alpha, 3\beta, 23, 24$ -tetrahydroxyurs-12-en-28- oique (112)		

106	β -D-Xyl-(1 \rightarrow 2)- β -D-Glc- β -D-Glc	CH ₃	Н	Н	COO-β-D-Glc	CH ₃
107	β -D-Glc	CH ₃	Н	Н	СООН	CH ₃
108	Н	CH ₃	Н	Н	CH ₂ OH	CH ₃
109	Н	CH ₃	Н	Н	СООН	CH ₃
110	Н	CH ₂ OH	Н	OH	СООН	CH ₂ OH
111	β -D-Glc	CH ₂ OH	OH	OH	СООН	CH ₃
HO _{M,} HO _{M,} HO						
112						

Figure 12 : Structures des saponosides et triterpènes isolés du genre Salsola.

• Phytostérols

Le tableau 7 représente les stérols isolés de quelques espèces du genre Salsola.

Tableau 7 : Stérols isolés du genre Salsola.

\mathbf{N}°	Stérol	Espèce	Référence
113	Cholestérol	S. collina	Maya <i>et al.</i> , 1984
		S. kali S. longifolia S. ridiga S. tetrandra	Wassel et al., 1979
114	Campestérol	S. foetida	Andhiwal et al., 1984

		S. collina	Syrchina <i>et al.</i> , 1989 Maya <i>et al.</i> , 1984
115	β-sitostérol	S. foetida	Andhiwal et al., 1984
		S. kali S. longifolia S. ridiga S. tetrandra,	Wassel et al., 1979
		S. inermis	Elsharabasy et al., 2013
		S. collina	Syrchina <i>et al.</i> , 1989 Maya <i>et al.</i> , 1984 Wang <i>et al.</i> , 2011
116	Stigmastérol	S. foetida	Andhiwal et al., 1984
		S. inermis	Elsharabasy et al., 2013
		S. collina	Syrchina <i>et al.</i> , 1989 Maya <i>et al.</i> , 1984
117	24-ethylcholeast-5,24-dien-3- β -ol	S. foetida	Andhiwal et al., 1984
118	24-ethylcholestan-3-ol	S. collina	Syrchina et al., 1989
119	$\Delta^{5,24}$ -stérol-stigmastérol	S. collina	Maya et al., 1984
120	Stigmasterol-3- β -O-D-Glucopyranoside	S. inermis	Elsharabasy et al., 2013
121	Stigmastanol		

32

Figure 13 : Structures des stérols isolés du genre Salsola.

• Les acides phénoliques

Les acides phénoliques sont largement répandus chez les végétaux. Ils dérivent de l'acide benzoïque ou de l'acide cinnamique.

> Les acides hydrobenzoïques

Ce sont des composés organiques aromatiques, constitués d'un cycle C1-C6 substitué par un groupe carboxyle (COOH) et un groupe hydroxyle (OH). Ces hydroxyles phénoliques peuvent être méthylés (Macheix *et al.*, 2005) (Tableau 8).

	R 1	R 2	R3	R 4	
Acide benzoïque (non phénolique)	Н	Н	Н	Н	R ₂
Acide <i>p</i> -hydroxybenzoïque	Н	Н	ОН	Н	R ₃
Acide protocatéchique	Н	ОН	ОН	Н	R ₄ COOH
Acide vanillique	Н	OCH ₃	ОН	Н	
Acide gallique	Н	ОН	ОН	OH	

Tableau 8 : Principaux acides hydroxybenzoïques.

Acide syringique	Н	OCH ₃	ОН	OCH ₃
Acide salicylique	ОН	Н	Н	Н
Acide gentisique	ОН	Н	Н	ОН

Les acides hydroxycinnamiques

La structure de base des acides hydroxycinnamiques est C6-C3. Les principaux acides hydroxycinnamiques sont présenté dans le tableau 9.

Tableau 9 : Principaux acides hydroxycinnamiques.

	R 1	R 2	R3	
Acide <i>p</i> -coumarique	Н	ОН	Н	
Acide caféique	OH	ОН	Н	
Acide férulique	OCH ₃	ОН	Н	R ₂
Acide sinapique	OCH ₃	ОН	OCH ₃	R ₃

Les acides phénoliques isolés du genre Salsola sont regroupés dans le tableau 10.

Tableau 10 : Acides phénoliques isolés du genre Salsola.

N°	Structure	Espèce	Référence
122	Acide protocatéchique	S. kali L	Sokolowska-Krzaczek et al., 2009
		S. imbricata	Shehab et al., 2014
123	Acide gentisique	S. kali L	Sokolowska-Krzaczek et al., 2009
124	Acide <i>p</i> -hydroxybenzoïque	S. collina S. kali L	Jin <i>et al.</i> , 2011 Sokolowska-Krzaczek <i>et al.</i> , 2009
125	Acide syringique	S. kali L	Sokolowska-Krzaczek et al., 2009
126	Acide vanillique	S. collina	Wang <i>et al.</i> , 2011

		S. kali L	Sokolowska-Krzacze et al., 2009	
		S. imbricata	Shehab et al., 2014	
		S. collina	Wang et al., 2011	
127	Acide salicylique	S. imbricata	Shehab et al., 2014	
		S. collina	Jin et al., 2011	
128	Acide α - résorcylique		Sokolowska-Krzączek et al. 2009	
129	Acide β -résorcylique	S. Kali L	Sokolowska-Kizaczek et ul., 2005	
130	Acide gallique	S. imbricata	Shehab et al., 2014	
131	Acide anisique	S. collina	Jin et al., 2011	
132 Acide caféique	S. kali L	Sokolowska-Krzaczek et al., 2009		
		S. imbricata.	Shehab et al., 2014	
	S. kali L	Sokolowska-Krzaczek et al., 2009		
133	Acide <i>p</i> -coumarique	S. collina	Xiang <i>et al.</i> , 2007	
			Jin <i>et al.</i> , 2011	
		S. imbricata	Shehab et al., 2014	
134	Acide <i>p</i> - Hydroxyphénylacétique	S. kali L	Sokolowska-Krzaczek et al., 2009	
		S. kali L	Sokolowska-Krzaczek et al., 2009	
	Acide férulique	S. collina	Xiang et al., 2007	
135		S. subaphylla var	Hillmann-Elies et al., 1953	
		S. imbricata	Shehab et al., 2014	
136	Acide chlorogénique			
137	Acide cinnamique	S. imbricata	Shehab et al., 2014	
138	Acide rosmarinique			

Figure 14 : Structures des acides phénoliques isolés du genre Salsola.

5. Aperçu bibliographique sur le genre Traganum

5.1. Description botanique

C'est un arbrisseau très rameux à écorce blanche, à rameaux fortement villeux-laineux aux noeuds, à feuilles alternes, sessiles, subcylindriques, charnues. Les fleurs sont axillaires, solitaires, très laineuses à la base, à cinq étamines insérées sur un disque à peine marqué et anthères linéaires-sagittées, aiguës ; staminodes nuls ou \pm développés. L'ovaire est subglobuleux-déprimé, atténué en un style épais, à 2 stigmates subulés, épais. La graine est horizontale, globuleuse-déprimée, à tégument un peu charnu, exalbuminée; embryon spiralé, subconique, grêle, à radicule centrifuge, ascendante, un peu saillante (Maire, 1962).

5.2. Répartition géographique

Le genre *Traganum* est largement distribué en Afrique de l'Ouest et du Nord, des Îles Canaries et du Moyen-Orient (<u>www.plantlist.org</u>).

6. L'espèce Traganum nudatum Del.

6.1. Description botanique

Le *Traganum nudatum* (Amaranthaceae) est appelé aussi "**Damrane**". C'est un arbrisseau très rameux, à rameaux intriqués, de 30 à 60 cm de hauteur. Les feuilles sont alternes, glauques, charnues, glabres ou un peu papilleuses. Les fleurs sont de couleur blanche à 5 étamines (Maire, 1962). L'ovaire est supère et globuleux. Le périanthe est constitué d'un calice à 2-3 sépales. Le fruit est une noix ligneuse, cylindrique, avoide-tronquée (Figure 15). Cette noix renferme une graine sphérique aplatie et roulée horizontalement en spirale (Panckouckf, 1968).

 Figure 15 : Espèce Traganum nudatun Del.

 (http://www.floramaroccana.fr/traganum-nudatum.html)

6.2. Répartition géographique

L'espèce *Traganum nudatum* est largement distribuée en Afrique du Nord et en Asie occidentale (Figure 16) (http://www.floramaroccana.fr/traganum-nudatum.html).

Figure 16 : Répartition géographique de l'espèce *Traganum nudatum* (<u>www.theplantlist.org</u>).

6.3. Place dans la systématique

Le classement de Traganum nudatum dans la systématique est comme suit :

Règne	Végétal
Embranchement	Spermaphytes
Sous embranchement	Angiospermes
classe	Dicotylédone
Sous classe	Apétales
Ordre	Centrospermales
Famille	Chénopodiacées
Genre	Traganum
Espèce	Traganum nudatum

6.4. Travaux antérieurs sur l'espèce Traganum nudatum

D'après la recherche bibliographique, aucune étude phytochimique (séparation et identification) n'a été réalisée sur l'espèce *T. nudatum*, mais elle a fait l'objet d'une étude biologique (El Abed *et al.*, 2011).

6.5. Utilisation en médecine traditionnelle

Les feuilles de *Traganum nudatum* sont utilisée à Ouargla (Sahara septentrional - Est algérien) pour soigner les plaies, le rhumatisme, la diarrhée, les dermatoses (Ouled El Hadj *et al.*, 2003). Elle est également utilisée pour fabriquer le tabac, le savon et le verre. En Algérie, cette plante est utilisée pour traiter le diabète et les diverses algies (Bouallala *et al.*, 2014).

Au Maroc, *Traganum nudatum* est utilisé comme remède contre les problèmes gastriques, les prurits et les boutons (Bellakhdar, 1997).

CHAPITRE 2

Aperçu bibliographique

sur les cardénolides

1. Les cardénolides

1.1. Définition

Les cardénolides sont des hétérosides cardiotoniques dont la génine est caractérisée par un squelette stéroidique tétracyclique portant un hydroxyle (OH) en C-3 et C-14 et un cycle lactonique α , β -insaturé en C-17 orienté en β . La taille de ce cycle permet de distinguer deux groupes de génines: les cardénolides (C23) et les bufadiénolides (C24) (Figure 17). Le groupement hydroxyle en C-3 peut être substitué par diverses unités osidiques (Bruneton, 1999).

Figure 17 : Squelettes des cardénolides et des bufadiénolides.

1.2. Les sucres des cardénolides

Avant de présenter les cardénolides isolés des différentes familles, nous allons désigner les sucres qui sont rencontrés dans ces cardénolides (Figure 18).

Figure 18 : Les différents sucres rencontrés dans les cardénolides

1.3. Localisation et répartition dans le règne végétal

Les cardénolides sont présents dans 13 familles déférentes et dans plus de 60 genres. Le tableau 11 représente les cardénolides isolés des différentes familles.

Tableau 11 : Cardénolides isolés de	es différentes familles.
-------------------------------------	--------------------------

Famille	Cardénolides	Plante	Référence
Apocynaceae	Ouabaine (G-strophantine) (139) Acovenoside A-C (140-142)	Acokanthera schimperi A. venenata A. deflersii A. longiflora A. spectabilis	Bethwell <i>et al.</i> , 2007
	Echujine (143) Hongheloside G (144) Hongheloside A (145) Hongheloside C (146)	Adenium boehmanianum A. somalense A. honghel A. multiflorum	Schmelzer <i>et</i> <i>al.</i> , 2008
	Cymarine (147)	Apocynum camrabinum	Gerlach <i>et al.</i> , 1965
	Cerbérine (148) β -O-(2'-O-acetyl-l- thevetosyl) 15(14 \rightarrow 8)- <i>abeo</i> -5 β -(8R)-14-oxo-card- 20(22)-enolide (2'-O-acetoxy- cerleaside A (149) Cerleaside A (150) 17- α , nériifoline (151) 17- β , nériifoline (152)	Cerbera odollam	Laphookhieo et al., 2004
	Tanghinine (153) Deacétyltanghinin (154) 17- α , 17- β , Cerdollaside (155-156) 17- α , 17- β , Solanoside (157-158) 17- α , 17- β , Nériifoline (151-152) Cerbérine (148) (-)-14-hydroxy-3- β -(3- O -methyl-6- deoxy- α -L-rhamnosyl)-11 α , 12 α - epoxy-(5 β , 14 β ,17 β H)-card-20 (22)- enolide (159) (-)-14-hydroxy-3- β -(3- O -methyl-6- deoxy- α -L-glucopyranosyl)-11 α , 12 α -	C. tanghin C. mangus	Yamauchi <i>et</i> <i>al.</i> , 1987a ; 1987b; Chang <i>et al.</i> , 2000; Cheenpracha <i>et al.</i> , 2004

			1
Apocynaceae	epoxy- $(5\beta, 14\beta, 17\beta$ H)-card -20(22)-		
	enolide (160)		
	Oléandrine (161)	Nerium	Yamauchi <i>et</i>
	Neriantine (162)	oleander	<i>al.</i> , 1976;
	Neridiginoside (163)	N. odorum	1978; Begum
	Nerizoside (164)	N. indicum	<i>et al.</i> , 1999;
	Neritaloside (165)		Bai <i>et al</i> .,
	Odoroside-H (166)		2010; 2011
	Cardénolide B-1 (167)		
	Cardénolide B-2 (168)		
	Odoroside A (169)		
	Odoroside B (170)		
	3β -O-(β -D-diginosyl)-14,15 α -		Wang <i>et al.</i> ,
	dihydroxy- 5α -card- $20(22)$ -enolide (171)		2009
	Cardénolide N-1 (172)		
	3β 5β 1β tribudrovyl-card-16 20(22)	Streptocaulon	Zhang <i>et al</i>
	5p, 5p, 14p-timydroxyr-card-10,20(22)-	ariffithii	2006: 2007
	$\frac{1}{3} O \theta D glucopyraposyl 5 \theta 14 \theta$	grijjunu	2000, 2007
	dibudrovul card 16, 20(22) diapolida		
	(174)		
	(174) Disito sóning (175)		
	Digitogenine (175)		
	Derivel agening (177)		
	$\frac{1179}{160}$		
	16-O-acetyperipiogenine (178)		
	Periplogenine digitoxoside (179)		
	Peripiogenin-3-O-p-D-glucopyranoside		
	Periplogenin-3- O - β -D-glucopyranosyl-		
	$(1 \rightarrow 4)$ - O - β -D-digitoxopyranoside (181)		
	$3-O-\beta$ -D-glucopyranosyl-		
	acovenosigenin A (182)		
	(17α) -H-periplogenin-3- O - β -D-		
	glucopyranosyl- $(1 \rightarrow 4)$ -2- <i>O</i> -acetyl-3- <i>O</i> -		
	methyl- β -fucopyranoside (183)		
		-	
	Digitoxigenin-3- O -[O - β -D-	Streptocaulon	Myint-Khine
	glucopyranosyl- $(1\rightarrow 4)$ -2- O -acetyl- β -D	tomentosum	<i>et al.</i> , 2004
	-digitalopyranoside] (184)		
	Periplogenin 3- O -[O - β -D-		
	glucopyranosyl- $(1\rightarrow 4)$ - O - β -D-		
	glucopyranosyl- $(1\rightarrow 4)$ - β -D-		
	cymaropyranoside (185)		

A	1 = 140 d'harden and 50 and 20 (22)	C. I.	II.I. (1
Apocynaceae	1α , 14β -dinydroxy- 5β -card-20 (22)-	Streptocaulon	Ueda <i>et al.</i> ,
	enolide $3-O-[O-\beta-D-glucopyranosyl-$	juventas	2003; Xue <i>et</i>
	$(1\rightarrow 2)$ - β -D-digitalopyranoside] (186)		<i>al.</i> , 2013 a,b
	Acovenosigenine A- $3-O-[O-\beta-D-$		
	glucopyranosyl- $(1\rightarrow 4)$ - β -D-		
	digitalopyranoside] (187)		
	16-O-acetyl-hydroxyperiplogenin 3-O-		
	β -D-digitoxopyranoside (188)		
	Digitoxigenin-3- O -[O - β -D-		
	glucopyranosyl- $(1 \rightarrow 6)$ - O - β -D-		
	glucopyranosyl- $(1 \rightarrow 4)$ -2- <i>O</i> -acetyl- <i>B</i> -D-		
	digitalopyranosidel (189)		
	16- <i>O</i> -acetyl-hydroxyacovenosigenin		
	(100)		
	1β 3β 1β tribudrowy 5β card 16 20		
	(22) diagolida (101)		
	(22)-dieliolide (191)		
	Acovenosigenin A 5-0-p-		
	digitoxopyranoside (192)		
	Digitoxigenin gentiobioside (193)		
	Digitoxigenin $3-O-[O-\beta-$		
	glucopyranosyl- $(1\rightarrow 6)$ - O - β -		
	glucopyranosyl- $(1 \rightarrow 4)$ -3- O -acetyl- β -		
	digitoxopyranoside] (194)		
	Digitoxigenin 3- O -[O - β -		
	glucopyranosyl- $(1\rightarrow 6)$ - O - β -		
	glucopyranosyl- $(1\rightarrow 4)$ - O - β -		
	digitalopyranosyl- $(1\rightarrow 4)$ - β -		
	cymaropyranoside] (195)		
	Periplogenin 3- O -(4- O - β -		
	glucopyranosyl- β - digitalopyranoside)		
	(196)		
	Ouabaïne (G-strophantin) (139)	Strophantus	Watt et al
	Cymarine (147)	oratus	1962
	Sarmantocymarina (107)	s komba	1702
	Darinlo cymaring (197)	S. Kombe	
	V strenk anting (190)	S. hispiaus	
	K-strophantine (199)	S. sarmentosus	
		S. eminii	
	Boivinide A-F (200-204)	S. boivinii	Karkare <i>et al.</i> ,
	Boivinide C (205)		2007
	Tháváting B (206)	Thoyatic	Lang at al
	$\begin{array}{c} \text{Incvenie D} (200) \\ \text{Carbárina} (1/8) \end{array}$	neriifolia	1961: Some et
	$\begin{array}{c} \text{Certurner} (140) \\ \text{Derryworide} (207) \end{array}$	пенијона	1704, SUIIC <i>el</i>
	$\frac{1}{200}$		<i>al.</i> , 1981
	I nevetine A (208)		

		I	7
Apocynaceae	Neriifoside (209)	T. yecotli	Siddiqui <i>et al.</i> ,
	Peruvoside (207)		1992
	Urechitoxine (210)	Urechitis	Watt <i>et al.</i> ,
		suberecta	1962
		A 7 ·	XX7 1
	Uzarigenine (211)	Asclepias	Warashina et
	Xysmalogenine (212)	curassavica	<i>al.</i> , 2008; L1 <i>et</i>
	Gofruside (214)		<i>al.</i> , 2000
	$3-O-\beta-6'-O-(4''-hydroxy-E-cinnamoyl)-$		
	desglucouzarine (215)		
	6'- <i>O</i> -sinapinoyl-desglucouzarine (216)		
	Calactine (217)		
	16α -acetoxycalactine (218)		
	Calotropine (219)		
	16α -acetoxycalotropine (220)		
	Asclepine (221)		
	16α -hydroxyasclepine (222)		
	16α -acetoxyasclepine (223)		
	Uscharine (224)		
	16α -hydroxyuscharine (225)		
	Uscharidine (226)		
	19-nor-16 α -acetoxy-10 β -		
	nydroxyasciepine (227) 129, 149, dibydroyy 29, 10, opoyy 29		
	12p, $14p$ -amydroxy- $5p$, 19 -epoxy- $5a$ - mothowy $5a$ cord $20(22)$ apolide (228)		
	$12\beta_{\text{-bydroxycalotropine}}(229)$		
	12β -hydroxycarodlaucigenine (230)		
	Calotropagenine (231)		
	Desglucouzarine (232)		
	6'- <i>O</i> -ferulovl-desglucouzarine (233)		
	Calotropine (219)		
	Uscharidine (226)		
	Asclepine (221)		
	Desglucosyrioside= Eriocarpine (234)	A. eriocarpa	Seiber et al.,
	Labriformine (235)		1978
	Frugoside (236)	A.incarnate	Warashina <i>et</i>
	Gofruside (214)		al., 2000
	Labriformine (235)	A. labriformis	Fenwick <i>et al</i>
	Eriocarpine =Desglucosvrioside (234)	A. syriaca	1989
	Syrioside (237)		
	Syriobioside (238)		

			•
Apocynaceae	Gomphoside (239) Afroside (240)	A. tuberosa	Watson <i>et al.</i> , 1956; Coombe <i>et al.</i> , 1964
	3'spiro-linked thiazolidinone (241) S-oxythiazolidinone (242) 3'Ω β D Glucopyranosyl delta 5	A. fruticosa	Fenwick <i>et al.</i> , 1989
	calotropine (243) Cryptograndoside A-B (244-245)	Cryptostegia grandiflora	Abe <i>et al.</i> , 2000
	Oxyline (246)	Oxystelma esculentum	Srivastava <i>et</i> <i>al.</i> , 1991
	3' <i>O</i> -β-D-glucopyranosylcalactin (247) 12-dehydroxyghalakinoside (248) 6''dehydroxyghalakinoside (249) Ghalakinoside (250) Calactine (217) Pergulrotoside (251) Uscharidine (226) 12β-hydroxycalotropine (229) 6'-hydroxycalactine (252)	Pergularia tomentosa	Hifnawy <i>et al.</i> , 1990; Hamed <i>et al.</i> , 2006; Babaamer <i>et</i> <i>al.</i> , 2014
	Periplocine (253)	Periploca graeca	Spera <i>et al</i> ., 2007
	Strophantidine (254) Strophantidol (255) Periforosides D-H (256-260) Periforgenine C (261)	P. nigrescens P. forrestii	Oliver-Bever <i>et al.</i> , 2009; Li <i>et al.</i> , 2012b
	Uzarine (262) Xysmalorine (263) Urezine (264) Uzaroside (265) Ascleposide (266)	Xysmalobium undulatum	Singh <i>et al.</i> , 2011
	Uzarine (262) Uzarigenine (211) Gomphotine (267) Desglucouzarine (232) Gomphoside (239) Afroside (240)	Gomphocarpus fruticosus	Chernobai <i>et al.</i> , 1971; Mutlib <i>et al.</i> , 1987

Apocynaceae	15 β -hydroxycalotropine (268) 15 β -hydroxy-7,8-dehydrocalotropine	G. sinaicus	El-Askary <i>et</i> <i>al.</i> , 1993
	(269) Calotropine (219)		Abdel-Azim <i>et</i>
	5,6-dehydrocalotropine (270) 3'eni-afroside (271)		al., 1998
	14β ,17 α -epoxy-5,6- dehydrocalotropine		
	(272) 15 β -hydroxycalotropine (268)		
	15 β -hydroxy-5,6 dehydrocalotropine (273)		
	Coroglaucigenin-3-(6-deoxy- β -D-		
	5,6-dehydrocalotropagenine (274)		
	16α-hydroxy-5,6-dehydrocalotropine (276)		
	Calotropine (219)	Calotropis	Van
	Calactine (217) Uscharine (224)	procera	Quaquebeke <i>et al.</i> , 2005;
	2"Oxovoruscharine (277)		Singh et al.,
	Proceraside A (278)		2011; Ibrahim <i>et al.</i> , 2014
	Asclepine (221)	-	Singh <i>et al.</i> , 1969; 1972
	19-Nor- et 18,20-epoxy-cardenolides (279-280)	C. gigantea	Lhinhatrakool
	Uscharine (224)		Jacinto <i>et al.</i> , 2011
			2011
Asparagaceae	Fugaxine (281)	Urginea fugax	Krenn <i>et al.</i> , 2004
	Ornithogaline (282)	Ornithogalum	Komissarenko
		magnum	<i>et al.</i> , 1971
	Ornithosaponine A-D (283-286)	O. thyrsoide	Kuroda <i>et al.</i> , 2006
	Convalloside (287)	Convalaria	Schenk et al.,
	Convallatoxine (288)	majalis	1980; Kopp et
	Strophanthidin-3- <i>O</i> -6'deoxy-β-D-		al., 1982
	allosido- α -L-rhamnoside (289) Strophonthidin 2 O (Videoux 9 D		
	allosido-q-L-arabinoside (200)		
	Srophanthidin-3- <i>O</i> -α-L-rhamnosido-2'		
	β -D-glucoside (291)		

Asparagaceae	Cannogenol-3- O -6''deoxy- β -D-allosido- β -D-glucoside (292) Cannogenol-3- O -6''deoxy- β -D- allosido- α -L-rhamnoside (293) 19-hydroxy-sarmentogenin-3- O - α -L- rhamnoside (294) Sarmentogenin-3- O -6'deoxy- β -D- allosido- α -L-rhamnoside (295) Sarmentogenin-3- O -6'deoxy- β -D- guloside (296) Cannogenol-3- O - α -L-rhamnoside (297) Cannogenol-3- O - β -D-allomethyloside (298)		
	Tupichinolide (299)	Tupistra chinensis	Pan <i>et al.</i> , 2012
Asteraceae	3- <i>O</i> - β -D-fucopyranosylstrophanthidine (300) 3- <i>O</i> - β -D- quinovopyranosylperiplogenine (301) 3- <i>O</i> - β -D-glucopyranosyl-(1 \rightarrow 4)- α -L- rhamnopyranosylcannogenine (302)	Saussurea stella	Wang <i>et al.</i> , 2007
Brassicaceae (Crucifères)	Cheiroside A (303) Cheirotoxine (304) Erysimoside (305) Glucoerysimoside (306) Erycanoside (307)	Erysimum cheiri E. canescens	Singh <i>et al.</i> , 2011; Nover et al., 1967
	Cheiranthosides I-VII (308-314) Erysimoside (305) Cheiranthosides VIII-X (315-317)	Erysimum cheiranthoides	Huang <i>et al.</i> , 1993; Lei <i>et</i> <i>al.</i> , 1996; 2000
	Strophanthidine (318) Uzarigenine (211)	E. inconspicuum	Piatak <i>et al.</i> , 1985
	Erysimine (319) Erysimoside (305)	E. altaicum E. marschallianum	Maslennikova et al., 1967
	Desglucocheirotoxine (320) Canesceine (321)	E. nuratensae	
	Gypsobioside (322) Cuspidoside (323)	Syrenia siliculosa	
	Corchoroside A (324) Helveticoside (325) Cellobiosyldigigulomethyloside (326) Erysimoside (305)	E. diffusum E. violascens E. cuspidatum	Moon <i>et al.</i> , 2010
Brassicaceae	Cellobiosyldigigulomethyloside (326)	Draba nemorosa Cheiranthus allioni	Makarevich <i>et</i> <i>al.</i> , 1996
---------------	---	---	---
Celastraceae	Euonymoside A (327)	Euonymus hamiltonianus	Baek <i>et al.</i> , 1994
	Acovenosigenine A 3- <i>O</i> -α-L- ramnopyranoside (328) Euonymoside A (327) Euonymusoside A (329)	E. alatus	Kitanaka <i>et al.,</i> 1996
	Digitoxigeninglucoside, Quinovoside, Xyloside (330-332) Elaeodendrosides T-U (333-334) Elaeodendrosides A-C (335-337) F-G (338-339), K-L, P-S, (340-345)	Elaeodendron sp.	Cao <i>et al.</i> , 2007; Butler <i>et al.</i> , 2014; Osorio <i>et al.</i> , 2014
	Securigenin-3- β -O-6-deoxyguloside (346) 19-hydroxy-sarmentogenin-3- β -O-6- deoxyguloside (347) Sarmentogenin-3- β -O-[α -allosyl- (1 \rightarrow 4)- β -6-deoxy alloside] (348) Securigenin-3- β -O-[α -allosyl-(1 \rightarrow 4)- β - 6-deoxyalloside] (349)	Crossopetalum gaumeri	Ankli <i>et al.</i> , 2000
Combretaceae	14,16 dianhydrogitoxigenin-3- β -D- xylopyranosyl (1 \rightarrow 2)- O - β -D- galactopyranoside (350) 16,17-dihydroneridienone 3- O - β -D- glucopyranosyl-(1 \rightarrow 6)- O - β -D- galactopyranoside (351)	Terminalia arjuna	Yadava <i>et al.</i> , 2000; 2001
	Cannogenol 3- O - β -D-galactopyranosyl- (1 \rightarrow 4)- O - α -L-rhamnopyranoside (352)	Terminalia bellerica	Yadava <i>et al.</i> , 2001
Euphorbiaceae	Coroglaucigenine (213) Coroglaucigenin-α-L-rhamnoside-α-L- rhamnoside (353) Corotoxigenine (354) Corotoxigenin-L-rhamnoside (355) Coroglaucigenin-L-rhamnoside (356)	Mallotus philippinensis	Roberts <i>et al.</i> , 1963; Gangwar <i>et al.</i> , 2014
	Trewianine (357) Trewioside (358)	Trewia nudiflora	Shilpi <i>et al.</i> , 2010
Fabaceae	Corotoxigenine (354) Frugoside (236)	<i>Coronilla</i> sp.	Komissarenko <i>et al.</i> , 1969

Fabaceae	Glucocorotoxigenine (359) Coronillobioside (360) Hyrcanoside (361) Scorpioside (362) Uzarigenine-3- <i>O</i> - β -D-xylopyranosyl (1 \rightarrow 2)- α -L-rhamnopyranoside (363)	Tamarindus indica	Yadava <i>et al.</i> , 1999
Moraceae	Antiarine α et β (364 - 365) Toxicarioside M (366) Toxicarioside H (367) Toxicarioside F-G (368-369) Antiarosides J-X (370-384) Antiarosides A-I (385-393) Antiarotoxinin A (394) Antiaritoxiosides A-G (395-401) Antiarotoxinin B (402) Periplogulcoside (403) Convallatoxine (288) Convallatoxine (288) Convalloside (287) $3-O-\beta$ -D-xylopyranosyl strophanthidine (405) Glucostrosphanthidine (406) Strophanthidine (318) Toxicarioside D (407) Toxicarioside J-L (408-410) Glucostrophalloside (411) Strophalloside (412)	A. toxicaria	Dai et al., 2009a; 2009b; Shi et al., 2010; 2014 ; Dong et al., 2011; Levrier et al., 2012; Liu et al., 2013; Wu et al., 2014 Jiang et al., 2008 Dong et al., 2011 Zhang et al., 2015
Ranunculaceae	Strophanthidin digitaloside (413) Strophanthidin 6-deoxyguloside (414)	Adonis vernalis	Wichtl <i>et al.</i> , 1977
	Adonidine (415) Cymarine (147) Strophanthidin-3- <i>O</i> - β -D-digitoxosido- α - L-cymarosido- β -glucoside (416) Strophanthidin-3- <i>O</i> - β -D-digitoxosido- β - D-digoxoside- β -D-diginosido- β -D- glucoside (417) 3β , 5α , 14β , 17β -tetrahydroxycard- 20,22-enolide (418)	A. aestivalis A. autumnalis A. flammea	Singh <i>et al.</i> , 2011; Kopp <i>et al.</i> , 1992; Kubo <i>et al.</i> , 2012

Scrophulariaceae	Digitoxine (419) Gitoxine (420) Gitaline (421) Digoxine (422) Glucodigifucoside (423) 3'O-Acetylglucoevatromonoside (424) Digitoxigenin 3 - O - β -D-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-glucopyranosyl- $(1 \rightarrow 4)$ - 3 - O - acetyl- β -D-digitoxopyranoside (425) Purpureaglycoside A (426) F-gitonine (427)	Digitalis purpurea	Fujino <i>et al.</i> , 2015
	F-gitonine (427) Digitonine (428) Lanatoside A-C (429-431)	D. lanata	Fenwick <i>et al.</i> , 1989
Solanaceae	17-epi-11 α-hydroxy-6, 7- dehydrostrophanthidin-3- O - β - boivinopyranoside (432) 6, 7-dehydrostrophanthidin-3- O - β - boivinopyranoside (433) 6,7- dehydrostrophanthidin-3- O - β - oleandropyranoside (434)	Nierembergia aristata	Gil <i>et al.</i> , 1995
Malvaceae	Cannogenol 3- <i>O</i> - β -D-glucopyranosyl- (1 \rightarrow 4)- <i>O</i> - β -D-boivinopyranoside (435) Periplogenin 3- <i>O</i> - β -D-glucopyranosyl- (1 \rightarrow 4)- <i>O</i> - β -D-digitoxopyranoside (436) Digitoxigenin 3- <i>O</i> - β -D-glucopyranosyl- (1 \rightarrow 6)- <i>O</i> - β -D-glucopyranosyl-(1 \rightarrow 4)- <i>O</i> - β -D-digitoxopyranoside (437)	C. olitorius	Nakamura <i>et</i> al., 1998
	Canarigenin 3- O - β -D-boivinoside (438) Corchoroside B (439)	C. trilocularis	Rao <i>et al.</i> , 1975
	Reevesioside A-I (440-448) Epi-reevesiosides F-G (449-450)	Reevesia formosana	Chang <i>et al.</i> , 2013; Leu <i>et al.</i> , 2014

	$\begin{array}{c} R_{2} \\ R_{2} \\ R_{3}O \\ R_{4} \end{array} \xrightarrow{R_{7}} \\ R_{6} \\ R_{6} \\ R_{7} \\ R_{7} \\ R_{9} \\ R_{9} \\ R_{9} \\ R_{8} \end{array}$										
	R 1	R 2	R 3	R 4	R 5	R ₆	R 7	R 8	R 9		
139	OH	Η	α-L- Rha	OH	CH ₂ OH	OH	Н	Н	Н		
1/0	OH	Н	6-deoxy-3- <i>O</i> -methyl-α-L-	Н	CH ₃	Н	Н	Н	Н		
140	040	п	f daoyy 2 O mathyl g I	п	СЦ	ц	п	ц	Ц		
141	OAC	п	Tal	п	CH3	п	П	п	п		
142	OH	Н	β -D-Glc-(1 \rightarrow 6)-Glc-(1 \rightarrow 4) 6-deoxy-3- <i>O</i> -methyl- α -L- Tal	Н	CH ₃	Н	Н	Н	Н		
143	Н	Н	β -D-Cym-(1 \rightarrow 4)- β -D-Glc- (1 \rightarrow 6)- β -D-Glc	Η	CH ₃	Н	Н	Н	Н		
144	Н	Н	β-D-Cym	Н	CH ₃	Н	Н	Н	Н		
145	Н	Н	β-D-Cym	Н	CH ₃	Н	Н	Н	OAc		
146	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Cym	Н	CH ₃	Н	Н	Н	OAc		
147	Н	Η	β -D-Cym	OH	СНО	Η	Н	Η	Н		
148	Н	Η	2-O-Ac-α-L-Thv	Η	CH ₃	Н	Н	Η	Η		
152	Н	Η	a-L-Thv	Н	CH ₃	Н	Н	Н	Н		
158	Н	Н	Me- <i>a</i> -L-Rha	Н	CH ₃	Н	Н	Н	Н		
161	Н	Н	α-L-Ole	Н	CH ₃	Н	Н	Н	OAc		
163	Н	Н	β-D-Dgn	OH	CH ₃	Н	Н	Н	Н		
165	Н	Н	6-deoxy-3- <i>O</i> -Me-β-D-Gal	Н	CH ₃	Н	Н	OAc	Н		
166	Н	Н	β -D-Dgl	Н	CH ₃	Н	Н	Н	Н		
169	Н	Η	β-D-Dgn	Н	CH ₃	Н	Н	Н	Н		
172	Н	Η	β -D-Sar	Н	CH ₃	Н	Н	Н	Н		
176	H	Н	ОН	H	CH ₃	H	Н	H	OAc		
177	Н	Н	OH	OH	CH ₃	Н	Н	H	H		
178	Н	Н	OH	OH	CH ₃	H	Н	H	OAc		
179	Н	Н	β -D-Dgx	OH	CH ₃	Н	Н	H	H		
180	Н	Н	β -D-Glc	OH	CH ₃	Н	Н	H	H		
181	H	H	β -D-glc-(1 \rightarrow 4)- O - β -D-Dgx	OH	CH ₃	H	H	H	H		
182	OH	H	β -D-Glc	H	CH ₃	H	H	H	H		
183	Н	Н	β -Glc-(1 \rightarrow 4)-2- <i>O</i> -Ac-3- <i>O</i> - Me- β -D-Fuc	ОН	CH ₃	Н	Н	Н	Н		
184	Н	Н	β -D-Glc-(1 \rightarrow 4)-2- <i>O</i> -Ac- β - D-Dgx	Н	CH ₃	Н	Н	Н	Н		
185	H	Н	β -D-Glc-(1 \rightarrow 4)- <i>O</i> - β -D-Glc- (1 \rightarrow 4)- β -D-Cym	OH	CH ₃	Н	Н	H	Н		

196	чОЦ	п	$\beta p Cl_2 (1, 2) \beta p Dql$	ц	CH.	Ц	Ц	п	Ц
100	OH	и П	$\beta \rightarrow Glc (1 \rightarrow 2) - \beta \rightarrow Dgg$	и П		 Ц	и П	 Ц	비 비
107	UП Ц	и П	$\beta - D - O R - (1 \rightarrow 4) - \beta - D - D g x$			и П	и П	и П	
100	и П	и П	$\beta \rightarrow D - D g \chi$	и		и П	и П	и П	UAC LI
107	11	11	p -D-Oic- $(1 \rightarrow 0)$ - O - p -D-Oic- $(1 \rightarrow 4)$ - 2 - O - A c- β -D-Dgl	11	CII3	11	11	11	11
100	ОЦ	и	(1 /4)-2-0-AC-p-D-Dgi	ц	СЦ	Ц	ц	п	040
190		п п		П Ц		11 U	п П	п п	UAC
192	и	11 11	ρ -D-Dgx			11 U	 Ц	 Ц	
193	п и	п u	β D Cla (1) (1) (1) (1) (1)	п		 	 	 	
194	п	п	p -D-Gic- $(1 \rightarrow 0)$ - p -D-Gic- $(1 \rightarrow 4)$ 2 Q A a β D Day	п	СПЗ	п	п	п	п
105	ц	ц	$\beta \rightarrow Glc (1 \rightarrow 6) \cap \beta Glc$	Ц	СНа	ц	ц	Ц	ч
195	11	11	$(1 \rightarrow 4) - O_{-}B_{-}Dgl_{-}(1 \rightarrow 4) - B_{-}$	11		11	11	11	11
			$(1, 4) \circ \rho D g (1, 4) \rho$						
196	н	н	$\beta_{-}D_{-}Glc_{-}(1 \rightarrow 4)_{-}\beta_{-}D_{-}Dgl$	ОН	CH_2	н	н	н	н
197	H	H	$\beta D Ole (1) \beta D Dgi$ $\beta D - Sar$	Н	CH ₂	OH	Н	H	H
198	н	Н	β D Sat	OH	CH ₂	Н	н	H	н
199	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Sar	OH	СНО	Н	Н	H	Н
206	H	Н	a -D-Glc- $(1 \rightarrow 6)$ - β -D-Glc-	H	CH ₂	H	Н	H	H
200			$(1 \rightarrow 4) - \alpha - L - Thy$		CII				
207	Н	Н	α -L-Thy	Н	СНО	Н	Н	Н	Н
208	Н	Н	α -D-Glc-(1 \rightarrow 6)- β -D-Glc-	Н	СНО	Н	Н	Н	Н
200			$(1 \rightarrow 4) - \alpha - L - Thy$						
210	Н	Н	β -D-Glc-(1 \rightarrow 4)- α -L-Ole	Н	CH ₃	Н	Н	Н	OAc
244	Н	Н	β-D-Sar	Н	CH ₃	Н	Н	Н	OAc
245	Н	Н	β -D-Ole- β -D-Glc-Sar	Н	CH ₃	Н	Н	Н	OAc
253	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Cym	OH	CH ₃	Н	Н	Н	Н
254	Н	Н	OH	OH	СНО	Н	Н	Н	Н
255	Н	Н	ОН	OH	CH ₂ OH	Н	Н	Н	Н
287	Н	Н	β -D-Glc-(1 \rightarrow 4)- α -L-Rha	OH	СНО	Н	Н	Н	Н
288	Н	Η	α-L-Rha	OH	СНО	Н	Н	Н	Н
289	Н	Η	6'-deoxy-β-D-all-α-L-Rha	OH	СНО	Н	Н	Н	Н
290	Н	Η	6'-deoxy-β-D-all-α-L-Ara	OH	СНО	Н	Н	Н	Н
291	Н	Η	α-L-Rha-2'-β-D-Glc	OH	СНО	Н	Н	Η	Η
292	Н	Н	O -6'-deoxy- β -D-all- β -D-Glc	Н	CH ₂ OH	Н	Н	Н	Н
293	Н	Н	6'-deoxy-β-D-all-α-L-Rha	Н	CH ₂ OH	Η	Н	Н	Η
294	Η	Η	α-L-Rha	Н	OH	OH	Н	Η	Η
295	Η	Η	6'-deoxy-β-D-all-α-L-Rha	Н	CH ₃	Η	Н	Η	Н
296	Н	Η	6'-deoxy-β-D-Gu	Н	CH ₃	Η	Н	Н	Η
297	Η	Η	α-L-Rha	Н	CH ₂ OH	Η	Н	Н	Η
298	Η	Η	β -D-allme	Н	CH ₂ OH	Η	Н	Η	Н
299	Н	Η	β -L-Rha	Η	CH ₃	Η	Н	Η	OAc
300	Н	Η	β -D-Fuc	OH	СНО	Н	Н	Η	Η
301	Н	Η	β -D-qui	OH	CH ₃	Н	Н	Η	Η
302	Η	Η	β -D-Glc-(1 \rightarrow 4)- α -L-Rha	H	СНО	H	Η	Η	Η
304	Н	Н	β -D-Glc- $(1 \rightarrow \overline{4})\beta$ -D-Gume	OH	СНО	Н	Н	Н	Η

,,									
305	Η	Η	β -D-Glc- (1 \rightarrow 4)- β -D-Dgx	OH	CHO	Н	Н	Н	Н
306	Η	Η	β -D-Glc-(1 \rightarrow 4)- β -D-Glc- β -	OH	CHO	Н	Н	Н	Н
			D-Dgx						
307	Η	Η	β -D-Glc-(1 \rightarrow 4)-2-deoxy- β -	OH	СНО	Н	Н	Н	Н
			D-Glc						
308	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Boi	OH	СНО	Н	Н	Н	OH
309	Н	Н	α -L-Rha-(1 \rightarrow 4)- β -Dgx	OH	СНО	Н	Н	Н	OH
310	Н	Н	α -L-Rha-(1 \rightarrow 4)- β -D-Dgx	OH	СНО	Н	Н	Н	Н
311	Н	Н	α -L-rhm-(1 \rightarrow 4)-3-O-Ac- β -	OH	СНО	Н	Н	Н	Н
			D-dgx						
312	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -L-rhm-	OH	СНО	Н	Н	Н	Н
_			$(1\rightarrow 4)$ -3- <i>O</i> -Ac- β -D-dgx						
313	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Fuc	OH	CH ₃	Н	Н	Н	Н
314	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-	OH	CH ₃	Н	Н	Н	Н
			antiarosyl		5				
315	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-	OH	СНО	Н	Н	Н	Н
			antiarosyl						
316	Н	Η	β -D-Glc-(1 \rightarrow 4)- β -D-Boi	OH	COOH	Н	Н	Н	Н
317	Η	Η	α -L-Rha-(1 \rightarrow 4)- β -D-Dgx	OH	COOH	Н	Н	Н	Н
318	Η	Η	ОН	OH	СНО	Н	Н	Н	Н
319	Η	Η	β-D-Dgx	OH	СНО	Н	Н	Н	Н
320	Н	Н	6-deoxy-β-D-Glc	OH	СНО	Н	Н	Н	Н
321	Н	Н	OH	OH	СНО	OH	Н	Н	Н
322	Н	Н	β -D-Xyl-(1 \rightarrow 4)- β -D-Dgx	OH	СНО	Н	Н	Н	OH
323	Н	Н	α-L-Rha	OH	CH ₃	OH	Н	Н	Н
324	Н	Н	β-D-Boi	OH	СНО	Н	Н	Н	Н
325	Н	Н	β-D-Dgx	OH	СНО	Н	Н	Н	Н
326	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Glc-	Н	CH ₃	Н		Н	Н
			$(1\rightarrow 4)$ -6-deoxy- β -D-Glc						
327	OH	Н	β -D-Glc-(1 \rightarrow 2) α -L-Rha	Н	CH ₃	Н	Н	Н	Н
328	OH	Н	α-L-Rha	Η	CH ₃	Н	Н	Η	Н
329	OH	Η	β -D-Glc-(1 \rightarrow 6)- β -D-Glc-	Н	CH ₃	Н	Н	Н	Н
			(1→4)- <i>α</i> -L-Rhm						
330	Η	Н	β -D-Glc	Н	CH ₃	Н	Н	Н	Н
331	Η	Н	β -D-qui	Н	CH ₃	Н	Н	Н	Н
332	Η	Н	β -D-Xyl	Н	CH ₃	Н	Н	Н	Н
347	Η	Н	β -D-6-deoxy-Gu	Н	OH	OH	Н	Н	Н
348	Н	Н	β -D- All-(1 \rightarrow 4)- β -6-deoxy-	Н	CH ₃	OH	Н	Н	Н
			All						
352	Н	Η	β -D-Gal-(1 \rightarrow 4)- α -L-Rha	Η	CH ₂ OH	Н	Н	Н	Н
362	Н	Η	β-D-Glc	OH	СНО	Н	Н	Н	Н
364	Η	Н	6-Deoxy-β-D-Gu	OH	СНО	Н	OH	Н	Н
365	Η	Н	α-L-Rha	OH	СНО	Н	OH	Н	Н
366	Η	Н	α-L-Rha	OH	OH	Н	Н	Н	Н
367	Н	Н	β-D-Jav	OH	OH	Н	OH	Н	Н

370	Η	Η	β -4,6-dideoxy- β -D-All	OH	СНО	Η	βOH	Η	Η
371	Η	Η	α-L-Rha	OH	СНО	Η	βOH	Η	Η
372	Η	Η	α -O-6-deoxy- β -D-All	OH	СНО	Η	βOH	Η	Η
373	Н	Η	α-O-6-deoxy-β-D-Gu	OH	СНО	Η	βOH	Н	Η
374	Н	Н	α-L-Rha	OH	СНО	Η	αOH	Н	Η
375	Н	Н	6-deoxy-β-D-Gu	Н	СНО	Η	βOH	Н	Н
376	Η	Η	6-deoxy-β-D-All	Η	СНО	Η	βOH	Η	Η
377	Η	Η	α-L-Rha	Η	СНО	Η	βOH	Η	Η
378	Η	Η	<i>β</i> -OH	OH	COOGlc	Η	Н	Η	Η
379	Н	Н	6-deoxy-β-D-All	OH	COOH	Η	βOH	Н	Н
383	Н	Η	6-deoxy-β-D-Gu	OH	СНО	Η	Н	Н	Н
384	Н	Η	6-deoxy-β-D-Gu	Н	CH ₂ OH	Η	βOH	Н	Н
385	Н	Η	β -D-antiarosyl	OH	CH ₃	Η	Н	Н	Н
386	Н	Н	β -D-Glc-(1 \rightarrow 4)- α -L-Rha	Н	CH ₂ OH	Η	Н	Н	Н
387	Н	Н	α-O-α-L-Rha	OH	СНО	Н	Н	Н	Н
388	Н	Н	α -O- α -L-Rha-(4 \rightarrow 1)- β -D-	OH	СНО	Η	Н	Н	Н
280	и	п		и	COOH	п	и	и	п
309	п u	п		п 		 		п u	п
<u>390</u> 201	11 U	П П	a L Pho			 		11 U	п П
391	н Ц	н	β -D-antiarosyl	ОН	СООН	- 11 - Ц	ОН	н Ц	- 11 - Ц
392	и П	и П	ρ -D-antialosyi	ОН	ц	и П	И	и П	- 11 Ц
305	н Н	н	a-L-Rha	ОН	СООН	 Ц	н Н	н Н	н Н
306	H	Н	β-D-Rha	OH	OH	H H	H	H H	H
397	Н	Н	$\beta D R R R$	OH	OH	H	Н	H	H
398	Н	Н	a-L-Rha	OH	OH	H	OH	H	H
399	H	H	β -D-antiarosyl	OH	OH	H	OH	H	H
400	H	Н	α -L-Rha	H	H	H	H	H	H
401	H	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Glc	OH	CH ₃	H	H	H	H
404	Н	Н	α -L-Rha	OH	CH ₂ OH	Н	Н	Н	Н
405	Н	Н	β-D-Xvl	OH	СНО	H	H	Н	H
406	Н	Н	β-D-Glc	OH	СНО	Н	Н	Н	Н
407	Н	Н	6-deoxy- <i>O</i> -Me-β-D-Glc	OH	СНО	Н	Н	Н	Н
411	Н	Н	β -D-Glc-(1 \rightarrow 4)-6-deoxy- β -	OH	СНО	Н	Н	Н	Н
			D-All						
412	Н	Н	6-deoxy-β-D-All	OH	СНО	Н	Н	Н	Н
413	Н	Н	β-D-Dgl	OH	СНО	Н	Н	Н	Н
414	Н	Н	β -D-6-deoxy-Gu	OH	СНО	Н	Н	Н	Н
416	Н	Н	β -D-Dgx- α -L-Cym- β -D-Glc	OH	СНО	Η	Н	Н	Н
417	Н	Н	β -D-Dgx- β -D-Dgx- β -D-Dgn-	OH	СНО	Η	Н	Н	Н
			β -D-Glc						
419	Н	Н	β -D-Dgx -(1 \rightarrow 4)- β -D-Dgx-	Η	CH ₃	Η	Н	Н	Н
	_		β -D-Dgx						
420	Н	Н	β -D-Dgx-(1 \rightarrow 4)- β -D-Dgx- β -	Н	CH ₃	Η	H	Н	OH
			D-Dgx						

421	Н	Н	β -D-Dgx-(1 \rightarrow 4)- β -D-Dgx	Н	CH ₃	Н	Н	Н	OCO
									Η
422	Н	Η	β -D-Dgx-(1 \rightarrow 4)- β -D-Dgx- β -	Н	CH ₃	Н	OH	Η	Η
			D-Dgx						
423	H	H	β -D-Glc-(1 \rightarrow 4)- β -D-Fuc	H	CH ₃	H	H	H	H
424	Н	Н	β -D-Glc-(1 \rightarrow 4)- 3' O-Ac β -	Н	CH ₃	Н	Н	Н	H
405	TT	TT	D-Dgx	TT	CII			TT	TT
425	Н	Н	β -D-GIC-(1 \rightarrow 4)- β -D-GIC- (1 \rightarrow 4)-2-Q-A- β -D-GIC-	Н	CH ₃	Н	Н	Н	Н
126	и	ц	$(1 \rightarrow 4) - 3 - 0 - Ac - p - D - Dgx$	п	CH.	и	и	и	и
420	п	п	p -D-OIC- $(1 \rightarrow 4)$ - p -D-Dgx- $(1 \rightarrow 4)$ β D Dgy $(1 \rightarrow 4)$ β	п	СП3	п	п	п	п
			$(1 \rightarrow +) - p - D - D g x - (1 \rightarrow +) - p - D - D g x$						
429	н	н	β -D- β	н	CH ₂	н	н	н	н
722	11		$\rho B \operatorname{Gle}(1 \to 1) \circ \rho B [5]$ $\rho \operatorname{Ac-Doxl}(1 \to 4) \rho B - \rho$		CIIJ				
			$Dgx-(1\rightarrow 4)-\beta$ -D-Dgx						
430	Н	Н	β -D-Glc-(1 \rightarrow 4)- β -D-3-O-	Н	CH ₃	Н	Н	Н	OH
			Ac-Dgx- $(1 \rightarrow 4)$ -Dgx-		-				
			$(1 \rightarrow 4) - \beta - D - (1 \rightarrow 4) - Dgx$						
431	Н	Η	β -D-Glc-(1 \rightarrow 4)- β -D-3-O-	Н	CH ₃	Н	OH	Н	Н
			Ac-Dgx- $(1\rightarrow 4)$ -Dgx-						
			$(1 \rightarrow 4)$ - β -D- $(1 \rightarrow 4)$ -Dgx						
435	Η	Η	β -D-Glc-(1 \rightarrow 4)- β -D-Boi	Н	CH ₂ OH	Н	Н	Н	Н
436	Н	Н	β -D-Glc-(1 \rightarrow 4)- O - β -D-Dgx	OH	CH ₃	Н	Н	Н	Н
437	Н	Η	β -D-Glc-(1 \rightarrow 6)- β -D-Glc-	Н	CH ₃	Н	Н	Н	H
			$(1 \rightarrow 4) - \beta - D - Dgx$						
440	Η	Н		OH	СНО	Н	Н	Н	H
441	н	н		ОН	СНО	н	н	н	OAc
441	11	11		011	CIIO	11	11	11	One
			o v						
442	Н	Η	4,6-dideoxy-2- <i>O</i> -Me-β-D-	OH	СНО	Н	Н	Н	Н
			All						
443	Н	Η	4,6-dideoxy-2- <i>O</i> -Me-β-D-	OH	COOH	Н	Н	Η	Η
			All						
444	Н	Η	4,6-dideoxy-2- <i>O</i> -Me-β-D-	OH	OH	Н	Н	Н	H
			All						
445	H	H	6-deoxy-2- <i>O</i> -Me-β-D-Glc	H	CH ₃	H	H	H	H
449	Н	H	6-deoxy- <i>O</i> -Me-β-D-All	H	CH ₃	Н	H	H	H

		$\begin{array}{c} R_{4}u_{m_{n}}\\ R_{1}u_{m_{n}}\\ R_{2}O\\ H\end{array}$				
	R 1	R 2	R 3	R 4	R 5	R 6
170	Η	β -D-Dgn	CH ₃	Н	Н	Н
171	Η	β -D-Dgn	CH ₃	Н	Н	OH
200	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Dgl	СНО	Н	Н	Н
201	Η	β -D-Glc-(1 \rightarrow 4)- β -D-Sar	СНО	Н	Н	Н
202	Н	β-D-Glc-(1→4)-β-D-Boi	СНО	Н	Н	Н
203	Н	β -D-Glc-(1 \rightarrow 4)- β -D-Boi	СООН	Н	Н	Н
204	Н	β -D-Glc-(1 \rightarrow 4)-2-O-Ac- β -D-Dgl	СНО	Н	Н	Н
209	Н	a-L-Aco	CH ₃	Н	Н	Н
211	Н	ОН	CH ₃	Н	Н	Н
213	Н	ОН	CH ₂ OH	Н	Н	Н
214	Н	β -D-Allme	СНО	Н	Н	Н
215	Н	6'-O-(4"-hydroxy-E-cinnamoyl)-β-D- Glc	CH ₃	Н	Н	Н
216	н	β -D-Glc-6'- Ω -Sinapinovl	CH ₂	Н	н	н
210	H	OH	СНОН	H	OH	Н
230	OH	ОН		H	Н	H
232	H	β-D-Glc	CH ₂	H	Н	H
232	H	6'- <i>O</i> -femloyl-Glc	CH ₃	H	H	H
236	H	<i>B</i> -D-Allme	CH ₂ OH	H	H	H
262	H	β -D-Glc (1 \rightarrow 6)- β -D-Glc	CH ₃	H	H	H
264	Н	β -D-Glc (1 \rightarrow 6)- β -D-Glc	CH ₃	Н	Н	H
265	Н	β -D-Glc- $(1 \rightarrow 2)$ - β -D Glc- $(1 \rightarrow 2)$ - β -D-Glc	CH ₃	Н	Н	Н
266	Н	<i>B</i> -D-Allme	CH ₃	Н	Н	Н
274	H	$\beta \beta \beta$ finite 6-deoxy- β -D-All	CH ₂ OAc	Н	H	H
278	Н	6'-deoxy-2'- <i>Q</i> -Ac- <i>β</i> -D-All	СНО	Н	Н	Н
303	H	β -D-Glc-(1 \rightarrow 4)-Fuc	CH ₃	Н	Н	Н
353	Н	α-L-Rha-α-L-Rha	CH ₂ OH	Н	Н	Н
354	Н	ОН	СНО	Н	Н	Н
355	Н	α-L-Rha	СНО	Н	Н	Н
356	Н	α-L-Rha	CH ₂ OH	Н	Н	Н
357	Н	α-L-Rha	CH ₂ OH	OH	Н	Н
358	Н	β -D-Glc-(1 \rightarrow 4)- α -L-Rha	Н	CH ₂ OH	OH	Н
359	Н	β -D-Glc	СНО	Н	Н	Н

360	Н	β-D-0	Glc(1→4)-β-D-G	lc	СНО	Н	Η	Н	
363	H	β-D-Σ	$Xyl(1 \rightarrow 2)$	$2)-\alpha-L-R$	ha	CH ₃	Н	H	Н	
$R_{6} \xrightarrow{R_{5}} OH \xrightarrow{H} R_{1} \xrightarrow{H} OH \xrightarrow{R_{2}} H R_{$										
		\mathbf{R}_1	R ₂	R 3	R 4	R 5	R	6	R 7	
217		СНО	Н	Н	Н	β -OH	H	[CH ₃	
218		СНО	Н	Н	α-OAc	<i>β</i> -OH	Н	[CH ₃	
219		СНО	Н	Н	Н	α-OH	Н	[CH ₃	
220		СНО	Н	Н	α-OAc	α-OH	Н	[CH ₃	
221		СНО	Н	Н	Н	α-OAc	Н	[CH ₃	
222		СНО	Н	Н	OH	α-OAc	Н	[CH ₃	
223		СНО	Н	Н	OAc	α-OAc	Н	[CH ₃	
226		СНО	Н	Н	Н	=0	Н	[CH ₃	
227		ОН	Н	Н	α-OAc	α-OAc	Н	[CH ₃	
229		СНО	β -OH	Н	Н	α-ОН	Н	[CH ₃	
239		CH ₃	Н	Н	Н	<i>β</i> -OH	Н	[CH ₃	
240		CH ₃	Н	<i>β</i> -OH	Н	<i>β</i> -OH	Н	[CH ₃	
247		СНО	Н	Н	Н	β-D-Glc	Н	[CH ₃	
248		CH ₂ OH	Н	Н	Н	<i>β</i> -OH	Н	[CH ₂ OH	
249		CH ₂ OH	OH	Н	Н	<i>β</i> -OH	Н	[CH ₃	
250		CH ₂ OH	OH	Н	Н	<i>β</i> -OH	Н	[CH ₂ OH	
251		СНО	OH	Н	Н	α-OH	Н	[CH ₂ OH	
252		СНО	Н	Н	Н	β -OH	Н	[CH ₂ OH	
268		СНО	Н	<i>β</i> -OH	Н	α-OH	Н	[CH ₃	
271		CH ₃	Η	<i>β</i> -OH	Н	α-OH	Н	[CH ₃	

R ₁ O	R ₂		R	s ₁₀	R ₃	R5 R4	OH C)
	R 1	R 2		R	1	R ₂	R 3	R 4	R 5
149	β -D-2'- O -Ac-Thv	Н	151	α-L-'	Thv	Н	CH ₃	Η	Η
150	β -D-Thv	Н	155	α-L-T	hv	Н	CH ₃	OH	Η
256	β -D-Glc-(1 \rightarrow 4)-	ОН	157	3`-M	e-α-	Н	CH ₃	Н	Η
	p-D-Dgx		380	α-L-R	Rha	OH	СНО	Н	OH
			381	6 deor	xyβ-	OH	СНО	Н	OH
		\rangle	382	6 deox D-7	xy β- Gu	ОН	СНО	Н	OH
R ₁ 0	ОС ОН		205	$\begin{array}{c c} \beta \text{-D-0} \\ (1 \rightarrow 4 \end{array}$	Glc-)-Sar	<i>α</i> -Η	CH ₃	Н	Η
<u>153</u> 154	$\frac{\mathbf{R}_{1}}{\beta - D - 2' - O - Ac - Thv}$ $\alpha - L - Thv$	R 2 Н Н		R ₁ R ₂ O		Н	OH R4		
				R ₁		R ₂		R ₃	R 4
			162	H		β-D-0	Gle	H	OH
	UH OH	>	164	H		β-D-L)gl	H	H
			1/3	П			1		П
RC			1/4 191	OH		<u>р-D-C</u> ОН	I	H	Н
159	R β-D-Me-6-deox	y-α-L-Rha	351	Н	β-D-	Glc-(1- Ga	→6)-β-D- l	Н	Н
160	β -D-Me-6-deox	xy-α-L-Glc							

$\begin{array}{c} OH \\ R_2O \\ O \\ R_3O \\ OR_3 \\ \end{array}$									
		R 1	-3	R 2	R ₃				
283		H		Н	H				
284	<i>β</i> -D	-Gume		Н	Н				
285	 β-D	-Gume		β-D-Xyl	Н				
286	β-D	-Gume		β-D-Xyl	Ac				
		0 //// H OH 0H		НО	но				
	P1	R ₅			0 				
222		<u>К2</u> Ц							
333	п Ц	П 	UAC LI		<u></u> 				
337	H	H	H	B-OCH ₂	н				
338	H	H	OAc	α -OCH ₂	H				
339	H	H	OAc	B-OCH ₂	H				
342	αΟΗ	H	=0	β-OCH ₃	H				
343	=0	OH	H	B-OCH ₂	H				
344	H	H	=0	α -OCH ₃	H				
345	H	OH	H	β-OCH ₃	H				

Figure 19 : Cardénolides isolés de différentes familles.

1.4. Intérêts thérapeutiques des cardénolides

Les cardénolides sont des médicaments utilisés surtout pour traiter les maladies cardiaques. La digoxine et la digitoxine sont des substances actives qui réduisent la fréquence cardiaque. Elles sont indiquées dans le traitement de l'insuffisance cardiaque (Ahmed, 2008; Bruneton, 1999). Ces cardénolides sont également diurétiques (Bruneton, 1999). En Russie et en Chine, depuis des années, l'oléandrine et l'oleandrigénine isolées de *Nerium oleander* L. sont utilisées dans le traitement des anomalies cardiaques (Hung, 1999). Les chercheurs ont également mené des études pharmacologiques pour démontrer l'activité cardiotonique du péruvoside sur le cœur humain défaillant (Bhatia *et al.*, 1970; Imai *et al.*, 1972). Le Tardigal, est parfois utilisé à la place de la digoxine car il a une demi-vie plus longue que la digoxine et est éliminé par le foie, contrairement à la digoxine qui pourrait donc être utilisé chez les patients ayant une mauvaise fonction rénale (Martindale, 1993).

Beaucoup de cardénolides ont montré des activités anti-cancereuse (Babula *et al.*, 2013; Li, 2012a; Montano *et al.*, 2014; Platz *et al.*, 2011), antibactérienne, insecticide (Dinan *et al.*, 2001), antiinflammatoire (Baggarwal *et al.*, 2006) et cytotoxique (Kawamura *et al.*, 1999; Mijatovic, 2006; Lefranc *et al.*, 2008; Barbosa *et al.*, 2008). De plus, les cardénolides jouent un rôle dans le traitement de diverses autres maladies telles que la fibrose kystique (Manna *et al.*, 2006) et l'anti-VIH (Mekhail *et al.*, 2006; Singh *et al.*, 2013).

CHAPITRE 3

Généralités sur la LC-MS/MS

1. Introduction bibliographique à la spectrométrie de masse

La découverte de la spectrométrie de masse est liée aux expériences de Eugen Goldstein en 1886. Il a réussi à obtenir des raies positives dans un tube à décharge électrique sous une pression faible. En 1897, Thomson mène des études sur les décharges électriques en milieu gazeux qui conduisent à la découverte de l'électron (Thomson, 1897). Thomson a construit le premier spectromètre de masse (spectrographe parabolique) pour mesurer le rapport m/z. Il a reçu en 1906 le prix Nobel de physique « en reconnaissance des grands mérites de ses recherches théoriques et expérimentales sur la conductivité de l'électricité des gaz » (<u>http://masse-spec.fr</u>). Sous la direction du Thomson en 1919, Aston conçoit un spectromètre de masse à re-focalisation en vitesse (Aston, 1919).

La spectrométrie de masse est une technique d'analyse permettant de déterminer les masses moléculaires des composés analysés ainsi que leur identification et leur quantification. Elle est basée sur la séparation et la détection d'ions formés dans une source d'ionisation (Menet, 2011).

1.1. Appareillages de la spectrométrie de masse

Un spectromètre de masse est constitué d'une source, d'un analyseur et d'un détecteur.

1.1.1. La source d'ionisation

Elle consiste à vaporiser et ioniser les molécules contenues dans l'échantillon. Plusieurs méthodes d'ionisation sont disponibles et leur choix d'utilisation dépend des propriétés physicochimiques des molécules à étudier et des résultats recherchés (Menet, 2011).

1.1.2. Les analyseurs

Ils séparent les ions formés dans la source en fonction de leur rapport m/z. Il existe également différents types d'analyseurs (Menet, 2011). Les critères qui différencient ces analyseurs sont : la résolution, l'exactitude de la mesure du rapport masse sur charge, la sensibilité, la gamme dynamique, la gamme de masse analysable et la vitesse d'analyse (Aebersold *et al.*, 2003).

1.1.3. Le détecteur

Il collecte les ions, quantifie leur intensité et amplifie le signal. Ensuite, un système informatique permet le traitement des données et produit un spectre de masse qui permet de

déterminer la masse moléculaire de la molécule analysée. Il existe plusieurs types de détecteurs, les plus utilisés sont les multiplicateurs d'électrons.

2. La chromatographie

Cette méthode a été inventée pour la première fois en 1901 par le botaniste russe Mikhail Tswett. Elle permet de séparer différents composés d'un mélange. Le principe est basé sur les différences d'affinité des composés du mélange avec la phase stationnaire et la phase mobile.

2.1. Les méthodes chromatographiques

Les différentes méthodes chromatographiques sont :

- La chromatographie en phase gazeuse CPG
- La chromatographie en phase liquide CPL (CC, CCM, papier)
- La chromatographie liquide à haute performance HPLC
- La chromatographie en phase supercritique CPS

3. La LC-MS/MS

La LC-MS/MS correspond à l'association de la chromatographie liquide (HPLC) et la spectrométrie de masse en tandem (MS/MS). Elle est couramment utilisée pour la séparation (LC) et l'identification (MS) de très nombreuses molécules chimiques dans des mélanges complexes avec un haut degré de spécificité et une grande précision quantitative (Chousterman *et al.*, 2010).

La spectrométrie de masse en tandem (MS/MS) est constituée de deux analyseurs. Le premier analyseur sépare les ions formés dans la source d'ionisation selon leurs rapports masse /charge (m/z). Ces ions sont ensuite fragmentés. Les fragments résultants sont analysés dans un deuxième analyseur. Enfin, les ions sont détectés par un multiplicateur d'électrons.

Deux types d'analyseurs sont généralement utilisés pour la quantification : le triple quadripôle ou le Q-trap à géométrie linéaire.

4. Identification des flavonoïdes par LC-MS/MS

4.1. Nomenclature

La figure 20 présente les fragments des aglycones des flavonoïdes obtenus par spectrométrie de masse selon la nomenclature proposée par Ma *et al* (1997; 2000). Les notations

^{i,j}A⁻ et ^{i,j}B⁻ sont utilisées pour désigner les ions produits contenant les cycles, respectivement A et B et les indices i, j concernent les liaisons qui ont été scindées.

Figure 20 : Fragments des flavonoïdes selon la nomenclature de Ma *et al* (1997; 2000) en mode négatif.

La figure 21 présente la fragmentation des flavonoïdes *O*-glycosylés selon la nomenclature de Domon et Costello (1988) reprise par Cuyckens et Claeys (2004). Y_0 désigne l'ion de la génine et Y_n , l'ion de la génine possèdant n monoglycosides.

Figure 21 : Fragments des flavonoïdes O-glycosylés (Cuyckens et Claeys, 2004).

4.2. Fragmentation des flavonoïdes

4.2.1. Fragmentation de la génine en mode positif

Les fragmentations entre les liaisons C-C 1/3, 0/2, 0/4 et 2/4 sur le cycle C sont les plus utiles pour l'élucidation structurelle des génines (Figures 20, 21), provoquant la formation des ions $^{i,j}A^+$ et $^{i,j}B^+$ (Ma *et al.*, 1997). Le schéma de fragmentation dépend fortement de la classe du flavonoïde et de la substitution du cycle C. Wolfender *et al* (2000) ont étudié les voies de fragmentation en mode positif des génines de flavones, flavonols, flavanones, flavanes et flavanols (Figure 22). Le tableau 12 résume les fragments obtenus en mode positif pour les différentes classes de flavonoïdes.

Tableau 12 : Ions fragments obtenus en mode positif pour les différentes classes de flavonoïdes (Wolfender *et al.*, 2000).

Composés	Ions fragments													
	^{1,3} A ⁺	^{0,2} A ⁺	$^{1,3}B^{+}$	$^{0,2}B^+$	^{0,2} A ⁺ -CO	$^{0,4}B^+$	^{0,4} B ⁺ -H ₂ O	^{1,3} B ⁺ -2H	^{1,4} B ⁺ -2H-CO	^{1,4} B ⁺ -2H	^{1,3} A+-CO	^{1,2} A ⁺ -H ₂ O	$^{1,2}B^+-2H$	$[M+H]^{+}$
Flavones				I	1				11					
Apigénine	153	-	119	121	-	163	145	-	-	-	-	-	-	271
Lutéoline	153	-	135	137	-	179	161	-	-	-	-	-	-	287
Chrysoériol	153	-	149	-	-	-	-	-	-	-	-	-	-	286
Flavonols														
Quercétine	153	165	-	137	137	-	-	-	-		-	-	-	303
Kaempférol	153	165	-	165	121	-	-	133	-	-	-	-	-	287
Myricétine	153	165	-	153	-	-	-	165	-	-	-	-	-	319
Isorhamnétine	153	165	-	153	-	-	-	-	-	-	-	-	-	317
Flavanones														
Naringinine	153	-	-	-	-	-	-	-	119	147	-	-	-	153
6,8-dimethyl-	181	-	-	-	-	-	-	-	-	131	-	-	-	285
pinocembrine														
Flavanes														
4',5-Dihydroxy-3',7-	153	-	-	-	-	-	-	-	-	-	125	-	-	153
dimethoxyflavane														
4'-hydroxy-3',5,7-	167	-	-	-	-	-	-	-	-	-	139	-	-	167
trimethoxyflavane														
Flavanol	-		-	-					·					
Catéchine	139	-	-	-	-	-	-	-	-	165	-	151	123	139

4.2.2. Fragmentation de la génine en mode négatif

Le mode négatif est plus sensible pour l'analyse des flavonoïdes que le mode positif et donne un schéma de fragmentation légèrement différent apportant des informations nouvelles et complémentaires (Cuyckens *et al.*, 2004).

Comme en mode positif, la rupture du cycle C par les réactions de Rétro Diels-Alders mène aux ions ${}^{i,j}A^-$ et ${}^{i,j}B^-$, donnant des informations sur le nombre et le type de substituants présents sur les cycles A et B (Cuyckens *et al.*, 2004).

Fabre *et al.* (2001) ont étudié les fragmentations caractéristiques de flavones, flavanones et flavonols (Figures 23,24). Le Tableau 13 résume les fragments obtenus en mode négatif pour les différentes classes de flavonoïdes.

Figure 23. Fragmentations proposées par Fabre et al (2001) pour l'anion flavone (lutéoline).

Figure 24. Fragmentations proposées par Fabre et al (2001) pour l'anion flavonol (quercétine).

Ions	Lutéoline	Apigénine	Genkwanine	Quercétine	Kaempférol	Eriodictyol	Naringenine	
fragments								
[M-H] ⁻	285	269	283	301	285	287	271	
[M-H-CH ₃] ⁻	-	-	268	-	-	-	-	
$[M-H-H_2O]^-$	267	-	-	-	-	-	-	
[M-H-CO] ⁻	257	241	-	273	257	-	-	
[M-H-	243	227	-	257	241	-	-	
$C_2H_2O]^-$								
[M-H-CO ₂] ⁻	241	225	-	-	-	-	227	
$[M-H-C_3O_2]^-$	217	201	-	-	-	-	-	
[M-H-CO ₂ -	213	-	-	229	213	-	-	
CO] ⁻								
[M-H-	199	183	-	-	199	-	-	
C_2H_2O -								
CO ₂] ⁻								
[M-H-	197	181	-	-	-	-	-	
2CO ₂]-								
[M-H-C ₃ O ₂ -	175	159	-	-	-	-	-	
$C_2H_2O]^-$								
^{1,3} A ⁻	151	151	151			151	151	
$^{1,4}B^{-} + 2H$	-	149	-	-	-	-	-	
^{1,3} A ⁻ - CO ₂	-	107	-	-	-	107	107	
${}^{13}B^{-}$	133	117	-	-	-	135	119	
[M-H-2CO] ⁻	-	-	-	-	229	-	177	
[M-H- B] ⁻	-	-	-	193	177	-	-	
$^{1,2}\overline{A}$	-	-	-	179	-	_	-	
^{1,2} B ⁻	-	-	-	121	-	-	-	
^{1,2} A ⁻ -CO-	-	-	-	107	-	-	-	
CO_2								

Tableau 13 : Ions fragments observés en mode négatif pour les différentes classes de flavonoïdes (Fabre *et al.*, 2001).

Yeqing *et al.* (2015) ont proposé la fragmentation de flavonol isorhamnétine par LC-MS/MS en mode négatif, les ions fragments majoritaires sont les ions m/z 301, m/z 300, m/z 271, m/z 272, m/z 256, m/z 244, m/z 228, m/z 151, m/z 107, m/z 63 (Figure 25).

Figure 25. Fragmentations en mode négatif de l'isoramnétine selon Yeqing et al. (2015).

CHAPITRE 4

Dosage des polyphénols et Activités biologiques

1. Dosage des polyphénols totaux (réactif de Folin Ciocalteu)

Le dosage des polyphénols totaux a été effectué selon la méthode de Folin-Ciocalteu (Singleton *et al.*, 1965). Le réactif de Folin-Ciocalteu est constitué par un mélange d'acide phosphotungstique et d'acide phosphomolybdique qui est réduit, lors de l'oxydation des phénols, en un mélange d'oxydes bleux de tungstène et de molybdène. La coloration bleue produite possède une absorption maximale aux environs de 750 nm. Elle est proportionnelle à la quantité de polyphénols présents dans les extraits (Ribéreau-Gayon *et al.*, 1968).

2. Activité antioxydante

2.1. Introduction

L'oxygène, molécule indispensable à la vie, est susceptible d'entraîner des effets dommageables dans l'organisme *via* la formation de radicaux libres et d'espèces réactives de l'oxygène (ERO).

Parmi les ERO, on peut citer comme radical libre, l'anion superoxyde (O_2^{\bullet}), le radical hydroxyle (OH[•]), le radical peroxyle (ROO[•]), le radical alkoxyle (RO[•]), le radical hydroperoxyle (HO₂[•]) et le monoxyde d'azote (NO[•]). Comme non radical, on peut citer le peroxyde d'hydrogène (H₂O₂), l'oxygène singulet (¹O₂), l'acide hypochloreux (HOCl), l'acide hypobromeux (HOBr), l'ozone (O₃), les peroxydes organiques (ROOH) et le peroxynitrate (O₂NOO⁻) (Diesen *et al.*, 2010).

2.2. Définition d'un antioxydant

Les antioxydants sont des molécules qui diminuent ou empêchent l'oxydation de certaines substances chimiques, limitant ainsi la production de radicaux libres, ces derniers pouvant abîmer les cellules s'ils se trouvent en excès dans le corps humain. (<u>inovacure. com/wp content/uploads</u> /2013/02/Feuillet_Anti-Age_f_web.pdf).

2.3. Division des antioxydants

2.3.1. Antioxydants d'origine naturelle

Les antioxydants d'origine naturelle sont présents dans presque toutes les plantes, tous les micro-organismes et les champignons. Les antioxydants naturels les plus importants sont la vitamine E (tocophérol), les caroténoïdes (β -carotène), la vitamine C (l'acide ascorbique), les flavonoïdes et les acides phénoliques (Figure 26) (Pelli *et al.*, 2003).

Figure 26 : Antioxydants naturels

2.3.2. Antioxydants de synthèse

Le butylhydroxyanisole (BHA) (E 320) et le butylhydroxytoluène (BHT) (E 321) sont les antioxydants synthétiques (Figure 27) les plus utilisés dans l'industrie agroalimentaire. Ces deux additifs sont insolubles dans l'eau mais ont une bonne solubilité dans les milieux lipidiques. Ils sont stables dans les conditions opératoires de la plupart des procédés industriels. A haute dose, ils ont des effets cancérigènes sur l'estomac (Gordon, 1990).

Figure 27 : Antioxydants synthétiques

2.4. Méthodes de détermination de l'activité antioxydante

Plusieurs tests sont utilisés pour évaluer l'activité antioxydante d'un échantillon.

2.4.1. Test du 1,1-diphényl-2-picryl-hydrazyl (DPPH)

Le composé chimique 1,1-diphényl-2-picrylhydrazyle (DPPH) est un radical stable et présente en solution une absorption spécifique à 517 nm qui confère une coloration violette foncée. Cette couleur disparait lorsqu' il est réduit par un capteur de radicaux (Figure 28).

Les absorbances mesurées servent à calculer le pourcentage d'inhibition du radical DPPH⁻, qui est proportionnel au pouvoir antiradicalaire de l'échantillon testé (Blois *et al.*, 1958).

Figure 28 : Réduction du radical DPPH

2.4.2. Test de l'acide 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonique (ABTS)

Le radical cation de l'acide 2,2'-azino-bis-(3-éthylbenzothiazoline-6-sulfonique) (ABTS⁺⁺) est stable sous sa forme libre (Rice-Evans *et al.*, 1994; 1995). Il est formé à partir de l'acide

correspondant par oxydation en présence de persulfate de potassium ($K_2S_2O_8$) pour donner une solution colorée en vert-bleu. La concentration de ce radical peut être déterminée en mesurant l'absorbance à la longueur d'onde appropriée. L'addition d'un antioxydant à une solution de ce radical cation entraîne sa réduction et une diminution de l'absorbance à 734 nm (Re *et al.*, 1999).

2.4.3. Test de blanchissement du β-carotène

Cette méthode est basée sur la perte de la couleur du β -carotène due à la réaction avec des radicaux qui sont formés par l'oxydation de l'acide linoléique. La disparition de cette couleur est suivie spectrophotometriqement à 470 nm. Cependant la présence d'un antioxydant pourrait neutraliser les radicaux libres dérivés de l'acide linoléique et donc prévenir l'oxydation et le blanchissement du β -carotène (Tepe et *al.*, 2006).

2.4.4. Test utilisant le pouvoir réducteur des ions cupriques (CUPRAC)

Le teste CUPRAC (Cupric ion Reducing Antioxidant Capacity) a été décrit par Apak et al (2004). Cette technique est basée sur la mesure de la capacité des antioxydants à réduire le Cu^{2+} complexé par la néocuproine (cuivre (II)-néocuproine) en Cu^+ -Nc (cuivre (I)-néocuproine). Cette réaction est quantifié spectrophotométriquement à une longueur d'onde de 450 nm (Figure 29).

Figure 29 : Réaction de CUPRAC.

3. Activité antibactérienne

3.1. Généralités sur les antibactériens

Une substance anti-bactérienne est une substance d'origine naturelle ou synthétique, ayant la capacité d'arrêter la multiplication des bactéries, mais également d'autres agents infectieux. Certaines sont également capables de détruire les microbes. Elle est bactériostatique ou bactéricide (http://www.vulgaris-medical.com/encyclopedie-medicale/antibiotique-generalites).

Chaque antibiotique a un spectre d'activité (limité ou large) qui correspond aux différentes espèces bactériennes susceptibles d'être sensibles à son action. (http://fr.wikipedia.org/wiki/Antibiotique).

3.2. Technique de diffusion en milieu gélosé (antibiogramme)

L'aromatogramme ou méthode par diffusion en milieu gélosé est une technique qualitative permettant de déterminer la sensibilité des microorganismes vis-à-vis d'une substance réputée antimicrobienne. Cette sensibilité est exprimée par l'apparition de zones d'inhibition autour des disques.

La technique utilisée dans notre travail est la technique NCCLS (National Committee for Clinical Laboratory Standart, 1985).

3.3. Définition de la CMI (concentration minimale inhibitrice)

Le paramètre le plus souvent utilisé pour évaluer l'effet d'un antibiotique est la CMI (concentration minimale inhibitrice). Elle correspond à la concentration minimale d'antibiotique qui inhibe la croissance visible du germe en 24H (Burnichon *et al.*, 2003).

Les CMI correspondent à des valeurs proches du $\mu g/mL$: plus la CMI est faible, plus l'antibactérien est actif (Nicolas *et al.*, 1998).

4. Activité photoprotectrice

4.1. Les rayons ultraviolets ou UV

Les rayons ultraviolets (UV) sont un rayonnement électromagnétique de même nature que la lumière visible mais dont les longueurs d'onde sont inférieures et donc non perceptibles par l'oeil. (www.utc.fr/tthomass/Themes/Unites/unites/infos/UV/UV.pdf).

Les UV peuvent être divisés en 3 bandes présentant différentes caractéristiques (Bédane *et al.*, 2007) :

- Les UVC ont des longueurs d'onde comprises entre 100 et 290 nm.

- Les UVB ont des longueurs d'onde comprises entre 290 et 320 nm. Ils représentent environ
1,5 % du rayonnement solaire total.

- Les UVA ont des longueurs d'onde comprises entre 320 et 400 nm.

4.2. Les rayons solaires

Au sol, nous recevons du soleil un rayonnement composé de 5% d'UV, 39% de rayonnement visible et 56% d'infrarouge. Les UV ont subi une atténuation importante par l'atmosphère avant d'arriver sur terre.

Les UVC sont filtrés par la couche d'ozone et n'atteignent pas la terre.

Les UVA et UVB atténués par l'atmosphère et les particules en suspension, frappent malgré tout notre planète dans une proportion respective de 98% et 2%.

Le rayonnement UV augmente de 10% tous les 700 mètres. À 1500 m d'altitude, le rayonnement est 20% plus intense qu'au niveau de la mer (www.utc.fr/~tthomass/Themes/Unites/unites/infos/UV/UV.pdf).

4.3. Effets nocifs des UV sur l'organisme

Les UVC sont les plus dangereux pour l'organisme, heureusement ils n'arrivent pas sur terre.

Les UVA sont les moins énergétiques mais ils sont plus nombreux et plus pénétrants. Ils sont présents et dangereux tout au long de la journée. Leur pénétration profonde des tissus jusqu'au derme détruit les fibres élastiques et le collagène, entraînant alors un relâchement des tissus, une perte de la fermeté de la peau et l'apparition de rides. Ils peuvent entraîner des modifications génétiques au sein des cellules provoquant l'apparition de cancer cutané (carcinomes, mélanomes). Leur dangerosité est aggravée par le fait qu'ils ne provoquent aucun désagrément ou sensation de brûlure comme les coups de soleil (1000 fois moins que les rayons UVB) à moins que la durée d'exposition soit très importante.

Les UVA peuvent, parfois, déclencher des réactions de photosensibilisations (accroissement des effets des UV) lors de la prise de certains médicaments.

Les UVB sont très dangereux surtout entre 12 h et 16 h, car le soleil étant au zénith, ses rayons sont très peu réfractés par l'atmosphère. Ils sont arrêtés par la couche cornée de l'épiderme (40% seulement arrivant au derme) mais leur énergie provoque, en cas de surexposition, une réaction inflammatoire aboutissant à des brûlures qui peuvent aller jusqu'au 3^e degré. La brûlure de 1er degré, c'est le "coup de soleil". Les rougeurs sont dues à la dilatation des vaisseaux sanguins. Sa disparition s'accompagne d'une desquamation et d'une dépigmentation.

L'exposition prolongée aux UVB provoque un amincissement de l'épiderme et des taches sur les parties découvertes comme les mains, bras et visage (www.utc.fr/~tthomass/Themes/Unites/unites/infos/UV/UV.pdf).

4.4. Photovieillissement

Le photovieillissement se définit comme étant le vieillissement provoqué par une exposition chronique au rayonnement solaire.

Sur la peau exposée au soleil, 90 % du vieillissement est attribuable aux effets néfastes du soleil. Il suffit de comparer la peau d'un endroit du corps rarement exposé au soleil à celle du visage pour constater une différence de teint, de couleur et de texture. Les signes de photovieillissement apparaissent sur les parties visibles du corps, soit le visage, le cou et le dos des mains. Ce sont les endroits de la peau qui reçoivent le plus souvent une grande exposition au soleil. (Beylot, 2008).

4.5. Le facteur de protection solaire : FPS

4.5.1. Définition

Le **FPS** est un indice qui sert à déterminer l'efficacité de la protection solaire, c'est-à-dire sa capacité à protéger la peau contre les rayonnements UVB et UVA. Cet indice permet de classer les produits de protection solaire en quatre catégories (Tableau 14).

Catégorie	FPS
Faible protection	6
	10
Moyenne protection	15
	20
	25
Haute protection	30
	50
Très haute protection	+50

Tableau 14 : Les différentes catégories de protection solaire.
4.5.2. Détermination des indices de protection solaire

L'efficacité des photoprotecteurs vis à vis des effets à court terme des rayonnements UV peut être évaluée par mesures des indices de protection à l'aide de méthodologies mises en œuvre *in vitro* et/ou *in vivo*. Les tests peuvent être effectués *in vivo* ou *in vitro* bien que les méthodes *in vivo* soient les méthodes actuelles de détermination des facteurs de protection solaires dans la pratique.

4.5.2.1. Méthodologies in vitro de détermination du facteur de protection solaire (FPS)

Le FPS *in vitro* est déterminé selon la méthode spectrophotométrique de Mansur *et al* (1986). Des dilutions hydroalcooliques des extraits ont été préparées et l'activité photoprotectrice *in vitro* a été étudiée par spectrophotométrie UV dans l'intervalle de 290 à 320 nm. La valeur du FPS a été calculée selon l'équation suivante :

SPF = CF x
$$\sum_{290}^{320} EE(\lambda) \times I(\lambda) \times Abs(\lambda)$$

EE: Spectre des effets érythémateux.

I : Spectre d'intensité solaire.

Abs : Absorbance du produit solaire.

CF : Facteur de correction (= 10).

PARTIE 2

MATÉRIEL ET MÉTHODES

CHAPITRE 1

Matériel utilisé, Analyse LC-MS/MS, Extractions, Séparations et Purifications

1. Matériel végétal

Salsola tetragona a été récoltée en Mai 2009 à Ghardaïa (Sud-Est Algérien) et *Traganum* nudatum a été récoltée en Mai 2011 à Oued Souf. Elles ont été identifiées par le professeur Gérard De Belair (Université d'Annaba). Après séchage dans un endroit sec et à l'abri des rayons solaires, les parties aériennes ont été pulvérisées et pesées (1989 et 1000 g respectivement). Un voucher de chaque plante a été déposé au laboratoire d'obtention de substances thérapeutiques (LOST St05/09 et LOST Tn05/11 respectivement).

2. Matériel chromatographique

2.1. Chromatographie sur couche mince (CCM)

Les CCM ont été réalisées sur des plaques d'aluminium recouvertes d'un gel de silice en phase normale (Kieselgel 60 F₂₅₄ Merck, 250 μ m) et en phase inverse (RP 18 F_{254S}, 200 μ m Merck). Après élution de la plaque dans une phase mobile appropriée, les plaques sont observées sous lampe UV (à 254 et 365 nm).

Les plaques CCM ont été révélées par des révélateurs suivants :

- Acide sulfurique dilué à 50% dans l'eau.
- Anisaldéhyde sulfurique : 0,5 mg de méthoxybenzaldéhyde dissous dans 85 ml de méthanol et 10 mL d'acide acétique, additionnée de 2% d'acide sulfurique.
- Vanilline sulfurique : 1 g de la vanilline, dissous dans 100 mL de l'éthanol additionnée 2 mL d'acide sulfurique.

2.2. Chromatographie sur colonne ouverte (CC)

Les chromatographies sur colonne ouverte ont été effectuées à pression atmosphérique sur gel de silice normal (Kieselgel Merck 70-230 mesh). La taille et le diamètre de la colonne sont choisis en fonction de la quantité d'échantillon à purifier. La quantité de gel de silice utilisée est généralement 30 fois supérieure à la quantité d'échantillon (extraits. fractions) à séparer.

2.3. Chromatographie liquide sous vide (VLC)

La chromatographie liquide sous vide (VLC, vacuum liquid chromatography) est une technique de fractionnement rapide et peu coûteuse. L'appareillage est constitué d'un entonnoir

cylindrique filtrant sur verre fritté n°4, relié à une pompe à vide. Le verre fritté contient la phase stationnaire (silice à phase inverse ou silice normale). Avant de déposer l'échantillon, on conditionne la phase stationnaire par lavage avec du méthanol pour la silice inverse ou avec d' hexane pour la silice normale. Une fois la silice imbibée de méthanol ou d'hexane, l'échantillon (liquide ou solide) est déposé à la surface du gel de silice.

2.4. Chromatographie liquide haute performance (CLHP)

Les analyses CLHP ont été effectuées à l'aide d'une chaîne chromatographique Dionex. Cette chaine est constituée d'une pompe Ultimate 3000 et Shimadzu avec un dégazeur intégré, un injecteur ASI-100, un détecteur UVD 340S et un four STH 585. L'ensemble est piloté par le logiciel Chromeleon[®].

Deux types de colonnes CLHP sont utilisés:

- Phenomenex Luna[®] C₁₈, 5µ, 100 A, 250x4,6 mm (pour CLHP analytique).

- Phenomenex Luna[®] C₁₈, 5µ, 100 A, 250x15 mm (pour CLHP semi-préparative).

3. Appareils utilisés

3.1. Spectroscopie de RMN

Les spectres de résonance magnétique nucléaire du proton et du carbone (RMN ¹H et ¹³C) ont été enregistrés à 500 et 125 MHz sur un appareil BRUKER AVANCE DRX-500 ou à 600 et 150 MHz sur un appareil BRUKER AVANCE DRX-600 équipé d'une cryoplateforme. Les spectres ont été réalisés dans différents solvants deutérés : CDCl₃, Acétone- d_6 , CD₃OD et DMSO d_6 . Les déplacements chimiques (δ) sont exprimés en partie par millions (ppm), par rapport au tétraméthylsilane (TMS), utilisé comme référence interne. Les constantes de couplage (J) sont exprimées en Hz.

3.2. Spectrophotométrie UV-Visible

Les spectres UV-visible des composés isolés sont enregistrés dans le MeOH sur un spectrophotomètre (NICOLET evolution 100).

3.3. Spectrométrie de masse

Les spectres de masse des produits isolés sont enregistrés en mode positif et négatif sur un spectromètre de masse Q-TOF2 (MANCHESTER, UK).

3.4. Analyses LC-MS/MS

Les analyses LC-ESI-MS/MS de l'extrait méthanolique de *Traganum nudatum* ont été effectuées en utilisant l'instrument Shimadzu UHPLC couplé à un instrument MS en tandem.

Le système se compose d'un dégazeur (DGU-20A3R), d'une pompe binaire (LC-30AD), d'un échantillonneur automatique (SIL-30AC) et d'un four à colonne (CTO-10ASvp).

La séparation chromatographique a été obtenue à l'aide d'une colonne Inertsil ODS-4 de phase inversée C18 (150 mm \times 4,6 mm, 3 μ m).

La phase mobile est constituée du système de solvants A (H₂O + 1% 5 mmoles / L de formiate d'ammonium et 0,1% d'acide formique) et B (méthanol, 5 mmoles / L formiate d'ammonium et 0,1% d'acide formique). Le gradient utilisé est de : t=0,00 min, 20% B; À t=3,00 min, 20% B; À t=3,01 min, 50% B; À t=8,99 min, 50% B; À t=9,01 min, 90% B; À t=11,99 min, 90% B; À t=12.00 min, 20% B; À t=14.99 min, 20% B.

Le débit du solvant a été maintenu à 0.5 mL/min, et le volume d'injection a été réglé à 10 µL.

L'acquisition des spectres de masse a été menée en mode négatif et positif avec pression du nébuliseur à 3 L/min, débit du gaz de séchage de 15 L/min, température de l'interface à 350 ° C et température de la ligne de déssolvatation (DL) à 250°C.

Les polyphénols à analyser ont été identifiés par comparaison des temps de rétention et des masses de fragmentations obtenues avec ceux des standards.

La coumarine (\geq 99%), l'hespéridine (95%), l'acide *p*-coumarique (98%), l'acide caféique (98%), l'acide chlorogénique (95%), l'acide rosmarinique (96%), l'acide protocatéchique (97%), la vaniline (99%), la quercétine (95%), la naringinine (95%), le kampférol (\geq 97%), l'acide malique (95-100%), la rutine (94%), la miricetine (\geq 96%), l'acide gallique (\geq 99%), la fisétine (\geq 98%), l'acide quinique (98%), la quercitrine (95%), l'acide 4-OH-benzoique (\geq 99%), l'acide *o*-coumarique, l'acide vanillique, l'acide salisilique, l'acide férulique, l'acide cinnamique, l'acide sinapinique, l'apigétrine, l'acide fumarique, le pyrocatéchol, l'acide syringique, la curicine, la liquiritigénine, l'isoquercitrine, la roifoline et la nicotiflorine, ont été obtenus a partir de Sigma-Aldrich (Allemagne), l'hespérétine (≥97 %), l'apigénine ≥99%) et la lutéoline (≥97%), ont été achetés chez R-Biopharm (Allai *et al.*, 2017). Ces composés ont été utilisés comme standards.

3.5. Spectrométrie Infra-Rouge (IR)

Le spectre infra-rouge (IR) a été enregistré sur un spectromètre Perkin-Elmer IRTF (Infra Rouge à Transformée de Fourier), les nombres d'ondes sont indiqués en cm⁻¹.

3.6. Lecteur de microplaques à 96 puits

L'absorbance a été mesurée à l'aide d'un lecteur de microplaques à 96 puits (SpectraMax 340PC³⁸⁴).

3.7. Polarimétrie

Le pouvoir rotatoire est mesuré sur un polarimètre Perkin Elmer Model 241, à la longueur d'onde de la raie D du sodium (589 nm), à la température de 20°C.

Le pouvoir rotatoire spécifique est calculé à partir de la formule suivante :

$$\left[\alpha\right]_{D}^{T} = \frac{\alpha}{\mathrm{l. C}}$$

C : concentration du produit en g/100 mL.

l : longueur de la cuve de mesure.

α: angle de rotation, en degré, lu sur le polarimètre.

4. Extraction et purification de la plante Salsola tetragona

4.1. Extraction

Les parties aériennes pulvérisées (m=1989 g) de *Salasola tetragona* sont mises à macérer à température ambiante dans un mélange hydro-alcoolique (MeOH/H₂O, 70/30, V/V). Cette macération est répétée 3 fois avec renouvellement du solvant (3×24 h). Après filtration puis concentration à une température n'excédant pas 40°C, on ajoute de l'eau distillée (800 mL). Cette dernière solution a subi des extractions liquide-liquide par des solvants organiques suivants :

- Ether de pétrole (3x600 mL)
- Dichlorométhane (3x600 mL)
- Acétate d'éthyle (3x600 mL)
- *n*-butanol (3x600 mL)

Les phases organiques obtenues sont évaporées à sec et pesées et les rendements d'extraction sont donnés dans le tableau 15.

Tableau 15 :	Rendements	des extractions
--------------	------------	-----------------

Matière végétale	Extrait	Masse (g)	Rendement (%)
1989 g	Ether de pétrole	0.66	0.033
	Dichlorométhane	2.5	0.12
	Acétate d'éthyle	6,55	0.33
	<i>n</i> -butanol	30.5	1.53

Le schéma suivant montre les étapes d'extraction de notre plante (Figure 30).

Figure 30: Schéma général d'extraction des parties aériennes de l'espèce *S. tetragona*.

4.2. Séparation et purification

Le choix des extraits est essentiellement basé sur deux critères principaux :

- La richesse des extraits en métabolites secondaires.
- La masse des extraits.

Pour cela, notre choix s'est porté sur l'extrait dichlorométhane et l'extrait butanolique.

4.2.1. Fractionnement et purification de l'extrait dichlorométhane

L'extrait dichlorométhane des parties aériennes de *S. tetragona* a été fractionné sur une colonne de gel de silice en phase normale. L'élution a été effectuée avec trois solvants : le toluène, le chloroforme et l'acétate d'éthyle.

Les conditions opératoires sont indiquées dans le tableau 16.

Tableau 16 : Conditions opératoires de séparation.

Extrait CH ₂ Cl ₂	Eluant	Phase stationnaire	Révélateur	Volume des fractions (mL)	Éluants des CCM
2.5 g	Toluène: chloroforme (100:0 à 0:100) Chloroforme: acétate d'éthyle (100:0 à 92:8)	SiO ₂ (82.5 g)	UV 254/365 nm Vanilline + chauffage (102°C)	25	Hexane: CHCl ₃ (9:1), (8:2) CHCl ₃ : AcOEt (9.8:0.2)

Le tableau 17 presente les fractions de l'extrait dichlorométhane.

Fractions	Elua	Masse (mg)	
	Toluène	Chloroforme	
F ₁₋₂₆	100	0	80
F ₂₇₋₃₂	80	20	123
F ₃₃₋₆₄	60	40	93
F ₆₅₋₈₂	40	60	71
F ₈₂₋₁₀₂	20	80	55
F103-125	0	100	110
	Chloroforme	Acétate d'éthyle	
F ₁₂₆₋₁₃₂	100	0	63
F ₁₃₃₋₁₅₉	98	2	145
F ₁₆₀₋₁₇₃	96	4	212
F ₁₇₄₋₁₉₄	94	6	54
F ₁₉₅₋₂₃₃	94	6	96
F ₂₃₄₋₂₅₇	92	8	162
F ₂₅₈₋₂₆₈	92	8	45

Tableau 17 : Fractionnement de l'extrait dichlorométhane.

Les fractions recueillies sont regroupées suivant la similitude de leur profil chromatographique en couche mince (Figure 31). Parmi les fractions recueillies, trois ont été purifiées :

- Fraction 27-32
- Fraction 160-173
- Fraction 234-257

Figure 31. Schéma de fractionnement de l'extrait CH₂Cl₂ de Salsola tetragona.

• Purification des fractions F27-32, F160-173 et F234-257

Les fractions F_{27-32} , $F_{160-173}$ et $F_{234-257}$ ont été purifiées sur des colonnes de gel de silice en phase normale, éluées avec des systèmes isocratiques, conduisant aux produits **St1**, **St5**, **St10** et **St11**. Les conditions opératoires sont présentées dans le tableau 18.

Tableau 18 : Conditions opératoires de séparation.

Fraction	Eluant	Absorbant	Révélateur	Volume des	Produits
				fractions (mL)	isolés
F 27-32	Éther diéthylique :	$SiO_2(4 g)$	UV 254/365 nm,	25	St10
(123 mg)	AcOEt (90:10)		Vanilline + chauffage		(1.4 mg)
			(102°C)		
F160-173	CHCl ₃ : EtOAc	SiO ₂ (7 g)	UV 254/365 nm,	5	St1 (15 mg)
(212 mg)	(90:10)		Vanilline + chauffage		St5 (5 mg)
_			(102°C)		
F234-257	CHCl ₃ :CH ₃ OH	$SiO_2(5,5g)$	UV 254/365 nm,	5	St11 (2 mg)
(162 mg)	(90:10)		Vanilline + chauffage		
× 8/			(102°C)		
1					

4.2.2. Fractionnement et purification de l'extrait butanolique

L'extrait butanolique est soumis à des fractionnements successifs par différentes méthodes chromatographiques conduisant à l'isolement des produits à l'état pur (un sucre, trois triterpènes et trois composés phénoliques). Dans un premier temps, nous avons soumis cet extrait à une chromatographie liquide sous vide (VLC). Six fractions ont été obtenues (Figure 32).

Les conditions de ce fractionnement sont résumées dans le tableau 19.

Tableau 19 : Conditions opératoires du fractionnement VLC.

Extrait	Eluant	Absorbant	Révélateur	Volume des	Éluants des CCM
n-ButOH				fractions	
				(mL)	
6 g	Gradient	RP- C18	UV 254/365 nm	250	AcOEt: MeOH:H ₂ O
	H ₂ 0:MeOH	(500 g)	Vanilline + chauffage		20:2:1
	(60:40 à		(102°C)		CHCl ₃ : MeOH:H ₂ O
	0:100)				14:6:1

Le tableau 20 presente le fractionnement de l'extrait butanolique.

Tableau 20	: Fractionnement	de l'extrait	butanolique.
------------	------------------	--------------	--------------

Eluant %		Fractions	Masse (mg)
CH ₃ OH	H ₂ O		
40	60	F ₁	1200
50	50	F ₂	1500
60	40	F ₃	750
70	30	F ₄	302
80	20	F ₅	191
100	0	F ₆	76

Figure 32 : Schéma de fractionnement de l'extrait butanolique de S. tetragona.

• Purification de la fraction F₁

La fraction F_1 (1200 mg) a été purifiée par flash chromatographie sur gel de RP-C₁₈ éluée avec un gradient CH₃CN:H₂O (100:0 à 0:100). Les différentes fractions ont été regroupées en 19 sousfractions selon leur similitude sur plaque CCM.

Parmi les sous-fractions recueillies, seule la sous fraction f₂₀₋₂₃ a été purifiée.

La fraction f₂₀₋₂₃ (35 mg) a été purifiée par CLHP semi-préparative à polarité de phases inversée C₁₈ avec un gradient d'élution [CH₃CN:H₂O (6:94 à 10:90)] pendant 24 minutes pour donner les composés St7 (3 mg, tr=19,14 min) et St8 (1.5 mg, tr=19,9 min).

Les conditions chromatographiques sont présentées ci-dessous :

• CLHP Semi-préparative

Pompe : LPG-3400A Détecteur : UVD 340U Four : STH 585 Injecteur : ASI-100 Eluant : Acétonitrile/ Eau. Colonne : Dionex C₁₈ 201 SP, 10 x 250 mm, 5μ, 90 Å

• Purification de la fraction F₂

La fraction F_2 a été chromatographiée sur une colonne de gel de silice normale. L'élution a été effectuée par le mélange acétate d'éthyle: méthanol: eau (20 :2 :1). 168 fractions ont été recueillies puis regroupées suivant leur similitude sur plaque CCM. Les sous-fractions sont ensuite séchées sous pression réduite.

Parmi les sous-fractions recueillies, seules les sous fractions f₉₀ et f₁₁₅₋₁₁₉ ont été purifiées.

- La sous-fraction f₉₀ a été purifiée sur une colonne de silice en phase normale éluée avec le système isocratique chloroforme:méthanol (90 :10), pour donner le composé St4 (22 mg).
- La sous-fraction f₁₁₅₋₁₁₉ a été purifiée sur une colonne de gel de silice en utilisant comme système d'élution chloroforme:méthanol (80 :20), pour fournir le composé St3 (27 mg).

Les conditions opératoires sont présentées dans le tableau 21.

Fraction	Eluant	Absorbant	Révélateur	Volume des	Éluants des
				Fractions	CCM
				(mL)	
F2	AcOEt:CH ₃ OH:	$SiO_2(50 g)$	UV 254/365 nm		AcOEt:CH ₃ OH
(1500 mg)	H_20		Vanilline +	25	(20:2)
	(20:2:1)		chauffage		AcOEt:CH ₃ OH:H ₂ 0
	(_0)		(102°C)		(20:2:1)
f 90	CHCl3:CH3OH	SiO ₂ (6 g)	UV 254/365 nm		CHCl ₃ : AcOEt
(180 mg)	(9:1)		Vanilline +	5	(9.5:0.5)
			chauffage (102°C)		
f 115-119	CHCl ₃ :CH ₃ OH	SiO ₂ (8 g)	UV 254/365 nm		CHCl ₃ :AcOEt
(223 mg)	(80:20)		Vanilline +	_	(9:1)
× 8⁄			chauffage	5	
			(102°C)		

 Tableau 21 : Conditions opératoires de séparation.

Le tableau 22 regroupe les sous fractions de la fraction F_2 .

Fableau 22 :	Fractionnement	de la	a fraction	$F_{2.}$
---------------------	----------------	-------	------------	----------

Eluant %	Fractions	Masse (mg)
AcOEt:CH ₃ OH:H ₂ O	f ₁₋₁₈	53.2
(20:2:1)	f ₁₉₋₃₂	74.7
	f33-52	153.8
	f53-64	49
	f ₆₅₋₈₉	126
	f 90	180
	f ₉₁₋₁₁₄	98.9
	f115-119	223
	f ₁₂₀₋₁₃₅	43
	f ₁₃₇₋₁₄₉	69.9
	f ₁₅₀₋₁₆₈	94

• Purification de la fraction F₃

La fraction F_3 a été fractionnée sur une colonne de gel de silice en phase normale. L'élution a été faite par un gradient de solvants composé du chloroforme et du méthanol. Des fractions de 25 ml ont été recueillies et regroupées selon leur profil en CCM pour donner 11 sous fractions.

• La sous-fraction f_{59-63} a été purifiée sur une colonne de silice en phase normale et éluée par le même gradient de solvant précédent, pour donner le composé **St2** (25 mg).

Les conditions opératoires sont présentées dans le tableau 23.

Fraction	Eluant	Absorbant	Révélateur	Volume des	Éluants	Produits
				fractions	des CCM	isolés
				(mL)		
F3	CHCl3:CH3OH	SiO ₂ (25 g)	UV 254/365 nm	25	CHCl ₃ :AcOEt	
(750 mg)	(100:0 à 0:100)		Vanilline + chauffage (102°C)		(9:1), (8:2)	
f59-63	CHCl ₃ :CH ₃ OH	SiO ₂ (7 g)	UV 254/365 nm	5	CHCl ₃ :AcOEt	St2
(212 mg)	(100:0 à 0:100)		Vanilline + chauffage (102°C)		(9:1), (8:2)	(25 mg)

Tableau 23 : Conditions opératoires de purification.

Le tableau 24 presente les sous fractions de la fraction F_3 .

Eluant: CHCl3:CH3OH	Sous fractions	Masse (mg)
100:0	f ₁₋₂₂	23.2
95:5	f ₂₃₋₄₃	19.5
95:5	f44-58	44.5
90:10	f59-63	212
90:10	f ₆₄₋₇₈	123.4
80:20	f ₇₈₋₉₉	22.1
70:30	f ₁₀₀₋₁₂₃	84.3
60:40	f ₁₂₄₋₁₄₃	56.4
50:50	f ₁₄₄₋₁₆₄	23.6
40:60	f ₁₆₅₋₁₈₂	31.4
20:80	f ₁₈₃₋₂₀₁	21.7
0:100	f202-215	8.4

Tableau 24 : Fractionnement de la fraction F₃.

• Purification de la fraction F₄

Cette fraction a été chromatographiée sur une colonne de gel de silice en phase normal éluée par un gradient chloroforme:méthanol (100:0 à 0:100). Des fractions de 10 ml ont été recueillies et réunies selon leur profil en CCM en phase normale, pour donner 11 sous fractions.

• La fraction f₇₂ a donné le composé **St6** (3mg) grâce à une purification sur une colonne de gel de silice à l'aide d'un gradient d'élution CHCl₃ : CH₃OH.

Les conditions opératoires sont présentées dans le tableau 25.

Fraction	Eluant	Absorbant	Révélateur	Volume	Éluants des	Produits
				des fractions (mL)	ССМ	isolés
F 4	CHCl3:CH3OH	SiO ₂ (10 g)	UV 254/365 nm	10	CHCl ₃ :AcOEt	-
(302 mg)	100:0 à 0:100		Vanilline+chauffag e(102°C)		(8:2), (7:3)	
f72 (111.2mg)	CHCl ₃ :CH ₃ OH 100:0 à 0:100	SiO ₂ (4 g)	UV 254/365 nm Vanilline +chauffage(102°C)	5	CHCl ₃ :AcOEt (9:1), (8:2), (7:3)	St6 (3mg)

Le tableau 26 regroupe les sous fractions de la fraction F₄.

Tableau 26 : Fractionnement de la fraction F₄

Eluant: CHCl3:CH3OH	Sous fractions	Masse (mg)
100:0	f ₁₋₁₂	9
95:5	f ₁₂₋₂₆	14.5
90:10	f ₂₆₋₄₀	22.7
85:15	f ₄₁₋₅₆	19
80:20	f ₅₇₋₇₁	23.5
70:30	f ₇₂	111.2
60:40	f73-85	34.1
50:50	f ₈₆₋₁₀₂	45.6
20:80	f ₁₀₃₋₁₁₉	27
0:100	f ₁₂₀₋₁₃₂	25.2
0:100	f ₁₃₃₋₁₄₁	17.9

• Purification de la fraction F₆

Cette fraction contient un précipité blanc **St9** (25 mg) qui a été lavé plusieurs fois par le méthanol pur.

5. Extraction et purification de la plante Traganum nudatum

5.1. Extraction

La poudre d'une masse 1kg des parties aériennes de la plante *Traganum nudatum* préalablement séchée, mise à macérer pendant 48 heures dans (MeOH/H₂O : 70/30). Cette macération est répétée 3 fois (3×24 h). L'extrait obtenu est concentré sous pression réduite à une température n'excédant pas 40°C, puis dilué avec de l'eau distillée (400 mL). La solution récupérée a subi des extractions liquide-liquide par des solvants organiques suivants :

- Chloroforme (3x300 mL)
- Acétate d'éthyle (3x300 mL)
- *n*-butanol (3x300 mL)

Les phases organiques récupérées sont évaporées à sec et pesées.

Le schéma suivant montre les étapes d'extraction de la plante Traganum nudatum (Figure 33).

Figure 33 : Schéma général d'extraction des parties aériennes de l'espèce T. nudatum.

4.2.2. Séparation et purification

4.2.2.1. Fractionnement et purification de l'extrait butanolique

L'extrait butanolique (5.6 g) de l'espèce *T. nudatum* a été fractionné par VLC en phase inverse C18 avec l'éluant H₂O-MeOH (60/40, 50/50, 40/60, 30/70, 20/80, 0/100). Des fractions de 250 ml sont recueillies et analysées par chromatographie sur couche mince (Figure 34).

Les conditions de ce fractionnement sont résumées dans le tableau 27.

Tableau 2	27:	Conditions	opératoires	de	fractionnement.
-----------	-----	------------	-------------	----	-----------------

Extrait	Eluant	Absorbant	Révélateur	Volume des	Éluants
n-ButOH				fractions	des CCM
				(mL)	
5.6 g	Gradient H ₂ O:MeOH (60:40 à 0:100)	RP- C18 (500 g)	UV 254/365 nm Vanilline + chauffage (102°C)	250	AcOEt: MeOH:H ₂ O 20:2:1

Le tableau 28 presente les fractions de l'extrait butanolique.

Tableau 28 : Fractionnement de l'extrait butanolique.

Elua	Eluant % Fractions		Masse (mg)	
CH ₃ OH	H ₂ O			
40	60	F ₁	500	
50	50	F ₂	1200	
60	40	F ₃	350	
70	30	F ₄	302	
80	20	F ₅	229	
100	0	F ₆	176	

Figure 34 : Schéma de fractionnement de l'extrait butanolique de *T. nudatum*.

• Purification de la fraction F₂

La fraction F_2 a été chromatographiée sur une colonne de gel de silice normale. L'élution a été effectuée par le mélange acétate d'éthyle: méthanol: eau (20 :2 :1). Des collectes de 10 mL ont été recueillies et regroupées selon leur profil en CCM pour donner 7 sous fractions. Les sous-fractions sont ensuite séchées sous pression réduite.

- La sous-fraction f₂₁₋₂₅ a été purifiée sur une colonne de silice en phase normale éluée avec le système le chloroforme:méthanol (80 :20), pour fournir le composé Tn1 (12 mg).
- La sous-fraction f₂₇ a été purifiée sur une colonne de gel de silice en utilisant comme système d'élution chloroforme:méthanol (9.5 :0.5), pour obtenir le composé Tn2 (9 mg).

Les conditions opératoires sont présentées dans le tableau 29.

Fraction	Eluant	Absorbant	Révélateur	Volume des	Éluants des
				Fractions	CCM
				(mL)	
F2	AcOEt:CH ₃ OH:	SiO ₂ (40 g)	UV 254/365 nm		AcOEt:CH ₃ OH:
(1200mg)	H ₂ 0 (20:2:1)		Vanilline + chauffage	10	H ₂ 0 (20:2:1)
			(102°C)		
f 21-25	CHCl ₃ :CH ₃ OH	SiO ₂ (4 g)	UV 254/365 nm		CHCl ₃ : AcOEt
(112.5mg)	(80:20)		Vanilline + chauffage	5	(9:1)
			(102°C)		
f 27	CHCl3:CH3OH	$SiO_2(4 g)$	UV 254/365 nm		CHCl ₃ :AcOEt
(100.9mg)	(9.5:0.5)		Vanilline + chauffage	_	(9:1)
			(102°C)	5	

 Tableau 29 : Conditions opératoires de séparation.

Le tableau 30 regroupe les sous fractions de F₂.

Tableau 30 :	Fractionnement	de la	fraction	F ₂ .

Eluant %	Fractions	Masse (mg)
AcOEt:CH ₃ OH:H ₂ O	f1-20	64.2
(20:2:1)	f ₂₁₋₂₅	112.5
	f ₂₆	153.8
	f ₂₇	100.9
	f ₂₈₋₂₉	36
	f30-31	41
	f32-44	68.9

CHAPITRE 2

Dosage des polyphénols et Activités biologiques

1. Dosage des polyphénols

La teneur en composés phénoliques a été mesurée par la méthode de Singleton *et al.* (1977). 125 μ L de réactif de Folin-Ciocalteau ont été ajoutés à 125 μ L d'extrait. Après 5 min, 1250 μ L d'une solution de carbonate de sodium (2%) ont été additionnés au mélange précédent. Le mélange a été laissé pendant 90 mn à l'obscurité et à température ambiante. L'absorbance a été mesurée à 760 nm.

La teneur en polyphénols totaux a été exprimée en microgramme équivalent d'acide gallique par milligramme d'extrait (µg EqAG/mg d'extrait).

2. Activité antioxydante

2.1. Test du 1,1-diphényl-2-picryl-hydrazyl (DPPH)

Cette activité est déterminée selon la méthode de Blois (1958) avec une légère modification. L'extrait testé a été dilué dans du méthanol à des concentrations différentes. Une solution de DPPH[•] fraîchement préparée à une concentration de 0.15 M a été ajoutée à l'échantillon testé ainsi que les antioxydants standards (BHA, BHT). Le blanc est préparé à partir de 40 µL du méthanol avec 160 µL de DPPH. Après une incubation de 30 min à température ambiante et à l'obscurité, l'absorbance du DPPH[•] pour le blanc et l'extrait étudié a été mesurée par spectrophotométrie à une longueur d'onde de 517 nm. Chacune des expériences a été répliquée trois fois avec un blanc au méthanol. Le pourcentage d'inhibition a été calculé selon l'équation suivante :

Inhibition
$$\% = \frac{A_{controle} - A_{Extrait}}{A_{controle}} \ge 100$$

2.2. Test du radical ABTS*+

Ce test est déterminé selon la méthode de Re (1999) avec une légère modification. Le radical ABTS⁺⁺ est produit par l'oxydation de l'ABTS (7 mM), par le persulfate de potassium (2,4 mM). Ces deux solutions ont été mélangées et conservées 16 heures à l'obscurité et à température ambiante. Le mélange obtenu a été dilué avec l'éthanol afin de parvenir à une absorbance de 0,7 \pm 0.02 à 734 nm. 160 µL de cette solution d'ABTS⁺⁺ ont été ajoutée à 40 µL de différentes concentrations de l'extrait étudié, ainsi que les standards BHA et BHT.

Le blanc est préparé en parallèle suivant le même protocole en remplaçant l'extrait par le méthanol. Après 10 minutes d'incubation, l'absorbance est mesurée à 734 nm en utilisant le lecteur de microplaque à 96 puits. Chaque analyse a été mesurée trois fois. Les différents pourcentages d'inhibition ont été calculés selon la formule suivante :

Inhibition
$$\% = \frac{A_{controle} - A_{Extrait}}{A_{controle}} \ge 100$$

2.3. Test de blanchissement du β-carotène

Cette activité a été déterminée selon le protocole décrit par Marco (1968). 0,5 mg de β carotène a été mélangé avec 200 µL de tween 40, 25 µL de l'acide linoléique et 1 mL de chloroforme. Le solvant a été évaporé à l'aide d'un évaporateur rotatif. 100 mL d'eau oxygénée ont été ajoutés au mélange précédent. 40 µL d'échantillons à tester (extrait ou standards) ont été déposés dans les puits avec 180 µL de la solution du β -carotène. L'absorbance est de suite mesurée à 470 nm puis de nouveau après 2h d'incubation de la plaque en étuve à 45°C. Le BHT, le BHA et le α -tocophérol ont été utilisés comme standards. Le pourcentage de

l'activité antioxydante (% AA) a été calculé selon l'équation suivante :

$$AA \% = \frac{A_{controle} - A_{Extrait}}{A_{controle}} \ge 100$$

2.4. La réduction cuprique (CUPRAC)

Cette activité est déterminée selon la méthode d'Apak *et al.* (2004). Dans une plaque de 96 unités, 40 μ L de l'extrait ont été ajoutés à 60 μ L de tampon acétate d'ammonium (1M, PH=7), 50 μ L de Néocuproine (7,5 mM) et 50 μ L de CuCl₂ (10 mM).

Après une heure du temps, l'absorbance a été enregistrée à 450 nm, à l'aide d'un lecteur de microplaque.

Les résultats de l'activité antioxydante ont été calculés à titre de $A_{0.5}$ (µg/ mL).

3. Activité antibactérienne

3.1. Les souches bactériennes

Les souches bactériennes utilisées dans cette étude sont des souches de références (*Escherichia coli* ATCC 25922 et *Staphylococcus aureus* ATCC 43300) et des souches cliniques (cliniquement isolées au centre hospitalier Benbadis-Constantine) (SH) (*Esherichia coli*,

Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus enterococcus).

3.2. Méthode de diffusion en milieu gélosé (Antibiogramme)

3.2.1. Préparation de l'inoculum

L'inoculum est préparé à partir d'une culture pure de 18 à 24 heures, cultivée sur milieu d'isolement et incubée à 37°C. Deux colonies de chaque bactérie, sont ensuite prélevées à l'aide d'une anse stérile et dispersées dans 10 ml de l'eau physiologique stérile.

3.2.2. Ensemencement

Le milieu MH gélosé liquide a été rempli en boîtes de Pétri (20 ml par boîte), et laissé à refroidir. 1 à 2 millilitres de chaque suspension bactérienne sont distribués sur toute la surface des boites gélosées de Mueller-Hinton. Les boites sont laissées pendant 15 mn à la température du laboratoire.

3.2.3. Incubation

Les disques de 6 mm imprégnés par les extraits à tester (20 μ L) sont déposés à l'aide d'une pince stérile sur la gélose MH (6 disques par boîte). Des disques imprégnés d'ampicilline (témoin positif) (10 μ g/mL), ont été aussi déposés sur la surface de la gélose MH. Après 20 minutes de pré-diffusion des solutions, les boîtes de Pétri sont incubées à 37°C pendant 18 à 24 h. Après incubation, les diamètres d'inhibition autour des disques ont été mesurés à l'aide d'un pied de coulisse ou d'une règle en (mm).

3.3. Détermination de la concentration minimale inhibitrice (CMI)

3.3.1. Préparation de l'inoculum

0.1 mL (*Esherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes, Klebsiella pneumonia*) et 0,3 mL (*Staphylococcus aureus et Streptococcus enterococcus*) de la culture de 18 heures ont été repiqués dans 10 mL de bouillon Coeur cervelle (BCC). Cette culture est ensuite placée à l'étuve à 37°C pendant 3 à 5 heures, jusqu'à l'apparition d'une légère opalescence (environ 5 x 10⁷ bactéries/mL).

3.3.2. Préparation de la gamme de concentration des extraits

La solution mère a été préparée en solubilisant 20 mg de chaque extrait dans une solution de 10 mL éthanol (2000 μ g/mL). A partir de cette solution, la 2^{eme} concentration a été préparée par dilution au 1/2 et ainsi de suite jusqu'à arriver à 20 μ g/mL (1280, 640, 320, 160, 80, 40, 20 μ g/mL). Deux millilitres de chaque dilution de la fraction, sont ajoutés à 18 mL de gélose M-H. Ces boites sont laissées sur la paillasse jusqu'à la solidification de la gélose.

Après solidification, l'inoculation bactérienne des géloses M-H contenant la fraction et le témoin, est effectué en surface sous forme de stries à l'aide d'une anse de platine. Enfin, les boites sont incubées 18 heures à 37 °C.

4. Activité photoprotectrice

4.1. Détermination du facteur de protection solaire (FPS)

Le FPS *in vitro* est déterminé selon la méthode spectrophotométrique de Mansur *et al.* (1986).

Les échantillons (extrait et standards) ont été dilués dans l'éthanol à une concentration finale de 2 μ g/mL. Les crèmes Nivea et Vichy ont été utilisés comme standards. L'absorbance est mesuré dans l'intervalle de 290 à 320 chaque 5 nm (UV-B), et la valeur du SPF est calculé par l'application de l'équation de Mansur *et al* (1986).

SPF = CF x
$$\sum_{290}^{320} EE(\lambda) \times I(\lambda) \times Abs(\lambda)$$

5. Analyses statistiques

Les résultats de tous les tests sont exprimés en moyennes \pm SD d'analyses en trois essais. Les valeurs de CI₅₀ sont calculées par la méthode de régression linéaire à partir de la courbe [% inhibition = f (concentrations)], les comparaisons multiples et la détermination des taux de signification sont faites par "student's t-test" et le test ANOVA univarié. les différences sont considérées statistiquement significatives au seuil de 0,05.

PARTIE 3

RÉSULTATS ET DISCUSSION

CHAPITRE 1

Détermination structurale des composés isolés

1. Détermination structurale des composés isolés de Salsola tetragona Del.

L'étude phytochimique réalisée sur les parties aériennes de l'espèce *Salsola tetragona* a conduit à l'isolement de 11 composés dont 7 isolés à partir de l'extrait butanolique (**St2**, **St3**, **St4**, **St6**, **St7**, **St8**, **St9**) et 4 à partir de l'extrait chloroformique (**St1**, **St5**, **St10**, **St11**).

Les structures des produits isolés ont été élucidées par des méthodes spectrales 1D (RMN ¹H et ¹³C) et 2D (COSY, NOESY, ROESY, HSQC, HMBC) et par comparaison avec les données de la littérature.

1.1. Détermination structurale du composé St1

Le spectre IR montre des bandes d'absorption à 3423.07 cm⁻¹ (hydroxyle), 1715.68 cm⁻¹ (fonction γ -lactone α,β insaturée) et à 1637.27 cm⁻¹ (double liaison) (Figure 35)..

Figure 35 : Spectre IR du composé St1

Le spectre UV montre une bande d'absorption maximale à 217 nm suggère la présence d'un système de doubles liaisons conjuguées. (Figure 36).

Figure 36 : Spectre UV du composé St1 dans le MeOH.

Analyse du spectre de RMN ¹H

A partir du spectre de RMN ¹H (500 MHz, Acétone) (Figure 37) du composé **St1** on peut distinguer :

- deux singulets intégrants chacun pour 3H à 0.83 et 0.93 ppm correspondant à deux groupes méthyles.
- deux doublets de doublets déblindés à 4.86 et 5.07 ppm qui peuvent correspondre aux protons d'un groupement méthylène oxygéné.
- un singulet à 5.88 ppm correspondant à un proton vinylique.
- un triplet de triplet situé dans la zone des protons portés par un carbone hydroxylé (3.5, *tt*, J=10.09-4.7 Hz).
- un massif de protons entre 1.0 et 2.85 ppm correspondant aux -CH et -CH₂.

Figure 37 : Spectre de RMN ¹H (500 MHz, Acétone) du composé St1.

Analyse du spectre de RMN ¹³C

Le spectre de RMN ¹³C (125 MHz, Acétone) (Figure 38) du composé **St1** révèle la présence

de 23 carbones parmi lesquels nous pouvons distinguer les carbones caractéristiques suivants :

- deux carbones méthyliques résonants entre 11.7 et 15.3 ppm.
- un massif de carbones entre 21.1-50.8 ppm attribuables aux CH₂, CH et Cq quaternaires.
- trois carbones oxygénés à 70.0, 73.0 et 84.3 ppm.
- un carbone de carbonyle à 173.5 ppm.
- deux carbones vinyliques à 175.4 et 116.9 ppm.

Figure 38 : Spectre de RMN ¹³C (125 MHz, Acétone) du composé St1.

Ces données (UV, IR, RMN ¹H, ¹³C) suggèrent la présence d'un triterpène de type cardénolide (Figure 39).

Figure 39 : Structure de cardénolide.

Analyse du spectre COSY

L'analyse des corrélations observées sur le spectre COSY (Figures 40-42) nous a permis de donner les informations suivantes :

- le proton H-3 (δ_H 3.5, *tt*, 10.9, 4.7) corrèle avec les deux protons H_{a,b}-2 [δ_{Ha} 1.38 (*m*), δ_{Hb} 1.74(*m*)] et H_{a,b}-4 [δ_{Ha} 1.27 (*m*), δ_{Hb} 1.54 (*m*)].
- D'une part les deux protons géminés H_a-2 et H_b-2 corrèlent à leur tour avec les 2 protons H_{a,b}-1 [δ_{Ha} 1.01 (m), δ_{Hb} 1.73 (td, 17.9- 5.1 Hz)].
- D'autre part les 2 protons $H_{a,b}$ -4 couplent avec le proton H-5 δ_H 1.12 (*td*, 12.5-4.3 Hz).
- le proton à δ_H 1.62 (H-8, *td*, 12.1-3.6 Hz) présente deux corrélations avec les protons H_{a,b}-7 [δ_{Ha}
 2.1 (*m*), δ_{Hb} 1.11 (*m*)].
- les protons H_{a,b}-11 corrèlent avec les protons H-12 (δ_H 1,5, m) et H-9 (δ_H 1.0, td, 9.8, 4.0 Hz).
- Nous observons également des corrélations entre les protons H_{a,b}-7, H-5 avec des protons H_{a,b}-6 [δ_H 1.25 (*m*) 1.32 (*m*)].
- Dans la zone des protons déblindés nous distinguons les corrélations entre les 2 protons géminés H_{a,b}-21 et H-22.

Figure 40 : Corrélations ${}^{2}J_{H-H}$ observées sur le spectre COSY du composé St1.

Figure 41 : Spectre COSY du composé St1.

Figure 42 : Spectre COSY du composé St1.

Analyse du spectre HSQC

L'analyse du spectre HSQC (Figures 43-44) permet d'attribuer les carbones portant les protons déjà assignés à l'aide de l'analyse COSY et qui sont : C-1 (δ_C 37.1), C-2 (δ_C 31.4), C-3 (δ_C 70.0) C-4 (δ_C 38.2), C-5 (δ_C 44.5), C-6 (δ_C 29.0), C-7 (δ_C 27.5), C-8 (δ_C 41.4), C-9 (δ_C 49.8), C-11 (δ_C 21.1), C-12 (δ_C 39.4), C-21 (δ_C 73.0) et C-22 (δ_C 116.9) (Tableau 31).

Figure 43 : Spectre HSQC du composé St1.

Figure 44 : Spectre HSQC du composé St1.

Analyse du spectre HMBC

Parmi les corrélations observées sur le spectre HMBC (Figures 45-49) nous pouvons donner les plus importantes pour identifier la structure de **St1** :

- $le carbone C-3 (\delta_C 70.0) présente trois corrélations avec des protons déjà identifiés H_a-1, H_b-2 et H_b-4.$
- au niveau du carbone C-5 nous observons une corrélation avec un singulet d'intensité 3H à δ_H
 0.83 (CH₃-19) dont le carbone attribué par l'analyse du spectre HSQC (Figure 43) résonne à δ_C
 11.7.
- les protons du méthyle CH₃-19 corrèlent avec les carbones C-1, C-9 (attribué grâce à l'analyse du spectre HSQC) et un carbone quaternaire situé à 35.6 ppm attribuable au carbone C-10.
- le carbone C-9 corrèle avec un proton situé à 1.62 ppm attribuable au H-8. Ce dernier corrèle avec deux carbones dont un attribué au carbone CH₂-7 et un quaternaire situé à 84.3 ppm attribuable au Cq-14.

Figure 45 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 3, 8 et 19 observés sur le spectre HMBC.

- le carbone Cq-14 présente une corrélation avec les protons d'un méthyle d'intensité 3H attribuable au CH₃-18 (δ_H 0.93) et deux autres corrélations avec deux protons (δ_H 1.72, *m*; 2.14, *m*) attribuables aux H_b-15 et H_a-16. Le spectre HSQC permet d'attribuer les carbones C-15 (δ_C 32.5) et C-16 (δ_C 26.6).
- les protons du méthyle CH₃-18 nous indiquent le déplacement chimique du carbone C-12 (δ_C 39.4), du carbone quaternaire C-13 (δ_C 49.5), du carbone C-17 (δ_C 50.8) et du carbone C-14 (δ_C 84.3), grâce aux quatre corrélations HMBC.
- le proton H-17 présente six corrélations dont quatre avec des carbones déjà identifiés C-13, C-14, C-15 et C-16, et les carbones de C-20/C-21 et C-22.

Figure 46 : Corrélations ${}^{2}J_{\text{H-C}}$ et ${}^{3}J_{\text{H-C}}$ des protons 15, 16, 17 et 18 observés sur le spectre HMBC.

Figure 47 : Spectre HMBC du composé St1.

Figure 48 : Spectre HMBC du composé St1.

Figure 49 : Spectre HMBC du composé St1.

Analyse du spectre NOESY

La stéréochimie finale du composé **St1** est mise en évidence par les observations des effets overhauser (nOe) à travers l'espace obtenues sur le spectre NOESY (Figures 50, 51) :

- l'orientation α-axiale des protons H-3 et H-9 est déterminée par les effets nOe observés entre H-3/H-5 et H-5/H-9.
- l'orientation β-axiale du méthyle CH₃-19 est confirmée par des effets nOe observés entre CH₃-19/H-2a et CH₃-19/H-8.
- la configuration β-axiale du méthyle CH₃-18 est déduite par les effets nOe avec H-8, H-22 et H-21.
- l'orientation α -équatoriale du proton H-17 est confirmée par son couplage avec H-12 α -équatoriale.

Figure 50 : Effets nOe observés sur le spectre NOESY des protons du composé St1.

Figure 51 : Spectre NOESY du composé St1.

N°	St1 (Acétone)		Elgamal et al., 1999 (CD ₃ OD)		
	$\delta_{\rm H}$ (<i>m</i> , <i>J</i> en Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (<i>m</i> , <i>J</i> en Hz)	$\delta_{\rm C}$	
1	1 01 (m)	37.1	1 10	38.3	
-	1.73 (m)	57.1	1.84	50.5	
2	1.38 (m)	31.4	1.47	32.1	
_	1.74 (<i>m</i>)		1.85		
3	3.5 (<i>tt</i> , 10.9-4.7)	70.0	3.6	71.8	
4	1.27 (<i>m</i>)	38.2	1.36	38.8	
	1.54 (<i>m</i>)		1.64		
5	1.12 (<i>td</i> , 12.5-4.3)	44.5	1.21	45.8	
6	1.25 (<i>m</i>)	29	1.44	30.0	
	1.32 (<i>m</i>)		1.35		
7	1.11 (<i>m</i>)	27.5	1.20	28.7	
	2.1 (<i>m</i>)		2.13		
8	1.62 (<i>td</i> , 12.1-3.6)	41.4	1.68	42.6	
9	1.0 (<i>td</i> , 9.8-4.0)	49.8	1.07	51.1	
10	-	35.6	-	36.9	
11	1.30 (<i>m</i>)	21.1	1.38	22.3	
	1.53 (<i>m</i>)		1.63		
12	1.5 (<i>m</i>)	39.4	1.56	40.9	
13	-	49.5	-	51.0	
14	-	84.3	-	86.3	
15	1.72 (<i>m</i>)	32.5	1.79	33.4	
	2.13 (m)		2.2		
16	1.90(m)	26.6	1.95	28.0	
	2.14 (m)	50.0	2.23	52.1	
17	2.85 (d,16.4)	50.8	2.91	52.1	
18	0.93(s)	15.3	0.97	16.4	
19	0.83(s)	175.4	0.91	12.6	
20		1/5.4	-	1/8.4	
21	4.86 (dd, 18.4-1.7)	73.0	5.01	15.3	
	5.07(aa, 18.4-1.4)	116.0	5.11	1170	
22	5.88 (<i>s</i>)	110.9	5.98	11/.8	
23	-	173.5	-	177.2	

Tableau 31 : Déplacements chimiques en RMN ¹H (500 MHz) et RMN ¹³C (125 MHz) du composé **St1** dans l'acétone.

L'ensemble des données spectrales nous permettent d'identifier le composé **St1** comme l'uzarigenine (Figure 52) précédemment isolé de *Nerium oleander* L. (Zaki *et al.*, 2014), de *N. indicum* Mill (Wang *et al.*, 2009) et de *Asclepias curassavica* (Singh *et al.*, 1969).

Figure 52 : Structure de l'uzarigenine (St1).

1.2. Détermination structurale du composé St2

Les spectres de RMN ¹H (500 MHz, CD₃OD) et ¹³C (125 MHz, CD₃OD) (Figure 53) du composé **St2** présentent les mêmes signaux que **St1**, auxquels s'ajoutent des signaux caractéristiques d'une unité osidique, dont le proton et le carbone anomérique résonnent respectivement à $\delta_{\rm H}$ 4.41 (*d*, *J*=7.8 Hz) et $\delta_{\rm C}$ 102.3 (Tableau 32).

Figure 53 : Spectres de RMN ¹H (500 MHz, CD₃OD) et ¹³C (125 MHz, CD₃OD) du composé St2.

L'interprétation des corrélations observées sur le spectre COSY (Figure 54) à partir du proton anomérique situé à 4.41 ppm (d, J= 7.8 Hz) permet de repérer le proton H-2' par la corrélation H-1'/H-2' à 3.16 ppm (t, J= 8.9 Hz), puis le proton H-3' situé à 3.37 ppm par la corrélation H-2'/H-3', ensuite la corrélation H-3'/H-4' permet de localiser ce dernier sous forme d'un triplet à 3.29 ppm (t, J=9.9 Hz). Le proton H-4' corrèle avec un proton situé à 3.28 ppm (m) attribuable au proton H-5' qui présente deux corrélations avec deux protons géminés résonnant à 3.88 ppm (d, J=12.1 Hz) et à 3.68 ppm (dd, J=11.7-4.8 Hz) attribuables aux protons H-6'. Les valeurs élevées des constantes de couplage ${}^{3}J_{\text{H1'-H2'}}$, ${}^{3}J_{\text{H2'-H3'}}$, ${}^{3}J_{\text{H3'-H4'}}$, ${}^{3}J_{\text{H4'-H5'}}$, ${}^{3}J_{\text{H5'-H6'}} > 7$ Hz indiquent que tous les protons sont transdiaxiaux suggérant qu'il s'agit d'un β -D-glucopyranose.

Figure 54 : Spectre COSY de la partie osidique du composé St2.

Les déplacements chimiques des carbones correspondants sont attribués par analyse du spectre HSQC (Figure 55) et sont en accord avec un β -D-glucopyranose (Bock *et al.*, 1983; Agrawal, 1992).

Figure 55 : Spectre HSQC du composé St2.

La corrélation ${}^{3}J_{\text{H-C}}$ observée sur le spectre HMBC (Figure 56) entre le proton anomérique H-1' du glucose et le carbone C-3 de **St2** montre que ce sucre est attaché à l'hydroxyle en position 3 de la génine.

Figure 56 : Spectre HMBC du composé St2.

N°	St2 (CD ₃ OD)		Elgamal et al., 1999 (CD ₃ OD)		
	$\delta_{\rm H}$ (m, J en Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (m, J en Hz)	δ _C	
1	1.05 (<i>td</i> , 7.6-3.7)	38.3	1.10	38.3	
	1.79 (<i>dl</i> 13.6)		1.85		
2	1.55 (<i>m</i>)	30.4	1.97	30.4	
	1.9 (<i>dd</i> , 8.0-4.5)		1.62		
3	3.74 (<i>m</i>)	79.2	3.8	79.2	
4	1.76 (<i>m</i>)	35.3	1.82	35.3	
	1.36 (<i>m</i>)		1.41		
5	1.13 (<i>m</i>)	45.6	1.2	45.6	
6	1.41(<i>dd</i> , 15.9-2.7)	30.0	1.47	30.0	
	1.32 (<i>m</i>)		1.38		
7	1.14 (<i>m</i>)	28.8	1.2	28.8	
	2.08 (<i>dd</i> , 10.1-2.9)		2.13		
8	1.62 (<i>td</i> , 11.8-3.1)	42.5	1.68	42.6	
9	1.01 (<i>td</i> , 11.7-3.5)	51.1	1.07	51.1	
10	-	37.0	-	37.0	
11	1.32 (m)	22.3	1.62	22.2	
	1.56 (<i>m</i>)		1.38		
12	1.52 (<i>td</i> , 19.1-3.5)	40.8	1.56	40.9	
13	-	51.0	-	51.0	
14	_	86.3	-	86.3	
15	1.73 (<i>m</i>)	33.3	2.2	33.4	
	2.2 (<i>dd</i> , 9.4-3.9)		1.8		
16	1.88 (<i>m</i>)	28.0	2.23	28.0	
			1.95		
17	2.85(<i>dd</i> , 9.2-4.9)	52.0	2.9	52.1	
18	0.87 (s)	16.4	0.97	16.4	
19	0.91 (s)	12.6	0.92	12.6	
20	-	178.4	-	178.4	
21	4.94 (<i>dd</i> , 18.4-1.6)	75.3	5.00	75.4	
	5.06 (<i>dd</i> , 18.4-1.4)		5.12		
22	5.92 (s)	117.8	5.98	117.8	
23	-	177.3	-	177.3	
Glc				1	
1'	4.41 (<i>d</i> , 7.8)	102.3	4.47 (7.8)	102.3	
2'	3.16 (<i>t</i> , 8.9)	75.1	3.22 (8.8)	75.2	
3'	3.37 <i>t</i>	78.1	3,43 (8.8)	78.1	
4'	3.29 (<i>t</i> , 9.9)	71.7	3,35 (8.8)	71.7	
5'	3.28 (<i>m</i>)	77.9	3.35 (5.1-1.5)	77.9	
6'a	3.88 (<i>d</i> , 12.1)	62.8	3.73 (11.9-5.1)	62.7	
6'b	3.68 (<i>dd</i> , 11.7-4.8)		3.93 (11.9-1.5)		

Tableau 32 : Déplacements chimiques en RMN ¹H (500 MHz) et RMN ¹³C (125 MHz) du composé **St2** dans CD₃OD.

La structure finale du composé **St2** est établie comme le 3-*O*-β-D-glucopyranoside uzarigenine (desglucouzarine) (Figure 57), isolé précédemment de *Asclepias curassavica* (*Asclepiadaceae*) (Li *et al.*, 2009), de *Calotropis procera* (*Asclepiadaceae*) (Elgamal *et al.*, 1999) et de *Pergularia tomentosa* L (Hamed *et al.*, 2006).

Figure 57 : Structure du composé St2.

1.3.Détermination structurale du composé St3

Le spectre de masse haute résolution obtenu par HR-ESI-MS (figure 58) montre un ion pseudomoléculaire à m/z 575.2829 [M+Na]⁺ (calculé 575.2832) qui correspond à la formule brute C₂₉H₄₄O₁₀.

Figure 58 : Spectre de masse HR-ESI-MS du composé St3.

La comparaison des spectres de RMN ¹H (500 MHz, CD₃OD) et ¹³C (125 MHz, CD₃OD) (Figure 59) du composé **St3** avec celui du **St1** montre une grande similitude entre les deux spectres. Cependant, nous observons quelques différences :

• Sur le spectre RMN ¹H :

– la présence des signaux caractéristiques d'une unité osidique dont le proton anomérique résonne à 4.78 (d, J=7.9 Hz).

- la perte du signal du méthyle.
- l'apparition de deux doublets déblindés correspondant à des protons oxygénés dont l'un résonne à 3.74 (*d*, 11.7 Hz) et l'autre à 3.88 (*d*, 11.7 Hz) correspondant à l'alcool primaire en C-19.
 - Sur le spectre RMN 13 C :

– la présence de six signaux dans la zones des carbones osidiques (δ_C de 63.3 à 99.8 ppm).

– la perte du signal du méthyle (C-19).

- la présence d'un carbone oxygéné situé à 59.9 ppm.

Figure 59 : Spectres de RMN ¹H (500 MHz, CD₃OD) et ¹³C (125 MHz, CD₃OD) du composé St3.

Les corrélations observées sur le spectre HMBC (Figures 60, 61) entre les protons du méthylène oxygéné résonnant à $\delta_{\rm H}$ 3.74 (*d*, *J*=11.7) et 3.88 (*d*, *J*=11.7) et les carbones C-1 (δ c 32.8), C-5 (δ c 45.9), C-9 (δ c 51.5) et C-10 (δ c 40.6) permettent de positionner l'hydroxyle en position 19 de la molécule. Le spectre HSQC (Figures 62, 63) permet de repérer son carbone à 59.9 ppm.

Figure 60 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 19 observés sur le spectre HMBC.

Figure 61 : Spectre HMBC du composé St3.

Figure 62 : Spectre HSQC du composé St3.

Figure 63 : Spectre HSQC du composé St3.

La stéréochimie des carbones du composé **St3** est déterminée par les corrélations observées sur le spectre NOESY (Figures 64-66) :

- la configuration α-axiale du proton H-3 et déterminée par les effets nOe observés avec le proton H-5 et le proton H-1' du sucre.
- des effets nOe observés entre H-19/H-8, H-19/H-2 confirment leur orientation β -axiale.
- l'orientation β-axial du proton CH₃-18 est déterminée par l'effet nOe entre ce proton et les protons H-8, H-21 et H-22.
- l'orientation α-équatoriale du proton H-17 est confirmée par son couplage avec le proton H-12a.

Figure 64 : Effets nOe observés sur le spectre NOESY des protons du composé St3.

Figure 65 : Spectre NOESY du composé St3.

Figure 66 : Spectre NOESY du composé St3.

L'analyse du spectre COSY (Figure 67) permet d'attribuer tous les protons d'un hexose. Le proton H-1' (d, J=7.9 Hz) corrèle avec le proton H-2' ($\delta_{\rm H}$ 3.28, dd, J= 7.9-3.0 Hz), lui-même couplé au proton H-3' ($\delta_{\rm H}$ 4.06, t, J=3.0 Hz). La grande valeur de la constante de couplage $J_{\rm H2'-H3'}$ =7.9 Hz indique que le proton H-2' est en position axiale alors que la faible valeur de la constante de couplage $J_{\rm H3'-H4'}$ =3.0 Hz révèle une position équatoriale du proton H-3'. Le proton H-4', couplé aux protons H-3' et H-5', résonne sous la forme de doublet de doublets à 3.48 ppm dont la constante de couplage (J= 9.5-3.0 Hz) atteste d'une position transdiaxiale des protons H-4'et H-5'. Le proton H-5' couple avec les deux protons géminés H-6'a (dd, J= 11.3-5.7 Hz) et H-6b' (dd, J= 11.3-1.8 Hz).

Figure 67 : Spectre COSY de la partie osidique du composé St3.

Cet hexose est un β -D-allose, la configuration anomérique β a été confirmée également par l'observation sur le spectre NOESY (Figure 68) des effets nOe entre les protons H1'/H-3 et H-1'/H-5'. Les valeurs des déplacements chimiques des carbones de ce hexose (Tableau 33), attribuées par analyse du spectre HSQC sont en accord avec celles d'un allose (Bock *et al.*, 1983; Agrawal, 1992).

Figure 68 : Spectre NOESY de la partie osidique du composé St3.

La corrélation ${}^{3}J_{\text{H-C}}$ observée sur le spectre HMBC (Figure 69) entre le proton anomèrique H-1' du sucre et le carbone C-3 de la génine montre que ce sucre est attaché à l'hydroxyle en position 3, ceci est confirmé par l'effet nOe (Figure 68) observé entre le proton H-1' et le proton H-3 de la génine.

Figure 69 : Spectre HMBC de la partie osidique du composé St3.

\mathbf{N}°	St3 (CD ₃ OD)				
	$\delta_{\rm H}$ (m, J en Hz)	$\delta_{\rm C}$		$\delta_{\rm H}$ (m, J en Hz)	δ _C
1	0.81 (<i>td</i> , 13.6-3.5)	32.8	16	2.16 (<i>m</i>), 1.90 (<i>m</i>)	28.1
	2.34 (<i>dt</i> , 13.3-3.5)				
2	1.57 (<i>dm</i> , 14.9)	30.9	17	2.85 (<i>dd</i> , 9.5-5.8)	52.2
	1.91 (<i>m</i>)				
3	3.78 (<i>m</i>)	78.9	18	0.95(s)	16.7
4	1.44 (<i>m</i>)	35.9	19	3.74 (<i>d</i> , 11.7)	59.9
	1.82 (<i>dd</i> , 11.9-3.4)			3.88 (<i>d</i> , 11.7)	
5	1.24 (<i>m</i>)	45.9	20	-	178.5
6	1.24 (<i>m</i>), 1.34 (<i>m</i>)	29.6	21	4.95 (<i>dd</i> , 18.4-1.6)	75.3
				5.07 (<i>dd</i> , 18.4-1.4)	
7	2.10 (<i>dd</i> , 12.3-3.1), 1.15 (<i>m</i>)	28.8	22	5.93 (s)	117.8
8	1.82 (<i>td</i> , 11.9-3.4)	43.1	23	-	176.9
9	1.03 (<i>td</i> , 13.5-4.5)	51.5	Allo		
10	-	40.6	1'	4.78 (<i>d</i> , 7.9)	99.8
11	1.65 (<i>m</i>)	24.1	2'	3.28 (<i>dd</i> , 7.9-3.0)	72.4
12	1.41 (<i>td</i> , 13.6-4.3)	41.5	3'	4.06 (<i>t</i> , 3.0)	73.1
	1.53 (<i>dt</i> , 13.5-3.0)				
13	-	51.2	4'	3.48 (<i>dd</i> , 9.5-3.0)	69.1
14	_	86.3	5'	3.69 (<i>m</i>)	75.5
15	1.73 (<i>dd</i> , 11.6-8.5), 2.14 (m)	33.5	6'a	3.66 (<i>dd</i> , 11.3-5.7)	63.3
			6'b	3.85 (<i>dd</i> , 11.3-1.8)	

Tableau 33 : Déplacements chimiques en RMN ¹H (500 MHz) et RMN ¹³C (125 MHz) du composé **St3** dans CD₃OD.

L'ensemble de nos données RMN nous permettent d'attribuer pour le composé **St3** une structure nouvelle (Figure 70) le 3-O- β -D-allopyranosylcoroglaucigenine (Salsotetragonine).

Figure 70 : Structure du composé St3.

1.4. Détermination structurale du composé St4

En comparant les spectres de RMN ¹H (500 MHz, CD₃OD) des composés **St3** (Figure 59) et **St4** (Figure 71), nous retrouvons tous les signaux caractéristiques du composé **St3** : le signal de méthyle, deux doublets de doublets du groupement méthylène oxygéné, un singulet du proton vinylique, un massif de protons correspondant aux -CH et -CH₂.

La différence entre les deux composés St3 et St4 se situe au niveau du cycle A :

- l'apparition de doublet de doublets de doublet à 4.14 (*ddd*, 12.0, 9.9, 4.1) attribuables au proton oxygéné (H-2).
- la présence d'une unité osidique différente.

L'examen du spectre de RMN ¹³C (125 MHz, CD₃OD) (Figure 71) confirme la grande similitude entre les composés **St3** et **St4**. Leur différence se situe au niveau de la partie osidique et du carbone C-2 ($\delta_{\rm C}$ 70.0).

Figure 71 : Spectres de RMN ¹H (500 MHz, CD₃OD) et ¹³C (125 MHz, CD₃OD) du composé St4.

Les corrélations observées sur le spectre HMBC (Figures 72, 73, 77) entre le proton déblindé H-2 (4.14, *ddd*, J=12.0; 9.9; 4.1 Hz) et les carbones C-1 et C-3 permettent de placer un oxygène en position 2 de la molécule.

Figure 72 : Corrélations HMBC observées sur le cycle A du composé St4.

Figure 73 : Spectre HMBC du composé St4.

Le proton anomérique résonant à 4.51 ppm (*s*) ne couple avec aucun proton sur le spectre COSY (Figure 74), son carbone vicinal C-2' est donc le carbone quaternaire à 92.9 ppm. Le proton H-3' (3.64, *dd*, *J*=6.9-5.2 Hz) corrèle avec les deux protons H-4'. La grande constante de couplage $J_{H3'-}$ H4'= 6.9 Hz indique que le proton H-3' est en position axiale. Le proton H-5' (3.59, *m*) est localisé sur le spectre ROESY (Figure 75) par sa corrélation avec le proton H-1'. Il couple, sur le spectre COSY, avec les deux protons H₂-6'. Cet hexose est un 4-deoxyhexosulose, la configuration du proton anomérique β a été confirmée par l'observation sur le spectre ROESY des effets rOe entre les protons H-1'/H-3' et H-1'/H-5'. Les valeurs des déplacements chimiques des carbones de ce hexose (Tableau 34), attribuées par analyse du spectre HSQC (Figure 76) sont en accord avec celles d'un 4-deoxyhexosulose (Bock *et al.*, 1983; Agrawal, 1992).

Figure 74 : Spectre COSY de la partie osidique du composé St4.

Figure 75 : Spectre ROESY de la partie osidique du composé St4.

Figure 76 : Spectre HSQC de la partie osidique du composé St4.

Le point d'ancrage sur la génine en C-3 est déduit par la présence d'une tache de corrélation entre C-3/H-1' sur le spectre HMBC (Figure 77).

La corrélation ${}^{3}J_{\text{H-C}}$ observée sur le spectre HMBC (Figure 77) entre le carbone C-2' du sucre et le proton H-2 montre que ce sucre est attaché à l'hydroxyle en position 2 de la génine.

Figure 77 : Spectre HMBC de la partie osidique du composé St4.

La stéréochimie des carbones de **St4** est déterminée par des effets rOe observés sur le spectre ROESY (Figures 75, 78-80) :

- La position β-axiale du proton H-19 est confirmée par les effets rOe observés entre ce proton et les protons H-2 et H-8.
- L'orientation β-axiale de proton H-18 est déterminée par les effets rOe entre H-18/H-21 et H18/H-22
- Les effets rOe observés entre les protons H-3 et H-5 confirment l'orientation α-axiale de ces deux protons.
- l'orientation α -axiale de H-17 est confirmée par des effets rOe observés entre H-17/H-12.

Figure 78 : Effets rOe observés sur le spectre ROESY des protons du composé St4.

Figure 79 : Spectre ROESY du composé St4.

Figure 80 : Spectre ROESY du composé St4.

N°	St4 (CD₃OD)		Hamed <i>et al.</i> , 2006 (CD ₃ OD)		
	$\delta_{\rm H}$ (m, J en Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (m, J en Hz)	δ _C	
1	2.42 (<i>dd</i> , 12.3-4.2)	37.5	-	37.2	
	0.89 (<i>t</i> , 12.2)				
2	4.14 (<i>ddd</i> , 12.0, 9.9, 4.1)	70.0	-	69.7	
3	4.01 (td, 10.0-6.2)	73.8	-	73.3	
4	1.54 (<i>m</i>)	33.8	-	33.6	
5	1.38 (<i>m</i>)	46.2	-	47.1	
6	1.4 (<i>m</i>)	28.5	-	28.3	
	1.21 (<i>td</i> , 14.1-3.1)				
7	2.08 (<i>m</i>)	28.6	-		
	1.15 (<i>m</i>)			28.1	
8	1.78 (td, 9.0-2.1)	42.5	-	41.3	
9	1.13 (<i>td</i> , 12.0-3.0)	51.4	-	46.0	
10	-	42.6	-	41.9	
11	1.63 (<i>m</i>)	24.1	-	22.5	
12	1.52 (<i>m</i>)	41.3	-	40.9	
	1.43 (<i>m</i>)				
13	_	51.1	-	50.7	
14	_	86.4	-	86.0	
15	1.74 (<i>m</i>)	33.3	-	32.3	
	2.16 (<i>m</i>)				
16	1.18 (<i>m</i>), 1.89 (<i>m</i>)	28.0	-	27.5	
17	2.85 (<i>dd</i> , 9.5-5.7)	52.1	2.86 (<i>dd</i> , 5.7-3.1)	51.8	
18	0.92(s)	16.5	0.96 (s)	15.9	
19	3.9 (<i>d</i> , 11.7)	60.5	3.90 (<i>d</i> , 11.4)	60.0	
	3.63 (<i>d</i> , 12.1)		3.64 (<i>d</i> , 11.4)		
20	-	178.5	-	178.1	
21	4.94 (<i>dd</i> , 18.4-1.7)	75.4	5.00 (<i>dd</i> , 18.4-1.5)		
	5.06 (<i>dd</i> , 18.4-1.7)		4.90 (<i>dd</i> , 18.4-1.5)	75.3	
22	5.92 (<i>t</i> , 1.6)	117.8	5.93 (<i>d</i> , 1.5)	117.9	
23	-	177.3	-	177.2	
	4-deoxyhexosulose			-	
1'	4.51 (s)	97.5	4.51(s)	97.1	
2'	-	92.9	-	92.8	
3'	3.64 (<i>dd</i> , 6.9-5.2)	74.1	3.61 (<i>t</i> , 2.0)	73.7	
4'	1.75 <i>(m)</i>	34.1	1.76 (<i>m</i>)	33.6	
	1.66 (<i>m</i>)		1.68 (<i>m</i>)		
5'	3.59 (<i>m</i>)	74.1	3.65 (<i>m</i>)	70.7	
6'	3.61 (<i>m</i>)	65.7	3.63 (<i>m</i>), 3.6 (<i>m</i>)	65.3	

Tableau 34 : Déplacements chimiques en RMN ¹H (500 MHz) et RMN ¹³C (125 MHz) du composé **St4** dans CD₃OD.

La structure du composé **St4** est établie comme le 12-dehydroxyghalakinoside (Figure 81) isolé précédemment de *Pergularia tomentosa* (Apocynaceae) (Hamed *et al.*, 2006).

Figure 81 : Structure du composé St4.

1.5. Détermination structurale du composé St5

Sur le spectre de RMN ¹H (500 MHz, DMSO) (Figure 82) et ¹³C (125 MHz, DMSO) (Figure 83) de **St5**, comparativement aux $\delta_{\rm H}$ et $\delta_{\rm C}$ de **St4**, on observe un signal supplémentaire déblindé à $\delta_{\rm H}$ 9.97 (*s*) et $\delta_{\rm C}$ 209.3 attribuable à un aldéhyde (CHO). Le proton à $\delta_{\rm H}$ 9.97 corrèle sur le spectre HMBC (Figure 84) avec le carbone déblindé C-10 ($\delta_{\rm C}$ 52.7), suggérant que la fonction aldéhyde est positionnée sur le carbone C-10.

Figure 82 : Spectre de RMN ¹H (500 MHz, DMSO) du composé St5.

Figure 83 : Spectre de RMN ¹³C (125 MHz, DMSO) du composé St5.

Figure 84 : Spectre HMBC du composé St5.

Sur le spectre COSY (Figure 85), aucune corrélation n'est observée avec le proton H-1'. Cette donnée traduit l'absence de proton en position 2' (Tableau 35). Par ailleurs le spectre HMBC (Figure 86) montre une tache de corrélation entre le carbone C-2' (90.7 ppm) et le proton H-1' (4.53 ppm). Le proton H-3' ($\delta_{\rm H}$ 3.46, *sl*) corrèle sur le spectre COSY avec le proton H-4' ($\delta_{\rm H}$ 1.54, *m*) qui à son tour corrèle avec H-5' ($\delta_{\rm H}$ 3.95, *m*). Ce dernier couple avec le proton H-6' (1.1, *d*, *J*=6.2).

Les déplacements chimiques des carbones de l'hexose attribués par l'analyse du spectre HSQC (Figures 87-88) et les valeurs des constantes de couplage entre les protons (Tableau 35) indiquent qu'il s'agit du 4,6-dideoxy- β -hexosone (Bock *et al.*, 1983; Agrawal, 1992).

L'orientation β -axiale du proton H-1' est confirmée par l'effet nOe observé entre les protons H-5'ax/H-1' (Figure 89).

La corrélation ${}^{3}J_{\text{H-C}}$ observée sur le spectre HMBC (Figure 86) entre le proton anomérique H-1' et le carbone C-3 montre que ce sucre est attaché à l'hydroxyle en position 3.

Les déplacements chimiques du carbone C-3' dans les composés **St4** et **St5** ainsi que celle du proton H-5' et la multiplicité de H-3' indiquent une inversion de la configuration de C-3' dans le **St5**.

Figure 85 : Spectre COSY de la partie osidique du composé St5.

Figure 86 : Spectre HMBC de la partie osidique du composé St5.

Figure 87 : Spectre HSQC de la partie osidique du composé St5.

Figure 88 : Spectre HSQC de la partie osidique du composé St5.

Figure 89 : Spectre NOESY de la partie osidique du composé St5.

N°	St5 (DMSO)				
	$\delta_{\rm H}$ (m, J en Hz)	$\delta_{\rm C}$		$\delta_{\rm H}$ (m, J en Hz)	$\delta_{\rm C}$
1	1.01 (<i>t</i> , 12.4)	35.8	16	1.78 (<i>m</i>)	26.6
	2.23 (dd, 12.6-4.4)			2.0 (<i>m</i>)	
2	3,7 (<i>td</i> , 9.9-4.6)	68.8	17	2.72 (<i>dd</i> , 9.3-5.7)	50.4
3	3,78 (<i>td</i> , 11.3-4.1)	71.6	18	0.7 (s)	15.9
4	1.22 (<i>m</i>)	33.4	19	9.97 (s)	209.3
	1.6 (<i>m</i>)				
5	1.5 (<i>m</i>)	42.8	20	-	176.6
6	1.56 (<i>m</i>)	27.5	21	4.88 (<i>dd</i> , 18.4-1.6)	73.6
	1.89 (<i>d</i> , 3.1)			4.95 (<i>dd</i> , 18.4-1.6)	
7	1.1 (<i>m</i>)	27.6	22	5.90 (s)	116.8
	2.15 (<i>dl</i> , 10.9)				
8	1.39 (<i>m</i>)	42.2	23	-	174.3
9	1.38 (<i>m</i>)	47.8		4,6-dideoxy hexosone	
10	-	52.7	1'	4.53 (s)	94.2
11	1.58 (<i>m</i>)	21.8	2'	-	90.7
12	1.29 (<i>m</i>)	38.8	3'	3.46 (<i>sl</i>)	70.1
	1.37 (<i>m</i>)				
13	-	49.5	4'	1.54 (<i>m</i>)	38.0
14	-	83.7	5'	3.95 (<i>m</i>)	65.7
15	1.56 (<i>m</i>)	31.9	6'	1.1 (<i>d</i> , 6.2)	21.4
	1.93 (<i>m</i>)				

Tableau 35 : Déplacements chimiques en RMN 1 H (500 MHz) et RMN 13 C (125 MHz) du composé **St5** dans le DMSO.

La structure finale de **St5** est établie comme la calactine (Figure 90) isolée précédemment de *Pergularia tomentosa* (Apocynaceae) (Hamed *et al.*, 2006; Gohar *et al.*, 2000), de *Asclepias linaria* (Apocynaceae) (Hernandez-Quiroz *et al.*, 1994) de *Asclepias vestita* (Apocynaceae) (Cheung *et al.*, 1989) et de *Calotropis gigantea* (Linn.) R. Br. ex Ait (Apocynaceae) (De *et al.*, 1988).

Figure 90 : Structure du composé St5.

1.6. Détermination structurale du composé St6

Le spectre de RMN ¹H (500 MHz, CDCl₃) (Figure 91) du composé **St6** montre 3 protons aromatiques (6.6-7.7 ppm) révèle la présence d'un noyau aromatique tri-substitué et un singulet intégrant pour 3H qui est situé à 3.99 ppm attribuable à un groupement méthoxy (OCH₃).

D'après les valeurs des constantes de couplages (Tableau 36), les trois signaux sont positionnés en *ortho* (d, $J \approx 8$ Hz), *ortho* et *meta* (dd, $J \approx 8$ et $J \approx 2.0$ Hz) et *meta* (d, $J \approx 2.0$ Hz) sur le noyau aromatique.

Figure 91 : Spectre de RMN ¹H (500 MHz, CDCl₃) du composé St6.

Sur le spectre de RMN ¹³C (125 MHz, CDCl₃) (Figure 92) du composé **St6** nous retrouvons 6 carbones aromatiques (112-150 ppm), un méthoxy à 56.1 ppm et un carbone de carbonyle situé à 169.6 ppm.

Figure 92 : Spectre de ¹³C (125 MHz, CDCl₃) du composé St6.

Les corrélations observées sur le spectre HMBC (Figures 93, 94) entre le proton H-5 résonant sous forme de doublet (δ_H 7.0, J = 8.3) et les carbones quaternaires déblindé C-3 et C-4 résonant à 148.2 et 150.8 ppm, permettent de placer le groupement hydroxyle en position C-4 et le méthoxyle en position C-3. Sur le spectre COSY (Figure 95), les protons de méthoxyle couplent avec le proton H-2 résonant à 7.62 ppm sous forme de doublet (J=1.8 Hz). Ce dernier corrèle sur le spectre HMBC avec le carbonyle résonnant à δ_C 169.6 ppm, ce qui permet de placer ce carbonyle sur le carbone aromatique C-1 (δ_C 121.1 ppm) (Figure 94).

Le proton H-6 (7.74, *dd*, J = 8.3-1.9 Hz) est placé grâce à sa corrélation avec les protons H-2 (en *meta*) et H-5 (en *ortho*) sur le spectre COSY. Le spectre HSQC (Figure 96) attribue leurs carbones respectivement à $\delta_{\rm C}$ 125.1, 112.1 et 114.2 ppm.

Figure 93 : Corrélations HMBC et COSY du composé St6.

Figure 94 : Spectre HMBC du composé St6.

Figure 95 : Spectre COSY du composé St6.

Figure 96 : Spectre HSQC du composé St6.

Tableau 36 : Déplacements chimiques en RMN ¹H (500 MHz) et RMN ¹³C (125 MHz) du composé **St6** dans CDCl₃.

N°	St6 (CDCl ₃) $\delta_{\rm H}$ (m, J en Hz) $\delta_{\rm C}$		Wang et al., 2011; Yaguchi et al., 1988 (C ₅ D ₅ N)		
			$\delta_{\rm H}$ (m, J en Hz)	δ _C	
1	-	121.1	-	123.4	
2	7.62 (<i>d</i> , 1.8)	112.1	8.00 (<i>d</i> , 2.0)	113.7	
3	-	148.2	-	128.0	
4	-	150.8	-	152.4	
5	7.00 (<i>d</i> , 8.3)	114.2	7.24 (<i>d</i> , 8.1)	115.9	
6	7.74 (<i>dd</i> , 8.3-1.9)	125.1	8.09 (<i>dd</i> , 8.1-2.0)	124.7	
OCH ₃	3.99(s)	56.1	3.78(s)	55.6	
COOH	-	169.6	10.40 (brs)	169	

L'ensemble de nos données spectrales comparées à celles rapportées dans la littérature nous permet d'établir l'acide vanillique (Figure 97) comme structure du composé **St6** (Wang *et al.*, 2011; Yaguchi *et al.*, 1988).

Figure 97 : Structure du composé St6.

1.7. Détermination structurale du composé St7

Le spectre de RMN ¹H (500 MHz, CD₃OD) du composé **St7** (Figure 98) présente le signal du proton anomérique à $\delta_{\rm H}$ 4.76 (*d*, *J*=7.5 Hz) suggère la présence d'une unité osidique par rapport au composé **St6**.

Sur le spectre de ¹³C (125 MHz, CD₃OD) (Figure 98) du composé **St7** nous retrouvons presque les mêmes signaux que ceux du composé **St6**, sauf l'absence du signal du carbonyle et l'apparition de six signaux des carbones résonnant dans une zone des carbones osidiques (61.3-102.4 ppm) dont l'anomère est détecté à 102.4 ppm.

Figure 98 : Spectres de RMN ¹H (500 MHz, CD₃OD) et ¹³C (125 MHz, CD₃OD) des composés St7 et St8.

Sur le spectre de HMBC (Figures 99-101) de St7 :

– les corrélations ${}^{3}J_{H6-C4}$, ${}^{2}J_{H5-C4}$, ${}^{3}J_{H2-C4}$, ${}^{3}J_{H2-C3}$ et ${}^{2}J_{H2-C3}$ permettent de localiser respectivement les carbones oxygénés C-4 et C-3 á 141.7 et 147.8 ppm.

 la corrélation entre les protons du méthoxy et le carbone C-3 (147.8 ppm) indique sa substitution en C-3. La corrélation observée entre le proton anomérique H-1' et le carbone C-1 (151.4 ppm) montre que ce sucre est attaché à l'hydroxyle en position C-1. Ce dernier a été attribué par ses corrélations avec les protons H-2, H-5 et H-6.

Figure 99 : Corrélations HMBC du composé St7.

Figure 100 : Spectre HMBC des composés St7 et St8.

Figure 101 : Spectre HMBC des composés St7 et St8.

A partir du proton anomérique à 4.76 ppm (d, J=7.5 Hz), six protons osidiques sont identifiés à partir du spectre COSY (Figure 102). Les valeurs des constantes de couplage et les déplacements chimiques des carbones de ce sucre (Tableau 37), attribués à partir du spectre HSQC (Figures 103, 104) sont en accord avec un β -D-glucopyranose.

Figure 102 : Spectre COSY des composés St7 et St8.

Figure 103 : Spectre HSQC des composés St7 et St8.

Figure 104 : Spectre HSQC du composés St7 et St8.

Tableau 37 : Déplacements chimiques en RMN 1 H (500 MHz) et RMN 13 C (125 MHz) du composé **St7** CD₃OD.

N°	St7 (CD ₃ OD)		Zhong <i>et al.</i> , 1999 (CD ₃ OD)	
	$\delta_{\rm H}$ (m, J en Hz)	δ _C	δ _C	
1	-	151.4	152.9	
2	6.79 (<i>d</i> , 2.7)	102.4	104.0	
3	-	147.8	149.3	
4	-	141.7	143.0	
5	6.73 (<i>d</i> , 8.6)	114.6	116.0	
6	6.61 (<i>dd</i> , 8.6-2.7)	108.6	110.0	
OCH ₃	3.85 (s)	55.0	55.6	
Glc				
1'	4.76 (<i>d</i> , 7.5)	102.4	103.8	
2'	3.43 (<i>m</i>)	73.6	75.1	
3'	3.44 (<i>m</i>)	76.6	78.2	
4'	3.37 (<i>t</i> , 8.7)	70.2	71.6	
5'	3.41 (<i>m</i>)	76.6	77.9	
6'	3.70 (<i>dd</i> , 12.0-5.8) 3.92 (<i>dd</i> , 12.0-2.2)	61.3	62.7	

L'ensemble des analyses spectrales de RMN nous a permis d'identifier le composé St7 comme étant le 1-O- β -D-glucopyranosyl-3-méthoxy-4-hydroxyphényl (Tachioside) (Figure 105), isolé de *Salsola komarovii* (Cho *et al.*, 2014) et de *Myrsine seguinii* (Myrsinaceae) (Zhong *et al.*, 1999).

Figure 105 : Structure du composé St7.

1.8. Détermination structurale du composé St8

La comparaison des spectres de RMN ¹H (500 MHz, CD₃OD) et ¹³C (125 MHz, CD₃OD) des composés **St7** et **St8** indiquent que **St8** présente une unité osidique supplémentaire.

Le spectre de RMN ¹H de **St8** (Figure 98) montre deux protons anomériques à 4.73 (d, J=7.5 Hz) et 5.0 ppm (d, J= 2.5 Hz), trois protons aromatiques et un groupement méthoxy.

Le spectre de ¹³C de **St8** (Figure 98) présente 6 carbones aromatiques (102.6-151.4 ppm) et 11 carbones oxygénés appartenant à deux unités osidiques, un hexose et un pentose dont les anomères sont localisés à 102.4 et 109.6 ppm, respectivement.

A partir du proton anomérique à $\delta_{\rm H}$ 4.73 (*d*, *J*=7.5) l'analyse du spectre COSY (Figure 102) permet d'attribué les six protons d'un hexose. Les valeurs calculés des constantes de couplage et les déplacements chimiques des carbones de ce sucre, attribués à partir du spectre HSQC (Figures 103, 104) révèlent la présence d'un β -D-glucopyranose (Tableau 38).

A partir du proton anomérique à $\delta_{\rm H}$ 5.0 (*d*, *J*=2.5), l'expérience COSY permet d'attribuer le proton H-2" et de caractériser deux méthylènes oxygénés l'un endocyclique et l'autre exocyclique d'un β -D-apiofuranosyl (Tableau 38).

La glycosylation de **St8** est confirmé par la corrélation observée sur le spectre HMBC (Figure 101) entre le proton H-1' du glucose (4.73 ppm) et le carbone C-1 (151.4 ppm).

L'enchaînement β -D-apiofuranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl est établi d'après la corrélation observée sur le spectre HMBC entre le carbone H-1" et H-6'a et H-6'b (Figures 101, 106).

Figure 106 : Corrélations HMBC du composé St8.

Tableau 38 : Déplacements chimiques en RMN 1 H (500 MHz) et RMN 13 C (125 MHz) du composé **St8** dans CD₃OD.

N°	St8 (CD ₃ OD)		Kanchanapoom <i>et al.</i> , 2002 (CD ₃ OD)	
	$\delta_{\rm H}$ (m, J en Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (m, J en Hz)	$\delta_{\rm C}$
1	-	151.4	-	152.7
2	6.83 (<i>d</i> , 2.7)	102.6	6.75 (<i>d</i> , 2.7)	103.7
3	-	147.8	-	149.2
4	-	141.7	-	143.0
5	6.7 <i>d</i>	114.7	6.70 (<i>d</i> , 8.5)	116.1
6	6.61 (<i>d</i> , 8.6-2.7)	108.6	6.58 (<i>dd</i> , 8.5, 2.7)	110.1
OCH ₃	3.66 (s)	55.0	3.82 (s)	56.5
Glc				
1'	4.73 (<i>d</i> , 7.5)	102.4	4.70 (<i>d</i> , 7.3)	104.0
2'	3.43 (<i>m</i>)	73.6	3.35 (<i>dd</i> , 9.0-7.3)	74.9
3'	3.45 (<i>m</i>)	76.6	3.53 (<i>dd</i> , 9.0-7.8)	78.0
4'	3.33 (<i>m</i>)	70.3	3.39 (<i>dd</i> , 9.0-7.8)	71.6
5'	3.56 (<i>dd</i> , 9.7-1.9)	75.5	3.52 (<i>m</i>)	76.9
6'	4.05 (<i>dd</i> , 11.0-1.8)	67.4	3.60 (<i>dd</i> , 10.7-6.4)	68.7
	3.63(<i>dd</i> , 11.0-6.5)		4.00 (brd, 10.7)	
Api				
1''	5.0 (<i>d</i> , 2.5)	109.6	4.97 (<i>d</i> , 2.2)	110.9
2''	3.92 (<i>d</i> , 2.5)	76.6	3.89 (<i>d</i> , 2.2)	77.9
3''	-	79.1	-	80.5
4''	3.77 (<i>d</i> , 9.5)	73.6	3.74 (<i>d</i> , 9.5)	74.9
	3.98 (<i>d</i> , 9.7)		3.95 (<i>d</i> , 9.5)	
5''	3.59 (s)	64.1	3.56 (s)	65.5

La structure finale du composé **St8** est établie comme le 1-*O*- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-3-méthoxy-4-hydroxyphényl (Canthoside C) (Figure 107), isolé précédemment de *Anodendron formicinum* (Apocynaceae) (Qin *et al.*, 2014) et de *Canthium berberidifolium* (Rubiaceae) (Kanchanapoom *et al.*, 2002).

Figure 107 : Structure du composé St8.

1.9. Détermination structurale du composé St9

Le spectre de RMN ¹H (500 MHz, CD₃OD) (Figure 108) et ¹³C (125 MHz, CD₃OD) (Figure 109) présentent des signaux des unités osidiques [($\delta_{\rm H}$ 3.38-5.4) ($\delta_{\rm C}$ 62.2-105.3)].

A partir du proton anomérique ($\delta_{\rm H}$ 5.4, d, J=3.8 Hz), les six protons d'un hexose sont attribués à l'aide du spectre COSY (Figure 110). Les valeurs de constante de couplage indiquent une configuration trans-diaxiale des protons H-2, H-3, H-4 et H-5 et une position équatoriale de proton H-1 ($J_{\rm H1-H2}$ = 3.8 Hz) suggérant un α -D-glucopyranose (Bock *et al.*, 1983; Agrawal, 1992).

Les déplacements chimiques des carbones du α -D-glucose sont attribués par l'analyse du spectre HSQC (Figure 111) et sont en accord avec ceux de la littérature (Andrk De Bruyn, 1991).

L'interprétation des corrélations observées sur le spectre COSY à partir du proton H-3' situé à 4.12 ppm (d, J= 8.3 Hz) permet de repérer le proton H-4' par la corrélation H-3'/H-4' à 4.05 ppm (t, J= 8.1 Hz), puis le proton H-5' situé à 3.78 ppm (m) par la corrélation H-4'/H-5', ensuite la corrélation H-5'/H-6' permet de localiser ce dernier sous forme d'un multiplet à 3.79 ppm.

Sur le spectre COSY, aucune corrélation n'est observée avec les protons H-1'a (d, J= 12.3 Hz) et H-1'b (d, J= 12.3 Hz). Cette donnée traduit l'absence de proton en position C-2'.

Les valeurs des constantes de couplage obtenues sur le spectre de RMN ¹H (Tableau 39) indiquent une position transdiaxiale de tous les protons, H-3', H-4'et H-5' suggérant la présence d'un β -D-fructofuranose (Bock *et al.*, 1983; Agrawal, 1992).

Le proton anomérique H-1 (5.4, *d*, 3.8 Hz) corrèle sur le spectre HMBC (Figure 112) avec le carbone C-2' (105.3 ppm) indiquant que le α -D-glucopyranose est relié au carbone 2' du fructose.

Figure 108 : Spectre de RMN ¹H (500 MHz, CD₃OD) du composé St9.

Figure 109 : Spectre de RMN ¹³C (125 MHz, CD₃OD) du composé St9.

Figure 110 : Spectre COSY du composé St9.

Figure 111 : Spectre HSQC du composé St9.

Figure 112 : Spectre HMBC du composé St9.

N°	St9 (CD₃OD)		De Bruyn, 1991 (D ₂ O)	
	$\delta_{\rm H}$ (m, J Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (m, J Hz)	δ _C
	Glc		Glc	
1	5.4 (<i>d</i> , 3.8)	93.6	5.42	92.9
2	3.45 (<i>dd</i> , 9.8-3.8)	73.2	3.57	71.9
3	3.73 (<i>m</i>)	74.7	3.48	73.4
4	3.38 (<i>t</i> , 9.3)	71.3	-	70.0
5	3.72 (<i>t</i> , 9.0)	74.4	-	73.2
6	3.73 (<i>dd</i> , 12.2-4.8)	62.2	-	61.0
	3.83 (<i>dd</i> , 12.0-2.2)			
	Frc		Frc	
1'	3.62 (<i>d</i> , 12.3)	64.0	-	62.5
	3.66 (<i>d</i> , 12.3)			
2'	-	105.3	-	104.5
3'	4.12 (<i>d</i> , 8.3)	79.3	4.25	77.8
4'	4.05 (<i>t</i> , 8.1)	75.7	4.06	75.4
5'	3.78 (<i>m</i>)	83.81	-	82.2
6'	3.79 (<i>m</i>)	63.4	_	63.2

Tableau 39 : Déplacements chimiques en RMN 1 H (500 MHz) et RMN 13 C (125 MHz) de **St9** dans CD₃OD.

La comparaison des valeurs de RMN avec les données de la littérature permet d'identifier le composé **St9** (Figure 113) comme étant le α -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-fructofurannoside (Saccharose) (De Bruyn, 1991).

Figure 113 : Structure du composé St9.

1.10. Détermination structurale du composé St10

L'examen du spectre RMN ¹H (500 MHz, CDCl₃) (Figure 114) du composé St10 montre :

- un triplet à $\delta_{\rm H}$ 0.91 ppm (J=7.0 Hz) correspondant au groupement méthyle.
- un autre triplet à $\delta_{\rm H}$ 2.24 ppm (J = 7.8 Hz) d'intégration 2H correspondant aux deux protons du groupement CH₂ en position alpha d'un C=O.

- un multiplet à δ_H 1.66 ppm d'intégration 2H correspondant aux protons du groupement CH₂ en position bêta d'un C=O.
- un signal complexe à $\delta_{\rm H}$ 1.3 ppm correspondant à plusieurs groupements méthylènes.

L'allure générale du spectre RMN ¹H, suggère que ce composé est de nature terpénique linéaire.

Figure 114 : Spectre de RMN ¹H (500 MHz, CDCl₃) du composé St10.

Le spectre de RMN ¹³C (125 MHz, CDCl₃) (Figure 115) montre 18 carbones répartis comme suit :

- un carbone tertiaire à δ_C 14.1 ppm, correspondant au groupement CH₃-18.
- deux carbones vinyliques à 129.8 et 130.0 ppm.
- un massif de carbones résonant entre 29.1 et 29.8 ppm, attribuables aux CH₂.

L'ensemble de ces données permettent de suggérer la structure suivante pour le composé St10:

Figure 115 : Spectre de RMN ¹³C (125 MHz, CDCl₃) du composé St10.

La corrélation observée sur le spectre COSY (Figure 116) entre les protons vinyliques H-9,10 résonant à 5.36 ppm et les protons vicinaux H-8,11 résonant à 2.04 ppm permet de localiser la double liaison en C-9-C-10.

Figure 116 : Spectre COSY du composé St10.

L'analyse du spectre HSQC (Figure 117) permet de corréler chaque carbone à son proton correspondant.

Figure 117 : Spectre HSQC du composé St10.

Le spectre HMBC (Figure 118) montre les corrélations suivantes entre :

- les protons de groupement CH₃-18 (0.91, *t*, *J*=7.0) et les carbones C-16 et C-17 résonant à 31.9 et 22.7 ppm respectivement.
- les protons éthyléniques à 5.36 ppm (*m*) et les carbones C-8 et C-11 résonant à 27.2 ppm.
- les protons de groupement CH₂-2 résonant sous forme de triplet à 2.24 ppm (*J*=7.8) et le carbone C-3 à 25.5 ppm.

Figure 118 : Spectre HMBC du composé St10.

	St10 (CDCl ₃)		
	$\delta_{\rm H}$ (m, J en Hz)	$\delta_{\rm C}$	
2	2.24 (<i>t</i> , 7.8)	35.9	
3	1.66 (<i>m</i>)	25.5	
8,11	2.04 (<i>m</i>)	27.2	
9	5.36 (<i>m</i>)	130.0	
10		129.8	
4-15	(4-17) 1.28-1.35 (<i>m</i>)	29.1-29.8	
16	-	31.9	
17	_	22.7	
18	0.91 (<i>t</i> , 7.0)	14.1	

Tableau 40 : Déplacements chimiques en RMN ¹H (500 MHZ) et RMN ¹³C (125 MHz) du composé **St10** dans CDCl₃.

L'ensemble de nos données spectrales comparées à celles rapportées dans la littérature nous permet d'établir l'acide oléique comme structure du composé **St10** (Figure 119) (Oscar *et al.*, 2003).

Figure 119 : Structure du composé St10.

1.11. Détermination structurale du composé St11

Sur le spectre de RMN ¹H de St11 (Figure 120) sont repérés les signaux suivants :

- un triplet intégrant pour 3H à $\delta_{\rm H}$ 0.91 (*t*, *J* = 7.1 Hz) caractéristique d'un méthyle en position terminale.
- un autre triplet à $\delta_H 2.38$ ppm d'intégration 2H correspondant aux deux protons du groupement CH₂ en position alpha d'un C=O (J = 7.7 Hz).
- deux doublets de doublets intégrant chacun pour un proton résonnant respectivement à $\delta_{\rm H}$ 3.63 et 3.73 ppm indiquant la présence d'un méthylène oxygéné.
- deux doublets de doublets intégrant chacun pour un proton à $\delta_{\rm H}$ 4.18 et 4.24 suggèrent l'existence d'un méthylène oxygéné dans la structure.
- un multiplet déblindé intégrant pour un proton résonnant à $\delta_{\rm H}$ 3.96 indiquant une seconde position hydroxylée dans la molécule.

Figure 120 : Spectre de RMN ¹H (500 MHz, CDCl₃) du composé St11.

Sur le spectre de RMN 13 C (125 MHz, CDCl₃) de **St11** (Figure 121) sont visualisés 19 signaux :

- un carbonyle d'ester à 174.4 ppm.
- trois carbones oxygénés à δ_C 63.3, 65.2 et 70.3 ppm.
- un ensemble de carbones résonant entre δ_C 22.7 et 34.2 ppm, attribuables aux CH₂.

Figure 121 : Spectre de RMN ¹³C (125 MHz, CDCl₃) du composé St11.

Le spectre HMBC (Figures 122-124) montre des corrélations entre le carbonyle résonnant à 174.4 ppm (C-1') et les protons du méthylène oxygéné (CH₂ -1) résonnant à 4.18 (*dd*, *J*=11.7-6.2) et 4.24 (*dd*, *J*=11.7-4.6), ce dernier corrèle avec les carbones résonnant à & 70.3 et 63.3 (C-2, C-3) indiquant la présence d'un hydroxyle en position 2 et 3 de la molécule. Les protons méthylènes (CH₂-1, CH₂-3) corrèlent sur le spectre COSY (Figure 125) avec le proton oxyméthyne (CH-2) à 3.96 ppm. Le carbone C-1 est localisé à & 65.2 grâce au spectre HSQC (Figure 126). Ces résultats permettent d'établir le fragment suivant :

Figure 122 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 1, 2 et 3 observés sur les spectres HMBC et COSY.

On observe aussi une corrélation entre le carbonyle résonnant à 174.4 ppm et les protons du méthylène non oxygéné (CH₂-2') résonnant à $\delta_{\rm H}$ 2.38 (*t*, *J*=7.7 Hz). Ce dernier corrèle avec les carbones résonnant entre 25 et 30 ppm suggérant l'existence d'une chaîne alkyle.

L'analyse du spectre COSY (Figure 125) montre des taches de corrélations entre les protons du méthyle (CH₃-16') résonnant à $\delta_{\rm H}$ 0.91 (*t*, *J*=7.1 Hz) et les protons du CH₂ résonant entre 1.27 et 1.33 ppm, ce qui nous permet la localisation de ces protons à la fin de la chaîne alkyle.

Figure 123 : Corrélations ${}^{2}J_{H-C}$ et ${}^{3}J_{H-C}$ des protons 2', 3', 14', 15' et 16' observés sur les spectres HMBC et COSY.

Figure 124 : Spectre HMBC du composé St11.

Figure 125 : Spectre COSY du composé St11.

Figure 126 : Spectre HSQC du composé St11.

Tableau 41 : Déplacements chimiques en RMN 1 H (500 MHz) et RMN 13 C (125 MHz) du composé **St11** dans CDCl₃.

N°	St11 (CDCl ₃)		
	$\delta_{\rm H} (m, J {\rm en}{\rm Hz})$	δ _C	
1	4.18 (<i>dd</i> , 11.7-6.2)	65.2	
	4.24 (<i>dd</i> , 11.7-4.6)		
2	3.96 (<i>m</i>)	70.3	
3	3.63 (<i>dd</i> , 11.4-5.8)	63.3	
	3.73 (<i>dd</i> , 11.5-3.9)		
1'	-	174.4	
2'	2.38 (<i>t</i> , 7.7)	34.2	
3'	1.66 (<i>m</i>)	24.9	
4'-13'	1.27-1.33 (<i>m</i>)	29.1-29.7	
14'		31.9	
15'		22.7	
16'	0.91 (<i>t</i> , 7.1)	14.1	

Toutes ces données nous permettent de proposer pour le composé **St11**, la structure suivante : Glycérol monopalmitate (Nogueira Fernandes *et al.*, 2012) (Figure 127).

Figure 127 : Structure du composé St11.

2. Détermination structurale des composés isolés de Traganum nudatum Del.

2.1. Détermination structurale du composé Tn1

Le spectre de RMN ¹H (600 MHz, CD₃OD) de **Tn1** (Figure 128) présente un profil d'un flavonoïde diglycosylé. Ce flavonoïde est caractérisé par deux doublets à $\delta_{\rm H}$ 6.21 (J= 2.1 Hz) et $\delta_{\rm H}$ 6.41 (J= 2.1 Hz) attribuables à H-6 et H-8, respectivement, un système ABX constitué des protons H-2' (8.05, d, J= 2.1 Hz), H-5' (6.93, d, J= 8.4 Hz) et H-6' (7.63, dd, J= 8.4-2.1 Hz) et un singulet d'intégration 3H à $\delta_{\rm H}$ 3.99 ppm indiquant la présence d'un groupement méthoxyle.

Le spectre de RMN ¹H de **Tn1** présente également les signaux de deux protons anomériques résonnant à $\delta_{\rm H}$ 5.24 (*d*, *J*=7.9) et 4.55 (*d*, *J*=1.6 Hz).

Figure 128 : Spectre de RMN ¹H (600 MHz, CD₃OD) du composé **Tn1**.

Sur le spectre de RMN ¹³C (150 MHz, CD₃OD) (Figure 129) nous distinguons un carbone de méthoxyle situé à 56.9 ppm, deux carbones anomériques à 101.9 ppm et 105.0 ppm, un carbone de méthyle à 18.0 ppm, onze carbones oxygénés résonnant entre (67.4-105.0 ppm) et le reste des carbones sont détectés entre (95.1-179.4 ppm).

Figure 129 : Spectre de RMN ¹³C (150 MHz, CD₃OD) du composé Tn1.

A partir du proton anomérique ($\delta_{\rm H}$ 5.24, *d*, *J*=7.9 Hz), les sept protons d'un hexose sont attribués à l'aide du spectre COSY (Figures 130, 131). Les constantes de couplage calculées (Tableau 42) sur le spectre de RMN ¹H laissent supposer qu'il s'agit d'un galactose caractérisé par la position équatoriale du proton H-4" (*dl*, *J*= 3.4 Hz), tandis que les protons, H-2" (*dd*, *J*= 9.7-7.8 Hz), H-3" (*dd*, *J*=9.7-3.5 Hz) et H-5" (*tl*, *J*= 6.7 Hz) sont en position trans-diaxiale. Les déplacements chimiques (Tableau 42) des carbones du β -D-galactose sont attribués par l'analyse du spectre HSQC (Figure 132) et sont en accord avec ceux de la littérature (Agrawal, 1992; Bock *et al.*, 1983).

A partir du deuxième proton anomérique à 4.55 ppm est identifié à l'aide des spectres COSY (Figure 130) et HSQC (Figure 133), un α -L-rhamnopyranose caractérisé par son proton H-2''' ($\delta_{\rm H}$ 3.6, *dd*, *J*=3.4-1.7) en position équatoriale et le doublet de H-6'''. Les valeurs des déplacements chimiques des carbones osidiques, attribués à partir du spectre HSQC (Figures 132, 133), correspondent à celles d'un α -L-rhamnose terminal (Agrawal, 1992).

Figure 130 : Spectre COSY du composé Tn1.

Figure 131 : Spectre COSY du composé Tn1.

Figure 132 : Spectre HSQC du composé Tn1.

Figure 133 : Spectre HSQC du composé Tn1.

Le spectre HMBC (Figure 134) montre une tache de corrélation entre le groupement méthoxyle (δ_H 3.99 ppm) et le carbone C-3` (δ_C 148.4 ppm) ce qui indique que le OCH₃ est porté par le carbone C-3`. D'après ces données on peut déduire que la génine est un isorhamnétine.

Les corrélations observée sur le spectre HMBC (Figure 134) entre H-1"/C-3 et H-1"/C-6" indiquent le séquençage du disaccharide.

Figure 134 : Spectre HMBC du composé Tn1.

\mathbf{N}°	Tn1 (CD3	OD)	Buschi <i>et al.</i> , 198	2 (DMSO)
	$\delta_{\rm H}$ (<i>m</i> , <i>J</i> en Hz)	δ _C	$\delta_{\rm H}$ (<i>m</i> , <i>J</i> en Hz)	δ _C
2	-	158.7	-	156.5
3	-	135.5	-	133.2
4	-	179.4	-	177.4
5	-	163.1	-	161.2
6	6.21 (<i>d</i> , 2.1)	100.1	6.19 (<i>d</i> , 2.0)	9 8.8
7	-	167.0	-	164.1
8	6.41 (<i>d</i> , 2.1)	95.1	6.48 (<i>d</i> , 2.0)	93.8
9	-	158.6	-	156.5
10	-	105.4	-	104.1
1'	-	123.0	-	121.1
2'	8.05 (<i>d</i> , 2.1)	114.6	7.76 (<i>d</i> , 2.0)	113.6
3'	-	148.4	-	149.4
4'	-	150.9	-	147.0
5'	6.93 (<i>d</i> , 8.4)	116.0	6.84 (<i>d</i> , 8.0)	115.2
6'	7.63 (<i>dd</i> , 8.4-2.1)	123.8	7.47 (<i>dd</i> , 8.0-2.0)	122.1
OCH ₃	3.99 (s)	56.9	3.88 (s)	56.0
Gal				
1''	5.24 (<i>d</i> , 7.9)	105.0	5.71 (<i>d</i> , 7.0)	100.9
2''	3.84 (<i>dd</i> , 9.7-7.8)	73.1	(3.10-3.80)	7 1.2
3''	3.58 (<i>dd</i> , 9.7-3.5)	75.1	Signal complexe	73.1
4''	3.80 (<i>dl</i> , 3.4)	70.1		68.2
5''	3.67 (<i>tl</i> , 6.7)	75.5		73.7
6''	3.47 (<i>dd</i> , 10.3-6.9)	67.4		65.6
	3.76 (<i>dd</i> , 10.3-5.6)			
Rha		1		
1'''	4.55 (<i>d</i> , 1.6)	101.9	4.37 (<i>d</i> , 3.0)	100.2
2'''	3.60 (<i>dd</i> , 3.4-1.7)	72.1	(3.10-3.80)	70.4
3'''	3.51 (<i>dd</i> , 9.5-3.4)	72.3	Signal complexe	70.7
4'''	3.30 (<i>t</i> , 9.5)	73.8		72.0
5'''	3.55 (<i>m</i>)	69.7		68.2
6'''	1.19 (<i>d</i> , 6.2)	18.0	1.18 (<i>m</i>)	17.8

Tableau 42 : Déplacements chimiques en RMN 1 H (600 MHz) et RMN 13 C (150 MHz) du composé **Tn1** dans CD₃OD.

Toutes ces données nous permettent de donner pour le composé **Tn1**, la structure suivante :

Isorhamnétine-3-O-[α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-galactopyranoside] (Figure 135) (Buschi *et al.*, 1982).

Figure 135 : Structure du composé Tn1.

2.2. Détermination structurale du composé Tn2

Le spectre de RMN ¹H (500 MHz, CD₃OD) de **Tn2** (Figure 136) présente trois signaux des protons anomériques résonant à $\delta_{\rm H}$ 5.59 (*d*, *J*=7.8 Hz), 4.54 (*d*, *J*=1.3 Hz) et 5.45 (*d*, *J*=0.7 Hz) indiquant la présence d'une unité osidique supplémentaire par rapport au composé **Tn1**. Le spectre RMN ¹³C (125 MHz, CD₃OD) (Figure 137) confirme la présence de trois unités osidique.

Figure 136 : Spectre de RMN ¹H (500 MHz, CD₃OD) du composé Tn2.

Figure 137 : Spectre de RMN ¹³C (125 MHz, CD₃OD) du composé Tn2.

Sur le spectre COSY (Figure 138), le proton anomérique H-1^{'''} ($\delta_{\rm H}$ 5.45, *d*, *J* =0.7 Hz) corrèle avec le proton H-2^{'''} ($\delta_{\rm H}$ 4.04, *d*, *J*=0.9 Hz). Ce dernier ne couple avec aucun proton ce qui suggère un carbone quaternaire en position 3. Deux systèmes AB sont observés à 3.67 (*d*, *J* = 9.4 Hz) et 4.04 (*d*, *J* = 9.5 Hz) et 3.64 (*d*, *J* = 11.4 Hz) et 3.79 ppm (*d*, *J* =11.4 Hz). Leurs carbones respectifs, attribués à partir du spectre HSQC (Figure 139) résonnent à $\delta_{\rm C}$ 75.6 et $\delta_{\rm C}$ 66.5 ppm indiquant deux méthylènes oxygénés dont l'un est endocyclique ($\delta_{\rm C}$ 75.6, C-4'''') et l'autre exocyclique ($\delta_{\rm C}$ 66.5, C-5''''). Le carbone C-3''' est placé grâce à sa corrélation avec les protons H-4'''' et CH₂OH sur le spectre HMBC (Figure 140).

Figure 138 : Spectre COSY du composé Tn2.

Figure 139 : Spectre HSQC du composé Tn2.

Figure 140 : Spectre HMBC du composé Tn2.

Le séquençage de la partie osidique est réalisé par l'analyse du spectre HMBC (Figures 140, 141) sur lequel, les corrélations ${}^{3}J_{\text{H-C}}$ suivantes sont visualisées :

- H-1" Gal / C-3.
- H-1"" Api / C-2" Gal.
- H-1" Rha / C-6" Gal.

Figure 141 : Spectre HMBC du composé Tn2.

N°	Tn2 (CD ₃ C)D)	(Bedir <i>et al.</i> , 2000) (CD ₃ OD)		
	$\delta_{\rm H}$ (<i>m</i> , <i>J</i> en Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (<i>m</i> , <i>J</i> en Hz)	δ _C	
2	-	158.5	-	158.9	
3	-	134.7	-	135.5	
4	-	179.2	-	179.5	
5	-	163.2	-	163.0	
6	6.21 (<i>d</i> , 2.0)	99.9	6.22 (<i>d</i> , 1.5)	99.8	
7	-	166.2	-	166.1	
8	6.40 (<i>d</i> , 2.0)	94.8	6.43 (<i>d</i> , 1.5)	94.9	
9	-	158.4	-	158.5	
10	-	105.8	-	105.5	
1'	-	123.4	-	123.0	
2'	8.06 (<i>d</i> , 2.0)	114.6	8.00 (<i>d</i> , 1.5)	114.6	
3'	-	148.4	-	148.4	
4'	-	150.6	-	150.9	
5'	6.93 (<i>d</i> , 8.4)	115.9	6.93 (<i>d</i> , 7.5)	116.0	
6'	7.60 (<i>dd</i> , 8.5-2.1)	123.5	7.61 (<i>dd</i> , 7.5-1.5)	123.8	
OCH ₃	4.01 (s)	57.1	4.00 (s)	57.0	
Gal					
1''	5.59 (<i>d</i> , 7.8)	101.3	5.60 (<i>d</i> , 7.5)	101.3	
2''	3.98 (<i>dd</i> , 9.6-7.8)	76.5	4.00 (<i>dd</i> , 7.5-9.0)	76.4	
3''	3.72 (<i>dd</i> , 9.5-3.2)	75.4	3.67 (<i>dd</i> , 9.0-4.0)	75.5	
4''	3.80 (<i>dl</i> , 4.2)	70.4	3.80 (<i>dd</i> , 4.0-2.5)	70.4	
5''	3.65 (<i>m</i>)	75.6	3.73 (<i>m</i>)	75.7	
6''a	3.73 (<i>dd</i> , 10.3-5.6)	67.2	3.73 (<i>dd</i> , 12.0-2.5)	67.3	
6''b	3.48 (dd, 10.3-6.8)		3.47 (<i>dd</i> , 12.0-4.5)		
Rha					
1'''	4.54 (<i>d</i> , 1.3)	101.9	4.55 (<i>d</i> , 1.5)	101.9	
2'''	3.59 (<i>dd</i> , 3.4-1.6)	72.1	3.59 (<i>dd</i> , 1.5-2.5)	73.5	
3'''	3.52 (<i>dd</i> , 9.4-3.4)	72.3	3.51 (<i>dd</i> , 8.4-2.5)	72.8	
4'''	3.28 (<i>t</i> , 9.5)	73.8	3.28 (<i>t</i> , 8.4)	72.1	
5'''	3.54 (<i>m</i>)	69.7	3.53 (<i>m</i>)	69.8	
6'''	1.19 (<i>d</i> , 6.2)	17.9	1.19 (<i>d</i> , 6.5)	18.1	
Api					
1''''	5.45 (<i>d</i> , 0.7)	110.6	5.44 (<i>d</i> , 2.0)	110.7	
2''''	4.04 (<i>d</i> , 0.9)	77.9	4.04 (d, 2.0)	78.0	
3''''	-	80.9	-	79.5	
4''''a	4.04 (<i>d</i> , 9.5)	75.6	4.04 (<i>d</i> , 10.0)	75.7	
4''''b	3.67 (<i>d</i> , 9.4)		3.67 (<i>d</i> , 10.0)		
5''''a	3.79 (<i>d</i> , 11.4)	66.5	3.73 (brs)	66.5	
5''''b	3.64(d, 11.4)		3.65 (brs)		

Tableau 43 : Déplacements chimiques en RMN ¹H (500 MHz) et RMN ¹³C (125 MHz) du composé **Tn2** dans CD₃OD.

L'ensemble des données spectrales nous a permis d'identifier le composé **Tn2** (Figure 142) comme étant le 3-O-[β -D-apiofuranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-galactopyranosyl]-isorhamnétine, déjà isolé d'*Astragalus armatus* (Khalfallah *et al.*, 2014) et d'*Astragalus vulneraria* (Bedir *et al.*, 2000).

Figure 142 : Structure du composé Tn2.

CHAPITRE 2

Analyses LC-MS/MS

1. Résultats d'analyses LC-MS/MS des standards

Le chromatogramme d'ionisation positive et négative des 37 composés utilisés comme standards est illustré dans la figure 143.

Figure 143 : Chromatogramme LC-MS des standards.

Le tableau 44 représente les données obtenues à l'issue des analyses LC-MS/MS des 37 standards.

Nº	Composés	t _R ^a	([M-H] ⁻)	Engrammatations	Ion	Fonction	D ^{2b}		Intervalle de	LOD/LOQ	Récupé	ération (%)	
			(m/z)	Fragmentations	mode	Equation	ĸ	KSD 70	linéarité (µg/L)	$(\mu g/L)^d$	même jour	Jour différent	U ^e
1	Coumarine	17.40	147.05	91.0-103.2	Poz	y=33.64×-89700	0.994	0.01306	1000-20000	208.4/228.4	0.99947	1.00081	0.0237
2	Hespéridine	12.67	610.90	303.1-465.1	Poz	y=1340.27×-43769	0.998	0.00945	25-1000	3.4/4.2	1.01733	1.01263	0.0262
3	Acide <i>p</i> -coumarique	11.53	162.95	119.3-93.3	Neg	y=3199.20×+13002	0.992	0.01820	25-1000	7.3/9.1	1.00617	1.01224	0.0516
4	Acide o-coumarique	15.45	162.95	119.4-93.3	Neg	y=1219.34×-10915	0.999	0.02730	25-1000	24.4/31.1	0.98344	0.99061	0.0513
5	Acide gallique	3.00	168.85	125.2-79.2	Neg	y=226.76×+38152	0.998	0.01601	250-10000	95.5/106.9	1.00004	1.00454	0.0282
6	Acide caféique	8.80	178.95	135.2-134.3	Neg	y=3963.32×+178156	0.998	0.01454	25-1000	18.4/22.4	1.00917	0.98826	0.0354
7	Acide vanillique	8.57	166.90	152.3-108.3	Neg	y=35.84×-12097	0.999	0.00528	1000-20000	122.2/139.7	1.00093	1.04095	0.0508
8	Acide salisilique	11.16	136.95	93.3-65.3	Neg	y=5286.26×+309192	0.989	0.01016	25-1000	5.0/6.5	1.00989	0.99013	0.0329
9	Acide quinique	1.13	190.95	85.3-93.3	Neg	y=41.06×+10671	0.996	0.00259	250-10000	75.8/79.4	1.00288	0.98778	0.0082
10	A. 4-OH-benzoique	7.39	136.95	93.3-65.3	Neg	y=409.03×+112079	0.998	0.01284	250-10000	33.2/38.1	0.99662	1.00058	0.0289
11	Acide férulique	12.62	192.95	178.3	Neg	y=80.45×-31782	0.997	0.00708	250-10000	36.6/42.0	0.99987	1.00289	0.0494
12	Acide chlorogénique	7.13	353.15	191.2	Neg	y=781.36×-18697	0.998	0.00058	25-1000	6.2/8.1	1.00806	0.99965	0.0069
13	Acide rosmarinique	14.54	359.00	161.2-197.2	Neg	y=909.67×-201692	0.994	0.02014	100-5000	6.6/8.8	0.99206	1.03431	0.0713
14	Acide protocatéchique	4.93	152.95	108.3	Neg	y=297.75×+30590	0.995	0.01236	100-5000	28.2/31.4	0.99404	1.01070	0.0411
15	Acide cinnamique	25.61	147.00	103.15-77.3	Neg	y=9.06×-12403	0.996	0.00648	5000-20000	821.8/859.7	1.00051	0.99927	0.0143
16	Acide sinapinique	12.66	222.95	208.3-149.2	Neg	y=141.96×-73294	0.992	0.01446	250-10000	78.7/86.1	1.00164	0.99962	0.0281
17	Acide fumarique	1.48	115.00	71.4	Neg	y=64.99×-11592	0.997	0.00536	100-5000	28.1/34.5	0.99748	0.99867	0.0124
18	Vaniline	10.87	151.00	136.3-92.2	Neg	y=446.10×+70934	0.998	0.00696	250-10000	44.3/53.1	0.99679	0.99611	0.0280
19	Pyrocatéchol	6.48	109.00	108.35-91.3	Neg	y=30.61×+14735	0.996	0.01313	1000-20000	261.1/278.4	0.99987	0.99936	0.0235
20	Acide malique	1.23	133.00	115.2-71.3	Neg	y=316.95×-42041	0.999	0.00477	250-10000	55.3/67.5	1.01266	0.99836	0.0113
21	Acide syringique	9.02	196.95	182.2-167.3	Neg	y=42.33×-52547	0.996	0.01049	1000-20000	212.5/233.3	0.99922	0.99977	0.0238
22	Hespérétine	31.76	300.95	164.2-136.2	Neg	y=876.67×+48916	0.997	0.03209	25-1000	5.6/6.9	0.98850	0.99435	0.0562
23	Naringinine	30.68	270.95	151.2-119.3	Neg	y=4315.1×+178410	0.995	0.02054	25-1000	5.4/6.4	0.99883	1.01002	0.0521
24	Rutine	12.61	609.05	300.1-271.1	Neg	y=561.91×-16879	0.997	0.00473	25-1000	5.5/6.5	1.00994	0.98017	0.0159
25	Quercétine	28.17	300.90	151.2-179.2	Neg	y=1198.48×+480562	0.990	0.01589	100-5000	23.3/28.9	0.98470	1.00103	0.0543
26	Quercitrine	16.41	447.15	301.1-255.1	Neg	y=339.39×+38910	0.999	0.01528	100-5000	22.0/25.2	0.99726	1.00620	2.0079
27	Apigénine	31.43	268.95	117.3-151.2	Neg	y=4548.36×+295252	0.990	0.02304	25-1000	5.4/6.3	1.01444	1.01331	0.0650

Tableau 44. Standards analysés par LC-MS/MS en mode négatif et positif.

-					r								-
28	curicine	36.65	252.95	143.3-119.4	Neg	y=2032.13×+95593	0,993	0.00490	25-1000	5.4/6.2	1.00338	1.00437	2.0083
29	Liquiritigénine	25.62	254.95	119.3-135.1	Neg	y=2384.96×+59141	0,996	0.01849	25-1000	5.5/6.6	1.00333	0.99957	0.0341
30	Isoquercitrine	13.42	463.00	300.1-271.1	Neg	y=803.23×+4981	0,999	0.00682	25-1000	5.4/6.3	1.00594	1.00722	0.0133
31	Apigétrine	16.59	431.00	268.2-239.2	Neg	y=1775.55×+91121	0,993	0.01797	25-1000	5.4/6.1	1.01394	1.00419	0.0597
32	Roifoline	16.11	577.05	269.2-211.1	Neg	y=237.15×+11887	0,999	0.00747	100-5000	23.1/27.9	1.01046	1.01739	0.0941
33	Nicotiflorine	14.68	593.05	285.1-255.2	Neg	y=498.38×+79274	0,991	0.00737	100-5000	22.4/25.5	1.02558	1.00970	0.0276
34	Fisétine	19.30	284.95	135.2-121.3	Neg	y=547.46×+274791	0,991	0.00557	250-10000	54.4/61.4	0.99877	1.00031	0.0148
35	Lutéoline	28.27	284.75	133.2-151.2	Neg	y=3272.65×+150557	0,997	0.00575	25-1000	5.4/6.5	1.00772	0.99524	0.0174
36	Miricetine	18.72	317.00	179.2-151.3	Neg	y=583.55×+205727	0,999	0.00652	250-10000	53.2/57.2	0.99982	1.00042	0.0126
37	Kampférol	31.88	284.75	255.1-117.3	Neg	y=26.29×+87558	0,992	0.01436	1000-20000	206.6/214.3	0.99971	0.99851	0.0209

^a : temps de retention, ^b : coefficient de détermination, ^c : Écart-type relatif, ^dLOD/LOQ (µg/L): Limite de détection / Limite de quantification, ^e : Pourcentage d'incertitude relative.

2. Résultats d'analyses LC-MS/MS de Traganum nudatum Del.

L'extrait hydrométhanolique de *Traganum nudatum* a été analysé par LC-MS/MS en mode positif et négatif, le chromathogramme obtenu est illustré dans la figure 144.

Figure 144 : Chromatogramme LC-MS de l'extrait hydrométhanolique de *Traganum nudatum*.

Le tableau 45 représente les données obtenues grâce aux analyses LC-MS/MS et par comparaison avec 37 standards de polyphénols.

Tableau 45 : Identification	n par LC/MS/MS	des polyphénols d	le l'extrait	hydrométhanolique de
Traganum nudatum.				

Pics	Composés	t _R	%	[M-H] ⁻	Ions	Masse molaire
		(min)		(m/z)	fragments	(g.mol ⁻¹)
1	Acide <i>p</i> -coumarique	11.53	0.013	162.95	119.3-93.3	164.15
2	Acide caféique	8.80	0.001	178.95	135.2 -134.3	180.16
3	Acide vanillique	8.57	0.57	166.90	152.3-108.3	168.14
4	Acide salicylique	11.16	0.016	136.95	93.3-65.3	138.12
5	Acide quinique	1.13	97.34	190.95	85.3-93.3	192.17
6	Acide 4-OH-	7.39	0.052	136.95	93.3-65.3	138.0
	benzoïque					
7	Acide	4.93	0.077	152.95	108.3	154.12
	protocatéchique					
8	Acide malique	1.23	1.69	133.00	115.2-71.3	134.0
9	Isoquercétine	13.42	0.009	463.00	300.1-271.1	464.37
10	Nicotiflorine	14.68	0.21	593.05	285.1-255.2	594.0

L'analyse de LC-MS/MS de l'extrait hydrométhanolique de *T. nudatum* a révélé la présence de dix composés dont 6 acides phénoliques et 2 flavonoïdes (Tableau 45, Figures 144, 145). Toutefois, parmi les composés contenus dans cette plante, l'acide quinique (**5**) est majoritaire avec un taux de 97.34 % (Figure 144). Dans la figure 144 le pic intense avec un temps de rétention (1.13 min) confirme sa présence. Son spectre de masse est caractérisé par un ion pseudomoléculaire m/z 190.95 ([M-H]⁻) et des ions fragments m/z : 93.3 ([M-H-98]- avec perte de OH et cycle) et m/z 85.3 ([M-H-106]- avec perte de CO et cycle).

Le pic 8 correspond à l'acide malique avec un temps de rétention (1.23 min), un ion m/z 133.0 $([M-H]^{-})$ et des ions fragments m/z : 115.2 $([M-H-18]^{-})$ avec perte de H₂O) et m/z : 71.3 $([M-H-62]^{-})$ avec perte de COOH et OH).

L'acide vanillique (pic 3) a été identifié à partir du temps de rétention (8.57 min) et des différentes fragmentations m/z : 152.3 et ($[M-H-15]^-$ avec perte de CH₃), m/z : 108.3 ($[M-H-59]^-$ avec perte de carboxylate et CH₃).

L'ion m/z : 152.95 ([M-H]⁻) et l'ion fragment m/z : 108.3 ([M-H-45]⁻ avec perte de COOH) correspondant à l'acide protocatéchique (t_R =4.93 min) (pic 7).

Les pics 9 et 10 ont été identifiés comme étant des flavonols glycosidiques. Le pic 9 correspond à l'isoquercétine avec un temps de rétention (13.42 min), un ion m/z : 463.00 ($[M-H]^{-}$) et les ions fragments m/z : 271.1 ($[M-H-192]^{-}$ avec perte du glucose et CO) et m/z : 300.1 ($[M-H-163]^{-}$ avec

perte du glucose). Le pic 10 indique la présence de nicotiflorine dont le temps de rétention est égal à 14.68 min et les fragmentations correspondant à l'ion m/z : 593.05 ([M-H-] et les ions fragments m/z : 255.2, m/z 285.1 ([M-H-309]⁻ avec perte de glucose et rhamnose).

Les pics 1, 2, 4 et 6 ont été identifiés comme étant des acides phénoliques les moins intenses. Le pic 1 correspond à l'acide *p*-coumarique avec un temps de rétention (11.53 min), un ion m/z : 162.95 ([M-H]⁻) et des ions fragments m/z : 119.3 ([M-H-44]⁻ avec perte de carboxylate) et m/z : 93.3 ([M-H-70]⁻ avec perte de HOOCCH=C).

L'ion m/z : 178.95 ($[M-H]^{-}$) avec les ions fragments m/z : 135.2 et m/z : 134.3 et le temps de rétention 8.80 min (pic 2), l'ion m/z : 136.95 ($[M-H]^{-}$) (temps de rétention 11.16 min (pic 4) et l'ion m/z : 136.95 ($[M-H]^{-}$) (temps de rétention 7.39 min) (pic 6) correspondent respectivement à l'acide caféique, l'acide salicylique et l'acide 4-OH-Benzoïque.

CHAPITRE 3

Dosage des polyphénols et Activités biologiques

1. Dosage des polyphénols totaux

Le résultat du dosage des polyphénols totaux dans l'extrait hydrométhanolique de *Traganum nudatum* est résumé dans le tableau 46.

Tableau 46 : Teneur en polyphénols totaux de l'extrait hydrométhanolique de *T. nudatum*.

Plante	Extrait	Total phénolique (μg EAG/mg d'extrait)
Traganum nudatum	EMTN	62.71±10.01

EAG : équivalents d'acide gallique, EMTN : extrait hydrométhanolique de *T. nudatum*.

Le résultat du dosage des polyphénols montre que l'extrait hydrométhanolique de *T*. *nudatum* contient 62.71 ± 10.01 µg EAG/mg exprimé en µg équivalent de l'acide gallique par milligramme d'extrait sèche de la plante.

La teneur en polyphénols totaux de l'extrait hydrométhanolique de *T. nudatum* obtenue lors de cette étude est plus faible que celle obtenue par d'autres auteurs (Bouaziz *et al.*, 2009).

Les différentes teneurs en polyphénols totaux résultent de l'effet d'un certain nombre de facteurs :

-Les facteurs climatiques et environnementaux (Harris et al., 1977).

-La méthode d'extraction et la méthode de quantification (Lee et al., 2003).

- Période de récolte.

2. Activité antioxydante

Dans la présente étude *in vitro*, l'activité antioxydante de l'extrait hydrométhanolique de *Traganum nudatum* a été déterminée par la méthode du DPPH, le test de blanchissement du β carotène, la méthode d'ABTS et la méthode du CUPRAC.

2.1. Activité antioxydante déterminée par la méthode du DPPH

La capacité de l'extrait à donner un atome d'hydrogène est testée en utilisant le radical libre stable DPPH. Le Tableau 47 montre le pourcentage d'inhibition du radical DPPH pour les différentes concentrations de l'extrait hydrométhanolique et des standards.

Extrait		Inhibition (%)								
	3.125 µg	6.25 µg	12.5 µg	25 µg	50 µg	100 µg	200 µg	µg/mL		
EMTN	-	0.27±7.43	3.62±1.10	15.53±1.66	41.69±2.48	63.02±0.75	73.53±5.01	74.73±2.18		
BHT	56.93±1.84	72.83±1.23	78.46±1.01	79.48±0.31	80.03±1.62	80.10±0.66	80.71±0.42	<3.125		
BHA	31.73±1.22	54.89±3.60	57.60±1.13	76.77±0.54	78.67±1.31	79.01±0.89	79.14±0.66	6.82±0.49		

Tableau 47 : Inhibition du radical DPPH par l'extrait étudié.

EMTN : extrait hydrométhanolique de *T. nudatum*, BHT: butylhydroxytoluène, BHA: Butylhydroxyl anisole.

Les résultats obtenus nous ont permis de tracer la courbe du pourcentage d'inhibition en fonction des concentrations de l'extrait et des standards (Figure 146).

Figure 146 : Courbe de pourcentage d'inhibition de l'extrait hydrométhanolique de *T. nudatum* et des standards contre le radical DPPH.

L'activité antioxydante est exprimée en CI₅₀, plus la valeur de CI₅₀ est petite plus l'extrait est considéré comme un antioxydant puissant.

Les valeurs des CI_{50} exprimées en $\mu g/mL$, calculées graphiquement (Figure 146) à partir des droites de régression obtenues, représentant les pourcentages d'inhibition en fonction des concentrations de l'extrait testé, sont données dans le tableau 47.

L'extrait hydrométhanolique de *T. nudatum* montre un pouvoir important à piéger le radical DPPH avec une CI_{50} de 74.73±2.18 µg/mL. Cette activité est 11 fois inférieure à celle du BHA et plus de 24 fois inférieure à celle du BHT. Cependant, l'activité antioxydante de notre extrait hydrométhanolique de *T. nudatum* est inférieure à celle obtenue par Bouaziz et ces collaborateurs (Bouaziz *et al.*, 2009). Il a été montré que l'activité anti-radicalaire des extraits est dépendante de la teneur en polyphénols totaux et en flavonoïdes (Kadri *et al.*, 2011; Ghedadba *et al.*, 2014).

2.2. Activité antioxydante déterminée par la méthode d'ABTS⁺⁺

La capacité de l'extrait de *T. nudatum* à piéger les radicaux libres a été évaluée par la méthode d'ABTS^{•+}. Les résultats sont dressés dans le tableau 48.

Tableau 48 : Inhibition de l'ABTS ^{•+} p	par l'extrait de T. nudatum.
--	------------------------------

Extrait		Inhibition %								
	3.125 µg	6.25 μg	12.5 µg	25 µg	50 µg	100 µg	200 µg	µg/mL		
EMTN	13.56±6.95	16.91±4.34	30.91±2.14	61.28±3.08	90.90±2.74	95.60±0.51	95.37±0.06	19.85±0.62		
BHT	59.22±0.59	78.55±3.43	90.36±0.00	92.18±1.27	93.37±0.86	94.87±0.87	96.68±0.39	<3.125		
BHA	83.42±4.09	93.52±0.09	93.58±0.09	93.63±0.16	93.63±0.95	94.20±0.90	95.39±2.62	<3.125		

EMTN : extrait hydrométhanolique de *T. nudatum*, BHT: butylhydroxytoluène, BHA: Butylhydroxyl anisole.

Figure 147 : Courbe de pourcentage d'inhibition de l'ABTS par l'extrait hydrométhanolique de *T. nudatum.*

La figure 147 représente le graphe de variation du pourcentage d'inhibition en fonction de la concentration de l'extrait de *T. nudatum* et des standards.

Les pourcentages d'inhibition et les valeurs des CI_{50} révèlent que l'extrait hydrométhanoliques et les standards possèdent une propriété antioxydante intéressante. Toutefois l'activité de l'extrait ($CI_{50}=19.85\pm0.62 \ \mu g/mL$) est inférieure à celle des standards BHT ($CI_{50}=3.125 \ \mu g/mL$) et BHA ($CI_{50}=3.125 \ \mu g/mL$).

2.3. Test de blanchissement du β-carotène

Dans ce test, l'activité antioxydante de l'extrait est déterminée en mesurant l'inhibition de la dégradation oxydative du β -carotène (décoloration) par les produits d'oxydation de l'acide linoléique. Les résultats sont résumés dans le tableau 49.

Tableau 49 : Pouvoir d'inhibition (CI₅₀) de l'extrait étudié sur le β-carotène / acide linoléique.

Extrait				Inhibition %				CI ₅₀
	3.125 µg	6.25 µg	12.5 µg	25 µg	50 µg	100 µg	200 µg	µg/mL
EMTN	41.51±1.91	59.48±0.88	77.39±1.05	87.25±0.97	93.73±0.94	96.90±4.56	96.91±1.21	4.71±0.32
BHT	81.14±0.84	86.0.9±1.04	87.52±4.24	91.67±0.52	94.11±0.42	94.41±0.32	95.28±3.25	<3.125
BHA	84.23±1.14	90.11±0.68	94.59±0.77	96.09±0.02	97.35±1.08	99.59±0.14	99.76±	<3.125
α-	NT	NT	NT	87.80±0.1	90.10±0.0	91.10±0.0	93.10±0.1	2.10 ± 0.08
tocophérol								

EMTN : extrait hydrométhanolique de *T. nudatum*, BHT: butylhydroxytoluène, BHA: Butylhydroxyl anisole.

Figure 148. Pourcentages d'inhibition de la peroxydation lipidique par l'extrait hydrométhanolique de *T. nudatum*.

A partir de la figure 148 on peut noter que l'extrait hydrométhanolique ainsi que les standards présentent un effet important contre l'oxydation du β -carotène par les radicaux peroxydes.

L'extrait de la plante *T. nudatum* est plus actif et présente une propriété antioxydante avec une CI₅₀ de l'ordre de 4.71±0.32 µg/ml qui est proche de celle du standard l' α -tocophérol (CI₅₀ = 2.10±0.08 µg/mL).

2.4. Activité antioxydante déterminée par la méthode du CUPRAC

C'est une méthode développée par Apak *et al.* en 2004. Elle est basée sur la mesure de l'absorbance à 450 nm, après la formation d'un complexe stable entre les ions néocuproïne et le cuivre (I). Ce complexe est produit par la réduction des ions du cuivre (II) par les composés potentiellement antioxydants. Les résultats sont résumés dans le tableau 50.

Tableau 50 : Inhibition du CUPRAC par l'extrait étudié.

Extrait		Absorbance								
	3.125 µg	6.25 μg	12.5 µg	25 µg	50 µg	100 µg	200 µg	µg/mL		
EMTN	0.18±0.00	0.24±0.01	0.37±0.01	0.58±0.02	1.02±0.02	1.82±0.07	2.72±0.15	25.05±1.02		
BHT	0.19±0.01	0.33±0.04	0.66±0.07	1.03±0.07	1.48±0.09	2.04±0.14	2.32±0.28	9.62±0.87		
BHA	0.46±0.00	0.78±0.01	1.34±0.08	2.36±0.17	3.45±0.02	3.76±0.03	3.93±0.01	3.64±0.19		

EMTN : extrait hydrométhanolique de *T. nudatum*, BHT: butylhydroxytoluène, BHA: Butylhydroxyl anisole.

La figure 149 présente la courbe du pourcentage d'inhibition en fonction des concentrations des standards et de l'extrait hydrométhanolique de *T. nudatum*.

Les valeurs d'absorbance et en particulier celle de $A_{0.50}$ montrent clairement que l'extrait hydrométhanolique de *T. nudatum* et les standards possèdent des propriétés antioxydantes intéressantes. L'extrait hydrométhanolique de *T. nudatum* ($A_{0.50}=25.05\pm1.02 \ \mu g/mL$) a montré un pouvoir réducteur du cuivre plus important. Cet extrait est 3 fois moins actif que le standard BHT et 7 fois moins actif que le standard BHA. Le tableau 51 résume les résultats obtenus avec les 4 méthodes.

Tableau 51 : Activité antioxydante de *Traganum nudatum* par les méthodes DPPH, ABTS, CUPRAC et β -carotène.

Extrait et	Test du DPPH	Test d'ABTS	Test du CUPRAC	Test du β-carotène
standards	CI ₅₀ (µg/mL)	$CI_{50}(\mu g/mL)$	A _{0.50} (µg/mL)	CI ₅₀ (µg/mL)
EMTN	74.73±2.18	19.85±0.62	25.05±1.02	4.71±0.32
BHT	<3.125	<3.125	9.62±0.87	<3.125
BHA	6.82±0.49	<3.125	3.64±0.19	<3.125
a-tocopherol	7.31±0.17	4.31±0.10	25.50±0.0	2.10±0.08

EMTN: extrait hydrométhanolique de Traganum nudatum, BHT: butylhydroxytoluène, BHA: Butylhydroxyl anisole.

L'activité antioxydante de l'extrait hydrométhanolique de *T. nudatum* avec la méthode du DPPH est modérée (Tableau 51); cela peut être expliqué par les faibles taux en polyphénols détectés en LC/MS/MS.

L'acide quinique, produit majoritaire de l'extrait (97.34 %), possède une activité antioxydante (Pero et al., 2008) de même que ses dérivés connus pour leur pouvoir réducteur du radical DPPH (Hung *et al.*, 2006).

Dans l'étude de Karamaæ *et al.* (2005), l'activité antioxydante de certains acides phénoliques, déterminés par la méthode de DPPH est classée comme suit : acide caffeique > acide protocatechique > acide vanillique > acide p-coumarique > acide p-hydroxybenzoïque.

-L'acide malique est présent en grande quantité dans la pomme (Yamaki *et al.*, 1984), la cerise (Winkler *et al.*, 2015) et le *Phoenix dactylifera* L., (Mortazavi *et al.*, 2010). Il possède plusieurs propriétés biologiques, avec notamment un effet antioxydant important lorsqu'il est testé vis-à-vis du test DPPH (Liu *et al.*, 2013).

- La nicotiflorine (Kaempférol-3-O-rutinoside) appartenant à la classe des flavonols, possède une grande capacité de piégeage des radicaux DPPH (Papaioannou *et al.*, 2007).

La capacité antiradicalaire de l'extrait hydrométhanolique de *T. nudatum* évaluée par la méthode du DPPH est faible (Tableau 51) par apport à celle obtenue avec le test de la décoloration du β -carotène. Cela peut être expliqué par le fait qu'ils contiennent beaucoup d'acides gras ou de lipides et peu d'acides phénoliques.

3. Activité antibactérienne

L'activité antibactérienne des extraits de *Salsola tetragona* (extrait butanolique) et de *Traganum nudatum* (extrait hydrométhanolique) a été testée dans le laboratoire de bactériologie (CHU Benbadis Constantine, Algérie) par la méthode de diffusion en milieu gélosé (méthode de disque). Les deux extraits ont été testés sur 9 bactéries, dont 2 souches de références et 7 souches hospitalières. D'après les zones d'inhibition (Tableau 52), l'extrait butanolique de *S. tetragona* a présenté une meilleure activité antibactérienne sur l'ensemble des souches testées. Le potentiel inhibiteur des extraits a été confirmé par la détermination de la CMI dont la plus faible (20 µg/mL) a été obtenue avec l'extrait de *S. tetragona* sur les souches d'*Escherichia coli* ATCC 25922, *Escherichia coli* et de *Klebsiella pneumoniae* et pour l'extrait hydrométhanolique de *T. nudatum* sur la souche de *Staphylococcus aureus*. Une valeur de CMI de 40 µg/mL a été obtenue avec les extraits de *S. tetragona* et *T. nudatum*, respectivement sur les souches de *Salmonella heidelberg* et *Streptococcus enterococcus* (Tableau 53).

Une autre étude effectuée par El Abed *et al.* (2011) a montré des propriétés antibactériennes des extraits aqueux de *Traganum nudatum* (racines, tiges et feuilles respectivement) sur les souches d'*Escherichia coli* (62.5 μ g /mL, 125 μ g /mL, 62.5 μ g /mL respectivement), *Streptococcus* (62.5 μ g /mL, 125 μ g /mL, 100 μ g/mL respectivement) et de *Staphylococcus aureus* (62.5 μ g /mL, 100 μ g/mL respectivement).

Microorganismes	Zone d'inhibition (mm)		
	EBST ^a	EMTN ^b	Ampicilline ^c
<i>Escherichia coli</i> ATCC 25922 ^d	18	-	18
Escherichia coli ^e	20	10	-
Staphylococcus aureus ATCC 43300 ^d	12	-	30
Staphylococcus aureus ^e	13	18	-
Streptococcus enterococcus ^e	12	15	-
Pseudomonas aerugina ^e	9	-	-
Klebsiella pneumoniae ^e	20	-	14
Enterobacter aerogenes ^e	13	-	20
Salmonella heidelberg ^e	16	-	-

Tableau 52 : Activité antibactérienne (Zones d'inhibition) des extraits de Salsola tetragona	et de
Traganum nudatum.	

^a : extrait butanolique de *Salsola tetragona* (1280 μ g /mL), ^b : extrait hydrométhanolique de *Traganum nudatum* (1280 μ g /mL), ^c: 30 μ g /mL, ^d : Provenant de l'institut Pasteur (Alger), ^e : Souche hospitalière.

Microorganismes	CMI (µg /mL)		
	EBST ^a	EMTN ^b	Ampicilline ^c
<i>Escherichia coli</i> ATCC 25922 ^d	20	-	10
Escherichia coli ^e	20	80	-
Staphylococcus aureus ATCC 43300 ^d	80	-	5
Staphylococcus aureus ^e	80	20	-
Streptococcus enterococcus ^e	80	40	-
Pseudomonas aerugina ^e	80	-	-
Klebsiella pneumoniae ^e	20	-	10
Enterobacter aerogenes ^e	80	-	-
Salmonella heidelberg ^e	40	-	-

Tableau 53 : Activité antibactérienne (CMI) des extraits de Salsola tetragona et de Traganum nudatum.

^a : extrait butanolique de *Salsola tetragona* (1280 μ g /mL), ^b : extrait hydrométhanolique de *Traganum nudatum* (1280 μ g /mL), ^c: 30 μ g /mL, ^d : Provenant de l'institut Pasteur (Alger), ^e : Souche hospitalière.

4. Activité photoprotectrice déterminée par la méthode FPS in vitro

La mesure du FPS (Facteur de Protection Solaire) est l'ultime façon de déterminer l'efficacité de la formulation de protection solaire. Plus le FPS est élevé, plus une protection contre les rayons UV est offerte par un écran solaire. Dans notre étude, le FPS de deux crèmes et de l'extrait hydrométhanolique de *T. nudatum* a été évalué *in vitro* par spectrophotométrie UV en appliquant l'équation mathématique de Mansur *et al* (1986). Les valeurs de FPS sont présentées dans le tableau 54.

Tableau 54 : Valeurs du facteur de protection solaire (FPS) de l'extrait hydrométhanolique de *T. nudatum* et des standards.

	Nivea	Vichy	EMTN ^b
FPS ^a	50.11±0.53	44.22±0.35	25.30±0.25

^a : Facteur de protection solaire, ^b : l'extrait hydrométhanolique de *Traganum nudatum*.

Les valeurs de FPS déclarées des écrans solaires à large spectre sont présentées dans le tableau 55 (<u>http://www.ottawand.com/articles-and-events/articles/sun-safety-for-summer/</u>.).

FPS ^a	Pourcentage d'UV ^b bloqué
2	50
4	75
5	80
10	90
15	93
25	96
50	98

Tableau 55 : Valeurs de FPS et pourcentage correspondant de blocage des rayons UV.

^a: facteur de protection solaire, ^b: ultraviolet

Les valeurs de FPS montrent clairement que l'extrait et les crèmes testés possèdent une activité photoprotectrice importante. Le classement de l'extrait hydrométhanolique de *T. nudatum* testé comparativement avec les crèmes standards selon leur activité photoprotectrice par ordre décroissant est le suivant :

Nivea (50.11±0.53) > Vichy (44.22±0.35) > EMTN (25.30±0.25) (Tableau 54).

En comparant la valeur de FPS de l'extrait étudié avec celles indiquées dans le tableau 55, il est évident que l'extrait EMTN aura la propriété de bloquer environ 96% des rayonnements UV. Cela peut être dû à la présence de flavonoïde [nicotiflorine (179.96 μ g/g)] et des acides phénoliques qui ont été identifiés par LC-MS/MS [acide malique (1385.47 μ g/g), acide vanillique (472.99 μ g/g)] ainsi que d'autres phytoconstituants dans l'extrait hydrométhanolique étudié. Les flavonoïdes et les composés phénoliques ont été signalés comme des composants fonctionnels dans les plantes et les fruits, qui jouent un rôle important dans le traitement des inflammations et des érythèmes. La propriété antioxydante des flavonoïdes et des composés phénoliques potentialise encore la protection UV (Saewam *et al.*, 2013).

5. Conclusion

L'évaluation de l'activité antioxydante s'est portée sur l'utilisation de quatre tests (DPPH, β -carotène, ABTS, CUPRAC). D'après les résultats des tests étudiés, l'extrait hydrométhanolique de *T. nudatum* possède une activité antioxydante modérée avec les quatre méthodes.

En ce qui concerne le pouvoir antibactérien par la méthode de diffusion en milieu gélosé (méthode de disque), l'extrait butanolique de *S. tetragona* a manifesté une meilleure activité vis-à-vis des souches d'*Escherichia coli*, de *Klebsiella pneumoniae et* d'*Escherichia coli* ATCC 25922, et une faible activité contre *Pseudomonas aerugina*. En revanche l'extrait hydrométhanolique de *T. nudatum* a montré une meilleure activité contre *Staphylococcus aureus*.

L'efficacité de la protection solaire de l'extrait hydrométhanolique de *Traganum nudatum* a été déterminée par la mesure du facteur de protection solaire (FPS). Cette plante possède une bonne activité photoprotectrice avec une valeur de FPS de 25.30.

A la lumière des résultats obtenus, nous pouvons conclure que *Traganum nudatum* possède des activités antioxydante, antibactérienne et photoprotectrice très intéressantes.

Conclusion générale

Ce travail a été consacré à l'étude phytochimique et biologique de deux espèces Algériennes appartenant à la famille des Amaranthaceae : *Salsola tetragona* et *Traganum nudatum*.

L'étude phytochimique de la phase chloroformique et butanolique des parties aériennes de l'espèce *Salsola tetragona* a conduit à l'isolement et l'identification de 11 composés de différentes classes :

- Cinq triterpènes de types cardénolides
 - 1- Uzarigenine
 - 2- Desglucouzarine
 - **3** 3-O-β-D-allopyranosylcoroglaucigenine
 - 4-12-dehydroxyghalakinoside
 - 5- Calactine
- Trois composés phénoliques
 - 6- Acide vanillique
 - 7-1-O-β-D-glucopyranosyl-3-méthoxy-4-hydroxyphényl (Tachioside)
 - **8-** 1-O- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-3-méthoxy-hydroxyphényl (Canthoside C)
- Un sucre
 - **9** α -D-glucopyranosyl- $(1 \rightarrow 2)$ - β -D-fructofurannoside (Saccharose)
- Deux acides gras
 - 10- Acide oléique
 - 11- Glycérol monopalmitate

L'investigation phytochimique de la phase butanolique des parties aériennes de l'espèce *Traganum nudatum* a permis d'isoler **2** flavonoïdes de type flavonol :

12- Isorhamnétine-3-O-[α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-galactopyranoside]

13- 3-*O*-[β -D-apiofuranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D- galactopyranosyl]isorhamnétine,

L'analyse LC-MS/MS de la phase hydrométhanolique de *Traganum nudatum* a permis d'identifier dix composés. Les structures de ces composés ont été proposées par la comparaison avec les 37 standards. Ces structures sont des acides phénoliques et des flavonoïdes :

- Acide *p*-coumarique
- Acide caféique

- Acide vanillique
- Acide salicylique
- Acide quinique
- Acide 4-OH-benzoïque
- Acide protocatéchique
- Acide malique
- ➢ Isoquercétine
- ➢ Nicotiflorine

L'acide quinique (97.34 %) est le composant majoritaire de l'extrait hydrométhanolique de *Traganum nudatum*.

Le composé **3** (3-O- β -D-allopyranosylcoroglaucigenine) est un nouveau produit isolé pour la première fois dans le règne végétal et les produits **1-5**, **11** sont décrits pour la première fois dans le genre *Salsola* et la famille Amaranthaceae. La détermination de structure de ces composés a été réalisée à l'aide des techniques spectroscopiques de RMN 1D et 2D et par la spectrométrie de masse ESI-MS.

L'extrait hydrométhanolique de l'espèce *Traganum nudatum* testé par les méthodes DPPH, ABTS, β-carotène et CUPRAC, a montré une activité antioxydante modérée.

L'activité antibactérienne de la phase butanolique de *Salsola tetragona* et la phase hydrométhanolique de *Traganum nudatum* a été évaluée sur 9 souches : *Escherichia coli* ATCC 25922, *Escherichia coli, Staphylococcus aureus* ATCC 43300, *Staphylococcus aureus, Streptococcus enterococcus, Pseudomonas aerugina, Klebsiella pneumoniae, Enterobacter aerogenes* et *Salmonella heidelberg*. Les résultats ont montré que l'extrait butanolique de *Salsola tetragona* possède une meilleure activité sur les souches d'*Escherichia coli* ATCC 25922, *Escherichia coli* et de *Klebsiella pneumoniae* alors que l'extrait de *T. nudatum* était peu actif sur la souche de *Staphylococcus aureus*.

L'activité photoprotectrice de l'extrait méthanolique de *Traganum nudatum* a été déterminée par la mesure du facteur de protection solaire (*FPS*). Cette plante possède une bonne activité photoprotectrice.

Références bibliographiques

Références bibliographiques

Abdel-Azim NS. (**1998**) A cardenolide glycoside from *Gomphocarpus sinaicus*. *Phytochemistry*, **49**, 273-275.

Abe F, Yamauchi T. (**2000**) An androstane bioside and 3'-Thiazolidinone derivatives of doublylinked cardenolide glycosides from the roots of *Asclepias tuberosa*. *Chemical & Pharmaceutical Bulletin*, **48**, 991-993.

Abegaz BM, Woldu Y. (**1991**) Isoflavonoids from the roots of *Salsola somalensis*. *Phytochemistry*, **30**(4), 1281-1284.

Acharya E, Siwakoti BP. (2006) Ethno-medicinal plants used by Bantar of Bhaudaha Morang. Nepal. *Our Nature*, *4*, 96-103.

Adjanohoun et al. (**1985**) Médecine Traditionnelle et Pharmacopée: Contribution aux études ethnobotaniques et floristiques au Niger, Agence de Coopération Culturelle et Technique, Paris, pp. 250.

Adjanohoun et al. (**1986**) Médecine traditionnelle et Pharmacopée: Contribution aux études ethnobotaniques et floristiques au Togo, Agence de Coopération Culturelle et Technique, Paris, pp. 671.

Adjanohoun et al. (**1989**) Médecine traditionnelle et pharmacopée. Contribution aux études ethnobotaniques et floristiques en République Populaire du Bénin. Agence de Coopération Culturelle et Technique. Paris. pp. 713-724.

Adjanohoun et al. (**1998**) Médecine Traditionnelle et Pharmacopée: Contribution aux études ethnobotaniques et floristiques en République Populaire du Congo, Agence de Coopération Culturelle et Technique, Paris.

Aebersold R, Mann M. (2003) Masse spectrometry- based proteomics. *Nature*, 422, (6928), 198-207.

Agrawal PK. (1992) NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. *Phytochemistry*, *31*(10), 3307-30.

Ahmad Z, Mehmood S, Fatima I, Malik A, Ifzal R, Afza N, Iqbal L, Latif M, Nizami TA. (**2008**) Structural determination of salsolins A and B, new antioxidant polyoxygenated triterpenes from *Salsola baryosma* by 1D and 2D NMR spectroscopy. *Magnetic Resonance in Chemistry*, **46**, 94-98.

212

Ahmed AG, Galal TM, Masatake N. (**2000**) Two flavonoid glycosides from *Chenopodium murale*. *Phytochemistry*, **53**, 299-303.

Ahmed A. (2008) Effects of digoxin at low serum concentrations on mortality and hospitalization in heart failure: A propensity matched study of the DIG tria. *International Journal of Cardiology*, *123*, 138-146.

Ahmed S, Ashraf M, Jabbar A, Janbaz, KH, Khan MS, Gilani AH, Choudhary MI. (2006) Pharmacological screening of *Salsola baryosma*. *Journal of the Chemical Society of Pakistan*, 28(1), 82-83.

Allai L, Karym EL, El Amiri B, Nasser B, Essamad AK, Terzioğlu P, Ertas A, Öztürk M. (**2017**) Evaluation of Antioxidant Activity and phenolic composition of *opuntia ficus-indica* cladodes collected from Moroccan settat region. *Eurasian Journal of Analytical Chemistry*, **12**(1):105-117.

Al-Saleh FS, Ali H, Mirza M. (**1993**). Chemical constituents of some medicinal plants growing in Bahrain. *Fitoterapia*, **64**, 251-256.

Amarantaceae: [consulté le 06/07/2017]. Disponible à partir de : <u>http://www.plantes-botanique.org/famille_amaranthaceae.</u>

Andersson CM, Hallberg A, Högberg T. (**1996**) Advances in the development of pharmaceutical antioxidants. *Advances in Drug Research*, **28**, 65-180.

Andhiwal CK, Kishore K. (1984) Sterols of Salsola foetida. Journal of the Indian Chemical Society, 61(8), 729-730.

Aniss HA, Said AEM, El Sayed IH, Adly C. (**2014**) Amelioration of adriamycin-induced cardiotoxicity by *Salsola kali* aqueous extract is mediated by lowering oxidative stress. *Communications in free radical research*, **19**(4), 170-178.

Ankli A, Heilmann J, Heinrich M, Sticher. (2000) Cytotoxic cardenolides and antibacterial terpenoids from *Crossopetalum gaumeri*. *Phytochemistry*, *54*, 531-537.

Annaev C, Isamukhamedova, M, Abubakirov NK. (**1983**) Triterpene glycosides of *Salsola micranthera*. Structure of salsolosides C and D. *Chemistry of Natural Compounds*, **19**(6), 691-695.

Annaev C, Isamukhamedova M, Abubakirov NK. (**1984**) Triterpene glycosides of *Salsola micranthera*. II. Structure of salsoloside E. *Khimiya Prirodnykh Soedinenii*, **1**, 65-69.

213

Antibiotique (généralités). [consulté le 02/06/2017]. Disponible à partir de : <u>http://www.vulgaris-</u> medical.com/encyclopedie-medicale/antibiotique-generalites

Antibiotique. [consulté le 02/06/2017]. Disponible à partir de : http://fr.wikipedia.org/wiki/Antibiotique

Apak R, Güçlü K, Özyürek M, Karademir SE. (**2004**) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E. using their cupricion reducing capability in the presence of neocuproine: CUPRAC method. *Journal of Agricultural and Food Chemistry*, **52**, 7970-7981.

Aston FW. (1919) A positive-ray spectrograph. Philosophical Magazine, 38, 707-715.

Ayethan WM, Sein MM, Maybwin M. (**1996**) The effects of some medicinal plants on smooth muscle. *Research Journal*, **7**(2), 70-74.

Babaamer Z, Abu Zarga M, Ghzi Al-Abdallat N, Sakhri L. (**2014**) Isolation of Cardenolide glycosides from *Pergularia tomentosa* L. and their Antioxidant activities. *Annales des Science et Technologie*, **6**, 123-128.

Babula P, Masarik M, Adam V, Provaznik I, Kizek R. (**2013**) From Na+/K+-ATPase and cardiac glycosides to cytotoxicity and cancer treatment. *Anti-Cancer Agents* in *Medicinal Chemistry*, *13*, 1069-1087.

Baek NI, Lee YH, Park JD, Kim SI, Ahn BZ. (**1994**) Euonymoside A: a new cytotoxic cardenolide glycoside from the bark of *Euonymus sieboldianus*. *Planta Medica*, **60**, 26-29.

Bahmani M, Avijgan M, Hosseini SR, Bahmani E, Mehrzadi S. (**2010**) Traditional application of medicinal plants in southern area of Ilam province for treatment diseases and clinical syndromes in small ruminants. *Journal of Herbal Drugs*, **1**(2), 51-59.

Baggarwal B, Jchikawa H, Garodia P, Weerasinghe P, Sechi G, Dharr I, Pandey M, Shishdia S, Nair M. (2006) From traditional ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. *Expert Opinion on Therapeutic Targets*, *10*, 87-118.

Baillon. (1988) Traite de Botanique medicale- les chenopodiacees, Paris, pp. 1181-1186.

Bai L, Zhao M, Toki A, Sakai J, Yang XY, Bai Y, Ando M, Hirose K, Ando M. (**2010**) Three new cardenolides from methanol extract of stems and twigs of *Nerium oleander*. *Chemical & Pharmaceutical Bulletin*, **58**, 1088-1092.

Bai Y, Zhao M, Bai L, Ando M. (**2011**) The biological activities of cardenolide triglycosides from stems, twigs, and leaves of *Nerium oleander*. *Journal of Wood Science*, **57**, 56-65.

Balakyz Y, Ahmed MM, Ahmed A, Aisha K, Burasheva GS, Abilov ZA, Iqbal CM, Atta UR. (2006) Bioactive flavonoids and saponins from *Climacoptera obtusifolia*. *Phytochemistry*, 67, 2392-2397.

Barbosa RR, Fontenele-neto JD, Soto-blanco B. (2008) Toxicity in goats caused by oleander (*Nerium oleander*). *Research in Veterinary Science*, 85, 279-281.

Bellakhdar J. (1997) La pharmacopée marocaine traditionnelle, Ibis Press, Paris, France.

Bedir E, Çalis I, Piacente S, Pizza C, Khan IA. (**2000**) A new flavonol glycoside from the aerial parts of *Astragalus vulneraria*. *Chemical & Pharmaceutical Bulletin*, **48**, 1994-1995.

Begum S, Siddiqui BS, Sultana R, Zia A, Suria A. (**1999**) Bio-active cardenolides from the leaves of *Nerium oleander*. *Phytochemistry*, **50**, 435-438.

Bethwell OO. (2007) *Acokanthera oppositifolia* (Lam.) Codd. in medicinal plants/plantes médicinales, G.H. Schmelzer, A. Gurib-Fakim, Eds. Netherlands: PROTA, Wageningen.

Beyaoui A, Chaari A, Ghouila H, Ali HM, Ben Jannet H. (**2012**) New antioxidant bibenzyl derivative and isoflavonoid from the Tunisian *Salsola tetrandra* Forssk. *Natural Product Research*, **26**(3), 235-242.

Beylot C. (**2008**) Vieillissement cutané. Aspects cliniques, histologiques et physiopathologiques. *Annales de Dermatologie et de Vénéréologie*, 135.

Bédane C, Roelandts R. (2007) Rayonnement ultraviolet. Annales de dermatologie et de vénéréologie, 134, 4S9.

Bhatia ML, Manchanda SC, Roy SB. (**1970**) Haemodynamic studies with peruvoside in human congestive heart failure. *British Medical Journal*, **26**, 740-743.

Blois MS. (**1958**). Antioxidant determinations by the use of a stable free radical. *Nature*, **81**, 1199-1200.

Blondeau M, Roy C, Bernard JP. (2007) La soude des collines (*Salsola collina* Pallas), une adventice nouvelle au Québec. *Le Naturaliste Canadien*, 131, 24-27.

Bock K, Pedersen C. (**1983**) Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. *Advances in Carbohydrate Chemistry and Biochemistry*, **41**, 27-49.

Botineau M. (2010) Botanique systématique et appliquée des plantes à fleurs, Paris, pp. 365-376.

Boualala M, Bradai L, Abid M. (**2014**) Diversité et utilisation des plantes spontanées du Sahara septentrional algérien dans la pharmacopée saharienne. Cas de la région du Souf. *Revue ElWahat pour les Recherches et les Etudes*, **7**, 18-26.

Bouaziz M, Dhouib A, Loukil S, Boukhris M, Sayadi S. (**2009**) Polyphenols content, antioxidant and antimicrobial activities of extracts of some wild plants collected from the south of Tunisia. *African Journal of Biotechnology*, **8** (24), 7017-7027.

Bruneton J. (**1999**) *Pharmacognosie, Phytochimie- Plantes médicinales-Techniques et documentations*, 3ème édition, Lavoisier, pp. 463, 661-670, 721-730.

Burnichon N, Texier A. (2003) L'antibiogramme : la détermination des sensibilités aux antibiotiques, des bactériologie – Semestre été 2003, pp.3.

Buschi CA, Pomilio AB. (**1982**) Isorhamnetin 3-O-robinobioside from *Gomphrena martiana*. *Journal of Natural Products*, **45**, 557-559.

Butler MS, Towerzey L, Pham NB, Hyde E, Wadi SK, Guymer GP, Quinn RJ. (**2014**) Cardenolide glycosides from *Elaeodendron australe* var. *integrifolium*. *Phytochemistry*, **98**,160-163.

Cao S, Brodie PJ, Miller JS, Ratovoson F, Callmander MW, Randrianasolo S, Rakotobe E, Rasamison VE, Suh EM, TenDyke K, Kingston DGI. (**2007**) Antiproliferative cardenolides of an *Elaeodendron* sp. from the Madagascar rain forest (1). *Journal of Natural Product*, **70**, 1064-1067.

Chang LC, Gills JJ, Bhat KPL, Kinghorn AD. (2000) Activity-guided isolation of constituents of *Cerbera manghas* with antiproliferative and antiestrogenic activities. *Bioorganic & Medicinal Chemistry Letters*, 10, 2431-2434.

Chang HS, Chiang MY, Hsu HY, Yang CW, Lin CH, Lee SJ, Chen IS. (2013) Cytotoxic cardenolide glycosides from the root of *Reevesia formosana*. *Phytochemistry*, 87, 86-95.

Cheenpracha S, Karalai C, Rat-A-Pa Y, Ponglimanont C, Chantrapromma K. (2004) New Cytotoxic Cardenolide Glycoside from the Seeds of *Cerbera mangha*. *Chemical & Pharmaceutical Bulletin*, 52, 1023-1025.

Chenopodium album. [consulté le 17/05/2017]. Disponible à partir de : https://www.google.dz/search?q=Chenopodium+album.

Cheung HT, Andrew N, Carolyn J, Watson TR. (**1989**) New cardenolide glycosides with doubly linked sugars from *Asclepias vestita*. *Journal of Chemical Research, Synopses*, **1**, 6-7.

Chernobai VT, Komissarenko NF, (**1971**) Cardenolides of *Gomphocarpus fruticosus* and the partial synthesis of uzarigenin glycosides. *Chemistry of Natural Compounds*, **7**, 421-424.

Chousterman B, Payena D, Mégarbanec B, Laprévote O. (2010) Elements of chromatography and mass spectrometry for the clinician use. *Réanimation*, *19*, 593-596.

Cho HK, Suh WS, Kim KH, Kim SY, Lee KR. (2014) Phytochemical constituents of *Salsola komarovii* and Their Effects on NGF Induction. *Natural Product Sciences*, 20, 95-101.

Coombe RG, Watson TR. (**1964**) The cardiac glycosides of *Gomphocarpus fruticosus* (R. Br.) III. Gomphoside. *Australian Journal of Chemistry*, **17**, 92-100.

Coupe schématique d'une fleur d'amarante. [consulté le 03/03/2017]. Disponible à partir de : <u>https://www.google.dz/search Coupe schématique d'une fleur d'Amaranthaceae.</u>

Cuyckens F, Claeys M. (**2004**) Mass spectrometry in the structural analysis of flavonoids. *Journal* of Mass Spectrometry, **39**(1), 1-15.

Dai HF, Gan YJ, Que DM, Wu J, Wen ZC, Mei WL. (**2009a**) A new cytotoxic 19-nor-cardenolide from the latex of *Antiaris toxicaria*. *Molecules*, *14*, 3694-3699.

Dai HF, Gan Y-J, Que DM, Jiao W, Wen ZC, Mei WL (**2009b**) Two new cytotoxic cardenolides from the latex of *Antiaris toxicaria*. *Journal of Asian Natural Product Research*, **11**, 832-837.

Dai Y, Ye WC, Wang ZT, Matsuda H, Kubo M, But PPH. (**2002**) Antipruritic and antinociceptive effects of *Chenopodium album* L.in mice. *Journal of Ethnopharmacology*, **81**, 245-250.

Delafosse, raspail, lesson. (**1827**) Bulletin des sciences naturelles et de géologie, Tome 10, Paris, pp.83-85.

De S, Datta SK. (**1988**) Separation and HPLC identification of two cardiac glycosides from *Calotropis gigantea* (Linn.) R. Br. ex Ait. *Indian Drugs*, **25**(4), 167-168.

De Bruyn A. (**1991**) The identification by ¹H- and ¹³C-n.m.r. spectroscopy of sucrose, I-kestose, and neokestose in mixtures present in plant extracts. *Carbohydrate Research*, **211**, 131-136.

Diesen DL, Kuo PC. (**2010**) Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis. *Journal of Surgical Research*, **162** (1), 95-109.

Dinan L, Harmatha J, Lafont R. (2001) Chromatographic procedures for the isolation of plant steroids. *Journal of Chromatography*, 935, 105-123.

Dong WH, Mei WL, Zhao YX, Zeng YB, Zuo WJ, Wang H, Li XN, Dai HF. (**2011**) Cytotoxic cardenolide glycosides from the seeds of *Antiaris toxicaria*. *Planta Medica*, **77**, 1730-1734.

Dwivedi S, Dubey R, Mehta K. (2008) *Achyranthes aspera* Linn. (Chirchira) A magic herb in folk medicine. *Ethnobotanical Leaflets*, *12*, 670-676.

El Abed I, Gherraf N, Yousfi M. (**2011**) Etude de l'activité antibactériene et antioxydante de l'extrait brut de *Traganum nudatum*. *Annales des Sciences et Technologie*, **3**, 54-61.

El-Askary H, Hilal S, El-Kashoury E, Hölzl J. (**1993**) Cardenolide glycosides with doubly linked sugars from *Gomphocarpus sinaicus*. *Phytochemistry*, **34**, 1399-1402.

Elgamal M, Hani A, Hanna AG, Morsy NAM, Duddeck H, Simon A, Gati T, Toth G. (**1999**) Complete ¹H and ¹³C signal assignments of 5α cardenolides isolated from *Calotropis procera* R. B.R. *Journal of Molecular Structure*, **477**, 201-208.

El-Mansouri L, Ennabilli A, Bousta D. (2011) Socioeconomic interest and valorization of medicinal plants from the Rissani oasis (SE of Morocco). *Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas*, 1, 30-45.

El-Rhaffari L, Zaid A. (**2004**) Pratique de la phytothérapie dans le sud-est du Maroc (Tafilalet). Un savoir empirique pour une pharmacopée rénovée. Origine des pharmacopées traditionnelles et élaboration des pharmacopées savantes, Edition de l'Institut de Recherche pour le Développement : Paris. pp. 293-318.

El-Sayed NH, Awwaad AS, Hifnawy MS, Mabry TJ. (1999) A flavonol triglycoside from *Chenopodium murale*. *Phytochemistry*, 51, 591-593.

El-Shazly A, Wink M. (**2003**) Tetrahydroisoquinoline and β-carboline alkaloids from *Haloxylon articulatum* (Cav.) Bunge (Chenopodiaceae). *Zeitschrift für Naturforschung*, **58**, 477-480.

Elsharabasy FS, Hosney AM. (2013) Chemical constituents from the aerial parts of *Salsola inermis*. *Egyptian Pharmaceutical Journal*, *12*, 90-94.
Fabre N, Rustan I, Hoffmann DH, Quetin-Leclercq J. (**2001**) Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. *American Society for Mass Spectrometry*, **12**, 707-715.

Fayez EK, Mary HG. (2001) Polyphenols from *Cornulaca monacantha*. *Phytochemistry*, *58*, 611-613.

Fenwick GR, Heaney RK, Mawson R. (**1989**) Glucosinolates. in Cheeke, P.R., ed.. Toxicants of Plant Origin. Vol. II. Glycosides. CRC Press, Inc, Florida. pp. 1-41.

Francesca C, Brigida D, Marina DG, Cinzia DM, Annunziata G, Lucio P, Armando Z. (**2003**) Cinnamic acid amides from *Chenopodium album*: effects on seeds germination and plant growth. *Phytochemistry*, **64**, 1381-1387.

Fujino T, Kuroda M, Matsuo Y, Kubo S, Tamura C, Sakamoto N, Mimaki Y, Hayakawa M. (**2015**) Cardenolide glycosides from the seeds of *Digitalis purpurea* exhibit carcinoma-specific cytotoxicity toward renal adenocarcinoma and hepatocellular carcinoma cells. *Bioscience Biotechnology and Biochemistry*, **79**, 177-184.

Gangwar M, Goel RK, Nath G. (**2014**) *Mallotus philippinensis* Muell. Arg (Euphorbiaceae): Ethnopharmacology and Phytochemistry Review. *BioMed Research International*, **2014**, 1-13.

Gerlach H, Grundmann W, Giessner R. (**1965**) On the cardiac glycosides from the roots of *Apocynum cannabinum* L. Isolation and separation of glycosides. *Pharmazie*, **20**, 450-455.

Gessler MC, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner MM. (**1994**) Screening Tanzanian medicinal plants for antimalarial activity. *Acta Tropica*, **56**, 65-77.

Ghedadba N, Bousselsela H, Hambaba L, Benbia S, Mouloud Y. (**2014**) Évaluation de l'activité antioxydante et antimicrobienne des feuilles et des sommités fleuries de *Marrubium vulgare* L. *Phytothérapie*, **12**, 15-24.

Ghourri M, Zidane L, Douira A. (**2013**) Usage des plantes médicinales dans le traitement du diabète au sahara marocain (Tan-Tan). *Journal of Animal &Plant Sciences*, **17**, 2388-2411.

Gil RR, Lin LZ, Chai HB, Pezzuto JM, Cordell GA. (1995) Cardenolides from *Nierembergia* aristata. Journal of Natural Products, 58, 848-856.

Gohar AA, El-Olemy MM, Abdel-Sattar E, El-Said M, Niwa M. (2000) Cardenolides and bsitosterol glucoside from *Pergularia tomentosa* L. *Natural Product Sciences*, *6*(3), 142-146. Goldstein EF. (1886) Berl Ber, 39, 691.

Gordon MH. (**1990**) The mechanism of antioxidant action *in vitro*. In B. J. F. Hudson ed. Food antioxidants London: Elsevier Applied Science. pp. 1-18.

Grubben GJH, Denton OA. (2004) PROTA, Ressources végétales de l'Afrique tropicale 2, Légumes, pays-bas. pp.186, 312.

Hamed AI, Masullo M, Sheded MG, Mahalel UA, Tawfik MM, Perrone A, Piacente S. (2011) Triterpene saponins from *Salsola imbricate*. *Phytochemistry Letters*, *4*, 353-356.

Hamed AI, Plaza A, Balestrieri ML, Mahalel UA, Springuel IV, Oleszek W, Pizza C, Piacente S. (2006) Cardenolide glycosides from *Pergularia tomentosa* and their proapoptotic activity in Kaposi's sarcoma cells. *Journal of Natural Product*, **69**, 1319-1322.

Harris RS, Karmas E. (**1977**) Nutritional evaluation of food processing, 3rdEd. The Avi Publishing company Inc, New York. pp. 612.

Hernandez-Quiroz T, Soriano-Garcia M, Rodriguez-Romero A, Valencia C, Hernandez L. (**1994**) [2a(2S,3S,4R,6R),3b,5a]-14-hydroxy-19-oxo-3,2-[(tetrahydro-3,4-dihydroxy-6-methyl-2H-pyran-2,3-diyl)bis(oxy)]card-20(22)-enolide dihydrate (calactin), C₂₉H₃₉O₉.2H₂O, a cardenolide from *Asclepias linaria*. *Acta Crystallographica, Section C: Crystal Structure Communications* C, **50**(6), 935-938.

Hifnawy MS, Al-Said MS, El-Hawary SS. (**1990**) Pergularotoside, a new cardiac glycoside from *Pergularia tomentosa* L, Al-Azhar. *Journal of Natural Products*, **5**, 186-197.

Hillmann-Elies A, Hillmann G. (1953) Synthesis of subaphylline. *Zeitschrift fuer Naturforschung*, 8, 526-527.

Holmes. (1892) Recent Donations to the Meseum. *Parmaceutical Journal and Transactions*, pp. 879.

Hopkins WG. (1995) Physiologie végétal 2ème édition. Editions John Wiley. Belgique. pp. 274.

Hosamani KM, Ganjihal SS, Chavadi DV. (**2004**) *Alternanthera triandra* seed oil: A moderate source of ricinoleic acid and its possible industrial utilization. *Indian Crop Production*, **19**, 133-136.

Huang X, Renwick JAA, Sachdev-Gupta K. (**1993**) A chemical basis for differential acceptance of *Erysimum cheiranthoides* by two Pieris species. *Journal of Chemical Ecology*, **19**, 195-210.

Hung KC. (1999) The Pharmacology of Chinese Herbs, Boca Raton, FL. CRC Press, Inc. pp. 53.

Hung TM, Nab MK, Thuong PT, Sua ND, Soka DE, Song KS, Seong YH, Bae KH. (2006) Antioxidant activity of caffeoyl quinic acid derivatives from the roots of *Dipsacus asper* Wall. *Journal of Ethnopharmacology*, 108, 188-192.

Ibrahim SR, Mohamed GA, Shaala LA, Moreno L, Banuls Y, Kiss R, Youssef DT. (**2014**) Proceraside A, a new cardiac glycoside from the root barks of *Calotropis procera* with in vitro anticancer effects. *Natural Product Research*, **28**, 1322-1327.

Imai S, Katano Y, Takeda K, Kumada M, Iizuka H. (**1972**) A quantitative comparison of the cardiac actions of peruvoside with those of G-strophanthin and proscillaridin. *Tohoku Journal of Experimental Medicine*, **108**, 389-399.

Inovacure. com/wp content/uploads /2013/02/Feuillet_Anti-Age_f_web.pdf.

Jacinto SD, Chun EA, Montuno AS, Shen CC, Espineli DL, Ragasa CY. (2011) Cytotoxic cardenolide and sterols from *Calotropis gigantean*. *Natural Product Communication*, *6*, 803-806.

Jahresb D (1887) Pharmak-Pharm. und toxikologie, pp. 58.
Jiang MM, Dai Y, Gao H, Zhang X, Wang GH, He JY, Hu QY, Zeng JZ, Zhang XK, Yao XS.
(2008) Cardenolides from *Antiaris toxicaria* as potent selective Nur77 modulators, *Chemical & Pharmaceutical Bulletin* (Tokyo), 56, 1005-1008.

Jin Y-S, Du J-L, Yang Y, Jin L, Song Y, Zhang W, Chen H-S. (**2011**) Chemical and biologically active constituents of *Salsola collina*. *Chemistry of Natural Compounds*, **47**, 257-260.

Kadri A, Zarai Z, Békir A, Gharsallah N, Damak M, Gdoura R. (**2011**) Chemical composition and antioxidant activity of *Marrubium vulgare* L essential oil from Tunisia. *African Journal of Biotechnology*, **10** (19), 3908-3914.

Kamel MS, Mohamed KM, Hassanean HA, Ohtani K, Kasai R, Yamasaki K. (2001) Acylated flavonoid glycosides from *Bassia muricata*. *Phytochemistry*, *57*, 1259-1262.

Kanchanapoom T, Kasai R, Yamasaki K. (**2002**) Iridoid and phenolic diglycosides from *Canthium berberidifolium*. *Phytochemistry*, **61**,461-464.

Karamaæ M, Kosiñska A, Pegg RB. (**2005**) Comparison of radical of radical-scavenging activities for selected phenolic acids. *Polish journal of food and nutrition sciences*, **14**/55, 165-170.

Karkare S, Adou E, Cao S, Brodie P, Miller JS, Andrianjafy NM, Razafitsalama J, Andriantsiferana R, Rasamison VE, Kingston DGI. (**2007**) Cytotoxic cardenolide glycosides of *Roupellina (Strophanthus) boivinii* from the Madagascar rainforest. *Journal of Natural Product*, **70**, 1766-1770.

Kaur P, Bains, Navdeep S. (**2012**) Effect of phenylalanine on quantitative production of flavonoids in unorganised tissue of some economically important plants of Indian Thar desert. *International Journal of Pharmaceutical Sciences Review and Research*, **15**(2), 31-34.

Kawamura A, Guo J, Maggiali F, Berova N, Nakanishi K. (1999) Structure of endogenous ouabain. *Pure and Applied Chemistry*, 71, 1643-1648.

Kerharo J, Adam JG. (**1974**) La pharmacopée sénégalaise traditionnelle : Plantes médicinales et toxiques, Vigot Frères, Paris.

Khalfallah A, Karioti A, Berrehal D, Kabouche A, Lucci M, Bilia AR, Kabouche Z. (**2014**) New flavonol triglycoside and other flavonol glycosides from *Astragalus armatus* Willd. (Fabaceae). *Records of Natural Products*, *8*, 12-18.

Khan MTH, Makhmoor T, Choudhary MI, Shaheen F, Khan ARMTH, Makhmoor T, Choudhary MI, Shaheen F, Rahman A. (**2003**) Three tyrosinase inhibitors and antioxidant compounds from *Salsola foetida*. *Helvetica Chimica Acta*, **86**, 457-464.

Kirtikar K, Basu L. (1935) Indian Medicinal Plants, Vol. III 2nd ed, Allahabad. pp. 2053-2054.

Kopp B, Kubelka W. (**1982**) New cardenolides from *Convallaria majalis*. *Planta Medica*, **45**, 195-202.

Kitanaka S, Takido M, Mozoue K, Nakaike S. (**1996**) Cytotoxic cardenolides from woods of *Euonymus alata. Chemical and Pharmaceutical Bulletin* (Tokyo), **44**, 615-617.

Komissarenko NF. (**1969**) Scorpioside A cardenolide glycoside from *Coronilla scorpioides*. *Chemistry of Natural Compounds*, **5**, 317-320.

Komissarenko NF. (**1971**) Ornithogalin- A cardenolide glycoside from *Ornithogalum magnum*. *Chemistry of Natural Compounds*, **7**, 33-35.

Kopp B. (1992) Cardenolides from Adonis aestivalis. Phytochemistry, 31, 3195-3198.

Krenn L, Hüfner A, Kastenhuber A, Speta F. (**2004**) Chemotaxonomic relevance of cardenolides in *Urginea fugax*. *Phytochemistry*, **65**, 2881-2884.

Kubo S, Kuroda M, Matsuo Y, Masatani D, Sakagami H, Mimaki Y. (**2012**) New cardenolides from the seeds of *Adonis aestivalis*. *Chemical & Pharmaceutical Bulletin*, *60*, 1275-1282.

Kuljanabhagavad T, Thongphasuk P, Chamulitrat W, Wink M. (2008) Triterpene saponins from *Chenopodium quinoa* willd. *Phytochemistry*, **69**, 1919-1926.

Kuroda M, Ori K, Mimaki Y. (**2006**) Ornithosaponins A-D, four new polyoxygenated steroidal glycosides from the bulbs of *Ornithogalum thyrsoides*. *Steroids*, **71**, 199-205.

Lang HY, Sun NC. (**1964**) The cardiac glycoside of *Thevetia peruviana* II. Isolation and identification of cerberin, ruvoside and a new cardiac glycoside perusitin. *Yao Hsueh Hsueh Pao*, *11*, 464-472.

Laphookhieo S, Cheenpracha S, Karalai C, Chantrapromma S, Rat-a-Pa Y, Ponglimanont C, Chantrapromma K. (**2004**) Cytotoxic cardenolide glycoside from the seeds of *Cerbera odollam*. *Phytochemistry*, **65**, 507-510.

Lavergne R, Véra R. (**1989**) Médecine traditionnelle et pharmacopée : études ethnobotaniques des plantes utilisées dans la pharmacopée à la Réunion.

Lee YJ, Erdos G, Hou Z, Kim SH, Kim JH, Cho JM, Corry PM. (**1994**) Mechanism of quercetininduced suppression and delay of heat shock gene expression and thermotolerance development in HT-29 cells. *Molecular* and *Cellular Biochemistry*, **137**(2), 141-154.

Lee KW, Kim YJ, Lee HJ, Lee CY. (**2003**) Cocao has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. *Food Chemistry*, **51**, 7292-7295.

Lee HJ, Pan CH, Kim ES, Kim CY. (**2012**) Online high performance liquid chromatography (HPLC)-ABTS⁺ based assay and HPLC-electrospray ionization mass spectrometry analysis of antioxidant phenolic compounds in *Salsola komarovii*. *Journal of the Korean Society for Applied Biological Chemistry*, **55**, 317-321.

Lefranc F, Kiss R. (2008) The sodium pump α 1 subunit as a potential target combat apoptosisresistant glioblastomas. *Neoplasia*, 10, 198-206.

Lei ZH, Yahara S, Nohara T, TAI B-S, Xiong J-Z. (1996) Cardenolides from *Erysimum* cheiranthoides^{||}, Phytochemistry, 41, 1187-1189.

Lei ZH, Yahara S, Nohara T, TAI B-S, Xiong J-Z, Ma Y-L. (2000) Cardiac glycosides from *Erysimum cheiranthoides. Chemical & Pharmaceutical Bulletin*, 48, 290-292.

Les rayons ultraviolets ou UV. www.utc.fr/tthomass/Themes/Unites/unites/infos/UV/UV.pdf

Leu WJ, Chang HS, Chan SH, Hsu JL, Yu CC, Hsu LC, Chen IS, Guh JH. (**2014**) Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of g1 arrest of the cell cycle. *PLoS One*, *9*, 87323.

Levrier C, Kiremire B, Guéritte F, Litaudon M. (**2012**) Toxicarioside M, a new cytotoxic 10βhydroxy-19-nor-cardenolide from *Antiaris toxicaria*. *Fitoterapia*, **83**, 660-664.

Lhinhatrakool T, Sutthivaiyakit S. (**2006**) 19-Nor- and 18,20-epoxy-cardenolides from the leaves of *Calotropis gigantean*. *Journal of Natural Products*, **69**, 1249-1251.

Li JZ, Qing C, Chen CX, Hao XJ, Liu HY. (2009) Cytotoxicity of cardenolides and cardenolide glycosides from *Asclepias curassavica*. *Bioorganic Medicinal Chemistry Letters*, 19, 1956-1959.

Li XC, Liu YQ, Wang DZ, Yang CR, Nigam SK, Misra G. (**1994**) Triterpenoid saponins from *Madhuca butyracea*. *Phytochemistry*, **37**, 827-829.

Li Y, Liu YB, Yu SS, Chen XG, Wu XF, Ma SG, Qu J, Hu YC, Liu J, Lv HN. (**2012b**) Cytotoxic cardenolides from the stems of *Periploca forrestii*. *Steroids*, **77**, 375-381.

Li YN. (**2012a**) Toxicarioside A, isolated from tropical *Antiaris toxicaria*, blocks endoglin/TGF- β signaling in a bone marrow stromal cell line. *Asian Pacific Journal of Tropical Medicine*, *5*, 91-97.

Linné CV. (1753) Species Plantarum, T 1, S. 222 (First publication of genus).

Liu Q, Tang JS, Hu MJ, Liu J, Chen HF, Gao H, Wang GH, Li SL, Hao XJ, Zhang XK, Yao XS. (**2013**) Antiproliferative cardiac glycosides from the latex of *Antiaris toxicaria*. *Journal of Natural Product*, **76**, 1771-1780.

Liu FX, Fu SF, Bi XF, Chen F, Liao XJ, Hu XS, Wu JH. (**2013**) Physico-chemical and antioxidant properties of four mango (*Mangifera indica* L.) cultivars in China. *Food Chemistry*, **138**, 396-405.

Loiseleur Deslongchanpa JLA. (1815) Traité des arbres et arbustes. Tome 5. Paris. pp. 263-264.

Ma YL, Li QM, Van den Heuvel H, Claeys M. (**1997**) Characterization of flavone and flavonol aglycons by collision-induced dissociation tandem mass spectrometry, *Rapid Communications in Mass Spectrometry*, **11**, 1357-1364.

Ma YL, Vedernikova I, Van den Heuvel H, Clayes M. (**2000**) Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. *Journal of the American Society of Mass Spectrometry*, **11**, 136-144.

Macheix JJ, Fleuriet A, Jay-Allemand C. (**2005**) Les composés phénoliques des végétaux, Presses polytechniques et universitaires romandes. pp. 2-3.

Mahmoud MJ, Jawad AL, Hussain AM, Al-Omari M, Al-Naib A. (**1989**) In vitro antimicrobial activity of *Salsola rosmarinus* and Adiantum capillus-veneris. *International journal of crude drug research*, **27**, 14-16.

Maire R. (**1962**) Flore de l'Afrique du Nord. Editions Paul le chevalier, Volume VIII. Paris, pp. 119.

Makarevich IF. (**1996**) Cardenolide glycosides of *Cheiranthus allioni*. XVI. Neoevonoside and cellobiosyldigigulomethyloside. *Chemistry of Natural Compounds*, **32**, 53-55.

Manna SK, Sreenivasan Y, Sarkar A. (**2006**) Cardiac glycoside inhibits IL-8-induced biological responses by down regulating IL-8 receptors through altering membrane fluidity. *Journal of Cellular Physiology*, **207**,195-207.

Mansur JS, Breder MNR, Mansur MCA, Azulay RD. (**1986**) Determinação do fator de proteção solar por espectrofotometria. *Brazilian Annals of Dermatology*, Rio de Janeiro, *61*, 121-124.

Marco GJ (**1968**) A rapid method for evaluation of antioxidants. *Journal of the American Oil Chemists' Society*, **45**, 594-598.

Martindale, (**1993**) The Extra Pharmacopoeial, Reynolds, J. E. F.(Ed). The Pharmaceutical Press, London, 30th Edition.

Maslennikova VA, Genkina GL, Umarova RU, Navruzova AM, Abubakirov NK. (1967) Glycosides of *Erysimum*. *Chemistry of Natural Compounds*, *3*, 143-146.

Maya TI, Leont'eva VG, Zharkaya, TI, Semenov AA, Kuznetsova EE, Chupin SP. (**1984**) Sterols from *Salsola Collina*. *Khimiya Prirodnykh Soedinenii*, *4*, 531-532.

Melkumyan KA, Revazova LV, Serobyan SE. (**1969**) Phytochemical investigations of the Chenopodiaceae family from the flora of Armenia. *Biologicheskii Zhurnal Armenii*, **22**(3), 94-5.

Mekhail T, Kaur H, Ganapathi R, Budd GT, Elson P, Bukowski RM. (**2006**), Phase 1 trial of anvirzel in patients with refractory solid tumors. *Investigational New Drugs*, **24**, 423-427.

Menet MC. (2011) Principes de la spectrométrie de masse. Revue francophone des laboratoires. 437, 41.

Mijatovic T. (**2006**) Cardenolide-induced lysosomal membrane permeabilization demonstrates therapeutic benfits in experimental human non-small cell lung cancers. *Neoplasia*, *8*, 402-412.

Mnatsakanyan VA, Agababyan EY, Arutyunyan LS. (**1981**) Flavonoids of *Salsola glauca* and *Salsola macera*. *Khimiya Prirodnykh Soedinenii*, **5**, 660-661.

Montano CJM, Morón EB, Orta ML, Navas DM, Domínguez IG, Lázaro ML. (**2014**) Evaluating the cancer therapeutic potential of cardiac glycosides. *Journal of Biomedical Research International*, **2014**, 1-9.

Moon SS, Rahman MA, Manir MM, Jamal Ahamed VS. (**2010**) Kaempferol glycosides and cardenolide glycosides, cytotoxic constituents from the seeds of *Draba nemorosa* (Brassicaceae). *Archives of Pharmacal Research*, **33**, 1169-1173.

Mortazavi SMH, Arzani K, Barzegar M. (**2010**) Analysis of sugars and organic acids contents of date palm (*Phoenix dactylifera* L.) 'Barhee' during fruit development. *Acta horticulturae*, **882**, 793-801.

Müller K, Borsch T. (**2005**) Phylogenetics of Amaranthaceae using matK/trnK sequence data – evidence from parsimony, likelihood and Bayesian approaches. *Annals of the Missouri Botanical Garden*, **92**, 66-102.

Munir U, Perveen A, Qamarunnisa S. (**2014**) Comparative pharmacognostic evaluation of some species of the genera *Suaeda* and *Salsola* leaf (Chenopodiaceae). *Pakistan Journal of Pharmaceutical Sciences*, **27**(5), 1309-1315.

Mutlib AE, Cheung HTA, Watson TR. (**1987**) *In vivo* and *in vitro* metabolism of gomphoside, a cardiotonic steroid with doubly linked sugar. *Journal of Steroid Biochemistry*, **28**, 65-75.

Myint-Khine M, Franke K, Arnold N, Porzel A, Schmidt J, Wessjohann LA. (2004) New cardenolides from roots of *Streptocaulon tomentosum*. *Fitoterapia*, 75, 779-781.

Nakamura T, Goda Y, Sakai S, Kondo K, Akiyama H, Toyoda M. (**1998**) Cardenolide glycosides from seeds of *Corchorus olitorius*. *Phytochemistry*, **49**, 2097-2101.

NCCL Standard for antimicrobial susceptibility testing by diffusion methods NCCLS. (**1985**). Documents, 5, 4.

Nicolas M, Daniel C. (**1998**) Activités technologiques en microbiologie1 -Techniques de base et méthodologie. Editeurs CRDP d'Aquitaine-Bordeaux. pp. 152.

Nogueira Fernandes JL, Octavio Mendonça Alves de Souza R, Bagueira de Vasconcellos Azeredo R. (**2012**) ¹³C NMR quantification of mono and diacylglycerols obtained through the solvent-free lipase-catalyzed esterification of saturated fatty acids. *Magnetic Resonance Chemistry*, **50**, 424-428.

Nover L. (1967) On the structure of erycanoside, a cardenolide glycoside from *Erysimum* cancescens Roth. Archives der Pharmazie und Berichte Deutschen Pharmazeutischen Gesellschaft, 300, 1022-1026.

Oliver-Bever B, (**2009**) Medicinal plants in tropical West Africa, Cambridge University Press, Cambridge, United kongdom.

Onocha PA, Ajaiyeoban EO, Dosumu OO, Ekundayo O. (**2005**) Phytochemical Screening and Biological Activities of *Gomphrena celosioides* (C.Mart) extracts. *Journal* of the *Nigerian Society* for *Experimental Biology*, **5**, 59-65.

Oscar L, Maritza D, Jesús M, Daniel J, Aristides R, Teresa C. (**2003**) ¹H-NMR Spectroscopy study of oleic acid and methyl oleate ozonation in different reaction conditions. *Revista CENIC Ciencias Químicas*, **34**, 3-8.

Osman SM, El Kashak WA, Wink M, El Raey MA. (**2016**) New isorhamnetin derivatives from *Salsola imbricata* Forssk. leaves with distinct anti-inflammatory activity. *Pharmacognosy Magazine*, **12**(1), 47-51.

Osorio AA, López MR, Jiménez IA, Moujir LM, Rodríguez ML, Bazzocchi IL. (2014) Elaeodendron orientale as a source of cytotoxic cardenolides. *Phytochemistry*, *105*, 60-67.

Oueslati MH, Ben Jannet H, Mighri Z, Chriaa J, Abreu PM. (2006) Phytochemical constituents from *Salsola tetrandra*. *Journal* of *Natural Products*, *69*, 1366-1369.

Ould El Hadj MD, Hadj-Mahammed, Zabeirou MH, Chehma A. (**2003**) Importance des plantes spontanées médicinales dans la pharmacopee tradionnelle de La region d'Ouargla (Sahara septentrional - Est algérienne). *Sciences & Technologie*, 73-78.

Pan ZH, Li Y, Liu J-L, Ning D-S, Li D-P, Wu X-D, Wen Y-X. (**2012**) A cytotoxic cardenolide and a saponin from the rhizomes of *Tupistra chinensis*. *Fitoterapia*, **83**, 1489-1493.

Panckouckf CLF. (**1968**) Description de l'Égypte, Volumes 19, Tome 19, 2 éditions, Paris. pp.138-139.

Papaioannou P, Lazari D, Karioti A, Souleles C, Heilmann J, Hadjipavlou-Litina D. (2007) Phenolic compounds with antioxidant activity from *Anthemis tinctoria* L. (Asteraceae). *Zeitschrift für Naturforschung C*, *62*(5-6), 326-330.

Pelli K, Lyly M. (**2003**) Les antioxydants dans l'alimentation. VTT Biotechnology Finlande. (3) :9p.

Pero RW, Lund H, Leanderson T. (2008) Antioxidant metabolism induced by quinic acid. increased urinary excretion of tryptophan and nicotinamide. *Phytotherapy Research*, 23, 335-346.

Piatak DM, Tang PF, Sorensen PD. (**1985**) Constituents of *Erysimum inconspicuum*. Two sulfurcontaining lactone compounds. *Journal of Natural Products*, **48**, 424-428.

Platz EA, Yegnasubramanian S, Liu JO, Chong CR, Shim JS, Kenfield SA, Stampfer MJ, Willett WC, Giovannucci E, Nelson WG. (**2011**) A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. *Cancer Discovery*, *1*, 68-77.

Plaza M, Pozzo T, Liu J, Ara KZG, Turner C, Karlsson EN. (**2014**). Substituent effects on *in vitro* antioxidizing properties, stability, and solubility in flavonoids. *Journal of Agricultural and Food Chemistry*, **62**(15): 3321-3333.

Qin X-J, Lunga P-K, Zhao Y-L, Li J-L, Yang X-W, Liu, Y-P, Luo X-D. (**2014**) Antibacterial prenylbenzoic acid derivatives from *Anodendron formicinum*. *Fitoterapia*, **92**, 238-243.

Quezel P, Santa S. (**1963**) Nouvelle flore de l'Algérie et des régions désertiques méridionales. Tome I, C.N.R.S. Paris.

Ragbau J. (**1973**) Les plantes médicinales de la nouvelle calédonie, Editions de l'Office de la recherche scientifique et technique outre-mer Paris. pp.33-34.

Rao DV, Rao EV. (**1975**) New cardenolides from seeds of *Corchorus trilocularis*. *Phytochemistry*, *14*, 533-537.

Rasheed DM, El Zalabani SM, Koheil MA, El-Hefnawy HM, Farag MA. (**2013**) Metabolite profiling driven analysis of *Salsola* species and their anti-acetylcholinesterase potential. *Natural Product Research*, **27**(24), 2320-2327.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. (**1999**) Antioxidant activity applying an improved ABTS radical cation decolorization assay. *Free Radical Biology* and *Medicine*, **26**, 1231-1237.

Ribéreau-Gayon P. (**1968**) Les composés phénoliques des végétaux. Edition Dunod. Paris. pp. 173-201.

Rice-Evans C, Mille NJ. (**1994**) Total antioxidant status in plasma and body fluids. *Methods in Enzymology*, **234**, 279-293.

Rice-Evans C, Miller NJ, Bowell PG, Bramley PM, Pridham JB. (**1995**) The relative antioxidant activities of plant-derived polyphenolic flavonoids. *Free Radical Research*, **22**, 375-383.

Roberts KD, Weiss E, Reichstein T. (**1963**) Glycosides and aglycons. CCLII. Cardenolides of the seed of *Mallotus philippinensis*. *Helvetica Chimica Acta*, **46**, 2886-2893.

Saewam N, Jimtaisong A. (2013) Photoprotection of natural flavonoids. *Journal* of Applied Pharmaceutical Science, **3**(9), 129-141.

Saleem M, Akhter N, Shaiq Ali M, Nazir M, Riaz N, Moazzam M, Arshad M, Jabbar A. (**2009**) Structure determination of salisomide and salisoflavan, two new secondary metabolites from *Salsola imbricata*, by 1D and 2D NMR spectroscopy. *Magnetic resonance in chemistry*, **47**(3), 263-265.

Salsola fruticosa [consulté le 03/03/2017]. Disponible à partir de : <u>https://www.google.dz/search</u> salsola fruticosa.

Sangare MM, Bayala B, Ategbo J-M, Loko F, Dramane KL. (**2012**) Effets de l'extrait aqueux de *gomphrena celosioides* (Amaranthaceae) sur les enzymes hépatiques. *Afrique Sience*, **08**(3), 107-115.

Saratikov AS, Vengerovskii AI, Chuchalin VS, Sedykh IM, Semenov AA, Syrchina AI, Pogodaeva NN, Trofimov VN, Zaikov KL. (**1990**) Hepatoprotective properties of hill-growing saltwort (*Salsola collina*). *Khimiko-Farmatsevticheskii Zhurnal*, **24**(6), 38-40.

Schmelzer GH, Gurib-Fakim A, Arroo R, Bosch CH, de Ruijter A, Simmonds MSJ, (Eds.). (2008) Plant resources of tropical Africa 11(1) medicinal Plants, backhuys publishers, wageningen, netherlands.

Schenk B, Schenk B, Junior P, Wichtl M. (**1980**) Cannogenol-3-O-alpha-L-rhamnoside and cannogenol-3-O- β -D-allomethyloside, two new cardiac glycosides from *Convallaria majalis*. *Planta Medica*, **40**, 1-11.

Seiber JN, Roeske CN, Benson JM. (**1978**) Three new cardenolides from the milkweeds *Asclepias eriocarpa* and *A. labriformis*". *Phytochemistry*, **17**, 967-970.

Sharma V, Ramawat KG. (**2014**) Salt stress enhanced antioxidant response in callus of three halophytes (*Salsola baryosma, Trianthema triquetra, Zygophyllum simplex*) of Thar Desert. *Biologia* (Warsaw, Poland), **69**(2), 178-185.

Shehab NG, Abu-Gharbieh E. (**2014**) Phenolic profiling and evaluation of contraceptive effect of the ethanolic extract of *Salsola imbricata* Forssk. in Male Albino Rats. *Evidence-based complementary and alternative medicine*, **2014**, 695291.

Shi LS, Liao YR, Su MJ, Lee AS, Kuo PC, Damu AG, Kuo SC, Sun HD, Lee KH, Wu TS. (**2010**) Cardiac glycosides from *Antiaris toxicaria* with potent cardiotonic activity. *Journal of Natural Product*, **73**, 1214-1222.

Shi LS, Kuo SC, Sun HD, Morris-Natschke SL, Lee KH, Wu TS. (2014) Cytotoxic cardiac glycosides and coumarins from *Antiaris toxicaria*. *Bioorganic Medicinal Chemistry*, 22, 1889-1898.

Shilpi JA, Gray AI, Seidel V. (**2010**) New cardenolides from the stem bark of *Trewia nudiflora*. *Fitoterapia*, **81**, 536-539.

Siddiqui S, Siddiqui BS, Adil Q, Begum S. (**1992**) Cardenolides and triterpenoids of the leaves of *Thevetia neriifolia*. *Phytochemistry*, **31**, 3541-3546.

Simon G, Mathero kT, Alexander IG. (**1999**) A caffeic acid ester from *Halocnemum strobilaceum*. *Phytochemistry*, *51*, 465-467.

Singleton VL, Rossi JA. (**1965**) Colorimetry of total phenolics with phosphotungstic acid reagents. *American Journal of Enology and Viticulture*, **16**, 2349-2351.

Singh A. (2011) Herbalism, phytochemistry and ethnopharmacology. Boca Raton, FL, Enfield, N.H. CRC Press, Science Publishers.

Singh S, Shenoy S, Nehete PN, Yang P, Nehete B, Fontenot D, Yang G, Newman RA, Sastry KJ. (**2013**) *Nerium oleander* derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. *Fitoterapia*, **84**, 32-39.

Singh B, Rastogi RP. (1969) Chemical investigation of Asclepias curassavica Linn, Indian Journal of Chemistry, 7, 1105-1110.

Singh B, Rastogi RP. (**1972**) Structure of ascelpin and some observations on the NMR spectra of *Calotropis* glycosides. *Phytochemistry*, **11**, 757-762.

Skolowska-Krzaczek A, Skalicka-Wozniak K, Czubkowska K. (2009) Variation of phenolic acids from herb and roots of *Salsola kali* L. *Acta Societatis Botanicorum Poloniae*, 78(3), 197.

Some N, Pousset JL. (**1981**) African medicinal plants. IV. Technic for the extraction of thevetine from *Thevitia neriifolia*. Preparation of a cardiotonic drug. *Dakar Medical*, **26**, 226-233.

Spectrométrie de masse, principe et applications [consulté le 13/05/2017]. Disponible à partir de : <u>http://masse-spec.fr.</u>

Spera D, Siciliano T, De Tommasi N, Braca A, Vessières A. (**2007**) Antiproliferative cardenolides from *Periploca graeca*. *Planta Medica*, **73**, 384-387.

Srivastava S, Khare A, Khare MP. (**1991**) A cardenolide tetraglycoside from *Oxystelma* esculentum. Phytochemistry, **30**, 301-303.

Sun Safety for Summer. [consulté le 19/05/2017]. Disponible à partir de : <u>http://www.ottawand.com/articles-and-events/articles/sun-safety-for-summer/.</u>

Swart P, Swart AC, Louw A, van der Merwe KJ. (**2003**) "Biological activities of the shrub *Salsola tuberculatiformis* Botsch.: contraceptive or stress alleviator?". *Bioessays*, **25**, 612-619.

Syrchina AI, Chernousova AV, Zaikov KL, Semenov AA. (**1992**) Tricin apioside from *Salsola collina*. *Khimiya Prirodnykh Soedinenii*, (3,4), 439-440.

Syrchina AI, Vereshchagin AL, Larin MF, Semenov A. (1989) Flavonoids of Salsola collina. Khimiya Prirodnykh Soedinenii, 5, 725-726.

Tepe B, Sokmen M, Akpulat HA, Sokmen A. (**2006**) Screening of the antioxidant potentials of six *Salvia* species from Turkey. *Food Chemistry*, **95**, 200-204.

The Plant List. [consulté le 06/03/2017]. Disponible à partir de : <u>www.theplantlist.org.</u>

Thomson JJ. (1897) Lecture at the Royal institution.

Tomas F, Morenilla A, Barberan FAT. (**1985**) Two flavonol glycosides from *Salsola kali*. *Fitoterapia*, **56**(6), 365-366.

Traganum nudatum. [consulté le 03/06/2017]. Disponible à partir de : <u>http://www.floramaroccana.fr/traganum-nudatum.html.</u>

Tundis R, Menichini F, Conforti F, Loizzo MR, Bonesi M, Statti G, Menichini F. (2009) A potential role of alkaloid extracts from *Salsola* species (Chenopodiaceae) in the treatment of Alzheimer's disease. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 24(3), 818-824.

Tundis R, Loizzo, MR, Bonesi M, Menichini F, Statti, GA, Menichini F. (**2008**) In vitro cytotoxic activity of *Salsola oppositifolia* Desf. (Amaranthaceae) in a panel of tumour cell lines Zeitschrift fuer Naturforschung, C: *Journal of Biosciences*, **63**(5/6), 347-354.

Ueda JY. (**2003**) Antiproliferative activity of cardenolides isolated from *Streptocaulon juventas*. *Biological and Pharmaceutical Bulletin*, **26**, 1431-1435.

Van Quaquebeke E, Simon G, André A, Dewelle J, El Yazidi M, Bruyneel F, Tuti J, Nacoulma O, Guissou P, Decaestecker C, Braekman JC, Kiss R, Darro F. (**2005**) Identification of a novel cardenolide (2"-oxovoruscharin) from *Calotropis procera* and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses. *Journal of Medicinal Chemistry*, **48**, 849-856.

Virey JJ. (1815) Des plantes utilisées en place de thé-. Journal de pharmacie. pp. 89.

Volpato G, Kourková P, Zelený V. (**2012**) Healing war wounds and perfuming exile: the use of vegetal, animal, and mineral products for perfumes, cosmetics, and skin healing among Sahrawi refugees of Western Sahara. *Journal of Ethnobiology and Ethnomedicine*, **8**, 49.

Walter S, Judd CS, Campbell EA, Kellogg PS. (**2002**) Botanique systématique: Une perspective phylogénétique.1ére Edition américaine pp. 246.

Wang XB, Li G-H, Zheng L-J, Yang J. (**2009**) Nematicidal cardenolides from *Nerium indicum* Mill. *Chemistry & Biodiversity*, **6**, 431-436. Wang TM, Hojo T, Ran FX, Wang RF, Wang RQ, Chen HB, Cui JR, Shang MY, Cai SQ. (2007) Cardenolides from *Saussurea stella* with cytotoxicity toward cancer cells. *Journal of Natural Product*, 70, 1429-1433.

Wang XJ, Zhao YX, Jia XH, Ding XB. (2011) Studies on the chemical constituents of *Salsola collina*. *Zhong yao cai*, *34*, 230-231.

Warashina T, Noro T. (**2000**) Cardenolide and oxypregnane glycosides from the root of *Asclepias incarnata* L. *Chemical & Pharmaceutical Bulletin*, **48**, 516-524.

Warashina T, Shikata K, Miyase T, Fujii S, Noro T. (**2008**) New cardenolide and acylated lignan glycosides from the aerial parts of *Asclepias curassavica*. *Chemical & Pharmaceutical Bulletin*, **56**, 1159-1163.

Wassel GM, Baghdadi HH, El Difrawy SM. (**1979**) Phytoecdysone from some wild Egyptian *Salsola* species. *Fitoterapia*, **50**, 51-52.

Watson TR, Wright SE. (**1956**) The cardiac glycosides of *Gomphocarpus fruticosus* (R.Br.) I. Afroside. *Australian Journal of Chemistry*, **9**, 497-511.

Watt JM, Breyer-Brandwijk MG. (**1962**) "The medicinal and poisonous plants of southern and eastern Africa, E. & S. Livingstone, 2nd edition, London, United kingdom. pp.1457.

Wichtl M, Junior P. (**1977**) Strophanthidin digitaloside and strophanthidin 6-deoxyguloside, two new cardenolide glycosides from *Adonis vernalis* L. *Archiv Der Pharmazie* (Weinheim), *310*, 905-910.

Woldu Y, Abegaz B. (**1990**) Isoflavonoids from *Salsola somalensis*. *Phytochemistry*, **29**(6), 2013-2015.

Wolfender JL, Waridel P, Ndjoko K, Hobby KR, Major HJ, Hostettmann K. (**2000**) Evaluation of Q-TOF-MS/MS and multiple stage IT-MSn for the dereplication of flavonoids and related compounds in crude plant extracts. *Analusis*, **28**, 895-906.

Winkler A, Ossenbrink M, Knoche M. (**2015**) Malic acid promotes cracking of sweet cherry fruit. *Journal of the American Society for Horticultural Science*, **140**(3), 280-287.

Wu XL, Wu YL, Li HG, Liu HT, Fu XY, Cui RQ, Wang JH, Liu C, Chen J. (**2014**) A new periplogenin cardenolide from the seeds of *Antiaris toxicaria*. *Journal of Asian Natural Product Research*, **16**, 418-421.

233

Xiang Y, Li Y, Zhang J, Li P, Yao Y. (**2007**) Studies on chemical constituents of *Salsola collina*. *Zhongguo Zhongyao Zazhi*, **32**(5), 409-413.

Xiang Y, Yao Y, Zhou Q, Li, P, Li Y. (2009) A new flavone glycoside from *Salsola collina*. *Zhongcaoyao*, 40(12), 1858-1860.

Xue R, Han N, Sakurai H, Saiki I, Ye C, Yin J. (**2013a**) Cytotoxic cardiac glycosides from the roots of *Streptocaulon juventas*. *Planta Medica*, **79**, 157-162.

Xue R, Han N, Ye C, Yin J. (**2013b**) Cardenolide glycosides from root of *Streptocaulon juventas*. *Phytochemistry*, **88**, 105-111.

Yadava RN, Yadav S. (**1999**) A new cardenolide uzarigenen-3-O- β -D-xylopyranosyl (1->2)- α -L-rhamnopyranoside. *Journal of Asian Natural Product Research*, **1**, 245-249.

Yadava RN, Rathore K, (**2000**) A new cardenolide from the seeds of *Terminalia arjuna* (W&A). *Journal of Asian Natatural Product Research*, **2**, 97-101.

Yadava RN, Rathore K. (2001) New cardenolide from the seeds of *Terminalia bellerica*. *Fitoterapia*, 72, 310-312.

Yaguchi Y, Sakurai N, Nagai M, Inoue Takao. (**1988**) Constituents of *Myrica rubra*. III. Structures of two glycosides of myricanol. *Chemical and Pharmaceutical Bulletin*, **36**(4), 1419-1424.

Yamaki S. (**1984**) Isolation of vacuoles from immature apple Fruit flesh and compartmentation of sugars, Organic acids, phenolic compounds and amino acids. *Plant and Cell Physiology*, **25**(1), 151-166.

Yamauchi T, Abe F, Wan ASC. (**1987a**) Polar cardenolide glycosides from the leaves of *Cerbera odollam* and *Cerbera manghas* (III). *Chemical and Pharmaceutical Bulletin*, **35**, 2744-2749.

Yamauchi T, Abe F, Wan ASC. (**1987b**) Studies on Cerbera. IV. Polar cardenolide glycosides from the leaves of *Cerbera odollam* and *Cerbera manghas*. *Chemical and Pharmaceutical Bulletin*, **35**, 4813-4818.

Yamauchi T, Takahashi M, Abe F. (**1976**) Cardiac glycosides of the root bark of *Nerium odorum*. *Phytochemistry*, **15**, 1275-1278.

Yamauchi T, Abe F. (**1978**) Neriaside, a 8, 14-seco-cardenolide. *Tetrahedron Letters*, **19**, 1825-1828.

Yunxue Z, Xingbao D, Wenzhao T, Xiaojing W. (2005) Study on the chemical constituents of *Salsola collina*. *Zhongguo Zhongyao Zazhi*, *30*(10), 792-793.

Yeqing C, Hongli Y, Hao W, Yaozong P, Kuilong W, Yangping J. Chengchao Z. (**2015**) Characterization and quantification by LC-MS/MS of the chemical components of the heating products of the flavonoids extract in pollen typhae for transformation rule exploration. *Molecules*, **20**, 18352-18366.

Yoshikawa K, Tanaka M, Arihara S, Pal BC, Roy SK, Matsumura E, Katayama S. (**2000**) New oleanene triterpenoid saponins from *Madhuca longifolia*. *Journal* of *Natural Products*, **63**, 1679-1681.

Zaheer A, Sajid M, Itrat F, Abdul M, Rehana I, Nighat A, Lubna I, Mehreen L, Ahmad NT. (**2008**) Structural determination of salsolins A and B, new antioxidant polyoxygenated triterpenes from *Salsola baryosma*, by 1D and 2D NMR spectroscopy Butyrylcholinesterase inhibitory triterpenes from *Salsola baryosma*. *Magnetic* Resonance in *Chemistry*, **46**(1), 94-98.

Zaikov KL, Syrchina AI, Vereshchagin AL, Chernousova AV, Semenov AA. (**1992**) Chemical composition of *Salsola collina* seeds. *Khimiya Prirodnykh Soedinenii*, **6**, 720-721.

Zaki AA, Hashish NE, Amer MA, Lahloub MF. (**2014**) Two new metabolites; 7β-OH-odoroside-H; through biotransformation of uzarigenin and odoroside-H. *International Journal of Pharmaceutical Sciences and Research*, **5**, 4987-4992.

Zhang L, Zhang L, Xu LZ, Yang SL. (2006) Two New cardenolides from the roots of *Streptocaulon griffithii*. *Journal of Asian Natural Product Research*, *8*, 613-617.

Zhang XH, Zhu HL, Yu Q, Xuan LJ. (**2007**) Cytotoxic cardenolides from *Streptocaulon griffithii*. *Chemistry & Biodiversity*, **4**, 998-1002.

Zhang XJ, Mei WL, Tan GH, Wang CC, Zhou SL, Huang FR, Chen B, Dai HF, Huang FY. (**2015**) Strophalloside induces apoptosis of SGC-7901 cells through the mitochondrion-dependent caspase-3 pathway. *Molecules*, **20**, 5714-5728.

Zhong XN, Hideaki O, Otsuka T, Ide T, Hirata E, Takeda Y. (**1999**) Hydroquinone diglycoside acyl esyers from the leaves of *Myrsine seguinii*. *Phytochemistry*, **52**, 923-927.

Zlatina KN, Daniel B, Stefan N, Jorj H, Parasker TN. (2011) Flavonol glycosides from *Chenopodium foliosum. Phytochemistry letters*, *4*, 367-371.

PUBLICATION

NPC Natural Product Communications

A New Cardenolide and Other Compounds from Salsola tetragona

Hamida Ghorab^a, Abdelkrim Khettaf^a, Meriem Lehbili^a, Ahmed Kabouche^a, Abdulmagid Alabdul Magid^b, Dominique Harakat^c, Laurence Voutquenne-Nazabadioko^{b^{*}} and Zahia Kabouche^{a^{*}}.

^aUniversité des frères Mentouri-Constantine, Laboratoire d'Obtention de Substances Thérapeutiques (LOST), Campus Chaabet Ersas, 25000 Constantine, Algeria

^bGroupe Isolement et Structure, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR de Pharmacie, BP 1039, 51687 Reims, France

^cService Commun d'Analyses, ICMR-UMR CNRS 7312, Bât. 18 B.P.1039, 51687 Reims Cedex 2, France

zahiakabouche@gmail.com

Received: August 3rd, 2016; Accepted: November 10th, 2016

One new cardenolide, $3-O-\beta$ -D-allopyranosylcoroglaucigenin (salsotetragonin) (1), was isolated from the aerial parts of *Salsola tetragona* Delile with four known cardenolides (2-5), two known flavonoids (6-7), three known phenolic compounds (8-10) and two known fatty acids (11-12). Their structures were identified by spectroscopic analyses and by comparison of their spectral data with those reported in the literature. Compounds 1-5, 7, 10 and 12 were isolated from the genus *Salsola* for the first time. This is the first report on cardenolides identified in the Amaranthaceae family.

Keywords: Salsola tetragona Delile, Amaranthaceae, Cardenolides, Phenolic glycosides.

The genus Salsola (Amaranthaceae, ex. Chenopodiaceae) consists of over 174 species found in the arid regions of Asia, Europe and Africa [1]. Salsola species possess antihypertensive, antiinflammatory, anticancer, antioxidant, anti-Alzheimer, antidepressant and antimicrobial activities [2-5]. Previous phytochemical investigations of this genus reported the isolation of flavonoids and other phenolic compounds [6], alkaloids [7], fatty acids [8] and triterpene glycosides [9]. In continuation of our works on plants from Algerian Septentrional Sahara [10-11], we report here the isolation and structural characterization of one new cardenolide, 3-O-β-D-allopyranosylcoroglaucigenin, named salsotetragonin (1), in addition to eleven known compounds from aerial parts of S. tetragona (Figure S1).

The hydromethanolic extract of the aerial parts of S. tetragona was partitioned successively with light petrolum, CH₂Cl₂, EtOAc and nbutanol to give four extracts. Purification of the n-butanol extract through repeated silica gel columns, flash chromatography and semi-prep HPLC led to the isolation and identification of a new cardenolide (1) and seven known compounds (3, 4, 6-10). The dichloromethane extract was fractionated by silica gel chromatography to give four known compounds (2, 5, 11-12). These compounds were identified by extensive spectroscopic methods including 1D-(¹H and ¹³C) and 2D-NMR (COSY, HSQC, HMBC and NOESY) experiments, as well as HR-ESI-MS analysis and by comparison of their spectral data with the literature. The eleven known compounds were identified as four cardenolides: uzarigenin (2) [12], desglucouzarin (3) [13], 12-dehydroxyghalakinoside (4), and calactin (5) [14] (Figure 1), two flavonoids: kaempferol-3-O- β -D-glucopyranoside (6) [15] and quercetin-3-O- β -D-glucopyranosyl- $(1\rightarrow 6)$ -glucopyranoside (7) [16], three phenolic compounds: vanillic acid (8) [17], canthoside C (9), and canthoside D (10) [18] and two fatty acids : oleic acid (11) [19], and 2,3dihydroxypropylpalmitate (12) [20] (Figure S1).

Compound 1 was isolated as a white amorphous powder. Its positive HR-ESI-MS showed a pseudomolecular ion peak at m/z 575.2829 [M+Na]⁺, corresponding to the molecular formula C₂₉H₄₄O₁₀. The

Figure 1: Structures of compounds 1-5.

¹H NMR spectrum of compound **1** (Table 1) showed characteristic signals of a butenolactone ring at $\delta_{\rm H}$ 4.95 (1H, dd, J =18.4, 1.6 Hz, H-21a), 5.07 (1H, dd, J = 18.4,1.4 Hz, H-21b) and 5.93 (1H, s, H-22), one oxymethylene at $\delta_{\rm H}$ 3.74 (1H, d, J = 11.7 Hz, H-19a) and $\delta_{\rm H}$ 3.88 (1H, d, J = 11.7 Hz, H-19b), one oxymethine at $\delta_{\rm H}$ 3.78 (m, H-3), and one methyl signal at $\delta_{\rm H}$ 0.95 (3H, s, H-18). Its ¹³C NMR spectrum (Table 1) showed twenty-nine carbon signals including six of the sugar part (Figure 1).

The ¹H NMR and ¹³C NMR data of **1** were very similar to those of 3- β -D-glucopyranosylcoroglaucigenin [21]. The COSY and HSQC spectra showed one anomeric proton of a sugar moiety at $\delta_{\rm H}$ 4.78 (d, J = 7.9 Hz, H-1') and $\delta_{\rm C}$ 99.8 with five signals of an haxose unit [H-2' [δ 3.28 (dd, J = 7.9, 3.0 Hz)], H-3' [δ 4.06 (t, J = 3.0 Hz)], H-4' [δ 3.48 (dd, J = 9.5, 3.0 Hz)], H-5' [δ 3.69 (m)], and H₂-6', [δ 3.66 (dd, J = 11.3, 5.7 Hz) and 3.85 (dd, J = 11.3, 1.8 Hz)]; the sugar was identified as an allopyranoside [22]. The large coupling constant (J = 7.9 Hz) of the anomeric proton at $\delta_{\rm H}$ 4.78 indicated that the allose had a β -configuration. The linkage of the allose at C-3 of the aglycone was established from the HMBC correlation between allo-H-1' ($\delta_{\rm H}$ 4.78) and C-3 ($\delta_{\rm C}$ 78.9) (Figure 2). The stereochemistry of **1** was confirmed by the NOE effect (Figure 2) between H-5/H-9 and H-3, which clearly established the α -orientation of H-5.The correlation of H₃-18 to H-21 and H-22 in

the NOESY spectrum indicated the β orientation of the γ lactone at C-17. The chemical shifts of the carbons of the C and D rings of **1** are in agreement with those of coroglaucigenin and madagascarrensilid (A) recorded in deuterated pyidine and in CD₃OD [23,24], indicating a 14- β hydroxy orientation. Thus compound **1** was identified as 3-*O*- β -D-allopyranosyl-coroglaucigenin, which we named salsotetragonin.

Figure 2: ¹H-¹H COSY, HMBC and NOESY correlations of 1.

Table 1: ¹H and ¹³C NMR data for compound 1 (in CD₃OD; ¹³C: 150 MHz; ¹H: 600 MHz).

Position	1	
	$\delta_{\rm H}$ (m, J in Hz)	$\delta_{\rm C}$
1	0.81 (td, 13.6, 3.5), 2.34 (dt, 13.3, 3.5)	32.8
2	1.57 (dm, 14.9), 1.91 (m)	30.9
3	3.78 (m)	78.9
4	1.44 (m), 1.82 (dd, 11.9, 3.4)	35.9
5	1.24 (m)	45.9
6	1.24 (m), 1.34 (m)	29.6
7	2.10 (dd, 12.3, 3.1), 1.15 (m)	28.8
8	1.82 (td, 11.9, 3.4)	43.1
9	1.03 (td, 13.5, 4.5)	51.5
10	-	40.6
11	1.65 (m)	24.1
12	1.41 (td, 13.6, 4.3), 1.53 (dt, 13.5, 3.0)	41.5
13	-	51.2
14	-	86.3
15	1.73 (dd, 11.6, 8.5), 2.14 (m)	33.5
16	2.16 (m), 1.90 (m)	28.1
17	2.85 (dd, 9.5, 5.8)	52.2
18	0.95 (s)	16.7
19	3.74 (d, 11.7), 3.88 (d, 11.7)	59.9
20	-	178.5
21	4.95 (dd, 18.4, 1.6), 5.07 (dd, 18.4, 1.4)	75.3
22	5.93 (s)	117.8
23	-	176.9
Allose (at C-3)		
1'	4.78 (d, 7.9)	99.8
2'	3.28 (dd, 7.9, 3.0)	72.4
3'	4.06 (t, 3.0)	73.1
4'	3.48 (dd, 9.5, 3.0)	69.1
5'	3.69 (m)	75.5
6'	3.66 (dd, 11.3, 5.7), 3.85 (dd, 11.3, 1.8)	63.3

Experimental

General: Optical rotations were measured in DMSO with a Perkin-Elmer 241 polarimeter. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance DRX III 500 spectrometer (¹H at 500 MHz and ¹³C at 125 MHz) and on a Bruker Avance III-600 spectrometer equipped with a cryo platform (¹H at 600 MHz and ¹³C at 150 MHz). 2D-NMR experiments were performed using standard Bruker-microprograms (TopSpin version 3.2 software). HR-ESI- MS and ESI-MS experiments were performed using a Micromass Q-TOF micro-instrument (Manchester, UK). TLC was carried out on pre-coated silica gel 60 F_{254} (Merck). Vacuum liquid chromatography (VLC) was carried out on LiChroprep RP-18 (40-63 μ m, Merck). HPFC was performed on a Grace® Reveleris System using Grace® cartridges (Silica gel or RP-C₁₈). The semipreparative HPLC was performed on a Dionex apparatus equipped with an ASI-100 automated sample injector, a STH 585 column oven, a LPG-3400A pump, a diode array detector UVD-340U and Chromeleon® software.

Plant material: Salsola tetragona Delile was collected in Ghardaïa (Algerian Septentrional Sahara) in May 2011 and was identified by Pr. Gérard De Belair (University of Annaba, Algeria). A voucher specimen (LOST.St05/09) was deposited at the herbarium of the Faculty of Sciences, University frères Mentouri- Constantine.

Extraction and isolation: Air-dried and powdered aerial parts (1980 g) of S. tetragona were extracted with 80% MeOH (10 L). After evaporating the MeOH under vacuum, the residue was dissolved in water (900 mL) and partitioned with PE, CH₂Cl₂, EtOAc, and n-BuOH, successively (3 x 300 mL). The n-BuOH extract (6 g) was subjected to VLC over RP-18 eluted with H₂O-MeOH (6:4, 5:5, 4:6, 3:7, 2:8 and 0:10). Fractions of 150 mL were collected and pooled according to their similarity in TLC profile to give 6 fractions (F1-F6 respectively). F1 (1.2 g) was submitted to RP-18 flash chromatography eluting with MeCN:H₂O (5:95 to 10:0) to afford 19 sub-fractions. Sub-fraction [20-23] (35 mg), was purified by semi-prep HPLC on RP-18 eluted with MeCN:H₂O (6:94 to 1:9), affording compounds 9 (3 mg) and 10 (1.5 mg). F2 (1.5 g) was chromatographed on a silica gel column eluted with EtOAc:MeOH:H₂O (20:2:1), giving 2 main sub-fractions. Subfraction [90] (180 mg) afforded 4 (22 mg) by silica gel CC (CHCl₃:MeOH, 9:1). Sub-fraction [115-119] (223 mg) was subjected to silica gel CC eluting with CHCl3:MeOH (8:2) to afford 1 (27 mg) and sub-fraction [35-48] (100 mg), which was purified over silica gel using EtOAc:MeOH:H2O (20:2:1) to yield compounds 6 (15 mg) and 7 (18 mg). F3 (750 mg) was fractionated by silica gel CC eluted with CHCl₃:MeOH (0 to 100% of MeOH). The main sub-fraction [59-63] (212 mg) was further separated by silica gel CC (CHCl₃:MeOH, 0 to 100% of MeOH) and 3 (25 mg) was isolated. F4 (302 mg) was subjected to silica gel CC using CHCl₃:MeOH (0 to 100% of MeOH) to give 3 sub-fractions. Subfraction [72] (111.2 mg) was selected for silica gel CC eluted with CHCl₃:MeOH (0 to 100% of MeOH) to yield compound 8 (3 mg).

The CH_2Cl_2 extract (2.5 g) was subjected to silica gel CC, eluted with toluene:CHCl₃ (0 to 100% of CHCl₃) and CHCl₃:EtOAc (0 to 100% of EtOAc). Sub-fraction [27-32] (123 mg) was purified over silica gel using diethyl ether:EtOAc (9:1) to yield compound **11** (1.4 mg). Sub-fraction [160-173] (212 mg) was passed through a silica gel column (CHCl₃:EtOAc, 9:1) yielding compounds **2** (15 mg) and **5** (5 mg). Sub-fraction [234-257] (162 mg) was chromatographed on silica gel, eluted with (CHCl₃:MeOH, 9:1) that afforded compound **12** (2 mg).

Acid hydrolysis: The pure compounds were treated with 2 M HCl at 100°C for 1 h. The hydrolysates were extracted with EtOAc and the sugars identified in the aqueous residue by comparison with authentic samples by TLC using silica gel impregnated with 0.2 M NaH₂PO₄ and a solvent system of Me₂CO–H₂O (9:1); the compounds were revealed with aniline malonate. The optical rotation of the purified sugar was measured and compared with an authentic sample of D-allose.

3-*O*-β-D-Allopyranosylcoroglaucigenin (salsotetragonin) (1)

White amorphous powder. $[\alpha]_D^{20}$: -16.9 (*c* 0.18, DMSO). ¹H NMR (CD₃OD, 600 MHz): Table 1. ¹³C NMR (CD₃OD, 150 MHz): Table 1. HR-ESI-MS: $[M+Na]^+ m/z$ 575.2829 (calcd for C₂₉H₄₄O₁₀Na, 575.2832). Acknowledgments - The authors would like to thank the DGRSDT-MESRS (Algeria) for financial support and the Groupe Isolement et Structure of the Institut de Chimie Moleculaire de Reims (France) for technical help and registering of NMR data and MS.

Supplementary data: Figure S1 and Supplementary Data are included in the Supporting information.

References

- [1] Botschantzev V. (1974) A synopsis of Salsola (Chenopodiaceae) from South and South-West africa. Kew Bulletin, 29, 597-614.
- [2] Ahmad Z, Mehmood S, Fatima I, Malik A, Ifzal R, Afza N, Iqbal L, Latif M, Nizami TA. (**2008**) Structural determination of salsolins A and B, new antioxidant polyoxygenated triterpenes from *Salsola baryosma* by 1D and 2D NMR spectroscopy. *Magnetic Resonance in Chemistry*, **46**, 94-98.
- [3] Woo WS, Lee EB, Chi HJ. (1977) Biological evaluation of some Saudi Arabian plants. *Journal of Korean Pharmaceutical Sciences*, 21, 141-145.
 [4] Oueslati MH, Ben JH, Mighri Z, Chriaa J, Abreu PM. (2006) Phytochemical constituents from *Salsola tetrandra*. *Journal of Natural Products*, 69, 100
- [4] Oueslati MH, Ben JH, Mighri Z, Chriaa J, Abreu PM. (2006) Phytochemical constituents from *Salsola tetrandra*. *Journal of Natural Products*, 69, 1366-1369.
- [5] Tundis R, Loizzo MR, Statti GA, Menichini F. (2007) Inhibitory effects on the digestive enzyme alpha-amylase of three *Salsola* species (Chenopodiaceae) *in vitro. Pharmazie*, *62*, 473-475.
- [6] Xiang Y, Li YB, Zhang J, Li P, Yao YZ. (2007) Studies on chemical constituents of Salsola collina. Zhongguo Zhong Yao Za Zhi, 32, 409-413.
- [7] Xiang Y, Li YB, Zhang J, Li P, Yao YZ. (2007) A new alkaloid from *Salsola collina*. Yao Xue Xue Bao, 42, 618-620.
- [8] Jin YS, Du JL, Yang Y, Jin L, Song Y, Zhang W, Chen HS. (2011) Chemical and biologically active constituents of Salsola collina. Chemistry of Natural Compounds, 47, 257-260.
- Hamed AI, Masullo M, Sheded MG, Mahalel UA, Tawfik MM, Perrone A, Piacente S. (2011) Triterpene saponins from Salsola imbricata. Phytochemistry Letters, 4, 353-356.
- [10] Boudiar T, Lakhal H, Khalfallah A, Kabouche A, Kabouche Z, Brouard I, Bermejo J, Christian B. (**2010**) A new alkaloid and flavonoids from the aerial parts of *Euphorbia guyoniana*. *Natural Product Communications*, **5**, 35-37.
- [11] Lakhal H, Boudiar T, Kabouche A, Kabouche Z, Touzani R, Christian B. (2010) New sesquiterpene lactone and other constituents from *Centaurea sulphurea* (Asteraceae). *Natural Product Communications*, 5, 849-850.
- [12] Shaker KH, Morsy N, Zinecker H, Imhoff JF, Schneider B. (2010) Secondary metabolites from *Calotropis procera* (Aiton). *Phytochemistry Letters*, 3, 212-216.
- [13] Elgamal M, Hani A, Hanna AG, Morsy NAM, Duddeck H, Simon A, Gati T, Toth G. (1999) Complete ¹H and ¹³C signal assignments of 5α cardenolides isolated from *Calotropis procera* R. B.R. *Journal of Molecular Structure*, 477, 201-208.
- [14] Hamed AI, Plaza A, Balestrieri ML, Mahalel UA, Springuel IV, Oleszek W, Pizza C, Piacente S. (2006) Cardenolide glycosides from *Pergularia tomentosa* and their proapoptotic activity in Kaposi's sarcoma cells. *Journal of Natural Products*, 69, 1319-1322.
- [15] Berrehal D, Khalfallah A, Kabouche A, Kabouche Z, Karioti A, Bilia AR. (2010) Flavonoid glycosides from Randonia africana Coss. (Resedaceae). Biochemical Systematics and Ecology, 38, 1007-1009.
- [16] Shehab NG, Mahdy A, Khan SA, Noureddin SM. (2011) Chemical constituents and biological activities of Fagonia indica Burm F. Research Journal of Medicinal Plant, 5, 531-546.
- [17] Wang XJ, Zhao YX, Jia XH, Ding XB. (2011) Studies on the chemical constituents of Salsola collina. Zhong yao cai, 34, 230-231.
- [18] Kanchanapoom T, Kasai R, Yamasaki K. (2002) Iridoid and phenolic diglycosides from Canthium berberidifolium. Phytochemistry, 61, 461-464.
- [19] Turki ZA. (2000) Chemotaxonomical studies of the genus Salsola (Chenopodiaceae) in Egypt. Egyptian Journal of Botany, 38, 47-61.
- [20] Li Y, An K, Sun J, Wang J, Zhong Y, Sun L. (2011) Chemical constituents of vinegar-processed Kansui radix. Food and Drug, 13, 183-186.
- [21] Jolad SD, Bastest RB, Cole JR, Hoffmann JJ, Siahaan TJ, Timmerann BN. (1986) Cardenolides and a lignan from Asclepias subulata. Phytochemitry, 25, 2581-2590.
- [22] Murakami T, Emoto A, Matsuda H, Yoshikawa M. (2001) Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, goyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L. Chemical and Pharmaceutical Bulletin, 49, 54-63.
- [23] Yamauchi T, Abe F, Nish M. (1978) ¹³C NMR of 5α-cardenolides. *Chemical and Pharmaceutical Bulletin*, 26, 2894-2896.
- [24] Pan E, Harinantenaina L, Brodie PJ, Callmander M, Rakotonandrasana S, Rakotobe E, Resamison VE, TenDyke K, Shen Y, Suh EM, Kingston DGI. (2011) Cardenolides of *Leptadenia madagascariensis* from the Madagascar dry forest. *Bioorganic and Medicinal Chemistry*, 19, 422-428.

ملخص

أدت عمليات الفصل والتنقية الكروماتو غرافية (VLC, CC, CCM) لنبتتين طبيتين جزائريتين من عائلة أدت عمليات الفصل والتنقية الكروماتو غرافية (Salsola tetragona, Traganum nudatum) Amaranthaceae بلي عزل وتحديد 13 مركب من بينهم كاردينوليد ذو صيغة جديدة و 6 مركبات جديدة في العائلة. تم تحديد البنى الجزيئية للمركبات المعزولة باستعمال مختلف الطرق الطيفية للرنين النووي المغناطيسي أحادية وثنائية البعد ومطيافية الكتلة. مكنت تحاليل LC-MS/MS للمسخلص الطرق الطيفية للرنين النووي المغناطيسي أحادية وثنائية البعد ومطيافية الكتلة. مكنت تحاليل LC-MS/MS المسخلص الطرق الطيفية للرنين النووي المغناطيسي أحادية وثنائية البعد ومطيافية الكتلة. مكنت تحاليل LC-MS/MS المسخلص المرق الطيفية للرنين النووي المغناطيسي أحادية وثنائية البعد ومطيافية الكتلة. مكنت تحاليل LC-MS/MS المسخلص الميثانولي ل Inميثلولي ل DPPH , CUPRAC, ABTS, β-carotène من تحديد 10 مركبات من بينهم 6 أحماض فينولية وفلافونودين. أظهر هذا المستخلص فعالية معتدلة ضد الأكسدة باستعمال 4 طرق: محافية العام معتدلة مند الأكسدة باستعمال ل طرق المسخلين المستخلص فينولية وفلافونودين. أظهر هذا المستخلص فينولية معتدلة ضد الأكسين المستعمال 4 طرق: BPPH , CUPRAC, ABTS, β-carotène إلى ذلك له فعالية معد الأكسدة باستعمال 4 طرق: Klebsiella pneumoniae المتخلص البوتانولي ل Salsola tetragona ليكتيرية خاصة Klebsiella pneumoniae المعتدلي له فعالية جيدة ضد البكتيرية ضاحة Klebsiella pneumoniae ولافونولي ل

الكلمات المفتاحية : Traganum nudatum, Salsola tetragona, Amaranthaceae, كاردينوليد ,بوليفينول, الفعالية البيولوجية.

Abstract

The extraction and chromatographic purifications (VLC, CC, TLC) of two Algerian medicinal plants belonging to the Amaranthaceae family (*Salsola tetragona* and *Traganum nudatum*) led to the isolation and identification of 13 products including one new cardenolide and 6 new compounds in the family. The structures of isolated compounds were established using different spectral methods of NMR 1D et 2D (¹H, ¹³C, COSY H-H, HMBC, HSQC and NOESY) and mass spectroscopy ESI-MS. LC-MS/MS analysis of the hydromethanol extract of *Traganum nudatum* led to the identification of 10 compounds including 6 phenolic acids and 2 flavonoids. This extract showed the highest antioxidant activity with four methods: DPPH, ABTS, β -carotene and CUPRAC. It also exhibited a good photoprotection activity and inhibited more specifically the growth of *Staphylococcus aureus*. The butanolic extract of *S. tetragona* exhibited the best antibacterial activity against *Escherichia coli* and *Klebsiella pneumonia*.

Keywords: Amaranthaceae, *Salsola tetragona*, *Traganum nudatum*, cardenolide, polyphenols, biological activities.

Résumé

Les travaux d'extraction et de purifications chromatographiques (VLC, CC, CCM) de deux plantes médicinales algériennes appartenant à la famille des Amaranthaceae (*Salsola tetragona* et *Traganum nudatum*) ont permis d'isoler et d'identifier 13 produits dont un cardénolide de nouvelle structure et 6 composés nouveaux dans la famille. Les structures des composés isolés ont été élucidées par l'utilisation des différentes méthodes spectroscopiques de RMN 1D et 2D (¹H, ¹³C, COSY H-H, HMBC, HSQC et NOESY) et par la spectrométrie de masse ESI-MS. L'analyse LC-MS/MS de l'extrait hydrométhanolique de *Traganum nudatum* a conduit à l'identification de 10 composés dont 6 acides phénoliques et 2 flavonoïdes. Cet extrait a montré une activité antioxydante modérée avec les quatre méthodes : DPPH, ABTS, β-carotène et CUPRAC. Il a également manifesté une meilleure activité photoprotectrice et a inhibé plus particulièrement la croissance de *Staphylococcus aureus*. L'extrait butanolique de *S. tetragona* possède une meilleure activité antibactérienne vis-à-vis des souches d'*Escherichia coli* et de *Klebsiella pneumoniae*.

Mots clés : Amaranthaceae, *Salsola tetragona, Traganum nudatum*, cardénolide, polyphénols, activités biologiques.