République Algérienne Démocratique et populaire

Ministère de l'Enseignement Supérieur et de la recherche Scientifique

Université Mentouri - Constantine Faculté des Sciences Exactes Département de Chimie

 N° d'ordre :.....

Série :....

THÈSE

Pour l'obtention du diplôme

DE DOCTORAT ÈS SCIENCES EN CHIMIE DES MATÉRIAUX

Option : CRISTALLOGRAPHIE

THÈME

SYNTHÈSE, CARACTÉRISATION STRUCTURALE, STABILITE THERMIQUE ET PROPRIÉTÉS PHYSIQUES DES COMPOSÉS HYBRIDES À BASE D'ÉTAIN ET D'AMINES

Présentée Par : Sofiane BOUACIDA

Soutenue le : 17/04/2008

Devant la commission d'examen:

Salah- Eddine BOUAOUD	Président
Professeur à l'Université Mentouri. Constantine	
Hocine MERAZIG	Directeur de thèse
Professeur à l'Université Mentouri. Constantine	
Patricia BENARD-ROCHERULLE	Examinatrice
Maître de Conférences à l'Université de Rennes 1- France	
Georges DENES	Examinateur
Professeur à l'Université Concordia- Montreal, Canada	
Ahmed BOUTARFAIA	Examinateur
Professeur à l'Université Mohamed-khider. Biskra	
Aouatef CHEROUANA	Examinatrice
Maître de Conférences à l'Université Mentouri. Constantine	

Je dédie cette thèse A ma Mère et à mon Père A ma future femme A mes Sœurs et à mes Frères A mes Nièces et à mes Neveux

REMERCIEMENTS

Ce travail de thèse a été bien débuté à l'université de Constantine au laboratoire de chimie moléculaire, contrôle de l'environnement et les mesures physico-chimiques sous la direction du Professeur H. MERAZIG, et a été finalisé à l'université de Rennes1 au laboratoire de sciences chimiques de Rennes sous la co-direction de Madame P. BENARD-ROCHERULLE dans le cadre du programme de coopération scientifique Algéro-Française (PROFAS-Cat. B). J'ai trouvé au sein de l'équipe de Matériaux Inorganiques : Chimie Douce et Réactivité un cadre particulièrement propice à la recherche et d'excellentes conditions d'accueil et de travail. Que Monsieur Jean-Yves Saillard, directeur du laboratoire, et Monsieur Werner Paulus, le chef de l'équipe, en soient remerciés.

C'est avec émotion que j'achève ce travail avec Monsieur Hocine MERAZIG, Professeur à l'Université Mentouri Constantine, envers qui j'éprouve une grande sympathie et une sincère reconnaissance. C'est grâce à son soutien, sa confiance, sa patience, sa gentillesse et surtout son savoir, que ce travail a pu aboutir.

Mes remerciements les plus respectueux vont également à Madame Patricia BENARD-ROCHERULLE, Maître de Conférences à l'Université de Rennes 1, pour m'avoir accueillie dans son bureau et orienté avec efficacité ce travail et accepté de le juger. Sa disponibilité et sa gentillesse comptent pour une très grande part dans l'aboutissement de cette thèse. Je tiens à vous exprimer, Madame, mon extrême reconnaissance.

J'exprime ma gratitude à Monsieur S. E. BOUAOUD, Professeur à l'Université Mentouri Constantine, pour l'honneur qu'il ma fait en acceptant de présider ce jury.

Je suis particulièrement sensible à l'honneur que me fait Monsieur G. DENES Professeur à l'université Concordia-Montréal, en étant présent à ce jury.

J'adresse mes vifs remerciements et ma profonde gratitude à monsieur A. BOUTARFAIA Professeur à l'université Ouargla, pour avoir accepté de juger ce travail. Que Madame, A. CHEROUANA Maître de Conférences à l'Université Mentouri de Constantine reçoit l'expression de ma reconnaissance, pour avoir accepté de faire partie de mon jury de thèse.

Mes vifs remerciements a monsieur Thierry ROISNEL responsable du centre de diffractométrie X de Rennes 1 (CDIFX) pour son aide et ses précieux conseils.

J'adresse mes vifs remerciements à monsieur Jean ROCHERULLE, Professeur à l'université Rennes I UMR 6226 l'équipe verres et céramiques, pour sa gentillesse et sa précieuse aide pour les mesures ATG/ATD effectuées au sein de son laboratoire.

Je tiens à remercier mon ami et mon collègue Karim BOUCHOUIT pour sa compréhension et son aide pour les mesures concernant les propriétés optiques non linéaire effectuées au laboratoire POMA, Université d'Angers

Je remercie Mansour DEBDAB, thésard à l'université de Rennes 1 pour son aide et ses conseils pour les analyses R.M.N effectuées en son laboratoire (UMR 6226).

Je remercie Sandra. CASALE responsable au Centre de Microscopie Électronique à Balayage et microAnalyse (C.M.E.B.A.) Université de Rennes I pour son aide dans la réalisation des mesures EDS et MEB effectuées.

Je tiens à remercier les collègues et les amis de ma promotion ainsi que les membres du laboratoire, en particulier Chahra et Adel qui ont vraiment contribués à ce travail, sans oublier, bien sûr leur aide et accueil à l'université de Strasbourg.

J'associe mes remerciements à toute personne participer de loin ou de prés à ce travail.

Sommaire

Chapitre I

Techniques expérimentales et chimie des composés hybri	des
I-1- Diffraction des rayons X sur monocristal	04
I-1-1-Enregistrement des données	
I-1-2-Réduction des données et correction d'absorption	
I-1-3-Résolution structurale	
I-2- Diffraction des rayons X par les poudres	
I-3- Résonance magnétique nucléaire (RMN)	08
I-4- Spectrométrie à sélection d'énergie (EDS)	
I-5- Analyse thermique (ATG/ATD)	
I-6- Mesures de conductivité électrique	09
I-7- Propriété optique non linéaire	
I-7-1- La génération de seconde harmonique (SHG)	
I-7-2- La génération du troisième harmonique (THG)	11
I-8- Méthodes de synthèse	
I-8-1-Produits utilisés	
I-8-2-Synthèses par voie hydrothermale	12
I-8-3-Synthèses par voie de chimie douce	13
I-9- Chimie des composés hybrides à base d'étain	14

Chapitre II Synthèse, étude structurale et analyse thermic

Synthese, etude structurale et analyse thermique	
de deux composés hybrides à base de base azotée	
II-Introduction	
II-1-Etude du composé Bis (adeninium)	
hexachlorostannate(IV) dichloride tetrahydrate	
II-1-1-Partie expérimentale	
-Protonation du cation organique	19
II-1-2-Caractérisation préliminaire	19
II-1-2-1-Résonance Magnétique Nucléaire (RMN)	19
II-1-2-2-Microanalyse électronique (EDS)	20
II-1-3-Etude cristallochimique	21
II-1-3-1-Enregistrement des Intensités	22
II-1-3-2-Résolution et affinement de la structure	23
II-1-4-Description de la structure	23
II-1-4-1-Unité asymétrique	25
II-1-4-2-Partie anionique (hexachlorostannate)	25
II-1-4-3-Partie cationique	
II-1-4-4-L'ion chlorure et les molécules d'eau	29

II-1-5-Les liaisons hydrogène	
II-1-5-1-Types de liaisons hydrogène	
II-1-5-1-a-Liaisons cation-anion	32
II-1-5-1-b-Liaisons cation-eau	
II-1-5-1-c-Liaisons eau-anion	
II-1-5-1-d-Liaisons eau-eau	35
II-1-5-2-Analyse des entités	
II-1-5-2-a-Analyse des cations	
II-1-5-2-b-Analyse des anions	
II-1-5-2-c-Analyse des molécules d'eau	
II-1-6-Analyse thermique	
II-2-Etude du composé Bis cytosinium hexachlorostannate(IV)	42
II-2-1-Partie expérimentale	42
II-2-2-Caractérisation préliminaire	
II-2-2-1-Résonance Magnétique Nucléaire (RMN)	
II-2-2-2-Microanalyse électronique (EDS)	44
II-2-3-Etude cristallochimique	
II-2-3-1-Enregistrement des intensités	
II-2-32-Résolution et affinement de la structure	
II-2-4-Description de la structure	
II-2-4-1-Unité asymétrique	
II-2-4-2-Partie anionique	
II-2-4-3-Partie cationique	51
II-2-5-Les liaisons hydrogène	
II-2-5-1-Types de liaisons hydrogène	54
II-2-5-1-a-Liaisons cation –cation	54
II-2-5-1-b-Liaisons cation –anion	54
II-2-5-2-Analyse des entités	55
II-2-5-2-a-Les cations	55
II-2-5-2-b-Les anions	56
II-2-6-Analyse thermique	57
II-Conclusion	
Bibliographie	60

Chapitre III

Synthèse, étude structurale et analyse thermique	
de deux dérivés d'anilinium avec des ions chlorures	
III-Introduction	63
III-1-Etude du composé Tetra (4-methoxyanilinium)	
hexachlorostannate (IV) dichloride	63
III-1-1-Partie expérimentale	63
III-1-2-Caractérisation préliminaire	64
III-1-2-1-Résonance Magnétique Nucléaire (RMN)	64
III-1-2-21-Microanalyse électronique (EDS)	65

III-1-3-Etude cristallochimique	65
III-1-3-1-Enregistrement des intensités	65
III-1-3-2-Résolution et affinement de la structure	67
III-1-4-Description de la structure	67
III-1-4-1-Unité asymétrique	68
III-1-4-2-Partie anionique	69
III-1-4-3-Partie cationique	72
III-1-5-Les liaisons hydrogène	74
III-1-5-1-Cation-anion $(SnCl_6)^{2-}$	74
III-1-5-2-Cation-anion (Cl ⁻)	75
III-1-6-Analyse thermique	76
III-2-Etude de la structure Tris (2-hydroxyanilinium)	
hexachlorostannate(IV) chloride trihydrate	77
III-2-1-Partie expérimentale	77
III-2-2-Caractérisation par Spectroscopie d'Energie Dispersive (EDS)	78
III-2-3-Etude cristallochimique	
III-2-3-1-Enregistrement des intensités	
III-2-3-2-Résolution et affinement de la structure	80
III-2-4-Description de la structure	80
III-2-4-1-Unité asymétrique	
III-2-4-2-La partie anionique	
III-2-4-3-La partie cationique	
III-2-4-4-Les Molécules d'eau	87
III-2-5-La liaison hydrogène	
III-2-5-1- Liaisons cation –cation	
III-2-5-2- Liaisons cation –anion	90
III-2-5-3- Liaisons cation –eau	92
III-2-5-4- Liaisons eau –anion	93
III-2-5-5- Liaisons eau –cation	94
III-2-5-6-Lliaisons eau –eau	95
III-Conclusion	97
Bibliographie	98

Chapitre IV ude structurale et analyse thermiqu

Chaptererv	
Synthèse, étude structurale et analyse thermique	
de deux dérivés d'anilinium anhydre sans ions chlorure	
IV-Introduction	
IV-1-Etude du composé Bis (4-nitroanilinium)	
hexachlorostannate(IV)	
IV-1-1- Partie expérimentale	
IV-1-2-Caractérisation par RMN du proton et EDS	
IV-1-2-1-Microanalyse électronique (EDS)	
IV-1-2-2-Résonance Magnétique Nucléaire (RMN)	
IV-1-3-Etude cristallochimique	

IV-1-3-1-Enregistrement des intensités	
IV-1-3-2-Résolution et affinement de la structure	
IV-1-4-Description de la structure	
IV-1-4-1-Unité asymétrique	
IV-1-4-2-Partie anionique	
IV-1-4-3-Partie cationique	
IV-1-5-Les liaisons hydrogène.	
IV-1-5-1-Cation-cation	
IV-1-5-2-Cation-anion	
IV-2-Etude de la structure Bis(dimethyl anilinium)	
hexachlorostannate(IV)	
IV-2-1- Partie expérimentale	
IV-2-2-Caractérisation préliminaire	
IV-2-2-1-Résonance Magnétique Nucléaire (RMN)	
IV-2-2-2-Microanalyse électronique (EDS)	
IV-2-3-Etude cristallochimique	
IV-2-3-1-Enregistrement des intensités	
IV-2-3-2-Résolution et affinement de la structure	
IV-2-4-Description de la structure	
IV-2-4-1-Unité asymétrique	
IV-2-4-2-Partie anionique	
IV-2-4-3-Partie cationique	
IV-2-5-Les liaisons hydrogène	
IV-2-5-1-Liaisons cation-anion (Intramoléculaire	
IV-2-5-2-Liaisons cation-anion(Intermoléculair)	
IV-2-6-Analyse thermique	
IV-Conclusion	
Bibliographie	
σι	

Chapitre V

Synthèse et étude structurale de deux composés à base d'acide aminé.	
V-Introduction	127
V-1-Etude de la structure Bis (3-carboxyanilinium)	
hexafluorostannate(IV)	127
V-1-1- Partie expérimentale	127
-Protonation du cation organique	128
V-1-2-Etude cristallochimique	128
V-1-2-1-Enregistrement des intensités	128
V-1-2-2-Résolution et affinement de la structure	130
V-1-3-Description de la structure	130
VI-1-3-1-Unité asymétrique	132
VI-1-3-2-Partie anionique	132
VI-1-3-3-Partie cationique	135
V-1-4-La liaison hydrogène	136
V-1-4-1-Les liaisons cation –cation	136
V-1-4-2-Les liaisons cation –anion	137

V-2-Etude de la structure DL-Phenylglycinium chloride	140
V-2-1-Patrie expérimentale	140
V-2-2-Etude cristallochimique	
V-1-2-1-Enregistrement des intensités	140
V-1-2-2-Résolution et affinement de la structure	142
V-2-3-Description de la structure	
V-2-3-1-Unité asymétrique	144
V-2-3-2-Partie anionique	144
V-2-3-3-Partie cationique	145
V-2-4-La liaison hydrogène	146
V-2-4-1-Les interactions cation-cation	146
V-2-4-2-Les interactions cation –anion	148
V- Conclusion	149
Bibliographie	
APPENDICE	
CONCLUSION GENERALE	155
PUBLICATIONS	
ANNEXES	
RESUMES	

INTRODUCTION GENERALE

Les composés hybrides "organique-inorganique" font l'objet d'un intérêt croissant et de nombreuses études en regard d'un nombre très grand d'applications, en permettant d'allier à la fois certaines propriétés d'un matériau inorganique et certaines propriétés d'un polymère (ou d'une molécule organique). L'un des plus anciens hybrides conçus par l'homme (vers 800 ap. JC), est le pigment «Bleu Maya», présent sur de nombreuses fresques et objets décorés de Méso-Amérique. La molécule organique d'indigo ($C_{16}H_{10}N_2O_2$) se trouve incorporée dans une matrice argileuse (palygorskite (Mg,Al)₂Si₄O₁₀(OH)·4(H₂O)), permettant ainsi d'associer couleur de l'un et caractéristiques minérales de l'autre (résistance chimique, stabilités thermique et mécanique, orientation et mise en ordre) [1].

Les applications de ces matériaux couvrent des champs très variés telles que les propriétés électrique **[2,3]** magnétique **[4,5]**, optique (optique non linéaire) **[6,7]** électroluminescence **[8]** et ionique **[9-11]**.

Les composés hybrides à base d'étain et de matrice organique ont fait l'objet de plusieurs publications ces dernières années et montrent leur importance dans plusieurs domaines (propriétés optiques, comportement thermique et semi-conduction électrique) **[12-15]**.

Dans cette optique, le travail de cette thèse a été orienté sur la recherche de nouveaux composés hybrides de l'étain avec des matrices organiques à base d'amine. Neuf nouvelles phases ont été préparées et caractérisées par différentes techniques d'analyses physico-chimiques.

Les résultats de ce travail sont présentés dans cette thèse sous forme de cinq chapitres :

Le premier chapitre est relatif aux méthodes et techniques expérimentales utilisées au cours de ce travail ainsi qu'à quelques généralités sur la chimie des composés hybrides à base d'étain. Les propriétés diélectriques qui reflètent le caractère isolant de ces composés ont été largement discutées dans ce même chapitre.

Dans le deuxième chapitre, nous avons présenté l'étude structurale et l'analyse thermique de deux composés hybrides à base d'étain et d'adénine (ou de cytosine). Ces deux nouvelles ont été ont été préparées par voie aqueuse puis caractérisées par RMN (résonance magnétique nucléaire), EDS (spectroscopie d'énergie dispersive) et diffraction des rayons X.

Le troisième et le quatrième chapitres rassemblent les résultats de la préparation, la caractérisation, la décomposition thermique et l'étude structurale de quatre nouvelles phases hybrides originales avec des dérivés d'aniline (hydroxy-,méthoxy-, nitro- et diméthyl- aniline). Le dernier chapitre est consacré à l'étude de deux composés à base de deux acides aminés (l'acide aminobenzoïque et le phenylglycine). Un intérêt particulier a été donné à l'étude du réseau de liaisons hydrogène.

Les résultats des mesures optiques non linéaires de la susceptibilité du deuxième et troisième harmonique sont présentés en appendice.

Les huit nouveaux composés hybrides à base d'étain et de matrices organiques à base d'amine, étudié au cours de ce travail sont :

Bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate
Bis cytosinium hexachlorostannate(IV)
Tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride
Tris (2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate
Bis(4-nitroanilinium) hexachlorostannate(IV)
Bis(3,4-dimethyl anilinium) hexachlorostannate(IV)
Bis (3-carboxyanilinium)hexafluorostannate(IV)
DL-Phenylglycinium chloride

Ce travail a fait l'objet de cinq publications internationales (2005-2006-2007) et plusieurs communications nationales et internationales.

Bibliographie

[1]Sanchez Del Rio M. et al. 2006, Archaeometry, 48, 115-130 [2]Kagan C. R., Mitzi D. B. & Dimitrakopoulos C. D. (1999). Science, 286, 945-947. [3]Knutson J. L., Martin J. D. & Mitzi D. B (2005). Inorg. Chem. 44, 4699-4705. [4]Sekine Taketoshi, Okuno Tsunehisa & Awaga Kunio. (1996), Molecular Crystals and Liquid Crystals Science and Technology, Section A 279 65-72. [5]Aruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. & Besagni, T. (2005). Appl. Phys. A, 81, 963-968. [6]Mitzi, D. B., Dimitrakopoulos, C. D. & Kosbar, L. L.(2001). Chem. Mater. 13,3728-3740. [7]Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z.Naturforsch. Teil B, 57, 645-650. [8]Chondroudis K. & Mitzi, D. B. (1999). Chem. Mater. 11, 3028-3030. [9]Tominaga Y., Ohno H., Electrochimica Acta (2000), 45(19), 3081-3086. [10]Di Noto V., Fauri M., Vittadello M., Lavina S. & Biscazzo S. (2001), Electrochimica Acta 46(10-11), 1587-1594. [11]Sawa Haruo & Shimada Yuka. (2004), Electrochemistry (Tokyo, Japan) 72(2), 111-116. [12]Mitzi D. B., Medeiros D. R. & Malenfant P. R. L. (2002), Inorg. Chem. 41, 2134-2145 [13]Xu Z., Mitzi D. B. & Medeiros D. R. (2003), Inorg. Chem. 42, 1400-1402 [14]Xu Z. & Mitzi D. B. (2003), Inorg. Chem. 42, 6589-6591 [15]Mitzi, D. B.(2005). Inorg. Chem. 44, 3755-3761

Chapitre I

TECHNIQUES EXPERIMENTALES ET LA CHIMIE DES COMPOSES HYBRIDES

I-1- Diffraction des rayons X sur monocristal

Après une caractérisation préliminaire des produits synthétisés par la résonance magnétique nucléaire du proton (RMN-H) et l'analyse dispersive en énergie (EDS ou EDX), des cristaux ont été utilisés pour l'étude cristallographique et la détermination structurale, à l'aide de données de diffraction acquise avec un diffractomètre quatre cercle Kappa CCD (Charge Coupled Device) à détecteur bidimensionnel de la société Bruker. (Figure I-1)

Figure I-1 : Diffractomètre à rayons X de géométrie KappaCCD

Cet appareil de géométrie Kappa est caractérisé par les quatre éléments suivants :

1-Une source de rayons X

2-Un monochromateur à lame de graphite

3-Un goniomètre permettant la rotation du cristal autour des trois axes et le positionnement des plans réticulaires en position de diffraction dans le plan horizontal (plan du détecteur).

4-Un détecteur bidimensionnel de type CCD, dont la grande sensibilité permet de mesurer la diffraction de cristaux de petite dimension (5.10^{-3} mm^3) ou possédant un faible pouvoir diffractant.

I-1-1-Enregistrement des données

La première étape de l'enregistrement des données de diffraction a consisté à sélectionner un bon cristal, i.e. de faible mosaïcité, d'une taille convenable et possédant une morphologie la plus isotrope possible. L'enregistrement des données a été effectué en deux temps, tout d'abord une mesure rapide a permis de déterminer la matrice d'orientation nécessaire pour l'acquisition globale, d'obtenir les paramètres de maille, d'apprécier la qualité du cristal et de déterminer les conditions optimales d'enregistrements des données. Ensuite on lance les mesures.

Chaque image est enregistrée deux fois afin d'éliminer des rayonnements extérieurs à la mesure ou des décharges accidentelles accumulées sur plusieurs pixels successifs du CCD, et l'image résultante ne contient alors que les valeurs communes des deux images.

I-1-2-Réduction des données et correction d'absorption

L'acquisition des données a été effectuée par l'intermédiaire du programme COLLECT [1]. La mise à l'échelle des intensités intégrées et la moyenne des réflexions équivalentes ont été réalisées ensuite à l'aide de programme SCALEPACK [2] et le programme DENZO [2] a été utilisé pour l'indexation et l'intégration des pics de diffraction. Le fichier final contient la liste des intensités des réflexions avec leurs indices de Miller (hkl), les écarts-types et les cosinus directeurs des faisceaux incident et diffracté part rapport au repère cristallographique. Lors de l'intégration de réflexions, une correction de Lorentz polarisation a été appliquée.

I-1-3-Résolution structurale

Les structures cristallines des composés synthétisés ont été résolues par les méthodes directes à l'aide de programme SIR 2002 [3] et SHELXS-97 [4].

Les différents paramètres structuraux : positions atomiques, paramètres de déplacement isotropes et les occupations statiques des sites cristallographiques ont été affinés par la méthode des moindre carrés appliquée sur le carré des modules des facteurs de structure F^2 , à l'aide du programme SHELXL97 [5].

Les positions des atomes d'hydrogène ont été déterminées par analyse des cartes Fourier différence et calculées géométriquement par l'intermédiaire des programmes CALC-OH [6] et XHYDEX [7]. Tous ces programmes ont été utilisés par l'intermédiaire de l'interface WinGX [8] (Figure I-2).Les représentations structurales ont été réalisées à l'aide des programmes Diamond version 3.1 [9] et Ortep [10].

Les modèles structuraux obtenus ont été validés suivants les deux principaux fracteurs d'accord ou de reliabilité, pondéré et non pondéré R1 et wR2: $\mathbf{R} \ \mathbf{1} = \Sigma || Fo | - | Fc || / \Sigma | Fo |$ $\mathbf{wR2} = \left\{ \Sigma \left[\mathbf{w} \left(Fo^2 - Fc^2 \right)^2 \right] / \Sigma \left[\mathbf{w} \left(Fo^2 \right)^2 \right] \right\}^{\frac{1}{2}}$

et une estimé de variance (Good Of Fitness)

G.O.F. = **S** = { Σ [**w** (*Fo*² - *Fc*²)²] / (*N*obs-*N*var) }^{1/2}

Figure I-2 : Organigramme général de détermination structurale parle programme WinGX.

I-2- Diffraction des rayons X par les poudres

L'enregistrement des diagrammes de diffraction sur poudre a été réalisé à température ambiante à l'aide du diffractométre SIEMENS D500 opérant en géométrie focalisante de type Bragg-Brentano. (Figure I-3)

Les caractéristiques techniques d'un tel appareillage sont les suivants :

-Le générateur des rayons X alimente, sous une puissance de 1800W (45 kV, 40 mA), un tube à rayons X à anticathode de cuivre. L'angle d'émergence du faisceau à la sortie du tube est de 6°; -La radiation K α_1 du cuivre, strictement monochromatique (λ =1.5406Å), est sélectionnée au moyen d'un monochromateur en germanium, localisé avant l'échantillon, à focalisation asymétrique (courte distance focale a= 124mm, longue distance focale b=216 mm);

-L'échantillon plan est placé au centre d'un goniomètre de rayon de 200 mm ;

-Le diffractomètre est équipé d'un compteur à scintillations muni d'un discriminateur d'impulsions. La fente d'analyse, d'une ouverture de 0.05° , est placée à l'intersection de cercle goniométrique et du cercle de focalisation, point de convergence de tous les rayons diffractés. Le compteur tourne d'un angle 20 lorsque l'échantillon exécute une rotation de θ ;

-Le diffractomètre est associé à un ensemble informatisé, le système de diffraction étant exploité par le logiciel DIFFRACT-AT fourni par SIEMENS.

Figure I-3 : Diffractomètre à géométrie Bragg-Brentano S : source ; M : monochromateur ; F1, F2 et F3 : fentes ; F_A : fente d'analyse ; E : échantillon ; D : détecteur.

I-3- Résonance magnétique nucléaire (RMN)

La caractérisation préliminaire par RMN de proton a été effectuée sur deux spectromètres RMN liquide Bruker 200 et 300 MHz implantés au centre de mesures physiques de l'université de Rennes 1 (CRMPO).

Cette technique consiste à faire absorber des pulsations d'énergie, sous champ magnétique, par les seuls noyaux atomiques dont les isotopes ont un spin nucléaire non nul (les protons), qui peuvent donner des informations importantes sur leurs environnements atomiques. Cette méthode d'analyse est utilisée dans le but d'avoir des informations sur les atomes d'hydrogène de la matrice organique de ces composés hybrides.

I-4- Spectrométrie à sélection d'énergie

L'appareil utilisé pour cette analyse élémentaire est un microscope électronique à balayage :Jeol 6400 JSM, grossissement standard (de 5 à 60 000 fois). Il a permis d'effectuer des analyses qualitatives et des examens morphologiques sur les composés étudiés.

Lors de son bombardement par le faisceau d'électrons incidents à l'intérieur du microscope électronique à balayage, le précurseur est excité et ses électrons passent sur des niveaux d'énergie supérieurs. Le retour des électrons dans leur position d'équilibre génère l'émission de rayonnement X caractéristique des éléments constituants l'échantillon. Un détecteur multicanaux en spectroscopie d'énergie permet de classer les photons X en fonction de leur énergie et donc de reconstituer le spectre d'émission de l'échantillon.

I-5- Analyse thermique

L'analyse thermogravimétrique (ATG) consiste à mesurer la variation de masse d'un échantillon au cours de son chauffage. L'analyse thermique différentielle (ATD) est basée sur l'étude de l'énergie dégagée ou absorbée par le matériau quand il subit des transformations physiques ou chimiques lors d'un cycle thermique.

L'analyse thermogravimétrique et L'analyse thermique différentielle ont été réalisées à l'aide de deux thermo balances :

- Labsys TGA-TDA-DSC 1600 de SETARAM.
- TA Instruments SDT 2960 Simultaneous DSC-TGA.

Ces mesures ont été effectuées sur des échantillons polycristallins de 15 à 35 mg installées dans des creusets de 50 µl en platine.

I-6- Mesures de conductivité électrique

La méthode utilisée est celle de quatre fils (quatre points). Il s'agit de créer quatre contacts de fils d'or sur un cristal à l'aide d'une suspension colloïdale d'argent. Ce dispositif permet de s'affranchir des résistances de contacts dues notamment aux interfaces matériau/laque d'argent/fils de mesure (figure I-4). Un courant continu ou alternatif est imposé entre les deux contacts extérieurs. La différence de potentiel résultante est mesurée entre les deux contacts intérieurs. L'utilisation d'un cryostat à courant d'hélium liquide permet d'effectuer des études en fonction de température.

Après plusieurs tentatives de mesures de la conductivité électrique selon cette méthode, la totalité des composés étudiés nous a révélé un caractère isolant. Ces types de composés hybrides ont la particularité d'être des matériaux diélectriques.

Figure I-4 : Dispositif de mesure de la conductivité électrique

I-7- Propriété optique non linéaire

Lorsqu'un milieu matériel est mis en présence d'un champ électrique \vec{E} , il est susceptible de modifier ce champ en créant une polarisation \vec{P} . Cette réponse du matériau à l'excitation peut dépendre du champ \vec{E} de différentes façons. L'optique non linéaire regroupe l'ensemble des phénomènes optiques présentant une réponse non linéaire par rapport à ce champ électrique, c'est-à-dire une réponse non proportionnelle à E qu'on peut l'a noter par l'expression :.

$$\vec{P} = \chi^{(1)}\vec{E} + \chi^{(2)}\vec{E}^2 + \chi^{(3)}\vec{E}^3 + \dots \chi^{(n)}\vec{E}^n$$

Les cœfficients $\chi^{(n)}$ sont les susceptibilités d'ordre n.

La susceptibilité d'ordre 1, $\chi^{(1)}$, est associée aux propriétés optiques linéaires.

La susceptibilité d'ordre 2, $\chi^{(2)}$, décrit la non linéarité quadratique. La polarisation d'ordre 2 est à l'origine des processus du second ordre comme, par exemple la génération du second harmonique, la génération de la somme de fréquences, la génération de la différence de fréquences, la rectification optique, l'amplification paramétrique, etc...

La susceptibilité d'ordre 3, $\chi^{(3)}$, décrit la non linéarité cubique. Les principaux processus liés à la polarisation non linéaire d'ordre 3 sont: la génération du troisième harmonique, l'effet Kerr optique, les diffusions Raman et Brillouin stimulées, l'absorption à deux photons, le mélange à quatre ondes dégénéré, etc...

Il existe ensuite des effets aux ordres supérieurs qu'on peut les faire apparaître en supprimant les polarisations d'ordres inférieurs **[11]**.

I-7-1- La génération de seconde harmonique (SHG)

La génération de seconde harmonique (également appelé doublage de fréquence) est un processus d'optique non linéaire dans lequel des photons interagissant avec un matériau nonlinéaire sont combinés pour former de nouveaux photons avec le double de l'énergie, donc avec le double de la fréquence ou la moitié de la longueur d'onde des photons initiaux.

La première observation de la génération de second harmonique a été réalisée par Franken & al., un an après l'invention du laser, à partir d'un cristal de quartz illuminé par un laser à rubis **[12]**.

Cette technique est utilisée pour générer de la lumière verte à 532 nm à partir d'un laser Nd : YAG (*neodymium-doped yttrium aluminium garnet*) infrarouge à 1064 nm. Certains pointeurs laser verts utilisent cette technique. Pour les matériaux possédant un centre d'inversion, la

susceptibilité non linéaire $\chi^{(2)}$ est nulle.

-Montage expérimental :

Les propriétés de la génération du second harmonique ont été étudiées pour une longueur d'onde fondamentale de 1064 nm à l'aide d'un laser Nd-YAG Q-Switch (Model : Quantum elite) avec une durée de pulsation de 15 ps, et une puissance de sortie de 1,6 mJ par impulsion et une fréquence de répétition de 10 Hz (figure I-5).

Figure I-5 : *Schéma du montage expérimental de la génération de second harmonique*

La polarisation et l'énergie du faisceau fondamental sont contrôlées par une lame demi-onde placée entre deux polariseurs de Glan. Le faisceau est focalisé sur l'échantillon en passant par une lentille, de focale 20 *cm*. Le signal du second harmonique est détecté par un photomultiplicateur à tube (Model : Hamamatsu) et traité par une centrale d'acquisition rapide permettant d'extraire les résultats à l'aide d'un programme développé sous Labview. De plus, le milieu non linéaire subit un mouvement rotationnel à l'aide d'un moteur pas à pas.

I-7-2- La génération du troisième harmonique (THG)

On peut définir la génération de troisième harmonique comme étant un processus cohérent de quatre photons dans lequel trois photons de fréquence ω interagissent avec un photon de fréquence 3 ω dans un milieu non linéaire (figure I-6).

Figure I-6 : Schéma de principe de la génération du troisième harmonique

Le montage expérimental utilisé pour la mesure du signal du troisième harmonique est pratiquement le même à celui réaliser pour la mesure du signal du deuxième harmonique (figure I-5) mais ici on a changé le filtre sélective par un autre qui ne laisse passer que le signal à λ = 355nm.

Les résultats obtenus des mesures optiques non linéaires de la susceptibilité du deuxième et troisième harmonique sont présentés en appendice.

I-8- Méthodes de synthèse

I-8-1- Produits utilisés

Les produits utilisés comme précurseurs lors des différentes synthèses réalisées sont les suisvants :

*Chlorure d'étain (II) anhydre SnCl₂ (Alpha)

*Chlorure d'étain (II) dihydraté SnCl₂, 2 H₂O (Alpha)

*Fluorure d'étain (II) SnCl₂ (Alpha)

*Adénine C₅H₅N₅ (Sigma)

*Cytosine C₄H₅N₃O (Sigma)

*Phenylglycine C₈H₁₀NO₂ (Acros Organics)

*Acide amino-benzoïque C7H7NO2 (Merk)

*2-Amino-phénol C₆H₈NO (Acros Organics)

*4-Nitroaniline C₆H₇N₂O₂ (Acros Organics)

*3,4-Dimethylaniline C₈H₁₂N (Acros Organics)

*4-Methoxyaniline C₇H₁₀NO (Acros Organics)

*Acide hydrochlorique HCl 37%(Normapur)

*Acide fluorhydrique HF 40% (Normapur)

*Acide amino-3-benzoique C₇H₇NO₂ (Merck)

I-8-2- Synthèses par voie hydrothermale

Les synthèses par voies hydrothermales ont été réalisées dans des autoclaves Parr de volume de 23 ml, la préparation initiale est versée dans un récipient en téflon et porté à une température variant entre 120°C et 180°C.

I-8-3- Synthèses par voie de chimie douce (en solution)

Le protocole général suivi par cette voie de synthèse est le suivant :

-Dissolution des précurseurs dans des solutions aqueuses.

-Chauffage sur des plaques avec une température qui varie entre 40°C et 70°C sous agitation continue.

-Acidifier la solution.

-Evaporation à température ambiante de la solution limpide.

Un tel protocole a permis d'obtenir des cristaux de très bonne qualité qui apparaissant généralement au bout de quelques semaines. Ces cristaux sont ensuite abondamment lavés avec de l'eau et /ou de l'éthanol (95%) puis, finalement, séchés à l'air libre.

I-9- La chimie des composés hybrides à base d'étain

La notion de matériaux hybrides repose sur l'association de deux composantes, organique et inorganique, dont la combinaison des propriétés respectives permet d'envisager des applications très variées dans plusieurs domaines comme les propriétés électrique, optique, magnétique, ionique et photoluminescence.

Cette symbiose entre deux mondes de la chimie trop longtemps considérés comme antagonistes peut aussi conduire à des propriétés complètement nouvelles, et ouvre un vaste champ d'investigations.

Deux types de matériaux hybrides sont envisageables, selon l'existence ou non d'un lien covalent entre les parties organiques et minérales :

-les hybrides de classe I, pour lesquels seule une liaison relativement faible de type liaison hydrogène ou Van der Waals assure le lien entre les deux composantes, ce qui est le cas des structures étudiées au cours de ce travail.

-les hybrides de classe II où les parties organiques et minérales sont reliées par une liaison covalente permettant l'obtention de systèmes plus au moins solides par le piégeage efficace de la partie organique.

Au cours de notre investigation dans ce travail de thèse, nous nous sommes intéressé aux composés hybrides à base d'halogénures d'étain comme partie minérale et aux composés à base d'amine en tant que matrice organique.

Quelques tétrahalogénures des éléments du groupe IVa de tableau périodique (MX₄) forment immédiatement l'ion complexe MX_6^{2-} à la présence de l'acide HX, et sa formation dépend de la taille de l'atome central M et des halogénures qui l'entourent [13]. La stabilité de l'ion MX_6^{2-} peut être déterminée par le caractère oxydo-réducteur de l'atome central relativement à celui de ligands halogénures [14, 15]. Selon le modèle du Close-packing des ligands qui entourent l'atome central, la dimension des constituants de l'ion complexe MX_6^{2-} doit être en accord avec la force de répulsion entre les ligands et ne doit pas dépasser la force d'attraction entre M et X [13]. Ce modèle explique inexistence d'ions CCl_6^{2-} , et parmi les ions SiX_6^{2-} on a seulement l'ion SiF_6^{2-} où la formation des ions de Si⁴⁺ avec le chlorure, bromure et l'iodure est gêné par la petite taille de l'atome central relativement à ces ligands [13]. Les ions MX_6^{2-} du Ge, Sn, et Pb peuvent exister mais leur stabilité dépend essentiellement du caractère oxydo-réducteur de M et de X. Le potentiel redox des halogénures ($F_2/F = 2.87$, $Cl_2/Cl = 1.36$, $Br_2/Br = 1.07$, $I_2/l = 0.535$ V) [16] et celui des éléments du groupe IVa ($Ge^{4+}/Ge^{2+} = -0.12$, $Sn^{4+}/Sn^{2+} = 0.15$, $Pb^{4+}/Pb^{2+} = 1.5$ V) [16,17] nous indique que les ions MX_6^{2-} devraient être stables à l'exception de $PbX_6^{2-}(X : Cl, Br, I)$. L'ion $SnCl_6^{2-}$ est parmi les ions les plus stables à cause de son bas potentiel Sn^{4+}/Sn^{2+} et son arrangement stérique fortement favorisé entre l'atome d'étain et les autres atomes de chlore.

L'hexachlorure d'étain, $SnCl_6$, a été choisi au vu de sa stabilité dans les structures ioniques et également à cause de l'implication du métal (l'étain, Sn) dans plusieurs domaines d'applications de la conduction ionique et de la conduction électrique.

Au cours de ce travail quatre précurseurs à base d'amine ont été utilisés :

-Bases azotées (l'adénine et la cytosine).

-Acides aminés (le phenylglycine et l'acide aminobenzoïque)

-Amines aromatiques (quatre dérivés d'aniline:hydroxy-, méthoxy-, nitro- et diméthyl- aniline).

Le choix de la matrice organique s'appuie sur la conjugaison de la double liaison dans ces amines ce qui nous renvoie directement aux propriétés optiques de ces composés hybrides.

Le premier composé hybride à base de chlorure d'étain et de matrice organique à base d'amine connu est le bis phenylmethaniminium hexachlorostannate, il a été synthétisé en 1959 (université de Pékin) **[18]**. Quelques années après d'autres composés ont été étudiés et leurs structures ont été élucidées **[19-22]**.

La première application réalisée sur ce type de composés est le dichroïsme circulaire (on dit qu'un matériau présente un dichroïsme circulaire s'il absorbe différemment la lumière selon sa polarisation) qui a été effectuée en 1969 par l'équipe de McCaffery **[23]**.

A partir des années quatre vingt et quatre vingt dix le champ d'application de ces composés est devenu plus étendu où plusieurs matrices organiques ont été élaborées **[24-26]**.

Au cours de ces années des études sur le comportement thermique de ces composés ont été réalisées **[27-30]** et des investigations sur les transitions de phases avec les alkylammonium ont été menées **[26,31]**.

Actuellement plusieurs laboratoires se penchent sur cet axe de recherche pour ses diverses applications dans le domaine de la chimie et de la physique.

L'équipe de recherche de la grande firme IBM sous la direction du professeur Mitzi a déjà publiée plusieurs articles sur les applications de ce type de composés hybrides à base d'amine et d'étain [32-35]. D'autres parts, l'équipe du Dr. M. Rademeyer en Afrique du sud a préparé plusieurs composés et étudié leurs structures cristallines [36-39].

Le champ d'investigation sur ces composés reste toujours ouvert et des milliers de composés restent à explorer.

Bibliographie :

[1]Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. [2]Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M.Sweet, pp. 307-326. New York: Academic Press. [3]Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. [4]Sheldrick, G. M. (1997a). SHELXS97: Programs for crystal Solution, University of Göttingen, Germany. [5]Sheldrick, G. M. (1997). SHELXL97: Programs for crystal Structure Refinement, University of Göttingen, Germany [6]Nardelli, M.(1999). J.Appl.Crystallogr., 32, 563-571. [7]Orpen, A. G. (1980) J. Chem. Soc., Dalton Trans. 2509. [8]Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838. [9]Brandenburg, K. & Berndt, M. (2001). DIAMOND. Version 3.1e. Crystal Impact, Bonn, Germany. [10]Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. [11]Sofiani Zouhair juin 2007 Thèse de doctorat université d'Angers France. [12] Franken P.A., Hill A.E., Peters C.W. and Savage M., (1961)Phys. Rev. Lett. 7, 117. [13] Downs, A.J., Ebsworth, E.A.V., Maddock, A.G., Sharpe A.G., New Phathways in Inorganic Chemistry, Cambridge University Press, Combridge, 1968, pp.15-36. [14]Kowalewska, E.& Blazejowski, J. (1986) Thermochim. Acta, 101, 271. [15]Janiak, T.& Blazejowski, J., (1989) Thermochim. Acta, 141, 93 [16]Handbook of chemistry and physics, CRS Press, Boca Raton, Florida, 67th edn., 1988. [17]Janiak, T.& Blazejowski, J., (1989) Thermochim. Acta, 157, 137. [18]Chou Kung Tu; Lu Chao-Fa; T'ang Yu-Ch'I, (1959), Huaxue Xuebao 25 65-72. [19] Jasinski Tadeusz; Smagowski Henryk; Korewa Ryszard.(1964), Chemia Analityczna (Warsaw, Poland) 9(2), 343-347 [20] Fergusson, J.E.; Roper, W.R.; Wilkins, C.J.(1965), Journal of the Chemical Society (June), 3716-3720 [21]Gearhart, R.C.; Brill, T.B.; Welsh, W. A.; Wood, R.H. (1973), Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999) (4), 359-61. [22]Kitahama K., Kiriyama H. & Baba Y. (1979), Bull. Chem. Soc. Jpn, 52, 324-328. [23]McCaffery Anthony J.; Schatz Paul N.; Lester, T. E.(1969), Journal of Chemical Physics 50(1), 379-385. [24]Knop O., Cameron T. S., James M. A. & Falk M. (1981), Can.

[25]Elleuch H., Kamoun M., Daoud A. & Jouini T. (1996), Phys. Status Solidi A, 157, 3-9.

[26]Elleuch, H.; Kamoun, M.; Daoud, A. Phase Transitions (1996), 59(4), 225-239

[27]Jacek Lubkowski & Jerzy Blazejowski(1986)J.Chem Faraday Trans1 82, 3069-3080.

[28]Jacek Lubkowski & Jerzy Blazejowski (1987) Thermochimica-Acta, 121, 413-436.

- [29]Tadeusz Janiak & Jerzy Blazejowski (1989) Thermochimica Acta 156, 27-43.
- [30]Tadeusz Janiak & Jerzy Blazejowski (1990)Thermochimica Acta 157, 137-154.
- [31]Kroupa Jan, Fuith Armin, Schenk Kurt J. & Warhanek Hans, (1994), Ferroelectrics 159(1-4), 3251-6.

[32]Mitzi, D. B. (2005). Inorg. Chem. 44, 3755-3761.

- [33]Xu, Z. and Mitzi, D. B. (2003). Chem. Mater. 15, 3632-3637.
- [34]Mitzi D.B. Medeiros D.R. & DeHaven, Patrick W.(2002). Chem.

Mater. 14, 2839-2841.

[35]Mitzi, D. B., Dimitrakopoulos, C. D. & Kosbar, L. L. (2001). Chem. Mater. 13, 3728-3740.

- [36]Billing, D.G., Lemmerer, A. & Rademeyer, M. (2007). Acta Cryst. C63, m101-m104.
- [37]Rademeyer, M., Lemmerer, A. & Billing, D. G. (2007). Acta Cryst. C63, m289-m292.
- [38]Rademeyer, M. (2004). Acta Cryst. C60, m55-m56.

[39]Rademeyer, M. (2004). Acta Cryst. E60, m345-m347.

CHAPITRE II

SYNTHESE, ETUDE STRUCTURALE ET ANALYSE THERMIQUE DE DEUX COMPOSES HYBRIDES A BASE DE BASE AZOTEE

II-Introduction

Deux nouveaux composés hybrides à base d'étain et de bases azotées ont été isolés et étudiés dans ce chapitre. Le premier composé a été préparé à partir de chlorure d'étain (II) deux fois hydraté et d'une base azotée qui est l'adénine. Ce composé de formule [SnCl₆] ($C_5H_7N_5$)₂, 2Cl, 4 H₂O cristallise dans le groupe d'espace non centrosymétrique Fdd2 et présente une grande richesse en terme liaisons hydrogène inter et intramoléculaires.

Une recherche bibliographique approfondie sur les composés hybrides à base d'adénine a mis en évidence l'existence de plusieurs composés avec les sels ou les acides minéraux type nitrate [1,2], sulfate [3], perchlorate [4,5], bromure [6], chlorure [7], bistriiodure [8], puis le fluoroborate [9]; mais il s'avère que peu de composés à base de métaux ont été étudiés, on retiendra néanmoins ceux à base de cuivre [10,11], de zinc [12], de platine [13-15] et de mercure [16].

Le composé bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate est la première structure ionique à base d'étain et d'adénine.

Le deuxième nouveau composé de formule $SnCl_6$ ($C_4H_6N_3O$)₂ a été obtenu à partir d'un mélange aqueux de chlorure d'étain, de cytosine et d'acide hydrochlorique après deux semaines d'une évaporation lente de cette solution. Quelques structures de composés à base de métaux et de cytosine ont été rapportées dans la littérature avec le platine [17], le molybdène [18], le palladium [19,20], le zinc [21,22], le cobalt [23,24], le nickel [25], le cuivre [26-28], le cadmium [29], le calcium [30], et le manganèse [31,32]. D'autre part, une seule structure à base d'étain a été élucidée (le bis cytosinium tétrachlorodimethylstannate) [33].

II-1-Etude du composé Bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate :

II-1-1-Partie expérimentale

A une mole de chlorure d'étain (II) deux fois hydraté (SnCl₂, 2H₂O) préalablement dissoute dans l'eau distillée, on a ajouté u deux mole d'adénine dans un milieux acide (de l'acide hydrochlorique). Le mélange a été chauffé en maintenant l'agitation pendant deux heures à une température de 70°C et un PH acide fixe.

Après une évaporation lente d'une semaine à la température ambiante, de très beaux cristaux transparents en forme d'aiguilles ont été obtenus; ces derniers ont pu être isolés sous un microscope optique en vue d'une ultérieure analyse aux rayons X.

Le schéma réactionnel est présenté ci-dessous :

$$\operatorname{Sn}\operatorname{Cl}_{2,}\operatorname{2H}_{2}\operatorname{O}+2\bigvee_{N}^{N}\underset{H}{\overset{\circ}{\longrightarrow}} \xrightarrow{6\operatorname{HCl}(\operatorname{pH}\operatorname{fixe})}_{\operatorname{Agitation}\stackrel{\circ}{a}\operatorname{T}=70^{\circ}\operatorname{C}} \operatorname{Sn}\operatorname{Cl}_{6}\left[\bigvee_{N}^{N}\underset{H}{\overset{H}{\longrightarrow}}\right]_{2}\operatorname{Cl}, 4\operatorname{H}_{2}\operatorname{O}+\operatorname{H}_{2}$$

-Protonation du cation organique :

L'adénine est une base azotée, appartenant à la famille des purines. Son nom chimique est 1,6-dihydro-6-iminopurine ; on peut aussi l'appeler 6-aminopurine ou encore amino-6-purine.Elle possède trois sites principaux accessible à la protonation en milieu acide à savoir les trois atomes d'azote N1, N6 et N7 comme le montre la figure II-1.

Dans le cas présent la protonation ne peut se faire que sur les deux premier sites (site 1 et site 2) c'est à dire de l'imidazole et de la pyrimidine

Figure II-1 : Sites possible de la protonation de l'adénine.

II-1-2-Caractérisation préliminaire

II-1-2-1-Résonance Magnétique Nucléaire (RMN-¹H)

Afin de déterminer les sites de protonation de l'entité organique une étude préliminaire de caractérisation par RMN du proton a été effectuée.

Dans la figure II-2, le spectre RMN du proton présente les déplacements chimiques des différents hydrogène appartenant à la partie organique du composé étudié.

L'échantillon étant bien soluble dans le DMSO d'où son pic de référence est à 2.52 ppm.

Les deux protons (H1 et H7) liés à N1 et N7 se trouvent à 9.42 et 9.04 ppm respectivement et les deux protons aromatiques (H2 et H8)liés aux atomes de carbone sont sous forme de deux singulets à 8.56 et 8.58 ppm. Une bosse à 6.33 ppm représente le NH_2 et le NH de l'imidazole.

Figure II-2 : Spectre RMN de proton de composé Bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate

II-1-2-2-La spectrométrie à sélection d'énergie (EDS)

L'analyse dispersive d'énergie nous a permis de confirmer la présence de l'étain dans le composé synthétisé (Figure II-3) ainsi que le rapport atomique étain/chlore qui donne une moyenne de 0.126 (rapport théorique après résolution structurale Sn/Cl= 1/8=0.125).

La figure II-4 présente montre que l'image prise par le microscope électronique à balayage (MEB) des cristaux du composé Bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate qui sont sous forme d'aiguilles et de plaquettes avec des faces bien définies.

Figure II-3 : Spectre EDS d'une surface d'un cristal du composé Bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate

Figure II-4 : *Micrographie du composé Bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate*

II-1-3-Etude cristallochimique

Des cristaux transparents sous forme d'aiguilles on été choisi pour l'étude par la diffraction des rayons X. Cette étude a révélé que la formule générale est $[SnCl_6]$ $(C_5H_7N_5)_2$, 2Cl, 4 H₂O. l'unité asymétrique du composé est formé de chlorure d'étain (IV), de l'adénine deux fois protonés, d'un ion chlorure et deux molécules d'eau.

Ce composé cristallise dans une maille pseudo géante avec un volume avoisinant les 5200 Å³ dans le groupe d'espace Fdd2 du système orthorhombique. Les paramètres de maille sont: a = 18.033 (5) Å b = 39.553 (5) Å c = 7.265 (5) Å.

II-1-3-1-Enregistrement des intensités

On sélectionne un bon cristal sous un microscope optique (plus le cristal est de bonne qualité plus le résultat de l'affinement est meilleur) et on le colle sur une tige en verre. L'ensemble est en suite monté sur une tête goniométrique qui sera placée sur un diffractomètre automatique à quatre cercles Mach 3 Kappa CCD. On utilise la radiation monochromatique K_{α} de Molybdène (MoK α = 0.71073 Å) dans un domaine angulaire en θ allant de 2.1 à 30°.

Les données cristallographiques, les conditions d'enregistrement et d'affinement sont consignées dans le tableau II-1.

Formule chimique	$[\text{SnCl}_6]^{2^-}, 2(\text{C}_5\text{H}_7\text{N}_5)^{2^+} 2\text{Cl}^-, 4\text{H}_2\text{O}$
Masse molaire (g/mole)	748.67
Système cristallin	Orthorhombique
Groupe d'espace, N°	Fdd2, 43
a (Å)	18.033 (5)
b (Å)	39.553 (5)
c (Å)	7.265 (5)
V(Å ³)	5182 (4)
Ζ	8
d _{cal} (g/cm ³)	1.958
Radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Facteur d'absorption (mm ⁻¹)	1.85
F(000)	2960
Température (K)	295
Dimensions du monocristal(mm ³)	0.06 x 0.07 x 0.05
Forme	aiguilles
Couleur	transparente
Conditions d'enregistrement :	
Diffractomètre	Mach3 Kappa CCD
Limites en θ (°)	2.1-30
Limites h, k, l	$-25 \rightarrow 25, -55 \rightarrow 37, -10 \rightarrow 6$
réflexions mesurées	10885
réflexions indépendantes	3316
réflexions I>2 $\sigma(I)$	3155

Tableau II-1: Données cristallographiques et conditions d'enregistrement

Affinement: Affinement en F ²	
R (%)	2.7
R _w (%)	6.1
GOF	1.09
Nombre de paramètre	191
Facteur de Flack	0.026 (17)
Coefficient d'extinction	0.00075 (5)

II-1-3-2- Résolution et affinement de la structure

La résolution structurale a été effectuée à l'aide de la chaîne de logiciels, WinGX **[34]**, les premières solutions ont été proposées par le programme Sir2002 **[35]**.

L'affinement final de la structure à l'aide du programme SHELXL97 **[36]** a conduit aux facteurs de reliabilité suivants :

R (%)=2.7 et R_w (%)=6.1 avec une estimé de la variance : GOF=1.09 A ce stade de l'affinement une Fourier différence finale n'a révélé aucun pic significatif ($\Delta \rho_{max} = 0.95 \text{ e.Å}^{-3}$) Highest peak: 0.95 at 0.5000 0.0000 0.9651 [1.66 Å from H8].

Tout les atomes d'hydrogène ont été localisés sur une carte de Fourrier différence tridimensionnelle puis affinés par la méthode des moindres carrés, à l'aide du programme ShelXL97 en fixant leurs facteurs d'agitation thermique isotrope à 0.05, mise à part l'atome d'hydrogène lié à l'atome d'azote (N1) de la pyrimidine, qui a été placé par calcul géométrique et la distance N-H fixée à 0.86Å et Uiso(H)=1.2Ueq(N) (programme XHYDEX [**37**]).

Les coordonnées atomiques, les facteurs d'agitation thermique anisotrope, les distances inter atomiques, les angles de liaisons ainsi que les angles de torsion sont consignés respectivement dans les tableaux 1, 2, 3, 4 et 5 (Annexe I).

II-1-4-Description de la structure

La structure de ce composé hybride est formée d'un réseau cationique, d'un réseau anionique et des molécules d'eau. La cohésion dans le cristal est assuré par des liaisons hydrogène inter et intramoléculaires. L'édifice cristallin peut être décrit comme une alternance de couches cationiques et anioniques le long de l'axe b (figure II-5).

Les couches anioniques se situent à b=0,1/4, 1/2, 3/4; les couches cationiques viennent s'insérer entre ces couches et se placent à 1/8 3/8 5/8 et 7/8 de b.

Figure II-5 : Disposition alternée des couches cationiques et anioniques Dans la structure.
II-1-4-1-Unité asymétrique

L'unité asymétrique est formée d'une matrice organique (l'adénine deux fois protonée), d'ions chlorure, de chlorure d'étain et de deux molécules d'eau libres qui cristallisent dans la structure (Figure II-6).

Figure II-6 : *ORTEP de l'unité asymétrique du Bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate*

II-1-4-2-Partie anionique (hexachlorostannate)

La partie anionique est formée de deux anions différents. On distingue d'une part un ion chlorure libre dans la maille qui possède plusieurs interactions avec la matrice organique et les molécules d'eau. D'autre part un deuxième anion en l'occurrence l'hexachlorostannate forme un octaèdre quasi-régulier.

L'atome d'étain qui passe d'un degré d'oxydation 2+ à un degré d'oxydation 4+ est six fois coordiné par des atomes de chlore (Figure II-7).

L'atome d'étain se trouve en position spéciale 8a du groupe d'espace Fdd2 sur un axe binaire avec une multiplicité d'un demi.

Figure II-7 : Environnement de l'étain

Les distances Sn-Cl et les angles de liaisons Sn-Cl-Sn sont conformes aux valeurs rapportés dans la bibliographie **[38-40]** (tableau II-2).

Atome 1	Atome 2	Distance (Å)	Atome 1	Atome 2	Atome 3	Angle(°)
Sn	Cl1	2.442(2)	Cl1	Sn	Cl2	90.13(3)
Sn	C12	2.425(2)	Cl1	Sn	C13	176.64(4)
Sn	C13	2.418(4)	Cl2	Sn	C13	90.73(3)

Tableau II-2 : Distances et angles de liaisons dans SnCl₆²⁻.

Les octaèdres formés de $SnCl_6$ se développent en couches parallèles au plan (a, c) le long de l'axe b, à b=0, 1/4, 1/2, 3/4 (Figure II-8).

L'inclinaison des octaèdres est différente d'une couche à l'autre ; ils sont inclinés vers la droite parallèlement au plan $(1\bar{1}0)$ puis vers la gauche parallèlement au plan (110) formant deux types de couches l'une à b=0, 1/2, et l'autre à b=1/4, 3/4. Deux couches d'orientation différentes sont séparées d'une distance de a/4= 4.5 Å. (Figure II-9 et Figure II-10)

Figure II-8 : Vue en perspective des couches d'octaèdres SnCl₆.

Figure II-9 : Projection des polyèdres SnCl₆ sur le plan (110).

Figure II-10 : Projection des polyèdres SnCl₆ sur le plan (a, c).

II-1-4-3-Partie cationique

La partie cationique est formée d'une adénine deux fois protonées sur les deux sites N1 et N7 de la pyrimidine et de l'imidazole, respectivement. Ces deux sites de protonation ont été confirmés géométriquement par après résolution structurale, où on remarque l'ouverture des angles internes de N1 et N2 (des azotes protonés) $[C6-N1-C2 = 123.8 (2)^{\circ}$ et C8-N7-C5 = $107.4 (2)^{\circ}$] de 4° et de 3° respectivement relativement à l'adénine déprotoné où les angles internes de N1 et N7 sont : C6-N1-C2 = 119.8° et C8-N7-C5 = 104.4° [41] Ce résultat est conforme avec celui des composés à base d'adéninium (adénine mono et diprotoné) rapporté dans la littérature [1-6,42].

L'entité organique de l'adéninium se développe dans le réseau sous forme de couches en zigzag parallèlement au plan (a, c).Ces couche se répètent périodiquement le long de l'axe b (figure II-11 et II-12).

Figure II-11 : Disposition des couches de l'adénine diprotonée sur le plan (a, b).

Figure II-12 : Projection des couches d'entités organiques sur le plan (b, c).

II-1-4-4-L'ion chlorure et les molécules d'eau

(a)L'ion chlorure :

La charge positive des entités organiques est équilibrée par l'ion hexachlorostannate et aussi par les ions chlorure qui se trouvent en sandwich entre les molécules d'eau. Ces ions chlorure se déploient sous forme de couches en zigzag alternées avec trois couches de molécules d'eau le long de l'axe b parallèlement au plan (a, c) (figure II-13 et figure II-14).

(b)Les molécules d'eau :

Les molécules d'eau jouent un rôle important dans les interactions trouvées dans l'édifice cristallin. Ces molécules se développent en trois couches décalées l'une à coté de l'autre, parallèlement au plan (a, c), on peut aussi les décrire comme des mono couches à a=0, a=1/4, a=1/2, a=3/4 le long de l'axe a parallèlement au plan (b, c) (figure II-15).

Figure II-13 : Alternance de couches d'ions chlorure et de molécules d'eau sur le plan (a, b).

Figure II-14 : Alternance de couches d'ions chlorure et de molécules d'eau sur le plan (b, c).

Figure II-15 : Alternance de mono couches des molécules d'eau le long de l'axe a.

II-1-5-La liaison hydrogène

II-1-5-1-Types de liaisons hydrogène

Au cours de notre investigation sur la liaison hydrogène dans ce composé, plusieurs interactions intra et intermoléculaires de type : Cation-anion, cation-eau, anion-eau et eau-eau ont été explorées. Il a été constaté qu'il n'y a pas des liaisons hydrogène de type cation-cation

II-1-5-1-a Liaisons cation -anion

Le cation diprotonné de l'adénine s'engage avec les deux types d'anions existants, l'hexachlorostannate $[SnCl_6]^{2-}$ et le chlorure Cl⁻. Nous avons trois interactions avec l'ion libre Cl⁻ et deux autres avec $[SnCl_6]^{2-}$.

Les longueurs des liaisons hydrogène de type cation-anion ainsi que leurs angles de liaisons sont consignés dans le tableau II-3.

On constate d'après le tableau II-3 que toutes les liaisons hydrogène de type cation-anion sont des interactions inter moléculaires.

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N1-H1Cl4 ⁽ⁱ⁾	0.86	2.50	3.273(2)	150
N6-H5Cl1 ⁽ⁱⁱ⁾	0.82(3)	2.76(3)	3.100(3)	107(2)
N6-H6Cl4 ⁽ⁱ⁾	0.92(4)	2.33(4)	3.205(4)	160(3)
N9-H9Cl4 ⁽ⁱⁱⁱ⁾	0.92(4)	2.17(4)	3.089(3)	176(5)
C8-H8Cl1 ⁽ⁱⁱⁱ⁾	0.89(3)	2.63(3)	3.410(4)	148(3)

Tableau II-3 : Longueurs des liaisons hydrogène de types cation-anion.

Codes de symétrie : (i) x-1/4, 1/4-y, 3/4+z (ii)x-1/2, y, z-1/2(iii)1/4+x, 1/4-y, 1/4+z

L'ion chlorure libre Cl4 s'engage avec deux molécules d'adénine diprotonées formant trois liaisons hydrogène de types N-H...Cl ; deux interactions avec le même cation via N1-H1...Cl4 et N6-H6...Cl4 et une troisième interaction avec un deuxième cation via N9-H9...Cl4. (figure II-16). D'autre part, l'ion hexachlorostannate engage deux interactions par l'atome Cl1 avec deux cations différents de types N-H...Cl et C-H...Cl (figure II-16).

Figure II-16 : Vue en perspective des liaisons hydrogène de type cation-anion.

II-1-5-1-b Liaisons cation-eau

Pour ce type de liaisons, le cation et la molécule d'eau sont à la fois donneurs et accepteurs.

Premier cas: cation (donneur) -eau (accepteur)

L'atome d'oxygène O1W de la molécule la molécule d'eau présente deux liaisons hydrogène, agissant comme accepteur pour la même entité cationique (figureII-17). Ces deux liaisons hydrogène se trouvent pratiquement dans le plan de l'adénine diprotonée et le plan de la molécule d'eau est perpendiculaire à ce dernier. Les deux liaisons N6-H5...O1W et N7-H7...O1W sont de fortes interactions intermoléculaires. Les valeurs de ces liaisons sont consignées dans le tableau II-4.

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N6-H5O1W	0.82(3)	2.21(3)	2.993(5)	159(3)
N7-H7O1W	0.82(3)	2.01(3)	2.766(4)	154(3)

Tableau II-4 : Les liaisons hydrogène cation (donneur) – eau (accepteur)

Figure II-17 : Les deux liaisons hydrogène de O1W avec l'entité organique.

Deuxième cas : cation (accepteur) – eau (donneur)

Dans ce cas le cation organique joue le rôle d'un accepteur avec la molécule d'eau via l'interaction O2W-H4W...N3 (figure II-18).

 Tableau II-5 : La liaison hydrogène cation (accepteur) – eau (donneur)

Figure II-18 : La liaison hydrogène de O2W avec l'atome N3 du cation.

II-1-5-1-c Liaisons eau-anion

La molécule d'eau O2W joue le rôle d'un donneur avec l'ion libre Cl4 via l'interaction intermoléculaire moyennement faible (Tableau II-6). Cette liaison ce trouve dans le plan (b, c) et se déploie le long de l'axe c (Figure II-19).

Tableau II-6 : La liaison hydrogène eau-anion

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
O2W-H4W Cl4	0.88(4)	2.49(4)	3.337(5)	162(3)

Figure II-19 : Les liaisons hydrogène eau - anion.

II-1-5-1-d Liaisons eau – eau

On trouve une seule liaison intramoléculaire relativement forte (Tableau II-7) entre les deux molécules d'eau existantes dans la structure (figure II-20).

Cette liaison se développe en zigzag dans le plan (b, c) le long de l'axe b (figure II-21)

Tableau II-7 : La liaison hydrogène eau - e

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
O1W-H1WO2W	0.71(6)	2.08(6)	2.782(5)	172(6)

Figure II-20 : Les liaisons hydrogène eau-eau

Figure II-21 : Les liaisons hydrogène eau-eau et chlorure-eau.

II-1-5-2-Analyse des entités

II-1-5-2-a-Analyse des cations

Chaque cation engage sept liaisons hydrogène dans le réseau, trois avec l'ion chlorure libre Cl4 de type N-H...Cl4, deux avec Cl1 de type C-H...Cl1 et N-H...Cl1 et deux interactions avec la molécule d'eau O1W de type N-H...O1W. (figure II-22)

Figure II-22 : Les liaisons hydrogène dans les cations.

II-1-5-2-b-Analyse des anions

-b1-l'ion hexachlorostannate :

L'ion hexachlorostannate s'implique comme un accepteur par deux liaisons hydrogène avec

deux cations. (figure II-23) -b2-l'ion chlorure :

D'autre part l'ion chlorure libre engage trois interactions avec les cations et une interaction avec

l'oxygène O2W de la molécule d'eau (figure II-23).

Figure II-23 : Les liaisons hydrogène dans les anions.

II-1-5-2-c-Analyse des molécules d'eau

L'oxygène O1W de la molécule d'eau présente trois interactions : deux interactions intermoléculaires entant qu'accepteur avec le H5 de l'atome N5 et H7 de l'atome N7 et une troisième interaction intramoléculaire entant que donneur avec l'oxygène O2W de la deuxième molécule d'eau (figure II-24).

D'autres part, L'oxygène O2W de la molécule d'eau engage deux liaisons hydrogène avec Cl4 et N3 de l'hexachlorostannate et de l'adénine diprotonée respectivement (figure II-24).

Figure II-24 : Les liaisons hydrogène dans les molécules d'eau.

II-1-6-Analyse thermique

Afin de détecter les événements thermiques qui peuvent apparaître lors de la décomposition de ce composé, des analyses thermogravimétries (ATG), et des analyses thermiques différentielles (ATD) ont été effectuées sur une thermo-balance « TA Instruments – SDT 2960 Simultaneous DTA(DSC)-TGA ». L'expérience ATG-ATD a été réalisée entre les températures de 25°C et de 1000°C avec un régime de chauffe de 10°C.min⁻¹.

Figure II-25 : Analyse thermogravimétrique (ATG) et analyse thermique différentielle (ATD) de la décomposition du $[SnCl_6]^{2^-}$, $2(C_5H_7N_5)^{2^+}$ 2Cl⁻, $4H_2O$ sous N_2 avec un régime de chauffe de $10^{\circ}C.min^{-1}$.

Le composé bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate est stable jusqu'à de115°C, température à la quelle il commence à perdre les molécules d'eau. La courbe TG peut être décrite selon un processus à quatre étapes significatives (figure II-25) avec une perte totale de masse de 95.5%. Pour la première étape entre 115°C et 190°C on a une perte de masse équivalente aux quatre molécules d'eau de la structure. Les ions chlorure disparaissent à leur tour au cours de la deuxième étape (190°C et 278°C). Dans la troisième étape (278°C et 460°C)et la quatrième (460°C et 820°C), nous avons une volatilisation du chlorure d'étain et du chlorure d'adéninium. Ce type de décomposition est similaire à celui trouvé relevé dans la bibliographie avec d'autres bases azotés (les dérivés de la pyridine, la quinoléine et la acridine) **[63-64]**.

Le composé final obtenu après la décomposition thermique est sous forme d'une poudre blanchegrise. Ce résidu est en suite caractérisé par EDS et par diffraction des rayons X sur poudre ; il révélé la présence de l'oxyde d'étain SnO_2 (, PDF2 n° : 41-1445).Ce résultat montre la formation de l'oxyde d'étain au cours de la volatilisation de chlorure d'étain. Le signal ATD coïncide exactement avec les pertes de masse successives au cours de la décomposition thermique du produit de départ. Au cours de cette analyse thermique, aucun produit intermédiaire n'est stable.

Pour mieux comprendre ce phénomène d'oxydation une deuxième expérience a été réalisé dans les mêmes conditions que la première on utilisant l'azote N_2 à la place de l'oxygène O_2 .

Figure II-26 : Analyse thermogravimétrique (ATG) et analyse thermique différentiellel (ATD) de la décomposition du $[SnCl_6]^{2-}$, $2(C_5H_7N_5)^{2+}$ 2Cl⁻, $4H_2O$ sous O_2 avec un régime de chauffe de $10^{\circ}C.min^{-1}$.

Dans la figure II-26 qui montre les courbes ATG et ATD réalisées sous O_2 , on constate que la décomposition thermique de ce produit a été achevée un peu plus tôt (à 580°C) par rapport à celle effectuée sous N_2 , ce qui explique la rapidité de processus et que l'oxygène a bien favorisé l'oxydation de ce produit.

La perte de masse totale est de 62.5%, ce qui correspond à la formation rapide de l'oxyde d'étain. L'analyse de la décomposition thermique de ce type de produit est plus complexe que ça, d'autres interactions entre les fragments de la partie organique décomposée sont impliquées.

II-2-Etude du composé Bis cytosinium hexachlorostannate(IV)

II-2-1-Partie expérimentale

Le Bis cytosinium hexachlorostannate(IV) a été préparé à partir d'une quantité de chlorure d'étain dissoute dans l'eau bidistillé avec une quantité deux fois équivalente de la cytosine dans un milieu aqueux acidifié par de l'acide hydrochlorique. Après deux semaines d'évaporation lente à la température ambiante des cristaux incolores sous forme de plaquettes et de tiges se sont formés. Le schéma réactionnel de la synthèse est présenté ci-dessous :

La cytosine est le Keto tautomère du 4-amino, 2-hydroxy pyrimidine, elle présente deux sites essentiels susceptibles à la protonation **[43,44]**, l'atome d'azote N3 et l'atome d'oxygène O2 comme le montre la figure II-27.

Figure II-27 : Sites propices à la protonation de la cytosine.

Une recherche bibliographique sur les composés à base de cytosine montre que le site le plus favorable pour la protonation est l'atome d'azote ce qui est le cas dans notre molécule **[45-49]**.

II-2-2-Caractérisation préliminaire

II-2-2-1-Résonance Magnétique Nucléaire (RMN-¹H)

Afin de confirmer la protonation de la cytosine une étude préliminaire par la spectroscopie RMN de proton a été effectuée.

Le composé bis cytosinium hexachlorostannate(IV) est soluble dans le DMSO. Les deux protons H5 et H6 de deux atomes de carbone se trouvent à (7,76-7,80 ppm) et (5,99-6,03 ppm) respectivement donnant un signal de doublet chacun, par contre les deux protons H1 et H3 des deux azotes ont un déplacement chimique de 8,51 et 9,60 ppm pour un singulet chacun, et enfin on trouve une bosse aux environs de 3.30 ppm qui indique la présence des protons de NH₂ (figure II-28)

Figure II-28 : Spectre RMN de proton du composé Bis cytosinium hexachlorostannate(IV)

II-2-2-2-Microanalyse électronique (EDS)

La spectrométrie à sélection d'énergie nous confirme la présence de l'étain ainsi que du chlore (figure II-29), et conduit au rapport atomique moyen Sn/Cl= 0.1655 qui est comparable à celui trouvé après résolution structurale (Sn/Cl=1/6=0.1666).

La figure II-30 montre une micrographie obtenue par le microscopie électronique à balayage (MEB) du composé synthétisé se présentant sous forme de plaquettes. On remarque aussi que ce monocristal possède des faces bien définies.

Figure II-29: Spectre EDS d'une surface d'un cristal du composé Bis cytosinium hexachlorostannate(IV)

Figure II-30 : *Micrographie du composé Bis cytosinium hexachlorostannate(IV)*

II-2-3-Etude cristallochimique

II-2-3-1-Enregistrement des intensités

L'enregistrement de données a été réalisé sur un diffractomètre à géométrie Kappa équipé d'un détecteur bidimensionnel de type CCD (Charged Coupled Device), utilisant la radiation K_{α} de Mo (MoK α = 0.71073 Å) dans un domaine angulaire allant de 2.3-30.1° en θ sur un monocristal de dimensions (0.1 x 0.1 x 0.1) mm³.

L'acquisition de données a été réalisée par l'intermédiaire du programme COLLECT **[50]** .La mise à l'échelle des intensités et la moyenne des réflexions équivalentes sont effectuées à l'aide de programme SCALEPACK **[51]**.Le programme DENZO **[52]** a été utilisé pour l'indexation et l'intégration des pics de diffraction et le fichier final contient la liste des intensités des réflexions avec leurs indices de Miller (*hkl*), les écarts-types et cosinus directeurs des faisceaux incident et diffracté par rapport au repère cristallographique.

Une correction d'absorption semi empirique, MULTISCAN **[53]** a été appliquée afin d'améliorer la qualité de données de diffraction.

Sur les 2535 réflexions enregistrées dans le domaine (h : $-9 \rightarrow 9 / k : -9 \rightarrow 9 / 1 : -13 \rightarrow 4$), 2279 avec I > 2 σ (I) ont été utilisées pour la résolution structurale.

Les données cristallographiques et les conditions d'enregistrement sont présentées dans le tableau II-8 :

Formule chimique	$[SnCl_6]^{2^-}, 2(C_4H_6N_3O)^+$
Masse molaire (g/mole)	555.63
Système cristallin	Triclinique
Groupe d'espace, N°	P 1, 2
a (Å)	6.910 (5)
b (Å)	7.090 (5)
c (Å)	9.270 (5)
α (°)	101.86 (5)
β (°)	98.36 (5)
γ (°)	90.51 (5)
$V(A^3)$	439.4(4)
Ζ	1

Tableau II-8: Données cristallographiques, conditions d'enregistrement et résultats de l'affinement de la structure.

d _{cal} (g/cm ³)	2.100
Radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Facteur d'absorption (mm ⁻¹)	2.38
Température (K)	295
Dimensions du monocristal (mm ³)	0.1 x 0.1 x 0.1
Forme	Prisme
Couleur	Transparente
Conditions d'enregistrement :	•
Diffractomètre	Mach3 Kappa CCD
Limites en θ (°)	2.3-30.1
Limites h, k, l	$-9 \rightarrow 9, -9 \rightarrow 9, -13 \rightarrow 4$
réflexions mesurées	2533
réflexions indépendantes	2531
réflexions I>2 σ (I)	2279
R _{int}	0.052
Affinement: Affinement en F ²	
R (%)	4.07
$R_{w}(\%)$	9.84
GOF	1.05
Nombre de paramètre	106

II-2-3-2-Résolution et affinement de la structure

La structure cristalline de ce composé a été résolue par l'intermédiaire de l'interface WinGX [34] à l'aide de programme SIR2002 [35] grâce auxquels on a pu positionné tout les atomes de la structure (Sn, Cl, N, O, C).

Tous les atomes d'hydrogène ont été localisés à partir de calculs de cartes Fourier différence, au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide de SHELXL97 [**36**], ensuite ils ont été placés par calcul géométrique (avec C—H=0.93 Å et N—H=0.86 Å) et leur facteur d'agitation thermique a été définie comme isotrope tel que Uiso(H) = 1.2Ueq(X), X étant l'atome parent auquel est lié l'atome d'hydrogène.

En tenant compte des facteurs d'agitation thermique anisotropes des atomes non hydrogène et après plusieurs cycles d'affinement, nous avons obtenu les facteurs de reliabilié suivants :

R = 4.1% et Rw = 9.8% avec un GOF de 1.08.

A ce stade de l'affinement une valeur assez importante de la densité résiduelle a été trouvée dans le fourrier différence résiduelle ($\Delta \rho_{max} = 3.07 \text{ e.} \text{\AA}^{-3}$)

Highest peak 3.07 at 0.0000 0.5000 0.0000 [2.01 Å from Cl1].

Après plusieurs tentatives d'attribution d'atomes (et surtout de l'atome d'oxygène d'une molécule d'eau), cette densité ne révèle aucune signification chimique.

Les coordonnées atomiques, facteurs d'agitation thermiques anisotropes, distances inter atomique et angles de liaisons sont consignés respectivement dans les tableaux 1, 2, 3 et 4 (Annexe II).

II-2-4-Description de la structure

Le Bis cytosinium hexachlorostannate(IV) est un composé anhydre de formule $SnCl_6$ ($C_4H_6N_3O_2$. Il contient deux entités cristallographiquement bien séparés, l'une minérale et l'autre organique. Le complexe minéral et la matrice organique sont stabilisés dans le réseau cristallin par des liaisons hydrogène. Le réseau cristallin peut être alors décrit à partir d'une alternance des cations et des anions le long de l'axe c. (figure II-31 et II-32).

Figure II-31 : *Projection de la structure sur le plan (b,c).*

Figure II-32 : *Projection de la structure sur le plan (a,c).*

II-2-4-1-Unité asymétrique

L'unité asymétrique de ce composé est formée d'un cation d'une matrice organique protoné sur l'atome d'azote N3 et d'un anion de chlorure d'étain (Figure II-33).

Figure II-33 : Ortep **[53]** de l'unité asymétrique de la structure « Bis cytosinium hexachlorostannate(IV) »

II-2-4-2-Partie anionique

L'atome d'étain se trouve en position spéciale sur le centre d'inversion du groupe d'espace P $\overline{1}$ entouré par trois atomes de chlore en position générale et trois autres engendrés par la symétrie formant un octaèdre quasi-régulier (figure II-34), avec des distances et angles de liaisons (tableau II-9) comparables à ceux de quelques composés relevés dans la littérature **[54-58]**.

Figure II-34 : L'environnement octaédrique de l'étain (i) :1-x, 1-y, 1-z

Tableau II-9: Les distances et les angles de liaisons de l'environnement de l'étain.

Atome 1	Atome 2	Distance (Å)	Atome 1	Atome 2	Atome 3	Angle(°)
Sn	Cl1	2.425(2)	Cl1	Sn	Cl2	89.84(3)
Sn	C12	2.438(2)	Cl1	Sn	C13	90.03(3)
Sn	C13	2.413(2)	C12	Sn	C13	89.55(3)

Les octaèdres SnCl₆ occupent les sommets de la maille, ils se développent sous forme de couches parallèlement au plan (a, b) le long de l'axe c (figure II-35 et II-36).

La distance entre ces couches est de l'ordre du paramètre de la maille a (figure II-37).

Figure II-35 : Vue en perspective des couches des octaèdres

Figure II-36: *Projection des polyèdres SnCl*₆ *sur le plan (a,b)*

Figure II-37 : *Projection des polyèdres SnCl*₆ *sur le plan (a,c).*

II-2-4-3-Partie cationique

La partie cationique est formée d'une seule molécule organique qui est la cytosinium, elle présente un système cyclique conjugué. La déviation par rapport au plan moyen du radical pyrimidine est représentée dans le tableau II-10 (ci-dessous) **[59]**.

Atomes	Déviation (Å)
NI	-0.0163
C2	0.0183
N3	-0.0045
<i>C4</i>	-0.0040
C5	0.0041
Сб	0.0104
<u>02</u>	0.0802
N4	0.0185

Tableau II-10 : Déviations des atomes par rapport au plan moyen de cytosinium

Les valeurs présentées dans ce tableau sont très significatives par rapport à la planéité du cycle. Une grande déviation est observée pour l'atome d'oxygène (O_2) par rapport au plan du cycle.

Au cours de la synthèse, la forte libération de protons H^+ par l'acide permet facilement à la protonation de l'atome d'azote N3. Cette protonation a été observée sur le spectre RMN de proton et elle a été confirmée par diffraction des rayons X où on a constaté une ouverture de l'angle interne de l'azote protoné de 5.45° par rapport a l'angle interne de N3 de la cytosine déprotoné. La valeur de l'angle interne de N3 de notre composé est de 124,8(3)° et de la cytosine déprotoné est de 119,4 **[60]**.

L'entité cationique se déploie en doubles couches intercalées les unes par rapport aux autres parallèlement au plan (011) (figure II-38)

Figure II-38 : Développement de double couches des cations Parallèlement au plan (011)

La figure II-39 et II-40 montre que les entités de cytosinium s'enchaînent en zigzag deux à deux le long de l'axe a à c =1/2

II-2-5-Les liaisons hydrogène

II-2-5-1-Types de liaisons hydrogène

II-2-5-1-a-Liaisons cation-cation

Pour ce type de liaisons, on a une seule interaction intermoléculaire *via* N4-H4B... O2 et le cation joue le rôle d'un donneur par la liaison covalente de N-H et le rôle d'accepteur par l'atome d'oxygène (figure II-41).

Cette interaction est légèrement forte (tableau II-11), elle se développe sous forme de chaîne le long de l'axe a (figure II-41).

Tableau II-11 : liaison hydrogène cation- cation

Figure II-41 : Enchaînement en enfilade des cations via la liaison hydrogène N4-H4B... O2

II-2-5-1-b-Liaisons cation-anion

Les trois atomes d'azote (N1, N3, N4) de la cytosinium engagent à des interactions intermoléculaires avec les chlore de l'anion $SnCl_6$ entant que donneur et afin d'assurer la cohésion entre les deux entités organique et inorganique (figure II-42).

Les valeurs numériques de ces interactions sont consignées dans le tableau II-12.

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N3-H3 Cl1(i)	0.86	2.46	3.265(4)	157
N1-H1 Cl2(ii)	0.86	2.42	3.249(5)	162
N4-H4A Cl3(iii)	0.86	2.66	3.507(5)	169
N4-H4B Cl1(v)	0.86	2.92	3.490(4)	126

 Tableau II-12 : liaisons hydrogène cation-anion

Code de symétrie : (i)-x,-y+1,-z (ii)-x+1,-y+1,-z (iii)x,y+1,z (v)-x,-y+2,-z+1

Figure II-42 : Vue en perspective des liaison hydrogène cation-anion.

II-2-5-1-Analyse des entités

II-2-5-1-a-Les cations

Chaque cation dans la structure présente cinq interactions moléculaires, dont quatre avec l'hexachlorostannate (N—H...Cl) et une cinquième avec un autre cation (N—H...O).

On constate aussi que l'hydrogène H4B présente trois centres de liaisons « three center bond » c'est-à-dire qu'il possède une liaison covalente avec N4 et qu'il est engagé au même temps par intermédiaire de deux interactions, une fois avec l'anion et une fois avec le cation (figure II-43). Le même cas a été observé dans la structure "cytosinium perchlorate"[61] et la structure "cytosinium nitrate"[62].

La plus forte interaction intermoléculaire dans ce système de liaisons est observée entre cationcation (N4-H4B...O2 = 3.032(5)Å) appartenant à la même couche, ce qui assure la cohésion de la couche cationique par la liaison hydrogène (-H4B...O2 = 2.26Å).

Figure II-43 : Liaisons hydrogène engagées par le cation.

II-2-5-1-b-Les anions

L'ion $[SnCl_6]^{-2}$ est impliqué dans quatre liaisons hydrogène entant qu'accepteur et il engendre quatre autres par symétrie. L'atome de chlore Cl1 présente aussi trois centres de liaison, une covalente avec l'étain et deux liaisons hydrogène comme accepteur avec deux entités organiques différentes (figure II-44). Toutes ces interactions intermoléculaires participent à la formation d'un réseau bidimensionnel de liaisons hydrogène qui assure la cohésion de l'édifice cristallin dans le plan (a,c).

Figure II-44 : Environnement de l'anion par les liaisons hydrogène.

II-2-6-Analyse thermique

Les conditions utilisées sont similaires à celle de la première base azotée. Le composé bis cytosinium hexachlorostannate(IV) est stable jusqu'à 220°C puis viennent deux étapes de décomposition qui s'achèvent à 800°C (figure II-45). La perte de masse totale est de 88%. Le produit résiduel après caractérisation est l'oxyde d'étain SnO₂ (PDF2 n : 41-1445)

La courbe ATD se présente en deux principaux signaux, en accord avec la TG. Les premiers pics sont endothermique et s'étalent entre 220°C et 500°C et montrent la volatilisation du chlorure d'étain et le début de la décomposition du chlorure de cytosinium. Ce phénomène de décomposition thermique est similaire à celui des bases azotées étudiées précédemment [63-65]. Le pic du deuxième signal est exothermique et correspond à la formation de l'oxyde d'étain (SnO_2) .

Figure II-45 : Courbes ATD et ATG du composé $SnCl_6(C_4H_6N_3O)_2$ effectuées sous N_2 avec un régime de chauffe de $10^\circ C.min^{-1}$.

La même expérience a été refaite avec le bis cytosinium hexachlorostannate(IV), sous oxygène afin de mieux comprendre l'oxydation du produit.

D'après la figure II-46 on voit clairement l'effet de l'oxygène dans l'accélération du processus de la décomposition qui s'acheve à 620°C.

La courbe ATD présente un signal exothermique très accentué à 580°C dû à la cristallisation de l'oxyde d'étain.

Figure II-46 : Courbes ATD et ATG de la structure $SnCl_6(C_4H_6N_3O)_2$ effectuées sous O_2 avec un régime de chauffe de $10^\circ C.min^{-1}$.

II-Conclusion

Au cours de ce chapitre deux nouveaux composés hybrides à base d'étain et de bases azotées différentes ont été synthétisés par voie aqueuse. Ces deux nouvelles phases ont été caractérisées par résonance magnétique nucléaire du proton, spectroscopie d'énergie dispersive et diffraction des rayons X sur monocristal et sur poudre.

La première structure est le bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate.Ce composé possède un cation organique, deux types d'anions (un complexe minéral et des chlorure) et quatre molécules d'eau. Il cristallise dans le groupe d'espace non centrosymétrique Fdd2 (N° 43) du système orthorhombique. La détermination structurale nous a permis de mettre en évidence la présence de couches cationiques qui se développent le long de l'axe b et alternées par des couches d'octaèdres SnCl₆. Les molécules d'eau et les chlorures viennent s'insérer en sandwich entre ces couches.

L'édifice cristallin est consolidé par un système tridimensionnel de liaisons hydrogène de types : cation-anion, cation-eau, eau-anion, eau-eau.

L'analyse thermique à montrer que le composé est stable jusqu'à 115°C, puis il se décompose selon un processus de quatre étapes qui s'achève à 820°C avec la formation de l'oxyde d'étain SnO₂.

Le deuxième composé est le Bis cytosinium hexachlorostannate(IV) de formule

SnCl₆ (C₄H₆N₃O)₂. Il cristallise dans le système triclinique avec le groupe d'espace P-1.

La structure de ce composé peut être décrite par une alternance de couches de cytosinium et de polyèdres $SnCl_6$ qui s'alternent parallèlement au plan (a,b). La structure est stabilisée par un réseau bidimensionnel de liaison hydrogène de type cation-cation (N-H...O) et cation-anion (N-H...Cl).

Les analyses thermiques TG-TD ont permis de montrer la formation de SnO_2 à 800°C sous azote et à 620°C sous oxygène avec deux étapes intermédiaires de décomposition lors de la volatilisation totale du produit.

Bibliographie

[1]Hingerty B. E., Einstein J. R. & Wei C. H. (1981). Acta Cryst. B37, 140-147. [2]Hardgrove G. L., Einstein J. R., Hingerty B. E. & Wei C. H. (1983). Acta Cryst. C39, 88-90. [3]Langer V. & Huml K. (1978b). Acta Cryst. B34, 1157-1163. [4]Zelenak V., Vargova Z. & Cisarova I. (2004). Acta Cryst.E60, 0742-0744. [5]Bendjeddou L., Cherouana A., Dahaoui S., Benali-Cherif N. & Lecomte C. (2003). Acta Cryst. E59, o649-o651. [6]Langer V. & Huml K. (1978a). Acta Cryst. B34, 1881-1884. [7]Kistenmacher T. J. & Shigematsu T. (1974). Acta Cryst.B30, 166-168. [8]Cheng Y. J., Wang Z. M., Liao C. S. & Yan C. (2002). New J. Chem. 26, 1360-1364. **[9]**Young A. C. M., Dewan J. C. & Edwards A. J. (1991). Acta Cryst. C47, 580-584. [10] Brown D.B., Wasson J.R., Hall J.W., & Hatfield W.E (1977) Inorganic Chemistry, Vol. 16, No. 10, 2526-2529 [11]Brown D.B., Wasson J.R., Hall J.W., Helis H.M., Walton E.G., & Hatfield W.E (1977), Inorganic Chemistry, Vol.16, No. 11, 2675-2680. [12]Pilar A., Simone S.A., César P. & Félix Z. (2005) Journal of Inorganic Biochemistry 99, 2226-2230. [13]Michael Roitzsch & Bernhard Lippert (2004) J.Am.Chem.Soc.9 VOL.126, No.8,2421-2424. [14]Gaballa A., Schmidt H., Hempel G., Reichert D., Wagner C., Rusanov E. & Steinborn D.(2004) Journal of Inorganic Biochemistry 98, 439-446. [15]Terzis A.(1976) Inorganic Chemistry, Vol.15, No.4,793-796. [16]Garcia-Rasoa A., Fiola J.J., Badenasa F., Solansb X., Font-Bardiab M.(1999) Polyhedron 18, 3077-3083. [17]Jaworski S., Schoellhorn H., Eisenmann P. & Thewalt U., Lippert B., (1988), Inorganica Chimica Acta. 153(1), 31-38. [18]Hountas A. & Filippakis S. E., (1982), Crystal Structure Communications 11(3), 87-90. [19]Casellato U., Ettorre R. & Graziani R., (2000), Crystal structure of Zeitschrift fuer Kristallographie-New Crystal Structures 215(2), 289-290. [20]Casellato U., Ettorre R. & Graziani, R. (1993). Acta Cryst. C49, 956-957. [21]Fujinami F., Ogawa K., Arakawa Y., Shirotake S., Fujii S. & Tomita K.-I. (1979). Acta Cryst. B35, 968-970. [22]Bourne P. E. & Taylor M. R. (1983). Acta Cryst. C39, 430-432. [23]Hillgeris E.C. & Lippert B. (1994). Acta Cryst. C50, 670-671. [24] Tran Qui D. & Bagieu, M. (1990). Acta Cryst. C46, 1645-1647.
[25]Salam Md.A. & Aoki K., Inorganica Chimica Acta (2000), 311(1-2), 15-24. [26]Ogawa K., Nishitani K., Fujiwara T., Shirotake, S. & Tomita K.-I. (1979). Acta Cryst. B35, 965-967. [27]Valle G., Ettorre R. & Peruzzo V. (1995). Acta Cryst. C51, 2273-2275. [28] Tran Qui D. & Palacios, E. (1990). Acta Cryst. C46, 1220-1223. [29]Muthiah P. T., Robert J. J., Raj S. B., Bocelli G. & Olla R. (2001). Acta Cryst. E57, m558-m560. [30]Ogawa K., Kumihashi M., Tomita K. & Shirotake, S. (1980). Acta Cryst. B36, 1793-1797.calcium [31]Sarkar A. R. & Bandyopadhyay R. K (1989), Indian Journal of Chemistry, Section A: Inorganic, Physical, Theoretical & Analytical 28A(11), 998-1000. [32]Sarkar A. R. & Bandyopadhyay, R. K. (1989), Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry (1989), 19(8), 761-771. [33]Casellato U., Graziani R., Martelli M. & Plazzogna G. (1995). Acta Cryst. C51, 2293-2295. [34]Farrugia L. J. (1999). J. Appl. Cryst. 32, 837-838. [35]Burla M.C., Camalli M., Carrozzini B., Cascarano G.L. Giacovazzo C., Polidori G. & Spagna, R. (2003).J. Appl. Cryst. 36, 1103. [36] Sheldrick G. M. (1997). SHELXL-97: Programs for Crystal Structure Refinment.University of Göttingen, Göttingen. [37]Orpen A. G. (1980) J. Chem. Soc., Dalton Trans. 2509 [38]Bouacida S., Merazig H., Benard-Rocherulle P. & Rizzoli C.(2007). Acta Cryst. E63, m379-m381. [39] Bouacida S., Merazig H., Beghidja A. & Beghidja C. (2005). Acta Cryst. E61, m2072-m2074. [40]Garnier E., El Mouahid A. & Cernak J. (1994). Acta Cryst. C50, 845-847. [41]Voet D. & Rich A. (1970). Prog. Nucleic Acid Res. Mol.Biol.10, 183-265. [42]Young A. C. M., Dewan J. C. & Edwards A. J. (1991). Acta Cryst. C47, 580-584. [43]Dreyfus M., Bensaude O., Dodin G. & Dubois J. E. (1976), Journal of the American Chemical Society 98(20), 6338-6349. [44] Denis, A. Gilbert, M. Theoretica Chimica Acta (1968), 11(1), 31-37. [45]Gotoh K., Ishikawa R. & Ishida H. (2006). Acta Cryst. E62, 04738-04740. [46]Smith G., Wermuth U. D. & Healy P. C. (2005). Acta Cryst. E61, 0746-0748. [47]Bouchouit K., Benali-Cherif N., Dahaoui S., Bendeif E.-E. & Lecomte C. (2005). Acta Cryst. E61, o2755-o2757.

[48]Cherouana A., Bouchouit K., Bendjeddou L. & Benali-Cherif N. (2003). Acta Cryst. E59, 0983-0985. [49]Bagieu-Beucher M. (1990). Acta Cryst. C46, 238-240. [50]Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands. [51]Otwinowski Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M.Sweet, pp.307-326. New York: Academic Press. [52]Blessing R. H. (1995). Acta Cryst. A51, 33-38. [53]Farrugia L. J. (1997). J. Appl. Cryst. 30, 565. [54] Bouacida S., Merazig H., Benard-Rocherulle P. & Rizzoli C. (2007). Acta Cryst. E63, m379-m381. [55]Bouacida S., Merazig H., Beghidja A. & Beghidja C. (2005). Acta Cryst. E61, m1153-m1155. [56]Rademeyer M. (2004). Acta Cryst. C60, m55-m56. [57]Rademeyer M. (2004). Acta Cryst. E60, m345-m347. [58] Ishida H.; Furukawa Y.; Sato S.; Kashino S. (2000), Journal of Molecular Structure 524 95-103. [59]Nardelli M. (1995). J. Appl. Cryst. 28, 659. [60]Mc Clure, R. J. & Craven, B. M. (1973). Acta Cryst. B29, 1234-1238. [61]Benjeddou lamia thèse de doctorat d'état université Montouri de Constantine Algérie 2004. [62]Cherouana A., Bouchouit K., Bendjeddou L. & Benali-Cherif N. (2003). Acta Cryst. E59, 0983-0985. [63] Tadeusz Janiak & Jerzy Blazejowski (1990) Thermochimica Acta 157, 137-154. [64] Jacek Lubkowski & Jerzy Blazejowski (1987) Thermochimica-Acta, 121, 413-436. [65]Jacek Lubkowski & Jerzy Blazejowski(1986)J.Chem Faraday Trans1 82, 3069-3080.

Chapitre III

SYNTHESE, ETUDE STRUCTURALE ET ANALYSE THERMIQUE DE DEUX DERIVES D'ANILINIUM AVEC DES IONS CHLORURES

III- Introduction

Deux dérivés d'anilinium ont été étudiés dans cette partie du travail. Le premier est le 4méthoxyaniline, qui il est utilisé dans plusieurs domaines d'application de l'optique non linéaire [1], les propriétés thermo-optiques [2], la photoluminescence [3] et l'électro-polymérisation [4]. Des analyses morphologiques sur des couches minces [5] ont été effectuées et plusieurs études structurales à base de cet amine ont été explorées avec les phosphates [6], le cuivre [7], les bases de Shiff [8,9] et aussi avec d'autres matrices organiques [10-17].

La première partie de ce chapitre portera sur la synthèse, la caractérisation, l'étude structurale et la stabilité thermique d'un nouveau composé hybride à base d'étain et de l'amine méthoxyaniline. Le deuxième dérivé d'anilinium étudié est le 2-hydroxyaniline. En combinaison avec des métaux, ce dernier dérivé est très peu cité dans la bibliographie, en particulier avec le cadmium **[18]** et le cuivre **[19,20]**. Cependant il est très répandu dans les composés incluant des matrices organiques **[21-27]**. L'étude cristallochimique du composé Tris (2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate nous a permis de mettre en évidence la très grande richesse de la liaison hydrogène dans ce système tridimensionnel d'interaction entre les cations, les anions et les molécules d'eau. Ce composé est la première structure ionique à base d'étain et d'hydroxyaniline étudiée.

III-1-Etude de la structure Tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride

III-1-1-Partie expérimentale

Le Tetra(4-methoxyanilinium) hexachlorostannnate(IV) chloride $([SnCl_6]^{2^-}, 4(C_7H_{10}NO)^+$, 2Cl⁻) a été préparé à partir d'une solution aqueuse de chlorure d'étain et de 4-méthoxyaniline dans un milieu acidifié par HCl. après quelques jours d'une évaporation lente, des cristaux de forme irrégulière avec des faces bien définies et de couleur marron ont été obtenus. Ils ont été sélectionnés sous microscope optique (Leica) pour analyse par diffraction des rayons X. Le schéma réactionnel est présenté ci-dessous.

Ce dérivé d'aniline possède un seul site de protonation qui la fonction amine $-NH_2$. La forte libération des protons par l'acide conduit à $-NH_3^+$.

III-1-1-Caractérisation préliminaire

III-1-2-1-Résonance Magnétique Nucléaire (RMN-¹H)

La figure III-1 présente le spectre RMN du proton du composé Tetra (4methoxyanilinium) hexachlorostannate (IV) dichloride où on distingue clairement les pics des quatre protons aromatiques sous forme de deux doublets à (7.02-7.07ppm) et à (7.3-7.35ppm), le singulet de trois protons du méthoxy se trouve à 3.78ppm et le pic de référence pour le DMSO est à 2.52ppm.

Figure III-1 : *Le spectre RMN du proton du composé Tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride*

III-1-2-2-Microanalyse électronique (EDS)

La moyenne des rapports atomiques obtenus par la microanalyse électronique est de Sn/Cl=0.123. Cette valeur est relativement proche de la valeur théorique qui est de 0.125. Les cristaux de ce composé ont des formes irrégulières avec des faces bien définies (figure III-2).

Figure III-2 : *Image des cristaux du composé Tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride réalisée par le MEB.*

III-1-3-Etude cristallochimique

L'analyse de ce composé par la diffraction des rayons X nous a révélé que l'unité asymétrique est formée de deux entités organiques cristallographiquement indépendantes, un complexe minéral et un ion chlorure. Ce composé cristallise dans le groupe d'espace C 2/c du système monoclinique, et a pour formule générale $SnCl_6$ (C₇H₁₀NO)₄ 2Cl.

III-1-3-1-Enregistrement des intensités

Les intensités diffractées ont été mesurés avec un diffractomètre Kappa CCD en utilisant un cristal de dimensions (0.02 x 0.09x 0.25) mm³ dans un domaine angulaire allant de 2.93 à 27.49° en θ .

Les données cristallographiques et les conditions d'enregistrement sont consignées dans le tableau III-1.

Formule chimique	$[\text{SnCl}_6]^{2-}, 4(\text{C}_7\text{H}_{10}\text{NO})^+, 2\text{Cl}^-$
Masse molaire (g/mole)	898.95
Système cristallin	Monoclinique
Groupe d'espace, N°	C2/c, 15
a (Å)	28.5162(4)
b (Å)	7.2590(1)
c (Å)	21.5223(3)
β (°)	122.158(8)
$V(A^3)$	3771.57(9)
Ζ	4
d _{cal} (g/cm ³)	1.583
Radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Facteur d'absorption (mm ⁻¹)	1.282
F(000)	1816
Température (K)	295
Dimensions du monocristal (mm3)	0.02 x 0.09x 0.25
Forme	Irréguliére
Couleur	Marron
Conditions d'enregistrement :	
Diffractomètre	Mach3 Kappa CCD
Limites de θ (°)	2.93 -27.49
Limites h, k, l	$-36 \rightarrow 36, -9 \rightarrow 9, -27 \rightarrow 27$
réflexions mesurées	8281
réflexions indépendantes	4326
réflexions I>2σ(I)	3837
Affinement: Affinement en F ²	
R (%)	2.96
R _w (%)	7.89
GOF	1.107
Nombre de paramètre	209
Coefficient d'extinction	0.0054 (2)

Tableau III-1: Données cristallographiques et conditions d'enregistrement

III-1-3-2-Résolution et affinement de la structure

La structure a été résolu a l'aide du programme SIR par l'intermédiaire du package de logiciels WinGX. L'affinement final du modèle cristallin par le programme SHELXL nous a conduit aux facteurs de reliabilité suivants :R = 2,96% et Rw = 7,89% avec GOF=1,107

Tous les atomes d'hydrogène ont été localisés sur des cartes de densité électronique tridimensionnelles mais ils ont été positionnés par calcul géométrique.

Au dernier stade de l'affinement, une densité résiduelle non négligeable a été localisée sur les cartes de Fourier différence finales : ($\Delta \rho_{max} = 1.689 \text{ e.Å}^{-3}$). Cepandant cette dernière ne présente aucune signification chimique.

Highest peak 1.69 at 0.0000 0.6050 0.2500 [1.82 A from H11A].

Les coordonnées atomiques, les facteurs d'agitation thermiques anisotropes, les distances inter atomiques, les angles de liaisons ainsi que les angles de torsion sont consignées respectivement dans les tableaux 1, 2, 3, 4 et 5 (Annexe III).

III-1-4-Description de la structure

Le composé Tetra (4-methoxyanilinium) hexachlorostannnate(IV) dichloride peut être décrit comme étant une alternance de couches de la partie organique et de couches de la partie anionique le long de l'axe a. Les ions chlorure libres et les polyèdres du complexe $SnCl_6$ forment des couches anioniques parallèles au plan (b, c).

Les méthoxyanilinium se regroupent deux à deux par un centre de symétrie et forment des couches parallèles au plan (b, c). (Figure III-3)

Figure III-3 : *Projection de la structure sur le plan* (a,c) : *Disposition des couches cationiques et anioniques*

III-1-4-1-Unité asymétrique

L'unité asymétrique (figure III-4) de ce composé est formée de deux entités organiques (A et B) cristallographiquement indépendantes, d'un ion chlorure libre et un atome d'étain en position spécial 4e entouré de trois atomes de chlore. L'atome d'étain étant en position spéciale sur l'axe binaire du groupe d'espace C 2/c engendre trois autres équivalents par symétrie formant un octaèdre SnCl₆. (figure III-5).

Figure III-4 : *ORTEP de l'unité asymétrique du composé Tetra (4-methoxyanilinium) hexachlorostannnate(IV) dichloride*

III-1-4-2-Partie anionique

La partie anionique est formé de deux types d'anions : les ions chlorure libres Cl^{-} et le complexe hexachlorostannate $SnCl_6^{2-}$.

Les ions $SnCl_6^{2-}$ forment des octaèdres quasi-réguliers avec des distances et des angles conformes avec ceux trouvés dans la bibliographie **[28-31]** (tableau III-2).

Atome 1	Atome 2	Distance (Å)	Atome 1	Atome 2	Atome 3	Angle(°)
Sn	Cl1	2.4165(5)	Cl1	Sn	C12	89.70(2)
Sn	Cl2	2.4148(5)	Cl1	Sn	C13	178.381(19)
Sn	Cl3	2.4431(5)	Cl2	Sn	C13	89.14(2)

Tableau III-2: Distances et angles de liaisons dans l'octaèdre SnCl₆

Au cours de la réaction l'atome de l'étain est passé de l'état d'oxydation 2+ à 4+. L'atome de l'étain est entouré par six atomes de chlore dont trois d'entre eux sont engendrés par le plan de glissement c (figure III-5).

Figure III-5 : Ortep du complexe hexachlorostannate Codes de symétrie : -x,y,-1/2-z

Les polyèdres $SnCl_6$ sont disposés en couche parallèle au plan (a, b) le long de l'axe c. Les ions chlorure se trouvent en sandwich deux à deux entre les couches de ces polyèdres $SnCl_6$ (Figure III-6 et III-7).

Les couches SnCl₆ sont décalées les une par rapport aux autres d'une distance équivalente à la distance Sn—Cl (Figure III-8).

Figure III-6 : Vue en perspective des couches d'anion SnCl₆ et Cl

Figure III-7 : *Projection des couches anionique sur le plan (b, c)*

Figure III-8 : *Vue en perspective des couches anionique sur le plan (a,b).*

III-1-4-3-Partie cationique

La partie cationique se développent le long de l'axe c en formant des couches en zigzag. Ces couches se situent à b=0 et à b=1/2 (Figure III-9).

Figure III-9 : Disposition des couches cationiques dans la maille.

La projection d'une couche cationique sur le plan (a,c) (couche à b=0 ou b=1/2) montre clairement la disposition des fonctions amine protonée à a=0 et a=1/2 et les fonctions méthoxy $\dot{a}=1/4$ et a=3/4.

Une couche cationique parallèle au plan (a,c) est en réalité formée de parties organiques distinctes situées à a=1/4 et a=3/4 (Figure III-10 et III-11).

Figure III-10 : *Projection d'une couche cationique sur le plan (a, c).*

Figure III-11 : *Projection des couches cationiques sur le plan (a, b).*

III-1-5-Les liaisons hydrogène

III-1-5-1-Cation-anion $[(SnCl_6)^{2-}]$

Les entités cationiques (A et B) engagent avec le complexe $SnCl_6$ des liaisons hydrogène de type cation- anion via N—H...Cl et C—H...Cl.

Le tableau III-3 résume les valeurs de ces interactions intermoléculaires et indique que ces derniers sont relativement faibles

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)		
N1A-H11A Cl3(i)	0.89	2.65	3.438(2)	148		
N1B-H11B Cl3(ii)	0.89	2.65	3.531(2)	173		
N1A-H13A Cl1(v)	0.89	2.68	3.488(2)	151		
C7B-H72BCl1(v)	0.96	2.81	3.574(4)	137		
Cadaa da arma átria . (i) u	-1 - 1/2/2	(1)	-1/2			

Tableau III-3: Liaisons hydrogène cation-anion

Codes de symétrie : (i) :x,-1-y,z-1/2(ii):-x,y,1/2-z (v) : :x,-y,z-1/2

La figure III-12 montre l'engagement du complexe $SnCl_6$ dans le réseau cristallin entant que donneur avec huit molécules d'amine protonée via les deux atomes du chlore Cl1 et Cl3 avec les liaisons covalentes N—H et C—H.

Figure III-12 : Environnement du complexe SnCl₆ par les liaisons hydrogène

III-1-5-2-Cation-anion (Cl)

Les cations A et B forment des liaisons hydrogène avec l'ion chlorure libre Cl4. Ces interactions intermoléculaires sont plus fortes que celles engagées avec le complexe SnCl₆. Le tableau III-4 donne les longueurs de liaisons hydrogène cation-anion (Cl⁻ libre).

D-HA	D-H(Å)	HA(Å)	DA (Å)	D-HA (°)			
N1A-H12A Cl4(iii)	0.89	2.21	3.101(3)	176			
N1B-H12B Cl4(iv)	0.89	2.27	3.139(2)	165			
N1B-H13BCl4(vi)	0.89	2.28	3.143(2)	163			
Codos do sympétrico (iii)	$C_{2} = \frac{1}{2} + \frac{1}{2$						

Tableau III-4: Liaisons hydrogène cation-anion(libre)

Codes de symétrie : (iii) : -x,-1-y,-z (iv) :x,y-1,z (vi) :1/2+x,3/2+y,z

Les liaisons hydrogène entre les cations et les ions chlorure libres se présentent sous forme de cycles où les ions chlorure se trouvent coincés entre les molécules organiques formant ces interactions (figure III-13).

Figure III-13 : Liaisons hydrogène entre l'ion chlorure libre et les cations

III-1-6-Analyse thermique

La décomposition thermique du composé Tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride a été effectué sur une thermobalance «Labsys de SETARAM » sous azote avec une vitesse de chauffe de 10°C.min⁻¹ dans un domaine de température allant de 25°C à 600°C.

D'après la figure III-14 qui présente les deux courbes de l'analyse thermogravimétrique (ATG) et l'analyse thermique différentiel (ATD), on remarque que la décomposition se fait pratiquement en deux étapes, la première entre 190°C et 320°C et la deuxième entre 320°C et 520°C qui est relativement lente par rapport à la première. Le produit est stable jusqu'à une température de 190°C. Au cours de ces changements thermique on constate la décomposition de la partie organique et la sublimation du chlorure d'étain. Dans la première étape,nous avons une perte de masse de 54.7% qui en accord avec la valeur théorique de 55.16%, ce qui explique la disparition de la partie organique (les quatre entités du méthoxyanilinium).

Dans la deuxième partie de la courbe (320°C et 520°C), la décomposition est très lente et donne la sublimation du chlorure d'étain qui est simultanée avec la formation de l'oxyde d'étain.

Ce même type de décomposition a été observé dans la bibliographie avec le hexachlorostannate de benzenamine **[42]**.

Figure III-14 : *Courbes d'analyse thermogramitrique et d'analyse thermique différentiel du composé Tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride.* Avec un régime de chauffe de 10°C.min⁻¹ entre 25°C et 600°C

III-2-Etude de la structure Tris (2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate

III-2-1-Partie expérimentale

La synthèse a été effectuée sous pression autogène par voie hydrothermale dans un autoclave chemisé d'un récipient en téflon [32 - 34] d'un volume de 23 ml (figure III-15).

Figure III-15 : *Autoclave (Parr)*

La méthode consiste à mélanger le chlorure d'étain dihydraté avec l'ortho aminophénol en ajoutant quelques gouttes d'acide hydrochlorique dans une quantité d'eau bidistillée.

Après agitation, le mélange est versé dans l'enceinte en téflon et placé dans une étuve pendant trois jours à la température constante de 120°C.

Des cristaux de couleur marron et en forme de tiges et de plaquettes ont été obtenus et séparés sur un microscope optique (Laica).

Pour l'ortho-aminophenol nous avons un seul site susceptible à la protonation qui est la fonction amine (NH₂). Le schéma réactionnel est représenté ci-dessous :

III-2-2-Caractérisation par Spectroscopie d'Energie Dispersive (EDS)

Une caractérisation préliminaire par microanalyse électronique a été effectué, afin de confirmer la présence de l'étain et du chlore et de donner leurs rapport atomique. La valeur moyenne le rapport Sn/Cl (0.147) est comparable à celle calculée en fin de résolution structurale Sn/Cl=1/7=0.142 (type I, figure III-16).

Figure III-16 : *Image de microscopie électronique à balayage du mélange des deux types de cristaux.*

La figure III-16 présente les deux types de cristaux sous forme de plaquettes (I et II), du produit synthétisé, l'un de ces cristaux (type II) est en voie de dégradation..

Ce deuxième type de cristaux est sensible à l'air et la moyenne des rapports atomiques est de l'ordre de Sn/Cl=0.5 (en présence du carbone, de l'azote et de l'oxygène).Cette valeur nous laisse croire à la présence de chlorure d'étain SnCl₂.

III-2-3-Etude cristallochimique

III-2-3-1-Enregistrement des intensités

La collection des données a été effectuée à température ambiante sur un diffractomètre Kappa CCD utilisant la radiation K_{α} du Mo (λ Mo $K_{\alpha} = 0.71073$ Å) dans un domaine angulaire allant de 2.95-27.47° en θ sur un cristal de dimensions (0.02 x 0.02 x 0.31) mm³. Sur les 20515 réflexions enregistrées dans le domaine (h : -20 \rightarrow 21 k : -9 \rightarrow 9 1 : -32 \rightarrow 32),

seules 5218 réflexions avec I > 2 σ (I) ont été utilisées pour la résolution structurale

Les données cristallographiques et les conditions d'enregistrement sont consignées dans

le tableau III-5 :

Formule chimique	$[SnCl_6]^{2^-}, 3(C_6H_8NO)^+Cl^-, 3H_2O$
Masse molaire (g/mole)	751.29
Système cristallin	Monoclinique
Groupe d'espace, N°	P 2 ₁ /n, 14
a (Å)	16.2653 (2)
b (Å)	7.1079 (1)
c (Å)	25.4562 (5)
β (°)	90.751 (1)
$V(A^3)$	2942.79(8)
Ζ	4
d _{cal} (g/cm ³)	1.696
Radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Facteur d'absorption (mm ⁻¹)	1.54
Température (K)	296
Dimensions du monocristal (mm ³)	0.02 x 0.02 x 0.31
Forme	Aiguille
Couleur	Marron
Conditions d'enregistrement :	
Diffractomètre	Mach3 Kappa CCD
Limites de θ (°)	2.95-27.47
Limites h, k, l	$-20 \rightarrow 21, -9 \rightarrow 9, -32 \rightarrow 32$
réflexions mesurées	20517
réflexions indépendantes	6647
réflexions I>2σ(I)	5218
R _{int}	0.026
Affinement: Affinement en F ²	
R (%)	4.1
R _w (%)	10.6
GOF	1.13
Nombre de paramètre	341

 Tableau III-5: Données cristallographiques et conditions d'enregistrement.

III-2-3-2-Résolution et affinement de la structure

La structure cristalline a été résolue par le programme SIR2002 [**35**] et affinée par SHELXL [**36**] où on a pu positionner tous les atomes de Sn, Cl, C, N, O.

Tous les atomes d'hydrogène ont été localisés dans les cartes de Fourier différence. Les hydrogènes des molécules d'eau ont été affiné par la méthode des moindre carré en fixant leurs facteurs d'agitation thermiques à 0.05.Pour les le reste des hydrogènes on les a placé par calcul géométrique (avec C—H=0.93 Å N—H=0.89 Å et O—H=0.82 Å) et leurs facteur d'agitation thermique a été définie comme isotrope tel que Uiso(H) = 1.2 Ueq(C) et1.5 Ueq(N,O) ; C, N et O étant l'atome parent auquel est lié l'atome d'hydrogène.

Les facteurs de reliabilité obtenus a la fin de l'affinement sont les suivants :

R = 4.1% et Rw = 10.6% avec une estimée de la variance de (GOF)1.13

A ce stade d'affinement la Fourier différence ne révèle aucun pic significatif

Highest peak 0.84 at 0.8048 0.3285 0.0458 [1.84 A from H11C]

Les coordonnées atomiques, les facteurs d'agitation thermiques anisotropes, les distances inter atomique et angles de liaisons sont consignés respectivement dans les tableaux 1, 2, 3 et 4 (Annexe IV).

III-2-4-Description de la structure

La structure Tris (2-hydroxyanilinium) hexachlorostannate (IV) chloride trihydrate est formée d'un anion minéral $SnCl_6$, de trois cations organiques cristallographiquement indépendants, d'un ion chlorure et de trois molécules d'eau.

La structure peut être décrite par l'alternance de doubles couches de la partie anionique et de couches de la partie cationique qui se déploient en zigzag. Les molécules d'eau et des ions chlorures se trouvent en sandwich entre les couches (figure III-17).

Figure III-17 : *Projection de la structure sur le plan (a,c).*

III-2-4-1-Unité asymétrique

L'unité asymétrique est formée de trois cations d'ortho amino phénol protoné en fonction amine (-NH₂) (A, B et C) cristallographiquement indépendants, de deux types d'anions (SnCl_6^{2-} et Cl⁻) et trois molécules d'eau (figure III-18).

Figure III-18 : Ortep de l'unité asymétrique.

III-2-4-2-Partie anionique

La partie anionique comporte des ions chlorure libres et les octaèdres $SnCl_6$, l'atome d'étain occupe une position générale du groupe d'espace $P2_1/n$ contrairement aux mêmes types de composés étudiés dans ce travail où l'étain occupe des positions spéciales. Il est entouré par six atomes de chlore en position générale formant ainsi un octaèdre quasi-régulier (figure III-19).

Les valeurs numériques consignées dans le tableau III-6 montrent que les distances et les angles de liaisons dans l'octaèdre $SnCl_6$ sont conformes avec celles relevées dans la littérature pour ce même type de composés [**37-41**].

On constate que le polyèdre est légèrement déformé et les distances inter atomiques varient entre 2.4144 (10) et 2.4495 (11) Å avec des angles de liaisons allant de 88.48 (3) à

91.92 (3). Cette déformation peut être expliquée par l'encombrement stérique dû à l'environnement de ce polyèdre.

Figure III-19 : Ortep de l'octaèdre SnCl₆

Atome 1	Atome 2	Distance (Å)	Atome 1	Atome 2	Atome 3	Angle(°)
Sn1	Cl1	2.4215(10)	Cl1	Sn1	Cl3	88.48(3)
Sn1	Cl2	2.4144(10)	Cl1	Sn1	Cl4	89.04(4)
Sn1	C13	2.4180(10)	Cl1	Sn1	C15	91.92(3)
Sn1	Cl4	2.4495(11)	Cl1	Sn1	C16	88.86(3)
Sn1	C15	2.4198(10)	Cl2	Sn1	C13	90.59(3)
Sn1	Cl6	2.4397(10)	Cl2	Sn1	Cl4	91.74(4)
			Cl2	Sn1	C15	89.04(3)
			Cl2	Sn1	Cl6	90.39(3)

Tableau III-6 : Distances et angles de liaisons de l'octaèdre SnCl₆

Les octaèdres $SnCl_6$ se développent deux à deux le long de l'axe a formant des couches parallèlement au plan (ab) (figure III-20 et III-21)

Figure III-20 : Projection des couches d'octaèdres sur le plan (ab) avec les ions chlorure

Figure III-21 : Alternance des couches de deux types d'anion $([SnCl_6]^{2-} et Cl^-)$

Les ions chlorure Cl⁻libres se trouvent coincés en sandwich entre les couches en zigzag des octaèdres le long de l'axe c, à c =1/4 et c =3/4(figure III-21 et III-22). Ces ions Cl⁻ jouent un rôle très important dans les interactions inter et intramoléculaire. Ils participent à la stabilité du réseau tridimensionnel de liaisons hydrogène avec les cations organiques et les molécules d'eau.

Figure III-22 : *Projection de la partie anionique sue le plan (bc)*

III-2-4-3-Partie cationique

La partie organique se déploie sous forme de files en zigzag le long de la rangée $[10\overline{1}]$ par trois entités de l'unité asymétrique (A, B et C) (figure III-23).

Figure III-23 : *Entités organiques (A, B, C)* dans le plan (a,c).

On observe que les cations s'empilent en couches en zigzag le long de l'axe b, à b=1/4 et 3/4 (figure III-24).

Figure III-24 : Empilement de couches de cations en zigzag le long de l'axe b.

III-2-4-4-Les molécules d'eau

Les trois molécules d'eau se présentent sous forme de couches parallèlement au plan (a,b) et se répètent le long de l'axe c à c=1/8, 3/8 5/8 et 7/8. (Figure III-25 et III-26)

Figure III-25 : Empilement de couches de molécules d'eau

Figure III-26 : *Projection des molécules d'eau sur le plan (a,b)*

D'autre part les molécules d'eau se présentent sous forme d'une chaîne linaire parallèle à la rangée [101]. (Figure III-27)

Figure III-27 : Enchaînement des molécules d'eau le long de la rangée $[10\overline{1}]$.

III-2-5-La liaison hydrogène

III-2-5-1-Liaisons cation-cation

On a une seule liaison hydrogène cation-cation, cette interaction intramoléculaire relativement forte de type N—H...O et présente uniquement pour l'entité (B) de la partie organique. Le 2-hydroxyanilinium joue un double rôle via cette liaison hydrogène, il est donneur par la liaison covalente N—H et accepteur par l'atome d'oxygène de la fonction –OH. (Figure III-28)

La valeur numérique de cette interaction est consignée dans le tableau III-7

Tableau III-7 : Liaison hydrogène intramoléculaire cation- cation.

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N1B-H13BO2B	0.89	2.28	2.719(5)	110

Figure III-28 : Interaction intramoléculaire cation-cation N—H...O

III-2-5-2-liaisons cation-anion

La structure Tris (2-hydroxyanilinium) hexachlorostannate (IV) chloride trihydrate est très riche en liaisons hydrogène de type cation–anion avec les chlorures libres et les complexes d'hexachlorure d'étain (IV).

Les cations 2-hydroxyanilinium possèdent deux sites donneurs : l'azote et l'oxygène (N—H et O—H). Ces interactions peuvent être classées selon deux types :

(i) N—H...Cl [anions libres (Cl⁻) ou chlorures du complexe (SnCl₆)].

(ii) O—H...Cl [anions libres (Cl⁻) ou chlorures du complexe (SnCl₆)].

Le tableau III-8 donne les longueurs de ces interactions ainsi que les angles D-H...A.

Nous avons trois liaisons hydrogène de type O—H...Cl et six liaisons de type N—H...Cl.

On constate d'autres parts que les interactions effectuées avec les ions libres Cl^{-} sont plus fortes que les interactions avec le complexe $SnCl_6$.

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
O2A-H2ACl7(i)	0.82	2.32	3.136(3)	171
O2B-H2BCl1(ii)	0.82	2.48	3.289(4)	168
O2C-H2CCl7(i)	0.82	2.31	3.097(3)	162
N1A-H12A Cl5(ii)	0.89	2.71	3.586(4)	167
N1C-H11C Cl1(iii)	0.89	2.68	3.555(3)	170
N1B-H11B Cl7(i)	0.89	2.33	3.214(4)	176
N1A-H13A Cl3(v)	0.89	2.54	3.333(4)	149
N1B-H13B Cl7	0.89	2.46	3.227(3)	147
N1C-H13C Cl2(vi)	0.89	2.65	3.351(4)	137

Tableau III-8 : Liaisons hydrogènes de type cation-anion.

(i):-x+1/2,y+1/2,-z+1/2 (ii): -x+1,-y+1,-z (iii) : -x+3/2,y-1/2,-z+1/2 (v) :-x+1,-y+2,-z (vi) :-x+3/2,y+1/2,-z+1/2

Pour le type de liaison N—H...Cl, les deux entités organiques A et C engagent par l'intermédiaire de N1A et N1C des liaisons hydrogène via H12A H13A et H11C, H13C avec Cl3, Cl5 et Cl1, Cl2 respectivement.(Figure III-29)

D'autre part la troisième entité organique (B) engage deux hydrogènes différents (H11B et H13B) du même atome d'azote N1B avec Cl7 (l'ion libre). (Figure III-30)

Figure III-29 : Interaction de type cation -anion (SnCl₆)

Figure III-30 : *Interaction de type cation -anion (Cl⁻)*

Les entités A, B et C forment des liaisons hydrogène avec Cl4 du complexe et l'ion libre Cl7 via les hydrogènes H2A H2B et H2C de la fonction (-OH) (figure III-31).

Figure III-31 : Interaction cation -anion de type O—H...Cl

III-2-5-3- Liaisons cation-eau

Trois interactions du type cation-eau ont été observées dans cette structure (tableau III-9).On constate que les trois entités (A, B et C) du cation participent à ces interactions via la liaison N-H avec les trois oxygènes des molécules d'eau (O1W, O2W et O3W) (figure III-32).

D-HA	D-H(Å)	HA(Å)	DA (Å)	D-HA (°)		
N1A-H11AO1W	0.89	1.94	2.816(5)	168		
N1B-H12BO3W(iv)	0.89	1.92	2.809(5)	174		
N1C-H12CO2W(i)	0.89	1.99	2.864(5)	167		
		1 10 1 10				

 Tableau III-9 : Liaisons hydrogène cation-eau de type N-H...O

(i):-x+1/2,y+1/2,-z+1/2 (iv): -x+1/2,y-1/2,-z+1/2

Figure III-32 : Liaisons hydrogène cation-eau de type N-H...O.

III-2-5-4-Liaisons eau-anion

Les molécules d'eau jouent un deuxième rôle entant que donneur avec les anions hexachlorostannate et les ions libres de chlorure. On remarque que les molécules d'eau engagent des liaisons moyennement fortes avec Cl2, Cl6 et Cl7.(figure III-33)

Les valeurs de ces interactions ainsi que les angles de liaisons sont consignées dans le tableau III-10

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
O1W-H11Cl7	0.83(3)	2.64(3)	3.408(3)	155(4)
O2W-H21Cl2(ii)	0.85(3)	2.71(4)	3.342(3)	133(4)
O3W-H32Cl6(viii)	0.82(3)	2.67(3)	3.362(3)	144(4)
$(ii)_{i} = (ii)_{i} = (iii)_{i}$. 1			

 Tableau III-10 : Interactions eau-anion.

(ii): -x+1,-y+1,-z (viii) :x-1,y,z

Figure III-33 : Interactions eau-anion.

III-2-5-5-Liaisons eau-cation

Une seule liaison hydrogène de type eau-cation a été trouvée dans la molécule d'eau H₂O3W via l'atome d'oxygène O2C de la fonction (-OH) du cation (C) (tableau III-11, figure III-34)

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
O3W-H32O2C(iv)	0.82(3)	2.47(4)	3.067(5)	131(3)
(1)				

(iv): -x+1/2, y-1/2, -z+1/2

Figure III-34 : Les liaisons hydrogène de O3W-H32...O2C.

III-2-5-6-Liaisons eau-eau

Des liaisons inter et intramoléculaire relativement fortes relient les trois molécules d'eau entre elles en formant des chaînes le long de l'axe b (figure III-35a et III-35b).

Les longueurs les angles de liaisons sont représentés dans le tableau III-12.

D-HA	D-H(Å)	HA (Å)	D A(Å)	D-HA (°)
O1W-H12O2W	0.86(3)	2.04(3)	2.881(5)	168(4)
O2W-H22O3W(vii)	0.83(4)	2.08(4)	2.897(5)	170(5)
O3W-H31O1W	0.81(4)	2.22(4)	2.843(5)	135(4)

Tableau III-12 : Liaisons hydrogène de type eau-eau

(vii) :x, y-1,z

(a)

Figure III-35 : Projection des liaisons hydrogène de type eau-eau :
(a) : sur le plan (b,c) sous forme de chaînes en zigzag.
(b) : sur le plan (a,b) sous forme de double chaînes en zigzag.

III-Conclusion

Dans cette partie de travail, nous avons présenté deux nouveaux composés hybrides à base d'étain et de matrices organiques de deux dérivés d'aniline avec des ions chlorure libres.

Les différentes étapes ont été largement discutées : préparation, caractérisation par des différentes méthodes d'analyses et étude structurale par diffraction des rayons X.

Le premier composé est le tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride. Il possède une unité asymétrique formée de la moitié du complexe minérale SnCl₆, deux entités de 4-methoxyanilinium (A et B) et un ion chlorure libre. La structure de ce composé est formée d'un réseau de couches alternées de cations et d'anions qui se répètent le long de l'axe a et parallèlement au plan (b, c). Les ions chlorure se regroupent deux à deux entre les polyèdres du complexe SnCl₆ assurant ainsi la jonction entre les couches cationiques par l'intermédiaire de liaisons hydrogène intermoléculaire forte de type N-H...Cl. La stabilité du réseau cristallin est assurées d'autres parts par des interactions entre l'hexachlorostannate et les cations 4-methoxyanilinium.

L'analyse thermique relative à ce composé nous a permis de mettre en évidence sa décomposition en deux étapes essentielles qui commence à 190°C et s'achève à 520°C. Le produit final obtenu est l'oxyde d'étain cristallisé après volatilisation de chlorure d'étain.

Le deuxième composé étudié est le tris (2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate qui est formé, d'un complexe minéral SnCl₆, trois entités de 2-hydroxyanilinium, un ion chlorure et trois molécules d'eau. Ce composé a été synthétisé par voie hydrothermale. La structure peut être décrit par l'alternance de doubles couches de la partie anionique et les couches de la partie cationique qui se déploient en zigzag. Les molécules d'eau et des ions chlorures se trouvent coincées en sandwich entre ces deux couches.

L'édifice cristallin possède une très grande richesse au vue de liaisons hydrogène de plusieurs types qui assurent la cohésion entre les différentes entités de la structure. Les molécules d'eau jouent un rôle très important dans ce système tridimensionnel de liaisons entant qu'accepteur et entant donneur.

Bibliographie

[1]Bouchouit K., Sofiani Z., Derkowska B., Abed S., Benali-cherif N., Bakasse M. & Sahraoui B (2007), Optics Communications 278(1), 180-186. [2]Andrade A. A., Castro M. P. P., Rocha A. M., Vargas H., Bastos N. M. S., Giacomini R. A., Miranda P. C. M. L., acinto C. & Catunda T (2007), Chemical Physics Letters 442(4-6), 400-404. [3]Innis P. C., Masdarolomoor F.; Kane-Maguire L. A. P., Forster R. J., Keyes T. E. & Wallace G. G (2007), Journal of Physical Chemistry B 111(44), 12738-12747. [4]Sayyah S. M., El-Rabiey M. M., El-Feky H. & Gaber A. F. (2007), International Journal of Polymeric Materials 56(6),605-628. [5]Lima John Paul H. & Andrade Adnei M (2006), Journal of Materials Science: Materials in Electronics 17(8), 593-596. [6]Smirani W & Rzaigui, M. (2005), Zeitschrift fuer Kristallographie - New Crystal Structures 220(2), 250-252. [7]Purkayashtha A. & Baruah Jubaraj B. (2002), Thermochimica Acta 390(1-2), 187-193. [8]Yeap G.-Y., Teoh S.-G., Wei C.; Declercq J.-P. (1995), Main Group Metal Chemistry 18(5), 245-50. [9]Teoh S.-G., Teo S.-B., Yeap G.-Y. & Fun H.-K. (1992), Journal of Organometallic Chemistry 439(2), 139-46. [10]Li R.-y., Li Y.-m., Yang X.-j., Lu L.-d. & Wang, X. (2007), Peop. Rep. China. Lihua Jianyan, Huaxue Fence (2007), 43(4), 293-295. [11]Lin J. L., Huang, C.-J., Lin C.-H. & Tzeng W. B. (2007), Journal of Molecular Spectroscopy 244(1), 1-8. [12]Ma R., Hou Y., Yong X. & Cen, Y. (2007). Acta Cryst. E63, 04188. [13]Meehan P. R., Alyea E. C. & Ferguson, G. (1997). Acta Cryst. C53, 888-890. [14]Smith G., Wermuth U. D. & Healy, P. C. (2006). Acta Cryst. E62, o2313-o2315. [15]Glagovich N., Reed E., Crundwell G., Updegraff III J. B., Zeller M. & Hunter A. D. (2004). Acta Cryst. E60, 0623-0625. [16]Teh J. B.-J., Karthikeyan M. S., Fun H.-K., Patil P. S., Razak I. A., Holla B. S. & Dharmaprakash S. M. (2006). Acta Cryst. E62, 04693-04694. [17]Novoa de Armas H., Peeters O. M., Blaton N. M., De Ranter C. J. & Xuarez Marill L. (2001). Acta Cryst. E57, 0638-0639. [18]Dong J.-F., Li L.-Z., Yu W.-J., Xu T. & Wang D.-Q. (2007). Acta Cryst. E63, m2206-m2207.

[19]Dong J.-F., Li L.-Z., Ji Z.-Z., Cui H. & Wang D.-Q. (2007). Acta Cryst. E63, m1578. [20] Tahir M. N., Ulku D., Atakol O. & Akay A. (1996). Acta Cryst.C52, 2676-2678. [21]Jiao Y.-H., Zhang Q. & Ng S. W. (2006). Acta Cryst. E62, 03614-03615. [22]Kosar B., Buyukgungor O., Albayrak C. & Odabasoglu M. (2004).Acta Cryst. C60, o458-o460. [23]Odabasoglu M. & Buyukgungor O. (2006). Acta Cryst. E62, 01879-01881. [24]Kosar B., Albayrak C., Odabasoglu M. & Buyukgungor O. (2005).Acta Cryst. E61, o1097-o1099. [25]Ersanli C. C., Albayrak C., Odabasoglu M. & Erdonmez A. (2004). Acta Cryst. E60, o389-o391. [26]Odabasoglu M., Albayrak C. & Buyukgungor O. (2004). Acta Cryst. E60, 0142-0144. [27]Chen, W.-Q., Ya, Q. & Duan, X.-M. (2006). Acta Cryst. E62, 0145-0146. [28]Bouacida S., Merazig H., Benard-Rocherulle P. & Rizzoli, C. (2007). Acta Cryst. E63, m379-m381. [29]Willett R. D. & Haddad S. F. (2000). Acta Cryst. C56, e438. [30]Li H.-T., Sun R., Shi H.-P. & Huang S.-P. (2005). Acta Cryst. E61, m2088-m2089. [31] Zhang H., Fang L., Dronskowski R., Kruse K. & Yuan, R. (2005). Acta Cryst. E61, m543-m544. [32]Demazeau G. Comptes Rendus de l'Academie des Sciences, Serie IIc: Chimie (1999), 2(14), 685-692 [33] Demazeau G. (1999), Journal of Materials Chemistry 9(1), 15-18 [34]Riman R. E.; Suchanek W. L.; Lencka M (2002), Annales de Chimie (Paris, France) 27(6), 15-36. [35]Burla M. C., Camalli M., Carrozzini B., Cascarano G. L., Giacovazzo C., Polidori G. & Spagna R. (2003). J. Appl.Cryst. 36, 1103. [36] Sheldrick G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany. [37]Rademeyer M. (2004). Acta Cryst. E60, m345-m347. [38]Rademeyer M. (2004). Acta Cryst. C60, m55-m56. [39]Li H.-T., Sun R., Shi H.-P. & Huang S.-P. (2005). ActaCryst. E61, m2088-m2089. [40] Zhang, H., Fang, L., Dronskowski, R., Kruse, K. & Yuan, R. (2005). Acta Cryst. E61, m543-m544. [41]Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m1153-m1155. [42] Tadeusz Janiak & Jerzy Blazejowski (1989) Thermochimica Acta 156, 27-43.

Chapitre IV

SYNTHESE, ETUDE STRUCTURALE ET ANALYSE THERMIQUE DE DEUX DERIVES D'ANILINIUM ANHYDRE SANS IONS CHLORURE

IV-Introduction

Le Bis(4-nitroanilinium) hexachlorostannate(IV) est un nouveau composé hybride préparé à base d'étain et un dérivé d'aniline (le p-nitroaniline).

Une étude bibliographique approfondie sur cette amine a été effectuée et nous a révélé son association avec trois métaux à savoir avec le cadmium [1-3], l'étain [4], et le cuivre pour des applications dans le magnétisme [5]. D'autres part, il a été utilisé avec les perchlorates [6], les mono phosphates [7,8], le silicium [9] et l'acide tartrique pour des études sur l'optique non linéaire [10].

Au cours de notre investigation sur les composés hybrides avec les dérivés d'aniline, un autre produit à base de dimethylaniline et de chlorure d'étain a été isolé.

Contrairement aux trois composés dérivés d'aniline (hydroxy, méthoxy et nitro) précédemment étudiés dans ce travail et qui cristallise dans le système monoclinique, ce composé cristallise dans le système triclinique. Une recherche bibliographique a montré que cet amine aromatique a déjà été préparé mais uniquement avec trois métaux : le cobalt [11], le plomb [12] et le molybdène pour des études thermique [13]. D'autre part des études cristallographiques et des caractérisations physiques ont été effectués avec les dihydrogenmonophosphates [14-18], dihydrogen-diphosphate [19], et cyclotriphosphate [20,21].

L'équipe de Singh de l'université de Ghorakhpur en Inde a bien exploré le dimethylaniline avec les sulfates [22], les nitrates [23], les perchlorates [24] et les chlorures [25]. Le chlorure de dimethylaniline a été étudié en 1995 par Linden à 173 et 293 K [26].

IV-1-Etude de la structure Bis(4-nitroanilinium) hexachlorostannate(IV)

IV-1-1-Partie expérimentale

Ce composé a été préparé à partir d'un mélange d'une solution aqueuse de chlorure d'étain, de para- nitroaniline et d'acide chlorhydrique dont les rapports 1:2:4.

Après quelques jours d'évaporation lente à température ambiante, des cristaux jaunes sous forme de plaquettes ont été formés. Ces derniers ont été lavés avec de l'eau distillée et isolés sous un microscope optique pour l'étude cristallographique.

Le schéma réactionnel de la synthèse de ce produit est représenté ci-dessous :

Ce type de protonation a été discuté dans les précédentes structures étudiées au cours de ce travail. Le nitroaniline a déjà été protoné en présence d'halogénures [27-31] de nitrates [32] et de perchlorates [33]. Des études sur la protonation de cette amine ont été réalisées dans des solvants différents [34,35].

IV-1-2-Caractérisation par EDS et RMN du proton

IV-1-2-1-Microanalyse électronique (EDS)

A l'aide de la microanalyse électronique, il a été possible de confirmer la présence de l'étain et du chlore dans un rapport atomique de 0.163, valeur proche à la valeur calculée après résolution structurale (Sn/Cl=0.166).

La figure IV-1 montre que les cristaux obtenus sont sous forme de plaquettes jaune très fragiles, d'où la difficulté de les monter sur des tiges de verre pour la diffraction des rayons X.

Plusieurs tentatives de recristallisation de ces cristaux afin d'améliorer leur qualité ont été vaines.

Figure IV-1 : Image des cristaux du composé Bis(4-nitroanilinium) hexachlorostannate(IV) Obtenue par le MEB.

IV-1-2-2-Résonance Magnétique Nucléaire (RMN)

Afin d'identifier la matrice organique et de confirmer la protonation de l'amine, un spectre de Résonance Magnétique Nucléaire (RMN) du proton a été réalisé (figure IV-2).

Le Bis(4-nitroanilinium) hexachlorostannate(IV) est soluble dans le DMSO. Les protons aromatiques ont un déplacement chimique entre 6ppm et 8ppm avec deux doublet à (6.59-6.63ppm) et (7.93-7.98ppm) confirmant la présence des quatre protons. Le NH_3^+ s'identifie par une bosse entre 5.41 et 5.51ppm.

Figure IV-2 : Spectre RMN de proton du composé Bis(4-nitroanilinium) hexachlorostannate(IV)

IV-1-3-Etude cristallochimique

L'analyse par diffraction des rayons X nous a permis d'identifier un nouveau composé hybride à base d'étain et un dérivé d'aniline (p-nitroanilinium). Ce composé cristallise dans le groupe d'espace $P2_1/a$ du système monoclinique de formule générale $[SnCl_6]^{2-}$, $2(C_6H_7N_2O_2)^+$.

IV-1-3-1-Enregistrement des intensités

L'enregistrement de données a été réalisé sur un diffractomètre à géométrie Kappa équipé d'un détecteur bidimensionnel de type CCD dans un domaine angulaire allant de 2.95-27.48° en θ , sur un monocristal de dimensions (0.02 x 0.25 x 0.31)mm³.

Les données cristallographiques et les conditions d'enregistrement sont consignées dans le tableau IV-1.

Formule chimique	$[\text{SnCl}_6]^2, 2(\text{C}_6\text{H}_7\text{N}_2\text{O}_2)^+$
Masse molaire (g/mole)	609.66
Système cristallin	Monoclinique
Groupe d'espace, N°	P 2 ₁ /a, 14
a (Å)	7.0265(2)
b (Å)	20.3719(6)
c (Å)	8.0833 (2)
β (°)	114.706(1)
$V(A^3)$	1051.16(5)
Ζ	2
d _{cal} (g/cm ³)	1.926
Radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Facteur d'absorption (mm ⁻¹)	2.004
Température (K)	296
Dimensions du monocristal (mm ³)	0.02 x 0.25 x 0.31
Forme	Plaquette
Couleur	Jaune
Conditions d'enregistrement :	
Diffractomètre	Mach3 Kappa CCD
Limites de θ (°)	2.95-27.48
Limites h, k, l	$-9 \to 9, -26 \to 26, -10 \to 10$
réflexions mesurées	4489
réflexions indépendantes	2401
réflexions I>2σ(I)	1936

Tableau IV-1: Données cristallographiques, conditions d'enregistrement et résultats de l'affinement de la structure Bis(4-nitroanilinium) hexachlorostannate(IV)

Affinement: Affinement en F ²		
R (%)	3.7	
$R_{w}(\%)$	09.2	
GOF	1.09	
Nombre de paramètre	126	
Coefficient d'extinction	0.0231(16)	

IV-1-3-2-Résolution et affinement de la structure

Le modèle structural complet a été obtenu par les méthodes directes à l'aide du programme SIR2002, conduisant à un facteur de reliabilité R=3,7 % sur la base de 2401 réflexions indépendantes et 126 paramètres. Les positions atomiques ont été introduites dans le programme SHELXL-97 et affinées par la méthode des moindres carrés.

Les atomes d'hydrogène ont été localisés par l'intermédiaire du programme XHYDEX, puis introduits dans l'affinement structural. Les derniers cycles d'affinement ont inclus les positions atomiques et les paramètres de déplacement atomique anisotropes pour tous les atomes à l'exclusion de ceux des atomes d'hydrogène.

Les coordonnées atomiques, facteurs d'agitation thermiques anisotropes, distances inter atomique et angles de liaisons sont consignés respectivement dans les tableaux 1, 2, 3 et 4 (Annexe V).

IV-1-4-Description de la structure

La structure du Bis(4-nitroanilinium) hexachlorostannate(IV) se présente sous forme de couches organique et inorganique alternées et décalées le long de l'axe b. La partie organique se déploie sous forme d'enfilades en zigzag et la partie minérale sous forme de couches de polyèdres intercalés les unes par rapport aux autres (figure IV-3)

Figure IV-3 : Alternance de couches organiques et inorganiques dans le réseau de *Bis*(4-nitroanilinium) hexachlorostannate(IV) selon l'axe b.

IV-1-4-1-Unité asymétrique

L'unité asymétrique de ce nouveau composé hybride est formée du dérivé de l'aniline protoné (p-nitroanilinium) et de l'anion minéral (chlorure d'étain) (figure IV-4).

Figure IV-4 : *Unité asymétrique du composé Bis(4-nitroanilinium) hexachlorostannate(IV)*

IV-1-4-2-Partie anionique

L'atome d'étain se trouve en position spéciale 2a (centre de symétrie) du groupe d'espace $P2_1/a$ (N°:14). La multiplicité de cette position qui est de 0.5, ce qui engendre la totalité de l'octaèdre $SnCl_6$ (figure IV-5)

Figure IV-5 : *Environnement de l'étain (IV)* (*i*) :-*x*,-*y*,-*z*

Dans la maille élémentaire du réseau, l'étain se trouve aux sommets de la maille (000) et sur les faces C (1/2 1/2 0). Les octaèdres se développent sous forme de couches distantes de 1/2 de b (figure IV-6). Ces couches de polyèdres sont décalées les unes par rapport aux autres à une distance de 1/2 de a (figure IV-7).

Figure IV-6 : *Projection des octaèdres sur le plan (b,c)*

Figure IV-7 : *Projection des octaèdres sur le plan (a,b)*

IV-1-4-3-Partie cationique

La partie cationique est formée de couches organiques d'amine protonée. Ces couches se déploient dans le réseau sous forme de doubles couches en zigzag et en zagzigle long de l'axe a et se répètent le long de l'axe b (figure IV-8 et IV-9).

Figure IV-8 : Déploiement doubles couches cationiques le long de l'axe b

Figure IV-9: *Projection de la partie organique sur le plan (b,c)*

La figure IV-10 représente l'empilement des couches cationiques le long de l'axe a, la distance entre ces couches est de 1/2 de l'axe a.

Figure IV-10: *Projection des couches cationiques sur le plan (a,c)*

IV-1-5-Les liaisons hydrogène

IV-1-5-1-Cation-cation

Une seule liaison intermoléculaire de type cation-cation a été trouvée dans cet édifice cristallin. Cette forte interaction relie les cations dans le plan perpendiculaire au plan (a, b) (figure IV-11).

Le tableau IV-2 donne la longueur de la liaison hydrogène.

 Tableau IV-2: Liaison hydrogène intermoléculaire cation-cation

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N1-H1A O42(i)	0.89	2.21	3.049(4)	156

Figure IV-11: Liaison hydrogène intermoléculaire cation-cation

IV-1-5-2-Cation-anion

Pour les liaisons hydrogène cation-anion deux types d'interaction ont été trouvés

N—H...Cl et C—H...Cl. Ces interactions sont relativement faibles par rapport aux interactions cation-cation

Le tableau IV-3 résume les longueurs de liaisons cation-anion.

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N1-H1B Cl2(ii)	0.89	2.42	3.311(3)	175
N1-H1C Cl3	0.89	2.62	3.470(4)	160
C5-H5 Cl3(iii)	0.93	2.83	3.458(4)	126

 Tableau VI-3: Liaison hydrogène de type cation-anion

Les figures IV-12 et IV-13 montrent clairement l'engagement de l'entité minérale $[SnCl_6]^{2-}$ avec six cations organiques via les atomes de chlore Cl2 et Cl3. Ce réseau tridimensionnel de liaisons hydrogène inter et intramoléculaire assure la stabilité de l'édifice cristallin.

Figure IV-12: *Liaisons hydrogène intermoléculaire et intramoléculaire de type N—H…Cl*

Figure IV-13: Liaison hydrogène intermoléculaire de type C—H...Cl

IV-2-Etude du composé Bis(dimethyl anilinium) hexachlorostannate (IV)

IV-2-1-Partie expérimentale

Le composé dimethyl anilinium hexachlorostannate(IV) a été préparé à partir d'une solution aqueuse de chlorure d'étain et de dimethyl aniline dans un milieu acidifié par HCl. Des cristaux de couleur marron jaunâtre sous forme de plaquettes et de parallélépipèdes ont été obtenus après quelques jours d'évaporation à la température ambiante.

Le schéma réactionnel est décrit ci-dessous

$$2 \swarrow + \operatorname{Sn} \operatorname{Cl}_2 \xrightarrow{4 \operatorname{HCl}} 60^{\circ} \operatorname{c} \operatorname{pH} \operatorname{fixe} \left[\swarrow \right]_2 \operatorname{SnCl}_6^{2^-} + \operatorname{H}_2$$

IV-2-2-Caractérisation préliminaire

IV-2-2-1-Résonance Magnétique Nucléaire (RMN)

Le spectre RMN de proton de ce composé est présenté dans la figure IV-14. Les trois protons aromatiques se trouvent entre 7 et 7.30ppm. Les deux protons voisins donnent un signal de deux doublets (7.09-7.13ppm et 7.24-7.28ppm). Le troisième proton se trouve sous forme d'un singulet confondu avec le premier doublet à 7.13ppm.

Les deux groupements méthyle sont à 2.25ppm sous forme d'un singulet. Un pic à 10.10ppm représente les protons de NH_3^+ .

Figure IV-14 : Spectre RMN de proton de composé Bis(dimethyl anilinium) hexachlorostannate (IV)

IV-2-2-2-Microanalyse électronique (EDS)

L'image du composé Bis(dimethyl anilinium) hexachlorostannate(IV) (figureIV-15) présente des cristaux sous forme de plaquettes et de parallélépipèdes légèrement fragiles La microanalyse dispersive d'énergie nous a confirmé la présence du métal et du chlore avec des rapports atomiques comparable aux valeurs calculés après la résolution structurale.

 $Sn/Cl_{(EDS)}=0.165, Sn/Cl_{(Théorique)}=0.166$

Figure IV-15 : Image de cristaux du composé obtenu par le MEB

IV-2-3-Etude cristallochimique

L'analyse des cristaux par diffraction des rayons X nous a permis d'obtenir la formule générale du composé : $(C_8H_{12}N)_2^+$ $(SnCl_6)^2$. Ce composé cristallise dans le groupe d'espace $P\bar{1}$ du système triclinique

IV-2-3-1-Enregistrement des intensités

L'enregistrement de données de diffraction a été effectué sur un diffractomètre Kappa CCD utilisant la radiation monochromatique K_{α} de Mo (λ Mo $K_{\alpha} = 0.71073$ Å) dans un domaine angulaire allant de 3.07 à 30.07° en θ .

Les données cristallographiques, les conditions d'enregistrement et d'affinement sont consignées dans le tableau IV-4.

Formule chimique	$[SnCl_6]^{2-}, 2(C_8H_{12}N)^+$
Masse molaire (g/mole)	575.78
Système cristallin	Triclinique
Groupe d'espace, N°	P-1, 2
a (Å)	7.4904(2)
b (Å)	7.9864(3)
c (Å)	10.6842(4)
α (°)	91.572(2)
β (°)	90.470(2)
γ (°)	117.541(1)
$V(A^3)$	566.35(3)
Ζ	2
d _{cal} (g/cm ³)	1.688
Radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Facteur d'absorption (mm ⁻¹)	1.839
F(000)	286
Température (K)	295
Dimensions du monocristal (mm ³)	0.06 x 0.07 x 0.2
Forme	Plaquette et parallélépipède

Tableau IV-4: Données cristallographiques et conditions d'enregistrement du composé Bis(dimethyl anilinium) hexachlorostannate.

Couleur Marron jaunâtre				
Conditions d'enregistrement :				
Diffractomètre	Mach3 Kappa CCD			
Limites de θ (°)	3.07-30.07			
Limites h, k, l	$-10 \rightarrow 10$, $-10 \rightarrow 11$, $-15 \rightarrow 14$			
Réflexions mesurées	4913			
Réflexions indépendantes	3310			
Réflexions I>2σ(I)	2772			
Affinement: Affinement en F ²				
R (%)	3.99			
R _w (%)	8.93			
GOF	1.058			
Nombre de paramètre	119			
Coefficient d'extinction	0.052(3)			

IV-2-3-2-Résolution et affinement de la structure

Le modèle cristallin a été déterminé à l'aide du programme SIR2002 grâce auquel tous les atomes (Sn, Cl, C, et N) ont pu être positionnés dans la maille.

Tous les atomes d'hydrogène ont été localisés à partir de cartes Fourier différence, au cours de l'affinement de la structure par la méthode des moindres carrés, à l'aide du programme SHELXL.97. Ils ont été placés par calcul géométrique.

L'affinement final de la structure a conduit aux facteurs de reliabilité suivants :

R = 3.99%, Rw = 8.93% et un GOF=1.058.

A ce stade final de l'affinement, la dernière une dernières série de Fourrier différence ne révèle aucun pic significatif.

(Highest peak 0.70 at 0.8827 0.8233 0.0101 [1.16 A from CL1])

Les coordonnées atomiques, les facteurs d'agitation thermiques anisotropes, les distances inter atomiques et les angles de liaisons sont consignés respectivement dans les tableaux 1, 2, 3 et 4 (Annexe VI).

IV-2-4-Description de la structure

La structure cristalline peut être décrite comme étant une succession de couches cationiques et de couches anioniques qui s'intercalent le long de l'axe c (figure IV-16). Ce même type d'empilement a été observé dans la structure précédente avec le nitroanilinium mais avec une disposition différentes des entités organiques (figure IV-17).

Le réseau cristallin est stabilisé par un système tridimensionnel des liaisons hydrogène.

Figure IV-16 : Alternance de couches cationiques et anioniques.

Figure IV-17 : *Projection de la structure sur le plan (a,b).*

IV-2-4-1-Unité asymétrique

L'unité asymétrique est formée de la moitié de la formule générale de la structure, c'est-àdire une seule molécule de l'amine aromatique protonée et la moitié du complexe minéral (figure IV-18).

Figure IV-18 : *Unité asymétrique du composé Bis(dimethyl anilinium) hexachlorostannate(IV)*

IV-2-4-2-Partie anionique

La partie anionique est formée par complexe minéral (hexachlorostannate). L'atome d'étain est en position spéciale sur le centre d'inversion du groupe d'espace P-1. Ce dernier engendre les trois atomes de chlore restants et donne un octaèdre quasi-régulier pour l'entité SnCl₆ (figureIV-19). La géométrie de ce polyèdre est comparable à celle observée dans la littérature. (tableau IV-5).

Figure IV-19 : Environnement octaédrique de l'étain Code de symétrie : (i) -x,-y,-z

Atome 1	Atome 2	Distance (Å)	Atome 1	Atome 2	Atome 3	Angle(°)
Sn	Cl1	2.4264 (8)	Cl1	Sn	Cl2	90.61 (4)
Sn	C12	2.4061 (8)	Cl1	Sn	C13	89.84 (3)
Sn	C13	2.4496 (8)	C12	Sn	C13	90.78 (3)

Tableau IV-5: Distances et angles de liaison dans le complexe SnCl₆

Les octaèdres $SnCl_6$ indépendants se déploient dans le réseau cristallin sous forme de couches parallèlement au plan (a, b) et distante de c (figure IV-20)

Figure IV-20 : Disposition des couches anioniques

Les figures IV-21 et IV-22 représentent la projection des ces polyèdres sur le plan (a,b) et (b,c) respectivement où l'on constate une inclinaison de ces derniers parallèlement au plan $(1\overline{1}0)$.

Figure IV-21 : Projection des polyèdres sur le plan (a,b)

Figure IV-22 : *Projection des polyèdres sur le plan (b,c)*

IV-2-4-3-Partie cationique

La partie cationique se développe sous forme de couches le long de l'axe c (figure IV-23) avec une distance de l'ordre de cet axe.

Ce déploiement de l'amine aromatique protonée s'effectue deux à deux par rapport au centre d'inversion du groupe d'espace $P\overline{1}$ (figure IV-24).

La figure IV-25 représente la projection des cations sur le plan (a,b)

Figure IV-23 : *Disposition des couches cationiques sur le plan (a,c)*

Figure IV-24 : Déploiement d'amine protonée

IV-2-5-Les liaisons hydrogène

La disposition des cations ne laisse aucune possibilité d'avoir des interactions de type cation-cation dans l'édifice cristallin de cette structure. On ne trouve que des liaisons hydrogène de type cation-anion qui sont reparties en deux types d'interactions : intramoléculaire et intermoléculaire

IV-2-5-1-Liaisons cation-anion (Intramoléculaire)

Une seule liaison hydrogène intramoléculaire a été trouvée dans ce système de liaisons. Cet interaction relativement faible se développe parallèlement au plan $(01\overline{1})$ (tableau IV-6, figure IV-26).

 D-H...A
 D-H(Å)
 H...A(Å)
 D...A(Å)
 D-H...A(°)

 N1-H1A...Cl1
 0.89
 2.48
 3.332(3)
 161

Figure IV-26 : Liaison hydrogène intramoléculaire de type cation-anion

IV-2-5-2-Liaisons cation-anion (Intermoléculaire)

Les deux hydrogène H1B et H1C engagent dans trois centres de liaison (three centre bond).A titre d'exemple l'atome d'hydrogène H1B qui possède une liaison covalente avec l'atome d'azote N1 est au même temps engagé par deux interactions avec les deux atome de chlore Cl2 et Cl3.(figureIV-27).

Le tableau IV-7 donne les distances et les angles de liaisons hydrogène intermoléculaires de type cation-anion

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N1-H1B Cl2 (i)	0.86	2.48	3.297(3)	153
N1-H1B Cl3 (ii)	0.86	2.77	3.343(3)	124
N1-H1C Cl3 (iii)	0.86	2.61	3.392(3)	148
N1-H1C Cl1 (<i>iv</i>)	0.86	2.74	3.393(4)	132
$(i) \cdot r + y - (ii) \cdot r + y - z - (iii) \cdot l + r + y - z - (iv) \cdot l - r + y - l - z - l - y - l - z$				

 Tableau IV-7: Liaison cation-anion intermoléculaire.

(1):x, I+y, z (11):-x, I-y, -z (111):I+x, I+y, z (112):I-x, I-y, I-z

Figure IV-27 : Liaison hydrogène intermoléculaire de type cation-anion

IV-2-6- Analyse thermique

L'analyse thermique de ce composé a été réalisée avec une thermobalance « Labsys de SETARAM », sous atmosphère d'azote (N₂) avec un régime de chauffe de 10° C.min⁻¹ dans un domaine de température allant de 25°C à 700 °C.

Figure IV-28 : Courbes d'analyse thermogravimétrique et d'analyse thermique différentielle du composé bis(dimethyl anilinium) hexachlorostannate (IV) avec une vitesse de chauffe de 10°C.min⁻¹.

La décomposition thermique du bis(dimethyl anilinium) hexachlorostannate (IV) a été effectuée en deux étapes essentielles (figure IV-28). Ce nouveau composé hybride est pratiquement stable jusqu'à 220°C et sa décomposition s'achève à 600°C.

Au cours de ces événements thermiques entre 220°C et 600°C on observe la décomposition de la partie organique et la volatilisation du chlorure d'étain. Le produit final de cette décomposition est le SnO_2 (PDF2 n° : 41-1445).

Le bis(dimethyl anilinium) hexachlorostannate (IV) commence à se décomposer dans une première étape relativement rapide entre 220°C et 360°C. Cette décomposition est suivie de la volatilisation du chlorure d'étain et la formation de l'oxyde d'étain SnO₂.

Le spectre de l'analyse thermique différentielle (ATD) (figureIV-28) montre qu'on réalité la partie organique se décompose en plusieurs étapes. Ce phénomène n'est pas observée sur la courbe ATG au vu de la rapidité et de l'instabilité du changement.

IV-Conclusion

Ce chapitre a rassemblé tous les résultats concernant deux autres nouvelles structures à base de matrices organiques dérivées de l'anilinium. Le premier composé est le bis(4nitroanilinium) hexachlorostannate(IV) qui cristallise dans le système monoclinique avec le groupe d'espace $P2_1/a$. La structure est formée d'un octaèdre $SnCl_6$ et d'une matrice organique (para-nitroanilinium). Ces deux entités se déploient dans le réseau cristallin sous forme de couches alternées le long de l'axe b.

La structure est stabilisée par des liaisons hydrogène cation-cation de type N-H...O assurant le lien entre les couches cationiques et des liaisons cation-anion de type N-H...Cl et C-H...Cl renforçant le réseau tridimensionnel des interactions.

Le deuxième composé est le bis(dimethyl anilinium) hexachlorostannate(IV). Il cristallise dans le système triclinique avec le groupe d'espace P1.

La disposition des molécules dans le réseau est pratiquement la même que dans le composé bis(4-nitroanilinium) hexachlorostannate(IV) étudié dans ce même chapitre, à la différence que les couches cationiques ne se développent pas en zigzag et en zagzig. mais se déploient deux à deux le long de l'axe a. Le réseau cristallin est stabilisé par des liaisons hydrogène intra- et intermoléculaires cation-anion de type N-H...Cl.

L'analyse thermique de ce deuxième composé a mis en évidence sa grande stabilité thermique jusqu'à 220°C. Il se décompose en deux étapes par la disparaition de la partie organique et la volatilisation de chlorure d'étain. Le produit final obtenu à 600°C est l'oxyde d'étain qui se forme au cours de la volatilisation de chlorure d'étain.

Bibliographie

- [1]Azumi R., Honda K., Goto M., Akimoto J., Oosawa Y., Tachibana H., Tanaka M. & Matsumoto M. (1996). Acta Cryst. C52, 588-591.
- [2]Azumi R., Honda K., Goto M., Akimoto J., Oosawa Y., Tachibana H., Nakamura T., Tanaka M. & Matsumoto M. (1995). Acta Cryst. C51, 2534-2537.
- [3]Li Da-Guang, Fu Wei-Qin, You Xiao-Zeng & Chen Wei (2002), Wuji Huaxue Xuebao 18(3), 317-320.
- [4]Gholivand Khodayar, Shariatinia Zahra & Pourayoubi Mehrdad (2005), X-Ray Structure Analysis Online 21(8), x139-x140.
- [5]Sekine Taketoshi, Okuno Tsunehisa & Awaga Kunio. (1996), Molecular Crystals and Liquid Crystals Science and Technology, Section A 279 65-72.
- [6]Marchewka M. K., Drozd M., & Pietraszko (2003), A Materials Science & Engineering, B: Solid-State Materials for Advanced Technology B100 (3), 225-233.
- [7]Uchita Yoshifumi, Endo Tadashi, Takizawa Hirotsugu & Shimada, Masahiko. (1993), Funtai oyobi Funmatsu Yakin 40(10), 1002-6.
- [8]Masse R. & Levy J. P. (1991), Journal of Solid State Chemistry 93(1), 88-95.
- [9]Gelmboldt V. O., Minacheva L. Kh., Ganin E. V., & Sergienko V. (2006), S. Zhurnal Neorganicheskoi Khimii 51(10), 1661-1664.
- [10]Marchewka M. K., Ratajczak H. & Debrus S (2003), Journal of Nonlinear Optical Physics & Materials 12(1),113-121.
- [11]Ahmed S., Samah A. & Mohamed R. (2006). Acta Cryst. E62, m1796-m1798.
- [12]Lemmerer A. & Billing D. G. (2006). Acta Cryst. C62, m597-m601.
- [13]Arnaiz A., Santiago C., Irabien A. & Martinez M (1985),Materials Science Monographs 28B (React. Solids, Pt. B),683-6.
- [14]Fabry J., Krupkova R. & Studnicka V. (2002). Acta Cryst. E58, o105-o107.
- [15]Fabry J., Krupkova R. & Vanek P. (2001). Acta Cryst. E57, 01058-01060.
- [16]Khemiri H., Ben Nasr C., Rzaigui M. & Brahim K (2007), Phosphorus, Sulfur and Silicon and the Related Elements 182(10), 2269-2282.
- [17]Smirani W. & Rzaigui M. (2004), Zeitschrift fuer Kristallographie - New Crystal Structures 219(3), 263-264.
- [18]Kaabi K., Ben Nasr C. & Rzaigui M. (2004), Journal of Physics and Chemistry of Solids 65 1759-1764
- [19]Akriche, S. (2003), Zeitschrift fuer Kristallographie New Crystal Structures 218(1), 143-144.

[20]Mrad M. L., Ben Nasr C. & Rzaigui M (2006),Analytical Sciences: X-Ray Structure Analysis Online 22(9), x227-x228.

- [21]Khedhiri L., Ben Nasr C., Rzaigui, M. & Lefebre, F (2003), Helvetica Chimica Acta 86(7), 2662-2670.
- [22]Singh G., Kapoor I. P. S., Srivastava J. & Kaur, J. (2002), Journal of Thermal Analysis and Calorimetry 69(2),681-691.
- [23]Singh G., Kapoor I. P. S. & Mannan S. M. (1995), Thermochimica Acta 262 117-27.
- [24]Singh G., Kapoor I. P. S. & Mannan, S. M. (1995), Journal of Energetic Materials 13(1&2), 141-56.
- [25]Singh G., Kapoor I. P. S. & Kaur J. Thermochimica Acta (1999), 338(1-2), 45-55.
- [26]Linden A., James B. D. & Liesegang, J. (1995). Acta Cryst. C51, 2317-2320.
- [28]Lemmerer A. & Billing D. G. (2006). Acta Cryst. E62, 01562-01564.
- [29]Ploug-Sorensen G. & Andersen E. K. (1982). Acta Cryst. B38, 671-673.
- [30]Ploug-Sorensen G. & Andersen, E. K. (1983). Acta Cryst. C39, 112-114.
- [31]Ploug-Sorensen G. & Andersen E. K. (1986). Acta Cryst. C42, 1813-1815.
- [32]Perpetuo G. J. & Janczak J.(2004). Acta Cryst. C60, 0768-0770.
- [34]Sastry V. & Kalidas C. (1988), Journal of the Electrochemical Society of India 37(4), 303-7.
- [35]Janardhanan S.; Kalidas C. (1983), Indian Journal of Chemistry, Section A: Inorganic, Physical, Theoretical & Analytical (1983), 22A(1), 17-19.

Chapitre V

SYNTHESE ET ETUDE STRUCTURALE DE DEUX COMPOSES A BASE D'ACIDE AMINE

V-Introduction

Au cours de notre investigation sur les composés hybrides sur le système MX_6 et les matrices organiques à base d'azote (M : étain et X : F ou Cl), un nouveau composé hybride à base d'acide aminé, le bis (3-carboxyanilinium) hexafluorostannate(VI), a été isolé à partir de l'acide aminobenzoïque et du fluorure d'étain dans un milieu aqueux.

Le carboxyanilinium a été cité dans plusieurs études structurales et dans les analyses des liaisons hydrogène notamment avec les phosphates [1-3], les sulfates [4,5], les nitrates [6,7], les perchlorates [8], les tartrates [9], les trifluoroacétates [10], les silicates [11] et les arsenates [12,13].

D'autres part, un autre acide aminé, le D,L-phenylglycine, a été utilisé pour la préparation d'un nouveau composé hybride. La synthèse n'a pas permis de fixer l'atome d'étain et a donnée le D,L-phenylglycinium chloride.

La structure de cet acide aminé a déjà été étudiée en présence des autres acides tels que l'acide phosphorique [14], sulfurique [15], perchlorique [16], nitrique [17], squarique [18,19], et chlorhydrique [20].

V-1-Etude de la structure Bis (3-carboxyanilinium) hexafluorostannate(IV)

V-1-1-Partie expérimentale

Ce composé a été obtenu par évaporation lente d'un mélange d'une quantité de fluorure d'étain (II) (SnF₂) préalablement dissoute dans de l'eau distillée. On ajoute en suite une quantité d'acide 3-amino benzoïque et une quantité d'acide fluorhydrique.

Des cristaux sous forme d'aiguilles d'une couleur marron claire se sont formés après deux semaines de cristallisation. Ces cristaux ont été isolés sous un microscope optique pour la diffraction des rayons X.

Le composé a été synthétisé selon le schéma réactionnel suivant :

$$2 \underbrace{\bigcirc}_{NH_2}^{O} + SnF_2 + 4HF \xrightarrow{PH fixe}_{T = 60\%} 2 \underbrace{\bigcirc}_{NH_3 +}^{O} + SnF_6 + H_2$$

-Protonation du cation organique :

Le seul site susceptible d'accepter les protons est le groupement amine –NH₂ (figure V-1).

Figure V-1 : Site de protonation de l'acide 3-aminobenzoïque

Ce mode de protonation a été observé dans d'autres structures à base d'acide aminobenzoïque, où l'on remarque la fixation des protons apportés par l'acide nitrique [21], phosphorique [22], perchlorique [23], sulfurique [24] et chlorhydrique [25].

V-1-2-Etude cristallochimique

L'unité asymétrique est constituée d'un cation organique $(C_7H_8NO_2)^+$ et d'un anion minéral à base de fluorure d'étain. Ces entités interagissent les unes avec les autres via des liaisons hydrogènes intra et intermoléculaires assurant la cohésion du cristal.

Le composé cristallise dans le groupe d'espace C2/c du système monoclinique avec les paramètres de maille suivants :

 $a = 22.2660 (5) \text{ Å} \quad b = 10.6580 (5) \text{ Å} \quad c = 7.4920 (5) \text{ Å} \quad \text{et} \quad \beta = 103.743 (5)^{\circ}$

V-1-2-1-Enregistrement des Intensités

Les intensités diffractées par un monocristal de dimensions (0.35 x 0.07 x 0.05 mm³) ont été mesurées sur un diffractomètre automatique à quatre cercles Kappa CCD, utilisant la radiation monochromatique K_{α} de Mo (λ MoK_{α} = 0.71073 Å) dans un domaine angulaire allant de 1,9 à 30°. en θ

Les conditions d'enregistrement et les données cristallographiques sont consignées dans le tableau V-1.

Formule chimique	$[SnF_6]^{2^-}, 2(C_7H_8NO_2)^+$
Masse molaire (g/mole)	508.98
Système cristallin	Monoclinique
Groupe d'espace, N°	C 2/c, 15
a (Å)	22.2660 (5)
b (Å)	10.6580 (5)
c (Å)	7.4920 (5)
β(°)	103.743 (5)
$V(A^3)$	1727.03 (15)
Ζ	4
d _{cal} (g/cm ³)	1.958
Radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Facteur d'absorption (mm ⁻¹)	1.57
F(000)	1000
Température (°K)	295
Dimensions du monocristal (mm ³)	0.35 x 0.07 x 0.05
Forme	Aiguilles
Couleur	Marron
Conditions d'enregistrement :	
Diffractomètre	Mach3 Kappa CCD
Limites de θ (°)	1.9-30
Limites h, k, l	$-14 \rightarrow 14, -6 \rightarrow 6, -13 \rightarrow 11$
réflexions mesurées	8090
réflexions indépendantes	2517
réflexions I>2σ(I)	2291
Affinement:	
Affinement en F ²	
R (%)	2.70
R _w (%)	6.30
GOF	1.10
Nombre de paramètre	145

 Tableau V-1: Données cristallographiques et conditions d'enregistrement
V-1-2-2-Résolution et affinement de la structure

L'étude structurale et la présentation des résultats numériques et graphiques ont été réalisées à l'aide de l'ensemble des programmes disponibles sous WinGX.

Le modèle structural du composé a été déterminé grâce au programme SIR2002. L'affinement final de la structure par le programme SHELXL97 a conduit aux facteurs de reliabilité : R = 2,7% et pondéré Rw = 6,3% avec un GOF de 1,10.

Tous les atomes d'hydrogène liés aux atomes de carbone du cycle aromatique et du groupement ammonium ont été localisés sur des cartes de densité électronique tridimensionnelles, après une série d'affinement de la structure par la méthode des moindres carrés à l'aide de SHELXL97 (avec un facteur d'agitation thermique fixé à 0.05). L'atome d'hydrogène de la fonction carboxylique a été placé par calcul géométrique et son agitation thermique est telle que U(H) = 1.2(O), O étant l'atome auquel est lié l'atome d'hydrogène. A ce stade de l'affinement une Fourier différence ne révèle aucun pic significatif ($\Delta \rho_{max} = 0.66 \text{ e.Å}^{-3}$).

Les coordonnées atomiques, les facteurs d'agitation thermiques anisotropes, les distances inter atomiques, les angles de liaisons et les angles de torsions sont consignées respectivement dans les tableaux 1, 2, 3, 4 et 5 (Annexe VII).

V-1-3-Description de la structure

La structure du Bis (carboxyanilinium) hexafluorostannates peut être décrite comme une alternance de couches anioniques (à a=0 et a=1/2) et de couches cationiques (à a=1/4 et a=3/4) parallèlement au plan (b,c) le long de l'axe a (Figure V-2 et Figure V-3)

La cohésion dans le cristal est assurée par des liaisons hydrogène de types cation-cation et cation-anion inter et intramoléculaires.

Figure V-2: *Projection de la structure sur le plan (a,c)*

Figure V-3 : *Projection de la structure sur le plan (a,b)*

V-1-3-1-Unité asymétrique :

L'unité asymétrique du Bis (carboxyanilinium) hexafluorostannate est formée d'un anion minéral et une matrice organique comme le montre le schéma ci-dessous (figure V-4).

Figure V-4 : *Ortep de l'unité asymétrique du Bis (carboxyanilinium) hexafluorostannate .*

V-1-3-2-Partie anionique :

La partie anionique représente l'anion SnF_6^{2-} formé d'un atome d'étain (IV) entouré octaèdriquement par six atomes de fluore.

L'atome de l'étain se trouve sur l'axe binaire en position spéciale (4e). Il est lié à quatre atome de fluore dont deux en position spéciale (F1 et F4) qui engendrent la totalité du polyèdre par symétrie (Figure V-5).

Les anions SnF_6 ont une charge négative (2-) et cette charge est équilibrée par la protonation du groupement amine de deux entités de l'acide 3-amino benzoïque.

Figure V-5 : *Environnement octaédrique de l'étain Code de symétrie (i) : -x,y,1/2-z*

Les distances inter atomiques et les angles de liaisons sont en bon accord avec ceux des composés relevés dans la littérature [26-28].

Les distances Sn-F varient entre 1,92 et 1,96 Å et les angles F-Sn-F sont compris dans l'intervalle [88,2 - 92,2°]. Ces données sont résumées dans le tableau V-2.

Atome 1	Atome 2	Distance (Å)	Atome 1	Atome 2	Atome 3	Angle(°)
Sn	F1	1.927(3)	F1	Sn	F2	88.2(1)
Sn	F2	1.965(2)	F1	Sn	F3	88.7(1)
Sn	F3	1.962(2)	F2	Sn	F3	92.2(1)
Sn	F4	1.934(3)	F2	Sn	F4	91.8(1)
			F3	Sn	F4	91.3(1)

Tableau V-2 : Distances Sn-F (Å) et angles de liaison F-Sn-F (°).

Les octaèdres hexafluorostannate de l'entité anionique se développent sous forme de couches en zigzag le long de l'axe b parallèlement au plan (a, c) séparées par une distance de b/2 (Figure V-6)

Figure V-6 : *Projection des octaèdres* SnF_6 *sur le plan (b, c)*

D'autre part la figure V-7 représente la projection d'une seul de ces couches dans le plan (a,c). Cette figure montre que la couche est formée de files d'octaèdres situées à a=0 et a=1/2.

Figure V-7 : *Projection des octaèdres sur le plan (a, c)*

V-1-3-3-Partie cationique :

La partie cationique est un acide aminé protoné en fonction amine. L'hydrogène de la fonction carboxylique n'est pas déprotoné et notre entité cationique est toujours chargée (+1). Cette charge positive est équilibrée par la présence de l'anion. (deux cations pour équilibrer un anion).

Le cycle benzénique du carboxyanilinium est régulier. Les distances C-C varient entre 1.381(3) Å et 1.396(4) Å et sont conforme à celles trouvées dans la littérature. L'atome d'azote et l'atome de carbone de la fonction carboxylique sont dans le même plan moyen du cycle benzénique. L'entité cationique se déploie sous forme de couches parallèles au plan (001) le long de l'axe a. Ce enchaînement se fait par paire de deux carboxyanilinium contenant un centre d'inversion. (Figure V-8 et Figure V-9).

Figure V-8 : *Projection des cations sur le plan (a, b)*

Figure V-9: *Projection des cations sur le plan (a, c)*

V-1-4-La liaison hydrogène :

Dans l'acide amino-benzoique nous avons trois sites du groupement donneur (-OH, –NH du groupement amine et C-H) et un seul site du groupement accepteur(C=O).

Pour la structure du Bis (carboxyanilinium) haexafluorostannate on trouve deux types de liaison hydrogène : cation-cation *et* cation-anion

V-1-4-1-Les liaisons cation-cation

Toutes les liaisons hydrogène de type cation-cation trouvées dans ce composé sont des interactions intermoléculaires sous forme de type N-H ...O et C-H...O (figure VI-10).

Ce genre d'interaction assure la stabilité entre les couches cationiques qui se fait deux à deux. On constate que les interactions de type N-H...O sont plus fortes que les interactions de type C-H...O (tableau V-3).

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N1-H11O2 ⁽ⁱⁱ⁾	0.89(3)	2.07(3)	2.942(3)	166(3)
C3-H3O2 ⁽ⁱⁱ⁾	0.94(3)	2.55(3)	3.335(3)	140(3)

Tableau V-3 : Liaisons hydrogène de types cation -cation.

Codes de symétrie : (ii)3/2-x, 1/2+y,1/2-z

Figure V-10 : Liaisons hydrogène cation–cation N1-H11...O2 et C3-H3...O2

V-1-4-2-Les liaisons cation-anion

Les liaisons hydrogène cation-anion se divise en deux types d'interactions : intramoléculaire et intermoléculaire.

-Pour, L'anion minéral, (SnF₆) engage des interactions intramoléculaires (liaison hydrogène) par l'intermédiaire de deux atomes de fluor (F2 et F3) avec le H12 du groupement amine de la matrice organique de type N-H...F.

L'atome d'hydrogène (H12) est engagé dans trois centres de liaisons (three centre bond) : une liaison covalente avec l'atome d'azote et deux interactions avec les deux atomes de fluor F2 et F3 (figure V-11).

Les longueurs de ces interactions sont résumées dans le tableau V-4.

Tableau V-4: Elaisons hydrogene intranoleculare de type cation-amon						
D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)		
N1-H12F2	0.83(3)	2.51(3)	3.008(3)	119(3)		
N1-H12F3	0.83(3)	1.98(3)	2.804(3)	167(3)		

Tableau V-4 : Liaisons hydrogène intramoléculaire de type cation-anion

Figure V-11 : Liaisons hydrogène cation-anion

-Il existe quatre interactions intermoléculaires cation-anion : deux de type N-H...F, une de type C-H...F et une de type O-H...F (figure V-12) (tableau V-5).

La plus forte distance relevée est H1...F2=1.74 Å (O-H...F)

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
O1-H1F2 ⁽ⁱ⁾	0.82	1.74	2.551(3)	169
N1-H13F1 ^(iv)	0.87(3)	2.36(3)	2.757(2)	108(2)
N1-H13F3 ⁽ⁱⁱⁱ⁾	0.87(3)	2.10(3)	2.834(3)	141(3)
C5-H5F3 ⁽ⁱⁱⁱ⁾	0.93(3)	2.44(3)	3.094(3)	128(2)

Tableau V-5 : *Liaisons hydrogène intermoléculaire de type cation–anion*

(*i*) 3/2-x; 1/2-y; 1-z (*iii*) 2-x; y; 1/2-z; (*iv*)2-x; 1-y; 1-z.

Figure V-12 : Liaisons hydrogène cation –anion intermoléculaires

V-2-Etude de la structure DL-Phenylglycinium chloride

V-2-1- Partie expérimentale

Le phenylglycinium chloride a été préparé à partir d'une solution aqueuse de chlorure d'étain dihydraté, de DL-phenylglycine et quelques gouttes d'acide chlorhydrique.

Après quelques jours d'une évaporation lente à température ambiante, des cristaux transparents sous forme de plaquettes, ont été obtenus.

Le schéma réactionnel est présenté ci-dessous :

Au cours de cette préparation la forte libération des protons par l'acide chlorhydrique a fait protoner la fonction amine du DL-phenylglycine et à donner le chlorure correspond. On constate qu'il n y a pas eu lieu de complexation de l'étain lors de cette réaction.

V-2-2-Etude cristallochimique

L'analyse de ce composé par la diffraction des rayons X a donné une maille et symétrie différente de celle trouvée par l'équipe indienne en 1998 (RAVICHANDRA & al.) **[20]**. Le DL-phenylglicinium chloride cristallise dans le groupe d'espace centrosymétrique, Pbca, avec un volume de 1723.7 Å³. Le L-phenylglicinium chloride **[20]** cristallise dans pratiquement la moitié du volume précédent (898.72 Å³) et dans un groupe d'espace noncentrosymétrique $P2_12_{12}$.

V-2-2-1-Enregistrement des intensités

L'enregistrement de données de diffraction de ce composé ont été effectuées sur un diffractomètre automatique Kappa CCD sur un monocristal de dimension

 $(0.35 \times 0.07 \times 0.05) \text{ mm}^3$ dans un domaine angulaire allant de 1.9° à 27.6°.

Les données cristallographiques et les conditions d'enregistrement sont consignées dans le tableau V-6.

Formule chimique	$C_8H_{10}NO_2^+ Cl^-$
Masse molaire (g/mole)	187.62
Système cristallin	Orthorhonbique
Groupe d'espace, N°	Pbca, 61
a (Å)	7.303 (2)
b (Å)	11.005 (2)
c (Å)	21.447 (4)
$V(A^3)$	1723.7 (7)
Ζ	8
d _{cal} (g/cm ³)	1.446
Radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Facteur d'absorption (mm ⁻¹)	0.4
F(000)	784
Température (°K)	296
Dimensions du monocristal (mm ³)	0.35 x 0.07 x 0.05
Forme	Plaquette
Couleur	Transparant
Conditions d'enregistrement :	
Diffractomètre	Mach3 Kappa CCD
Limites de θ (°)	1.9-27.6
Limites h, k, l	$-9 \rightarrow 9$, $-14 \rightarrow 11$, $-27 \rightarrow 27$
réflexions mesurées	20517
réflexions indépendantes	1979
réflexions I>2σ(I)	1563
Affinement:	•
Affinement en F ²	
R (%)	3
$R_{W}(\%)$	11.6
GOF	1.10
Nombre de paramètre	109

Tableau V-6: Données cristallographiques, conditions d'enregistrement et résultatsd'affinement

V-2-2-Résolution et affinement de la structure

La structure a été résolue par les méthodes directes à l'aide du programme SIR 2002 et affinée par les méthodes de moindre carré par le SHELXL.

Les atomes d'hydrogène ont été localisés sur les cartes de Fourier différence et positionné par calcul géométrique (avec C—H=0.93 Å N—H=0.89 Å et O—H=0.82 Å) et leurs facteur d'agitation thermique a été défini comme isotrope tel que Uiso(H) = 1.2 Ueq(C) et1.5 Ueq(N,O); C, N et O étant l'atome parent auquel est lié l'atome d'hydrogène.

L'affinement final a conduit aux facteurs de reliabilité suivants :

R = 3% et Rw = 11.6% avec un GOF de 1,10

Au dernier stade de d'affinement la Fourier différence ne révèle aucun pic significatif

(Highest peak 0.32 at 0.1498 0.1470 0.3754 [0.70 Å from C2])

Les coordonnées atomiques, les facteurs d'agitation thermiques anisotropes, les distances inter atomique et les angles de liaisons sont consignés respectivement dans les tableaux 1, 2, 3 et 4 (Annexe VIII).

V-2-3-Description de la structure

La structure cristalline peut être décrite comme étant deux zones alternées le long de l'axe c : une zone hydrophobique à c=0 et c=1/2 et une zone hydrophilique à c=1/4 et c=3/4 (figureV-12). Les ions chlorure se trouvent dans la zone hydrophilique et sont engagés dans des liaisons hydrogène. Ils participent ainsi à la stabilité du réseau cristallin.

La figure V-13 représente l'alternance de couches cationiques et anioniques le long de l'axe b parallèlement au plan (a, c).

Figure V-12 : Présentation des zones hydrophilique et hydrophobique

Figure VI-13 : *Projection de la structure sur la plan (b,c).*

V-2-3-1-Unité asymétrique

L'unité asymétrique du composé DL-phenyglycinium chloride est formée de deux entités séparées : un ion chlorure libre et une matrice organique protonée dans la fonction amine (figure V-14).

Figure V-14 : Ortep de l'unité asymétrique

V-2-3-2-Partie anionique

Les ions chlorures constituent la partie anionique. Ils se déploient deux à deux sur des double files à c=0 et c=1/2 (figure V-15)

Figure V-15 : Disposition des ions chlorures dans le réseau.

V-2-3-3-Partie cationique

La partie cationique représente le DL-phenylglycine protoné en fonction amine. Son cycle aromatique est quasiment plan, et sa fonction carboxylique n'est pas déprotonée (figure V-16).

Le DL-phenylglycine est un produit de départ important dans la production de la pénicilline semi-synthétique et de la céphalosporine. Ses dérivés sont également utilisés dans les traitements antitumoraux et ont d'autres applications pharmacologiques **[29,30]**.

La valeur de l'angle de torsion O1-C8-C1-N1 traduit l'influence de l'orientation du groupe carboxyle par la substitution du phényle dans le carbone α (C1).

Cette valeur de $-23.3(2)^{\circ}$ est relativement différente de celle relevée pour le α glycine (Marsh,1958) 19.1° **[31]** et de celle du diglycine hydrochloride (Natarajan & al., 1992) 16.5° **[32]**. ce même angle de torsion est de 18.9° dans le composé D-phenylglycine hydrochloride reporté par Ravichandran **[20]**.

L'angle de torsion N1-C1-C2-C7 de -118.51° confirme la conformation pliée de l'acide aminé. cet angle change selon les anions associés : pour le D-phenylglycine hydrochloride **[20]**, le D-phenylglycine perchlorate **[16]**, (R)-phenylglycine methyl ester **[33]** et le (R)-(-)-1-phenylglycinium hydrogen squarate monohydrate **[18]** les valeur sont 129.2°, 94.3°, 137.6° et 119.9° respectivement.

Figure V-16 : La molécule du DL- phenylglycinium

Les cations phenylglycinium sont disposés dans le réseau sous forme de doubles couches dans la maille élémentaire, formant des zones hydrophobiques à (c=1/4 et c=3/4) et des zones hydrophiliques à c=0 et c=1/2 (figure V-17).

Figure V-17 : Vue en perspective des cations.

V-2-4-La liaison hydrogène

Deux types de liaisons hydrogène ont été observés dans l'édifice cristallin de ce composé exclusivement dans les zones hydrophiliques:

-Cation - cation

-Cation - anion

V-2-4-1-Les interactions cation-cation

On a trois interactions cation-cation : deux de type C-H...O et une seule de type N-H...O (tableau V-7). Ce type d'interaction forme un réseau tridimensionnel de liaisons qui assure la stabilité entre les couches cationiques (figure V-18). Ce même type de liaisons est observé dans la structure à base de phenylglycinium étudié par Ravichandran **[20]**.

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N1-H1A O1 ⁽ⁱ⁾	0.89	2.31	2.879 (2)	122
C5-H5O2 ^(v)	0.93	2.60	3.338 (2)	137
C1-H1 O1 ^(iv)	0.98	2.50	3.433 (2)	159

Tableau V-7: Liaisons hydrogène cation-cation

(i)-x-y+1-z+2 (v)x-1/2 y-z+3/2 (iv)-x+1/2 y-1/2 z

Figure V-18 : Liaisons hydrogène cation-cation(a) projection sur le plan (b,c)(b) projection sur le plan (a,c)

V-2-4-1-Les interactions cation-anion

L'ion chlorure se trouve coincé entre les cations et engagé avec quatre interactions, trois de type N-H...Cl et une seul de type O-H...Cl (figureV-19). Ces liaisons hydrogène assurent la cohésion du cristal dans la zone hydrophilique

Le tableau V-8 représente les longueurs des liaisons hydrogène

D-HA	D-H(Å)	HA(Å)	D A(Å)	D-HA (°)
N1-H1A Cl1 ⁽ⁱ⁾	0.89	2.58	3.3475 (18)	145
N1-H1B Cl1 ⁽ⁱⁱ⁾	0.89	2.31	3.1906 (17)	173
N1-H1C Cl1	0.89	2.47	3.3375 (17)	164
O2-H2 Cl1 ⁽ⁱⁱⁱ⁾	0.82	2.25	3.0332 (16)	159

Tableau V-8: Liaisons hydrogène cation-anion

(*i*)-*x*-*y*+1-*z*+2 (*ii*)-*x*-1/2 *y*-1/2 *z* (*iii*)*x*+1 *y z*

Figure V-19 : Liaisons hydrogène cation-anion N-H...Cl et O-H...Cl

VI- Conclusion

Ce dernier chapitre rassemble les résultats obtenus lors de la synthèse, de l'étude structurale et de l'analyse des liaisons hydrogène de deux nouveaux composés hybrides à base de deux acides aminés différents.

Le premier composé est le bis (3-carboxyanilinium) hexafluorostannate (IV) de formule $[SnF_6]^{2-}$, $2(C_7H_8NO_2)^+$. Il cristallise dans le système monoclinique avec le groupe d'espace C2/c (N°15). Il est constitué d'un anion minérale (SnF_6) et un cation organique (l'acide aminobenzoïque protoné en fonction amine tout en gardant la fonction acide). Sa structure est décrite par l'alternance de couches cationiques et anioniques le long de l'axe a.

L'édifice cristallin de ce composé est stabilisé par des liaisons hydrogènes de types cation-cation et cation-anion inter et intramoléculaires.

Le deuxième composé est le DL-phenylglicinium. Les couches cationiques s'empilent dans le réseau formant des zones hydrophiliques et hydrophobiques. Dans cette structure les ions chlorure se trouvent dans les zones hydrophiliques et sont engagés à des liaisons hydrogène inter et intramoléculaire de type N-H...Cl et O-H...Cl participant à la stabilité du réseau cristallin avec d'autres interactions cation-cation de type N-H...Cl et O-H...Cl.

Bibliographie

[1]Bendeif E.-E., Dahaoui S., Francois M., Benali-Cherif N. & Lecomte, C. (2005), Acta Cryst. B61, 700-709. [2]Benali-Cherif, N., Direm, A., Allouche, F. & Soudani, K. (2007), Acta Cryst. E63, o2272-o2274. [3]Benali-Cherif N., Allouche F., Direm A., Boukli-H-Benmenni L. & Soudani K. (2007), Acta Cryst. E63, 02643-02645. [4]Slouf M. (2000), Acta Cryst. C56, e353. [5]Benali-Cherif N., Direm A., Allouche F., Boukli-H-Benmenni L. & Soudani K. (2007), Acta Cryst. E63, 02054-02056. [6]Bahadur S. A., Kannan R. S. & Sridhar B. (2007), Acta Cryst. E63, 02722-02723. [7]Benali-Cherif, N., Cherouana, A., Bendjeddou, L., Merazig, H., Bendheif, L. & Bouchouit, K. (2002), Acta Cryst. E58, o156-o157. [8]Athimoolam S. & Natarajan S. (2006). Acta Cryst. C62, 0612-0617. [9]Athimoolam S. & Natarajan S. (2007), Acta Cryst. C63, 0514-0517. [10]Athimoolam S. & Natarajan S. (2007), Acta Cryst. E63, 01910-01912. [11]Gelmboldt V. O., Ganin E. V. & Domasevitch K. V. (2007). Acta Cryst. C63, o530-o534. [12]Tordjman, I., Masse, R. & Guitel, J. C. (1988), Acta Cryst. C44, 2057-2059. [13]Tordjman I., Masse R. & Guitel, J. C. (1988), Acta Cryst. C44, 2055-2057. [14] Ravikumar B., Sridhar B. & Rajaram R. K. (2001). Acta Cryst. E57, o1078-o1080. [15]Srinivasan N., Sridhar B. & Rajaram R. K. (2001). Acta Cryst. E57, 0754-0756. [16] Ramaswamy S., Sridhar B., Ramakrishnan V. & Rajaram R. K. (2001). Acta Cryst. E57, o1149-o1151. [17]Bouchouit K., Bendheif L. & Benali-Cherif N. (2004). Acta Cryst. E60, o272-o274. [18]Angelova O., Petrova R., Radomirska V. & Kolev T. (1996). Acta Cryst. C52, 2218-2220. [19]Kolev, Tsonko. (2007), Journal of Molecular Structure 846(1-3), 139-146. [20] Ravichandran S., Dattagupta J. K. & Chakrabarti C. (1998). Acta Cryst. C54, 499-501. [21]Benali-Cherif N., Cherouana A., Bendjeddou L., Merazig H., Bendheif L. & Bouchouit K. (2002), Acta Cryst. E58, o156-o157.

- [22]Benali-Cherif N., Abouimrane A., Sbai K., Merazig, H., Cherouana A. & Bendjeddou L. (2002), Acta Cryst. E58, o160-o161.
- [23]Bendjeddou L., Cherouana A., Berrah F. & Benali-Cherif N. (2003), Acta Cryst. E59, o574-o576.
- [24]Cherouana A., Bendjeddou L. & Benali-Cherif N. (2003), Acta Cryst. E59, 01790-01792.
- [25]Arora S. K., Sundaralingam M., Dancz J. S., Stanford R. H. & Marsh R. E. (1973), Acta Cryst. B29, 1849-1855.
- [26]Taha A., Liautard B. & Granier W. (1992). Acta Cryst.C48, 1929-1931.
- [27]Benghalem A., Leblanc M. & Calage Y. (1990). Acta Cryst. C46, 2453-2454.
- [28]Marseglia E. A. & Brown I. D. (1973). Acta Cryst. B29, 1352-1354.
- [29] Jayasinghe L. R., Datta A., Ali S. M., Zymunt J., Vander Velde D. G. & Georg G. I. (1994). J. Med. Chem. 37, 2981-2984.
- [30]Satyam A., Hocker M. D., Kanemaguire K. A., Morgan A. S., Villar H. O. & Lyttle M. H. (1996). J. Med. Chem. 39, 1736-1747.
- [31]Marsh R. E. (1958). Acta Cryst. 11, 654-663.
- [32]Natarajan S., Muthukrishnan C., Asath Bahadur S., Rajaram R.K. & Rajan S. S. (1992). Z. Kristallogr. 198, 265-270.
 [33]Goldberg I. (1977). J. Am. Chem. Soc. 99, 6049-6057.

APPENDICE

Résultats des propriétés optiques non linéaires

-La génération de seconde harmonique (SHG) :

La mesure de la susceptibilité de seconde harmonique, $\chi^{(2)}$, a été effectuée sur le seul composé non-centrosymétrique le bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate [SnCl₆] (C₅H₇N₅)₂, 2Cl, 4 H₂O qui cristallise dans le groupe d'espace Fdd2. L'analyse des données expérimentales a été réalisée en utilisant un modèle théorique sous

MatLab. La valeur de $\chi^{(2)}$ a été calculée par l'équation suivante :

$$I_{2\omega} = \frac{2\pi^2}{\varepsilon_0 . c . \lambda^2 . n_{\omega}^2 . n_{2\omega}} \left| \chi^{(2)} \right|^2 I_{\omega}^2 L^2 \frac{Sin^2 (\Delta KL / 2)}{(\Delta KL / 2)^2}$$

 $I_{2\omega}$: l'intensité du signal sortant du SHG.

 I_{ω} : l'intensité du signal entrant du LASER.

 n_{ω} et $n_{2\omega}$: sont les indices de réfraction à la fréquence ω et 2 ω respectivement.

 ΔK : le déphasage entre les faisceaux fondamental et du deuxième harmonique.

L : le chemin parcourus dans l'échantillon.

 ε_0 : Permittivité dans le vide.

Cette valeur de $\chi^{(2)}$ est aussi importante confirmant que le composé bis (adeninium) hexachlorostannate (IV) dichloride tetrahydrate est <u>un doubleur de fréquence</u>, $\chi^{(2)} = 0.92$ pm/V soit 7.7% par rapport à un autres composé de référence à base d'amine le 3-methyl 4nitropyridine 1-oxide (POM).

La figure I présente le signal de la génération de la deuxième harmonique en fonction de l'angle de rotation.

Figure I : Le signal du SHG en fonction de l'angle de rotation.

-La génération du troisième harmonique (THG)

Dans le phénomène de la génération de la troisième harmonique le tenseur mis en jeu est noté : $\chi^{(3)}(3\omega; \omega, \omega, \omega)$. C'est un processus photonique dans lequel trois photons de pulsation ω sont absorbés pour générer un photon à la pulsation 3 ω . La valeur de $\chi^{(3)}$ a été calculée par l'équation suivante :

$$I_{3} = \frac{576\pi^{6}}{c^{2} \lambda_{1}^{2} n_{1}^{3} n_{3}} \left| \chi^{(3)} \right|^{2} I_{1}^{3} L^{2} \frac{Sin^{2} (\Delta KL/2)}{(\Delta KL/2)^{2}}$$

-n₁ et n₂ sont les indices de réfraction à la fréquence ω et 3 ω respectivement. - Δ k le déphasage du processus du troisième ordre.

La mesure de la susceptibilité du troisième harmonique, $\chi^{(3)}$ a été effectué sur six produits isolés et étudiés au cours de ce travail. Les valeurs numériques de la susceptibilité non linéaire d'ordre trois $\chi^{(3)}$ liée à la génération de la troisième harmonique sont présentés dans le tableau suivant :

Composés	$\chi^{(3)}_{THG}.10^{13}$ [esu]
-Bis (adeninium) hexachlorostannate(IV) dichloridetetrahydrate	0.52
-Bis cytosinium hexachlorostannate(IV)	0.49
-Tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride	0.67
-Tris (2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate	0.44
-Bis(4-nitroanilinium) hexachlorostannate(IV)	0.61
-Bis(3,4-dimethyl anilinium) hexachlorostannate(IV)	0.48

Valeurs de la susceptibilité d'ordre 3 du troisième harmonique $\chi^{(3)}$.

L'analyse de ces résultats montre clairement l'existence de propriétés optiques non linéaires liées à la génération de la troisième harmonique pour ces composés, d'où leurs éventuelle utilisation dans des applications du laser dans le domaine UV et aussi dans la conversion de fréquence.

CONCLUSION GENERALE

Les études réalisées lors de ce travail de thèse ont eu pour objectif principal l'étude structurale, le comportement thermique et la recherche de nouvelles propriétés physiques pour ces nouveaux composés hybrides à base d'étain et de matrice organique à base d'amine.

Plusieurs méthodes d'analyses physico-chimiques ont été utilisées à savoir la résonance magnétique nucléaire du proton, la spectroscopie d'énergie dispersive, l'analyse thermique (ATG/ATD) et la diffraction des rayons X sur monocristal et sur poudre. D'autres parts, des mesures de la conductivité électrique en utilisant la méthode à quatre points et des propriétés d'optique non linéaire de la deuxième et la troisième harmonique ont été effectuées.

La préparation de ces composés a été réalisée par deux voies principales, la synthèse par voie aqueueuse et la synthèse par voie hydrothermale. Les huit composés originaux obtenus peuvent être regrouper selon leurs matrices organiques à base d'amine on distingue quatre types : composés à base de bases azotées, d'amine aromatique et d'acide aminé.

Le premier composé est le bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate dont la structure consiste à une alternance de couches d'octaèdres $SnCl_6$ et de couches d'adénine deux fois protonée, avec des molécules d'eau et des ions chlorure qui se mettent en sandwich entre ces couches et jount un rôle important dans la stabilité de l'édifice cristallin. L'analyse thermique de ce composé nous a révélé sa stabilité jusqu'à 115°C, sa décomposition selon un processus de quatre étapes qui se termine à 820°C sous N₂ et à 580°C sous O₂ et la formation de SnO₂ lors de la volatilisation de produit.

Le deuxième composé à base de base azotée isolée est le bis cytosinium hexachlorostannate(IV). Il possède un réseau bidimensionnel de liaisons hydrogène de type cation-cation et cation-anion.

L'analyse thermique de ce composé hybride a permis de montrer la formation de SnO_2 après deux étapes essentielles de décomposition et de mettre en évidence le rôle de l'oxygène dans l'accélération de ces événements thermiques.

Quatre composés à base d'amine aromatique ont été étudiés dans le troisième et le quatrième chapitres. Le premier composé est le tetra (4-methoxyanilinium) hexachlorostannate (IV) dichloride. Il se distingue par une unité asymétrique formée de la moitié du complexe minérale $SnCl_6$, deux entités de 4-methoxyanilinium (A et B) et un ion chlorure libre. Sa structure est stabilisée par des liaisons hydrogène de type N-H...Cl et C-H...Cl entre les cations et les anions. Sa décomposition thermique est achevée un plus tôt (520°C sous N₂) relativement aux composés étudiés à base d'adénine (820°C) et de cytosine (800°C).

Le deuxième composé est le tris (2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate. Il a été préparé par voie hydrothermale. Sa structure présente une grande richesse de liaisons hydrogène donnant des interactions inter et intramoléculaires ente les différentes entités cationiques, anioniques et les molécules d'eau.

Le troisième et le quatrième composés de cette série de composé à base d'amine aromatique sont le bis(4-nitroanilinium) hexachlorostannate(IV) et le bis(dimethyl anilinium) hexachlorostannate(IV). Ils présentent pratiquement la même disposition des entités cationiques et anioniques dans le réseau mais pas le même déploiement de la matrice organique.

Le réseau cristallin de la structure bis(4-nitroanilinium) hexachlorostannate(IV) est stabilisé par des liaisons hydrogène cation-cation de type N-H...O qui assurent la jonction entre les couches cationiques et des liaisons cation-anion de type N-H...Cl et C-H...Cl qui renforçent le réseau tridimensionnel. Cependant la structure du bis(dimethyl anilinium) hexachlorostannate(IV) présente uniquement des liaisons hydrogène intra- et intermoléculaire cation-anion de type N-H...Cl. La décomposition thermique de ce dernier composé a été effectuée en deux étapes essentielles. Elle commence à 220°C et s'acheve à 600°C avec la formation de l'oxyde d'étain.

Les deux derniers composés étudiés sont à base d'acide aminé, le bis (3-carboxyanilinium) hexafluorostannate (IV) et le phenylglycinium chloride. La structure du premier composé est décrite par l'alternance des couches cationiques et anioniques avec des liaisons hydrogène de types cation-cation et cation-anion confèrent une grande stabilité au cristal.

La dernière structure de formule, $C_8H_{10}NO_2^+$ Cl⁻, a fait l'exception on ne fixant pas l'étain. Ses couches cationiques s'empilent dans le réseau formant des zones hydrophiliques et hydrophobiques. Les ions chlorure se trouvent dans les zones hydrophiliques et sont engagés avec des liaisons hydrogène de types N-H...Cl et O-H...Cl participant ainsi à la stabilité du réseau cristallin avec d'autres interactions cation-cation de type N-H...Cl et O-H...Cl.

Les mesures de la conductivité électrique réalisées sur la totalité des produits synthétisés par la méthode des quatre points nous révèlent le caractère isolant de ces nouveaux composés hydrides à base d'étain et d'amine, ce qui explique leurs possible utilisation dans les applications des matériaux diélectriques (fabrication de condensateurs et isolateurs).

La mesure de la susceptibilité de deuxième harmonique pour le composé bis (adeninium) hexachlorostannate(IV) dichloride tetrahydrate a donné une très bonne valeur confirmant que notre matériau est un doubleur de fréquence.

La mesure de la susceptibilité d'ordre trois liée à la génération de la troisième harmonique nous révèle les propriétés optiques non linéaires de ces composés hybrides qui peuvent être utilisés dans des applications du laser dans le domaine de l'ultra - violet (UV) et aussi dans la conversion de fréquence.

PUBLICATIONS

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson

Bis(adeninium) hexachlorostannate(IV) dichloride tetrahydrate Sofiane Bouacida, Hocine Merazig, Adel Beghidja and Chahrazed Beghidja

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Cryst. (2005). E61, m1153-m1155

Bouacida et al. • $(C_5H_7N_5)_2[SnCl_6]Cl_2 \cdot 4H_2O$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sofiane Bouacida,^{a,b}* Hocine Merazig,^b Adel Beghidja^c and Chahrazed Beghidja^c

^aDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour, 06000 Béjaia, Algeria, ^bLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and ^cLaboratoire DECMET, ILB, Université Louis Pasteur Strasbourg I, 4 rue Blaise Pascal, 67000 Strasbourg, France

Correspondence e-mail: bouacida_sofiane@yahoo.fr

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.004 Å R factor = 0.027 wR factor = 0.061 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of the title compound, $(C_5H_7N_5)_2[SnCl_6]Cl_2$ ·-4H₂O, can be described as alternating layers of $C_5H_7N_5^{2+}$ and $[SnCl_6]^{2-}$ ions along the *b* axis, the Sn^{IV} atom lying on a twofold axis. The chloride ions are located between the organic entities, forming hydrogen bonds with the N atoms and water molecules. Layers of adeninium cations and hexachlorostannate anions are linked by anion–cation, cation–water and water–water hydrogen bonds. This threedimensional complex network of hydrogen bonds ensures the cohesion of the ionic structure.

Comment

Studies of organic-inorganic hybrid materials have received great attention in recent years, because of their ionic, electrical, magnetic and optical properties (Hill, 1998; Kagan *et al.*, 1999; Raptopoulou *et al.*, 2002). Adenine is one of the precursors of DNA and RNA nucleotides, and the adeninium cation (1+ or 2+) is known to form a variety of inorganic salts, such as chloride (Kistenmacher & Shigematsu, 1974), bromide (Langer & Huml, 1978*a*), bistriiodide (Cheng *et al.*, 2002), sulfate (Langer & Huml, 1978*b*), phosphate (Langer *et al.*, 1979) and nitrate (Hingerty *et al.*, 1981; Bendjeddou *et al.*, 2003; Zeleňák *et al.*, 2004).

In the present study, we present a new organic-inorganic hybrid compound, (I), based on tin and adenine, and examine the hydrogen bonding in the crystal structure.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. Two imino groups of the adenine base are protoned at N1 and N7, as reported previously for the sulfate and dinitrate. The internal angles at N1 and N7 [C6–N1–C2 = 123.8 (2)° and C8–N7–C5 = 107.4 (2)°] have increased from the values of 119.8 and 104.4° reported in unprotonated adenine (Voet & Rich, 1970). The imidazole and pyridine rings of the adeninium ion are coplanar.

In (I), the adeninium cations form layers parallel to the (010) plane. The Sn^{IV} atom, lying on a twofold axis, is sixcoordinated and forms a quasi-regular octahedral arrangement (Bouacida *et al.*, 2005). The $[\text{SnCl}_6]^{2-}$ octahedra form anionic sheets parallel to the (010) plane, which alternate with the cationic layers along the *b* axis. The tilted octahedra and Received 4 April 2005 Accepted 12 May 2005 Online 21 May 2005

metal-organic papers

 $O\bar{R}TEP$ -3 (Farrugia, 1997) drawing of (I) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (vii) $\frac{3}{2} - x$, $\frac{1}{2} - y$, z.]

Figure 2

Packing diagram of (I), viewed down the c axis. H atoms, Cl⁻ ions and water molecules have been omitted.

layered packing are illustrated in Fig. 2. The crystal packing is mostly governed by classical hydrogen bonds (Fig. 3). Atoms N1, N6, N7, N9 and C8 of the adeninium ion participate in the formation of intermolecular and intramolecular (N-H···Cl, N-H···O and C-H···Cl) hydrogen bonds (Table 2). In this structure, we observe three types of hydrogen bonds, *viz*. cation–anion, cation–water and water–water, which form a three-dimensional network.

Part of the three-dimensional network of hydrogen bonds, shown as thin dashed lines.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of adenine, tin(II) oxalate and hydrochloric acid in a 10:5:1 molar ratio. Colourless prismatic crystals were obtained after one month and were manually separated for single-crystal X-ray analysis.

Crystal data

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: none 10 885 measured reflections 3316 independent reflections 3155 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	w = 1
$R[F^2 > 2\sigma(F^2)] = 0.027$	-
$vR(F^2) = 0.061$	wł
S = 1.09	(Δ / σ)
3316 reflections	$\Delta \rho_{\rm m}$
91 parameters	$\Delta \rho_{\rm m}$
H atoms treated by a mixture of	Extir
independent and constrained	Extir
refinement	Abso

Mo $K\alpha$ radiation Cell parameters from 3316 reflections $\theta = 2.1-30.0^{\circ}$ $\mu = 1.85 \text{ mm}^{-1}$ T = 295 KPrism, colourless $0.07 \times 0.06 \times 0.05 \text{ mm}$

 $\begin{aligned} R_{\text{int}} &= 0.045\\ \theta_{\text{max}} &= 30.0^{\circ}\\ h &= -25 \rightarrow 25\\ k &= -55 \rightarrow 37\\ l &= -10 \rightarrow 6 \end{aligned}$

$w = 1/[\sigma^2(F_o^2) + (0.0293P)^2]$
+ 1.3984P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00075 (5)
Absolute structure: Flack (1983),
with 1278 Friedel pairs
Flack parameter = -0.026 (17)

Table 1

Selected geometric parameters (Å, °).

Sn-Cl1	2.4419 (12)	Sn-Cl3	2.4172 (12)
Cl1-Sn-Cl2	90.13 (3)	C6 - N1 - C2	123.8 (2)
Cl1-Sn-Cl3	176.64 (4)	C8-N7-C5	107.4 (2)
Cl2-Sn-Cl3	90.73 (3)		

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···Cl4 ⁱ	0.86	2.50	3.273 (2)	150
$O1W - H1W \cdot \cdot \cdot O2W^{ii}$	0.71 (6)	2.08 (6)	2.782 (5)	172 (6)
$O2W - H3W \cdot \cdot \cdot Cl4$	0.88 (4)	2.49 (4)	3.337 (4)	162 (3)
O2W−H4W···N3 ⁱⁱⁱ	0.74 (6)	2.53 (6)	3.189 (5)	148 (3)
$N6-H5\cdots Cl1^{iv}$	0.82(3)	2.76 (3)	3.100 (3)	107(2)
$N6-H5\cdots O1W$	0.82(3)	2.21 (3)	2.993 (5)	159 (3)
$N6-H6\cdots Cl4^{i}$	0.92 (4)	2.33 (4)	3.205 (4)	160 (3)
$N7-H7\cdotsO1W$	0.82 (3)	2.01 (3)	2.766 (4)	154 (3)
$N9-H9\cdots Cl4^{v}$	0.92 (4)	2.17 (4)	3.089 (3)	176 (5)
$C8-H8\cdots Cl1^{vi}$	0.89 (3)	2.63 (3)	3.410 (4)	148 (3)

Symmetry course, (i) $x = \frac{1}{4}, \frac{1}{4} - y, \frac{1}{4} + z, (ii) 1 - x, \frac{1}{2} - y, \frac{1}{2} + z; (iii) x = \frac{1}{4}, \frac{1}{4} - y, \frac{1}{2} - \frac{1}{4}; (i) x = \frac{1}{2}, y, z = \frac{1}{2}; (v) \frac{1}{4} + x, \frac{1}{4} - y, \frac{1}{4} + z; (vi) x, y, z = 1.$

All H atoms except H1 were located in a difference Fourier map and refined isotropically. Atom H1 was placed at a calculated position, and refined using a riding model with N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *KappaCCD Reference Manual* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997), *PLUTON* (Spek, 2003) and *ATOMS* (Dowty, 1995); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Hanéne Bensmira (Faculté des Sciences, Département de Physique, Université Mentouri de Constantine 25000 Constantine, Algeria) for his technical assistance.

References

- Bendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2003). Acta Cryst. E59, o649–o651.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m577–m579.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Cheng, Y. J., Wang, Z. M., Liao, C. S. & Yan, C. (2002). New J. Chem. 26, 1360–1364.
- Dowty, E. (1995). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hill, C. L. (1998). Chem. Rev. 98, 1-2.
- Hingerty, B. E., Einstein, J. R. & Wei, C. H. (1981). Acta Cryst. B37, 140-147.
- Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945– 947.
- Kistenmacher, T. J. & Shigematsu, T. (1974). Acta Cryst. B30, 166-168.
- Langer, V. & Huml, K. (1978a). Acta Cryst. B34, 1881-1884.
- Langer, V. & Huml, K. (1978b). Acta Cryst. B34, 1157-1163.
- Langer, V., Huml, K. & Zachova, J. (1979). Acta Cryst. B35, 1148-1152.
- Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. *Naturforsch. Teil B*, **57**, 645–650.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Voet, D. & Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183–265. Zeleňák, V., Vargoý, Z. & Císarová, I. (2004). Acta Cryst. E60, 0742–0744.

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson

Bis(cytosinium) hexachlorostannate(IV)

Sofiane Bouacida, Hocine Merazig, Adel Beghidja and Chahrazed Beghidja

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Cryst. (2005). E61, m2072-m2074

Bouacida et al. • $(C_4H_6N_3O)_2[SnCl_6]$

metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sofiane Bouacida,^{a,b}* Hocine Merazig,^b Adel Beghidja^c and Chahrazed Beghidja^c

^aDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour, 06000 Béjaia, Algeria, ^bLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and ^cLaboratoire DECMET, ILB, Université Louis Pasteur Strasbourg I, 4, rue Blaise Pascal, 67000 Strasbourg, France

Correspondence e-mail: bouacida_sofiane@yahoo.fr

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.041 wR factor = 0.098 Data-to-parameter ratio = 23.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(cytosinium) hexachlorostannate(IV)

The asymmetric unit of the title compound, $(C_4H_6N_3O)_2$ -[SnCl₆], contains one cytosinium cation and half a [SnCl₆]²⁻ anion, the anion lying on an inversion centre. The structure can be described as alternating layers of cytosinium and hexachlorostannate ions along the *c* axis. The packing is stabilized by N-H···Cl and N-H···O hydrogen bonding, resulting in the formation of a two-dimensional network.

Received 19 July 2005 Accepted 19 September 2005 Online 24 September 2005

Comment

Studies of metal ion-nucleic acid interactions are of great current interest, since metal ions play a crucial role in the structure and function of nucleic acid and genetic information transfer (Salam & Aoki, 2000). The antitumour activity of organotin(IV) complexes is also known (Kabanos *et al.*, 1992).

Cytosine (6-aminopyrimidin-2-one) is one of the pyrimidines found in deoxyribonucleic acids. It has been the subject of several investigations with the aim of studying the electrostatic properties of its monohydrate form (Weber & Craven,1990), the relative stabilities of its tautomeric forms (Kobayashi, 1998) and its hydration effects and hydrogen bonding (Sivanesan et al., 2000). It offers many metal binding modes, namely via atom N3 (Tran Qui & Bagieu, 1990), through atom N4 (Muller et al., 1998), bridging through atoms N3 and N4 (Wienkotter et al., 1995), via atom O2 only (Cervantes et al., 1990), with chelation by atoms N3 and O2 (Aoki & Saenger, 1984), and bridging through atoms N3 and O2 (Lippert et al., 1984) via stronger N3 with additional weaker O2 interactions (Palaniandavar et al., 1996). Only one crystal structure based on Sn and cytosine has been reported to date (Casellato, 1995). Here, we present a new organicinorganic hybrid compound, (I), based on Sn and cytosine, and examine the hydrogen bonding in the crystal structure.

The title structure, (I), consists of hexachlorostannate(IV) anions lying on inversion centres and protonated cytosine rings (Fig. 1). The anionic sheet is parallel to the (001) plane and the distance between two sheets is the *c*-axis repeat. The cytosine is monoprotonated at atom N3, as previously

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 1

A view of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

reported for the tetrachlorodimethylstannate and nitrate compounds (Casellato, 1995; Cherouana et al., 2003). The internal angle at N3 $[C2-N3-C4 = 124.85 (10)^{\circ}]$ is larger than the value of 119.4° reported in unprotonated cytosine (McClure & Craven, 1973). A similar effect has been observed in the structure of cytosinium dihydrogenmonophosphate (Bagieu-Beucher, 1990). The cations form layers parallel to the (011) plane

The Sn atom is six-coordinated and forms a quasi-regular octahedral arrangement (Bouacida et al., 2005a). This [SnCl₆]²⁻ octahedron alternates with the cationic layers along the c axis (Fig. 2). The bond lengths are similar to those found in other octahedral Sn^{IV} compounds (Bouacida et al., 2005b).

The crystal packing in (I) is governed by classical hydrogen bond, in addition to coulombic forces (Fig. 3). Atoms N1, N3, N4 and C5 of the cytosine participate in the formation of strong inter- and intramolecular $(N-H\cdots Cl \text{ and } N-H\cdots O)$ hydrogen bonds with hexachlorostannate and cytosine (Table 1), resulting in the formation of a two-dimensional network.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of cytosine, tin(II) chloride and hydrochloric acid in a molar ratio of 10:5:1. White prismatic crystals of (I) were obtained after two weeks and were manually separated for single-crystal X-ray analysis.

Crystal data

 $(C_4H_6N_3O)_2[SnCl_6]$ $M_r = 555.63$ Triclinic, $P\overline{1}$ a = 6.910 (5) Å b = 7.090(5) Å c = 9.270(5) Å $\alpha = 101.86 \ (5)^{\circ}$ $\beta = 98.36(5)^{\circ}$ $\gamma = 90.51(5)$ V = 439.4 (5) Å³

Z = 1 $D_x = 2.100 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 2533 reflections $\theta = 2.3 - 30.1^{\circ}$ $\mu = 2.38 \text{ mm}^-$ T = 295 KPrism, white $0.1 \times 0.1 \times 0.1 \text{ mm}$

Figure 2

A diagram of the layered packing and octahedra in the title compound, viewed down the *a* axis.

Figure 3

A view of the ionic stacking, showing the hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Data collection

Nonius KappaCCD area-detector	2531 independent reflections
diffractometer	2279 reflections with $I > 2\sigma(I)$
φ scans, and ω scans with κ offsets	$R_{\rm int} = 0.052$
Absorption correction: multi-scan	$\theta_{\rm max} = 30.1^{\circ}$
(SORTAV; Blessing 1995)	$h = -9 \rightarrow 9$
$T_{\min} = 0.717, T_{\max} = 0.792$	$k = -9 \rightarrow 9$
2533 measured reflections	$l = -13 \rightarrow 4$

Acta Cryst. (2005). E61, m2072-m2074

electronic reprint
Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained $w = 1/[\sigma^2(F^2) + (0.02P)^2]$
$wR(F^2) = 0.098$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
2531 reflections	$\Delta \rho_{\rm max} = 3.07 \ {\rm e} \ {\rm A}^{-3}$
106 parameters	$\Delta \rho_{\rm min} = -0.96 \ {\rm e} \ {\rm A}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H3···Cl1 ⁱ	0.86	2.46	3.265 (4)	157
$N1 - H1 \cdots Cl2^{ii}$	0.86	2.42	3.249 (4)	162
N4-H4A···Cl3 ⁱⁱⁱ	0.86	2.66	3.507 (4)	169
N4-H4 B ···O2 ^{iv}	0.86	2.26	3.032 (5)	150
$N4-H4B\cdots Cl1^{v}$	0.86	2.92	3.490 (4)	126

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x, y + 1, z; (iv) x - 1, y, z; (v) -x, -y + 2, -z + 1.

All H atoms were located in difference Fourier maps but were introduced in calculated positions and treated as riding on their parent atoms, with C–H = 0.93 Å and N–H = 0.86 Å, and with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C,N})$. The very large residual electronic density has no chemical significance.

Data collection: *KappaCCD Server Software* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997), *PLATON* (Spek, 2003) and *ATOMS for Windows* (Dowty, 1995); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank Hanéne Bensmira of the Université Mentouri de Constantine for his technical assistance.

References

- Aoki, K. & Saenger, W. (1984). J. Inorg. Biochem. 20, 225-245.
- Bagieu-Beucher, M. (1990). Acta Cryst. C46, 238–240.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C.(2005*a*). Acta Cryst. E**61**, m577–m579.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C.(2005b). Acta Cryst. E61, m1153-m1155.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Casellato, U. (1995). Acta Cryst. C51, 2293-2295.

- Cervantes, G., Fiol, J. J., Terron, A., Moreno, V., Alabart, J. R., Aguilo, M., Gomez, M. & Solans, X. (1990). *Inorg. Chem.* 29, 5168–5173.
- Cherouana, A., Bouchouit, K., Bendjeddou, L. & Benali-Cherif, N. (2003). Acta Cryst. E**59**, 0983–0985.
- Dowty, E. (1995). ATOMS for Windows. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kabanos, T. A., Keramidas, A. D., Mentzafos, D., Russo, U., Terzis, A. & Tsangaris, J. M. (1992). J. Chem. Soc. Dalton Trans. pp. 2729–2733.
- Kobayashi, R. (1998). J. Phys. Chem. A, **102**, 10813–10817.
- Lippert, B., Thewalt, U., Schollhorn, H., Goodgame, D. M. L. & Rollins, R. W. (1984). *Inorg. Chem.* 23, 2807–2813.
- McClure, R. J. & Craven, B. M. (1973). Acta Cryst. B29, 1234-1238.
- Muller, J., Zangrando, E., Pahlke, N., Freisinger, E., Randaccio, L. & Lippert, B. (1998). *Chem. Eur. J.* 4, 397–405.
- Nonius (1998). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Palaniandavar, M., Somasundaram, I., Lakshminarayanan, M. & Manohar, H. (1996). J. Chem. Soc. Dalton Trans. pp. 1333–1340.
- Salam, M. A. & Aoki, K. (2000). Inorg. Chim. Acta, 311, 15-24.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sivanesan, D., Babu, K., Gadre, S. R., Subramanian, V. & Ramasami, T. (2000). J. Phys. Chem. A, 104, 10887–10894.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tran Qui, D. & Bagieu, M. (1990). Acta Cryst. C46, 1645-1647.
- Weber, H.-P. & Craven, B. M. (1990). Acta Cryst. B46, 532-538.
- Wienkotter, T., Sabat, M., Fusch. G. & Lippert, B. (1995). Inorg. Chem. 34, 1022–1029.

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson

Tris(2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate

Sofiane Bouacida, Hocine Merazig, Patricia Benard-Rocherulle and Corrado Rizzoli

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Cryst. (2007). E63, m379-m381

Bouacida et al. • $(C_6H_8NO)_3[SnCl_6]Cl\cdot 3H_2O$

Received 22 December 2006

Accepted 30 December 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sofiane Bouacida,^{a,b}* Hocine Merazig,^b Patricia Benard-Rocherulle^c and Corrado Rizzoli^d

^aDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour 06000 Béjaia, Algeria, ^bLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie. Université Mentouri. 25000 Constantine, Algeria, ^cMatériaux Inorganique: Chimie Douce et Réactivité, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, Avenue du Général Leclerc, 35 Rennes, France, and ^dDipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Universita degli Studi di Parma, Viale delle Scienze 17/A, I-43100 Parma, Italy

Correspondence e-mail: bouacida_sofiane@yahoo.fr

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.007 Å R factor = 0.041 wR factor = 0.106 Data-to-parameter ratio = 19.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved

doi:10.1107/S160053680605656X

Tris(2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate

In the title compound, $(C_6H_8NO)_3[SnCl_6]Cl\cdot 3H_2O$, the asymmetric unit contains three independent cations of protonated o-aminophenol, one hexachlorostannate(IV) and one chloride anion, and three molecules of water. The crystal structure can be described as double layers of $[SnCl_6]$ octahedra and 2-hydroxyanilinium cations parallel to the $(10\overline{1})$ plane, with the chloride ions and the water molecules sandwiched between the double layers. A myriad of hydrogen bonds, namely, cation–cation, cation–anion, cation–water and water–water, result in a complex network of intermolecular bonds reinforcing the cohesion of the ionic structure.

Comment

Organic–inorganic hybrid materials of formula $(R-NH_3)$, Sn X_n , where X = F, Cl, Br or I, exhibit interesting magnetic, optical and electronic properties (Aruta *et al.*, 2005; Knutson & Martin, 2005; Mitzi *et al.*, 2001, Kagan *et al.*, 1999). Within our research of hybrid compounds based on tin (Bouacida *et al.*, 2005*a*,*b*,*c*), a new crystal structure has been investigated.

The asymmetric unit of the title compound, (I) (Fig. 1), contains three independent molecules of protonated *o*-aminophenol, one chloride ion, one hexachlorostannate(IV) ion and three independent water molecules. The Sn^{IV} atom is sixfold coordinated by chloride ions, forming a quasi-regular octahedral arrangement. The organic cation has the amino group protonated and takes part, together with the [SnCl₆]²⁻ anions, in the formation of double layers parallel to the (101) plane (Fig. 2). The chloride ions and water molecules are sandwiched between the double layers (Fig. 2).

In this structure, four types of hydrogen bonds are observed, *viz*. cation-cation, cation-anion, cation-water and water-water, with the N and O atoms of the cation and the water molecules acting as donors and with the Cl^- ions and the O atoms of the water molecules acting as acceptors (Table 2, Fig. 3). These intermolecular bonds link the molecules within the layers and also link the layers together, forming a complex network and reinforcing the cohesion of the structure.

metal-organic papers

Figure 1

The structure of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A diagram of the layered crystal packing in (I), viewed down the b axis.

Figure 3

A view of the ionic stacking, showing the three-dimensional network of hydrogen bonds as dashed lines. H atoms not involved in hydrogenbonding have been omitted for clarity.

Experimental

A mixture of tin(II) chloride dihydrate (50 mg, 0.2219 mmol), *o*-aminophenol (75 mg, 0.6872 mmol) and hydrochloric acid (1 ml-37%, 32.63 mmol) was added to 12 ml of distilled water in a stainless steel autoclave, with a Teflon liner, of 23 ml capacity. The autoclave was heated to 343 K and kept at this temperature for three days. Brown needle-shaped transparent crystals were obtained.

Z = 4

Crystal data

 $\begin{array}{l} ({\rm C}_{6}{\rm H}_{8}{\rm NO})_{3}[{\rm SnCl}_{6}]{\rm Cl}\cdot{\rm 3H}_{2}{\rm O}\\ M_{r}=751.29\\ {\rm Monoclinic}, P_{21}/n\\ a=16.2653 (2) ~{\rm \AA}\\ b=7.1079 (1) ~{\rm \AA}\\ c=25.4562 (5) ~{\rm \AA}\\ \beta=90.751 (1)^{\circ}\\ V=2942.79 (8) ~{\rm \AA}^{3} \end{array}$

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: none 20517 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.106$ S = 1.136647 reflections 341 parameters H atoms treated by a mixture of independent and constrained refinement Mo K α radiation $\mu = 1.54 \text{ mm}^{-1}$ T = 296 (2) KNeedle, brown $0.31 \times 0.02 \times 0.02 \text{ mm}$

 $D_x = 1.696 \text{ Mg m}^{-3}$

6647 independent reflections 5218 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 27.5^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0293P)^2 \\ &+ 1.3984P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.010 \\ \Delta\rho_{max} = 1.01 \ e^{A^{-3}} \\ \Delta\rho_{min} = -0.77 \ e^{A^{-3}} \\ Extinction \ correction: \ SHELXL97 \\ Extinction \ coefficient: \ 0.0021 \ (2) \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O2A - H2A \cdots Cl7^i$	0.82	2.32	3.136 (3)	171
$O2B - H2B \cdot \cdot \cdot Cl4^{ii}$	0.82	2.48	3.289 (4)	168
$O2C - H2C \cdot \cdot \cdot Cl7^{i}$	0.82	2.31	3.097 (3)	162
$N1A - H11A \cdots O1W$	0.89	1.94	2.816 (5)	168
$N1B-H11B\cdots Cl7^{i}$	0.89	2.33	3.214 (4)	176
$N1C - H11C \cdot \cdot \cdot Cl1^{iii}$	0.89	2.68	3.555 (3)	170
$N1A - H12A \cdots Cl5^{ii}$	0.89	2.71	3.586 (4)	167
$N1B - H12B \cdots O3W^{iv}$	0.89	1.92	2.809 (5)	174
$N1C-H12C\cdots O2W^{i}$	0.89	1.99	2.864 (5)	167
$N1A - H13A \cdots Cl3^{v}$	0.89	2.54	3.333 (4)	149
$N1B-H13B\cdots Cl7$	0.89	2.46	3.227 (3)	145
$N1B - H13B \cdots O2B$	0.89	2.28	2.719 (5)	110
$N1C-H13C\cdots Cl2^{vi}$	0.89	2.65	3.351 (4)	137
$O1W-H12\cdots O2W$	0.86 (3)	2.04 (3)	2.881 (5)	168 (4)
$O1W - H11 \cdots Cl7$	0.83(3)	2.64 (3)	3.408 (3)	155 (4)
O2W−H21···Cl2 ⁱⁱ	0.85(3)	2.71 (4)	3.342 (3)	133 (4)
$O2W - H22 \cdots O3W^{vii}$	0.83 (4)	2.08(4)	2.897 (5)	170 (5)
$O3W-H31\cdots O1W$	0.81(4)	2.22 (4)	2.843 (5)	135 (4)
O3W−H32···Cl6 ^{viii}	0.82(3)	2.67 (3)	3.362 (3)	144 (4)
$O3W-H32\cdots O2C^{iv}$	0.82 (3)	2.47 (4)	3.067 (5)	131 (3)
Symmetry codes: (i)	$-x + \frac{1}{2}, y + \frac{1}{2}$	$\frac{1}{2}, -z + \frac{1}{2};$ (ii)	-x + 1, -y - y = -x + 1	+1, -z; (iii)

Symmetry codes. (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) -x + 1, -y + 1, -z; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (v) -x + 1, -y + 2, -z; (vi) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (vii) x - 1, y, z.

H atoms of water molecules were located in difference Fourier maps and refined isotropically. All other H atoms were located in Fourier maps but introduced in calculated positions and treated as riding on their parent C, N and O atoms, with C–H distances of 0.93 Å, N–H distances of 0.89 Å and O–H distances of 0.82 Å, and with $U_{iso}(H) = 1.5U_{eq}(N,O)$ or $1.2U_{eq}(C)$. The highest residual density peak is located 1.84 Å from atom H11*C*.

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for his technical assistance in single-crystal X-ray data collection. SB thanks Université A. Mira de Béjaia, Algeria, for financial support.

References

- Aruta, C., Licci, F., Zappettini, A., Bolzoni, F., Rastelli, F., Ferro, P. & Besagni, T. (2005). Appl. Phys. A, 81, 963–968.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005*a*). *Acta Cryst.* E**61**, m1153–m1155.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005*b*). *Acta Cryst.* E**61**, m2072–m2074.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577–m579.
- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Version 3.1e. Crystal Impact, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945–947.
- Knutson, J. L. & Martin, J. D. (2005). Inorg. Chem. 44, 4699-4705.
- Mitzi, D. B., Dimitrakopoulos, C. D. & Kosbar, L. L. (2001). Chem. Mater. 13, 3728–3740.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson

DL-Phenylglycinium chloride

Sofiane Bouacida, Hocine Merazig and Patricia Benard-Rocherulle

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Cryst. (2006). E62, 0838-0840

Bouacida *et al.* $\cdot C_8H_{10}NO_2^+ \cdot Cl^-$

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sofiane Bouacida,^{a,b}* Hocine Merazig^b and Patricia Benard-Rocherulle^c

^aDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour 06000 Béjaia, Algeria, ^bLaboratoire de Chimie Moléculaire du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantine, Algeria, and ^cChimie Douce et Réactivité, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, Avenue du général Leclerc, 35 Rennes, France

Correspondence e-mail: bouacida_sofiane@yahoo.fr

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.002 Å R factor = 0.030 wR factor = 0.116 Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. DL-Phenylglycinium chloride

In the title compound, $C_8H_{10}NO_2^+ \cdot Cl^-$, the asymmetric unit consists of a protonated DL-phenylglycine cation and a chloride anion. The crystal structure consists of alternating layers of hydrophobic and hydrophilic zones of phenylglycinium along the *c* axis. The chloride anions are located between hydrophobic zones, forming hydrogen bonds with N and O atoms of the cations, in hydrophilic zones. These ions are linked by cation–cation and cation–anion hydrogen bonds. This three-dimensional complex network of hydrogen bonds reinforces the cohesion of the ionic structure.

Comment

D-Phenylglycine is an important starting material in the production of semisynthetic penicillins and cephalosporins and its derivatives are used in the synthesis of antitumor drugs and other pharmacological applications (Satyam *et al.*, 1996; Jayasinghe *et al.*, 1994). The crystal structures of D-phenylglycine hydrochloride (Ravichandran *et al.*, 1998), bis(D-phenylglycinium) sulfate monohydrate (Srinivasan *et al.*, 2001), D-phenylglycinium nitrate (Bouchouit *et al.*, 2004) and D-phenylglycinium perchlorate (Ramaswamy *et al.*, 2001) have been reported. In the present study, the structure of DL-phenylglycinium chloride, (I), has been investigated. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1.

The amino N atom is protonated. As in other amino acids (Bouacida *et al.*, 2005), in the phenylglycinium residue, the torsion angle O1–C8–C2–N1 is a measure of the relative orientation of the carboxyl group and the amino N atom; in (I) this is $-23.3 (2)^{\circ}$, indicating that the orientation of the carboxyl group is influenced by the phenyl substituent at the α -C atom. The corresponding angles in α -glycine (Marsh, 1958) and diglycine hydrochloride (Natarajan *et al.*, 1992) are 19.1, 0.3 and 16.5°, respectively, and this angle is 18.9° in D-phenylglycine hydrochloride (Ravichandran *et al.*, 1998).

The branched-chain torsion angle C7-C2-C1-N1 is $-118.51 (16)^{\circ}$, indicating a folded conformation. This angle varies according to the anion; in D-phenylglycine hydro-

Received 18 January 2006 Accepted 25 January 2006

© 2006 International Union of Crystallography

All rights reserved

organic papers

Figure 1

View of the structure of the title compound, showing the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A diagram of the layered crystal packing in (I), viewed down the b axis.

chloride, D-phenylglycinium perchlorate, (R)-phenylglycine methyl ester (Goldberg, 1977) and (R)-(-)-1-phenylglycinium hydrogen squarate monohydrate (Angelova *et al.*, 1996) the angles are 129.2, 94.3, 137.6 and 119.9°, respectively.

The crystal structure can be described as alternating layers of hydrophobic and hydrophilic zones of phenylglycinium along the *c* axis. The molecular aggregation of the hydrophilic zone at $z = \frac{1}{2}$ is sandwiched between two hydrophobic zones (Fig. 2).

In this structure, two types of secondary interaction are observed, cation-cation and cation-anion (Fig. 3). The phenylglycinium cations and the chloride anions form hydrogen-bonded double layers at z = 0 and $z = \frac{1}{2}$, linked toegether by N-H···Cl, N-H···O and C-H···O hydrogen bonds. Additional hydrogen-bonding parameters are listed in Table 1.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of DL-phenylglycine, tin(II) chloride dihydrate and hydrochloric acid in a molar ratio of 5:5:1. Colourless prismatic transparent crystals were obtained after three weeks.

Figure 3

The hydrogen bonds (dashed lines) in (I), viewed down the b axis.

Crystal data $C_8H_{10}NO_2^+ \cdot Cl^ M_r = 187.62$ Orthorhombic, *Pbca* a = 7.303 (2) Å b = 11.005 (2) Å c = 21.447 (4) Å V = 1723.7 (7) Å³ Z = 8 $D_x = 1.446$ Mg m⁻³

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: none 20517 measured reflections 1979 independent reflections 1563 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.116$ S = 1.011979 reflections 109 parameters H-atom parameters constrained $R_{int} = 0.030$ $\theta_{max} = 27.6^{\circ}$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 11$ $l = -27 \rightarrow 27$

Mo $K\alpha$ radiation

reflections

 $\theta = 1.9 - 27.6^{\circ}$

 $\mu = 0.4 \text{ mm}^{-1}$

T = 296 (2) K

Prism, colourless $0.13 \times 0.08 \times 0.05 \text{ mm}$

Cell parameters from 20517

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0293P)^2 \\ &+ 1.3984P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 0.32 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{min} = -0.24 \ e \ \text{\AA}^{-3} \end{split}$$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots Cl1^{i}$	0.89	2.58	3.3475 (18)	145
$N1 - H1A \cdots O1^{i}$	0.89	2.31	2.879 (2)	122
$N1 - H1B \cdot \cdot \cdot Cl1^{ii}$	0.89	2.31	3.1906 (17)	173
$N1 - H1C \cdot \cdot \cdot Cl1$	0.89	2.47	3.3375 (17)	164
O2−H2···Cl1 ⁱⁱⁱ	0.82	2.25	3.0332 (16)	159
$C1 - H1 \cdots O1^{iv}$	0.98	2.50	3.433 (2)	159
$C5 - H5 \cdots O2^{v}$	0.93	2.60	3.338 (2)	137

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) $-x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) x + 1, y, z; (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, z$; (v) $x - \frac{1}{2}, y, -z + \frac{3}{2}$.

All H atoms were located in difference Fourier maps but were placed in calculated positions and treated as riding on their parent C, N and O atoms, with C-H = 0.98 (Csp³) and 0.93 Å (aromatic C), N-H = 0.89 Å and O-H = 0.82 Å, and $U_{iso}(H) = 1.5U_{eq}(NH_3 \text{ or OH} \text{ or } Csp^3)$ or $1.2U_{eq}(\text{aromatic C})$.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction:

organic papers

SCALEPACK and *DENZO* (Otwinowski & Minor 1997); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia,1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

The authors thank Dr Thierry Roisnel, Centre de Diffractométrie X (CDFIX) de Rennes, Université de Rennes 1, France, for his technical assistance in single-crystal X-ray data collection. SB thanks Université A. Mira de Béjaia, Algéria, for financial support.

References

- Angelova, O., Petrova, R., Radomirska, V. & Kolev, T. (1996). Acta Cryst. C52, 2218–2220.
- Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m577-m579.
- Bouchouit, K., Bendheif, L & Benali-Cherif, N. (2004). Acta Cryst. E60, o272o274.

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Goldberg, I. (1977). J. Am. Chem. Soc. 99, 6049-6057.
- Jayasinghe, L. R., Datta, A., Ali, S. M., Zymunt, J., Vander Velde, D. G. & Georg, G. I. (1994). J. Med. Chem. 37, 2981–2984.
- Marsh, R. E. (1958). Acta Cryst. 11, 654-663.
- Natarajan, S., Muthukrishnan, C., Asath Bahadur, S., Rajaram, R. K. & Rajan, S. S. (1992). Z. Kristallogr. **198**, 265–270.
- Nonius (2000). COLLECT. Nonius BV, Delft, The netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ramaswamy, B., Sridhar, B., Ramakrishnana, V. & Rajaram, R. K. (2001). Acta Cryst. E**57**, 01149–01151.
- Ravichandran, S., Dattagupta, J. K. & Chakrabarti, C. (1998). Acta Cryst. C54, 499–501.
- Satyam, A., Hocker, M. D., Kanemaguire, K. A., Morgan, A. S., Villar, H. O. & Lyttle, M. H. (1996). J. Med. Chem. 39, 1736–1747.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Sperk, A. L. (2005). J. Appl. Cryst. 30, 7–15. Srinivasan, N., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, 0754– 0756.

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson

Bis(3-carboxyanilinium) hexafluorostannate(IV) Sofiane Bouacida, Hocine Merazig, Adel Beghidja and Chahrazed Beghidja

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Cryst. (2005). E61, m577-m579

Sofiane Bouacida *et al.* • $(C_7H_8NO_2)_2[SnF_6]$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sofiane Bouacida,* Hocine Merazig, Adel Beghidja and Chahrazed Beghidja

Laboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantin, Algeria

Correspondence e-mail: bouacida_sofiane@yahoo.fr

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.003 Å R factor = 0.027 wR factor = 0.063 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $(C_7H_8NO_2)_2[SnF_6]$, has been prepared from 3-aminobenzoic acid and tin(II) fluoride in hydrofluoric acid. The structure can be described as alternating layers of SnF_6^{2-} and $C_7H_8NO_2^+$ ions along the *a* axis, with the SnF_6^{2-} ions lying on a twofold axis. The cations and anions are linked to each other through strong hydrogen bonds formed by all H atoms covalently bonded to the N and O atoms. This threedimensional complex network of hydrogen bonds reinforces the cohesion of the ionic structure.

Bis(3-carboxyanilinium) hexafluorostannate(IV)

Received 9 February 2005 Accepted 15 February 2005 Online 26 February 2005

Comment

Organic–inorganic hybrid materials have attracted a great deal of attention over the past few decades (Koutselas *et al.*, 1996; Mitzi *et al.*, 1998; Mayer *et al.*, 1999; Mazeaud *et al.*, 2000) because of their ionic, electrical, magnetic and optical properties (Hill, 1998; Kagan *et al.*, 1999; Raptopoulou *et al.*, 2002).

The structural characteristics of compounds with the formula $(RNH_3)_2[SnX_6]$ (where X is Cl, F, Br or I) have not been investigated extensively. The crystal structures of only four primary *n*-alkylammonium hexachlorostannate(IV) compounds, with chain lengths ranging from one to four, have been reported in the literature to date (Kitahama *et al.*, 1979; Knop *et al.*, 1983; Elleuch *et al.*, 1996). Only one crystal structure of an arylammonium hexachlorostannate(IV) compound has been reported previously (Rademeyer, 2004). In this study, we present a new organic–inorganic hybrid compound of the type $(RNH_3)_2[SnX_6]$, which promises both the superior carrier mobility of inorganic semiconductors and the processability of organic materials.

The title structure, (I), contains anionic sheets of formula $[SnF_6]^{2-}$ parallel to the (100) plane; the distance between two sheets is a/2 and charge compensation is achieved by the incorporation of the protonated amine of 3-aminobenzoic acid. There are two crystallographically equivalent (3-carboxyanilinium) cations in (I). The asymmetric unit contains 15 non-H atoms, with atoms Sn, F1 and F4 lying on a crystallographic twofold axis in special positions $(0, -y, \frac{3}{4})$. The molecular geometry and atom-numbering scheme used are shown in Fig. 1. The benzene ring of the 3-carboxyanilinium

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 1

ORTEP-3 view (Farrugia, 1997) of the anion and cation of the title compound, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 2 - x, y, $\frac{3}{2} - z.$]

Figure 2

ATOMS diagram (Dowty, 1995) of the layered packing and octahedra in the title compound, viewed down the c axis.

cation and atoms C1 and N1 are coplanar. The cations form zigzag layers parallel to the (101) plane. The Sn atom is sixcoordinated and forms a quasi-regular octahedral arrangement. The $[SnF_6]^{2-}$ octahedra in (I) alternate with cationic layers along the *a* axis. The tilted octahedra and layered packing are illustrated in Fig. 2.

In this structure, two types of hydrogen bonds are observed, viz. cation-cation and cation-anion (Fig. 3). The Sn-F bond lengths for the F atoms engaged in strong hydrogen bonding with the ammonium group and cations are linked by C- $H \cdots O$ and $N - H \cdots O$ hydrogen bonds. The carboxylic acid group is not deprotonated and its H atom is involved in the strongest interaction with the hexafluorostannate anion [O1- $H1 \cdots F2 = 2.551 (2) \text{ Å}$]. Additional hydrogen-bonding parameters are listed in Table 2.

Figure 3

PLUTON view (Spek, 2003) of the ionic stacking, showing the threedimensional network of hydrogen bonds as dashed lines.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of 3-aminobenzoic acid, tin(II) fluoride and hydrofluoric acid in a molar ratio of 10:5:1. After five weeks, brown crystals were obtained and were manually separated under a polarizing microscope.

Crystal data

а

h

$(C_7H_8NO_2)_2[SnF_6]$	D_x
$M_r = 508.98$	Mo
Monoclinic, $C2/c$	Ce
a = 22.2660 (5) Å	1
b = 10.6580(5) Å	$\theta =$
c = 7.4920(5) Å	μ =
$\beta = 103.743 \ (5)^{\circ}$	T =
$V = 1727.03 (15) \text{ Å}^3$	Ne
Z = 4	0.3

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: none 8090 measured reflections 2517 independent reflections 2291 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.063$ S = 1.102517 reflections 145 parameters

 $= 1.958 \text{ Mg m}^{-3}$ $\delta K\alpha$ radiation ell parameters from 8090 reflections 1.9-30.0° $= 1.57 \text{ mm}^{-1}$ = 295 (2) K edle, brown $0.35 \times 0.07 \times 0.05 \text{ mm}$

 $R_{\rm int}=0.044$ $\theta_{\text{max}} = 30.0^{\circ}$ $h = -23 \rightarrow 31$ $k = -14 \rightarrow 12$ $l = -10 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.062P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.66$ e Å $\Delta \rho_{\rm min}$ = -1.11 e Å⁻³

metal-organic papers

Table 1Selected bond lengths (Å).

1.927 (2)	O2-C1	1.214 (3)
1.934 (2)	O1-C1	1.311 (3)
1.9622 (13)	N1-C4	1.466 (3)
1.9654 (14)	C2-C1	1.491 (3)
	1.927 (2) 1.934 (2) 1.9622 (13) 1.9654 (14)	$\begin{array}{cccc} 1.927 & (2) & O2-C1 \\ 1.934 & (2) & O1-C1 \\ 1.9622 & (13) & N1-C4 \\ 1.9654 & (14) & C2-C1 \end{array}$

Table 2Hydrogen-bonding geometry (Å, $^{\circ}$).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.82	1.74	2.551 (2)	169
0.89 (3)	2.07 (3)	2.942 (3)	166 (3)
0.83 (3)	2.51 (3)	3.008 (3)	119 (3)
0.83 (3)	1.98 (3)	2.804 (3)	167 (3)
0.87(3)	2.10(3)	2.834 (3)	141 (3)
0.87 (3)	2.36 (3)	2.757 (2)	108(2)
0.94 (3)	2.55 (3)	3.335 (3)	140 (3)
0.93 (3)	2.44 (3)	3.094 (3)	128 (2)
	<i>D</i> -H 0.82 0.89 (3) 0.83 (3) 0.87 (3) 0.87 (3) 0.87 (3) 0.94 (3) 0.93 (3)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Symmetry codes: (i) $\frac{3}{2} - x, \frac{1}{2} - y, 1 - z$; (ii) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $2 - x, y, \frac{1}{2} - z$; (iv) 2 - x, 1 - y, 1 - z.

All H atoms were located in difference Fourier maps and refined isotropically (except for carboxy atom H1, which was placed and fixed at its calculated position), with $U_{\rm iso}({\rm H})$ values set at 0.05 Å², using a riding model.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997 *PLATON* (Spek, 2003) and *ATOMS*

(Dowty, 1995); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank Hanéne Bensmira from the Faculté des Sciences, Département de Physique, Université Mentouri, 25000 Constantine, Algérie, for his technical assistance.

References

Burla, M. C., Camalli, M., Carrozzini, B., Casarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Dowty, E. (1995). *ATOMS* Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Elleuch, H., Kamoun, M., Daoud, A. & Jouini, T. (1996). *Phys. Status Solidi A*, **157**, 3–9.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Hill, C. L. (1998). Chem. Rev. 98, 1-2.

Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945– 947.

Kitahama, K., Kiriyama, H. & Baba, Y. (1979). Bull. Chem. Soc. Jpn, 52, 324– 328.

Knop, O., Cameron, T. S., James, M. A. & Falk, M. (1983). Can. J. Chem. 61, 1620–1650.

Koutselas, I. B., Ducasse, L. & Papavassiliou, G. C. (1996). J. Phys. Condens. Matter, 8, 1217–1227.

Mayer, C. R., Herson, P. & Thouvenot, R. (1999). Inorg. Chem. 38, 6152-6158.

Mazeaud, A., Dromzee, Y. & Thouvenot, R. (2000). Inorg. Chem. 39, 6152–6158.

Mitzi, D. B., Liang, K. & Wang, S. (1998). Inorg. Chem. 37, 321-327.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, **57**, 645–650.

Rademeyer, M. (2004). Acta Cryst. C60, m55-m56.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

ANNEXES

Annexes I

Du composé

Bis (adeninium) hexachlorostannate dichloride tetrahydrate

 $Table \ 1 \\ Les \ coordonnées \ atomiques \ ainsi \ que \ leurs \ facteurs \ de \ déplacement \ isotropes \\ équivalents \ (\AA^2)$

	x/a	y/b	z/c	U
SN	0.75000	0.25000	0.71310(4)	0.025
CL(2)	0.67862(3)	0.19805(2)	0.71907(13)	0.037
CL(1)	0.82991(3)	0.22830(2)	0.95737(12)	0.034
CL(3)	0.66748(4)	0.27360(2)	0.48455(13)	0.042
CL(4)	0.60547(4)	0.11976(2)	0.89240(12)	0.041
O(2W)	0.50065(16)	0.18894(7)	0.93073(67)	0.064
N(1)	0.72835(11)	0.37873(5)	0.71129(41)	0.032
H(1)	0.76892	0.37087	0.75644	0.038
N(6)	0.46845(13)	0.18193(7)	0.45046(47)	0.039
N(9)	0.70636(12)	0.16417(6)	0.24082(34)	0.033
N(3)	0.64387(12)	0.11504(6)	0.37075(38)	0.034
O(1W)	0.50307(15)	0.24765(9)	0.26528(47)	0.049
N(7)	0.61720(13)	0.20094(6)	0.26015(33)	0.031
C(2)	0.66998(14)	0.35712(7)	0.69074(47)	0.035
C(5)	0.59110(13)	0.17100(7)	0.32925(38)	0.026
C(6)	0.52393(13)	0.16184(7)	0.41472(37)	0.027
C(4)	0.64686(14)	0.14762(7)	0.31671(39)	0.027
C(8)	0.68665(15)	0.19588(8)	0.20792(52)	0.036
H(2)	0.6763(16)	0.3338(8)	0.7315(47)	0.050
H(9)	0.752(2)	0.155(1)	0.214(10)	0.050
H(5)	0.4708(17)	0.2020(8)	0.4213(48)	0.050
H(8)	0.7170(18)	0.2119(9)	0.1683(49)	0.050
Н(б)	0.4314(19)	0.1719(9)	0.5183(53)	0.050
H(4W)	0.465(3)	0.183(1)	0.969(10)	0.050
H(3W)	0.536(2)	0.174(1)	0.911(6)	0.050
H(7)	0.5944(16)	0.2188(9)	0.2517(49)	0.050
H(2W)	0.462(4)	0.250(2)	0.214(18)	0.050
H(1W)	0.506(3)	0.263(1)	0.311(9)	0.050

Table 2

Les paramètres de vibrations dans l'expression de calcul de Ueq : $Ueq = (1/3)\Sigma i \Sigma j Uij a_i^* a_j^* a_i a_j$

	U11	U22	U33	U12	U13	U23
SN	0.0212(1)	0.0230(1)	0.0308(1)	0.0016(1)	0.0000	0.0000
CL(2)	0.0351(3)	0.0284(3)	0.0465(4)	0071(2)	0.0020(3)	0036(3)
CL(1)	0.0233(2)	0.0387(3)	0.0389(3)	0.0076(2)	0005(3)	0.0074(3)
CL(3)	0.0456(4)	0.0388(4)	0.0430(4)	0.0050(3)	0178(3)	0.0010(4)
CL(4)	0.0288(3)	0.0438(4)	0.0515(4)	0063(3)	0.0122(3)	0086(3)
O(2W)	0.041(1)	0.046(1)	0.104(3)	0.007(1)	0.011(1)	0.016(2)
N(1)	0.0230(9)	0.0318(11)0.0409(12)0.0034(7)	0025(12)0.0068(12)
N(б)	0.027(1)	0.038(1)	0.051(2)	0.005(1)	0.007(1)	0.000(1)
N(9)	0.024(1)	0.036(1)	0.038(1)	-0.001(1)	0.008(1)	-0.001(1)
N(3)	0.028(1)	0.031(1)	0.044(1)	0.005(1)	0.003(1)	0.004(1)

O(1W)	0.041(1)	0.038(2)	0.066(2)	0.003(1)	0.000(1)	0.000(2)
N(7)	0.030(1)	0.025(1)	0.038(1)	0.000(1)	0.005(1)	0.002(1)
C(2)	0.032(1)	0.028(1)	0.047(2)	0.002(1)	0.001(1)	0.006(1)
C(5)	0.024(1)	0.026(1)	0.028(1)	-0.001(1)	0.002(1)	-0.002(1)
C(6)	0.021(1)	0.032(1)	0.029(1)	-0.002(1)	0.000(1)	-0.002(1)
C(4)	0.024(1)	0.028(1)	0.029(1)	-0.001(1)	0.001(1)	-0.002(1)
C(8)	0.029(1)	0.039(2)	0.041(2)	-0.006(1)	0.007(1)	0.002(2)

Table 3 Les distances inter atomiques (Å)

O(2W) - H	H(4W)	0.75(6)	O(2W) -	H(3W)	0.87(5)
N(1) - H	H(1)	0.860(3)	N(1) -	C(2)	1.364(4)
N(1) - C	2(6)	1.353(4)	N(6) -	C(6)	1.304(4)
N(6) - H	H(5)	0.82(4)	N(6) -	Н(б)	0.92(4)
N(9) - C	2(4)	1.372(4)	N(9) -	C(8)	1.325(4)
N(9) – H	H(9)	0.93(5)	N(3) -	C(2)	1.297(4)
N(3) - C	2(4)	1.348(4)	O(1W) -	H(2W)	0.83(9)
O(1W) - H	H(1W)	0.70(6)	N(7) -	C(5)	1.370(4)
N(7) - C	2(8)	1.324(4)	N(7) -	H(7)	0.82(4)
C(2) - H	H(2)	0.98(4)	C(5) -	C(6)	1.409(4)
C(5) - C	2(4)	1.369(4)	C(8) -	H(8)	0.88(4)

Table 4 Les angles de liaisons (°)

H(4W)-O(2W)-H(3W)	117.6(50)	H(1) - N(1) - C(2)	118.1(3)
H(1)-N(1)-C(6)	118.1(3)	C(2) - N(1) - C(6)	123.8(3)
С(б)-N(б)-H(5)	119.8(23)	C(6)-N(6)-H(6)	113.7(23)
H(5)-N(6)-H(6)	126.2(32)	C(4) - N(9) - C(8)	108.3(3)
C(4)-N(9)-H(9)	126.2(27)	C(8) - N(9) - H(9)	125.5(28)
C(2)-N(3)-C(4)	112.4(3)	H(2W) - O(1W) - H(1W)	100.7(81)
C(5)-N(7)-C(8)	107.4(3)	C(5) - N(7) - H(7)	126.9(22)
C(8)-N(7)-H(7)	125.6(22)	N(1) - C(2) - N(3)	125.2(3)
N(1) - C(2) - H(2)	118.0(18)	N(3)-C(2)-H(2)	116.8(18)
N(7) - C(5) - C(6)	132.8(3)	N(7) - C(5) - C(4)	107.9(3)
C(6)-C(5)-C(4)	119.2(3)	N(1) - C(6) - N(6)	121.1(3)
N(1) - C(6) - C(5)	112.7(3)	N(6)-C(6)-C(5)	126.2(3)
N(9) - C(4) - N(3)	127.2(3)	N(9) - C(4) - C(5)	106.2(3)
N(3) - C(4) - C(5)	126.6(3)	N(9) - C(8) - N(7)	110.2(3)
N(9)-C(8)-H(8)	124.7(22)	N(7)-C(8)-H(8)	124.8(22)

Table 5 Les angles de torsion (°)

H(1)	_	N(1)	-	C(2)	-	H(2)	1.7
C(6)	-	N(1)	_	C(2)	-	H(2)	-178.3
H(5)	-	N(б)	-	C(6)	-	C(5)	0.7
Н(б)	-	N(б)	-	C(6)	-	C(5)	-173.6
C(8)	-	N(9)	-	C(4)	-	N(3)	-179.8
C(4)	-	N(9)	-	C(8)	-	N(7)	0.5
C(8)	-	N(9)	-	C(4)	-	C(5)	-0.6
C(4)	-	N(9)	-	C(8)	-	H(8)	174.3
H(9)	-	N(9)	-	C(4)	-	N(3)	1.5
H(9)	-	N(9)	-	C(4)	-	C(5)	-179.4
H(9)	-	N(9)	-	C(8)	-	N(7)	179.3
H(9)	-	N(9)	-	C(8)	-	H(8)	-6.9

C(2) -	N(3)	-	C(4)	-	N(9)	178.7
C(2) -	N(3)	-	C(4)	-	C(5)	-0.3
C(5) -	N(7)	-	C(8)	-	N(9)	-0.2
C(8) -	N(7)	-	C(5)	-	C(6)	175.2
C(8) -	N(7)	-	C(5)	-	C(4)	-0.2
C(5) -	N(7)	-	C(8)	-	H(8)	-174.0
H(7) -	N(7)	-	C(5)	-	C(6)	-5.0
H(7) -	N(7)	-	C(5)	-	C(4)	179.6
H(7) -	N(7)	-	C(8)	-	N(9)	180.0
H(7) -	N(7)	-	C(8)	-	H(8)	6.2
N(3) -	C(2)	-	N(1)	-	H(1)	-178.2
N(7) -	C(5)	-	C(6)	-	N(б)	-1.0
N(7) -	C(5)	-	C(4)	-	N(9)	0.5
N(7) -	C(5)	-	C(4)	-	N(3)	179.6
C(4) -	C(5)	-	C(6)	-	N(б)	174.0
C(6) -	C(5)	-	C(4)	-	N(9)	-175.6
C(6) -	C(5)	-	C(4)	-	N(3)	3.5
N(1) -	C(6)	-	N(б)	-	H(5)	180.0
N(1) -	C(6)	-	N(б)	-	Н(б)	5.7
N(1) -	С(б)	-	C(5)	-	N(7)	179.7
N(1) -	C(6)	-	C(5)	-	C(4)	-5.3

Annexes II

Du composé Bis (cytosinium) hexachlorostannate (VI)

Table 1Les coordonnées atomiques ainsi que leurs facteurs de déplacement isotropes
équivalents (Å2)

	x/a	y/b	z/c	U
SN	1.00000	0.00000	1.00000	0.023
CL(1)	0.83727(13)	0.30139(12)	1.06055(10)	0.037
CL(2)	0.81061(12)	-0.06428(13)	0.75047(9)	0.033
CL(3)	0.74638(14)	-0.16502(14)	1.08581(11)	0.043
0(2)	1.1402(4)	0.3662(5)	0.6098(3)	0.042
N(3)	0.8457(4)	0.4158(4)	0.6917(3)	0.029
N(1)	0.8671(4)	0.2133(5)	0.4654(3)	0.033
H(1)	0.93423	0.15175	0.40101	0.040
N(4)	0.5503(5)	0.4824(5)	0.7736(4)	0.036
C(2)	0.9639(5)	0.3323(5)	0.5894(4)	0.030
C(5)	0.5574(5)	0.2709(5)	0.5383(4)	0.032
C(6)	0.6697(5)	0.1871(5)	0.4388(4)	0.033
C(4)	0.6488(4)	0.3920(5)	0.6724(4)	0.026
H(3)	0.899(7)	0.499(8)	0.762(6)	0.050
H(5)	0.430(7)	0.263(8)	0.527(5)	0.050
Н(б)	0.625(7)	0.115(8)	0.351(6)	0.050
H(41)	0.614(7)	0.561(8)	0.864(6)	0.050
H(42)	0.427(7)	0.475(7)	0.765(6)	0.050

Table 2							
	Les paramètre	es de vibratio	ons dans l'e	xpression de	calcul de Ue	q :	
		Ueq= (1	/3)Σi Σj Uij	$a_i^* a_i^* a_i a_i$			
	U11	U22	ับ33ั้	Ú12	U13	U23	
CINI	0 0247(2)	0 0225(2)	0 0188(2)	-0003(1)	0 0015(1)	0 0001(1)	
$CT_{1}(1)$	0.0247(2) 0.0355(4)	0.0235(2) 0.0301(4)	0.0100(2)	0003(1)	-0.0013(1)	-0.0001(1)	
CL(2)	0.0319(4)	0.0417(5)	0.0212(3)	0.0020(3)	0033(3)	0006(3)	
CL(3)	0.0413(5)	0.0453(5)	0.0406(5)	0110(4)	0.0122(4)	0.0081(4)	
0(2)	0.023(1)	0.061(2)	0.039(1)	-0.002(1)	0.005(1)	0.004(1)	
N(3)	0.023(1)	0.032(1)	0.026(1)	-0.003(1)	0.000(1)	0.000(1)	
N(1)	0.030(1)	0.037(2)	0.029(1)	0.003(1)	0.007(1)	-0.001(1)	
N(4)	0.027(1)	0.046(2)	0.031(1)	0.000(1)	0.006(1)	0.001(1)	
C(2)	0.025(1)	0.035(2)	0.029(2)	0.002(1)	0.005(1)	0.007(1)	
C(5)	0.023(1)	0.034(2)	0.033(2)	0.000(1)	0.001(1)	0.001(1)	
C(6)	0.031(2)	0.037(2)	0.027(2)	-0.002(1)	-0.001(1)	-0.002(1)	
C(4)	0.022(1)	0.028(1)	0.027(1)	0.001(1)	0.003(1)	0.007(1)	

Table 3 Les distances inter atomiques (Å)

0(2) -	C(2)	1.219(5)	N(3) -	C(2)	1.385(5)

N(3) -	C(4)	1.351(5)	N(3) -	Н(З)	0.82(6)
N(1) -	H(1)	0.860(3)	N(1) -	C(2)	1.360(5)
N(1) -	C(6)	1.354(5)	N(4) -	C(4)	1.305(5)
N(4) -	H(41)	0.95(6)	N(4) -	H(42)	0.84(5)
C(5) -	C(6)	1.341(5)	C(5) -	C(4)	1.416(5)
C(5) -	H(5)	0.87(6)	C(6) -	Н(б)	0.88(6)

Table 4 Les angles de liaisons (°)

C(2)-N(3)-C(4)	124.8(3)	C(2)-N(3)-H(3)	115.9(33)
C(4)-N(3)-H(3)	118.5(33)	H(1) - N(1) - C(2)	118.5(3)
H(1)-N(1)-C(6)	118.5(4)	C(2) - N(1) - C(6)	123.0(3)
C(4)-N(4)-H(41)	121.8(29)	C(4)-N(4)-H(42)	123.2(35)
H(41)-N(4)-H(42)	115.0(45)	O(2) - C(2) - N(3)	121.9(4)
O(2)-C(2)-N(1)	123.4(4)	N(3) - C(2) - N(1)	114.7(3)
C(6)-C(5)-C(4)	118.6(4)	C(6)-C(5)-H(5)	126.1(33)
C(4)-C(5)-H(5)	115.2(33)	N(1) - C(6) - C(5)	121.4(4)
N(1)-C(6)-H(6)	113.8(31)	С(5)-С(б)-Н(б)	124.7(31)
N(3)-C(4)-N(4)	120.0(4)	N(3) - C(4) - C(5)	117.4(3)
N(4) - C(4) - C(5)	122.6(3)		

Table 5 Les angles de torsion (°)

C(4) -	N(3)	-	C(2)	-	0(2)	176.5
C(4) -	N(3)	-	C(2)	-	N(1)	-2.7
C(2) -	N(3)	-	C(4)	-	N(4)	-177.7
C(2) -	N(3)	-	C(4)	-	C(5)	0.8
H(3) -	N(3)	-	C(2)	-	0(2)	6.9
H(3) -	N(3)	-	C(2)	-	N(1)	-172.3
H(3) -	N(3)	-	C(4)	-	N(4)	-8.4
H(3) -	N(3)	-	C(4)	-	C(5)	170.1
H(1) -	N(1)	-	C(2)	-	0(2)	4.8
H(1) -	N(1)	-	C(2)	-	N(3)	-176.0
H(1) -	N(1)	-	C(6)	-	C(5)	176.5
H(1) -	N(1)	-	C(6)	-	Н(б)	-5.5
C(6) -	N(1)	-	C(2)	-	0(2)	-175.2
C(6) -	N(1)	-	C(2)	-	N(3)	4.0
C(2) -	N(1)	-	C(6)	-	C(5)	-3.5
C(2) -	N(1)	-	C(6)	-	Н(б)	174.5
H(41) -	N(4)	-	C(4)	-	N(3)	-2.9
H(41) -	N(4)	-	C(4)	-	C(5)	178.7
H(42) -	N(4)	-	C(4)	-	N(3)	177.9
H(42) -	N(4)	-	C(4)	-	C(5)	-0.5
C(6) -	C(5)	-	C(4)	-	N(3)	0.0
C(4) -	C(5)	-	C(6)	-	N(1)	1.3
C(6) -	C(5)	-	C(4)	-	N(4)	178.5
C(4) -	C(5)	-	C(6)	-	Н(б)	-176.5
H(5) -	C(5)	-	C(6)	-	N(1)	178.3
H(5) -	C(5)	-	C(6)	-	Н(б)	0.5
H(5) -	C(5)	-	C(4)	-	N(3)	-177.3
H(5) -	C(5)	-	C(4)	-	N(4)	1.1

Annexes III

Du composé Tetra(4-methoxyanilinium) hexachlorostannnate(IV) dichloride

Table 1Les coordonnées atomiques ainsi que leurs facteurs de déplacement isotropes
équivalents (Ų)

	x/a	y/b	z/c	U
SN	0.00000	0.86617(2)	-0.25000	0.036
CL(2)	0.05582(3)	0.86726(8)	-0.11753(3)	0.051
CL(3)	-0.05726(2)	0.62376(7)	-0.24481(3)	0.052
CL(4)	0.02366(3)	-0.27264(11)	0.05988(4)	0.075
CL(1)	0.05894(2)	1.10140(8)	-0.25249(3)	0.050
O(1B)	0.27882(9)	0.12560(28)	0.17834(13)	0.079
N(1B)	0.05856(9)	0.14056(33)	0.10222(12)	0.067
H(11B)	0.05561	0.19426	0.13717	0.088
H(12B)	0.04655	0.02488	0.09624	0.088
H(13B)	0.03822	0.20201	0.06031	0.088
O(1A)	0.25715(10)	0.61107(34)	0.10629(13)	0.088
C(2A)	0.11224(10)	0.49750(32)	0.00058(12)	0.055
H(2A)	0.08156	0.51151	0.00465	0.057
C(5B)	0.18558(11)	0.05085(37)	0.09929(14)	0.066
H(5B)	0.19543	-0.00865	0.06960	0.066
C(4A)	0.20880(11)	0.53951(35)	0.04936(14)	0.060
C(6A)	0.15168(11)	0.39293(35)	-0.06742(14)	0.058
Н(бА)	0.14743	0.33736	-0.10906	0.061
C(1A)	0.10712(9)	0.41430(30)	-0.06014(11)	0.044
N(1A)	0.05178(9)	0.35433(28)	-0.11998(11)	0.056
H(11A)	0.03556	0.44526	-0.15235	0.076
H(12A)	0.03123	0.32530	-0.10156	0.076
H(13A)	0.05515	0.25624	-0.14212	0.076
C(5A)	0.20351(11)	0.45558(40)	-0.01160(15)	0.067
H(5A)	0.23428	0.44091	-0.01541	0.071
C(3A)	0.16347(12)	0.55967(36)	0.05521(13)	0.063
H(3A)	0.16742	0.61599	0.09655	0.067
C(2B)	0.15618(10)	0.22705(37)	0.18691(14)	0.063
H(2B)	0.14606	0.28659	0.21630	0.064
C(6B)	0.13103(11)	0.05265(37)	0.07945(13)	0.061
Н(6В)	0.10409	-0.00563	0.03662	0.063
C(3B)	0.21114(11)	0.22501(38)	0.20724(14)	0.063
H(3B)	0.23797	0.28257	0.25034	0.066
C(1B)	0.11667(10)	0.14145(31)	0.12353(13)	0.052
C(4B)	0.22593(11)	0.13698(31)	0.16315(15)	0.059
C(7A)	0.30521(14)	0.59962(58)	0.10341(23)	0.100
H(71A)	0.31427	0.47254	0.10277	0.145
H(72A)	0.33537	0.65904	0.14574	0.145
H(73A)	0.29878	0.65945	0.05976	0.145
C(7B)	0.32160(13)	0.21001(52)	0.24293(19)	0.088
H(71B)	0.31513	0.34035	0.24045	0.117
H(72B)	0.35652	0.18723	0.24764	0.117
H(73B)	0.32226	0.15987	0.28467	0.117

$\begin{array}{c} \mbox{Table 2}\\ \mbox{Les paramètres de vibrations dans l'expression de calcul de Ueq :}\\ \mbox{Ueq} = (1/3) \Sigma i \ \Sigma j \ U i j \ a_i^* \ a_j^* \ a_i \ a_j \end{array}$

	U11	U22	U33	U12	U13	U23
SN	0.0344(1)	0.0291(1)	0.0329(1)	0.0000	0.0188(1)	0.0000
CL(2)	0.0498(3)	0.0534(3)	0.0308(2)	0.0068(2)	0.0166(2)	0.0036(2)
CL(3)	0.0458(3)	0.0377(3)	0.0565(3)	0067(2)	0.0332(3)	0.0004(2)
CL(4)	0.0580(4)	0.0826(5)	0.0654(4)	0161(3)	0.0395(3))0208(3)
CL(1)	0.0414(3)	0.0413(3)	0.0489(3)	0100(2)	0.0232(2)	0.0016(2)
O(1B)	0.051(1)	0.075(1)	0.089(1)	-0.006(1)	0.045(1)	-0.008(1)
N(1B)	0.049(1)	0.080(2)	0.054(1)	-0.011(1)	0.032(1)	-0.012(1)
O(1A)	0.060(1)	0.093(2)	0.070(1)	-0.016(1)	0.015(1)	-0.019(1)
C(2A)	0.057(1)	0.042(1)	0.048(1)	0.001(1)	0.031(1)	0.000(1)
C(5B)	0.062(2)	0.057(1)	0.063(1)	-0.008(1)	0.045(1)	-0.012(1)
C(4A)	0.054(1)	0.046(1)	0.050(1)	-0.004(1)	0.015(1)	0.001(1)
С(бА)	0.054(1)	0.051(1)	0.050(1)	0.002(1)	0.029(1)	-0.005(1)
C(1A)	0.043(1)	0.034(1)	0.038(1)	0.002(1)	0.018(1)	0.003(1)
N(1A)	0.048(1)	0.051(1)	0.046(1)	-0.003(1)	0.021(1)	0.000(1)
C(5A)	0.047(1)	0.062(2)	0.069(2)	0.002(1)	0.032(1)	0.001(1)
C(3A)	0.070(2)	0.050(1)	0.045(1)	-0.005(1)	0.029(1)	-0.007(1)
C(2B)	0.054(1)	0.064(2)	0.054(1)	-0.010(1)	0.036(1)	-0.017(1)
С(6В)	0.056(1)	0.061(2)	0.049(1)	-0.013(1)	0.033(1)	-0.014(1)
C(3B)	0.050(1)	0.063(2)	0.055(1)	-0.014(1)	0.029(1)	-0.015(1)
C(1B)	0.044(1)	0.052(1)	0.046(1)	-0.007(1)	0.029(1)	-0.004(1)
C(4B)	0.050(1)	0.045(1)	0.065(1)	-0.004(1)	0.038(1)	0.000(1)
C(7A)	0.048(2)	0.091(3)	0.108(3)	-0.006(2)	0.012(2)	0.004(2)
C(7B)	0.052(2)	0.086(2)	0.096(2)	-0.016(2)	0.040(2)	-0.003(2)

Table 3 Les distances inter atomiques (Å)

O(1B) - C(4B)	1.365(4)	O(1B) - C(7B)	1.411(5)
N(1B) - H(11B)	0.890(3)	N(1B) - H(12B)	0.890(3)
N(1B) - H(13B)	0.890(3)	N(1B) - C(1B)	1.465(4)
O(1A) - C(4A)	1.369(4)	O(1A) - C(7A)	1.407(5)
C(2A) - H(2A)	0.930(3)	C(2A) - C(1A)	1.375(4)
C(2A) - C(3A)	1.375(4)	C(5B) - H(5B)	0.930(3)
C(5B) - C(6B)	1.377(4)	C(5B) - C(4B)	1.386(4)
C(4A) - C(5A)	1.380(4)	C(4A) - C(3A)	1.372(4)
C(6A) - H(6A)	0.930(3)	C(6A) - C(1A)	1.369(4)
C(6A) - C(5A)	1.394(4)	N(1A) - H(11A)	0.890(3)
N(1A) - H(12A)	0.890(3)	N(1A) - H(13A)	0.890(3)
C(5A) - H(5A)	0.930(3)	C(3A) - H(3A)	0.930(3)
C(2B) - H(2B)	0.930(3)	C(2B) - C(3B)	1.385(4)
C(2B) - C(1B)	1.371(4)	C(6B) - H(6B)	0.930(3)
C(6B) - C(1B)	1.377(4)	C(3B) - H(3B)	0.930(3)
C(3B) - C(4B)	1.383(4)	C(7A) - H(71A)	0.960(5)
C(7A) - H(72A)	0.960(4)	C(7A) - H(73A)	0.960(5)
C(7B) - H(71B)	0.960(4)	C(7B) - H(72B)	0.960(4)
C(7B) - H(73B)	0.960(4)		

Les angles de liaisons (°)

C(4B) - O(1B) - C(7B)	118.4(3)	H(11B)-N(1B)-H(12B)	109.5(3)
H(11B)-N(1B)-H(13B)	109.5(3)	H(11B) - N(1B) - C(1B)	109.5(3)
H(12B)-N(1B)-H(13B)	109.5(3)	H(12B) - N(1B) - C(1B)	109.5(3)
H(13B)-N(1B)-C(1B)	109.5(3)	C(4A)-O(1A)-C(7A)	118.6(3)
H(2A)-C(2A)-C(1A)	120.5(3)	H(2A)-C(2A)-C(3A)	120.5(3)
C(1A)-C(2A)-C(3A)	118.9(3)	H(5B)-C(5B)-C(6B)	119.7(3)
H(5B) - C(5B) - C(4B)	119.7(3)	C(6B) - C(5B) - C(4B)	120.5(3)
O(1A) - C(4A) - C(5A)	124.5(3)	O(1A) - C(4A) - C(3A)	115.3(3)
C(5A) - C(4A) - C(3A)	120.2(3)	H(6A) - C(6A) - C(1A)	120.4(3)
H(6A)-C(6A)-C(5A)	120.4(3)	C(1A)-C(6A)-C(5A)	119.1(3)
C(2A) - C(1A) - C(6A)	121.5(3)	H(11A) - N(1A) - H(12A)	109.5(3)
H(11A)-N(1A)-H(13A)	109.5(3)	H(12A)-N(1A)-H(13A)	109.5(3)
C(4A)-C(5A)-C(6A)	119.5(3)	C(4A)-C(5A)-H(5A)	120.2(3)
C(6A)-C(5A)-H(5A)	120.3(3)	C(2A)-C(3A)-C(4A)	120.7(3)
C(2A)-C(3A)-H(3A)	119.7(3)	C(4A)-C(3A)-H(3A)	119.6(3)
H(2B)-C(2B)-C(3B)	119.9(3)	H(2B)-C(2B)-C(1B)	119.9(3)
C(3B)-C(2B)-C(1B)	120.1(3)	C(5B)-C(6B)-H(6B)	120.3(3)
C(5B)-C(6B)-C(1B)	119.5(3)	H(6B)-C(6B)-C(1B)	120.3(3)
C(2B)-C(3B)-H(3B)	120.1(3)	C(2B)-C(3B)-C(4B)	119.7(3)
H(3B)-C(3B)-C(4B)	120.2(3)	N(1B) - C(1B) - C(2B)	120.5(3)
N(1B)-C(1B)-C(6B)	118.9(3)	C(2B) - C(1B) - C(6B)	120.6(3)
O(1B)-C(4B)-C(5B)	116.0(3)	O(1B)-C(4B)-C(3B)	124.4(3)
C(5B)-C(4B)-C(3B)	119.6(3)	O(1A)-C(7A)-H(71A)	109.5(4)
O(1A)-C(7A)-H(72A)	109.5(4)	O(1A)-C(7A)-H(73A)	109.5(4)
H(71A)-C(7A)-H(72A)	109.5(4)	H(71A)-C(7A)-H(73A)	109.5(4)
H(72A)-C(7A)-H(73A)	109.5(4)	O(1B)-C(7B)-H(71B)	109.5(3)
O(1B)-C(7B)-H(72B)	109.5(4)	O(1B)-C(7B)-H(73B)	109.5(4)
H(71B)-C(7B)-H(72B)	109.5(4)	H(71B)-C(7B)-H(73B)	109.5(4)
H(72B)-C(7B)-H(73B)	109.5(4)		

Table 5 Les angles de torsion (°)

C(7B) -	- O(1B)	-	C(4B)	_	C(5B)	-179.6
C(7B) -	O(1B)	-	C(4B)	-	C(3B)	-0.5
C(4B) -	O(1B)	-	C(7B)	-	H(71B)	-62.2
C(4B) -	O(1B)	-	C(7B)	-	H(72B)	177.8
C(4B) -	O(1B)	-	C(7B)	-	H(73B)	57.8
H(11B)-	N(1B)	-	C(1B)	-	C(2B)	-3.8
H(11B)-	N(1B)	-	C(1B)	-	C(6B)	175.3
H(12B)-	N(1B)	-	C(1B)	-	C(2B)	-123.8
H(12B)-	N(1B)	-	C(1B)	-	C(6B)	55.3
H(13B)-	N(1B)	-	C(1B)	-	C(2B)	116.2
H(13B)-	N(1B)	-	C(1B)	-	C(6B)	-64.7
C(7A) -	O(1A)	-	C(4A)	-	C(5A)	0.0
C(7A) -	O(1A)	-	C(4A)	-	C(3A)	-178.5
C(4A) -	O(1A)	-	C(7A)	-	H(71A)	-62.2
C(4A) -	O(1A)	-	C(7A)	-	H(72A)	177.8
C(4A) -	O(1A)	-	C(7A)	-	H(73A)	57.8
H(2A) -	C(2A)	-	C(1A)	-	C(6A)	179.7
H(2A) -	C(2A)	-	C(3A)	-	C(4A)	-179.9
H(2A) -	C(2A)	-	C(3A)	-	H(3A)	0.1
C(1A) -	C(2A)	-	C(3A)	-	C(4A)	0.1
C(3A) -	C(2A)	-	C(1A)	-	C(6A)	-0.3
C(1A) -	C(2A)	-	C(3A)	-	H(3A)	-179.9
H(5B) -	C(5B)	-	C(6B)	-	Н(бВ)	0.2
H(5B) -	C(5B)	_	C(6B)	-	C(1B)	-179.8

H(5B)	-	C(5B)	-	C(4B)	-	O(1B)	-0.7
H(5B)	-	C(5B)	-	C(4B)	-	C(3B)	-179.9
C(6B)	-	C(5B)	-	C(4B)	-	O(1B)	179.3
C(4B)	-	C(5B)	-	C(6B)	-	Н(бВ)	-179.8
C(6B)	_	C(5B)	-	C(4B)	-	C(3B)	0.1
C(4B)	-	C(5B)	-	C(6B)	-	C(1B)	0.2
O(1A)	-	C(4A)	-	C(5A)	-	C(6A)	-177.9
O(1A)	-	C(4A)	-	C(5A)	-	H(5A)	2.1
O(1A)	-	C(4A)	-	C(3A)	-	C(2A)	178.4
O(1A)	-	C(4A)	-	C(3A)	-	H(3A)	-1.6
C(5A)	-	C(4A)	-	C(3A)	-	C(2A)	-0.2
C(3A)	-	C(4A)	-	C(5A)	-	C(6A)	0.5
C(3A)	-	C(4A)	-	C(5A)	-	H(5A)	-179.4
C(5A)	-	C(4A)	-	C(3A)	-	H(3A)	179.8
Н(бА)	-	C(6A)	-	C(1A)	-	C(2A)	-179.4
Н(бА)	-	C(6A)	-	C(5A)	-	C(4A)	179.3
Н(бА)	-	C(6A)	-	C(5A)	-	H(5A)	-0.7
C(5A)	-	C(6A)	-	C(1A)	-	C(2A)	0.6
C(1A)	-	C(6A)	-	C(5A)	-	C(4A)	-0.7
C(1A)	-	C(6A)	-	C(5A)	-	H(5A)	179.3
H(2B)	-	C(2B)	-	C(3B)	-	H(3B)	0.3
H(2B)	-	C(2B)	-	C(3B)	-	C(4B)	-179.7
H(2B)	-	C(2B)	-	C(1B)	-	N(1B)	-0.9
H(2B)	-	C(2B)	-	C(1B)	-	C(6B)	-180.0
C(3B)	-	C(2B)	-	C(1B)	-	N(1B)	179.1
C(3B)	-	C(2B)	-	C(1B)	-	C(6B)	0.0
C(1B)	-	C(2B)	-	C(3B)	-	H(3B)	-179.7
C(1B)	-	C(2B)	-	C(3B)	-	C(4B)	0.3
C(5B)	-	C(6B)	-	C(1B)	-	N(1B)	-179.3
C(5B)	-	C(6B)	-	C(1B)	-	C(2B)	-0.3
Н(бВ)	-	C(6B)	-	C(1B)	-	N(1B)	0.7
H(6B)	-	C(6B)	-	C(1B)	-	C(2B)	179.7
C(2B)	-	C(3B)	-	C(4B)	-	O(1B)	-179.5
C(2B)	-	C(3B)	-	C(4B)	-	C(5B)	-0.4
H(3B)	-	C(3B)	-	C(4B)	-	O(1B)	0.5
H(3B)	-	C(3B)	-	C(4B)	-	C(5B)	179.6

Annexes IV

Du composé

Tris (2-hydroxyanilinium) hexachlorostannate(IV) chloride trihydrate

Table 1 Les coordonnées atomiques ainsi que leurs facteurs de déplacement isotropes équivalents (\AA^2)

	34/2		,	тт
	X/d	y/b	2/0	U
C(1A)	0 3477(2)	0 7092(5)	0 0558(2)	0 036
C(1R)	0.4222(2)	0.4229(6)	0.2132(2)	0.040
C(1C)	0.6309(2)	0.8545(5)	0.3175(2)	0 035
C(2A)	0.3604(3)	0.7802(5)	0.1056(2)	0.038
C(2B)	0.3998(3)	0.3472(6)	0.1652(2)	0.044
C(2C)	0.5718(2)	0.9407(5)	0.2856(2)	0.038
C(3A)	0.4393(3)	0.8296(6)	0.1205(2)	0.051
H(3A)	0.44914	0.87746	0.15406	0.061
C(3B)	0.4602(3)	0.3106(7)	0.1285(2)	0.057
H(3B)	0.44625	0.25768	0.09616	0.068
C(3C)	0.5858(3)	0.9571(6)	0.2325(2)	0.047
H(3C)	0.54713	1.01530	0.21079	0.057
C(4A)	0.5036(3)	0.8090(7)	0.0866(2)	0.057
H(4A)	0.55642	0.84234	0.09737	0.068
C(4B)	0.5404(4)	0.3531(7)	0.1401(3)	0.067
H(4B)	0.58087	0.32863	0.11558	0.080
C(4C)	0.6578(3)	0.8864(7)	0.2118(2)	0.053
H(4C)	0.66692	0.89632	0.17590	0.064
C(5A)	0.4906(3)	0.7397(7)	0.0368(2)	0.056
H(5A)	0.53416	0.72810	0.01371	0.067
C(5B)	0.5618(3)	0.4303(7)	0.1870(3)	0.063
H(5B)	0.61649	0.46014	0.19399	0.075
C(5C)	0.7161(3)	0.8013(7)	0.2438(2)	0.055
H(5C)	0.76428	0.75424	0.22944	0.065
C(6A)	0.4115(3)	0.6869(6)	0.0213(2)	0.049
H(6A)	0.40190	0.63713	-0.01204	0.059
C(6B)	0.5025(3)	0.4656(6)	0.2249(2)	0.052
Н(бВ)	0.51716	0.51676	0.25734	0.062
C(6C)	0.7027(3)	0.7863(6)	0.2972(2)	0.046
H(6C)	0.74193	0.73063	0.31909	0.055
N(1A)	0.2636(2)	0.6619(5)	0.0391(1)	0.043
H(11A)	0.23736	0.60839	0.06575	0.065
H(12A)	0.26506	0.58226	0.01219	0.065
H(13A)	0.23720	0.76618	0.02944	0.065
N(1B)	0.3586(2)	0.4663(6)	0.2513(2)	0.052
H(11B)	0.35094	0.59019	0.25256	0.078
H(12B)	0.37430	0.42495	0.28289	0.078
H(13B)	0.31185	0.41020	0.24173	0.078
N(IC)	0.6142(2)	0.8394(5)	0.3736(1)	0.044
H(IIC)	0.65242	0./6/85	0.38898	0.065
H(12C)	0.56492	0./8//0	0.37806	0.065
H(13C)	U.615U1	0.95354	0.38802	0.065
O(2N)	0.3403(2)	1.0159(5)	U.3832(1)	0.052
$\cup (ZA)$	U.Z93U6(I9)	0.800/0(51)	U.13058(13) 0.16546	0.055
$\Pi(ZA)$	0.30/45	U.04U9Z 0.2006/6)	U.10540 0 1569(2)	0.083
	U.JLU(Z) 0 21272	0.3030(0)	U.I308(2) 0 13700	
	0.312/3	0.20000	0.12/90	0.105

O(2C)	0.50266(17)	1.00494(49)	0.31020(13)	0.054
H(2C)	0.46324	0.99883	0.28986	0.081
O(2W)	0.4540(2)	0.7119(5)	0.4022(1)	0.052
O(3W)	0.4158(2)	0.3574(5)	0.3514(1)	0.057
CL(1)	0.28546(6)	-0.08188(13)	-0.07636(4)	0.038
CL(2)	0.10044(6)	0.40324(14)	-0.01653(4)	0.046
CL(3)	0.10880(6)	-0.07866(14)	-0.00818(4)	0.042
CL(4)	0.27384(8)	0.17874(15)	0.03602(4)	0.052
CL(5)	0.28069(6)	0.40725(14)	-0.08186(5)	0.045
CL(6)	0.12084(6)	0.14599(15)	-0.13029(4)	0.045
CL(7)	0.33860(6)	0.91604(18)	0.25226(4)	0.052
SN(1)	0.19406(1)	0.16314(3)	-0.04616(1)	0.030
H(11)	0.322(3)	0.991(6)	0.353(1)	0.05
H(12)	0.371(2)	0.925(5)	0.394(2)	0.05
H(21)	0.462(3)	0.706(6)	0.435(1)	0.05
H(22)	0.437(3)	0.613(5)	0.389(2)	0.05
H(31)	0.3768(18)	0.3099(59)	0.3655(17)	0.05
H(32)	0.4607(17)	0.3067(59)	0.3503(18)	0.05

Table 2

Les paramètres de vibrations dans l'expression de calcul de Ueq : $Ueq = (1/3)\Sigma i \Sigma j Uij a_i^* a_j^* a_i a_j$

	U11	U22	ับ33	Ú12	U13	U23
C(1A)	0.038(2)	0.032(2)	0.038(2)	0.000(2)	-0.006(2)	0.004(2)
C(1B)	0.042(2)	0.037(2)	0.042(2)	0.001(2)	0.003(2)	0.004(2)
C(1C)	0.042(2)	0.032(2)	0.032(2)	-0.006(2)	-0.004(2)	0.001(2)
C(2A)	0.042(2)	0.035(2)	0.038(2)	0.000(2)	-0.002(2)	-0.001(2)
C(2B)	0.047(2)	0.044(2)	0.041(3)	0.003(2)	-0.002(2)	0.006(2)
C(2C)	0.041(2)	0.035(2)	0.039(2)	-0.004(2)	-0.008(2)	-0.002(2)
C(3A)	0.052(3)	0.051(3)	0.049(3)	-0.007(2)	-0.009(2)	-0.006(2)
C(3B)	0.075(4)	0.049(3)	0.046(3)	0.009(2)	0.010(2)	0.003(2)
C(3C)	0.063(3)	0.042(2)	0.037(2)	-0.011(2)	-0.016(2)	0.006(2)
C(4A)	0.042(3)	0.063(3)	0.066(3)	-0.007(2)	-0.009(2)	-0.002(3)
C(4B)	0.073(4)	0.049(3)	0.080(4)	0.015(2)	0.034(3)	0.011(3)
C(4C)	0.074(3)	0.053(3)	0.033(2)	-0.017(2)	0.008(2)	0.002(2)
C(5A)	0.039(3)	0.069(3)	0.061(3)	0.006(2)	0.013(2)	0.005(3)
C(5B)	0.041(3)	0.049(3)	0.098(5)	0.000(2)	0.013(3)	0.013(3)
C(5C)	0.056(3)	0.058(3)	0.050(3)	-0.003(2)	0.013(2)	-0.002(2)
C(6A)	0.055(3)	0.053(3)	0.038(3)	0.007(2)	-0.001(2)	-0.001(2)
C(6B)	0.043(2)	0.047(2)	0.066(3)	-0.007(2)	-0.004(2)	0.000(2)
C(6C)	0.049(3)	0.044(2)	0.043(3)	0.005(2)	-0.001(2)	0.002(2)
N(1A)	0.045(2)	0.047(2)	0.038(2)	0.003(2)	-0.008(2)	-0.002(2)
N(1B)	0.042(2)	0.069(3)	0.045(2)	-0.005(2)	0.000(2)	-0.004(2)
N(1C)	0.045(2)	0.051(2)	0.035(2)	-0.001(2)	-0.005(2)	0.000(2)
O(1W)	0.052(2)	0.059(2)	0.045(2)	0.011(2)	-0.004(2)	0.002(2)
O(2A)	0.050(2)	0.075(2)	0.040(2)	-0.007(2)	0.002(1)	-0.016(2)
O(2B)	0.065(2)	0.088(3)	0.058(2)	-0.005(2)	-0.010(2)	-0.013(2)
O(2C)	0.038(2)	0.067(2)	0.056(2)	0.006(1)	-0.011(1)	-0.006(2)
O(2W)	0.060(2)	0.057(2)	0.040(2)	0.000(2)	0.005(2)	0.004(2)
O(3W)	0.051(2)	0.062(2)	0.058(2)	-0.003(2)	0.005(2)	0.007(2)
CL(1)	0.0406(5)	0.0349(5)	0.0398(6) 0.0100(4)) 0.0033(4))0031(4)
CL(2)	0.0519(6)	0.0367(5)	0.0484(6) 0.0150(4)) 0.0134(5)) 0.0021(4)
CL(3)	0.0398(5)	0.0362(5)	0.0512(6)0033(4)) 0.0079(5)	0.0074(4)
CL(4)	0.0679(7)	0.0489(6)	0.0393(6) 0.0086(5)0183(5))0072(5)
CL(5)	0.0416(5)	0.0352(5)	0.0575(7)0075(4)) 0.0062(5)) 0.0047(5)
CL(6)	0.0460(6)	0.0501(6)	0.0386(6) 0.0016(4))0118(4)	0.0030(4)
CL(7)	0.0389(6)	0.0739(7)	0.0433(6) 0.0013(5)0024(5))0090(5)
SN(1)	0.0328(2)	0.0261(1)	0.0314(2)) 0.0022(1)) 0.0005(1)	0001(1)

Table 3
Les distances inter atomiques (Å)

C(1A) - C(2A)	1.378(6)	C(1A) - C(6A)	1.377(7)
C(1A) - N(1A)	1.466(6)	C(1B) - C(2B)	1.380(7)
C(1B) - C(6B)	1.370(6)	C(1B) - N(1B)	1.460(6)
C(1C) - C(2C)	1.391(6)	C(1C) - C(6C)	1.373(6)
C(1C) - N(1C)	1.461(6)	C(2A) - C(3A)	1.380(7)
C(2A) - O(2A)	1.366(6)	C(2B) - C(3B)	1.390(7)
C(2B) - O(2B)	1.355(6)	C(2C) - C(3C)	1.378(6)
C(2C) - O(2C)	1.373(5)	C(3A) - H(3A)	0.930(6)
C(3A) - C(4A)	1.373(7)	C(3B) - H(3B)	0.930(6)
C(3B) - C(4B)	1.368(8)	C(3C) - H(3C)	0.930(5)
C(3C) - C(4C)	1.385(7)	C(4A) - H(4A)	0.930(5)
C(4A) – C(5A)	1.373(8)	C(4B) - H(4B)	0.930(7)
C(4B) - C(5B)	1.354(9)	C(4C) - H(4C)	0.930(5)
C(4C) - C(5C)	1.382(8)	C(5A) - H(5A)	0.930(5)
C(5A) - C(6A)	1.392(7)	C(5B) - H(5B)	0.930(5)
C(5B) - C(6B)	1.396(8)	C(5C) - H(5C)	0.930(6)
C(5C) - C(6C)	1.385(7)	С(бА) - Н(бА)	0.930(5)
С(6В) - Н(6В)	0.930(6)	C(6C) - H(6C)	0.930(5)
N(1A) - H(11A)	0.890(4)	N(1A) - H(12A)	0.890(4)
N(1A) - H(13A)	0.890(4)	N(1B) - H(11B)	0.890(5)
N(1B) - H(12B)	0.890(4)	N(1B) - H(13B)	0.890(4)
N(1C) - H(11C)	0.890(4)	N(1C) - H(12C)	0.890(4)
N(1C) - H(13C)	0.890(4)	O(1W) - H(11)	0.83(4)
O(1W) - H(12)	0.85(4)	O(2A) - H(2A)	0.820(4)
O(2B) - H(2B)	0.820(4)	O(2C) - H(2C)	0.820(3)
O(2W) - H(21)	0.85(3)	O(2W) - H(22)	0.82(4)
O(3W) - H(31)	0.81(4)	O(3W) - H(32)	0.82(4)

Table 4 Les angles de liaisons (°)

C(2A)-C(1A)-C(6A)	121.6(4)	C(2A) - C(1A) - N(1A)	118.5(4)
C(6A)-C(1A)-N(1A)	119.9(4)	C(2B) - C(1B) - C(6B)	121.3(5)
C(2B) - C(1B) - N(1B)	119.3(4)	C(6B) - C(1B) - N(1B)	119.3(4)
C(2C) - C(1C) - C(6C)	121.3(4)	C(2C) - C(1C) - N(1C)	117.9(4)
C(6C)-C(1C)-N(1C)	120.8(4)	C(1A)-C(2A)-C(3A)	118.3(4)
C(1A)-C(2A)-O(2A)	117.3(4)	C(3A)-C(2A)-O(2A)	124.3(4)
C(1B)-C(2B)-C(3B)	119.2(5)	C(1B)-C(2B)-O(2B)	117.4(4)
C(3B)-C(2B)-O(2B)	123.4(5)	C(1C) - C(2C) - C(3C)	119.2(4)
C(1C) - C(2C) - O(2C)	116.3(4)	C(3C)-C(2C)-O(2C)	124.4(4)
C(2A)-C(3A)-H(3A)	119.6(5)	C(2A)-C(3A)-C(4A)	120.8(5)
H(3A)-C(3A)-C(4A)	119.6(5)	С(2В)-С(3В)-Н(3В)	120.2(6)
C(2B)-C(3B)-C(4B)	119.6(5)	H(3B)-C(3B)-C(4B)	120.2(6)
С(2С)-С(3С)-Н(3С)	120.2(5)	C(2C)-C(3C)-C(4C)	119.7(5)
H(3C)-C(3C)-C(4C)	120.2(5)	C(3A)-C(4A)-H(4A)	119.7(6)
C(3A)-C(4A)-C(5A)	120.7(5)	H(4A)-C(4A)-C(5A)	119.6(6)
C(3B)-C(4B)-H(4B)	119.6(6)	C(3B)-C(4B)-C(5B)	120.9(6)
H(4B)-C(4B)-C(5B)	119.5(6)	С(3С)-С(4С)-Н(4С)	119.6(5)
C(3C)-C(4C)-C(5C)	120.8(5)	H(4C)-C(4C)-C(5C)	119.6(6)
C(4A)-C(5A)-H(5A)	120.4(5)	C(4A)-C(5A)-C(6A)	119.3(5)
H(5A)-C(5A)-C(6A)	120.4(6)	C(4B)-C(5B)-H(5B)	119.6(6)
C(4B)-C(5B)-C(6B)	120.7(5)	H(5B)-C(5B)-C(6B)	119.6(6)
С(4С)-С(5С)-Н(5С)	120.1(6)	C(4C)-C(5C)-C(6C)	119.7(5)
H(5C)-C(5C)-C(6C)	120.1(5)	C(1A)-C(6A)-C(5A)	119.3(5)

C(1A)-C(6A)-H(6A)	120.4(5)	С(5А)-С(6А)-Н(6А)	120.4(5)
C(1B)-C(6B)-C(5B)	118.3(5)	C(1B)-C(6B)-H(6B)	120.8(5)
C(5B)-C(6B)-H(6B)	120.8(5)	C(1C) - C(6C) - C(5C)	119.3(5)
C(1C)-C(6C)-H(6C)	120.4(5)	С(5С)-С(6С)-Н(6С)	120.3(5)
C(1A)-N(1A)-H(11A)	109.5(4)	C(1A) - N(1A) - H(12A)	109.5(4)
C(1A)-N(1A)-H(13A)	109.5(4)	H(11A)-N(1A)-H(12A)	109.5(4)
H(11A)-N(1A)-H(13A)	109.5(4)	H(12A)-N(1A)-H(13A)	109.5(4)
C(1B)-N(1B)-H(11B)	109.5(4)	C(1B) - N(1B) - H(12B)	109.5(4)
C(1B)-N(1B)-H(13B)	109.5(4)	H(11B)-N(1B)-H(12B)	109.5(5)
H(11B)-N(1B)-H(13B)	109.5(4)	H(12B)-N(1B)-H(13B)	109.5(5)
C(1C) - N(1C) - H(11C)	109.5(4)	C(1C) - N(1C) - H(12C)	109.5(4)
C(1C) - N(1C) - H(13C)	109.5(4)	H(11C) - N(1C) - H(12C)	109.5(4)
H(11C)-N(1C)-H(13C)	109.5(4)	H(12C) - N(1C) - H(13C)	109.5(4)
H(11)-O(1W)-H(12)	108.8(43)	C(2A)-O(2A)-H(2A)	109.5(4)
C(2B)-O(2B)-H(2B)	109.5(4)	C(2C)-O(2C)-H(2C)	109.5(4)
H(21)-O(2W)-H(22)	114.1(44)	H(31)-O(3W)-H(32)	122.6(41)

Table 5 Les angles de torsion (°)

C(ED)		$O(1\lambda)$		$\alpha(2\pi)$		C(27)	0 1
C(OA)		C(1A)	_	C(ZA)		C(SA)	0.1
C(ZA)	-	C(IA)	-	C(bA)	-	C(5A)	-0.9
C(ZA)	_	C(IA)	-	C(6A)	-	H(6A)	1/9.1
C(6A)	-	C(IA)	-	C(2A)	-	0(2A)	178.7
N(1A)	-	C(1A)	-	C(2A)	-	C(3A)	-178.2
C(2A)	-	C(1A)	-	N(1A)	-	H(11A)	-39.9
C(2A)	-	C(1A)	-	N(1A)	-	H(12A)	-159.9
C(2A)	-	C(1A)	-	N(1A)	-	H(13A)	80.1
N(1A)	-	C(1A)	-	C(2A)	-	O(2A)	0.4
N(1A)	_	C(1A)	-	C(6A)	_	C(5A)	177.4
N(1A)	_	C(1A)	-	C(6A)	_	H(6A)	-2.6
C(6A)	_	C(1A)	_	N(1A)	_	H(11A)	141.8
C(6A)	_	C(1A)	_	N(1A)	_	H(12A)	21.8
C(6A)	_	C(1A)	_	N(1A)	_	H(13A)	-98.2
C(6B)	_	C(1B)	_	C(2B)	_	C(3B)	1.1
C(2B)	_	C(1B)	_	C(6B)	_	C(5B)	-0.1
C(2B)	_	C(1B)	_	C(6B)	_	H(6B)	179.9
C(6B)	_	C(1B)	_	C(2B)	_	O(2B)	-179.9
N(1B)	_	C(1B)	_	C(2B)	_	C(3B)	178.3
C(2B)	_	C(1B)	_	N(1B)	_	H(11B)	-105.4
C(2B)	_	C(1B)	_	N(1B)	_	H(12B)	134.6
C(2B)	_	C(1B)	_	N(1B)	_	H(13B)	14.6
N(1B)	_	C(1B)	_	C(2B)	_	O(2B)	-2.7
N(1B)	_	C(1B)	_	$C(\Delta B)$	_	C(5B)	-177 3
N(1B)	_	C(1B)	_	C(6B)	_	U(6B)	2 7
C(6B)	_	C(1B)	_	N(1B)	_	н(0D) н(11в)	71 8
	_	C(1D)	_	M(1D)	_	ц(12р)	-18 2
		C(1D)	_	N(1D)		п(12D) ц(12D)	160.2
		C(1D)	_	$\mathbf{N}(\mathbf{TP})$			-100.2
C(bC)	_	C(1C)	-	C(2C)	_	C(SC)	0.2
C(2C)	-	C(1C)	-	C(6C)	-	C(5C)	-0.9
C(2C)	_	C(1C)	-	C(6C)	-	H(6C)	1/9.1
C(6C)	-	C(1C)	-	C(2C)	-	0(2C)	-179.5
N(1C)	-	C(1C)	-	C(2C)	-	C(3C)	180.0
C(2C)	-	C(1C)	-	N(1C)	-	H(11C)	171.8
C(2C)	-	C(1C)	-	N(1C)	-	H(12C)	51.8
C(2C)	-	C(1C)	-	N(1C)	-	H(13C)	-68.2
N(1C)	-	C(1C)	-	C(2C)	-	O(2C)	0.2
N(1C)	-	C(1C)	-	C(6C)	-	C(5C)	179.4
N(1C)	-	C(1C)	-	C(6C)	-	H(6C)	-0.6

C(6C) - C(1C)	- N(1C)	- H(11C)	-8.4
C(6C) - C(1C)	- N(1C)	- H(12C)	-128.4
C(6C) - C(1C)	- N(1C)	- H(13C)	111.6
$C(1\Delta) = C(2\Delta)$	-C(3A)	- H(3A)	-179 8
$C(1\Lambda) = C(2\Lambda)$	$-C(3\Lambda)$	-C(AA)	1,2.0
C(1A) = C(2A)	-C(3A)	- C(4A)	U.Z 170 E
C(1A) = C(2A)	-0(2A)	- H(ZA)	1/8.5
O(2A) - C(2A)	-C(3A)	- H(3A)	1.7
O(2A) - C(2A)	- C(3A)	- C(4A)	-178.3
C(3A) - C(2A)	- O(2A)	– H(2A)	-3.0
C(1B) - C(2B)	- C(3B)	- H(3B)	178.9
C(1B) - C(2B)	- C(3B)	- C(4B)	-1.1
C(1B) - C(2B)	- O(2B)	- H(2B)	-177.3
O(2B) - C(2B)	- C(3B)	- H(3B)	0.0
O(2B) - C(2B)	- C(3B)	- C(4B)	-180.0
C(3B) - C(2B)	- O(2B)	- H(2B)	1.6
C(1C) - C(2C)	- C(3C)	- H(3C)	-179.4
C(1C) = C(2C)	-C(3C)	-C(4C)	0 6
C(1C) = C(2C)	-0(2C)	- H(2C)	_149_1
C(1C) = C(2C)	- C(3C)	$- \frac{11}{2C}$	142.1
O(2C) = O(2C)	= C(3C)	$- \Pi(3C)$	170 7
O(2C) = C(2C)	-C(3C)	- C(4C)	-1/9./
C(3C) = C(2C)	-0(20)	- H(2C)	31.1
C(2A) - C(3A)	- C(4A)	- H(4A)	-179.6
C(2A) - C(3A)	- C(4A)	- C(5A)	0.4
H(3A) - C(3A)	- C(4A)	- H(4A)	0.4
H(3A) - C(3A)	- C(4A)	- C(5A)	-179.6
C(2B) - C(3B)	- C(4B)	- H(4B)	180.0
C(2B) - C(3B)	- C(4B)	- C(5B)	0.0
H(3B) - C(3B)	- C(4B)	- H(4B)	0.0
H(3B) - C(3B)	- C(4B)	- C(5B)	180.0
C(2C) - C(3C)	- C(4C)	- H(4C)	179.3
C(2C) - C(3C)	-C(4C)	-C(5C)	-0 7
H(3C) = C(3C)	- C(4C)	- H(4C)	-0.7
H(3C) = C(3C)	- C(4C)	- C(5C)	179 3
$C(3\lambda) = C(4\lambda)$	$-C(5\lambda)$	_ U(5A)	179.9
C(3A) = C(4A)	C(DA)	$C(6\Lambda)$	1 2
C(3A) = C(4A)	= C(SA)	- C(0A)	-1.2
H(4A) - C(4A)	-C(5A)	- H(5A)	-1.1
H(4A) - C(4A)	-C(5A)	- C(6A)	1/8.8
C(3B) - C(4B)	-C(5B)	- H(5B)	-1/8.9
C(3B) - C(4B)	- C(5B)	- C(6B)	1.1
H(4B) - C(4B)	- C(5B)	- H(5B)	1.1
H(4B) - C(4B)	- C(5B)	- C(6B)	-178.9
C(3C) - C(4C)	- C(5C)	- H(5C)	180.0
C(3C) - C(4C)	- C(5C)	- C(6C)	0.0
H(4C) - C(4C)	- C(5C)	- H(5C)	0.0
H(4C) - C(4C)	- C(5C)	- C(6C)	180.0
C(4A) - C(5A)	- C(6A)	- C(1A)	1.4
C(4A) - C(5A)	- C(6A)	– Н(бА)	-178.6
H(5A) - C(5A)	- C(6A)	- C(1A)	-178.6
H(5A) - C(5A)	-C(6A)	- H(6A)	1.4
C(4B) - C(5B)	-C(6B)	-C(1R)	-1 0
C(4B) = C(5B)	-C(6R)	- H(6R)	179 0
H(5B) = C(5D)	- C(KB)	-C(1R)	179 0
H(5B) = O(5B)	- C(6D)	_ Ц(КР)	_1 0
C(AC) = C(DC)			- T • O
C(4C) = C(5C)	-c(bc)	- U(IC)	U.0 170 0
U(4U) = U(5U)	- C(bC)	$- \pi(0C)$	-170 0
H(5C) - C(5C)	- C(6C)	- C(IC)	-1/9.2
H(5C) - C(5C)	- C(6C)	- H(6C)	0.8

Annexes V

Du composé Bis(4-nitroanilinium) hexachlorostannnate(IV)

Table 1

Les coordonnées atomiques ainsi que leurs facteurs de déplacement isotropes équivalents ($Å^2$)

	équivalents (A ²)					
	x/a	y/b	z/c	U		
SN	1.00000	0.00000	0.00000	0.036		
CL(2)	0.63407(14)	0.02006(5)	-0.20244(13)	0.047		
CL(1)	0.89862(19)	-0.01690(7)	0.24482(15)	0.070		
CL(3)	1.04252(17)	0.11704(5)	0.06987(16)	0.060		
N(1)	0.5692(5)	0.1139(2)	0.1089(4)	0.046		
H(1A)	0.47824	0.13480	0.01107	0.063		
H(1B)	0.51090	0.07731	0.12624	0.063		
H(1C)	0.68318	0.10383	0.09212	0.063		
0(41)	0.7562(5)	0.2532(2)	0.8579(4)	0.070		
0(42)	0.8426(6)	0.3314(2)	0.7245(5)	0.077		
N(4)	0.7799(5)	0.2758(2)	0.7273(4)	0.049		
C(5)	0.6966(6)	0.2630(2)	0.4030(5)	0.043		
H(5)	0.70889	0.30821	0.39419	0.049		
C(4)	0.7301(5)	0.2337(2)	0.5664(4)	0.038		
C(3)	0.7205(6)	0.1673(2)	0.5874(4)	0.047		
H(3)	0.74872	0.14948	0.70120	0.054		
C(1)	0.6280(5)	0.1568(2)	0.2701(4)	0.036		
C(2)	0.6679(6)	0.1269(2)	0.4356(5)	0.048		
H(2)	0.65971	0.08159	0.44492	0.054		
C(6)	0.6437(6)	0.2227(2)	0.2517(5)	0.041		
Н(б)	0.61922	0.24057	0.13874	0.046		

Table 2

Les paramètres de vibrations dans l'expression de calcul de Ueq : Ueq= $(1/3)\Sigma i \Sigma j Uij a_i^* a_j^* a_i a_j$

			5 5		
U11	U22	U33	U12	U13	U23
0.0361(2)	0.0275(2)	0.0364(2)	0.0004(1)	0.0159(2))0030(1)
0.0374(5)	0.0423(5)	0.0490(5)	0.0002(4)	0.0106(4)	0.0024(4)
0.0662(7)	0.0847(8)	0.0545(6)	0.0228(6)	0.0393(5)	0.0215(6)
0.0633(6)	0.0292(5)	0.0672(7)	0017(4)	0.0118(5))0095(4)
0.054(2)	0.036(2)	0.037(1)	0.003(1)	0.019(1)	-0.004(1)
0.082(2)	0.078(2)	0.038(1)	0.006(2)	0.023(1)	-0.010(1)
0.085(2)	0.054(2)	0.073(2)	-0.021(2)	0.030(2)	-0.028(2)
0.040(2)	0.050(2)	0.044(2)	0.002(1)	0.010(1)	-0.013(1)
0.044(2)	0.031(2)	0.043(2)	-0.002(2)	0.014(2)	0.000(1)
0.035(2)	0.038(2)	0.033(2)	0.002(1)	0.011(1)	-0.003(1)
0.058(2)	0.043(2)	0.029(2)	0.004(2)	0.015(2)	0.004(1)
0.035(2)	0.036(2)	0.029(1)	0.003(1)	0.012(1)	-0.001(1)
0.063(2)	0.032(2)	0.037(2)	0.001(2)	0.018(2)	0.002(1)
0.044(2)	0.037(2)	0.033(2)	-0.001(2)	0.015(1)	0.006(1)
	U11 0.0361(2) 0.0374(5) 0.0662(7) 0.0633(6) 0.054(2) 0.082(2) 0.085(2) 0.040(2) 0.044(2) 0.035(2) 0.058(2) 0.058(2) 0.035(2) 0.063(2) 0.063(2) 0.044(2)	U11U22 $0.0361(2)$ $0.0275(2)$ $0.0374(5)$ $0.0423(5)$ $0.0662(7)$ $0.0847(8)$ $0.0633(6)$ $0.0292(5)$ $0.054(2)$ $0.036(2)$ $0.082(2)$ $0.078(2)$ $0.085(2)$ $0.054(2)$ $0.040(2)$ $0.050(2)$ $0.044(2)$ $0.031(2)$ $0.058(2)$ $0.043(2)$ $0.035(2)$ $0.036(2)$ $0.035(2)$ $0.036(2)$ $0.063(2)$ $0.032(2)$ $0.044(2)$ $0.037(2)$	U11U22U33 $0.0361(2)$ $0.0275(2)$ $0.0364(2)$ $0.0374(5)$ $0.0423(5)$ $0.0490(5)$ $0.0662(7)$ $0.0847(8)$ $0.0545(6)$ $0.0633(6)$ $0.0292(5)$ $0.0672(7)$ $0.054(2)$ $0.036(2)$ $0.037(1)$ $0.082(2)$ $0.078(2)$ $0.038(1)$ $0.085(2)$ $0.054(2)$ $0.073(2)$ $0.040(2)$ $0.050(2)$ $0.044(2)$ $0.035(2)$ $0.038(2)$ $0.033(2)$ $0.035(2)$ $0.043(2)$ $0.029(2)$ $0.035(2)$ $0.036(2)$ $0.029(1)$ $0.063(2)$ $0.037(2)$ $0.033(2)$	U11U22U33U12 $0.0361(2)$ $0.0275(2)$ $0.0364(2)$ $0.0004(1)$ $0.0374(5)$ $0.0423(5)$ $0.0490(5)$ $0.0002(4)$ $0.0662(7)$ $0.0847(8)$ $0.0545(6)$ $0.0228(6)$ $0.0633(6)$ $0.0292(5)$ $0.0672(7)$ $0017(4)$ $0.054(2)$ $0.036(2)$ $0.037(1)$ $0.003(1)$ $0.082(2)$ $0.078(2)$ $0.038(1)$ $0.006(2)$ $0.085(2)$ $0.054(2)$ $0.073(2)$ $-0.021(2)$ $0.040(2)$ $0.050(2)$ $0.044(2)$ $0.002(1)$ $0.044(2)$ $0.031(2)$ $0.043(2)$ $-0.002(2)$ $0.035(2)$ $0.043(2)$ $0.029(2)$ $0.004(2)$ $0.035(2)$ $0.036(2)$ $0.029(1)$ $0.003(1)$ $0.063(2)$ $0.032(2)$ $0.037(2)$ $0.001(2)$ $0.044(2)$ $0.037(2)$ $0.033(2)$ $-0.001(2)$	U11U22U33U12U13 $0.0361(2)$ $0.0275(2)$ $0.0364(2)$ $0.0004(1)$ $0.0159(2)$ $0.0374(5)$ $0.0423(5)$ $0.0490(5)$ $0.0002(4)$ $0.0106(4)$ $0.0662(7)$ $0.0847(8)$ $0.0545(6)$ $0.0228(6)$ $0.0393(5)$ $0.0633(6)$ $0.0292(5)$ $0.0672(7)$ $0017(4)$ $0.0118(5)$ $0.054(2)$ $0.036(2)$ $0.037(1)$ $0.003(1)$ $0.019(1)$ $0.082(2)$ $0.078(2)$ $0.038(1)$ $0.006(2)$ $0.023(1)$ $0.085(2)$ $0.054(2)$ $0.073(2)$ $-0.021(2)$ $0.030(2)$ $0.040(2)$ $0.050(2)$ $0.044(2)$ $0.002(1)$ $0.010(1)$ $0.044(2)$ $0.031(2)$ $0.043(2)$ $-0.002(2)$ $0.014(2)$ $0.035(2)$ $0.038(2)$ $0.029(2)$ $0.004(2)$ $0.012(1)$ $0.035(2)$ $0.036(2)$ $0.029(1)$ $0.003(1)$ $0.012(1)$ $0.035(2)$ $0.032(2)$ $0.037(2)$ $0.001(2)$ $0.018(2)$ $0.044(2)$ $0.037(2)$ $0.033(2)$ $-0.001(2)$ $0.015(1)$

Table 3 Les distances inter atomiques (Å)

N(1) - H(1A)	0.890(3)	N(1) - H(1B)	0.890(4)
N(1) - H(1C)	0.890(4)	O(41) - N(4)	1.225(5)
O(42) - N(4)	1.219(6)	C(5) - H(5)	0.930(4)
C(5) - C(4)	1.377(5)	C(5) - C(6)	1.389(5)
C(4) - C(3)	1.368(6)	C(3) - H(3)	0.930(4)
C(3) - C(2)	1.393(5)	C(1) - C(2)	1.388(5)
C(1) - C(6)	1.360(6)	C(2) - H(2)	0.930(4)
C(6) - H(6)	0.930(4)		

Table 4

Les angles de liaisons (°)

109.5(4)	H(1A) - N(1) - H(1C)	109.5(4)
109.5(4)	O(41)-N(4)-O(42)	123.1(4)
121.2(4)	H(5)-C(5)-C(6)	121.2(4)
117.6(4)	C(5) - C(4) - C(3)	123.3(4)
120.5(4)	C(4)-C(3)-C(2)	118.9(4)
120.5(4)	C(2) - C(1) - C(6)	123.0(4)
117.5(4)	C(3)-C(2)-H(2)	121.2(4)
121.2(4)	C(5) - C(6) - C(1)	119.5(4)
120.3(4)	С(1)-С(б)-Н(б)	120.3(4)
	109.5(4) 109.5(4) 121.2(4) 117.6(4) 120.5(4) 120.5(4) 117.5(4) 121.2(4) 120.3(4)	109.5(4) $H(1A) - N(1) - H(1C)$ $109.5(4)$ $O(41) - N(4) - O(42)$ $121.2(4)$ $H(5) - C(5) - C(6)$ $117.6(4)$ $C(5) - C(4) - C(3)$ $120.5(4)$ $C(4) - C(3) - C(2)$ $120.5(4)$ $C(2) - C(1) - C(6)$ $117.5(4)$ $C(3) - C(2) - H(2)$ $121.2(4)$ $C(5) - C(6) - C(1)$ $120.3(4)$ $C(1) - C(6) - H(6)$

Table 5

Les angles de torsion (°)

H(5)	-	C(5)	-	C(4)	-	C(3)	-177.8
H(5)	-	C(5)	-	C(6)	-	C(1)	179.7
H(5)	-	C(5)	-	C(6)	-	Н(б)	-0.3
C(6)	-	C(5)	-	C(4)	-	C(3)	2.2
C(4)	-	C(5)	_	C(6)	-	C(1)	-0.3
C(4)	-	C(5)	-	C(6)	-	Н(б)	179.7
C(5)	-	C(4)	-	C(3)	-	H(3)	177.9
C(5)	-	C(4)	-	C(3)	-	C(2)	-2.1
C(4)	-	C(3)	-	C(2)	-	C(1)	0.1
C(4)	-	C(3)	-	C(2)	-	H(2)	-179.9
H(3)	-	C(3)	-	C(2)	-	C(1)	-179.9
H(3)	-	C(3)	-	C(2)	-	H(2)	0.1
C(2)	-	C(1)	-	C(6)	-	C(5)	-1.7
C(6)	-	C(1)	-	C(2)	-	C(3)	1.8
C(6)	-	C(1)	-	C(2)	-	H(2)	-178.2
C(2)	-	C(1)	-	C(6)	-	Н(б)	178.3

Annexes VI

Du composé Bis (dimethyl anilinium) hexachlorostannnate (IV)

		Table 1		
Les co	oordonnées atomiques	s ainsi que leurs fa	cteurs de déplaceme	ent isotropes
		équivalents (Å	²)	
	x/a	y/b	z/c	U
SN(1)	0.00000	0.00000	0.00000	0.037
CL(3)	-0.21850(12)	0.11255(12)	0.10158(7)	0.050
CL(1)	0.24905(16)	0.32446(12)	-0.03059(10)	0.067
CL(2)	0.15508(17)	0.00265(16)	0.19866(8)	0.075
N(1)	0.3474(5)	0.7114(4)	0.1434(3)	0.052
H(1A)	0.29053	0.60452	0.09708	0.071
H(1C)	0.47475	0.77923	0.12143	0.071
H(1B)	0.28039	0.77726	0.13128	0.071
C(2)	0.2051(5)	0.4915(4)	0.3150(3)	0.042
H(2)	0.11876	0.40189	0.25630	0.046
C(1)	0.3413(5)	0.6666(4)	0.2773(3)	0.041
C(4)	0.3263(5)	0.5844(5)	0.5274(3)	0.046
C(3)	0.1951(5)	0.4465(4)	0.4409(3)	0.043
C(5)	0.4640(5)	0.7587(5)	0.4852(3)	0.047
H(5)	0.55320	0.84887	0.54258	0.052
C(8)	0.0468(6)	0.2530(5)	0.4797(4)	0.057
H(8C)	-0.01937	0.17551	0.40665	0.079
H(8A)	-0.05148	0.26234	0.53258	0.079
H(8B)	0.11629	0.19739	0.52473	0.079
C(6)	0.4730(5)	0.8028(5)	0.3600(3)	0.046
Н(б)	0.56537	0.92088	0.33308	0.051
C(7)	0.3189(6)	0.5461(6)	0.6655(3)	0.064
H(7A)	0.43012	0.64887	0.70872	0.084
H(7B)	0.32708	0.43106	0.67710	0.084
H(7C)	0.19475	0.53402	0.69839	0.084

Table 2Les paramètres de vibrations dans l'expression de calcul de Ueq :Ueq= $(1/3)\Sigma$ i Σ j Uij $a_i^* a_j^* a_i a_j$

	U11	U22	U33	U12	U13	U23
SN(1)	0.0353(2)	0.0321(2)	0.0319(2)	0.0134(1)	0.0010(1)	0.0007(1)
CL(3)	0.0440(4)	0.0501(5)	0.0439(4)	0.0246(4)	0.0046(3)	0046(3)
CL(1)	0.0684(6)	0.0327(4)	0.0758(7)	0.0061(4)	0.0291(5)	0018(4)
CL(2)	0.0866(7)	0.0879(7)	0.0374(4)	0.0617(6)	0160(4)	0118(5)
N(1)	0.054(2)	0.048(2)	0.042(1)	0.026(1)	0.002(1)	0.005(1)
C(2)	0.038(2)	0.034(1)	0.043(2)	0.018(1)	-0.002(1)	-0.008(1)
C(1)	0.040(2)	0.038(1)	0.037(1)	0.021(1)	0.003(1)	0.002(1)
C(4)	0.044(2)	0.044(2)	0.042(2)	0.027(1)	0.002(1)	0.001(1)
C(3)	0.039(2)	0.036(1)	0.047(2)	0.022(1)	0.007(1)	0.004(1)
C(5)	0.042(2)	0.043(2)	0.045(2)	0.019(1)	-0.006(1)	-0.008(1)

C(8)	0.053(2)	0.042(2)	0.063(2)	0.020(2)	0.012(2)	0.012(2)
C(6)	0.042(2)	0.033(1)	0.051(2)	0.016(1)	0.003(1)	-0.001(1)
C(7)	0.066(2)	0.073(3)	0.043(2)	0.043(2)	0.002(2)	0.003(2)

Table 3

Les distances inter atomiques (Å)

N(1) - H(1A)	0.890(3)	N(1) - H(1C)	0.890(3)
N(1) - H(1B)	0.890(3)	C(2) - H(2)	0.930(4)
C(2) - C(1)	1.371(5)	C(2) - C(3)	1.395(5)
C(1) - C(6)	1.370(5)	C(4) - C(3)	1.401(5)
C(4) - C(5)	1.385(5)	C(4) - C(7)	1.511(5)
C(3) - C(8)	1.500(5)	C(5) - H(5)	0.930(4)
C(5) - C(6)	1.387(5)	C(8) - H(8C)	0.960(4)
C(8) - H(8A)	0.960(4)	C(8) - H(8B)	0.960(4)
C(6) - H(6)	0.930(4)	C(7) - H(7A)	0.960(5)
C(7) - H(7B)	0.960(5)	C(7) - H(7C)	0.960(5)

Table 4 Les angles de liaisons (°)

H(1A) - N(1) - H(1C)	109.5(3)	H(1A) - N(1) - H(1B)	109.5(4)
H(1C) - N(1) - H(1B)	109.5(4)	H(2) - C(2) - C(1)	119.8(4)
H(2)-C(2)-C(3)	119.7(3)	C(1) - C(2) - C(3)	120.5(3)
C(2)-C(1)-C(6)	122.0(3)	C(3)-C(4)-C(5)	119.2(3)
C(3)-C(4)-C(7)	121.0(4)	C(5)-C(4)-C(7)	119.8(4)
C(2)-C(3)-C(4)	118.5(3)	C(2)-C(3)-C(8)	119.5(3)
C(4)-C(3)-C(8)	121.9(3)	C(4)-C(5)-H(5)	119.0(4)
C(4)-C(5)-C(6)	122.0(4)	H(5)-C(5)-C(6)	119.0(4)
C(3)-C(8)-H(8C)	109.5(4)	C(3)-C(8)-H(8A)	109.5(4)
C(3)-C(8)-H(8B)	109.5(4)	H(8C)-C(8)-H(8A)	109.5(4)
H(8C)-C(8)-H(8B)	109.5(4)	H(8A)-C(8)-H(8B)	109.5(4)
C(1) - C(6) - C(5)	117.8(3)	C(1)-C(6)-H(6)	121.1(4)
C(5)-C(6)-H(6)	121.1(4)	C(4)-C(7)-H(7A)	109.5(4)
C(4)-C(7)-H(7B)	109.5(4)	C(4)-C(7)-H(7C)	109.5(4)
H(7A)-C(7)-H(7B)	109.5(4)	H(7A)-C(7)-H(7C)	109.5(4)
H(7B)-C(7)-H(7C)	109.5(4)		

Table 5 Les angles de torsion (°)

H(2)	_	C(2)	_	C(1)	_	C(6)	-179.4
H(2)	-	C(2)	-	C(3)	-	C(4)	-179.7
H(2)	-	C(2)	-	C(3)	-	C(8)	0.8
C(1)	-	C(2)	-	C(3)	-	C(4)	0.3
C(1)	-	C(2)	-	C(3)	-	C(8)	-179.1
C(3)	-	C(2)	-	C(1)	-	C(6)	0.6
C(2)	-	C(1)	-	C(6)	-	C(5)	-0.5
C(2)	-	C(1)	-	C(6)	-	Н(б)	179.5
C(5)	-	C(4)	-	C(3)	-	C(2)	-1.4
C(3)	-	C(4)	-	C(5)	-	H(5)	-178.4
C(5)	-	C(4)	-	C(3)	-	C(8)	178.1
C(3)	-	C(4)	-	C(5)	-	C(6)	1.6
C(7)	-	C(4)	-	C(3)	-	C(2)	178.3
C(7)	-	C(4)	-	C(3)	-	C(8)	-2.2
C(3)	_	C(4)	-	C(7)	-	H(7A)	172.3

C(3)	-	C(4)	-	C(7)	-	H(7B)	52.3
C(3)	-	C(4)	-	C(7)	-	H(7C)	-67.7
C(7)	-	C(4)	-	C(5)	-	H(5)	1.9
C(7)	-	C(4)	-	C(5)	-	C(6)	-178.1
C(5)	-	C(4)	-	C(7)	-	H(7A)	-7.9
C(5)	-	C(4)	-	C(7)	-	H(7B)	-127.9
C(5)	-	C(4)	-	C(7)	-	H(7C)	112.1
C(2)	-	C(3)	-	C(8)	-	H(8C)	5.2
C(2)	-	C(3)	-	C(8)	-	H(8A)	-114.8
C(2)	-	C(3)	-	C(8)	-	H(8B)	125.2
C(4)	-	C(3)	-	C(8)	-	H(8C)	-174.2
C(4)	-	C(3)	-	C(8)	-	H(8A)	65.8
C(4)	-	C(3)	-	C(8)	-	H(8B)	-54.2
C(4)	-	C(5)	-	C(6)	-	C(1)	-0.7
C(4)	-	C(5)	-	C(6)	-	Н(б)	179.3
H(5)	-	C(5)	-	C(6)	-	C(1)	179.3
H(5)	-	C(5)	-	C(6)	-	Н(б)	-0.7

Annexes VII

Du composé Bis (3-carboxyanilinium) hexafluorostannate(VI)

$Table \ 1 \\ Les \ coordonnées \ atomiques \ ainsi \ que \ leurs \ facteurs \ de \ déplacement \ isotropes \\ équivalents \ ({\AA}^2)$

	x/a	y/b	z/c	Ueq
SN(1)	1.00000	0.29859(2)	0.75000	0.024
F(4)	1.0000	0.1171(2)	0.7500	0.063
F(3)	1.01482(7)	0.30270(15)	0.50214(19)	0.046
F(2)	0.91103(6)	0.30423(15)	0.63441(22)	0.048
0(2)	0.67524(7)	0.03213(17)	0.14162(25)	0.043
0(1)	0.69536(8)	0.21180(16)	0.29564(29)	0.045
H(1)	0.65951	0.20363	0.30400	0.065
N(1)	0.90569(8)	0.35035(21)	0.23480(28)	0.030
C(2)	0.77497(9)	0.12388(21)	0.18014(27)	0.026
C(7)	0.80055(10)	0.01801(23)	0.11982(31)	0.033
C(3)	0.80964(9)	0.23379(22)	0.22064(29)	0.026
C(6)	0.86128(11)	0.02012(24)	0.10383(36)	0.040
C(5)	0.89611(10)	0.12874(24)	0.14262(33)	0.035
F(1)	1.0000	0.4794(2)	0.7500	0.061
C(4)	0.86947(9)	0.23438(21)	0.19837(27)	0.025
C(1)	0.71029(9)	0.11736(21)	0.20269(29)	0.029
H(3)	0.7935(15)	0.3073(26)	0.2620(43)	0.050
H(7)	0.7782(13)	-0.0561(30)	0.0958(38)	0.050
Н(б)	0.8793(13)	-0.0500(29)	0.0654(38)	0.050
H(5)	0.9366(13)	0.1335(30)	0.1310(39)	0.050
H(13)	0.9219(13)	0.3701(30)	0.1427(42)	0.050
H(11)	0.8840(14)	0.4151(30)	0.2623(39)	0.050
H(12)	0.9345(15)	0.3354(30)	0.3256(44)	0.050

Table 2

Les paramètres de vibrations dans l'expression de calcul de Ueq : Ueq= $(1/3)\Sigma i \Sigma j Uij a_i^* a_j^* a_i a_j$

	U11	U22	U33	U12	U13	U23
SN(1)	0.0190(1)	0.0253(1)	0.0271(1)	0.0000	0.0097(1)	0.0000
F(4)	0.068(2)	0.025(1)	0.093(2)	0.000	0.021(1)	0.000
F(3)	0.0363(8)	0.0720(13)0.0298(7)	0.0110(7)	0.0179(6)	0.0046(6)
F(2)	0.0168(6)	0.0829(14)0.0438(8)	0.0000(6)	0.0076(6)	0016(7)
0(2)	0.0314(8)	0.0346(10)0.0614(11)0116(7)	0.0150(8)	0075(8)
0(1)	0.0259(8)	0.0404(12)0.0687(13)0080(7)	0.0225(8)	0175(9)
N(1)	0.0223(9)	0.0329(11)0.0332(10)0035(8)	0.0087(7)	0.0007(8)
C(2)	0.0227(9)	0.0258(11)0.0269(9)	0021(8)	0.0069(7)	0.0016(8)
C(7)	0.033(1)	0.026(1)	0.038(1)	-0.003(1)	0.012(1)	-0.002(1)
C(3)	0.0229(9)	0.0249(11)0.0279(10)0.0016(8)	0.0080(8)	0.0003(8)
C(6)	0.039(1)	0.029(1)	0.050(1)	0.005(1)	0.020(1)	-0.004(1)
C(5)	0.026(1)	0.036(1)	0.042(1)	0.003(1)	0.015(1)	0.001(1)
F(1)	0.066(1)	0.024(1)	0.092(2)	0.000	0.034(1)	0.000
C(4)	0.0217(9)	0.0258(11)0.0249(9)	0029(8)	0.0069(7)	0.0021(8)
C(1)	0.0240(9)	0.0278(12)0.0335(10)0025(8)	0.0073(8)	0.0028(9)

Table 3 Les distances inter atomiques (Å)

SN(1) -	F(4)	1.934(3)	SN(1) -	F(4)	1.934(3)
SN(1) -	F(3)	1.962(2)	SN(1) -	F(3)	1.962(2)
SN(1) -	F(2)	1.965(2)	SN(1) -	F(2)	1.965(2)
SN(1) -	F(1)	1.927(3)	SN(1) -	F(1)	1.927(3)
0(2) -	C(1)	1.214(3)	0(1) -	H(1)	0.820(2)
0(1) -	C(1)	1.311(3)	N(1) -	C(4)	1.466(4)
N(1) -	H(13)	0.88(4)	N(1) -	H(11)	0.89(4)
N(1) -	H(12)	0.83(4)	C(2) -	C(7)	1.387(4)
C(2) -	C(3)	1.396(4)	C(2) -	C(1)	1.491(3)
C(7) -	C(6)	1.386(4)	C(7) -	H(7)	0.93(4)
C(3) -	C(4)	1.381(3)	C(3) -	H(3)	0.94(3)
С(б) -	C(5)	1.385(4)	С(б) –	Н(б)	0.93(3)
C(5) -	C(4)	1.383(4)	C(5) -	H(5)	0.93(3)

Table 4 Les angles de liaisons (°)

F(4) - SN(1) - F(3)	91.3(1)	F(4) - SN(1) - F(3)	91.3(1)
F(4) - SN(1) - F(2)	91.8(1)	F(4) - SN(1) - F(2)	91.8(1)
F(4) - SN(1) - F(1)	180.0	F(4) - SN(1) - F(1)	180.0
F(4) - SN(1) - F(3)	91.3(1)	F(4) - SN(1) - F(3)	91.3(1)
F(4) - SN(1) - F(2)	91.8(1)	F(4) - SN(1) - F(2)	91.8(1)
F(4) - SN(1) - F(1)	180.0	F(4) - SN(1) - F(1)	180.0
F(3) - SN(1) - F(3)	177.4(1)	F(3) - SN(1) - F(2)	87.8(1)
F(3) - SN(1) - F(2)	92.2(1)	F(3) - SN(1) - F(1)	88.7(1)
F(3) - SN(1) - F(1)	88.7(1)	F(3) - SN(1) - F(2)	92.2(1)
F(3) - SN(1) - F(2)	87.8(1)	F(3) - SN(1) - F(1)	88.7(1)
F(3) - SN(1) - F(1)	88.7(1)	F(2) - SN(1) - F(2)	176.5(1)
F(2) - SN(1) - F(1)	88.2(1)	F(2) - SN(1) - F(1)	88.2(1)
F(2) - SN(1) - F(1)	88.2(1)	F(2) - SN(1) - F(1)	88.2(1)
H(1) - O(1) - C(1)	109.5(2)	C(4) - N(1) - H(13)	111.5(21)
C(4) - N(1) - H(11)	113.0(20)	C(4) - N(1) - H(12)	105.9(23)
H(13) - N(1) - H(11)	110.1(28)	H(13) - N(1) - H(12)	107.9(30)
H(11) - N(1) - H(12)	108.2(29)	C(7) - C(2) - C(3)	120.3(2)
C(7) - C(2) - C(1)	118.8(2)	C(3) - C(2) - C(1)	120.9(2)
C(2) - C(7) - C(6)	120.0(3)	C(2) - C(7) - H(7)	120.9(18)
C(6) - C(7) - H(7)	119.1(18)	C(2) - C(3) - C(4)	118.5(3)
C(2) - C(3) - H(3)	122.3(19)	C(4) - C(3) - H(3)	119.2(19)
C(7) - C(6) - C(5)	120.3(3)	C(7) - C(6) - H(6)	121.1(18)
C(5) - C(6) - H(6)	118.5(18)	C(6) - C(5) - C(4)	119.0(3)
C(6) - C(5) - H(5)	122.3(20)	C(4) - C(5) - H(5)	118.7(20)
N(1) - C(4) - C(3)	119.0(2)	N(1) - C(4) - C(5)	119.1(2)
C(3) - C(4) - C(5)	121.9(3)	O(2) - C(1) - O(1)	123.6(2)
O(2) - C(1) - C(2)	123.0(2)	O(1) - C(1) - C(2)	113.5(2)

Table 5 Les angles de torsion (°)

TT (1)	$\alpha(1)$		$\alpha(1)$		0(0)	о г
$H(\perp) =$	O(1)	-	C(1)	-	O(Z)	-0.5
$H(\perp) -$	O(1)	-	C(1)	-	C(2)	-180.0
H(13) -	$N(\perp)$	-	C(4)	-	C(3)	-128.6
H(13) -	N(1)	-	C(4)	-	C(5)	51.3
H(11) -	N(1)	-	C(4)	-	C(3)	-4.0
H(11) -	N(1)	-	C(4)	-	C(5)	175.9
H(12) -	N(1)	-	C(4)	-	C(3)	114.2
H(12) -	N(1)	-	C(4)	-	C(5)	-65.8
C(3) -	C(2)	-	C(7)	-	C(6)	1.6
C(7) -	C(2)	-	C(3)	-	C(4)	0.3
C(7) -	C(2)	-	C(3)	-	H(3)	-180.0
C(3) -	C(2)	-	C(7)	-	H(7)	178.2
C(7) -	C(2)	_	C(1)	-	0(2)	-13.1
C(7) -	C(2)	_	C(1)	-	0(1)	166.4
C(1) -	C(2)	_	C(7)	_	C(6)	-177.7
C(1) -	C(2)	_	C(7)	_	H(7)	-1.1
C(3) -	C(2)	_	C(1)	_	0(2)	167.6
C(3) -	C(2)	_	C(1)	_	0(1)	-12.9
C(1) -	C(2)	_	C(3)	_	C(4)	179.6
C(1) -	C(2)	_	C(3)	_	Н(З)	-0.7
C(2) -	C(7)	_	C(6)	_	C(5)	-1.9
C(2) -	C(7)	_	C(6)	_	н(б)	179.1
н(7) –	C(7)	_	C(6)	_	C(5)	-178.6
H(7) -	C(7)	_	C(6)	_	н(б)	2.4
C(2) -	C(3)	_	C(4)	_	N(1)	178 1
C(2) -	C(3)	_	C(4)	_	C(5)	-1 9
U(2) Н(3) –	C(3)	_	C(4)	_	N(1)	-1 7
н(З) –	C(3)	_	C(4)	_	C(5)	178 4
C(7) =	C(6)	_	C(5)	_	C(4)	0 4
C(7) =	C(6)	_	C(5)	_	U(1) Н(5)	-178 8
U(F)	C(6)	_	C(5)	_	C(4)	170.0
ц(б) _	C(0)	_	C(5)	_		1/2.4
G(6) =	C(0)	_	C(J)	_	$\Pi(J)$	0.2 _178 /
C(6) =	C(5)	_	C(I)	_	C(3)	-1/0.4
U(0) = U(0)	C(J)	-	$C(\mathbf{I})$	_	U(J)	1.0
л()) - ц()	C(5)	-	C(4)	-	а(з) и(т)	170 0
п(э) -	C(5)	-	C(4)	-	C(3)	-1/9.2
Annexes XIII

Du composé **DL-Phenylglycinium chloride**

Table 1Les coordonnées atomiques ainsi que leurs facteurs de déplacement isotropes
équivalents (Ų)

	x/a	y/b	z/c	U
CL(1)	-0.24541(5)	0.62876(3)	0.92636(2)	0.032
0(1)	0.22348(16)	0.55882(10)	0.94638(5)	0.031
0(2)	0.45644(18)	0.43732(12)	0.91952(6)	0.043
H(2)	0.51897	0.49665	0.92856	0.065
N(1)	-0.0165(2)	0.3690(1)	0.9456(1)	0.031
H(1A)	0.00222	0.37424	0.98647	0.046
H(1B)	-0.08727	0.30506	0.93744	0.046
H(1C)	-0.07129	0.43629	0.93214	0.046
C(2)	0.1391(2)	0.3444(1)	0.8431(1)	0.023
C(1)	0.1623(2)	0.3544(1)	0.9131(1)	0.024
H(1)	0.22117	0.28007	0.92836	0.029
C(3)	0.0697(2)	0.4407(1)	0.8084(1)	0.028
H(3)	0.02934	0.51084	0.82832	0.034
C(7)	0.1954(2)	0.2396(1)	0.8130(1)	0.029
H(7)	0.23976	0.17446	0.83610	0.035
C(5)	0.1203(2)	0.3274(2)	0.7144(1)	0.033
H(5)	0.11587	0.32210	0.67116	0.039
C(4)	0.0609(2)	0.4316(2)	0.7440(1)	0.033
H(4)	0.01493	0.49595	0.72063	0.040
C(8)	0.2837(2)	0.4621(2)	0.9293(1)	0.025
C(6)	0.1861(2)	0.2313(2)	0.7488(1)	0.033
Н(б)	0.22429	0.16069	0.72881	0.040

Table 2

Les paramètres de vibrations dans l'expression de calcul de Ueq : $Ueq = (1/3)\Sigma i \Sigma j Uij a_i^* a_j^* a_i a_j$

	U11	U22	U33	U12	U13	U23
CL(1)	0.0310(3)	0.0298(3)	0.0365(3)	0.0035(2)	0003(2)	0.0031(2)
0(1)	0.0342(7)	0.0232(6)	0.0367(6)	0017(5)	0.0043(5)	0027(5)
0(2)	0.0276(7)	0.0433(8)	0.0586(8)	0035(5)	0.0040(6)	0188(6)
N(1)	0.0325(8)	0.0284(7)	0.0316(7)	0073(6)	0.0071(6)	0041(5)
C(2)	0.0227(7)	0.0230(8)	0.0242(7)	0044(6)	0.0009(6)	0013(6)
C(1)	0.0267(8)	0.0217(8)	0.0249(7)	0001(6)	0.0015(6)	0001(6)
C(3)	0.0296(8)	0.0240(8)	0.0307(8)	0.0006(6)	0021(6)	0016(6)
C(7)	0.0340(9)	0.0224(8)	0.0306(8)	0.0011(6)	0.0009(7)	0.0003(6)
C(5)	0.0307(8)	0.0428(10)0.0244(8)	0059(8)	0022(6)	0023(7)
C(4)	0.0321(8)	0.0346(9)	0.0330(9)	0017(7)	0073(7)	0.0062(7)
C(8)	0.0264(8)	0.0288(9)	0.0205(7)	0020(6)	0.0012(6)	0004(6)
C(6)	0.0352(9)	0.0318(9)	0.0331(9)	0001(7)	0.0025(7)	0098(7)

Table 3 Les distances inter atomiques (Å)

0(1) -	C(8)	1.209(2)	O(2) -	H(2)	0.820(2)
O(2) -	C(8)	1.308(3)	N(1) -	H(1A)	0.890(2)
N(1) -	H(1B)	0.890(2)	N(1) -	H(1C)	0.890(2)
C(2) -	C(1)	1.515(3)	C(2) -	C(3)	1.391(3)
C(2) -	C(7)	1.384(3)	C(1) -	H(1)	0.980(2)
C(1) -	C(8)	1.520(3)	C(3) -	Н(З)	0.930(2)
C(3) -	C(4)	1.387(3)	C(7) -	H(7)	0.930(2)
C(7) -	C(6)	1.382(3)	C(5) -	H(5)	0.930(2)
C(5) -	C(4)	1.381(3)	C(5) -	C(6)	1.376(3)
C(4) -	H(4)	0.930(2)	С(б) –	Н(б)	0.930(2)

Table 4 Les angles de liaisons (°)

H(2)-O(2)-C(8)	109.5(2)	H(1A) - N(1) - H(1B)	109.5(2)
H(1A) - N(1) - H(1C)	109.5(2)	H(1B) - N(1) - H(1C)	109.5(2)
C(1) - C(2) - C(3)	121.1(2)	C(1) - C(2) - C(7)	119.3(2)
C(3) - C(2) - C(7)	119.5(2)	C(2) - C(1) - H(1)	108.6(2)
C(2) - C(1) - C(8)	110.4(2)	H(1) - C(1) - C(8)	108.6(2)
C(2)-C(3)-H(3)	120.2(2)	C(2) - C(3) - C(4)	119.7(2)
H(3)-C(3)-C(4)	120.2(2)	С(2)-С(7)-Н(7)	119.8(2)
C(2) - C(7) - C(6)	120.4(2)	H(7) - C(7) - C(6)	119.8(2)
H(5)-C(5)-C(4)	119.9(2)	H(5)-C(5)-C(6)	119.9(2)
C(4) - C(5) - C(6)	120.1(2)	C(3) - C(4) - C(5)	120.2(2)
C(3)-C(4)-H(4)	119.9(2)	С(5)-С(4)-Н(4)	119.9(2)
O(1) - C(8) - O(2)	125.7(2)	O(1) - C(8) - C(1)	123.0(2)
O(2) - C(8) - C(1)	111.3(2)	C(7) - C(6) - C(5)	120.0(2)
C(7)-C(6)-H(6)	120.0(2)	С(5)-С(б)-Н(б)	120.0(2)

Table 5 Les angles de torsion (°)

H(2) -	0(2)	- C(8)	-	0(1))		3.	0	
		H(2)	-	0(2)	-	C(8)	-	C(1)	180.0
		C(3)	-	C(2)	-	C(1)	-	H(1)	-175.8
		C(1)	-	C(2)	-	C(3)	-	H(3)	-4.1
		C(1)	-	C(2)	-	C(3)	-	C(4)	175.9
		C(3)	-	C(2)	-	C(1)	-	C(8)	-56.8
		C(7)	-	C(2)	-	C(1)	-	H(1)	1.4
		C(1)	-	C(2)	-	C(7)	-	H(7)	4.0
		C(7)	-	C(2)	-	C(1)	-	C(8)	120.3
		C(1)	-	C(2)	-	C(7)	-	C(6)	-176.0
		C(7)	-	C(2)	-	C(3)	-	H(3)	178.8
		C(3)	-	C(2)	-	C(7)	-	H(7)	-178.8
		C(7)	-	C(2)	-	C(3)	-	C(4)	-1.2
		C(3)	-	C(2)	-	C(7)	-	C(6)	1.2
		C(2)	-	C(1)	-	C(8)	-	0(1)	99.8
		C(2)	-	C(1)	-	C(8)	-	0(2)	-77.2
		H(1)	-	C(1)	-	C(8)	-	0(1)	-141.3
		H(1)	-	C(1)	-	C(8)	-	0(2)	41.7
		C(2)	-	C(3)	-	C(4)	-	C(5)	0.2
		C(2)	-	C(3)	-	C(4)	-	H(4)	-179.8
		H(3)	-	C(3)	-	C(4)	-	C(5)	-179.8
		H(3)	-	C(3)	-	C(4)	-	H(4)	0.2
		C(2)	-	C(7)	-	C(6)	-	C(5)	-0.1

C(2)	-	C(7)	-	C(6)	-	Н(б)	179.9
H(7)	-	C(7)	-	C(6)	-	C(5)	179.9
H(7)	-	C(7)	-	C(6)	-	Н(б)	-0.1
H(5)	-	C(5)	-	C(4)	-	C(3)	-179.1
H(5)	-	C(5)	-	C(4)	-	H(4)	0.9
H(5)	-	C(5)	-	C(6)	-	C(7)	179.0
H(5)	-	C(5)	-	C(6)	-	Н(б)	-1.0
C(6)	-	C(5)	-	C(4)	-	C(3)	0.9
C(4)	-	C(5)	-	C(6)	-	C(7)	-1.0
C(6)	-	C(5)	-	C(4)	-	H(4)	-179.1
C(4)	-	C(5)	-	C(6)	-	Н(б)	179.0

RESUMES

RESUME

Ce travail a été consacré à la synthèse de nouveaux matériaux hybrides formés à base d'hexachlorure et hexafluorure d'étain et des matrices organiques à base d'amine. L étude structurale et la caractérisation physico-chimique de ces composés a été réalisé en utilisant plusieurs techniques telles que : la résonance magnétique nucléaire du proton (RMN), la spectroscopie d'énergie dispersive (EDS), la diffraction des rayons X et l'analyse thermique différentielle et gravimétrique . Leurs propriétés électriques (diélectriques) et leurs propriétés optiques non linéaire (la génération de la seconde et la troisième harmonique) ont été étudiés. Deux méthodes de synthèse ont été utilisées:

- ★ Synthèse par voie hydrothermale.
- ★ Synthèse par voie de chimie en solution.

Ces investigations sur ce type de composés hybrides a conduit à la préparation de plusieurs nouvelles phases à base d'étain avec matrices organiques différentes:

- Deux produits à base de bases azotées (adénine et cytosine).
- Quatre dérivés d'aniline (methoxy-, nitro-, dimethyl-, hydroxy- aniline).
- Deux composés à base d'acides aminés (acide amino-benzoique et le phénylglycine).

Les mesures de la conductivité électrique ont révélé le caractère diélectrique de ces composés. Les mesures de la susceptibilité de la deuxième et la troisième harmonique a confirmé leurs propriétés optiques non linéaires.

Le but principal de ce travail est de mener les investigations systématiques sur des nouveaux composés hybrides organiques- inorganiques afin de préparer de nouveaux produits doués de propriétés intéressantes associées aux parties minérales et organiques.

Mots-Clés :

- Composés hybrides
- Amines
- Diffraction des rayons X
- Décomposition thermique
- Composés diélectriques
- Optique non linéaire

ABSTRACT

The purpose of this works is the synthesis of new hybrid materials formed of hexachloroand hexafluoro- tin and the organic matrix: cyclic amine. The structural study and the characterization of these composites was carried using nuclear magnetic resonance of proton (NMR), the dispersive energy spectroscopy of (EDS), X-rays diffraction and differential thermal analysis. In addition, the dielectric and nonlinear optics properties were measured. For the preparation of these products, two methods of synthesis were used:

▲ Synthesis by hydrothermal way.

★ Synthesis by way of chemistry in solution.

This investigation on this type of hybrid compounds leads to the preparation of several new composites containing tin and several different matrices:

- Two products containing nitrogenized bases (adénine and cytosine)

- Four compounds derived from aniline (methoxy-, nitro-, dimethyl-, hydroxy- aniline), two between them with free ions chloride.

- Two others compounds containing amino-acids (acid amino-benzoic and the phenylglycine).

Measurements of electric conductivity show the dielectric character of these compounds and measurement of the susceptibility of the second and the third harmonic assure their good nonlinear optics properties.

The most important goal of this work is initiation of a systematic investigation of new organicsinorganic hybrid compounds in order to benefit of properties of the mineral part and the organic matrix.

Key words:

- Hybrid compounds
- Amines
- X-rays diffraction
- Thermal decomposition
- Dielectric compounds
- Nonlinear optics

ملخص

قمنا في هذا العمل بتحضير مركبات جديدة هجينة تتكون في الأساس من سداسي كلور و فليور القصدير و من مصفوفات عضوية للأمين. إستعملنا عدة تقنيات لدراسة بنية هذه المركبات و خصائصها منها: الرنين المغناطيسي النووي للبروتون (RMN)، مطياف التشتت الطاقوي (EDS)، جهاز حيود الأشعة السينية (RX)، جهاز التفاضل الحراري (ATD). كما قمنا بقياس الناقلية الكهربائية و الخصائص الضوئية غير خطية.

لقد تم تحضير هذه المركبات وفق طريقتين مختلفتين:

- ▲ التحضير حسب التمييه الحراري.
- التحضير بإستعمال محاليل كيميائية.

إن تحضير هذه المركبات الهجينة سمح لنا بالحصول على عدّة مركبات متكونة أساسا من القصدير و عدة مصفوفات أخرى:

- مركبين متكونين في الأساس من النيتر وجين القاعدي (adénine et cytosine).
- أربع مشتقات أنلين (methoxy-, nitro-, dimethyl-, hydroxy- aniline).
 - المركبين الأخيرين مكونين من أحماض أمينية.

لقد بينت قياسات الناقلية الكهربائية أنّ هذه المركبات عازلة ، بالإضافة إلى ذلك فإنها تملك خصائص ضوئية غير خطية جيدة.

إن الهدف من هذا العمل هو تحضير مواد هجينة (عضوية- غير عضوية) مع الإستفادة من خصائص المعدن و المصفوفة العضوية.

الكلمات المفتاحية:

- مركبات هجينة
 - أمينات
- إنعراج الأشعة السينية
 - التفكك الحراري
 - مواد عازلة
- الخصائص الضوئية غير خطية