THESE

présenté

A L'UNIVERSITE DE CONSTANTINE INSTITUT DE CHIMIE

pour obtenir

Le Titre de Docteur ès Sciences

Specialité: CHIMIE

par

Mustapha BENCHARIF

PREPARATION, CRISTALLOCHIMIE ET PROPRIETE DE MATERIAUX MOLECULAIRES CONSTITUES DE DONNEURS ORGANIQUES DERIVES DU TETRATHIOFULVALENE ET D'ANIONS MINERAUX PHOSPHOTUNGSTIQUE, SILICOTUNGSTIQUE ET TETRACYANONICKELATE.

Soutenue le 06 Juillet 1991, devant la Commission d'Examen:

MM S. E. BOUAOUD D. GRANDJEAN J. Y. SAILLARD A. MOUSSER J. F. HALET L. OUAHAB Président

Examinateurs

Rapporteur

THESE

présenté

A L'UNIVERSITE DE CONSTANTINE INSTITUT DE CHIMIE

pour obtenir

Le Titre de Docteur ès Sciences

Specialité: CHIMIE

par

Mustapha BENCHARIF

PREPARATION, CRISTALLOCHIMIE ET PROPRIETE DE MATERIAUX MOLECULAIRES CONSTITUES DE DONNEURS ORGANIQUES DERIVES DU TETRATHIOFULVALENE ET D'ANIONS MINERAUX PHOSPHOTUNGSTIQUE, SILICOTUNGSTIQUE ET TETRACYANONICKELATE.

Soutenue le 06 Juillet 1991, devant la Commission d'Examen:

MM S. E. BOUAOUD D. GRANDJEAN J. Y. SAILLARD A. MOUSSER J. F. HALET L. OUAHAB

Président

Examinateurs

Rapporteur

TABLE des MATIERES

ABREVIATIONS		4
	INDRODUCTION	5
	Chapitre I	
PARTIE	EXPERIMENTALE	8
Materiel		9
Electrocristallisation		9
Détermination structurale		14
Bibliographie		16
	Chapitre II	
LES SELS de TTF: COMPO	SITION ENTRE TTF et les	
ANIONS PW12O403- ET Siv	$W_{12}O_{40}^{4-}$.	17
	N D 4 C'	
1. $(11F)_6(XW_{12}U_{40})(Et_4N)$; x=P et Si	18
Enregistrement résolution	et offinement des structures	10
Discussion	et anmement des structures	20
Stuctures molécula	ires et cristallines	27
- Organisation d	le la partie organique	27
- Organisation d	le la partie inorganique	27
- Interactions		36
Propriétes physique	A0	30
- Conductivité é	Sectriaue	37
- Caractérisatio	on par I R	30
- Etude maonéti	ique	30
Conclusion		41

II- $(TTF)_7(SiW_{12}O_{40})(CH_3CN)_2$	43
Préparation.	43
Enregistrement, résolution et affinement de la structure	43
Discussion	50
Description de la Stucture	54
-Organisation des molécules organiques	54
-Organisation de la partie inorganique	56
-Interactions	58
Conclusion	61
Références Bibliographiques	62
Chapitre III	
LES SELS du TMTSF et du BEDT-TTF: COMPOSITION	
ENTRE TMTSF et BEDT-TTF et L'ANION $PW_{12}O_{40}^{3}$	65
I- (TMTSF) ₃ (PW ₁₂ O ₄₀)	66
Préparation.	66
Enregistrement, résolution et affinement des structures	66
Discussion	73
Description de la stucture	73
- L' entité Organique	73
- L' entité inorganique	77
Conclusion	81
III- $(BEDT-TTF)_3(PW_{12}O_{40})(CH_3CN)_2$	32
Préparation.	82
Enregistrement, résolution et affinement de la structure	82
Discussion	88
Description de la stucture	88
- L'entité Organique	88
- L' entité inorganique	94
- Interactions anions- cations	97
Conclusion	97
Références Bibliographiques	99

--- Chapitre IV ----

LES SELS de TMTTF et de L' ANION Ni(CN)4 ²⁻	·
--	---

Introduction		103			
Partie expérimentale		103			
Préparation.		103			
Enregistrement, résolution et affinement des structures					
Discussion		107			
Références		112			

--- ANNEXE ----

LES	Thiométallates				•••••	114
	Introduction					114
	Partie expérimentale					115
	Elaboration de	e (Et4N)2M012O36PF	² 6			115
	Enregistremer	nt, résolution et affine	ment de la s	tructure	· · · · · · · · ·	116
	Description et discuss	sion de la structure				118
	Conclusion	•••••				121
	Références bibliograp	phiques		•••••		122

--- CONCLUSION 123

ABREVIATIONS.

ACN	:	CH ₃ CN	Acétonitrile.
Et ₄ N ou 1	TEA:	(C ₂ H ₅) ₄ N ⁺	Tétraéthylammonium.
Bu ₄ N ou 7	TBA:	(C4H9)4N ⁺	Tétrabutylammonium.
TTF	:	C ₆ S ₄ H ₄	Tétrathiofulvalène.
TMTTF	:	C ₁₀ S ₄ H ₁₂	Tétraméthyltétrathiofulvalène.
TMTSF	:	C ₁₀ Se ₄ H ₁₂	Tétraméthyltétrasélénofulvalène.
BEDT-TTF	:	C ₁₀ S ₈ H ₈	Bis-éthylène dithio-tétrathiofulvalène.
DMF	:	C ₃ H ₇ ON	N-N diméthylformamide.
THF	:	C ₄ H ₈ O	Tétrahydofuranne.

TTF: R=H

TMTTF: R=CH3

BEDT-TTF

4

INTRODUCTION.

Nous étudions dans ce travail la préparation, la cristallochimie et certaines propriétés physiques (conductivité électrique, spectroscopie IR et magnétisme) de matériaux donneursaccepteurs. Ces derniers sont obtenus sous forme de monocristaux par l'association d'ions moléculaires par voie électrochimique en milieu anhydre. Ces solides sont des sels de radicaux cations organiques dérivés du tétrathiofulvalène (TTF) et d'anions minéraux dérivés des polyoxométallates.

Les radicaux cations organiques sont des molécules planes à faibles potentiels d'ionisation. Il sont connus pour leur caractère p donneur et se caractérisent par des arrangements structuraux particuliers. Ils sont abondament utilisés dans le domaine des conducteurs et supraconducteurs organiques [1].

Les anions minéraux de formule générale $[XM_{12}O_{40}]^{n-}$ (M= W, Mo; X= P, Si, Fe) adoptent la structure dite de Keggin [2]. Ils résultent de l'association d'octaèdres MO6. Ils sont connus depuis plus d'un siècle et continuent de susciter des interêts soutenus [3]. Les caractéristiques de ces polyoxydes métalliques sont leur affinité électronique et leurs capacités d'accepteurs d'électrons qui leur confèrent des états de valence mixte. Nous avons cherché à exploiter cette propriété en les utilisant comme accepteurs dans la conceptions de nouveaux matériaux "Donneurs Organiques - Accepteurs Inorganiques".

Notre démarche consiste d'une part à synthétiser de nouvelles phases mixtes "Organo-Minérale", en disposant d'anions [XM₁₂O₄₀]ⁿ⁻ à valence modulable pour stabiliser le système organique à valence mixte et; d'autre part à caractériser leurs structures cristallines dont la rationalisation nous a permis par exemple de procéder à la substitution du phosphore par le silicium.

L'organisation de ce mémoire est la suivante.

Dans le premier chapitre, nous présentons les techniques expérimentales acquises au cours de cette thèse tant sur le plan de la synthèse que celui de la détermination structurale par diffraction des rayons-X.

Dans le chapitre II sont décrits

(i) Deux composés isomorphes (TTF) $6[XM_{12}O_{40}](Et_4N)$ (Et_4N= tetraéthylammonium (C2H5) $4N^+$) obtenus avec les anions $[PW_{12}O_{40}]^{3-}$ (1) et $[SiW_{12}O_{40}]^{4-}$ (2). Les deux composés présentent des structures contenant des chaînes organiques monodimensionnelles. Le premier est paramagnétique alors que le second est diamagnétique. Ceci suggère que l'anion $[PW_{12}O_{40}]$ a accepté un électron durant le processus d'électrocristallisation devenant ainsi chargé 4-.

(ii) Le sel $(TTF)7[[SiW_{12}O_{40}](CH_3CN)_2$ (3). L'utilisation du sel de tétrabutylammonium (TBA) silicotungstate nous à permis d'isoler ce nouveau matériau dans lequel une nouvelle structure a été stabilisée. Elle consiste en un empilement en deux dimensions de dimères organiques.

Dans le troisième chapitre sont décrits les composés isolants (TMTSF)3[PW12O40] (4) et (BEDT-TTF)3[PW12O40](THF) (5). Dans ces composés les molécules organiques s'empilent en chaînes monodimensionnelles où l'on rencontre des recouvrements intermoléculaires en croix et décalés.

Dans le quatrème chapitre sont décrits les composés $(TMTTF)_2Ni(CN)_4$ (6) et $(TMTTF)_3Ni(CN)_4$ (7). Le premier présente une structure dans laquelle les dimères organiques sont isolés aux milieu d'un cube déformé dont les sommets sont occupés par huits dianions $Ni(CN)_4^2$ rappellent ainsi le type structural minéral CsCl. Dans le second les molécules organiques forment une chaîne trimérisée.

Enfin, dans un dernier temps, nous décrivons les expériences et les résultats préliminaires obtenus avec les anions thiométallates, comme MoS9²⁻ par exemple. (i) la substitution du soufre par l'oxygène de l'air a été mise en évidence. Cette substitution serait suivit d'une "polymérisation" des entités MoOy qui conduirait en présence du sel (Et4N)PF6 à la formation du polyanion [(PF6)Mo12O36]ⁿ⁻.

Références

- a)- Brun, G., Liautard, B., Peytavin, S., Maurin, M., Toreilles, E., Fabre, J. M., Giral, L., Galigné, J.L., *J. Phys. (Paris) Collog.*, **1977**, *38*, (12, C₇), 266.
 - b)- Bechgaard, K.; Jacobsen, S.; Mortensen, K.; Pedersen, H.J. and Thorup, N., Sol. State Commun., 1980, 33, 1119.
 - c)-Thorup, N.; Rindorf, G.; Soling, H. and Bechgaârd, K., Acta Crystallogr., 1981, B37, 1236.
 - d)- Williams, J.M.; Beno, M.A.; Wang, H.H.; Leung, P.C.W.; Emge, T.J.; Geiser, U. and Carlson, K.D., Acc. Chem. Res., 1985, 18, 261.
 - e)- Williams, J.M., Prog. Inorg. Chem. 1985, V33, 183.
- 2.- Keggin, J.F., Proc. Roy. Soc. London, Ser. A, 1934, 144, 75.
- 3.- Pope, M.T. and Müller, A., Engew. Chem. Int. Ed. Engl., 1991, 30, 34.

CHAPITRE I

PARTIE EXPERIMENTALE

Nous décrivons dans ce chapitre les techniques experimentales acquises et mises en oeuvre pour la préparation et les déterminations structurales des composés décrits dans ce mémoire.

MATERIEL

Les solvants (acétonitrile, DMF, THF, dichlorométhane) et les réactifs (TTF, TMTSF, Na₃PW₁₂O₄₀, H₄SiW₁₂O₄₀, Et₄NBr et Bu₄NBr) sont des produits commerciaux Fluka et Aldrich. Les céllules électrochimiques ont été réalisées par Mr Flatet. Les régules de courant ont été fabriquées par Mr Hervieu.

Les électrolytes ont été préparés soit selon des méthodes décrites dans la littérature soit préparés par métathèse dans l'eau selon la réaction d'échange:

 $\begin{array}{rl} H2O\\ (C^{+})_{n}[XW_{12}O_{40}] &+& n \ Et_{4}NBr & ----- (Et_{4}N)_{n}XW_{12}O_{40} &+& n \ (C \ Br)\\ (C^{+})_{n}[XW_{12}O_{40}] &+& n \ Bu_{4}NBr & ----- (Bu_{4}N)_{n}XW_{12}O_{40} &+& n \ (C \ Br) \end{array}$

X= P (n=3) ou Si (n=4)

ELECTROCRISTALLISATION.

Les matériaux de composition organique-inorganique décrits dans ce mémoire ont été synthétisés par électrocristallisation [1].

No

Relativement récente, l'électrocristallisation a été utilisée en 1971 par Williams *et al.* [2] pour la synthèse des sels à transfert de charge, puis par Bechgaard dans la préparation des monocristaux des premiers supraconducteurs organiques (TMTSF)₂X [3].

Dans la synthèse des sels de radicaux cations, elle consiste d'abord en une oxydation sur électrode de platine du donneur organique (D) dissous dans un solvant polaire selon la réaction :

$$D^{\circ} \rightarrow D^{+\bullet} + e^{-}$$

Les radicaux cations formés au voisinage de l'électrode peuvent alors cocristalliser avec l'anion inorganique A^{y-} contenu à saturation dans la solution selon la réaction :

$$x D^{\circ} + y D^{+\bullet} + A^{y-} \rightarrow D_{x+y}A$$

Comme toute technique électrochimique, l'électrocristallisation est une voie de synthèse reproductible et sélective, propre et aisée. Utilisée aussi bien en oxydation qu'en réduction, elle permet d'obtenir des monocristaux de qualité remarquable et de manière répétitive. Pour cela, il est nécessaire de respecter rigoureusement certaines conditions dans la conduite d'une expérience.

Parmi les facteurs déterminants dans l'obtention et la qualité des cristaux, nous soulignerons :

- le choix du solvant ou mélange de solvants
- la concentration des espèces en solution
- l'intensité du courant imposé
- la nature des électrodes et le traitement de leur surface
- la température.

- Le choix du solvant

Le solvant ou éventuellement le mélange de solvants, doit être capable de solubiliser le sel de l'anion minéral et le donneur organique. Les solvants non-aqueux polaires sont tout indiqués pour solubiliser le donneur, molécule neutre aromatique, le sel de l'anion minéral doit alors être préparé sous forme de sels d'ammonium.

Par contre, le complexe formé au cours de l'électrocristallisation devra être insoluble dans le solvant ou mélange de solvants ; s'il s'avère soluble dans le milieu choisi, une étude systématique devra alors être entreprise pour déterminer le solvant adéquat.

Dans ce domaine, une classification de plusieurs solvants organiques a été étudiée et proposée par Chastrette *et al.* [4].

- La densité du courant

Le sel de l'anion minéral, jouant le rôle d'électrolyte, est par conséquent en concentration relativement grande.

Le donneur organique doit être maintenu en concentration constante pendant toute la durée de l'expérience électrochimique à courant imposé ; pour cela, il faudrait faire passer une quantité d'électricité nettement inférieure à celle nécessaire à l'oxydation totale du donneur en solution.

Pour chaque système donneur/anion étudié nous avons travaillé à intensité de courant contrôlée, technique préférable à celle à potentiel imposé vis à vis de la qualité des monocristaux obtenus.

Le choix de la valeur du courant imposé est lié à la nature et à la concentration du donneur comme mentionné ci-dessus. En effet, si le courant est élevé, il conduit à la formation rapide d'un grand nombre de germes et à une mauvaise cristallisation ; si le courant est trop faible, il ne permet pas à l'espèce organique oxydée de co-cristalliser avec l'anion minéral ; celle-ci diffuse vers le compartiment cathodique et la cristallisation n'a pas lieu.

L'étude systèmatique pour réunir les conditons optimales d'obtention de monocristaux est souvent une tâche délicate voire fastidieuse.

- La cellule électrochimique

Plusieurs types de cellules sont proposés dans la littérature [1-5]. La cellule électrochimique et de croissance utilisée pour la synthèse de nos matériaux est représentée sur la figure çi-contre. Elle comprend trois compartiments séparés par des diaphragmes en verre fritté dont le rôle est de limiter la diffusion des spèces d'un compartiment à l'autre. Les trois parties de la cellule contiennent l'électrolyte en solution dans le solvant choisit, le donneur organique se trouvant

uniquement dans le compartiement anodique.

La conduite à suivre avant la réalisation d'une expérience de cristallisation électrochimique doit tenir compte :

- de l'état de surface de l'électrode de travail

Les électrodes utilisées sont des fils de platine de grande pureté. Avant de les placer dans la cellule, elles subissent un premier traitement rapide à l'eau regale à chaud; puis un

traitement électrochimique en faisant subir plusieurs cycles par voltamétrie-cyclique, dans H₂SO₄ 0,5 M, jusqu'à stabilisation de la surface [6].

- <u>de la qualité des solvants</u> [5]

Les solvants utilisés sont distillés et conservés sur tamis moléculaire. Ils sont passés sur de l'alumine neutre activée à 450°C pendant 12 heures, juste avant utilisation.

- de la qualité des réactifs

Les sels de tétrabutylammonium ou tatraéthylammonium et les donneurs organiques doivent être purifiés par cristallisation répétées dans des solvants distillés.

Le tableau 1 rassemble les conditions optimales pour l'obtention des monocristaux des composés présentés dans ce mémoire.

Composé	donneur	électolyte	solvant	courant
	(mg)	(mg)	(ml)	(µа)
(TTF)6(PW12O40)(Et4N)	TTF	Et ₄ N	ACN:DMF	1,5
(1)	20	250	15 : 5	
(TTF)6(SiW12O40)(Et4N)	TTF	Et ₄ N	ACN	1,5
(2)	15	250	25	
(TTF)7(PW12O40)(CH3CN)2	TTF	Bu ₄ N	ACN	1,5
(3)	10	250	20	
(TMTSF) ₃ (PW ₁₂ O ₄₀)	TMTSF	Et ₄ N	ACN:DMF	1
(4)	15	350	20 : 5	
(BEDT-TTF) ₃ (PW ₁₂ O ₄₀)(THF)	BEDT-TTF	Et ₄ N	ACN:THF	0,9
(5)	20	250	18 : 2	
(TMTTF) ₂ Ni(CN) ₄ (6)	TMTTF 20	K saturation	ACN:H ₂ O 18 : 1	1,5
(TMTTF) ₃ Ni(CN) ₄ (7)	TMTTF 20	K saturation	ACN:H ₂ O 18 : 1	1,5

Tableau 1. Conditions d'électrocristallisation des composés étudiés.

Analyses élémentaires:

$(TTF)_6(PW_{12}O_{40})(Et_4N):$	Cal	c C:	12,47	H: 1,04	N: 0,33	S: 18	3,19		
	Obs	; 1	2,66	1,12	0,42	16,	98		
$(TTF)_6(SiW_{12}O_{40})(Et_4N)$	Ca	lc C:	12,50	H: 1,04	N: 0,3	3 S: 18	,20 V	V: 52,15	Si: 0,66
	Obs		12,58	0,93	0,3	5 17	,69	52,06	0,70
(TTF)7(PW12O40)(CH3CN	V)2	Calc	C: 12,59	H: 0,	77 N:	0,64 S:	20,46	W: 50,3	29
		Obs	12,65	0	,78	0,65	22,20	49,	92

DETERMINATION STRUCTURALE

La résolution des strucures cristallines a eté efféctuée en enregisrant les intensités diffractées par les monocristaux sur un diffractomètre ENRAF-NONIUS CAD4 équipé d'un monochromateur de graphite et utilisant la radiation MoKa.

Les paramètres de maille ont eté déterminés à partir de 25 réfléctions indépendantes . Ils sont ensuite affinés par moindres carrés à partir des angles de Bragg optimisés. Les réfléctions enregistées sont corrigées des effets physiques et géométriques dûs essentiellement aux phénomènes de Lorentz, de polarisation et de l'absorption en utilisant la procédure DIFABS [7]. Les strucures sont résolues par les méthodes dirèctes en utilisant la chaîne de programmes MULTAN [8]. Les compléments de structure sont obtenus par des synthèses de Fourier difference. Les atomes autres que les hydrogènes sont affinés avec un facteur d'agitation thérmique anisotrope. Alors que les atomes d'hydrogène, placés théoriquement à l'aide de la procédure HYDRO tenant compte de l'hybridation du carbone porteur, sont affectés d'un facteur d'agitation thermique global. Les affinements des paramètres atomiques se font par moindres carrés en minimisant l'expréssion $\Sigma \omega [|F_0|-K|F_c|]^2$. La validité de l'hypothèse de structure est controlée au moyen des facteurs suivants:

 $R = \Sigma[|Fo|-|Fc|]/\Sigma|Fo|$

 $R\omega = [\Sigma\omega(|Fo|-|Fc|)^2/\Sigma\omega Fo^2]^{1/2}$

Diffractomètre automatique

Shéma 1. Organigramme générale pour la détermination des structures.

Les facteurs de diffusion atomiques ont été pris des Tables Internationales de Cristallographie [9]. Tous les calculs ont eté effectués en utilisant la chaine de programme SDP (Strucure Determination Package) [10] implantée sur le miniordinateur PDP 11/60 de l'université de Rennes I. Les illustrations graphiques ont été effectuées à l'aide du programme ORTEP [11]. Un organigramme résumant les différentes étapes de la résolution structurale est représenté sur le schéma I.

Références.

1.- Engler, E.M., Greene, R., Haen, P., Tomkiewicz, Y., Mortensen, K., Mol. Cryst. & Liq. Cryst., 1982, 79, 15.

2.- Chiang, T.C., Reddoch, A.H. and Williams, D.F., J. Chem. Phys., 1971, 54, 2051.

3.- Bechgaard K, Jacobsen, C.S., Mortensen, K., Pedersenb, H.J., Thorup, N., Solid State Commun., 1980, 33, 1119.

4.- Chastrette, M., Rajzmann, M., Chanon, M., Purcell, K.F., J. Am. Chem. Soc., 1985, 107, 1.

5.- a)- Anzai, H., Moriya, T., Nozaki, K., Ukachi, T. and Saïto, G., Jounal de Physique, 1983, 44?, C3. 1195. b)- Anzai, H., J. Cryst. Growth, 1976, 33, 185. c)- Anzai, H., Tokumoto, M., Saïto, G., Mol. Cryst. & Liq. Cryst., 1985? 125, 385.

6.- Besson, J. et Guitton, J. " Manipulation d'électrochimie" Masson & Cie 1972, pp 17.

7.- Walker, N. and Stuart, D., Acta Crystallogr., 1983, A39, 158.

8.- Main, P.; Fiske, S.J.; Hull, S.E.; Lessinger, L.; Germain, G.; Declercq J.P. and Woolfson, M.M., MULTAN 84, a system of computer programs for the automatic solution of crystal structures from X-ray diffraction data, Universities of York (England) and Louvain (Belgium), 1984.

9.- International Table for X-ray Crystallography 1974, vol IV, Birmingham: Kynoch press. Present distributor D. Reidel, Dordrecht.

10.- Frenz, B.A. & Associates Inc. **1985**. *SDP structure Determination Package*. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.

11.- Johnson, C.K., ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge Tennessee, 1965.

CHAPITRE II

Les sels du tetrathiofulvalene (TTF) : Composition entre le TTF et les anions $PW_{12}O_{40}^{3-}$ et $SiW_{12}O_{40}^{4-}$

-I- (TTF)6(XW12O40)(ET4N)

X=P ET SI

PREPARATION

Dans notre démarche de détermination de nouvelles architectures, dans l'électrocomposition de complexes organo-minéraux, et d'en déduire éventuellement, de nouvelles propriétés, nous avons préparé de nouveaux composés :

- (TTF)₆(PW₁₂O₄₀)(Et₄N) (1) et son isomorphe silicié
- (TTF)₆(SiW₁₂O₄₀)(Et₄N) (2).

Les deux sels ont été préparés par électro-oxydation sur électrode de platine, du donneur organique tétrathiofulvalène (TTF) en présence des sels tétraéthylammonium dodécatungstophosphate (Et₄N)₃PW₁₂O₄₀ pour (1) et dodécatungstosilicate (Et₄N)₄SiW₁₂O₄₀ pour (2) dans l'acétonitrile. Ils cristallisent sous forme de parallèlépipède de couleur noire. Les conditions expérimentales sont décrites en annexe.

Il est à souligner que les deux sels ont été préparés à l'aide d'anions ayant des charges initiales différentes $PW_{12}O_{40}^{3-}$ et $SiW_{12}O_{40}^{4-}$. IlS présentent, pourtant, des structures cristallines identiques et des propriétés électriques et optiques très voisines. Ceci suggère que l'anion $PW_{12}O_{40}^{3-}$ a accepté un électron au cours du processus de synthèse. Nous allons tenter dans ce qui suit de conforter cette hypothèse. Afin d'apprecier toute différence structurale eventuelle, nous avons jugé necessaire de résoudre entièrement les deux structures [1-3].

Tableau 1. Données cristallographiques et conditions d'enregistrement et d'affinements des composés 1 et 2.

Composé, #	1 4233 53		2
Syst. Cristallin	4233.33	Orthorombi	4250.05
a, Å b. Å	15.563(8) 19.497(8)	Children	15.460(4)
c, Å	14.178(7)		14.154(3)
V, Å ³ Z	4302 2		4235.7 2
dcalc, g.cm ⁻³	3.268		3.317
Diffractomètre		NONIUS CAL	04
Radiation		ΜοΚα	
longueur d'onde, Å		0.71073	
Mode de balayage		$\theta - 2\theta$	
Dimens. cristal, mm	0.2x0.1x0.	.08	0.15x0.1x0.1
μ (MoK α), cm ⁻¹	169.84		172.45
Limites h,k,l	0,18/0,23/	/±16	0,18/0,22/0,16
Limites en 2 θ , deg.	2-50		2-50
no de rflcns:			
-unique	1700		1544
-I≥nσ(I)	1273, n=3		1166, n=6
Rint	0.040		-
facteurs Trans.			
-min, max	0.78, 1.32	2	0.73,1.63
pa p.b	0.044 0.0	0.0.0	0 069 0 126
C O FC	0.044, 0.0	000	1 507
G.O.F	0.904		1.587
<u>4</u> 0	0.45		0.09
Δρ, eA ⁻³	1.05		1.745

 $a_{R=\Sigma[|Fo|-|Fc|]/\Sigma|Fo|, b_{R_{W}}=[\Sigma\omega(|Fo|-$

$$\begin{split} |Fc|^{2} / \Sigma \omega |Fo|^{2}]^{1/2} \cdot \omega &= 4Fo^{2} / [\sigma^{2}(I) - (0.07.|Fo|^{2})^{2}] \\ \text{Fit } (G.O.F) &= [\Sigma \omega (|Fo| - |Fc|)^{2} / (N_{obs} \cdot -N_{var} \cdot)]^{1/2} \end{split}$$

ENREGISTREMENT, RESOLUTION ET AFFINEMENT DES STRUCTURES

Les conditions d'enregistrements des intensités diffractées, les données cristallographiques et les conditions d'affinements structuraux, menées sur des monocristaux sont rassemblées dans le tableau 1.

Les intensités diffractées ont été corrigées du facteur de Lorentz-polarisation. Les corrections d'absorption ont été effectuées à l'aide du programme DIFABS [4]. Les extinctions systématiques (hkl : h+k = 2n+1) observées, indiquent les groupes d'espace possibles C222, Cmm2 et Cmmm. La symétrie orthorombique a été confirmée par une étude sur chambres classiques réalisée par D. Pelloquin [5]. La résolution et les affinements satisfaisants des structures ont confirmés le choix du groupe centrosymétrique Cmmm.

Les atomes de tungstène (W), de l'unité asymétrique ont été obtenus à partir de la solution MULTAN [6] présentant les meilleures figures de mérite. Les atomes (S, O, C, N) ont été déduits à l'aide de synthèses de Fourier différences successives.

Les atomes d'hydrogène ont été placés sur des positions calculées selon un distance $d_{(C-H)} = 1$ Å et un facteur d'agitation thermique isotrope B = 4 Å².

En introduisant les facteurs de température anisotropes, exceptés pour les atomes d'hydrogène, l'affinement en matrice complète conduit aux facteurs de reliabilité : R = 0,044 et 0,069 pour (1) et (2) respectivement.

Un désordre de position est observé pour l'oxygène O₇ de l'entité tétraédrique PO₄ de la cavité centrale de l'anion $PW_{12}O_{40}^{3-}$. Les atomes C₇, C₈, C₉ et C₁₀ du cation tétraéthylamonium présentent des facteurs d'agitation thermique élevés.

les facteurs de diffusion atomique ont été pris des Table Internationales de Cristallographie [7]. Tous les calculs ont été effectués à l'aide de la chaîne de programmes SDP

Atom	x	У	Z	B _{eq} (Å ²)
Wl	-0.15933(4)	0.000	0.18094(6)	3.42(1)
W2	-0.16462(4)	-0.12678(4)	0.000	3.28(1)
WЗ	0.000	-0.13127(4)	0.17467(6)	3.62(1)
S1	0.5933(2)	-0.0831(3)	0.1222(3)	6.0(1)
S2	0.4054(2)	0.0828(2)	0.3737(3)	4.75(8)
S3	0.2842(2)	0.3203(2)	0.3861(3)	5.23(9)
P	0.000	0.000	0.000	1.9(2)
01	-0.2330(9)	0.000	0.266(1)	6.6(4)
02	-0.2014(6)	-0.0661(5)	0.0923(7)	6.0(2)
03	-0.2457(9)	-0.1834(7)	0.000	6.7(4)
04	-0.0844(6)	-0.1624(6)	-0.0904(7)	7.1(3)
05	0.000	-0.1920(9)	0.258(1)	6.9(4)
06	-0.0818(6)	-0.0677(5)	0.2210(9)	6.8(3)
07	-0.0551(8)	-0.0460(6)	0.061(1)	2.4(3)
C1	0.500	-0.034(1)	0.124(1)	4.4(4)
C2	0.542(1)	-0.1622(9)	0.116(1)	6.8(4)
C3	0.4549(9)	0.1640(8)	0.375(1)	5.7(4)
C4	0.500	0.034(1)	0.378(1)	4.5(4)
C5	0.250	0.250	0.454(1)	3.2(3)
C6	0.2658(9)	0.283(1)	0.277(1)	7.2(5)
N	0.000	0.000	0.500	5.3(8)*
C7	0.077(3)	0.000	0.438(4)	6(1)*
C8	0.165(4)	0.000	0.500	4(1)*
C9	0.000	-0.067(2)	0.438(4)	6(1)*
C10	0.000	-0.133(3)	0.500	4(1)*

Tableau 2a. coordonnées atomiques et facteurs d'agitation thermique isotrope equivalents de (TTF)₆PW₁₂O₄₀(C₂H₅)₄N (1).

* Atomes affinés isotropiquement.

Atom	x	У	Z	B _{eq} (Å ²)
Wl	-0.15770(7)	0.000	0.18041(9)	2.93(2)
W2	-0.16413(6)	-0.12613(6)	0.000	2.89(2)
WЗ	0.000	-0.13145(6)	0.17269(9)	3.00(2)
S1	0.5936(3)	-0.0839(4)	0.1243(5)	4.7(1)
S2	0.4053(3)	0.0833(3)	0.3740(4)	3.7(1)
S3	0.2841(4)	0.3210(3)	0.3850(5)	4.4(1)
Si	0.000	0.000	0.000	2.6(3)
01	-0.235(1)	0.000	0.262(2)	5.2(6)
02	-0.2044(9)	-0.0654(8)	0.095(1)	6.0(4)
03	-0.247(1)	-0.181(1)	0.000	5.5(6)
04	-0.085(1)	-0.1657(9)	-0.091(1)	6.1(4)
05	0.000	-0.192(1)	0.257(2)	4.7(5)
06	-0.082(1)	-0.0693(8)	0.224(1)	6.4(4)
07	-0.058(1)	-0.050(1)	0.066(2)	2.2(5)
C1	0.500	-0.034(1)	0.128(2)	2.9(6)
C2	0.541(2)	-0.162(1)	0.121(2)	5.5(6)
C3	0.458(1)	0.166(1)	0.369(2)	5.1(6)
C4	0.500	0.034(1)	0.374(2)	2.8(5)*
C5	0.250	0.250	0.454(2)	2.4(5)
C6	0.268(1)	0.283(2)	0.274(2)	5.9(7)
N	0.000	0.000	0.500	2.9(9) * K
C7	0.071(4)	0.000	0.439(6)	5(2)*
C8	0.163(4)	0.000	0.500	3(1)*
C9	0.000	-0.062(4)	0.427(6)	6(2)*
C10	0.000	-0.131(4)	0.500	2(1)*

Tableau 2b. Coordonnées atomiques et facteurs d'agitation thermique istropes de $(TTF)_6SiW_{12}O_{40}(Et_4N)$ (2).

* Atoms affinés isotropiquement.

Wl	01		1.66(1)	S3	C5		1.76(1)
Wl	02		1.92(1)	S3	C6		1.73(2)
Wl	06		1.88(1)	P	07		1.51(1)
W2	02		1.85(1)	C1	Cl		1.31(3)
W2	03		1.68(1)	C2	C2		1.30(2)
W2	04		1.92(1)	C3	C3		1.40(2)
WЗ	04		1.88(1)	C4	C4		1.32(3)
WЗ	05		1.67(2)	C5	C5		1.31(2)
WЗ	06		1.89(1)	C6	C6		1.36(3)
S1	C1		1.74(1)	N	C7		1.48(5)
S1	C2		1.74(2)	N	C9		1.57(5)
C7	C8		1.64(6)	С9	C1	0	1.58(6)
S2	С3		1.76(2)	C9	C1	0	1.58(6)
S2	C4		1.75(1)				
01	Wl	02	103.9(5)	C1	S1	C2	96.1(8)
01	Wl	06	102.9(5)	СЗ	S2	C4	96.9(7)
02	Wl	06	86.8(4)	C5	S3	C6	95.9(8)
06	Wl	06	89.4(4)	S1	C1	S1	113.(1)
02	W2	02	89.8(4)	Sl	Cl	Cl	123.5(5)
02	W2	03	100.8(4)	S1	C2	C2	117.(1)
02	W2	04	87.7(4)	S2	С3	С3	116.(1)
03	W2	04	104.6(5)	S2	C4	S2	114.(1)
04	W2	04	83.8(4)	S2	C4	C4	122.9(5)
Wl	06	W3	142.0(7)	S3	C5	S3	113.8(9)
04	W3	06	87.8(5)	S3	C5	C5	123.1(4)
04	W3	05	102.7(5)	S3	C6	C6	117.(1)
05	WЗ	06	102.7(5)	C7	Ν	C7	107.(3)
06	W3	06	84.4(4)	C7	N	C9	110.(1)
Wl	02	W2	141.9(5)	C9	N	С9	111.(3)
W2	04	W3	139.8(6)	N	C7	C8	111.(3)
07	P	07	107.3(7)	N	С9	C10	112.(3)

Tableau 3a. Distances (en Å) et angles (en degres) de liaisons des entités dans (TTF) 6PW12040(ET4N) (1).

23

Wl	01		1.66(2)	S2		C 4	1.75(2)
Wl	02		1.89(2)	S3		C5	1.77(2)
Wl	06		1.89(2)	S3		C6	1.74(2)
W2	02		1.89(2)	C1		C1	1.32(4)
W2	03		1.67(2)	C2		C2	1.28(3)
W2	04		1.93(2)	C3		C3	1.31(3)
WЗ	04		1.88(2)	C4		C4	1.31(4)
WЗ	05		1.67(2)	C5		C5	1.29(4)
WЗ	06		1.89(2)	C6		C6	1.42(4)
Si	07		1.61(2)	N		C7	1.40(7)
S1	C1		1.74(2)	N		C9	1.58(8)
S1	C2		1.71(3)	C7		C8	1.67(9)
S2	C3		1.80(3)	C9		C10	1.7(1)
01	Wl	02	99.8(7)	S1	C1	S1	113.(2)
01	Wl	06	102.6(7)	S1	C1	C1	123.6(9)
02	Wl	06	88.4(7)	Sl	C2	C2	118.(2)
06	Wl	06	90.4(6)	S2	C3	C3	117.(2)
02	W2	02	90.7(7)	S2	C4	S2	114.(2)
02	W2	03	98.4(6)	S2	C4	C4	123.2(7)
02	W2	04	88.9(8)	S3	C5	S3	113.(1)
03	W2	04	103.3(7)	S3	C5	C5	123.7(7)
04	W2	04	83.4(8)	S3	C6	C6	116.(2)
Wl	06	WЗ	138.(1)	C1	S1	C2	95.(1)
04	WЗ	05	101.3(8)	C3	S2	C4	96.(1)
04	WЗ	06	89.7(7)	C5	S3	C6	98.(1)
05	WЗ	06	99.7(8)	C7	N	C7	104.(5)
06	W3	06	83.7(7)	C7	N	С9	114.(2)
Wl	02	W2	138.0(7)	С9	N	C9	98.(4)
W2	04	WЗ	136(1)	N	C7	C8	111.(6)
07	Si	07	109.(1)	N	C9	C10	102.(5)

Tableau 3b. Distances (en Å) et angles (en degres) de liaisons dans (TTF)6SiW12O40(Et4N) (2)

05 03 64 04 (13) 62 A2 106 06 -02 (1) (1) KO1 Q7 106 06 -02 2 E (13)

03

(01

03

02

02

04

A

-(XW12O40)-

05

04

03

-(ET4N)-

25

Figure 2. Vue en perspective du contenu de la maille.

[8] implantée sur un mini ordinateur PDP11/60. Les illustrations ont été réalisées à l'aide du programme ORTEP [9].

Les coordonnées atomiques, les distances et les angles de liaisons sont donnés dans les Tableaux 2 et 3 respectivement. La numérotation des atomes est donnée en Figure 1..

DISCUSSION

Structures moléculaires et cristallines

La struture cristalline est représentée sur les figure 2 et 3. Les anions $XW_{12}O_{40}^{4-}$ sont situés à l'origine du réseau C. Les cations (Et₄N)⁺ sont au milieu de la maille. Les trois molécules indépendantes de TTF sont notées A, B et C. Les molécules A et B sont centrées sur les positions spéciales 41 (1/2,0,z) du groupe Cmmm. La molécule C est centrée sur la position 4f (1/4,1/4,1/2) (figure 3).

Organisation de la partie organique.

Les molécules de TTF du type A et B forment avec leurs équivalentes une chaîne organique monodimensionnelle avec une séquence d'empilement du type AABBAA...(voir Figure 3). Cette chaîne organique se développe parallèlement à l'axe \vec{c} . Elle est isolée au milieu d'un canal formé par 4 polyanions XW₁₂O₄₀ et 4 molécules du type \vec{C} qui sont perpendiculaires à la chaîne (figure 4a).

centrale et latérale, elle est antiliante pour toutes les autres [10]. L'oxydation de TTF provoquerait un allongement des distances des liaisons centrales et latérales et un raccourcissement des autres liaisons. Le tableau 4. présente les valeurs des distances interatomiques par comparaison à d'autres sels de TTF connus.

e areles

Tableau 4.- Numérotation des atomes et des molécules de TTF. Comparaison de leurs distances interatomiques (Å) et angles (°) avec des données de la litterature. Dispositions des molécules A, B et C sur les éléments de symmétrie mm et 2/m.

#,	anion	1, PW ₁₂	040		2, SiW ₁₂ 0,	10		TCNQ	ClO4-
mc	ol. A	В	С	A	В	С	TTF ⁰	TTF+0.59	TTF ⁺
a	1.31(3)	1.32(3)	1.31(3)	1.32(4)	1.31(4)	1.29(4)	1.349(2)	1.369(4)	1.404(13)
b	1.74(1)	1.75(1)	1.76(1)	1.74(2)	1.75(2)	1.77(2)	1.757(7)	1.743(3)	1.713(9)
с	1.74(2)	1.76(2)	1.73(2)	1.71(3)	1.80(3)	1.74(2)	1.726(1)	1.736(3)	1.725(9)
d	1.30(2)	1.32(2)	1.36(3)	1.28(3)	1.31(3)	1.42(4)	1.314(2)	1.323(4)	1.306(16)
α	123.5(5)	122.9(5)	123.1(4)	123.6(9)	123.2(7)	123.7(7)	123.0(3)	122.6(3)	122.3(7)
β	113.(1)	114.(1)	113.8(9)	113.(2)	114.(2)	113.(1)	113.9(7)	114.7(3)	115.4(5)
γ	96.1(8)	96.9(7)	95.9(8)	95.(1)	96.(1)	98.(1)	96.0(6)	94.9(3)	94.8(5)
δ	117.(1)	116.(1)	117.(1)	118.(2)	117.(2)	116.(2)	117.0(9)	117.7(2)	117.5(9)
Ré	férences	préser	nt travail	prés	ent trava	il	22	23	24

8

Figure 3. Contenu du plan (ac).

7A

Il en ressort des valeurs du tableau 4 que les molécules du type C présentent des distances du même ordre de grandeur que les TTF neutres, exceptée la distance latérale du type d. Les valeurs des liaisons des molécules du type A et B, sont comprises entre celles rencontrées dans les composés où les molécules organiques TTF sont 0,59+ et 1+. Comme nous le constatons, l'examen du tableau 4 indique cependant qu'il n'est pas facile de fixer rigoureusement la charge qu'on pourrait attribuer aux molécules du type A et B. Cependant la régularité de la chaîne organique, c'est-à-dire la distance constante observée entre les TTF de l'empilement organique, laisse prévoir une distribution de charges égale entre les différentes molécules de TTF de la chaîne.

La chaîne formée par les molécules de TTF de types A et B est quasi-régulière. L'empilement des molécules le long de la chaîne se caractérise par une distance moyenne interplans moléculaires de 3,54 Å (figure 4b) et un mode de recouvrement totalement éclipsé qui maximalise les interactions intra-chaîne [11]. Il est à noter que les molécules qui contituent la séquence -(AABB)- ne se déduisent pas l'une de l'autre par translation de réseau mais par inversion. Ceci implique que les distances S...S entre les molécules de TTF ne sont pas idendiques (voir Tableau 5 et Figure 3).

n° composé X M=	1 P W	2 Si W	
71, IVI-	1, 11	51, 11	
dl: S1 - S1 ⁱ	3.464(6)	3.519(9)	
d2: S1 - S2 ⁱⁱ	3.566(6)	3.534(9)	
d3: S2 - S2 ⁱⁱⁱ	3.582(6)	3.567(9)	
d4: S2 - S3 ^{iv}	3.509(5)	3.468(8)	
d5: S1 - O2v	3.24(1)	3.17(1)	
d6: 03 - O3 ^{vi}	2.60(2)	2.65(3)	

Tableau 5. Distances intermoléculaires en Å dans les composés (TTF)6[XM12O40](ET4N).

Code de symmetrie: i(x,y,-z); ii(1-x,-y,z); iii(x,y,1-z); iv(1/2-x,1/2-y,1/2+z); v(1+x,y,z); vi(-1/2-x,-1/2-y,1/2-y).

Les contacts S•••S intra-chaîne de 3,46-3,58 Å sont nettement inférieurs à la distance de Van der Waals (3,70 Å). Cette configuration affecte la planéité des molécules de TTF. En effet, l'essentiel de l'interaction est assurée par le recouvremnt des orbitales de soufre ; la molécule de TTF n'est alors plus plane .

(a)

b)- Distances interplan et contacts S...S intermoléculaires (voir le tableau 5 pour les valeurs des diatances d_i).

31

Tableau 6. Distances (Å) et angles (°) dans les entités $[\rm XM_{12}O_{40}]^{n-}$ et $\rm ET_4N^+.$

n° composé	1	2	
X, M=	P, W	Si, W	
M1 - 01	1.66(1)	1.66(2)	
M1 - O2	1.92(1)	1.89(2)	
M1 - 06	1.88(1)	1.89(2)	
M2 - O2	1.85(1)	1.89(2)	
M2 - 03	1.68(1)	1.67(2)	
M2 - 04	1.92(1)	1.93(2)	
M3 - 04	1.88(1)	1.88(2)	
M3 - 05	1.67(2)	1.67(2)	
M3 - 06	1.89(1)	1.89(2)	
X - 07	1.51(1)	1.61(2)	
N - C7	1.48(5)	1.40(7)	
N - C9	1.57(5)	1.58(8)	
C7 - C8	1.64(6)	1.67(9)	
C9 - C10	1.58(6)	1.7(1)	
M1 - M2	3.564(1)	3.534(1)	13
M1 - M3	3.565(1)	3.526(1)	, al VE
M2 - M3	3.564(1)	3.525(1)	500 3:
			10100
01-M1-02	103 9(5)	99 8(7)	A Data
01-M1-02	102 9(5)	102 6(7)	0 7
02-M1-06	86 8 (4)	88 4 (7)	
02-M1-06	89 4 (4)	90 4 (6)	
02-M2-02	89 8 (4)	90.7(7)	
02-M2-03	100.8(4)	98.4(6)	
02-M2-04	87.7(4)	88,9(8)	
03-M2-04	104.6(5)	103.3(7)	
04-M2-04	83.8(4)	83.4(8)	
M1-06-M3	142.0(7)	138.(1)	
04-M3-05	102.7(5)	101.3(8)	
04-M3-06	87.8(5)	89.7(7)	
05-M3-06	102.7(5)	99.7(8)	
06-M3-06	84.4(4)	83.7(7)	
M1-02-M2	141.9(5)	138.0(7)	
M2-04-M3	139.8(6)	136(1)	
07-X -07	107.3(7)	109.(1)	
C7-N -C7	107.(3)	104.(5)	
C7-N -C9	110.(1)	114.(2)	
C9-N -C9	111.(3)	98.(4)	
N-C7 -C8	111.(3)	111.(6)	
N-C9 -C10	112.(3)	102.(5)	

32

Cette situation qui présente une régularité et un mode de recouvrement unique le long de la chaîne diffère de celle rencontrée dans la littérature où l'empilement organique est soit dimérisé ou se caractérise par un recouvrement décalée où encore par plusieurs types de recouvrement [11-13]. Cette particularité est à rapprocher de l'existence d'un canal formé par quatre anions inorganiques et quatre TTF dans lequel vient se loger la chaîne organique (figure 4a). Les interactions inter-moléculaires, aussi bien d'origine ionique que covalente d'une telle architecture favorisent le recouvrement totalement éclipsé.

Organisation de la partie inorganique

Les anions $XM_{12}O_{40}$ (M=Mo, W ...; X=Si et P...) representé sur le schema 1, adoptent la structure dite α -Keggin [14]. Ils sont constitués d'octaèdres MO₆ dont les sommets sont occupés par des atomes d'oxygènes et les centres par des atomes métalliques. Cette structure de Keggin est décrite par l'association de quatre entités M₃O₁₃ reliées entre elles par des sommets. Chacune de ces entités résulte de la condensation de trois octaèdre MO₆ par mise en commun de trois arêtes. Le milieu de l'anion est occupé par un entité tétraèdrique XO₄. La symetrie de l'ensemble est T_d.

SCHEMA 1. Description de la structure α -Keggin [25].

Le tableau 6 rassemble les distances interatomiques dans les entités $PW_{12}O_{40}$ et Si $W_{12}O_{40}$, la numérotation des atomes étant présentée sur la figure 1. Aucune différence significative n'est observée entre les deux composés.

.

Figure 5. Mise en évidence des interactions intermoléculaires correspondantes aux valeurs données dans le Tableau 5.
La symétrie T_d des anions de Keggin et la structure décrite plus haut imposent deux types de distances W-W [15]. Il s'agit des distances W-W internes à l'entité M₃O₁₃ qui sont de l'ordre de 3.40Å et des distances W-W entre entités M₃O₁₃ voisines et qui sont de l'ordre de 3.70Å. Cependant, si pour des raisons de symétie du cristal, l'anion est situé sur un centre de symétrie comme c'est le cas dans les matériaux décrits dans ce memoire, Les distances W-W sont alors toutes égales entre elles. Elles sont de 3,56 et 3,53 Å pour les anions PW₁₂O₄₀³⁻ et SiW₁₂O₄₀⁴⁻, respectivement. Nous noterons que ces distances correspondent à la moyenne des deux distances données plus haut dans le cas des structures non centrosymétriques. Cette situation a été récemment rencontrée dans ([H₂quin]₃[PW₁₂O₄₀].4EtOH.2H₂O) [16] où une distance de 3.55Å a été observéé. Ces distances W-W sont supérieures à celles de 3,312 (7) Å et 2,50 (2) Å déterminées dans

Tableau 7. Comparaison des distances W - O et W - W dans différents composés.

O_t= Oxygène terminal O_c= Oxygène central O_b= Oxygène ponteur (bridging)

	H ₂ W ₁₂ O ₄₀ ⁶⁻	H ₂ W ₁₂ O ₄₀ ⁶⁻	H ₃ PW ₁₂ O ₄₀	1	2
a	1.69(2)	2.13(2)	1.69(3)	1.67(3)	1.67(3)
b	1.90(5)	2.04(1)	1.898(3)	1.86(3)	1.86(3)
с	1.97(2)	1.80(3)	1.911(3)	1.93(3)	1.93(3)
d	2.32(2)	1.88(2)	2.439(4)	2.44(3)	2.44(3)
W-W ⁱⁿ	3.312(7)	2.50(2)	3.42	3.564(1)	3.528(1)
W-Wex	3.68(1)	-	3.69	3.564(1)	3.528(1)
Réf.	17	17	18	È. T	'r

in Intra-M₃O₁₃; ex Inter-M₃O₁₃; P. Tr = Présent Travail.

Rb₄HO[H₂W₃^{IV}W₉VIO₄₀] pour le site de W^{VI} et W^{IV} respectivement. Le tableau 7 rassemble les différentes distances W-O, W-W dans Rb₄HO[H₂W₃^{IV}W₉VIO₄₀], H₂W₁₂O₄₀⁶⁻ [17], H₃PW₁₂O₄₀ [18] et les compare à celles observées dans (TTF₆)PW₁₂O₄₀(Et₄N) (1) et (TTF₆)SiW₁₂O₄₀(Et₄N) (2).

Une valence mixte sur l'anion $PW_{12}O_{40}$ due à la présence de W^{VI} et W^{IV} , serait accompagnée d'un allongement de la distance W-Ot et d'un raccourcissement des distances W-W et W-O_c [17]. Cette distorsion structurale, n'est pas une preuve définitive de l'existence d'entité $W_3^{IV}O_{13}$, au vu du désordre cristallographique observé dans ces composés, elle est utilisée ici à titre indicatif.

Interactions

Les interactions les plus significatives sont illustrées sur les figures 3-5 et données dans le taleau 5.

contacts dans le système organique

Outre les contacts intra-chaîne S····S : 3,49 Å et 3,56 Å, il en existe d'autres entre les hétéro-atomes de la molécule TTF du type C et celle constituant la chaîne (du type B).

La molécule TTF du type C forme un angle de $89,22^{\circ}$ avec les molécules de la chaîne organique, par conséquent leur orbitales moléculaires sont pratiquement orthogonales et il n'y a donc pas d'interactions électroniques entre-elles [19]. Nous noterons cependant la distance S₂(B)...S₃(C) de 3,49 Å comparable à la distance S...S intra-chaîne; la somme des rayons de Van der Waals étant de 3,6 Å. Sur la figure 5, nous représentons les divers contacts observés dans le système organique entre molécules oxydées de la chaîne et les molécules perpendiculaires neutres.

Contacts donneur-accepteur

Le tableau 5 regroupe les distances S-O de l'ordre de la somme des rayons de Van der Waals 3,5 Å.

Les contacts privilégiés sont $S_1 \cdots O_2$, entre les atomes du soufre de la chaîne organique et les oxygènes de l'anion, avec un contact plus faible donc pour l'oxygène terminal.

Le contact $S_3 \cdots O_5$ entre la molécule TTF du type C et l'anion semble indiquer un caractère très peu lié de la molécule ; en conséquence, la molécule C ne fait qu'occuper les sites vacants du composé. La figure 5. montre les différents contacts observés entre le système organique et minéral.

Contacts anion-anion

La plus courte distance est observée entre des oxygènes terminaux $O_3 \cdots O_3$ de 2,606 Å indiquant une interaction directe entre anions minéraux et leur tendance à un empilement compact (Tableau 5 et Figure 5).

Propriétés physiques

Conductivité électrique.

Les mesures de conductivité électriques ont été réalisées par Jean Padiou au laboratoire de chimirale B de l'Université de Rennes I [1]. Ces mesures effectuées sur des monocristaux selon la méthode des quatre points a donnée les valeurs de conductivité à l'ambiante de σ_{300K} = $3x10^{-2}$ et $5x10^{-4}$ Ω^{-1} . cm⁻¹ correspondants à des composés semi-conducteurs.

Figure 6. Spectres Infra Rouge réalisés en pastille de KBr.

28

Caractérisation par I.R.

L'identification des composés à valence mixte est liée à la présence sur le spectre de mode de vibration, en particulier la raie vibronique μ Ag vers 1300 cm⁻¹ [20]. Les spectres infra-rouges ont été réalisés entre 4800 et 350 cm⁻¹, en pastille KBr sur spectromètre à transformée de Fourier Nicolet [1]. Ils sont présentés en figure 6a et 6b des composés TTF₆PW₁₂O₄₀(E_{t4}N) et TTF₆SiW₁₂O₄₀(Et₄N) respectivement, laissant apparaître la raie vibronique caractéristique ainsi que les bandes de transfert de charge vers 3200cm⁻¹ caractéristiques de systèmes conducteurs. Les spectres par Chantal Garrigou-Lagrange au centre de Recherche Paul Pascal à l'Université de Bordeaux I.

Etude magnétique

Des mesures d'amiantation en fonction de la température ont été réalisées par O. Peña au laboratoire de Chimie Minérale B de l'Université de Rennes I [1]. Ces mesures ont été effectuées à l'aide d'un magnétomètre à détection SQUID (modèle SHE 906) sur quelques monocristaux, entre la tempérture ambiante et 5 K sous un champ de 10 Koe.

Les moments magnétiques expérimentales ont été corrigés des contributions diamagnétiques de l'anion, du donneur et du tétraéthylamonium. Les conditions paramagnétiques indépendantes de la température, calculées à partir d'une représentation $\chi_{\mu}T$ en fonction de T son déduites de la susceptibilité molaire expérimentale.

Les contributions diamagnétiques et paramagnétiques de Van-Vleck pour TTF₆PW₁₂O₄₀(Et₄N), sont du même ordre de grandeur $\chi_d = -1292.10^{-6}$ et $\chi_p = 1080,.10^{-6}$ uem/mole. La figures 7 représente les variations de l'inverse de la susceptibilité molaire corrigée, en fonction de la température. Pour le composé TTF₆PW₁₂O₄₀(Et₄N) la susceptibilité magnétique suit une loi de curie, la constante de curie, le moment magnétique effectif ($\mu_{eff} = \sqrt{8C}$) ont les valeurs suivantes : $[(TTF)_6(PW_{12}O_{40})(ET_4N)]$

TEMPERATURE (K)

Temperature dependence of the inverse magnetic susceptibility, corrected of diamagnetic (χ_{DIA} = -1292 x 10⁻⁶) and paramagnetic (χ_{TIP} = +1080 x 10⁻⁶ emu/mol) temperature-independent contributions.

Figure 7. Inverse de la susceptibilité magnétique en fonction de la température pour [(TTF)₆(PW₁₂O₄₀)(ET₄N)].

40

C = 0,278 uem/mole, μ_{eff} = 1,49 μ_B entre 5 et 100 K,

11

le point de Curie est pratiquement égal à zéro.

De cette mesure, nous déduisons que le moment magnétique correspond à un électron célibataire par unité, les spins n'interagissant pas entre-eux.

Le composé TTF6SiW12O40(Et4N) est diamagnétique.

CONCLUSION

Partant de $PW_{12}O_{40}^{3-}$ et Si $W_{12}O_{40}^{4-}$, nous avons synthétisé les composés TTF₆PW₁₂O₄₀(Et₄N) et TTF₆Si $W_{12}O_{40}$ (Et₄N) de même stoechiométrie.

La taille notable de l'anion, provoque dans ces composé des lacunes occupées par des molécules neutres (TTF)^o et par le cation amonium désordonné. Ces composés présentent une valence mixte sur la chaîne organique, dont le recouvrement est du type totalement éclipsé qui traduit une interaction de nature covalente entre les TTF. Cette chaîne organique impose la structure, le paramètre c étant de 14,178 Å et la distance moyenne interplan étant de 3,54 Å.

L'étude de la susceptibilité magnétique indique le caractère paramagnétique pour TTF₆PW₁₂O₄₀(Et₄N) et diamagnétique pour TTF₆SiW₁₂O₄₀(Et₄N).

La détermination de leur structure cristalline, les études magnétiques et en spectroscopie IR, nous laissent envisager la formulation suivante :

$$(TTF)_4^{3+}(TTF)_2^0(XW_{12}O_{40})^{4-}(Et_4N)^+ X = P, Si.$$

Cette formulation implique l'existance dans les deux composés de spin S=1/2 sur la chaîne organique. Or, aucun signal RPE correspondant à l'existance de ce spin n'à été observé [1]. La formulation impliquant des charges impairs sur l'entité de base de la chaîne organique

(TTF)₄ n'est pas compatible avec ces observations. Par ailleurs, Les calculs théoriques réalisés par Jean François Halet (Universioté de Rennes 1) [1] corroborent l'hypothèse impliquant la formulation (TTF)₄²⁺. L'apport de charges + supplementaires dans ce sel puet provenir de l'existence de protons qui auraient été fixé par les polyanions [21].

42

de (Etw), Pinnoys

Au bilan de toutes les observations structurales, physiques et théoriques la formulation de ces sels serait la suivante:

$$(TTF)_4^{2+} (TTF)_2^0 HPW_{12}O_{40}^{3-} [C_2H_5)_4N]^+$$
 (1)

$$(TTF)_4^{2+} (TTF)_2^0 HSiW_{12}O_{40}^{3-}[C_2H_5)_4N]^+$$
 (2)

Cette dernière formulation, qui implique la présence de protons, mérite cependant d'être confirmée par des mesures de RMN (en solution ou à l'état solide).

- AMN pour confirmer. - Etuple coment du proton des la meille confir tem du grange Common. - protondion de l'amin Punoyo (chia didisci p

-II- (TTF)7(SIW12O40)(CH3CN)2

Dans la partie précédente, notre première démarche a consisté a modifier la charge de l'anion en substituant le phosphore par le silicium. Les résultats montrent qu'à partir des deux anions ayant des charges différentes on aboutit à des sels isostructuraux. Ces sels $[(TTF)_{6}XW_{12}O_{40} (Et_{4}N)]$ cristallisent avec un cation tétraéthylammonium $(Et_{4}N)^{+}$ provenant du sel de départ. Notre deuxième démarche consiste cette fois-çi à utiliser le sel de tétrabutylammonium, au cours des expériences d'électrocristallisation, et d'en étudier les répercussions structurales et électroniques qui en résultent en l'absence de cation $(Et_{4}N)^{+}$. Nous avons pu ainsi isoler une nouvelle phase: $(TTF)_{7}SiW_{12}O_{40} (CH_{3}CN)_{2}$ (3).

PREPARATION

(TTF)7SiW12O40(CH₃CN)₂ a été préparé par électro-oxydation sur électrode de platine, du donneur TTF en présence du sel tétrabutylamonium dodecatungstosilicate (TBA)4SiW12O40. Il cristallise sous forme de plaquettes noires. Les conditions expérimentales sont décrites dans le chapitre I.

ENREGISTREMENT, RESOLUTION ET AFFINEMENT DE LA STRUCTURE

Les conditions d'enregistrements des intensités diffractées, les données cristallographiques et les conditions d'affinements structuraux, menées sur un monocristal sont rassemblées dans le tableau 1.

Tableau 1

-13

44

Conditions d'enregistrement et données cristallographiques du composé (TTF) 7SiW12040. (CH3CN)2.

1) Données cristallographiques

Formule : C46H34N2S28O40SiW12 Système cristallin : triclinique Groupe spatial : PĪ Paramètres : a = 12,742 (6)Å $\alpha = 91,76(8)^{\circ}$ b = 13,164 (2)Å $\beta = 104,75(8)^{\circ}$ c = 14,197 (1)Å $\gamma = 89,98(1)^{\circ}$ Volume : 2302 Å³ Z = 1 $d_{cal} = 3,052$

2) Conditions d'enregistrement :

Radiation utilisée : MoK α λ = 0,71073 Å Monochromateur à lame graphite Température : 293K Mode de balayage : θ -2 θ Angle de balayage : Δw = (1 + 0,35 tg θ)° Ouverture du compteur : (2 + 0,6 tg θ)mm Limites d'enregistrement en θ : 1-25° Espace réciproque exploré : ± h ; ± k ; + 1

3) Conditions d'affinements structuraux

Nombre de réflexions

 $\begin{array}{rll} & & & & & & \\ & & & &$

Tableau 2. Coordonnées atomiques et facteurs d'agitation thermiques isotropes équivalents pour (TTF) $_7(SiW_{12}O_{40})(CH_3CN)_2$.

4

Atomes	х	У	Z	в(Å ²)
Si	0.000	0.000	0.000	5.4(7)*
W1	-0.2186(2)	0.1086(2)	-0.1692(2)	2.47(4)*
W2	0.0426(2)	0.2315(2)	0.1364(2)	2.09(4)*
W3	-0.2613(2)	-0.1191(2)	-0.0595(2)	3.03(5)*
W4	0.0026(2)	0.0036(2)	0.2501(1)	1.58(4)*
W5	-0.0428(2)	-0.2274(2)	0.1122(2)	2.37(4)*
WG	-0.2179(2)	0.1118(2)	0.0796(2)	2.34(4)*
01	0.109(4)	-0.223(3)	0.153(3)	3.2(9)*
02	0.138(5)	-0.036(5)	0.271(4)	6(1)*
03	0.134(4)	-0.013(4)	0.024(3)	4(1)*
04	-0 133(4)	0.039(3)	0,195(3)	3.4(9)*
05	0.021(4)	0.276(4)	0.009(3)	5(1)*
05	-0.276(4)	-0.009(4)	-0 158(3)	5(1)*
07	-0.105(4)	0.216(4)	0 111 (3)	4(1)*
08	-0.185(5)	-0 198(5)	-0.137(4)	6(1)*
00	-0.186(4)	-0.205(4)	0.049(4)	5(1)*
010	-0.100(4)	0 133(3)	0.239(3)	3 4 (9) *
010	0.001(4)	0.155(3)	-0.249(2)	1 7 (6) *
012	-0.319(3)	0.105(5)	0.203(4)	5/1)*
012	0.044(4)	0.335(4)	0.203(4)	5(1)*
013	-0.379(5)	-0.170(4)	-0.007(4)	2 0 (7) *
014	-0.006(3)	0.014(3)	0.309(2)	2.0(7)*
015	-0.062(4)	-0.334(4)	0.115(3)	5.7(5)*
016	-0.321(4)	0.100(4)	0.115(4)	3 9 (0) *
017	0.067(4)	0.113(4)	0.027(3)	2.0(9)*
018	0.028(3)	-0.075(3)	-0.083(3)	2.9(0)~
019	-0.266(4)	-0.013(4)	0.033(3)	4(1) *
020	-0.047(4)	-0.136(4)	0.224(3)	4 (1) ~ 5 (1) *
021	-0.034(4)	0.070(4)	-0.100(3)	2 5/71*
022	-0.231(3)	0.150(5)	-0.030(3)	2.5(7)*
SI	0.548(1)	0.339(1)	0.303(1)	3.5(3)*
SZ	0.620(1)	0.5/1(1)	0.415(1)	3.0(3)*
53	0.3/4(1)	0.640(1)	0.341(1)	3.4(3)~
S4	0.294(2)	0.433(2)	0.319(1)	4.1(4) ~
C1	0.504(4)	0.485(4)	0.379(3)	1.2(8)^
C2	0.404(6)	0.505(6)	0.351(5)	4(2)*
C3	0.738(7)	0.473(7)	0.440(6)	5(2)*
C4	0.696(7)	0.382(7)	0.426(6)	5(2)*
C5	0.244(6)	0.636(5)	0.315(5)	4(1)*
C6	0.205(4)	0.532(4)	0.293(3)	1.6(9)*
S5	0.356(2)	0.632(2)	0.089(1)	4.1(4)*
S6	0.303(1)	0.415(1)	0.074(1)	3.5(3)*
S7	0.612(2)	0.582(2)	0.155(1)	4.0(4)*
S8	0.567(2)	0.368(2)	0.136(1)	4.1(4)*
C7	0.514(5)	0.491(5)	0.132(4)	3(1)*
C8	0.404(8)	0.509(7)	0.109(6)	6(2)*
C9	0.214(6)	0.610(6)	0.033(5)	4(1)*
C10	0.198(5)	0.508(5)	0.036(4)	3(1)*
C11	0.725(6)	0.513(6)	0.182(5)	4(2)*
C12	0.684(6)	0.417(6)	0.168(5)	4(2)*
S9	0.683(1)	0.104(1)	0.537(1)	3.1(3)*

S10	0.592(1)	0.103(1)	0.325(1)	3.3(3)*
S11	0.438(1)	0.149(1)	0.565(1)	3.3(3)*
S12	0.347(2)	0.147(2)	0.352(1)	4.7(4)*
C13	0.567(5)	0.118(5)	0.439(4)	3(1)*
C14	0.468(5)	0.136(5)	0.452(4)	3(1)*
C15	0.77(1)	0.10(1)	0.477(8)	9(3)*
C16	0.739(8)	0.083(7)	0.363(6)	6(2)*
C17	0.295(4)	0.165(4)	0.528(3)	1.0(8)*
C18	0.250(8)	0.164(7)	0.429(6)	6(2)*
S13	-0.017(2)	0.360(2)	0.404(2)	5.6(5)*
S14	0.040(2)	0.391(2)	-0.384(2)	5.7(5)*
C19	0.021(6)	0.257(6)	0.508(5)	4(1)*
C20	0.048(8)	0.265(8)	0.607(6)	6(2)*
C21	0.008(5)	0.450(5)	0.509(4)	3(1)*
N1	0.263(9)	0.163(9)	0.774(7)	10(3)*
C1S	0.467(8)	0.096(7)	0.876(6)	6(2)*
C2S	0.358(8)	0.149(7)	0.791(6)	6(2)*

*atomes affinés isotropiquement.

46

Tableau 3. Distances interatomiques (Å) dans (TTF)₇SiW₁₂O₄₀ (CH₃CN)₂

Si - 03	1.66(5)	W3 - 013	1.63(6)	N1 - C2S	1.2(1)
Si - 03	1.66(5)	W3 - 019	1.90(5)	C1S - C2S	1.8(1)
si - 017	1.70(5)	W4 - 02	1.75(6)	S9 - C13	1.77(5)
Si - 017	1.70(5)	W4 - 04	1.78(4)	S9 - C15	1.6(1)
Si - 018	1.62(4)	W4 - 010	1.88(5)	S10- C13	1.74(6)
Si - 018	1.62(4)	W4 - 014	1.72(4)	S1 - C1	1.75(5)
Si - 021	1.75(5)	W4 - 020	1.94(5)	S1 - C4	1.85(9)
Si - 021	1.75(5)	W5 - 01	1.87(4)	S2 - C1	1.81(5)
W1 - 01	2.02(5)	W5 - 05	1.90(5)	S2 - C3	1.94(9)
W1 - 02	2.18(6)	W5 - 09	1.85(5)	S3 - C2	1.82(8)
W1 - 06	1.75(5)	W5 - 015	1.71(5)	S3 - C5	1.61(7)
W1 - 011	1.67(3)	W5 - 020	1.97(5)	S4 - C2	1.65(8)
W1 - 022	1.84(4)	W6 - 04	1.99(4)	S4 - C6	1.71(6)
w2 - 05	1.87(5)	W6 - 07	1.95(5)	C1 - C2	1.27(9)
W2 - 07	1.83(5)	W6 - 016	1.64(6)	C3 - C4	1.3(1)
W2 - 08	1.87(7)	W6 - 019	1.80(5)	C5 - C6	1.44(9)
W2 - 010	1.95(4)	W6 - 022	1.93(4)	S5 - C8	1.7(1)
W2 - 012	1.63(5)	S10 -C16	1.8(1)	S5 - C9	1.80(7)
W3 - 06	2.02(5)	S11 -C14	1.74(7)	S6 - C8	1.8(1)
W3 - 08	1.93(7)	S11 -C17	1.78(5)	S6 - C10	1.80(7)
W3 - 09	1.98(5)	S12 -C14	1.81(6)	S7 - C7	1.69(6)
S7 - C11	1.67(8)	S12 -C18	1.9(1)	S13 - C21	1.84(6)
S8 - C7	1.76(6)	C13 -C14	1.3(1)	S14 - C20	1.7(1)
S8 - C12	1.58(8)	C15 -C16	1.6(1)	S14 - C21	1.68(7)
C7 - C8	1.4(1)	C17 -C18	1.38(9)	C19 - C20	1.4(1)
C9 - C10	1.4(1)	S13 -C19	2.00(7)	C21 - C21	1.37(9)
C11- C12	1 3(1)				

42

	48
τ.\	

03	ST	03	180 (3)	017	ST	021	74 (2)	07	W2	08	158 (2)
03	ST	017	67. (2)	018	SI	018	180. (3)	07	W2	010	90. (2)
03	ST	017	113. (2)	018	SI	021	75. (2)	07	W2	012	93. (2)
03	ST	018	71. (2)	018	ST	021	105. (2)	08	W2	010	84. (2)
03	ST	018	109 (2)	018	ST	021	105 (2)	08	W2	012	109 (3)
03	CT	021	104 (3)	018	CT	021	75 (2)	010	1472	012	99 (2)
03	SI CT	021	76 (3)	010	CT	021	190 (4)	010	1472	012	99.(2)
03	SI	021	112 (2)	021	51	021	100. (4)	06	W S	00	157 (2)
03	SI	017	113.(2)	01	W1	02	161.(2)	06	W J	09	105 (2)
03	SI	017	67.(2)	01	W1	06	161.(2)	06	W3	013	105.(2)
03	SI	018	109.(2)	10	TM	011	97.(2)	06	W3	019	87.(2)
03	SI	018	71.(2)	10	WI	022	83.(2)	08	W3	09	86.(2)
03	SI	021	76. (3)	02	WI	06	88.(2)	08	W3	013	101.(3)
03	SI	021	104.(3)	02	Wl	011	99.(2)	08	W3	019	152.(2)
017	SI	017	180.(3)	02	Wl	022	156.(2)	09	W3	013	99.(3)
017	SI	018	119.(2)	06	W1	011	102.(2)	09	W3	019	89.(2)
017	SI	018	61.(2)	06	W1	022	94.(2)	013	W3	019	107.(3)
017	SI	021	74.(2)	011	Wl	022	104.(2)	02	W4	04	165.(2)
017	SI	021	106.(2)	05	W2	07	87.(2)	02	W4	010	84.(2)
017	SI	018	61.(2)	05	W2	08	89.(2)	02	W4	014	99.(2)
017	SI	018	119.(2)	05	W2	010	156.(2)	02	W4	020	90.(2)
017	SI	021	106.(2)	05	W2	012	105.(2)	04	W4	010	94.(2)
04	W4	014	97. (2)	07	W6	022	81. (2)	W6	07	018	73.(2)
04	W4	020	87 (2)	016	WG	019	103 (3)	W2	08	W3	139 (3)
010	WA	014	99 (2)	016	WG	022	106 (2)	W2	08	017	67 (2)
010	W-1	020	163 (2)	010	WG	022	92 (2)	1473	08	017	72 (2)
014	W 4	020	103.(2)	W1	01	WE WE	133 (2)	W3	00	W5	135 (3)
014	W4	020	90. (2)	W1	01	T-TA	133. (2)	1472	010	TAT A	136 (3)
01	W5	05	85. (2)	WI OT	02	W4	129.(3)	WZ OT	010	02	130. (2)
01	W D	09	164.(2)	SI	03	017	57.(2)	SI	017	03	35.(2)
01	W5	015	97.(2)	SI	03	810	53.(2)	SI	017	08	145.(3)
01	W5	020	89.(2)	SI	03	019	143.(3)	SI	017	018	57.(2)
05	W5	09	88.(2)	SI	03	021	54.(2)	SI	017	021	54.(2)
05	W5	015	105.(2)	017	03	018	98.(3)	03	017	08	103.(3)
05	W5	020	161.(2)	017	03	019	106.(3)	03	017	018	97.(3)
09	W5	015	98.(2)	017	03	021	88.(3)	03	017	021	86.(3)
09	W5	020	93.(2)	018	03	019	104.(3)	08	017	018	106.(3)
015	W5	020	93.(2)	018	03	021	83.(3)	08	017	021	160.(3)
04	W6	07	87.(2)	019	03	021	163.(3)	018	017	021	90.(3)
04	W6	016	104.(2)	W4	04	W6	140.(3)	SI	018	03	55.(2)
04	W6	019	85.(2)	W2	05	W5	139.(3)	SI	018	07	145.(3)
04	W6	022	149.(2)	Wl	06	W3	139.(2)	SI	018	017	61.(2)
07	W6	016	106.(2)	W2	07	W6	141.(3)	SI	018	021	55.(2)
07	W6	019	151. (2)	W2	07	018	69. (2)	03	018	07	103.(3)
03	018	017	101 (3)	S1	C1	C2	120. (5)	\$7	C11	C12	102: (6)
03	018	021	85 (3)	52	CI	C2	130 (5)	58	C12	C11	136 (7)
07	018	017	103 (3)	53	C2	54	113 (4)	C13	59	C15	99 (5)
07	01.9	021	159 (3)	63	C2	C1	114 (6)	C13	\$10	C16	99 (4)
017	019	021	100. (0)	64	C2	CI	133 (6)	C14	C11	C17	101 (3)
W12	010	WE	146 (3)	02	C2	CA	100 (7)	C14	C12	C1 9	06 (3)
W3	019	NO	140. (3)	52	CS	02	109.(7)	C14	512	C10	30. (3)
W3	019	03	12.(2)	SI	C4	03	122. (7)	59	C13	SIU	114.(4)
Wb	019	03	75.(2)	53	CS	Cb	110.(5)	59	CI3	C14	123. (5)
W4	020	W5	129. (3)	54	C6	C5	121.(4)	510	CI3	C14	123.(4)
SI	021	03	50.(2)	C8	S5	C9	102.(4)	S11	C14	S12	112.(4)
SI	021	017	52.(2)	C8	S6	C10	92.(4)	S11	C14	C13	125.(4)
SI	021	018	50.(2)	C7	S7	C11	102.(4)	S12	C14	C13	124.(5)
03	021	017	85.(3)	C7	S8	C12	88.(4)	S 9	C15	C16	120.(9)
03	021	018	80.(3)	S7	C7	S8	113.(4)	S10	C16	C15	106.(8)
017	021	018	88.(2)	S7	C7	C8	125.(6)	S11	C17	C18	116.(5)
W1	022	W6	139.(2)	S8	C7	C8	122.(6)	S12	C18	C17	115.(6)
C1	S1	C4	99. (3)	S5	C8	S6	114. (5)	C19	S13	C21	83. (3)
C1	S2	C3	100. (3)	S5	C8	C7	120.(7)	C20	S14	C21	115. (4)
C2	\$3	C5	100.(4)	56	C8	C7	125. (7)	S13	C19	C20	133. (6)
C2	S4	C6	95. (3)	\$5	C9	C10	106. (5)	S14	C20	C19	97. (6)
S1	Cl	52	110. (3)	56	C10	69	126. (5)	\$13	C21	\$14	113 (4)
513	C21	C21	117 (4)	514	C21	C21	130 (5)	NI	C25	CIS	142(1)
010	041	021		011	041	021	200. (0)	4 4 M	020	010	

Figure 1. numérotation des atomes et des molécules dans (TTF)7[SiW12O40](CH3CN)2.

49

Les intensités diffractées ont été corrigées du facteur de Lorentz-polarisation. Les corrections d'absorption ont été effectuées à l'aide du programme DIFABS [4].Des 5917 réflexions indépendantes enregistrées, 4871 sont utilisées pour les affinements. Le groupe d'espace est P1. Les atomes de tungstène (W), de l'unité asymétrique ont été obtenus à partir de la solution MULTAN [6] présentant les meilleures figures de mérite. Les atomes (S, O, C, N) ont été déduits à l'aide de synthèses de Fourier différences successives.

Les atomes d'hydrogène ont été placés sur des positions calculées selon un distance $d_{(C-H)} = 1$ Å et un facteur d'agitation thermique isotrope B = 4 Å². En introduisant les facteurs de température isotropes, l'affinement en matrice complète conduit au facteur de reliabilité : R = 0,13. Les facteurs de diffusion atomique ont été pris des Table Internationales de Cristallographie [7]. Tous les calculs ont été effectués à l'aide de la chaîne de programmes SDP [8] implantée sur un mini ordinateur PDP11/60. Les illustrations ont été réalisées à l'aide du programme ORTEP [9].

Les coordonnées atomiques, les distances et les angles de liaisons sont donnés dans les Tableaux 2 et 3 respectivement. La numérotation des atomes est donnée en Figure 1.

DISCUSSION

Les valeurs élevées des facteurs de reliabilité sont dûes à l'existance de correllations entre les differents paramètres à affiner. Nous avons entrepris une étude sur chambres classiques de weissemberg et de precession afin de déterminer la symetrie exacte de ce composé. Les clichés de weissemberg réalisés sur une dizaine de cristaux révèlent tous un dédoublement de l'un des axes. Un de ces cliché est représenté en figure 2. Ceci peut être dû soit à une macle soit à un phénomène plus complexe. Cependant, la localisation de toutes les entités constitutives du composé, en accord avec les résultats de microanalyse (voir chapitre I),

Figure 2. Cliché de weissemberg réalisé par M. Fettouhi. Mise en évidence du dédoublement systématique de l'un des axes.

53

Figure 4. Identification des molécules de TTF dans la maille.

nous permet d'avancer que la structure est correcte. Néanmoins, à cause de ces imprécisions, nous nous limiterons uniquement à la description de la structure cristalline.

Description de la structure

La structure représentée en Figure 3 est constituée par :

- Un anion SiW₁₂O₄₀ centré à l'origine de la maille.

- Une chaîne organique contituée de molécules de type A et B.

- Un dimère organique formé à partir de la molécule de type C.

- Une molécule isolée de TTF centrée en (0,1/2,1/2).

- Une molécule de solvant.

Organisation des molécules organiques

Sur la figure 4, seules les molécules organiques sont représentées. Il y a 3 types de molécules TTF :

- deux molécules de type A et B, au milieu de la maille à partir desquelles se développe la chaine suivant c.
- une molécule du type C formant un dimère centré en (1/2, 0,1/2)
- une molécule du type D centrée en (0, 1/2, 1/2)

Les radicaux cations composant la chaîne organique présentent un recouvrement décalée (Figure 5) différent de celui observé précédemment dans (TTF)₆SiW₁₂O₄₀(Et₄N) qui est du type totalement éclipsé. Les distances entre les plans formés par les cations radicaux ne sont pas uniformes conférant ainsi à la chaîne organique une dimérisation relatée par des contacts S---S de 3,50 Å et 3,65 Å.

Structure moléculaire des molécules de TTF

Dans la figure 1 sont reportées les numérotations et les distances interatomiques des molécuels du type A, B et C et D. L'état actuel des affinements de la structure ne nous permet pas de déterminer les degrés d'oxydation dans les différentes molécules à partir de leurs distances interatomiques. Ces distances sont données dans le Tableau 5 à titre indicatif.

55

۱.

Figure 5. Inclinaison de la chaîne de TTF et recouvrements intermoléculaires.

Tableau 5. Variation des distances de type a, b, c et d dans $(TTF)_7SiW_{12}O_{40}(CH_3CN)_2$ et celles rencontrées dans la littérature.

ρ (TTF)	0	+	+	0,59 +	А	В	С	D
a	1,349	1,403	1,382	1,369	1,27	1,4	1,3	1,37
b	1,757	1,713	1,719	1,743	1,76	1,73	1,75	1,76
с	1,726	1,725	1,728	1,736	1,77	1,71	1,77	1,85
d	1,314	1,306	1,322	1,323	1,37	1,35	1,49	1,4
Ref.	22	24	26	23	P.Tr	P.Tr	P.Tr	P.Tr

Organisation de la partie inorganique

L'anion SiW₁₂O₄₀⁴⁻ présente le même type d'architecture que l'anion PW₁₂O₄₀³⁻. C'est une structure type Keggin avec une entité centrale SiO₄⁴⁻. La position du polyanion sur un centre de symmetrie induit un désordre du même type que celui observé récement dans [H₂quin]₃[PW₁₂O₄₀]. 4EtOH.2H₂O [*16*]

Géométrie de SiO4

Le désordre cité plus haut se voit surtout au niveau de l'entité SiO₄ dans laquelle les atomes d'oxygene sont distribués statistiquement sur les sommets d'un cube. Le tétraèdre formé par les quatre atomes d'oxygène (O18, O17, O21 et O3) n'est pas régulier. Les distances Si-O varient de 1,62 à 1,75 Å, les angles O-Si-O vont de 105 à 119° (Tableau 6).

Distar	nces (Å)	Angles (°)
Si—O3	1,66 (5)	$O_3 - Si - O_{17} 113(2)$ $O_3 - Si - O_{21} 104(3)$
Si—O ₁₇ Si—O ₁₈	1,70 (5) 1,62 (4)	$\begin{array}{c} O_{3} & -Si - O_{21} & 104(3) \\ O_{3} & -Si - O_{18} & 109(2) \\ O_{17} - Si - O_{18} & 119(2) \\ O_{17} - Si & -O_{18} & 119(2) \end{array}$
Si—O ₂₁	1,75 (5)	O_{17} -S1- O_{21} 106(2) O_{18} -Si- O_{21} 105(2)

Tableau 6. Distances et angles dans SiO44-

Géométrie de l'octaèdre WO6

La géométrie de l'octaèdre WO6 est irrégulière. Le tableau 7 indique les distances W-O dans les différents octaèdres.

Tableau 7. Valeurs des distance	s W-O dans	les différents	octaèdres WO6
--	------------	----------------	---------------

				1	
W1-021	2,36 (5)	W2-017	2,24 (5)	W3-03	2,33 (6)
W1-06	1,75 (5)	W2-07	1,83 (5)	W3-08	1,93 (7)
W1-022	1,84 (4)	W2-08	1,87 (7)	W3-011	1,90 (5)
W1-02	2,08 (6)	W2-05	1,87 (5)	W3-09	1,98 (5)
W1-01	2,02 (5)	W2-010	1,95 (4)	W3-06	2,02 (5)
W1-011	1,67 (3)	W2-012	1,63 (5)	W3-013	1,63 (6)
	1.00				
W4-021	2,36 (5)	W5-017	2,48 (5)	W6-03	2,38 (6)
W4-04	1,78 (4)	W5-01	1,87 (4)	W6-019	1,80 (5)
W4-02	1,75 (6)	W5-05	1,90 (5)	W6-022	1,93 (4)
W4-010	1,88 (5)	W5-09	1,85 (5)	W6-04	1,99 (4)
W4-020	1,94 (5)	W5-020	1,97 (5)	W6-07	1,95 (5)
W4-014	1,72 (4)	W5-015	1,71 (5)	W6-016	1,64 (6)

Nos valeurs ne diffèrent pas de manière significative de celles rencontrées dans la littérature [27-30]. Le tableau 8 indique une comparaison entre les valeurs moyennes. Elles indiquent, comme pour toutes les structures de polyanions, une élongation de l'octaèdre dans la direction de l'oxygène de la cavité tétraédrique, telle que les atomes de tungstène soient déplacés vers l'extérieur de l'entité W3O13, mettant ainsi en relief une répulsion W-W.

Tableau 8. Comparaison des distances moyennes avec celles rencontrées dans la littérature.

	α-SiW12O40 Réf. 30	ß-SiW12O40 Réf. 28	présent travail
W—Oa	2,3	2,35 (4)	2,36 (5)
w—Ob	1,9	1,92 (2)	1,91 (5)
W—Oc	1,85	1,93 (4)	1,91 (5)
w-Od	1,7	1,71 (1)	1,67 (5)

 O_a représente l'atome d'oxygène lié au silicium et à trois atomes de tungstène, O_b est l'atome d'oxygène commun à deux atomes de tungstène de différentes entités W₃O₁₃, O_c est l'atome d'oxygène commun à deux atomes de tungstène d'une même entité W₃O₁₃ et O_d est l'atome d'oxygène terminal. Cette numérotation provient de la classification donnée par Evans [*15*] adoptée couramment en bibliographie.

INTERACTIONS

Contacts dans le système organique

Nous avons constaté précédemment des interactions intra-dimères et intra-chaîne de l'ordre de 3,50 à 3,65 Å. D'autres contacts sont observés entre la chaîne organique constituée de molécules du type A et B et les molécules de type C. Une courte distance a été observée entre les TTF du type A et C : $S_{10}-S_1 = 3,54$ Å.

Figure 6. Mise en évidence de l'empilement bidimensionnelle des dimère organiques.

Sur la figure 6, nous représentons les divers contacts observés dans le système organique. Il n'y a pas d'interaction significative avec les molécules de type D. Ces résultats laissent supposer une interaction inter-chaînes par l'intermédiaire des molécules de type C. La molécule de type D étant neutre. La structure peut être décrite par l'empilement de dimères de TTF.

Contacts donneur-accepteur

Le tableau 9 présente les distances S-O de l'ordre de la somme des rayons de Van der Waals. La plupart des interactions se fait pas les atomes d'oxygènes terminaux.

Tableau 9. Principaux contacts (Å) Donneurs-Accepteurs.

S3 - O11	2.99	S4 - O12	3.42	S5 - O22	3.18
S6 - O13	3.29	S8 - O16	3.13	S9 - O11	3.13
S9 - O2	3.23	S12 - O6	3.17	S13 - O12	3.15
S14- O15	3.08				

Caractérisation par infra-rouge

En accord avec les mesures de conductivité électrique $\sigma_{300K}=2 \times 10^{-3} \Omega^{-1}$. cm⁻¹, le spectre présenté figure 7 révèle une bande de transfert de charge et une raie vibronique vers 1300 cm⁻¹ caractéristiques de système conducteur à valence mixte.

Figure 7. spectre infa rouge en pastille de KBr de (TTF)7[SiW12O40](CH3CN)2

CONCLUSION

L'utilisation du (TBA)₄SiW₁₂O₄₀ au lieu du (TEA)₄SiW₁₂O₄₀ (cf. - I - de ce chapitre) a permis la synthèse, par composition électrochimique, d'un nouveau matériau (TTF)₇SiW₁₂O₄₀(CH₃CN)₂.

La détermination de sa structure cristalline, les mesures par IR laisseraient envisager la formulation suivante :

	$(TTF)_4^{2+} (TTF)_2^{2+} (TTF)^0 [SiW_{12}O_{40}]^{4-} (CH_3CN)_2.$			
	1	1	1	
type	(A et B)	(C)	(D)	

La résolution de la structure et les propriétés physiques (conductivité électrique, susceptibilité magnétique et RPE) sont en cours pour mieux caractériser ce composé.

Références Bibliographiques.

1. – Ouahab, L., Bencharif, M., Mhanni, A., Pelloquin, D., Halet, J.F., Peña, O., Padiou, J., Grandjean, D., Garrigou-Lagrange, C., Amiell, J. and Delhaes, P., *Inorg. Chem.*, 1991, soumise.

(2)

2.- Ouahab, L., Bencharif, M. and Grandjean, D., C. R. Acad. Sci. Paris, 1988, 307 II, 749.

3.- Ouahab, L., Triki,S., Grandjean, D., Bencharif, M., Garrigou-Lagrange, C. and Delhaes, P., *NATO-ASI* (JUNE 1989) (GREECE), **1989**, Topic in Plenum press (sous presse).

4.- Walker, N. and Stuart, D., Acta Crystallogr., 1983, A39, 158.

5.- Pelloquin D., rapport de stage de Magister Matériaux, Rennes, 1990.

6.- Main, P.; Fiske, S.J.; Hull, S.E.; Lessinger, L.; Germain, G.; Declercq J.P. and Woolfson, M.M., MULTAN 84, a system of computer programs for the automatic solution of crystal structures from X-ray diffraction data, Universities of York (England) and Louvain (Belgium), **1984**.

7.- International Table for X-ray Crystallography 1974, vol IV, Birmingham: Kynoch press. Present distributor D. Reidel, Dordrecht.

8.- Frenz, B.A. & Associates Inc. 1985. SDP structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.

9.- Johnson, C.K., ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge Tennessee, 1965.

10.- Shaik, S.S.; Whangbo, M.-H. Inorg. Chem. 1986, 25, 1201.

11.- Lowe, J.P. J. Am. Chem. Soc. 1980, 102, 1262.

12.- a)- Brun, G., Liautard, B., Peytavin, S., Maurin, M., Toreilles, E., Fabre, J. M., Giral, L., Galigné, J.L., J. Phys. (Paris) Colloq., 1977, 38, (12, C7), 266. b)-

Bechgaard, K.; Jacobsen, S.; Mortensen, K.; Pedersen, H.J. and Thorup, N., Sol. State Commun., 1980, 33, 1119. c)-Thorup, N.; Rindorf, G.; Soling, H. and Bechgaârd, K., Acta Crystallogr., 1981, B37, 1236. d)- Williams, J.M.; Beno, M.A.; Appelman, E.H.; Caprioti, J.M.; Wudl, F.; Aharon-Sharon, E. and Nalewajek, D., Mol. Cryst. & Liq. Cryst., 1982, 79, 319. e)- Williams, J.M.; Beno, M.A.; Wang, H.H.; Leung, P.C.W.; Emge, T.J.; Geiser, U. and Carlson, K.D., Acc. Chem. Res., 1985, 18, 261.
f)- Williams, J.M., Prog. Inorg. Chem. 1985, V33, 183. and references therein.

13-Bouherour, S., Ouahab, L., Peña, O., Padiou, J. et Grandjean, D., Acta Crystallogr., 1989, C45, 371.

14.- Keggin, J.F., Proc. Roy. Soc. London, Ser. A, 1934, 144, 75.

15.-a)- Evan, H.T. Jr. in "Perspectives in Structural Chemistry." 1971, 4, 1. b)- Pope,
M. T. in "Heteropoly and Isopoly Oxometalates", Springer-Verlag New York, 1983. c)Allmann, R. and D'Amour, H., Z. Krist., 1975, 141, 161. D'Amour, H. and Allmann,
R., Z. Krist., 1976, 143, 1. d)- Kobayashi, A. and Sasaki, Y., Bull. Chem. Soc. Jpn,
1975, 48, 885.

16.- Attanazio, D., Bonamico, M., Fares, V., Imperatori, P., Suber, L., J. Chem. Soc. Dalton Trans., 1991, 3221.

17.- Jeannin, Y., Launay, P. and Sedjadj, M.A., Inorg. Chem., 1980, 19? 2933.

18.- Spirlet, M.R. and Busing, W.R., Acta Crystallogr., 1978, B34, 907.

19.- Penicaud, A., Thesis, Université de Rennes I, France, (1988)

20.- Delhaes, P., Garrigou-Lagrange, C., Dupart, E., Mol. Cryst. & Liq. Cryst., 1986? 137, 151.

21.- Pope, M.T. and Müller, A., Engew. Chem. Int. Ed. Engl., 1991, 30, 34.

22.- Philips T.E., Kistanmacher, T.J., Ferraris, J.P. and Cowan, D.O., J. Chem. Soc. Chem. Commun, 1973, 471.

23.- Kistenmacher, T.J., Philips, J.P. and Cowan, D.O., Acta Cryst., 1974, B30, 763.

- 24.- Yakushi, K., Nishimura, S., Sugano, T. and Kuroda, H., Acta Cryst., 1980, B36, 358.
- 25.- Souchay, P., "Ions minéraux condensés." 1969, Ed. Masson & Cie, page 235.
- R.C. Teitelbaum, T.J. Marks and C.K. Johnson, J. Am. Chem. Soc., 1980,102, 2986.
- 27.- A. Tézé et G. Hervé, Inorg. Nucl. Chem., 1977, 39, 2151-2154.
- 28.- F. Robert, A. Tézé, G. Hervé et Y. Jeannin, Acta Cryst., 1980, B36, 11-15.
- 29.-K.Y. Matsumoto, A. Kobayashi, et Y. Sasaki, Bull. chem. soc. Jpn, 1975, 48, 3146-3151.
- 30.- A. Kobayashi, Bull. Chem. Soc. Jpn, 1975, 48 (3) 885-888.

CHAPITRE III

Les sels du tetramethyllselenofulvalene (TMTSF)					
ET DU BIS- (ETHYLENEDITHIO-TETRATHIAFULVALENE)					
(BEDT-TTF) :					
COMPOSITION ENTRE LE TMTSF ET BEDT-TTF ET					
L'ANION PW120403-					

I - (TMTSF)3PW12O40

PREPARATION:

L'électro-oxydation du donneur TMTSF en présence du sel tétraéthylamonium dodécatungstophosphate [Et₄N)₃PW₁₂O₄₀] dans un mélange d'acétonitrile (ACN) et de diméthylformamide (DMF) dans un rapport 4:1 respectivement, nous a permis d'obtenir le composé (TMTSF)₃PW₁₂O₄₀.

Ce composé cristallise sous forme de "dendrides". Un tri sous microscope nous a permis d'isoler quelques cristaux enforme d'aiguilles de couleur noire.

Les conditions expérimentales d'obention par électrocristallisation, sur électrode de platine, de ce composé sont décrites dans le chapitre I.

ENREGISTREMENT, RESOLUTION ET AFFINEMENT DE LA STRUCTURE

Les conditions d'enregistrement des intensités diffractées, les données cristallographiques et les conditions des affinements structuraux, menées sur un monocristal de ((TMTSF)₃PW₁₂O₄₀ (3) sont rassemblées dans le tableau 1.

Sur 5917 réflexions indépendantes mesurées dans le domaine angulaire $1 \le \theta \le 25^{\circ}$, 3152 réflexions répendant au critère $I \ge 3\sigma(I)$ ont été retenues pour les affinements. Les extinctions systématiques inhérentes au groupe d'espace P2₁/n (0 k 0 : k = 2n+1 et h 01 : h+l = 2n+1) ont été observées.

Les intensités mesurées ont été corrigées des effets de Lorentz-polarisation. Pour la radiation K α utilisée le coefficient d'absorption linéaire $\mu_{K\alpha}$ (Mo) est de 265.07 cm⁻¹. Une correction d'absorption, a été effectuée en utilisant le programme DIFABS [1].

Tableau 1Conditionsd'enregistrementetdonnéescristallographiques du composé (TMTSF) 3PW12040.

1) Données cristallographiques

Formule : $(C_{10}H_{12}Se_4)_{3}PW_{12}O_{40}$ Masse moléculaire: 4221,3 Système cristallin : monoclinique Groupe spatial : P21/n Paramètres : a = 11,733 (5)Å b = 18,461 (5)Å $B = 98,05(4)^{\circ}$ c = 16.223 (6)Å Volume : 3479 Å³ Z = 2 $d_{cal} = 4,03$

2) Conditions d'enregistrement :

Radiation utilisée : MoK α l = 0,71073 Å Monochromateur à lame graphite Température : 293K Mode de balayage : θ -2 θ Angle de balayage : Δw = (1 + 0,35 tg θ)° Ouverture du compteur : (2 + 0,6 tg θ)mm Limites d'enregistrement en θ : 1-25° Espace réciproque exploré : 0-13 ; 0-22 ; ±19

3) Conditions d'affinements structuraux

Nombre de réflexions

enregistrées : 5917 utilisées (I \ge 3 σ (I)) : 3152

Nombre de paramètres : 266 Schéma de pondération: $\omega = 4 F_0^2 / [\sigma^2(I) + (0,07 F_0^2)^2]$ Facteurs de reliabilité: R = 0,053; Rw = 0,072 G.O.F.: 1.58; $(\Delta/\sigma)_{max} = 0.01; \Delta \rho_{max} = 2.37e \text{ Å}^{-3}$

 $Beq(Å^2)$ Z Atomes x У 2.49(3)0.2152(1)-0.06833(8)0.15749(8)W1 0.15758(8) 1.87(2) W2 -0.1516(1)0.07007(7) 2.00(3)0.15696(8)W3 -0.0784(1)-0.11723(7)2.26(3)0.1413(1)0.11867(7)0.15476(8)W4 -0.18702(6)0.00123(8) 2.06(3) 0.0771(1)W5 0.04654(7) -0.00117(8) 2.13(3)0.2949(1)W6 3.47(8) 0.1526(4) -0.0498(2)0.3944(2)Se1 -0.0520(2)2.72(7) Se2 0.1872(3)0.5896(2)0.5905(2)2.93(7)0.1281(3)0.1276(2)Se3 0.3961(2)3.39(8) 0.1274(2)Se4 0.0935(4)0.3968(2) 3.33(8) 0.5467(3)-0.0761(2)Se5 0.3947(2)3.42(8) 0.4611(3)0.0840(2)Se6 0 1.2(2) 0 0 P 0.080(1)4.1(6) 0.193(2)-0.147(1)01 -0.102(1)0.318(2)0.230(1)3.0(5) 02 0.075(2) -0.098(2)0.199(2)5.5(7) 03 0.083(2) 6.0(7)0.305(2) -0.025(1)04 0.023(1)0.193(2)8.0(8) 05 0.192(3)-0.024(1)0.201(2)4.0(6) 06 -0.115(2)5.0(6) 07 0.157(2) -0.149(1)-0.081(2)4.1(6)* 0.205(2)08 0.000(2)0.099(1)4.6(6) 0.103(2)0.233(2)09 -0.227(2)0.269(2)-0.028(1)-0.080(1)4.1(6)010 4.7(6) -0.218(2)-0.111(1)0.085(2) 011 -0.115(2) 4.0(6) -0.172(1)0.229(2)012 -0.025(2)-0.184(2)0.086(2)5.2(6) 013 6.7(7) 014 0.251(2)0.114(1)0.080(2)0.229(2)3.8(6) 015 0.209(2)0.173(1)4.2(6) 0.185(1)0.083(1)016 0.057(2)0.106(2) -0.275(1)0.001(1)2.6(4)* 017 3.4(5) 0.432(2)0.071(1)-0.001(2)018 2.5(8)* 0.021(4)-0.063(2)-0.054(3)019 1.4(7)* 020 -0.036(3)0.066(2)-0.056(2)021 -0.089(4)-0.015(3)0.052(3) 4(1)*

Tableau 2. Coordinnées atomiques et facteurs d'agitation thermiques isotropes équivalents (Å²) de (TMTSF)₃PW₁₂O₄₀. $B_{eg} = 4/3 \Sigma_i \Sigma_j \beta_{ijaiaj}$

022	0.123(3)	0.020(2)	0.059(2)	1.3(7)*
C1	0.149(3)	0.002(2)	0.490(2)	3.8(8)
C2	0.203(3)	-0.136(2)	0.452(2)	3.4(7)
C3	0.212(3)	-0.139(2)	0.526(2)	2.4(6)
C4	0.132(2)	0.071(1)	0.496(2)	1.8(6)
C5	0.086(3)	0.216(2)	0.533(2)	3.0(8)
C6	0.074(3)	0.213(2)	0.455(2)	2.4(7)
C7	0.213(4)	-0.198(2)	0.392(3)	4.6(9)*
C8	0.252(3)	-0.199(2)	0.589(3)	4.6(9)
C9	0.046(4)	0.282(2)	0.398(4)	6(1)
C10	0.085(3)	0.275(2)	0.591(2)	3.5(8)
C11	0.503(3)	0.001(2)	0.457(2)	2.3(6)*
C12	0.541(3)	-0.025(2)	0.298(2)	3.1(8)
C13	0.506(3)	0.044(2)	0.299(2)	2.9(7)
C14	0.576(3)	-0.061(2)	0.220(3)	6(1)
C15	0.501(4)	0.097(2)	0.227(3)	4.5(9)*

* Atomes affinés isotropiquement.

Tableau 3. Longueurs (en Å) et angles (en degres) de liaisons.

W1- 01	1.91(2)	W6- 018	1.66(2),
W1- 02	1.67(2),	P - 019	1.49(4)
W1- 03	1.94(3)	P - 020	1.53(4)
W1- 04	1.88(3)	P - 021	1.46(5)
W1- 05	1.78(3)	P - 022	1.65(3)
W2- 06	1.87(2)	Sel-Cl	1.82(4)
W2- 07	1.90(3)	Sel-C2	1.88(3)
W2- 08	1.91(2)	Se2-C1	1.89(3)
W2- 09	1.72(3) :	Se2-C3	1.93(3)
W2- 010	1.89(2)	Se3-C4	1.85(3)
W3- 03	1.87(2)	Se3-C5	1.89(3)
W3- 06	1.92(2)	Se4-C4	1.91(3)
W3- 011	1.87(2)	Se4-C6	1.86(3)
W3- 012	1.64(2) 1	Se5-C11	1.81(3)
W3- 013	1.85(3)	Se5-C12	1.84(3)
W4- 05	1.92(3)	Se6-C11	1.85(3)
W4- 08	1.98(3)	Se6-C13	1.86(3)
W4- 014	1.89(3)	C1 -C4	1.27(4)
W4- 015	1.66(2) -	C2 -C3	1.19(5)
W4- 016	1.86(2)	C2 -C7	1.50(5)
W5- 01	1.87(2)	C3 -C8	1.53(5)
W5- 07	1.86(3)	C5 -C6	1.25(5)
W5- 013	1.95(3)	C5 -C10	1.42(5)
W5- 016	1.94(2)	C6 -C9	1.56(5)
W5- 017	1.63(2)	C11-C11	1.41(4)
W6- 04	1.88(3)	C12-C13	1.32(5)
W6- 010	1.86(2)	C12-C14	1.53(6)
W6- 011	1.92(3)	C13-C15	1.50(6)
W6- 014	1.92(3)		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	102.(1) 89.(1) 86.(1) 154.(1) 102.(1) 101.(1) 104.(1) 157.(1) 88.(1) 87.(1) 157.(1)	010- W6- 01 010- W6- 01 010- W6- 01 011- W6- 01 011- W6- 01 014- W6- 01 020- P - 02 020 -P - 02 021 -P - 02 W1 - 01- W5 W1 - 03- W3	1 87.(1) 4 155.(1) 8 105.(1) 4 87.(1) 3 102.(1) 3 100.(1) 1 109.(2) 2 109.(2) 1 10.(2) 1 10.(2) 1 139.(1) 1 138.(2)
Tableau 3 (suite)

06 -	W2-	08	87.(1)	W1 - 04- W6	140.(2)
06 -	W2-	09	100.(1)	W1 - 05- W4	142.(2)
06 -	W2-	010	90(1)	W2 - 06- W3	136.(1)
07 -	W2-	08	90.(1)	W2 - 07- W5	141.(1)
07 -	W2-	09	103.(1)	W2 - 08- W4	132.(1)
07 -	W2-	010	85.0(9)	W2 - 010-W6	142.(2)
08 -	W2-	09	99.(1)	W3 - 011-W6	140.(1)
08 -	W2-	010	158.(1)	W3 - 013-W5	139.(2)
09 -	W2-	010	102.(1)	W4- 014-W6	138.(1)
03 -	W3-	06	87.(1)	W4- 016-W5	140.(1)
03 -	W3-	011	158.(1)	C1- Se1-C2	93.(1)
03 -	W3-	012	101.(1)	C1- Se2-C3	90.(1)
03 -	W3-	013	88.(1)	C4- Se3-C5	96.(1)
06 -	W3-	011	87.7(9)	C4- Se4-C6	92.(1)
06 -	W3-	012	100.(1)	C11-Se5-C12	96.(1)
06 -	W3-	013	159.(1)	C11-Se6-C13	93.(1)
011-	W3-	012	101.(1)	Se1-C1 -C4	127.(3)
011-	W3-	013	90.(1)	Se2-C1 -C4	118.(3)
012-	W3-	013	101.(1)	Se1-C2 -C3	120.(3)
05 -	W4-	08	87.(1)	Se1-C2 -C7	111.(3)
05 -	W4-	014	88.(1)	C3 -C2 -C7	128.(3)
05 -	W4-	015	102.(1)	Se2-C3 -C2	121.(3)
05 -	W4-	016	155.(1)	Se2-C3 -C8	106.(2)
08 -	W4-	014	160.(1)	C2 -C3 -C8	132.(3)
08 -	W4-	015	99.(1)	Se3-C4 -Se4	112.(1)
08 -	W4-	016	88.(1)	Se3-C4 -C1	129.(3)
014-	W4-	015	101.(1)	Se4-C4 -C1	119.(3)
014-	W4-	016	89.(1)	Se3-C5 -C6	116.(3)
015-	W4-	016	103.(1)	Se3-C5 -C10	110.(3)
01 -	W5-	07	87.(1)	C6 -C5 -C10	134.(3)
01 -	W5-	013	88(1)	Se4-C6 -C5	124.(3)
01 -	W5-	016	156.(1)	Se4-C6 -C9	113.(3)
01 -	W5-	017	104.(1)	C5 -C6 -C9	123.(3)
07 -	W5-	013	156.(1)	Se5-C11-Se6	114.(2)
07 -	W5-	016	86.(1)	Se5-C11-C11	125.(2)
07 -	W5-	017	103.(1)	Se6-C11-C11	120.(2)
013-	W5-	016	89(1)	Se5-C12-C13	116.(3)
013-	W5-	017	100.(1)	Se5-C12-C14	122.(3)
016-	W5-	017	100.(1)	C13-C12-C14	122.(3)
04 -	W6-	010	89.(1)	Se6-C13-C12	120.(3)
04 -	W6-	011	156.(1)	Se6-C13-C15	114.(3)
04 -	W6-	014	86.(1)	C12-C13-C15	125.(3)
04 -	W6-	018	103 (1)		

B

La structure a été résolue par les méthodes directes en utilisant le programme MULTAN [2]. Dans la synthèse de Fourier, qui suivait le programme MULTAN, nous avons observé des pics intenses dont l'interprétation les identifiait aux atomes de tungstène de l'anion. Un pic en position spéciale (0,0,0), à l'origine de la maille, a été attribué à l'atome de phosphore.

L'affinement de la constante d'échelle, et les fouriers différences successives ont, par la suite, permis l'identification de tous les autres atomes.

Introduisant les facteurs de température anisotropes, excepté pour les oxygène $(O_{19}, O_{20}, O_{21}, O_{22})$ de l'entité PO₄, l'affinement en matrice complète des 266 paramètres conduit aux facteurs de reliabilité R = 0,053 et R ω = 0,072.

Les coordonnées atomiques, les valeurs des distances et des angles de liaisons sont données dans les Tableaux 2 et 3. La numérotation des atomes est donnée dans la figure 1.

DISCUSSION

Description de la structure

Le contenu de la maille élémentaire est représenté dans la Figure 2. Cette structure peut être décrite par la présence d'un anion $PW_{12}O_{40}^{3-}$ à l'origine et au centre de la maille en position (1/2, 1/2, 1/2), d'une part, et par l'existence de chaînes unidimensionnelles de molécules organiques se développant le long de l'axe a d'autre part.

l'entité organique

La figure 3 représente la chaîne organique en projection sur les plans (010) et (001). Il existe une molécule A centrée en (1/2, 0, 1/2) et une molécule B en position générale.

а

Les deux molécules forment avec leurs équivalentes, par inversion, une chaîne organique monodimensionnelle. Ces chaînes organiques sont isolées les unes des autres par des empilements d'anions collinéaires à \vec{a} (Figure 2). Il y a deux types de recouvrement intermoléculaire, l'un est décalé, l'autre en croix. L'organisation de l'empilement se fait selon un ensemble de dimères centrosymétriques. Ces dimères présentent un recouvrement semidécalé (Figure 3). Ce type de recouvrement est intermédiaire entre le recouvrement totalement décalé, observé habituellement dans les sels (TMTSF)₂X [3] et ceux à recouvrement totalement éclipsé tel que (TMTTF)₂Mo₆Cl₁₄ [4]. Les dimères sont séparés par des entités centrosymétriques du radical cation, occupant le centre de la face (010). On observe en particulier un recouvrement du type "croix" entre les molécules A et B (Figures 2 \rightarrow 4).

Les plus courtes distances intra-dimères sont celles qui assurent un contact entre hétéroatomes Se₁····Se₃ = 3,63 (2) Å et Se₂····Se₄ = 3,61 (4) Å. Ces distances sont notées respectivement d₁ et d₂ sur la figure 4. La valeur de ces distances est inférieure au rayon de van der Waals (4 Å) et à celle observée dans les sels de Bechgaard (TMTSF)₂PF₆ [5] de l'ordre de 3,90 Å. Les distances d₁et d₂ sont comparables à celles observées dans les interactions intermoléculaires dans TMTSF.FeCl₄ [6] de l'ordre de 3,56 Å et 3,59 Å dont la chaîne organique est dimérisée.

Nous noterons les interactions entre dimères (B-B) et la molécule organique (A) présentant un recouvrement en croix par rapport à celui-ci (Figures 2 et 4). Ces interactions illustrées par les distances d₃ et d₄ de 3,909 (5) et 3.898(5) Å. L'angle entre les plans moyens de A et B est de 15°.

Les liaisons interatomiques dans les molécules de TMTSF sont comparées dans le Tableau 4 avec celles connues dans la littérature dans TMTSF neutre [7], (TMTSF⁺)₂PF₆⁻ [5] et dans (TMTSF)⁺FeCl₄⁻ [6].

76

00000

B/B

A/B

Figure 3. Projection de la structure dans les plans ac et ab. Mise en évidence des deux types de recouvrements "décalé" et "croisé".

Tableau 4. Comparaison des distances et angles des molécules de TMTSF (A et B) avec ceux de la littérature.

d

Se h

а

Se

composés TMTSF (TMTSF) ₂ PF ₆ (TMTSF)FeCl ₄ A	В
	~
a 1.35(1) 1.369(14) 1.47(2) 1.41(4)	1.27(4)
b 1.892(7) 1.875(9) 1.85(2) 1.83(3)	1.87(3)
c 1.906(7) 1.892(10) 1.91(2) 1.85(3)	1.89(3)
d 1.32(1) 1.329(15) 1.27(2) 1.32(5)	1.25(5)
<i>Réf.</i> 7 5 6 <i>P.Tr</i>	

P.Tr= Présent travail.

L'entité inorganique

La numérotation des atomes de $PW_{12}O_{40}^{3-}$ est présentée dans les Figures 1 et 4. Les distances interatomiques sont réunies au tableau 3. L'anion consiste en un groupe PO₄ tétraédrique dont chaque atome d'oxygène est commun à une unité W_3O_{13} . Ce dernier groupement résulte de la mise en commun dun côté de trois octaèdres WO₆.

Les octaèdres WO₆ sont déformés. Les plus courtes distances correspondent aux liaisons W-O oxygène terminaux. Elles sont comprises entre 1,64 Å à 1,67 Å. Les distances tungstène-oxygènes communs aux octaèdres varient de 1,85 Å à 1,98 Å, elles sont de l'ordre de 2,44 Å quant aux atomes d'oxygènes communs avec l'atome de phosphore occupant le centre de l'anion dans un cavité tétraédrique déformée : la distance P-O variant de 1,46 Å à 1,65 Å (Tableau 3).

Dans le tableau 5 nous avons reporté les distances de l'entité WO₆ dans (TMTSF)₃PW₁₂O₄₀ et des composés de référence.

TABLEAU 5. Comparaison des distances W - O dans différents composés.

O_t= Oxygène terminal O_c= Oxygène central O_b= Oxygène ponteur (bridging)

	H ₂ W ₁₂ O ₄₀ ⁶⁻	H ₂ W ₁₂ O ₄₀ ⁶⁻	H ₃ PW ₁₂ O ₄₀	(TMTSF)3PW12O40
a	1.69(2)	2.13(2)	1.69(3)	1.67(3)
b	1.90(5)	2.04(1)	1.898(3)	1.86(3)
с	1.97(2)	1.80(3)	1.911(3)	1.93(3)
d	2.32(2)	1.88(2)	2,439(4)	2,44(3)
Réf.	8	8	9	P.Tr

P. Tr = Présent Travail.

Nous remarquons dans $H_2W_{12}O_{40}^{6-}$ deux séries de longueurs pour une même entité : dans la première colonne, il s'agit de longueurs de liaisons W-O dans les sites où W est de degré d'oxydation VI, la deuxième colonne concerne les sites où W est de degré d'oxydation IV [8].

Nos différentes valeurs W-O dans $(TMTSF)_3PW_{12}O_{40}$ s'écartent notablement de la série où W est de degré IV et ont le même ordre de grandeur que dans $H_3PW_{12}O_{40}$. Par conséquent, l'anion est chargé 3-.

Figure 5. Spectre infa rouge en pastille de KBr.

Nous noterons l'existence d'interactions entre chaîne organique et partie minérale. Les contacts cation-anion significativement inférieurs à la somme des rayons de van der Waals (3,4 Å) sont présentés dans la figure 4 et le tableau 6.

Tabeau 6. Distances intermoléculaires les plus courtes observées dans $(TMTSF)_3PW_{12}O_{40}$. (voir figure 4 pour illustration).

$d1(Se1Se3^{i}) = 3.633(6)$	$d2(Se2Se4^{i}) = 3.613(5)$
$d3(Se3Se5^{ii}) = 3.909(5)$	$d4(Se2Se5^{ii}) = 3.898(5)$
$d5(Se6O17^{iii}) = 3.27(2)$	$d6(O18O18^{iv}) = 3.06(3)$

Code.de symmétrie: i = (-x, -y, 1-z), ii = (1-x, -y, 1-z); iii(1/2-X, 1/2+y, 1/2-z), iv = (1-x, -y, -z).

CONCLUSION

Dans le composé (TMTSF)₃PW₁₂O₄₀, la chaîne organique présente deux types de recouvrements l'un à configuration décalée, l'autre en croix. Nous aurons ainsi un empilement organique A-A•••B•••A-A•••B... (décalé-croix-croix-...). En plus des interactions Se•••Se le long de la chaîne, il y a les interactions Se₂•••C₁₃ : 3,79 (2) et Se₂•••C₁₂ ; 3,70 (3), qui laissent prévoir pour cette configuration la participation conjointe des orbitales des atomes de sélénium et de carbone au recouvrement, l'essentiel de l'interaction d'échange intra-dimère se faisant par l'intermédiaire des orbitales des atomes de sélénium.

La caractérisation par infrarouge de (TMTSF)₃PW₁₂O₄₀ (Figure 5) ne présente pas la bande de transfert de charge caractéristique d'un système conducteur.

L'étude cristallochimique confirmant la stoechiométrie $(TMTSF)_3PW_{12}O_{40}$, implique un transfert de charge complet, un oxydation totale de la chaîne organique et par suite le caractère isolant de ce composé.

II - (BEDT-TTF)3PW12O40

Les sels du radical-cation bis(éthylendithio)tétrathiafulvalène (BEDT-TTF), appelé plus communément «ET», sont particulièrement étudiés depuis la découverte de la supraconductivité à pression ambiante dans β -(BEDT-TTF)₂I₃ en 1984 [10,11] à Tc = 1,5 K et plus tard en 1986 dans χ -(ET)₂Cu(NCS)₂ [12] à Tc = 10 K et α -(ET)₂I₃ à Tc = 8 K.

La molécule BEDT-TTF présente quatre atomes de soufre en plus de son entité centrale TTF. De nombreux composés préparés avec ce donneur [13] présentent des structures bidimensionnelles .

Nous présentons dans cette partie la composition entre cette molécule et l'anion [PW₁₂O₄₀]³⁻.

Préparation

Dans l'électrolyte support $[(C_4H_9)_4N)]_3PW_{12}O_{40}$, nous avons procédé à l'oxydation sur l'électrode de platine de BEDT-TTF dans un mélange d'acétonitrile (ACN) et de tétrahydrofurane (THF). Des cristaux noirs en forme d'aiguilles ont été obtenus à température ambiante et sous un courant de 1 μ A. Parmi les cristaux extraits, la plupart présentent des mâcles.

Enregistrement, résolution et affinement de la structure.

Les conditions d'enregistrement des intensités diffractées, les données cristallographiques et les conditions des affinements de la structure sont rassemblées dans le tableau I.

La structure a été résolue à l'aide des méthodes directes. Au cours des affinements successifs de la constante d'échelle, suivit alternativement de synthèses de fourier-

Tableau I. Conditions d'enregistrement et donnéescristallographiques du composé (BEDT-TTF) 3PW12040(THF)

1) Données cristallographiques

Formule : $(C_{10}S_{8}H_8) \ 3PW_{12}O_{40} (C_{4}H_8O)$ Système cristallin : triclinique Groupe spatial : PI Paramètres : $a = 12,715 \ (8)$ Å $\alpha = 77,98 \ (8)^{\circ}$ $b = 13,612 \ (3)$ Å $B = 62,77 \ (8)^{\circ}$ $c = 13,511 \ (5)$ Å $\gamma = 74,07 \ (1)^{\circ}$ Volume : 1990,3 Å³ Z = 1 $d_{cal} = 3,363$

2) Conditions d'enregistrement :

Radiation utilisée : MoK α λ = 0,71073 Å Monochromateur à lame graphite Température : 293°K Mode de balayage : θ -2 θ Angle de balayage : Δw = (1 + 0,35 tg θ)° Ouverture du compteur : (2 + 0,5 tg θ)mm Limites d'enregistrement en θ : 1-25° Espace réciproque exploré : + h ; ± k ; ± 1

3) Conditions d'affinements structuraux

Nombre de réflexions

enregistrées : 7307 utilisées (I $\geq 6\sigma(I)$) : 2854

Nombre de paramètres : 329 Schéma de pondération w : 4 $F_0^2/[\sigma^2(I) + (0,07 F_0^2)^2]$ Facteurs de reliabilité R = 0,064; Rw = 0,115 Tableau 2. Coordonnées atomiques de (BEDT-TTF) 3PW12040.

Atomes	x	У	z	Beq(Å ²)
W1	0.1506(2)	-0.0932(2)	0.1786(1)	2.65(5)
W2	0.2610(2)	-0.1156(2)	-0.2242(1)	2.51(5)
W3	-0.0246(2)	-0.1729(1)	-0.1483(1)	2.36(4)
W4	-0.1358(2)	-0.1489(2)	0.2562(1)	2.86(5)
W5	0.2856(2)	0.0572(2)	-0.0770(1)	2.50(5)
W6	0.1246(2)	-0.2663(2)	0.0310(2)	2.91(5)
01	0.001(3)	-0.126(3)	0.265(2)	8.(1)
02	0.075(3)	0.036(2)	0.222(2)	4.6(9)
03	0.263(3)	-0.046(2)	0.054(2)	4.1(9)
04	0.189(3)	-0.207(2)	0.101(2)	6.0(9)
05	0.133(3)	-0.153(3)	-0.234(2)	9(1)
06	0.248(2)	-0.224(3)	-0.100(3)	6(1)
07	-0.213(4)	-0.018(3)	0.299(3)	8(1)
08	0.329(2)	-0.053(2)	-0.161(2)	9.1(7)
09	0.035(3)	-0.262(3)	-0.043(3)	6(1)
010	0.177(3)	0.150(2)	0.026(3)	6(1)
011	-0.235(3)	-0.143(3)	0.191(2)	9(1)
012	-0.027(3)	-0.250(2)	0.162(2)	5.1(8)
013	0.079(3)	0.024(3)	0.045(3)	0.9(8)
014	0.054(3)	-0.094(3)	-0.059(3)	1.0(8)
015	0.125(4)	0.013(4)	-0.095(4)	2(1)
016	-0.024(5)	0.098(4)	-0.096(4)	5(1)
021	0.222(3)	-0.139(3)	0.254(3)	0(1)
022	0.379(3)	-0.252(2)	-0.330(2)	4.9(9)
023	-0.044(4)	-0.232(3)	-0.214(2)	7(1)
024	-0.205(4)	-0.218(3)	0.302(3)	/(1)
025	0.419(3)	0.079(2)	-0.107(2)	4.5(0)
020 P	0.101(5)	-0.389(2)	0.000(3)	2 5 (4)
E	0.180/1)	0.031(1)	0.438/1)	2.5(3)
\$2	0.085(1)	-0 1564(9)	0.5304(9)	2 6 (3)
\$3	0.426(1)	-0.064(1)	0 404(1)	4 4 (4)
54	0.316(1)	-0.290(1)	0.511(1)	3 3 (3)
Cl	0.055(4)	-0.019(4)	0.494(3)	4(1)
C2	0.234'4)	-0.166(4)	0.493(3)	3(1)
C3	0.281(4)	-0.080(4)	0.449(4)	4(1)
C4	0.520(5)	-0.195(4)	0.394(4)	7(1)
C5	0.455(5)	-0.266(3)	0.400(4)	5(2)
S5	0.134(1)	0.2932(9)	0.433(1)	3.6(3)
S 6	0.088(1)	0.449(1)	0.264(1)	3.7(3)
S7	0.320(1)	0.370(1)	0.077(1)	5.0(4)
S8	0.379(1)	0.195(1)	0.275(1)	4.4(4)
S 9	-0.129(1)	0.3712(9)	0.619(1)	3.3(3)
S10	-0.176(1)	0.532(1)	0.4526(8)	3.3(3)
S11	-0.426(2)	0.614(2)	0.597(1)	6.7(6)
S12	-0.373(2)	0.424(1)	0.799(1)	5.9(5)
C6	0.037(4)	0.387(4)	0.403(3)	5(1)
C7	0.219(4)	0.366(3)	0.221(3)	3(1)
C8	0.253(4)	0.308(5)	0.298(4)	10(2)
C9	0.387(4)	0.164(5)	0.152(3)	8(1)
C10	0.406(4)	0.235(4)	0.059(3)	5(1)
C11	-0.079(3)	0.430(3)	0.487(3)	3.5(8)
C12	-0.275(4)	0.445(3)	0.654(3)	3(1)
C13	-0.532(6)	0.576(4)	0.729(4)	12(2)
C14	-0.290(4)	0.524(3)	0.579(4)	5(1)
C15	-0.499(8)	0.539(5)	0.815(5)	10(3)
C16	-0.187(9)	0.592(8)	0.169(8)	3(2)
C18	0.05(1)	0.58(1)	0.18(1)	8 (5)
C19	-0.16(1)	0.58(1)	0.10(1)	8(4)
C20	-0.32(1)	0.65(1)	0.20(1)	8(4)
C21	-0.26(1)	0.53(1)	0.25(1)	7 (3)
C22	-0.229(9)	0.445(8)	0.349(8)	3(2)

Figure 1. Numérotation des atomes.

Table 3.	Distances	interatomiques(Å)	dans (BEDT-TT)	E) 3PW12040
W1-01	1.85	(3)	S2-C1	1.81(5)
W1-02	1.83	(3)	S2-C2	1.69(5)
W1-03	1.77	(3)	S3-C3	1.72(6)
W1-04	1.88	(4)	S3-C4	1.85(5)
W1-021	1.59	(4)	S4-C2	1.75(5)
W2-05	1.90	(4)	S4-C5	1.78(5)
W2-06	1.97	(3)	C2-C3	1.37(7)
W2-08	1.90	(4)	C4-C5	1.40(9)
W2-022	1.66	(3)	S5-C6	1.64(5)
W3-05	1.86	(3)	S5-C8	1.77(4)
W3-09	1.95	(4)	S6-C6	1.79(4)
W3-014	2.41	(5)	S6-C7	1.66(4)
W3-023	1.67	(5)	S6-C18	1.98(16)
W4-01	1.90	(4)	S7-C7	1.77(4)
W4-07	1.85	(3)	S7-C10	1.87(5)
W4-011	1.82	(4)	S8-C8	1.85(5)
W4-012	1.87	(3)	S8-C9	1.75(6)
W4-024	1.73	(3)	S9-C11	1.70(3)
W5-03	1.98	(3)	S9-C12	1.75(4)
W5-08	1.87	(3)	S10-C11	1.72(4)
W5-010	1.86	(3)	S10-C14	1.66(4)
W5-015	2.41	(6)	S11-C13	1.76(5)
W5-025	1.65	(4)	S11-C14	1.77(5)
W6-04	1.90	(4)	S12-C12	1.78(4)
W6-06	1.86	(3)	S12-C15	1.87(7)
W6-09	1.82	(4)	C6-C11	1.44(5)
W6-012	1.92	(2)	C7-C8	1.33(7)
W6-026	1.65	(3)	C9-C10	1.38(6)
013-015	1.73	(6)	C12-C14	1.36(6)
013-P	1.52	(5)	C13-C15	1.37(11)
014-P	1.48	(5)	C16-C19	0.92(19)
015-P	1.55	(4)	C16-C20	1.57(17)
016-P	1.73	(5)	C16-C21	1.34(16)
S1-C1	1.69	(5)	C20-C21	1.69(19)
S1-C3	1.72	(5)	C21-C22	1.73(17)

01-W1-02	85.(2)	W4-012-W6	140.(2)
01-W1-03	154.(2)	W3-014-P	130.(3)
01-W1-04	87.(2)	W5-015-P	127.(8)
01-W1-021	104.(2)	013-P-014	114.(2)
02-W1-03	92.(1)	013-P-016	111.(3)
02-W1-04	156.(2)	014-P-016	106.(2)
02-W1-021	103.(2)	C1-S1-C3	98.(2)
03-W1-04	85.(1)	C1-S2-C2	95.(2)
03-W1-021	102.(2)	C3-S3-C4	105.(3)
04-W1-021	100.(2)	C2-S4-C5	94.(2)
05-W2-06	89.(2)	S1-C1-S2	113.(3)
05-W2-08	155.(1)	S2-C2-S4	116.(3)
05-W2-022	101.(2)	S2-C2-C3	118.(4)
06-W2-08	86.(2)	S4-C2-C3	125.(4)
06-W2-022	102.(1)	S1-C3-S3	114.(3)
08-W2-022	104.(2)	S1-C3-C2	116.(4)
05-W3-09	87.(1)	S3-C3-C2	130.(4)
05-W3-023	106.(2)	S3-C4-C5	110.(4)
09-W3-023	105.(2)	S4-C5-C4	127.(4)
014-W3-023	164.(2)	C6-S5-C8	93.(2)
01-W4-07	87.(2)	C6-S6-C7	93.(2)
01-W4-011	156.(1)	C6-S6-C18	141.(4)
01-W4-012	86.(2)	C7-S6-C18	125.(4)
01-W4-024	103.(2)	C7-S7-C10	103.(2)
07-W4-011	90.(2)	C8-S8-C9	98.(3)
07-W4-012	157.(1)	C11-S9-C12	92.(2)
07-W4-024	99.(2)	C11-S10-C14	94.(2)
011-W4-012	87.(2)	C13-S11-C14	105.(3)
011-W4-024	101.(2)	C12-S12-C15	101.(2)
012-W4-024	104.(1)	S5-C6-S6	117.(2)
03-W5-08	87.(1)	S5-C6-C11	123.(3)
03-W5-010	86.(1)	S6-C6-C11	119.(3)
03-W5-015	89.(2)	S6-C7-S7	120.(3)
03-W5-025	101.(2)	S6-C7-C8	118.(3)
08-W5-010	155.(2)	S7-C7-C8	122.(3)
08-W5-025	101.(1)	S5-C8-S8	111.(3)
010-W5-015	92.(2)	S5-C8-C7	115.(3)
010-W5-025	104.(2)	S8-C8-C7	126.(3)
015-W5-025	162.(1)	S8-C9-C10	121.(5)
04-W6-06	84.(2)	S7-C10-C9	119.(3)
04-W6-09	154.(2)	S9-C11-S10	119.(2)
04-W6-012	89.(1)	S9-C11-C6	120.(3)
04-W6-026	101.(2)	S10-C11-C6	122.(3)
06-W6-09	91.(2)	S9-C12-S12	113.(2)
06-W6-012	156.(1)	S9-C12-C14	116.(3)
06-W6-026	102.(2)	S12-C12-C14	129.(3)
09-W6-012	86.(1)	S11-C13-C15	120.(6)
09-W6-026	105.(2)	S10-C14-S11	116.(3)
012-W6-026	102.(1)	S10-C14-C12	118.(3)
W1-01-W4	143.(2)	S11-C14-C12	126.(3)
W1-03-W5	143.(3)	S12-C15-C13	120.(5)
W1-04-W6	140.(2)	C19-C16-C20	104.(15)
W2-05-W3	142.(2)	C19-C16-C21	115.(18)
W2-06-W6	136.(2)	C16-C21-C22	127.(13)
W2-08-W5	139.(2)	C20-C21-C22	150.(11)
W3-09-W6	142.(2)		

différence, tous les pics ont été identifiés. Le composé cristallise avec une molécule de THF désordonnée. Les affinements sur l'ensemble des atomes aboutissent à un indice résiduel de 0,063. Le traitement anisotrope des facteurs thermiques n'a concerné que les six atomes de tungstène et les douze atomes de soufre.

Les coordonées atomiques, les valeurs des distances et des angles de liaisons sont donnés dans les Tableaux 2, 3 et 4 respectivement. La numérotation des atomes est représentée en figure 1.

Description de la structure

La structure cristalline de $(BEDT-TTF)_3PW_{12}O_{40}$ (Figure 2) consiste en un réseau d'anions centrés à l'origine de la maille et des molécules de BEDT-TTF empilées au milieu des faces (100) parallèlement à l'axe \vec{b} .

L'unité asymétrique contient un demi-anion en (0,0,0) et une molécule et demie de BEDT-TTF notées A et B. La molécule A est centrée en (0,0,1/2) et la molécule B est en position générale.

L'entité organique

Les molécules de BEDT-TTF

La figure I représente la numérotation des molécules du type A et B. Le tableau 5 rassemble les distances interatomiques moyennes dans les molécules. Les états d'oxydation formels des molécules (BEDT-TTF) dans différents composés sont corrélés avec les longueurs de liaison et la géométrie de la molécule [13]. Comme pour TTF (cf Chap. I), quand l'état d'oxydation d'une molécule (BEDT-TTF) augmente, les liaisons C=C s'allongent et les longueurs de liaisons C-S diminuent. La comparaison des valeurs moyennes des distances de

Figure 2. Contenu de la maille

B/B

Figure 3. Interaction S...S les plus significatives entre les molécules de BEDT-TTF. Recouvrement entre les molécules de type B.

go

ces liaisons avec celles de ET dans différents états d'oxydation semble indiquer que la molécule B est fortement chargée par rapport à la molécule A (voir Tableau 5).

 Table 5. Comparaison des distances interatomiques (Å) moyennes des molécules de BEDT-TTF

 avec celles de la littérature.

Conformations des cycles extérieurs des molécules de BEDT-TTF.

Par ailleurs les groupements éthylèniques terminaux des molécules de BEDT-TTF peuvent avoir plusieurs types de conformations comme l'indique le schéma I [13, 18].

Le tableau 6 donne les écarts des atomes aux plans moyens des molécules de BEDT-TTF. Il en resssort de ce tableau que la molécule A présente une conformation du type "b". Les atomes C4 et C5 sont à 0.37 et 0.86Å du plan moyen calculé sur la partie centrale de la molécule. Dans la molécule B il y a deux types de conformations. L'une est du type "b" comme le montre les valeurs des écarts des atomes C9 et C10 (1.34 et 1.12Å) par rapport au plan moyen . L'autre est du type "c" comme l'indique les valeurs des écarts des atomes C13 et C15 (0.55et -0.25Å) par rapport au même plan moyen.

gr

Schéma 1. Conformations des groupement étyhilèniques terminaux dans une molécule de "ET".

Description de la chaîne organique.

Les molécules (BEDT-TTF) forment une chaîne undimensionnelle se développant le long de l'axe \vec{b} , au milieu du plan (bc). Cette chaîne est générée par les molécules A et B et leurs équivalentes par inversion (Figures 2 et 3). Les molécules de type B forment des dimères. Ces dimères sont séparés par la molécule de type A. Le recouvrement intradimère est du type cycle-double liaison (figure 3). Le recouvrement entre les molécules A et B est original. C'est un recouvrement en croix suivit d'une rotation de la molécule A autour de son plus grand axe. Les molécules A et B ne sont plus parallèles. Elle forment entre elles un angle dièdre de 53°. Les contactcts S...S les plus significatifs sont représentés dans la figure 3 par les distances d1 \rightarrow d5 : [d1= 3.365(3), d2= 3.439(3), d3= 3.559(3), d4= 3.446(3) et d5= 3.491(3)Å]

Il faut remarquer cependant l'absence de contacts inférieurs à la somme des rayons de Van der Waals entre les chaînes organiques et par suite l'absence du caractère 2D dans ce composé.

- Tableau 6 -

The equation of the plane is of the form: $A \star x + B \star y + C \star z - D = 0$ where A,B,C & D are constants and x,y & z are orthogonalized coordinates.

Plane No.	A _	B _	C -	D _
1	-0.2889	-0.2675	-0.9192	-6.5446
Atom	x -	<u>–</u>	Z _	Distance
S1 S2 S1' S2' C1 C1'	5.1119 3.7752 1.0694 2.4062 3.6819 2.4994	oms in Plan 0.9152 -1.4304 0.2479 2.5934 0.3258 0.8372	5.2377 6.3426 6.7205 5.6156 5.9074 6.0509	0.008 0.006 -0.008 -0.006 -0.036 0.036
Chi Square	a =	0.		
C4 C5 S3 S4 C2 C3	8.3188 7.2642 7.6747 6.0934 5.4026 6.0495	-2.0943 -3.0167 -0.3679 -3.2017 -1.5995 -0.5250	4.7115 4.7833 4.8311 6.1107 5.8954 5.3692	0.371 0.856 -0.015 0.024 -0.008 0.002
2	-0.7238	-0.6491	-0.2339	-7.9615
55 S6 S9 S10 C6 C11	At 5.4754 4.4278 3.5725 2.5469 4.4070 3.6119	oms in Pla 4.3415 6.1844 5.5789 7.4902 5.5345 6.1950	5.1779 3.1570 7.4021 5.4123 4.8192 5.8237	-0.031 0.004 0.023 -0.010 0.052 -0.037
Chi Squa	red =	0.		
C9 C10 C13 C15	6.4727 6.4046 -0.1067 0.7063	Other Atom 2.3235 3.1447 8.3876 8.0033	1.8177 0.7055 8.7176 9.7460	1.343 1.119 0.555 -0.025
Dihedral A	ngles Bet	ween Plane	es:	
Pl	ane No.	Plane No.	Dihed	ral Angle
	1	2	53.2	9

L'entité minérale.

L'anion PW120403-

L'anion $PW_{12}O_{40}^{3-}$ présente le même type d'architecture que la structure type Keggin [19]. La position du polyanion sur un centre de symétrie induit un désordre du même type que celui observé récement dans [H₂quin]₃[PW₁₂O₄₀]. 4EtOH.2H₂O [*16*]

Les atomes de tungstène se trouvent en coordination octaédrique. Les octaèdres WO_6 s'assemblent pour former les anions condensés de formule $XW_{12}O_{40}$ ayant la structure de Keggin. La figure 1 représente la structure de l'anion $PW_{12}O_{40}^{3-}$ et la numérotation de ses atomes. Les distances interatomiques sont portés aux tableaux 3 ,6 et 7.

Géométrie de l'entité PO43-

Le désordre cité plus haut se voit surtout au niveau de l'entité PO₄ dans laquelle les atomes d'oxygène sont distribués statistiquement sur les sommets d'un cube. Le tétraèdre formé par les quatre atomes d'oxygène (O13, O14, O15 et O16) n'est pas régulier. Les distances P-O varient de 1,48 à 1,73 Å, les angles O-P-O vont de 106 à 113° (Tableau 7). Une distorsion prononcée apparaîtrait quand on passe de la symétrie Td de l'isomère α , à la symétrie C_{3v} de l'isomère β qui est instable en solution [21]. Ce passage s'effectue par la rotation d'un groupe W₃O₁₃ de l'isomère α , autour de l'axe d'ordre 3. Les écarts observés sur les longueurs et angles de liaisons sont dûs probablement au désordre imposé.

Dista	nces (Å)	Angles (°)	
P-013	1,52 (5)	013—P—014 013—P—015	113(2)
P-014	1,48 (5)	013 — P—016	111(3)
P-015	1,55 (4)	014 — P—015 014 — P—016	108(2) 106(2)
P-016	1,73 (5)	O15—P—O16	108(2)

Tableau 7. Distances et angles dans PO4³⁻

Géométrie des octaèdres WO6

La géométrie des octaèdres WO6 est irrégulière. Le tableau 8 indique les distances W-O dans les différents octaèdres.

Tableau 8. Valeurs des distances W-O dans les différents octaèdres WO6

2,36 (5)	W2-015	2,44 (5)	W3-014	2,41 (5)
1,85 (3)	W2-05	1,90 (4)	W3-02	2,01 (5)
1,83 (3)	W2-06	1,97 (3)	W3-05	1,86 (3)
1,77 (3)	W2-07	1,97 (3)	W3-09	1,95 (4)
1,88 (4)	W2-08	1,90 (4)	W3-010	1,88 (5)
1,59 (4)	W2-022	1,66 (3)	W3-023	1,67 (5)
2,33 (5)	W5-015	2,41 (6)	W6-016	2,42 (5)
1,90 (4)	W5-03	1,98 (3)	W6-04	1,90 (4)
1,85 (3)	W5-08	1,87 (3)	W6-06	1,86 (3)
1,82 (4)	W5-010	1,86 (3)	W6-09	1,82 (4)
1,87 (3)	W5-011	1,97 (5)	W6-012	1,92 (2)
1,73 (3)	W5-025	1,65 (4)	W6-026	1,65 (3)
	2,36 (5) 1,85 (3) 1,83 (3) 1,77 (3) 1,88 (4) 1,59 (4) 2,33 (5) 1,90 (4) 1,85 (3) 1,82 (4) 1,87 (3) 1,73 (3)	$\begin{array}{c ccccc} 2,36 (5) & W_2 & - O_{15} \\ 1,85 (3) & W_2 & - O_5 \\ 1,83 (3) & W_2 & - O_6 \\ 1,77 (3) & W_2 & - O_7 \\ 1,88 (4) & W_2 & - O_7 \\ 1,88 (4) & W_2 & - O_8 \\ 1,59 (4) & W_2 & - O_{22} \\ \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 4. Projection de la structure dans le plan bc.

Nos valeurs ne diffèrent pas de manière significative de celles rencontrées dans la littérature [23-28]. Elles indiquent, comme pour toutes les structures de polyanions, une élongation de l'octaèdre dans la direction de l'oxygène de la cavité tétraédrique, telle que les atomes de tungstène soient déplacés vers l'extérieur de l'entité W3O13, mettant ainsi en relief une répulsion W-W.

Interaction anions-cations

Les interactions interchaînes se font par l'intermédiaire des anions. Des contacts entre oxygènes terminaux et soufre de la molécule organique sont significativement inférieurs à la somme des rayons de Van der Waals (3,4 Å) et sont présentées dans le tableau 8.

Tableau 10. Principaux contacts (Å) Donneurs-Anions.

S2 - O23 ⁱ	3.23	S6 - O23 ⁱⁱⁱ	3.14	S8 - O22 ^v	3.40
S2 - O21	3.31	S6 - O26 ^{iv}	3.20	S10 - O24 ^{iv}	3.30
S5 - O24 ⁱⁱ	2.93	S7 - O26 ^{iv}	3.31	S11 - O22 ^{vi}	3.27

i: (x,y,1+z); ii: (-x,-y,1-z); iii: (-x,-y,-z); iv: (x,1+y,z); v: (1-x,-y,-z); vi: (-2+x,1+y,1+z).

Il n'y a pas d'interaction directes entre les chaînes organiques

CONCLUSION

Nous avons synthétisé le composé à transfert de charge complet (BEDT-TTF)₃PW₁₂O₄₀(THF), à caractère unidimensionnel. Les groupements éthylèniques terminaux des molécules de BEDT-TTF présentent plusieurs types de conformation. Les recouvrements intradimères (entre les molécules du type B) sont du type cycle-double-liaison alors que le recouvrement entre les molécule A et B est du type "croix" suivit d'une rotation de la molécule A autour de son axe d'allongement.

La stoechiométrie 3:1 impose une charge (+1) à la molécule BEDT-TTF et caractérise une propriété isolante pour le composé. Cependant, d'autres études concernant le magnétisme, la spectroscopie, la mesure de la conductivité sont à entreprendre pour mieux caractériser ce composé.

Références.

1.- Walker, N. and Stuart, D., Acta Crystallogr., 1983, A39, 158.

2.- Main, P.; Fiske, S.J.; Hull, S.E.; Lessinger, L.; Germain, G.; Declercq J.P. and Woolfson, M.M., MULTAN 84, a system of computer programs for the automatic solution of crystal structures from X-ray diffraction data, Universities of York (England) and Louvain (Belgium), **1984**.

3.- a)- Bechgaard, K.; Jacobsen, S.; Mortensen, K.; Pedersen, H.J. and Thorup, N., Sol. State Commun., 1980, 33, 1119. b)-Thorup, N.; Rindorf, G.; Soling, H. and Bechgaârd, K., Acta Crystallogr., 1981, B37, 1236. c)- Williams, J.M.; Beno, M.A.; Appelman, E.H.; Caprioti, J.M.; Wudl, F.; Aharon-Sharon, E. and Nalewajek, D., Mol. Cryst. & Liq. Cryst., 1982, 79, 319. d)- Williams, J.M.; Beno, M.A.; Wang, H.H.; Leung, P.C.W.; Emge, T.J.; Geiser, U. and Carlson, K.D., Acc. Chem. Res., 1985, 18, 261. e)- Williams, J.M., Prog. Inorg. Chem. 1985, V33, 183.

4.- Ouahab, L.; Batail, P.; Perrin, C.; Garrigou-Lagrange, C., Mat. Res. Bull., 1986, 51, 1223.

5.-Thorup, N.; Rindorf, G.; Soling, H. and Bechgaârd, K., Acta Crystallogr., 1981, B37, 1236.

6.- Batail, P., Ouahab? L., Torrance, J.B.; Pylmann, M.L., Parkin, S.S.P., J. Solid State Commun., 1987, 52, 1610.

7.- Kistenmacher, T. J.; Emge, T.J.; Shu, P.; Cowan, D.O., Acta Crystallogr., 1979, B35, 772.

8.- Jeannin, Y., Launay, P. and Sedjadj, M.A., Inorg. Chem., 1980, 19? 2933.

9.- Spirlet, M.R. and Busing, W.R., Acta Crystallogr., 1978, B34, 907.

10-Williams, J.M.; Emge, T.J.; Wang, H.H.; Beno, M.A.; Copps, P.T.; Hall, L.N. and Carlson, K.D., *Inorg. Chem.* 1984, 23, 2558.

11.- Yagubski, E.B.; Shegolev, I.F. et Lankin, V.N. Mol. Cryst. & Liq. Cryst., 1985, 365-377.

12.- Urayama, H.; Yamoch, H.; Saïto, G.; Nozawa, K.; Sugano, T.; Kinoshita, M.; Sato, S.; Oshima, K.; Kawamoto, A.; Tanaka, J.; *Chem. Lett.*, **1988**, 55.

13.- Williams, J.M., Prog. Inorg. Chem. 1985, V33, 183.

14.- Kobayashi, H., Kobayashi, A., Sasaki, Y., Saïto, G. and Inokuchi, H. (1986), Bull. Chem. Soc. Jpn, 59, 301-302.

15.- Mallah, T., Hollis, C., Bott, S, Kurmoo, M., Day, P., Allan, M., Friend, R. H., (1990), J. Chem. Soc. Dalton Trans. ,3, 859-865.

16.- Triki, S.; Ouahab, L., Grandjean, D. & Fabre, J.M., Acta. Cryst., 1991, C47, 645-648.

17.- Shibaeva, R. P., Lobkovskaya, R. M., Korotkov, V. E., Kushch, N. D., Yagubskii, E.B. and Makova, M. K., (1988). Synthetic Metals, 27, A457- A463.

18.- Jung, D.; Evain, M.; Novoa, J.J.; Whangbo, M.-H.; Beno, M.A.; Kin, A.M.; Schultz, A.J.; Williams, J.M. and Nigrey, P.J.; *Inorg. Chem.*; **1989**, *28*, 4516-4522.

19.- Keggin, J.F., Proc. Roy. Soc. London, Ser. A, 1934, 144, 75.

20.- Attanazio, D., Bonamico, M., Fares, V., Imperatori, P., Suber, L., J. Chem. Soc. Dalton Trans., 1991, 3221.

21.- Evans, H.T. Jr; Pope, M.T.; Inorg. Chem., 1984, 23, 501.

22.- Fuchs, J., Thiele, A.; Palm, R.; Angew. Chem. int. ed. Engl., 1982, 23, 789.

23.- Teitelbaum, R.C.; Marks, T.J. and Jonson, C.K., J. Am. Chem. Soc., 1980, 102, 2986.

24.- Tezé, A. & Hervé, G.J.; Inorg. Nucl. Chem., 1977, 39, 2151-2155.

25.- Robert, F.; Tezé, A.; Hervé, G.J; & Jeannin, Y., Acta Cryst., 1980, B36, 11-15.

26.-Matsumoto, K.Y.; Kobayashi, A. and Sasaki, Y., Bull. Chem. Soc. Jpn, 1975, 48, 3146-3151.

121

27.- Evan, H.T. Jr. in "Perspectives in Structural Chemistry." 1971, 4, 1.

28.- Kobayashi, A. and Sasaki, Y., Bull. Chem. Soc. Jpn, 1975, 48, 885.

CHAPITRE IV

102

LES SELS DU TETRAMETHYLTETRATHIOFULVALENE (TMTTF) ET L'ANION NI(CN)4²⁻

Introduction.

Dans le contexte de la recherche de nouvelles compositions entre donneurs organiques, dérivants du TTF, et anions minéraux, nous nous sommes intéressés aux anions plans M(CN)4²⁻ (M= Pt, Ni). Ces anions portent deux charges négatives et sont plans. D'autre part, les anions Pt(CN)4²⁻ sont bien connus dans les sels de Krogmann pour leur propriétés de donner également des chaînes conductrices monodimensionnelles [1]. Nous présentons la préparation et les caractéristiques structurales et physique de deux composé obtenus dans cette série. Il s'agit dev (TMTTF)₂Ni(CN)4 et (TMTTF)₃Ni(CN)4[2,3]. Seule la structure cristalline du premier a été résolue; celle du second a été déduite par isotypie avec (TMTSF)₃M(CN)4; M=Pt, Ni [3].

10

Partie Expérimentale.

Préparation.

Les cristaux de ce composé ont été obtenus par oxydation anodique sur électrode de platine, sous un courant constant de 1,5 mA d'une solution (80% acétonitrile et 20% eau) saturée

Tableau1. Conditionsd'enregistrementetdonnéescristallog-raphiquesdescomposés(TMTTF) 2Ni (CN) 4(6) et (TMTTF) 3Ni (CN) 4(7).

L)	Données cr	istallographiques	
	Formule	(C10H12S4)2Ni(CN)4	(C10H12S4) 3Ni(CN) 4
	Masse Mol.	683.71	944,17
	Syst.crist. Gr. spat.	triclinique P1	triclinique P 1
	a (Å)	8,186 (4)	7,800 (3)
	b	8,574 (4)	10,579 (6)
	c α (°)	10,361 (6) 92,54(6)	12,495 (6) 85,42(4)
	ß γ	97,47(6) 98,14(7)	86,83(4) 77,16(5)
	Volume (Å ³)	712,3	1001,3
	Z	1	1
	dcal g.cm ⁻³	1,594	1,566

2) Conditions d'enregistrement pour (6):

Diffractomètre: Nonius CAD4 Radiation utilisée : MoK $\alpha \ \lambda = 0,71073 \ \text{\AA}$ Monochromateur à lame graphite Température : 293°K Mode de balayage : θ -2 θ Angle de balayage : $\Delta w = (1 + 0,35 \ \text{tg}\theta)^{\circ}$ Ouverture du compteur : $(2 + 0,6 \ \text{tg}\theta) \ \text{mm}$ Limites d'enregistrement en θ : 1-25° Espace réciproque exploré (h,k,l): ± 9 ; ± 10 ; 0-13

3) Conditions d'affinement pour (6)

Nombre de réflexions

 $\begin{array}{rll} & \mbox{enregistrées}: & 2505 \\ & \mbox{utilisées} & (I \geq 3\sigma(I)) : 1705 \end{array}$ Nombre de paramètres : 170 Schéma de pondération : $\omega = 4 \ {\rm F_0}^2 \ / \ [\sigma^2(I) \ + \ (0,04 \ {\rm F_0}^2)^2]$ Facteurs de reliabilité: R = 0,038; Rw = 0,048 $(\Delta/\sigma)_{\rm max} = 0,02; \ \Delta \rho_{\rm max} = 0,39 {\rm e} {\rm \AA}^{-3}, \qquad {\rm G.O.F.} = 1.63 \end{array}$ Tableau 2. Coordonnées atomiques $(x10^4)$ et facteurs d'agitation thermiques équivalents. Les équarts types sont donnés entre parenthèses.

Nos

 $B_{eq} = 4/3 \Sigma_i \Sigma_j \beta_{ij} a_i a_j$

	х	У	z	Béq
Ni	Ο.	0	0	2.69(2)
5(1)	2073(1)	3755(1)	3821(1)	2.54(2)
5(2)	2708(1)	6477(1)	5669(1)	2.56(2)
5(3)	4857(1)	4573(1)	7701(1)	2.54(2)
S(4)	4085(1)	1790(1)	5944(1)	2.73(2)
N(1)	2472(6)	2981(5)	283(5)	4.6(1)
N(2)	1273(6)	-953(5)	- 2474(4)	4.5(1)
C(1)	3023(5)	4573(5)	5316(4)	2.14(8)
C(2)	1421(5)	6646(5)	4221(4)	2.54(9)
C(3)	,1117(5)	5376(5)	3366(4)	2.69(9)
C(4)	3882(5)	3729(5)	6223(4)	2.18(8)
C(5)	5552(5)	2882(5)	8269(4)	2.55(9)
C(6)	5198(5)	1579(5)	7450(4)	2.61(9)
C(7)	802(6)	8187(6)	4053(5)	3.7(1)
C(8)	56(6)	5212(6)	2063(5)	3.5(1)
C(9)	6463(6)	2930(6)	9629(5)	3.5(1)
C(10)	5600(7)	_ 28(6)	-7738(5)	3.8(1)
C(21)	1523(6)	1847(5)	180(5)	3.2(1)
C(22)	773(6)	- 605(5)	_1541(5)	3.3(1)

106

Figure 1. Longueurs (en Å) et angles (en degres) de liaisons dans (TMTTF)₂Ni(CN)₄.
de K₂Ni(CN)₄ en présence de TMTTF (10⁻³M). Les cristaux se présentent sous forme de cubes pour (TMTTF)₂Ni(CN)₄ et sous forme de plaquettes noires pour (TMTTF)₃Ni(CN)₄.

Enregistrement, résolution et affinements de la structure de (TMTTF)2Ni(CN)4.

Les conditions d'enregistrement des intensités diffractées, les données cristallographiques et les résultats des affinements sont rassemblées dans le tableau 1. Les paramètres de la maille ont été affinés par moindres carrés à partir de 25 reflexions centrées ($\theta \le 14^\circ$). Les intensités diffractées ont été corrigées des phénomènes de Lorentz et polarisation. Les corections d'absorption n'ont pas été effectuées. La structure a été résolue à l'aide des méthodes directes en utilisant le programme MULTAN [4] et des séries de Fourier différences successives. Les atomes d'hydrogène ont été placés par le programme HYDRO (dC-H = 1Å, B=4Å²). Les affinements de la structure ont été menés par une méthode de moindres carrés (matrice complète) en minimisant la fonction $\Sigma\omega(IFO|-IF_c|)^2$; w = 4 FO² /[$\sigma^2(I) + (0,04 F_0^2)^2$]. Les coordonnées atomiques et les facteurs d'agitation thermique anisotropes de tous les atomes à l'exception des atomes d'hydrogène, ont été introduits dans les affinements. Les atomes d'hydrogène ont été introduits uniquement dans le calcul des facteurs de structure. Les facteurs de diffusions atomiques ont été pris des *Table International de Cristallographie* [5]. Les calculs ont été menés à l'aide de la chaîne SDP [6] implantées sur PDP11/60 (Université de Rennes I).

Discussions.

Les coordonnées atomiques ainsi que les facteurs d'agitation thermique isotrope équivalents sont rassemblés dans le Tableau 2. La numérotation des atomes les distances et les angles de liaisons sont données dans la Figure 1. Table 3. Comparaison des distances (Å) interatomiques de TMTTF avec homologues de charges variées.

198

composés	Réf.	ρ	a	b	с	d
(D)2Br	11	+1/2	1.349(12)	1.739(7)	1.744(7)	1.32312)
(D)2M06Cl14	9	+1	1.379(4)	1.715(3)	1.737(3)	1.347(5)
(D)2W6019	10	+1	1.37(2)	1.72(2)	1.73(2)	1.34(2)
(D)2W6019	10	+1	1.39(2)	1.72(2)	1.73(2)	1.35(2)
(D) (ClO4)2	12	+2	1.452(3)	1.681(3)	1.711(3)	1.364(5)
(D)2Ni(CN)4	P.Tr	+1	1.390(5)	1.713(3)	1.737(3)	1.347(5)

Figure 2. Spectre IR en pastille de KBr.

109

Les valeurs des distances et des angles de liaisons observées dans l'anion Ni(CN)4²⁻ sont en bon accord avec celles observées pour le même anion dans son sel de bis (N-méthylpyridinium-4)-1,3 [(C14H16N2)Ni(CN)4] [7].

Les valeurs des distances et des angles de liaison de la molécule organique ont été moyennées en symmetrie D_{2h} et comparées dans le tableau 3 à celles observées dans d'autre molécules de TMTTF ayant des charges variées. Il en ressort nettement de ce tableau que la molécule organique est totalement oxydée. Ceci est en parfait accord avec d'une part la stoechiométrie 2:1 qui implique un transfert de charge complet et avec d'autre part les mesures physiques: (i) Ce sel est isolant. (ii) Le spectre infrarouge représenté en figure 2 ne révèle pas de bande de transfert de charge observée habituellement vers 3200cm⁻¹ dans les composés non isolants. Les molécules organiques forment des dimères avec des recouvrements intermoléculaires (ou intradimères plus précisement) totalement éclipsés. Ce mode de recouvrement qui maximalise les interactions [8] résulte en effet dans des contacts S...S de 3.327(1)Å sensiblement inférieurs à la somme des rayons de Van der Waals (3,70Å). Les molécules de TMTTF ne sont pas planes. Ceci a été déjà observé dans d'autres composés contenant des dimères de TMTTF totalement oxydées et à recouvrements éclipsés tels que (TMTTF)2Mo6Cl14 [9] ou (TMTTF)2W6O19 [10].

La structure cristalline représentée dans la figure 3a est constituée d'anions Ni(CN)4²⁻ centrés à l'origine de la maille triclinique et de dimères organiques centrés au milieu de la maille. Les dimères organiques sont sans interactions entre eux. Ils sont isolés au milieu des huit anions occupant les sommets de la maille rappellant ainsi la structure minérale CsCl. Les molécules organiques forment avec les anions minéraux un angle dièdre de 102°.

Le composé (TMTTF)₃Ni(CN)₄, présente quant à lui une structure en chaînes monodimensionnelles et trimérisée (Figure 3b) [3]. Ce composé est semi-conducteur s_{300K}= $0.55\Omega^{-1}$. cm⁻¹.

111

- a -

- b -

Figure 3. a) - Vue en perspective du contenu de la maille de $(TMTTF)_2Ni(CN)_4$. b) - mise en évidence de la structure en chaînes trimérisées dans $(TMTTF)_3Ni(CN)_4$.

AND

Références

(1)- Krogmann, K., Angew. Chem., Int. Ed. Engl., 1969, 8, 35.

(2)- Bencharif, M.et Ouahab, L., Acta Cryst., 1988, C44, 1514.

(3)- Ouahab, L., Padiou, Grandjean D., Garrigou-Lagrange, C., Delhaes, P., Bencharif, M. J. Chem. Soc. Chem. Commun., 1989, 1068.

(4)- Main, P.; Fiske, S.J.; Hull, S.E.; Lessinger, L.; Germain, G.; Declercq J.P. and Woolfson, M.M., MULTAN 84, a system of computer programs for the automatic solution of crystal structures from X-ray diffraction data, Universities of York (England) and Louvain (Belgium), 1984.

(5)-*International Table for X-ray Crystallography* (1974), *vol IV*, Birmingham: Kynoch press. Present distributor D. Reidel, Dordrecht.

(6)- Frenz, B.A. & Associates Inc. (1985). SDP structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.

(7)- Leipoldt, J.C., Basson, S.S., Bock, L.D.C., Acta Cryst., 1970, B26, 361.

(8)- Lowe, J.P., J. Am. Chem. Soc., 1980, 102, 1262.

(9)- Ouahab, L., Batail, P., Perrin, C., Garrigou-Lagrange, C., Mat. res. Bull., 1986, 21, 1223.

(10)- Triki, S., Ouahab, L., Grandjean, D., Fabre, J.M., Acta. Cryst., 1991, sous presse.

(11)- Galigné, J. L., Liautard, B., Peytavin, S., Brun, G., Fabre, J. M. Torreilles, E. & Giral, L. (1978). Acta Cryst., 1978, B34, 620.

(12)- Shibaeva, R. P., Kristallografya, 1984, 480.

113

ANNEXE

A14

THIOMETALLATES

De l'étude des composés obtenus précédemment et de celle des matériaux rencontrés dans la littérature, il apparaît que la conductivité des matériaux organiques est liée, en partie, à leur dimensionnalité. Celle çi est la conséquence de la proportion accrue d'atomes de soufre dans les molécules organiques dérivées du TTF [1].

Il nous est apparau alors intéressant d'étudier la composition de TTF avec les anions thiométallates dans le but d'augmenter éventuellement la dimensionnalité du matériau par l'apport des atomes de soufre de l'anion et d'en déduire, par la suite les propriétés qui en découlent.

L'intérêt porté à l'anion MoS9²⁻ provient aussi de l'aptitude du ligand MoS4²⁻ à faciliter une délocalisation des e⁻ [2] et de sa possibilité d'établir des interactions S-S entre l'anion et la molécule organique.

système [5], qui à notre connaissance n'est pas encore bien connu. Il nous est donc difficile de proposer un schéma réactionnel, tenant compte des moyens dont nous disposons, mais nous envisagerions la procédure suivante inspirée de l'hypothèse de Coucouvanis *et al.* [3].

 $MoS_9^{2-} - O_2 - / \dots / \rightarrow [Mo_3O_9] + S^\circ$

 $4 \text{ Mo}_3\text{O}_9 + [(C_2\text{H}_5)_4\text{N}]\text{PF}_6 \rightarrow \text{Mo}_{12}\text{O}_{36}\text{PF}_6^- + [(C_2\text{H}_5)_4\text{N}]^+$

Ce processus n'est illustré qu'à titre indicatif. Il est à signaler que les espèces intermédiaires n'ont pas été isolées.

Les cristaux jaunes qui se déposent lors des réactions d'éléctrocristallisation ont été idendifié comme étant du soufre. Par contre, nous avons entrepris la résolution de la structure des cristaux cubiques noires décrits plus haut.

Enregistrement, résolution et affinement de la structure

Les conditions d'enregistrement des intensités diffractées, les données cristallographiques et les conditions d'affinements structuraux menées sur un monocristal de Mo₁₂O₃₆PF₆(C₂H₅)₄N, sont rassemblées dans le tableau 1.

Les dimensions et la qualité des quelques cristaux obtenus ne nous ont pas permis de mener à terme la résolution structurale. D'autres problèmes, en particulier l'obtention des cristaux de meilleure qualité, nous ont empêché, pour l'instant de résoudre entièrement la structure. Nous ne disposions que de 1638 réflexions pour 414 variables.

La précision des distances et angles de liaisons sont donc affectées au regard de l'affinement obtenu, mais l'organisation cristalline de l'anion nous est maintenant connue.

117

117

Syst. Cristallin Groupe d'espace. a, Å b, Å c, Å ß. °	Monoclinic P21/n 14,149(6) 13,242(8) 19,808(7) 93,80(7)
V, Å ³ Z	3703 4
Diffractomètre	NONIUS CAD4
Radiation	ΜοΚα
longueur d'onde, Å	0,71073
Mode de balayage	$\theta - 2\theta$
Limites en 2 θ , deg.	2-50
no de rflcns:	
-I≥3σ(I)	1638
no variables R	414 0,11

Figure 1. Numérotation des atomes.

Description et discussion de la structure

La maille cristalline est représentée le long de l'axe \vec{c} , sur la figure 1. Elle est constituée d'anion PF₆Mo₁₂O₃₆⁻ centré à l'origine de la maille et des cations (C₂H₅)₄N⁺ en position générale.

La structure moléculaire de l'ion Mo₁₂O₃₆PF₆ et sa nomenclature sont représentées sur la figure 2.

La structure de ce complexe s'apparente à celles des phases de Keggin. Il possède une symétrie plus haute imposée par l'octaèdre PF₆, à première vue. Or nous ne tenons pas compte, du désordre d'orientation de l'anionPF₆⁻, la structure peut alors être décrite comme un assemblage de pyramides carrées WO₅ dans un environnement octaédrique [6].

Si nous considérons la structure, tenant compte du désordre positionnel de PF₆, avec des atomes de fluor statistiquement répartis sur leur site, ayant une multiplicité 1/2 pur F₁ et F₃, l'architecture apparaît alors identique aux phases de Keggin dans laquelle l'oxygène commun à trois octaèdres MoO₆ est remplacé par un fluor.

Géométrie octaédrique de l'entité centrale PF6

L'octaèdre formé par les six atomes de fluor n'est pas régulier. Il y a deux types de liaisons P-F: L' une de 1,65Å [P-F1=1,65(8) et P-F3 =1,66(10)Å] et l'autre de 1,51(6)Å (P-F2). Ceci donne quatre liaisons équatoriales P-F de longueur 1,65 Å et deux de 1,51 Å. Dans le premier cas, le fluor se trouve à une distance 2,60(2) de Mo₁, 2,55(7) de Mo₂ et 2,407 Å de Mo₄ ; dans le deuxième cas, il se trouve à une distance de 2,17(3) Å de Mo₃ et 2,457 Å de Mo₆.

L'empilement de l'entité Mo₁₂O₃₆ est du même type que celui observé dans les hétéropoly complexes [7]. La cavité centrale n'est plus occupée par l'ion PO₄-- qui impose sa symétrie tétraédrique, mais par l'ion PF₆⁻ dont la symétrie octaédrique O_h reste discutable pour l'anion Mo₁₂O₃₆PF₆⁻. En effet, les distances Mo-F varient de 2,17 à 2,60 Å. De plus, l'atome de molybdène se trouve à une même distance de deux fluor Mo₅•••F₃ : 2,55 (4), Mo₅•••F₂ : 2,55(7).

Géométrie octaédrique de MoO5F

Les entités Mo₃O₁₃, constituant la phase de Kegin sont remplacées dans notre cas par un groupe de trois octaèdres Mo₃O₁₂F indiquant ainsi la substitution de l'oxygène commun à trois octaèdre MoO₆ par un pseudoatome de fluor.

Les valeurs des longueurs de liaisons sont :

Mo-O _b (O _b : oxygène commun à 2 W_3O_{13})	= 1,87 à 1,98 Å
Mo-O _c (O _c : oxygène commun dans un même W_3O_{13})	= 1,81 à 1,92 Å
Mo- O_d (O_d : oxygène terminal)	= 1,56 à 1,75 Å.
Mo••••F (pseudo atome de fluor)	= 2,17 (5) à 2,60 Å.

Les angles Mo- O_a -Mo : 97° et Mo- O_c -Mo : 130 à 140° ne sont pas constants, la distance F-Mo indiquent un déplacement de l'atome de molybdène le long de la diagonale F-Mo O_d , comme s'il y avait répulsion entre les atomes de Mo dans le groupe Mo₃O₁₂F, l'angle O_b -Mo- O_C étant de 154 à 162°.

420 В В

CONCLUSION

La composition électrochimique de TEA $_2$ MoS9 et TEAPF6 a permis la synthèse d'un nouvel anion Mo $_{12}O_{36}PF6^-$.

La structure de Mo₁₂O₃₆PF₆⁻ est désordonnée, elle s'apparente à la famille des phases de Keggin. Par analogie au résultat obtenu par Fuch *et al.* [8] pour le [N(C₄H₉)₄PW₁₂O₄₀] et tenant compte des interprétations structurales données par Evans *et al.* [6]. Mo₁₂O₃₆PF₆⁻ représenterait une molécule de type Keggin avec un désordre 2 autour de l'axe impropre 4.

Une optimisation des conditions de cristallisation pour l'obtention de cristaux de qualité est en cours pour améliorer les résultats de l'affinement afin d'examiner en détail la structure.

Références

1.- Williams, J.M., Prog. Inorg. Chem. 1985, V33, 183.

2.- Coucouvanis, D., Simon, E.D., Baenziger, N.C., J. Am. Chem. Soc., 1980, 102, 6646.

122

3.- Simo, E.D., Baenziger, N.C., Kanatzidis, M., Graganjac, M. and Coucouvanis, D., J. Am. Chem. Soc., 1981, 103, 1218.

4.- a)- Müller, A., Jaegerman, W., Inorg. Chem., 1979, 18, 2631. b)- Coucouvanis, D., Simon, E.D., Swenson, D.Baenziger, N.C., J. Chem. Soc. Chem. Commun., 1979, 361.
c)- Müller, A., Nolte, W.O., Krebs, B., Angew. Chem., Int. ed. Engl., 1978, 17, 279.

5.- Draganjac, M., Simhon, E., Chan, L.T., Kanatzidis, M., Baenziger, N.C. and Coucouvanis, D., *Inorg. Chem.*, 1982, 3321.

6.- Evans, H.T. and Pope, M.T., Inorg. Chem., 1984, 23, 501.

7.- a) Keggin, J.F., Proc. Roy. Soc. London, Ser. A, 1934, 144, 75. b)- Figgis, J.S., J. Am. Chem. Soc., 1970, 3794. c)- Evan, H.T. Jr. in "Perspectives in Structural Chemistry." 1971, 4, 1. d)- Pope, M. T. in "Heteropoly and Isopoly Oxometalates", Springer-Verlag New York, 1983. e)-Allmann, R. and D'Amour, H., Z. Krist., 1975, 141, 161. D'Amour, H. and Allmann, R., Z. Krist., 1976, 143, 1. d)- Kobayashi, A. and Sasaki, Y., Bull. Chem. Soc. Jpn, 1975, 48, 885.

8.-Fuchs, J., Thiele, A. and R. Palm, Angew. chem. int. ed. Engl., 1982; 21, 789.

CONCLUSION

L'utilisation de l'électrocristallisation comme méthode de préparation, nous a permis d'obtenir une nouvelle série de matériaux. Ces matériaux sont constitués de donneurs organiques, dérivés du TTF, et soit d'anions polytungstates $[XW_{12}O_{40}]^{n-}$ [X=P (n=3) ou X=Si (n=4)] pour les sels $1 \rightarrow 5$ soit d'anions tétracyannonickellates $[Ni(CN)_4]^{2-}$ pour les sels 6 et 7.

Ces composés ont été caractérisés par leur structure cristalline, des études magnétiques (pour 1 et 2) et spectroscopiques (IR) ainsi que par des calculs théoriques (pour 1 et 2)

La taille notable de l'anion, provoque dans ces composé (1, 2, 3 et 5) des lacunes occupées par des molécules neutres (TTF)° et/ou des cations tétraéthylammonium ou des molécules de solvant désordonnées.

Partant des anions $PW_{12}O_{40}^{3-}$ et $SiW_{12}O_{40}^{4-}$, de charges différentes, nous avons synthétisé les composés $TTF_6PW_{12}O_{40}(Et_4N)$ (1) et $TTF_6SiW_{12}O_{40}(Et_4N)$ (2) de même stoechiométrie indiquant ainsi que l'anion $PW_{12}O_{40}$ a accepté un électron au cours du processus de synthèse. Ces composés présentent une valence mixte sur la chaîne organique, dont le recouvrement est du type totalement éclipsé.

L'étude de la susceptibilité magnétique indique le caractère paramagnétique pour $TTF_6PW_{12}O_{40}(Et_4N)$ et diamagnétique pour $TTF_6SiW_{12}O_{40}(Et_4N)$.

Au bilan de toutes les observations structurales, physiques et théoriques la formulation de ces sels serait la suivante:

(TTF)₄²⁺ (TTF)₂⁰ HXW₁₂O₄₀³⁻ [C₂H₅)₄N]⁺

124 124

Cette dernière formulation, qui implique la présence de protons, mérite cependant d'être confirmée par des mesures de RMN (en solution ou à l'état solide).

L'utilisation du $(Bu_4N)_4SiW_{12}O_{40}$ au lieu du $(Et_4N)_4SiW_{12}O_{40}$ nous a permis d'obtenir une nouvelle phase $(TTF)_7SiW_{12}O_{40}(CH_3CN)_2$ (3). La structure de ce composé est caractérisée par un chaîne organique du même type que celle observée dans les composés 1 et 2. Cette chaîne est construite à partir de l'entité de base $(TTF)_4^{2+}$. Les chaînes sont connectées entre elles par des dimères $(TTF)_2^{2+}$.

La détermination de sa structure cristalline en accord avec les résultats des analyses élémentaires et les mesures de conductivité et de spectroscopie IR laissent envisager la formulation suivante :

(TTF)₄²⁺ (TTF)₂²⁺ (TTF)⁰ [SiW₁₂O₄₀]⁴⁻ (CH₃CN)₂.

Dans le composé $(TMTSF)_3PW_{12}O_{40}$ (4), la chaîne organique présente deux types de recouvrements l'un à configuration décalée, l'autre en croix. Nous aurons ainsi un empilement organique A-A···B···A-A···B... (décalé-croix-croix-...). La stoechiométrie $(TMTSF)_3PW_{12}O_{40}$, implique un transfert de charge complet, un oxydation totale de la chaîne organique et par suite le caractère isolant de ce composé. En effet, le spectre infrarouge de ce sel ne présente pas de bande de transfert de charge caractéristique d'un système conducteur.

Le composé (BEDT-TTF)₃PW₁₂O₄₀(THF) (5) présente une structure à caractère monodimensionnel. Les chaînes organiques ne sont pas corréllées entre elles. Les groupements éthylèniques terminaux des molécules de BEDT-TTF présentent plusieurs types de conformation. Les recouvrements intradimères (entre les molécules du type B) sont du type cycle-double-liaison alors que le recouvrement entre les molécule A et B est du type "croix" suivit d'une rotation de la molécule A autour de son axe d'allongement. La stoechiométrie 3:1 impose une charge (+1) chaque molécule BEDT-TTF et induit une propriété isolante pour le composé.

Dans tous ces sels nous avons observé que les anions sont localisés sur des centres de symmétrie s'écartant ainsi de la symmétrie T_d . La chaîne organique semble imposée la structure. Les anions occupent les cavités modelées entre les entités organiques avec un désordre. Ceci est le cas des sels de la serie (TMTCF)₂X où X est un anion de symmétrie T_d tel que ReO₄⁻, BF₄⁻, ClO₄⁻. Dans tous les sels de cette série les anions désordonnés sont situés sur des centres de symmétrie.

L'électrocomposition de TMTTF avec l'anion Ni(CN) $_4^2$ - nous a permis d'isoler deux phases de structures et de propriétes distinctes. La structure cristalline du composé (TMTTF) $_2$ Ni(CN) $_4$ (6) est constituée d'anions Ni(CN) $_4^2$ - centrés à l'origine de la maille triclinique et de dimères organiques centrés au milieu de la maille. Les dimères organiques sont sans interactions entre eux. Ce composé est isolant. Le composé (TMTTF) $_3$ Ni(CN) $_4$ (7) présente quant à lui une structure en chaînes monodimensionnelles et trimérisées. Ce composé est semi-conducteur.

185

Enfin, les expériences et les résultats préliminaires obtenus avec les anions thiométallates sont présentés en annexe. Les tentatives d'utilisation de certains anions thiométallates, comme MoS9²⁻ par exemple, dans la préparation de nouveaux matériaux par électrocristallisation ont aboutit : (i) à la mise en évidence de l'instabilité de ces anions en oxydation. Celle-çi se traduit par une substitution du soufre par de l'oxygène. (ii) Cette substitution serait suivit d'une "polymérisation" des entités MoO_y qui conduirait en présence du sel (Et4N)PF6 à la formation du polyanion [(PF6)Mo₁₂O₃₆]ⁿ⁻. Les caractérisations réalisées sur les quelques cristaux obtenus ne nous permettent pas actuellement de confirmer ce dernier résultat. D'autres investigations sont en cours afin d'apporter des réponses à ces hypothèses.

- 99 erreurs de frappe ex: - paymation repution of 193 coherence des espossons. prepuetre della Maps chy I phyphore octualizing (124 Chop I - A II conclusion / Ilolit prog fillen og fige 35 deiter (11 (2). In voleur Holen's fige 73. Kongoneison' destare woo de Alerk ! ref: 22 lobrets werte mege le poge 115 pour in classification solvants PWnly reight he de (TTE) 6 PWn240 (Etyn) prepare a 15pt et re resoit por de de (THISE) PWn240 I= 1/et