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Abstract

The objective of this thesis is to show the importance and e�ciancy of "Incremental-
ity" notion in "Machine Learning" �eld . we also present "Arti�cial Neural Networks"
as one of the successful and interesting approaches in "Machine Learning" , and how
the "Incrementality" assists to improve the quality of learning and network capac-
ity by consuming Spatial And Time components. In this thesis we provide a brief
introduction on Machine Learning,Incremental Learning ,Neural Networks and how
Incremental Learning was applied in the Neural Networks . A model of Incremental
Learning using Probabilistic Neural Network was applied for Face Recognition appli-
cation and we succeeded in obtaining 96% as a rate of recognition on data base ORL
(Olivetti Research Laboratory). Incrementality notion in this model inspired from sta-
tistical parameters function, Our architecture based on PNN , but it utilizes Advanced
PNN transfer function in hidden layer, It also uses constructive learning (start small
and add), The incrementality is not limited only in adding neurons , It also appear
strongly in updating weights incrementally.

Keywords : Machine learning, Incremental learning, Neural Network, Probabilistic
Neural Network, Face recognition.



Introduction

AS a broad sub�eld of Arti�cial Intelligence (AI) , Machine Learning (ML) is con-
cerned with the development of algorithms and techniques that allow computers

to learn. ML is trying to reshape our view of Computer Science more generally. By
shifting the question from "how to program computers" to "how to allow them to pro-
gram themselves".

Many techniques and methods in ML inspired the notions from human learning
and derive from the e�orts of psychologists to make more precise their theories of
animal and human learning through computational models. It seems likely also that
the concepts and techniques being explored by researchers in machine learning may
illuminate certain aspects of biological learning. Also Machine learning can be viewed
as an attempt to automate parts of the scienti�c methods like statistics.

Someone may ask "Why should MACHINES have to learn! ", There are several
reasons why Machine Learning is important. Of coures, as we mentioned above that
the achievement of learning in machine might help us to better understand learning in
general and therefore in humans and animals and to produce computer systems that
are able to adapt to changing conditions. It is also a good source of ideas on how
computers can be improved practically. Being adaptable is important to allow com-
puters to respond to changes in the environment. This includes in its interaction with
humans, making using a computer less frustrating and generally more e�cient. cur-
rently, Speach Recognition, computer vision, Robot control and Accelerating empirical
sciences are a sample of successful applications of ML and available as a commercial
systems .

ML algorithms vary in their goals, learning strategies, the knowledge represen-
tation languages they employ and the type of training data they use. in the other
hand, ML algorithms that do not require training are referred to as unsupervised al-
gorithms e.g.clustering and discovery algorithms. Those that require training with
a set of pre-classi�ed examples are referred to as supervised learning algorithms e.g.
decision tree learning and version space algorithms.

There are many concepts in ML that make the learning process more e�cient ,
"Incremental Learning" is one of those concepts which tries to mimic Human learn-
ing process. Human learning is an incremental process. We learn many tasks over a
life-long time and the accumulated knowledge guides our subsequent learning. When
a person encounters an instance of concept that is never seen before, he �rst tries to
�nd a match in his knowledge base (the brain). If he cannot �nd a good match, he will
update his knowledge by learning from this new instance. He never throws away what
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he has already learned before. In fact, he makes himself adaptive to the new case by
just changing a small part of his knowledge.

In ML we say An algorithm is nonincremental if it reprocesses all earlier train-
ing instances in order to learn from each new instance. It is incremental if it can build
and re�ne a concept gradually as new training instances come in, without reexamining
all instances seen in the past.

"incremental learning" is often used for on-line, constructive, or sequential learning.

The e�ciency of Incremental Learning arose when a large amount of data was
available to machine learning community , that tends to improve performance by re-
ducing the use of resources In regards to spatial resources, many problems can consist
of a large evidence, which cannot �t in memory , and an incremental handling of
this evidence is straightforward and convenient solution(there are, of course, other
solutions, such as sampling or caching).Secondly, there is also a temporal resources
improvement, since induction is much more computationally expensive than deduc-
tion. Incrementality allows the establishment of a hypothesis in the early stages of
the learning process. If this hypothesis is stable, the next work will be deductive in
order to check that the following evidence is consistent with the current hypothesis.
Moreover, there are other reasons for using incremental learning approach : it may be
impossible to have all examples initially or even its number cannot be known. In this
sense, incrementality is essential when the number of examples is in�nite or very large.
This is the case knowledge discovery from databases.

There are a lot of Algorithms that have been proposed and applied in order to
solve ML problems , and are competing to obtain the best result using di�erent con-
cepts in learning , Arti�cial Neural network is one of the successful approaches in
ML , Neural networks take a di�erent approach to problem solving than that of con-
ventional computers. Conventional computers use an algorithmic approach i.e. the
computer follows a set of instructions in order to solve a problem. Neural networks
process information in a similar way the human brain does. The Network is composed
of a large number of highly interconnected processing elements(neurons) working in
parallel to solve a speci�c problem. Neural networks learn by example. They cannot
be programmed to perform a speci�c task. Other advantages can be considered:

- Adaptive learning : An ability to learn how to do tasks based on the data given
for training or initial experience.

- Self-Organization : An ANN can create its own organization or representation of
the information it receives during learning time.

- Real Time Operation : ANN computations may be carried out in parallel, and
special hardware devices are being designed and manufactured which take advantage
of this capability.

- Fault Tolerance via Redundant Information Coding : Partial destruction of a net-
work leads to the corresponding degradation of performance. However, some network
capabilities may be retained even with major network damage.

Classical Neural networks, with their remarkable ability to solve complicated prob-
lems and computations, have some disadvantages some in size of structure (number
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of neurons) that lead to reserve more space in the memory. On the other hand,the
number of iterations in its training phase may lead to slow down the neural network
processing and is time consuming .There are also the problems of over and under �t-
ting. If a network does not have enough connections then the network will not be
able to learn the desired function,if however the network possesses too many connec-
tionsthen the architecture may appear to learn the desired function but the resulting
generalization proporties of the neural netowrk will be poor. Such anetwork has over-
�tted the examples and is acting more like a look-up table. There are three factors
that a�ect the quality of a neural network solution :

- Success achieved : on test data indicates how well the network generalizes to data
unseen during training: which one wants to maximize. This generally is taken as the
only performance criterion.

- Network complexity : by itself can be very di�cult to assess but two important
factors are network size and processing complexity of each unit. Network size gives the
memory required which is the product of the number of connections and the number of
bits required to store each connection weight. Processing complexity depends on how
costly it is to implement processing occurring in each unit, e.g., sigmoid vs. threshold
nonlinearity, fanin, fanout properties, precision in storage and computation, etc. This
has a negative e�ect on the quality as one prefers smaller and cheaper networks.

- Learning time : is the time required to learn the given training data till one gets
a reasonable amount of performance. This is to be minimized also.

Many Neural learning algorithms are not incremental. One of the greatest im-
pediments in building large, scalable learning systems based on neural networks is
that when a network trained to solve task A is subsequently trained to solve task B, it
"forgets" the solution to task A. in other words, Disruption in neural networks, called
"forgetting" or "catastrophic interference", often occurs during incremental learning.
It is caused by the excessive adaptation of connection weights to new data. One way of
overcoming this problem is that only representative training data are kept in memory
and some of them are trained with newly given training data.

For these reasons have mentioned above , researchers have tried to involve incre-
mentality notion with the powerful of Neural network for obtaining a robust learning
system. In this context The phrase "incremental learning" has been used to refer in
the literature to as diverse concepts as incremental network growing and pruning of
classi�er architectures, in the sense of constructive learning (start small and add) and
destructive learning (start big and remove), also incremental learning may refer to
selection of most informative training samples , In other cases, some form of controlled
modi�cation of classi�er weights has been suggested, typically by retraining with mis-
classi�ed signals.

Incremental learning aims to improve network capacity by consuming Spatial And
Time components.

In this thesis, We propose an Incremental Learning depending on Probabilistic
Neural Networks (PNN) [5], PNN has gained interest because it o�ers a way to in-
terpret the network's structure in the form of a probability density function and it is
easy to implement. PNN utilizes statistical parameters, For example: mean , vari-
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ance,..ect. Statistical parameters function in an incremental manner without the need
to prompted them to do so,. it also depends on constructive learning (starts small and
increases) that can be highly e�ective for escaping bad local minima of the objective
function. Every PNN networks have four layers: Input layer, Hidden layer, Pattern
layer, Decision layer . We have applied the idea for face recognition and we succeeded
in obtaining 96% as a rate of recognition on data base ORL (Olivetti Research Labo-
ratory).This approach can be used in supervised or unsupervised paradigm.

Thus, the rest of thesis will be structured as follows: in the �rst chapter, a breif
overview of Learning Theory and Machine Learning is introduced. Chapter 2 will
provide a description of Incremental Learning , de�nitions and motivations , then we
present some techniques that have been used to learn in an incremental manner. In the
third chapter, we give an overview of Neural Networks, motivations , di�erent types of
Neural Networks that have been mentioned and their applications also is introduced
. Next chapter gives an overview involving Incrementality notion in Neural Networks,
famous NN algorithms and techniques that involve incremental learning concept are
also introduced . in the last chapter we propose an incremental NN depending on
Probabilistic Neural Netowerk that was applied for face recognition.

4



Chapter 1

Learning Theory

1.1 Introduction

LEARNING in its broadest sense is de�end as building a model from incomplete
informationin order to predict as accurately as possible some underlying strucutr

of the uknown reality . In practice, for this de�nition to take sense to a computer sci-
entist or statistician, the information about the structure (experience) and the model
have expressed numerically.Thus from statistical point of view, the problem of learn-
ing becomes a problem of function estimation. As such, we refer to an estimator of
functions as a Learning Machine.

1.2 Human and machine learning De�nitions

Learning term in a dictionary de�nition includes phrases such as to gain knowledge,
or understanding of, or skill in, by study, instruction, or experience. the process
of gaining understanding that leads to the modi�cation of attitudes and behaviors
through the acquisition of knowledge, skills and values, through study and experience.
In human learning, there is more than one type of learning, identi�ed three domains
of educational activities:

• Cognitive: mental skills (Knowledge), knowledge acquired by systematic study
in any �eld of scholarly application

• A�ective: growth in feelings or emotional areas (Attitude), the act or process
of acquiring knowledge or skill.

• Psychomotor: manual or physical skills (Skills).[18]

In contrast, Learning in machine :

• Learning: [Simon] Changes in the system that are adaptive in the sense that they
enable the system to do the same task or tasks drawn from the same population
more e�ciently the next time.

Mitchell (1997): A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.
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Witten and Frank (2000): things learn when they change their behavior in a way that makes them
perform better in the future.

• Improvement of performance in an environment through acquisition of knowledge
in that environment.

• Machine Learning is the study of computer algorithms that improve automati-
cally through experience. Mitchell, 1997 .

• Machine learning is programming computers to optimize a performance criterion
using example data or past experience. Alpaydin, 2004 .

There are several parallels between human and machine learning, Certainly, many
techniques in machine learning derive from the e�orts of psychologists to make more
precise their theories of animal and human learning through computational models.
It seems likely also that the concepts and techniques being explored by researchers in
machine learning may illuminate certain aspects of biological learning.[18]

Some ML attempt to eliminate the need for human intuition in the analysis of
the data, while others adopt a collaborative approach between human and machine.
Human intuition cannot be entirely eliminated since the designer of the system must
specify how the data is to be represented and what mechanisms will be used to search
for a characterization of the data. Machine learning can be viewed as an attempt to
automate parts of the scienti�c method. Some machine learning researchers create
methods within the framework of Bayesian statistics.

In conclusion: Machine Learning system we might say, very broadly, that a ma-
chine learns whenever it changes its structure, program, or data based on its inputs or
in response to external information) in such a manner that its expected future perfor-
mance improves.

ML usually refers to the changes in systems that perform tasks associated with
arti�cial intelligence (AI). Such tasks involve recognition, diagnosis, planning, robot
control, prediction , etc. the changes might be either enhancements to already per-
forming systems or .... synthesis of new systems.

1.3 The motivation of research in Machine Learning

There are two main motives for research in this area: to better understand learning
in general and therefore in humans and animals and to produce computer systems
that are able to adapt to changing conditions. Understanding learning in humans
and animals is not only a goal in its own right, it is also a good source of ideas on
how computers can be improved practically. Being adaptable is important to allow
computers to respond to changes in the environment. This includes in its interaction
with humans, making using a computer less frustrating and generally more e�cient.[19]
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1.4 Importance of Machine Learning

There are several reasons why ML is important. as we mentioned some reasons re-
ferred to help us understand how animals and humans learn, but there are important
engineering reasons as well. Some of these:[18,19]

• Some tasks cannot be de�ned well except by example; that is, we might be able
to specify input/ output pairs but not a concise relationship between inputsand
desired outputs. We would like machines to be able to adjust their internal
structure to produce correct outputs for a large number of sample inputs and thus
suitably constrain their input/output function to approximate the relationship
implicit in the examples.

• It is possible that hidden among large piles of data are important relationships
and correlation. Machine learning methods can often be used to extract these
relationships(data mining).

• Human designers often produce machines that do not work as well as desired in
the environments in which they are used. In fact, certain characteristics of the
working environments might not be used for on-the-job improvement of existing
machine designs.

• The amount of knowledge available about certain tasks might be too large for
explicit encoding by humans. Machines that learn this knowledge gradually
might be able to capture more of it than humans would want to write down.

• Environments change over time. Machines that can adapt to a changing envi-
ronment would reduce the need for constant redesign.

• New knowledge about tasks is constantly being discovered by humans. Vocabu-
lary changes. There is a constant stream of new events in the world. Continuing
redesign of AL systems to conform to new knowledge is impractical, but machine
learning methods might be able to track much of it.

1.5 Wellsprings of machine learning

Work in machine learning is now converging from several sources. These di�erent
traditions each bring di�erent methods and di�erent vocabulary which are now being
assimilated into a more uni�ed discipline. Here is a brief listing of some of the separate
disciplines that have contributed to machine learning:[19]

• Statistics: A long-standing problem in statistics is how best to use samples
drawn from unknown probability distributions to help decide from which distri-
bution some new sample is drawn. A related problem is how to estimate the
value of an unknown function at a new point given the values of this function at
a set of sample points. Statistical methods for dealing with these problems can
be considered instances of machine learning because the decision and estimation
rules depend on a corpus of samples drawn from the problem environment.
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• Brain Models: None-linear elements with weighted inputs have been suggested
as simple models of biological neurons. Networks of these elements have been
studied by several researchers including [McCulloch Pitts, 1943, Hebb, 1949,
Rosenblatt, 1958] and, more recently by [Gluck Rumelhart, 1989, Sejnowski,
Koch Churland, 1988]. Brain modelers are interested in how closely these net-
works approximate the learning phenomena of living brains. We shall see that
several important machine learning techniques are based on networks of nonlinear
elements often called neural networks. Work inspired by this school is sometimes
called connectionism, brain style computation, or sub-symbolic processing.

• Adaptive control theory: Control theorists study the problem of controlling a
process having unknown parameters which must be estimated during operation,
and control process must track these changes. Some aspects of controlling a
robot based on sensory inputs represent instances of this sort of problem.

• Psychological Models: Psychologists have studied the performance of humans
in various learning tasks. An early example is the EPAM network for storing
and retrieving one member of a pair of words when given another [Feigenbaum,
1961]. Related work led to a number of early decision tree [Hunt, Marin, Stone,
1966] and semantic network [Anderson Bower, 1973] methods. More recent work
of this sort has been in�uenced by activities in arti�cial intelligence .

1.6 Overview Of Learning Theory

1.6.1 Types of Learning

Deductive learning works on existing facts and knowledge and deduces new knowl-
edge from the old. This is best illustrated by giving an example. For example, assume:
A = B
B = C
Then we can deduce with much con�dence that
C = A
Arguably deductive learning does not generate new knowledge at all, it simply mem-
orises the logical consequences of what is known already.

Whereas Inductive learning takes examples and generalises rather than starting
with existing knowledge. For example, having seen many cats, all of which have tails,
one might conclude that all cats have tails. This is unsound step of reasoning but it
would be impossible to function without using induction to some extent. In many ar-
eas it is an explicit assumption. There is scope of error in inductive reasoning, but still
it is a useful technique that has been used as the basis of several successful systems.
One major subclass of inductive learning is concept learning. This takes examples of a
concept and tries to build a general description of the concept. Very often, the exam-
ples are described using attribute-value pairs. ID3 and Version Spaces are inductive
learning algorithms. [18,35]

There are six main types of learning:
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1.6.1.1 Speed-up learning

A type of deductive learning that requires no additional input, but improves the agent's
performance over time. There are two kinds, rote learning, and generalization (e.g.,
EBL). Data caching is an example of how it would be used.

1.6.1.2 Learning by taking advice

Deductive learning in which the system can reason about new information added to
its knowledge base. McCarthy proposed the "advice taker" which was such a system,
and TEIRESIAS [Davis, 1976] was the �rst such system.

1.6.1.3 Learning from examples

Inductive learning in which concepts are learned from sets of labeled instances.

1.6.1.4 Clustering

Unsupervised, inductive learning in which "natural classes" are found for data in-
stances, as well as ways of classifying them. Examples include COBWEB, AUTO-
CLASS.

1.6.1.5 Learning by analogy

Inductive learning in which a system transfers knowledge from one database into a
that of a di�erent domain.

1.6.1.6 Discovery

Both inductive and deductive learning in which an agent learns without help from
a teacher. It is deductive if it proves theorems and discovers concepts about those
theorems; it is inductive when it raises conjectures

1.6.2 Major Paradigms of Machine Learning

1.6.2.1 Supervised learning

Supervised learning is a machine learning technique for creating a function from train-
ing data. The training data consist of pairs of input objects (typically vectors), and
desired outputs. The output of the function can be a continuous value (called regres-
sion), or can predict a class label of the input object (called classi�cation). The task
of the supervised learner is to predict the value of the function for any valid input
object after having seen a number of training examples (i.e. pairs of input and target
output). To achieve this, the learner has to generalize from the presented data to
unseen situations in a reasonable way .Wikipedia (2006).

In other words, We have some empirical data (images, medical observations, mar-
ket indicators, socioeconomical background of a person, texts), say xi ∈ X, usually
together with labels yi ∈ Y (digits, diseases, share price, credit rating, relevance) and
we want to �nd a function that connects x with y.
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1.6.2.2 Unsupervised learning

Supervised learning is a method of machine learning where a model is �t to observa-
tions. It is distinguished from supervised learning by the fact that there is no a priori
output. In unsupervised learning, a data set of input objects is gathered. Unsuper-
vised learning then typically treats input objects as a set of random variables. A joint
density model is then built for the data set.Wikipedia (2006) in other words, We have
some data xi and we want to �nd regularities or interesting objects in general from
the data.[18] Examples:

• Find natural groupings of Xs (X=human languages, stocks, gene sequences, an-
imal species,..) Prelude to discovery of underlying properties Summarize the
news for the past month

• Cluster �rst, then report centroids.

• Sequence extrapolation: E.g. Predict cancer incidence next decade; predict rise
in antibiotic-resistant bacteria

Methods

• Clustering (n-link, k-means, GAC,...)

• Taxonomy creation (hierarchical clustering)

• Novelty detection (meaningful outliers)

• Trend detection (extrapolation from multivariate partial derivatives)

1.6.2.3 Reinforcement learning

Refers to a class of problems in machine learning which postulate an agent exploring
an environment in which the agent perceives its current state and takes actions. The
environment, in return, provides a reward (which can be positive or negative). Re-
inforcement learning algorithms attempt to �nd a policy for maximizing cumulative
reward for the agent over the course of the problem. Wikipedia (2006)

1.6.2.4 Batch vs. online learning

All training examples at once or one at a time (with estimate and update after each
example).

1.6.3 Three main learning problems

This formulation of the learning problem is rather general. It encompasses many
speci�c problems, the main ones are:

pattern recognition ,regression estimation ,density estimation.[1, ]
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1.6.3.1 Classi�cation

Goal : We want to �nd a function f : x → < which will tell us whether a new
observation belongs to speci�c class and possibly the con�dence with which this is so.
Questions : How to rate f , how to �nd f , how to interpret f , show Figure[1.1].

Figure 1.1: Classi�cation

• Learning is not (only) Memorizing

� Goal,Infer from a training set to the general connection between x and y.

� Simple and Dumb Learning Memorize all the data we are given. This clearly
gets the hypotheses on the training set right (popular strategy in the 80s),
but what to dofor new x?

� Slightly Better Strategy Memorize all the data and for new observations
predict the same as the closest neighbor xi to x does (Nearest Neighbour
algorithm).

� Problem What about noisy and unreliable data? Di�erent notions of prox-
imity? We want to generalize our training data to new and unknown con-
cepts.

• Errors in Classi�cation We say that a classi�cation error occurs, if f(x) 6= y,
i.e. if f(x) predicts an outcome di�erent from y.

• Data Generation Assume that the x are drawn from some distribution and
that y is either deterministic (for every x there is only one true y) or random
(y = 1 occurs in a fraction p of all cases and y = −1 in a fraction of 1− p cases).
This distribution could simply be due to someone writing 0 and 1 on a piece
of paper. Or the di�erent processes that smudge and degrade paper when an
envelope ends up in the postbox.
Goal We want to rate our classi�er f with respect to this data generating process.

• Applications

� Optical Character Recognition The goal is to classify (handwritten) charac-
ters (note that here f has to map into {a,.., z} rather than into {-1,1}automatically
(form readers, scanners, post).

7



Chapter 1 : Learning Theory

� Spam Filtering Determine whether an e-mail is spam or not (or whether
it is urgent), based on keywords, word frequencies, special characters ($, !,
uppercase, whitespace), . . .

� Medical Diagnosis Given some observations such as immune status, blood
pressure, etc., determine whether a patient will develop a certain disease.
Here it matters that we can estimate the probability of such an outcome.

� Face Detection Given a patch of an image, determine whether this corre-
sponds to a face or not.

1.6.3.2 Regression

Goal We want to �nd a function which will tell us the value of f at x.show (Figure[1.2]).

• Applications

� Getting Rich Predict the stock value of IBM/CISCO/BHP/TELSTRA . .
. given today's market indicators (plus further background data).

� Wafer Fab Predict (and optimize) the yield for a microprocessor, given the
process parameters (temperature, chemicals, duration, . . . ).

� Network Routers Predict the network tra�c through some hubs/routers/switches.
We could recon�gure the infrastructure in time . . .

� Drug Release Predict the requirement for a certain drug (e.g. insulin) au-
tomatically.

8
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Figure 1.2: Regression

1.6.3.3 Novelty Detection

Goal Build estimator that �nds unusual observations and outliers and Build estimator
that can assess how typical an observation is.show(Figure[1.3]).
Idea Data is generated according to some density p(x). Find regions of low density.
Such areas can be approximated as the level set of an auxiliary function. No need to
estimate p(x) directly use proxy of p(x). Speci�cally: �nd f(x) such that x is novel if
f(x) ≤ c where c is some constant.
Data Observations (xi; yi) generated from some P (x), e.g. (network usage patterns)
(handwritten digits) (alarm sensors)(factory status).
Task: Find unusual events, clean database, distinguish typical.

Figure 1.3: Novelty Detection
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• Applications

� Network Intrusion Detection Detect whether someone is trying to hack the
network, downloading tons of MP3s, or doing anything else unusual on the
network.

� Jet Engine Failure Detection You can't (normally) destroy a couple of jet
engines just to see how they fail.

� Database Cleaning We want to �nd out whether someone stored bogus
information in a database (typos, etc.), mislabeled digits, ugly digits, bad
photographs in an electronic album.

� Fraud Detection Credit Card Companies, Telephone Bills, Medical Records
Self calibrating alarm devices Car alarms (adjusts itself to where the car
is parked), home alarm (location of furniture, temperature, open windows,
etc.)

1.6.4 A Framework for learning systems

Learning system Framework can be considered as following [19,35] :

• Environment

� task: clustering, classi�cation, prediction (one-step vs multi-step).

� performance measure: accuracy of prediction vs quality and adequacy of
classi�cation.

� amount of supervision: supervised vs unsupervised learning

� domain characteristics: complexity of target concept, presence of irrelevant
features, presence of noise

• Representational choices

� instances: sets of attributes, sets of relational literals

� concepts: conjunctive, threshold, competitive, disjunctive concepts

• Learning component

� learning biases: search biases vs representational biases

� search strategies through space of possible concepts

� processing mode: incremental vs non-incremental learning

1.6.5 Designing a Learning System

In designing a learning system, there are four major issues to consider:

• components which parts of the performance element are to be improved

• representation of those components

• feedback available to the system

10
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• prior information available to the system

All learning can be thought of as learning the representation of a function. In designing
a learning system, we have to deal with (at least):

• Training experience:

� Direct or indirect evidence (supervised or unsupervised).

� Controlled or uncontrolled sequence of training examples.

� Representativity of training data in relation to test data.

• Target function and Learned function:

� The problem of improving performance can often be reduced to the problem
of learning some particular target function.

� In many cases we can only hope to acquire some approximation to the ideal
target function.

• Learning algorithm:

� In order to learn the (approximated) target function we require:

� A set of training examples (input arguments)

� A rule for estimating the value corresponding to each training example (if
this is not directly available)

� An algorithm for choosing the function that best �ts the training data.

1.6.6 Some Approaches to Machine Learning

• Decision trees

• Arti�cial neural networks

• Bayesian learning

• Instance-based learning (cf. MBL)

• Genetic algorithms

• Relational learning (cf. ILP).

1.6.6.1 Decision Tree Learning

A simple structure for inductive learning. Given an instance of the problem, a decision
tree returns a yes or no decision about it; thus decision trees are Boolean classi�ers.
Each branching node in the tree represents a test on some aspect of the instance.
Decision trees classify instances by sorting them down the tree from the root to some

leaf node, where:
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• Each internal node speci�es a test of some attribute.

• Each branch corresponds to a value for the tested attribute.

• Each leaf node provides a classi�cation for the instance.

Decision trees represent a disjunction of conjunctions of constraints on the attribute
values of instances.

• Each path from root to leaf speci�es a conjunction of tests.

• The tree itself represents the disjunction of all paths.

[]

1.6.6.2 Arti�cial Neural Networks (more detailes will be discussed in chap-
ter 3)

Learning methods based on arti�cial neural networks (ANN) are suitable for problems
with the following characteristics:

• Instances are represented by many attribute-value pairs.

• The target function may be discrete-valued, real-valued, or a vector of real- or
discrete-valued attributes.

• The training examples may contain errors.

• Long training times are acceptable.

• Fast evaluation of the learned target function may be required.

• The ability of humans to understand the learned target function is not impor-
tant[]

1.6.6.3 Bayesian Learning

Two reasons for studying Bayesian learning methods

• E�cient learning algorithms for certain kinds of problems

• Analysis framework for other kinds of learning algorithms

Features of Bayesian learning methods:

• Assign probabilities to hypotheses (not accept or reject)

• Combine prior knowledge with observed data

12
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• Permit hypotheses that make probabilistic predictions

• Permit predictions based on multiple hypotheses, weighted by their probabili-
ties.[]

1.6.6.4 Genetic Algorithms

Genetic algorithms search the space of individuals for good candidates. The goodness
of an individual is measured by some �tness function. Search takes place in parallel,
with many individuals in each generation. The approach is a hill-climbing one, since
in each generation the o�spring of the best candidates are preserved. []

1.6.6.5 Relational Learning

Most learning methods are limited to propositional logic, where each variable repre-
sents an atomic proposition. Relational learning (aka inductive logic programming)
applies to predicate logic and can learn rules involving variables. []

1.6.6.6 Modern" learning algorithms

• Concept learning algorithms Version spaces (combined with SVMs),

• Statistical algorithms Gaussian mixtures, Naïve Bayes, ...

• Neural networks multilayer perceptron, Kohonen maps, ...

• Advanced algorithms Support Vector Machines, kernel approaches

• ...

1.7 Open Problems in Learning

The most popular problems in learning are [19] :

• choice of good generalization languages : bad choices lead to too large a
search space, an inability to �nd the concept, or exponential resource consump-
tion; good choices lead to good results, but it isn't clear how to design good
languages in general.

• using expectations and prior knowledge : generalizations can be acceptable
wrt training instances, but also acceptable wrt prior expectations (e.g., model-
based constraints built into the language); the problem is to �nd ways to combine
prior knowledge with training data to constrain learning.

• inconsistency problems : when (1) the generalization language can't describe
the target generalization or (2) the training instances contain errors .

• partially learned generalizations in general cases, unlikely the training data
will determine a unique generalization; problem is how to cope with this .
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1.8 Application Successes

One measure of progress in Machine Learning is its signi�cant real-world applications,
such as those listed below. Although we now take many of these applications for
granted, it is worth noting that as late as 1985 there were almost no commercial
applications of machine learning.[35]

• Speech recognition: Currently available commercial systems for speech recog-
nition all use machine learning in one fashion or another to train the system
to recognize speech. The reason is simple: the speech recognition accuracy is
greater if one trains the system, than if one attempts to program it by hand.
In fact, many commercial speech recognition systems involve two distinct learn-
ing phases: one before the software is shipped (training the general system in
a speaker-independent fashion),and a second phase after the user purchases the
software (to achieve greater accuracy by training in a speaker-dependent fashion).

• Computer vision: Many current vision systems, from face recognition systems,
to systems that automatically classify microscope images of cells, are developed
using machine learning, again because the resulting systems are more accurate
than hand-crafted programs. One massive-scale application of computer vision
trained using machine learning is its use by the US Post O�ce to automatically
sort letters containing handwritten addresses. Over 85% of handwritten mail in
the US is sorted automatically, using handwriting analysis software trained to
very high accuracy using machine learning over a very large data set.

• Bio-surveillance: A variety of government e�orts to detect and track disease
outbreaks now use machine learning. For example, the RODS project involves
real-time collection of admissions reports to emergency rooms across western
Pennsylvania, and the use of machine learning software to learn the pro�le of
typical admissions so that it can detect anomalous patterns of symptoms and
their geographical distribution. Current work involves adding in a rich set of
additional data, such as retail purchases of over-the-counter medicines to increase
the information �ow into the system, further increasing the need for automated
learning methods given this even more complex data set.

• Robot control: Machine learning methods have been successfully used in a
number of robot systems.For example, several researchers have demonstrated the
use of machine learning to acquire control strategies for stable helicopter �ight
and helicopter aerobatics. The recent Darpa-sponsored competition involving a
robot driving autonomously for over 100 miles in the desert was won by a robot
that used machine learning to re�ne its ability to detect distant objects (training
itself from self-collected data consisting of terrain seen initially in the distance,
and seen later up close).

• Accelerating empirical sciences: Many data-intensive sciences now make use
of machine learning methods to aid in the scienti�c discovery process. Machine
learning is being used to learn models of gene expression in the cell from high-
throughput data, to discover unusual astronomical objects
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1.9 Conclusion

In this chapter we have presented a brief overview of Machine Learning and Learning
theory with the di�erent existing de�nitions and paradigms ,we also presented the
main learning functions classi�cation,regression and Novelty detection . we also gave
a brief summary of some approches in machine learning. At the end we introduced
open problems in machine learning and applications success.
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Incremental learning

2.1 Introduction

HUMAN learning is an incremental process. We learn many tasks over a life-long
time and the accumulated knowledge guides our subsequent learning. When a

person encounters an instance of concept that is never seen before, he �rst tries to �nd
a match in his knowledge base (the brain). If he cannot �nd a good match, he will
update his knowledge by learning from this new instance. He never throws away what
he has already learned before. In fact, he makes himself adaptive to the new case by
just changing a small part of his knowledge.[2]

The notion of Incrementality in machine learning is a powerful and technique that
tends to improve performance by reducing the use of resources. In regard to spatial
resources, many problems can consist of a large evidence, which cannot �t in memory ,
and an incremental handling of this evidence is straightforoward and convenient solu-
tion(there are, of course, other solutions, such as sampling or caching).Secondly, there
is also a temporal resources improvement, since induction is much more computation-
ally expensive than deduction. Incrementality allows the establishment of a hypothesis
in the early stages of the learning process. If this hypothesis is stable, the next work
will be deductive in order to check that the following evidence is consistent with the
current hypothesis. Moreover, there are other reasons for using incremental learn-
ing approach: it may be impossible to have all examples initially or even its number
cannot be known. In this sense, incrementality is essential when the number of exam-
ples is in�nite or very large. This is the case knowledge discovery from databases. [2,6]

Incrementality in machine learning involves the number of past examples a learning
algorithm should reprocess during each learning step. An algorithm is nonincremental
if it reprocesses all earlier training instances in order to learn from each new instance.
It is incremental if it can build and re�ne a concept gradually as new training instances
come in, without reexamining all instances seen in the past. Langley [1996] proposes
the notion of degree of incrementality to smooth out this dichotomy: a learner is in-
cremental in degree k if it reprocesses at most k previous cases to learn from a new
instance.
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2.2 On-line vs. O�-line Learning

O�ine learning happens when all training items are given at the same time. In other
word, In o�-line learning, all the data are stored and can be accessed repeatedly(Batch
learning is always o�-line), On the contrary, Online learning occurs when training data
items are presented one at a time. In on-line learning, each case is discarded after it is
processed(On-line training is always incremental). There are intermediate situations
where data items are presented in short chunks.[32]

The �rst studies of online systems where justi�ed by the nature of human learn-
ing. A system was supposed to imitate the learning process of humans and people
experience events in sequence. More recently, online systems are found to be useful in
more and more real-world environments since companies gather new data every day
and these data should be used in order to improve the knowledge base.

N.B: Batch learning is always o�-line. On-line training is always incremental.Incremental
learning can be done either on-line or o�-line. [33]

2.3 Incremental learning vs. non-incremental learn-

ing(Batch learning)

A distinction can be made for learning algorithms which can either handle all data-
base instances at a time in an non-incremental manner or one instance at a time in
an incremental fashion. More precisely, non-incremental algorithms, given the whole
training data set, output a domain model after processing data, possibly multiple
times. This sort of algorithms stop learning when they have processed the dataset and
assume that they have reached a good domain model which will not be revised. On
the other hand, incremental algorithms never assume that they reach a �nal learning
stage. They keep improving their domain model by processing new data items as they
are available. Incremental algorithms process each single item of data as it is available
without reprocessing previously seen ones.

In this way, during the whole learning process there is a domain model available,
although incomplete, that can be used for whatever task it is intended.

Incremental Learning is often used for on-line, constructive, or sequential learn-
ing.

Naturally, incremental algorithms are best suited for online environments (note
incremental learning should be di�erentiated from online learning and constructive
learning), and non-incremental algorithms suite best o�-line ones. In spite of that, one
could adapt one non-incremental algorithm to work in an online environment by stor-
ing new instances together with the old ones and re-running the learning process on
the whole set. One could also use an incremental algorithm in an o�-line environment
by running the algorithm for each instance of the database. Both sorts of algorithms
have their advantages. On the one hand non-incremental learners can collect statistics
about all training instances and thus perform a more informed search than an incre-
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mental learner could do. On the other, in an o�-line environment incremental learners
use less memory space and computer time than non-incremental ones while obtaining
knowledge structures of similar quality ,Figure[2.1] shows how the process works .[2]

Each mode of learning has its advantages: nonincremental or batch learners usu-
ally avail of overall information about the training sample to take more enlightened
decisions; on the other hand, there is an increasing demand for incremental learners
as massive volumes of data become available for data mining applications. A typical
drawback of incremental learners is their sensitivity to the order of presentation of
training instances [Ripley, 1996 ; Guvenir and Sirin, 1996].

Figure 2.1: Incremental learning vs. non-incremental learning(Batch learning)

2.4 Incremental Learning

2.4.1 Incremental Learning Tasks

[2,30] The term incremental has been applied both to learning tasks and to learning
algorithms, thus leading to some confusion. This section attempts to elucidate this
confusion by providing formal de�nitions and examples of incrementality for tasks and
for algorithms.

The following characterises the notion of incrementality as it applies to learning
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tasks.

A learning task is incremental if the training examples used to solve it become
available over time, usually one at a time.

Note that, if one is prepared to wait long enough, any incremental learning task
can, in principle, become a non-incremental one. Hence, for incremental learning tasks,
there is an implicit assumption that waiting is undesirable and/or impractical. In par-
ticular, the nature of the application may render unfeasible the timely generation of a
su�ciently large number of representative examples, either because the environment
changes in time (and thus learning becomes situated or context sensitive) or because
the rate at which examples become available may be too slow.

2.4.2 Examples of incremental learning tasks

In the �rst three, incrementality is due to changes in the target over time. In the last
one, the target does not change, but the acquisition of data is untimely.

2.4.2.1 User modelling/pro�ling

With humans, today's behaviour is not necessarily a good indication of tomorrow's.
Experts argue that users' behaviour and interests vary radically within as little as six
months. Hence, the useful task of learning user pro�les requires on-line monitoring of
individual users.

2.4.2.2 Robotics

In all but the simplest of cases, a robot's environment is changing and often unpre-
dictable. Hence, in order to survive (e.g., by negotiating collision-free navigation) and
to carry out its tasks successfully, a robot must be able to react and adapt incremen-
tally to environmental cues.

2.4.2.3 Intelligent agents

Agents are software implements characterised by both reactiveness and proactiveness.
Hence, as with robots, incrementality is inherent in agent learning. Traditional agent
applications where learning is useful include network management (e.g., load balancing,
routing) and intelligent user interfaces.

2.4.2.4 Software project estimation

Estimating the cost, e�ort and duration of software projects is largely a matter of expe-
rience. Due to the rather long timescales of such projects however, useful data becomes
available in a piecemeal way, over time. It has been argued that the construction of
an adequate baseline for estimation may take up to three years. Yet, even limited
experience is better than no experience at all in improving the accuracy of estimates.
In contrast, classi�cation problems (e.g., discriminating between rocks and mines from
a sample of labelled sonar readings) are standard examples of nonincremental tasks
since all training data is usually available a priori.
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2.4.3 The main characteristics of an incremental learning task

• Examples are not available a priori but become available over time, usually one
at a time.

• Learning may need to go on (almost) inde�nitely.

2.5 Incremental Learning Algorithms

[2,27] Incremental learning algorithms have been thoroughly studied within the ma-
chine learning community. During the second half of the eighties several systems where
proposed in the �eld of clustering, Fisher's COBWEB being one of the most cited ones
even nowadays. More recently, the �eld of Data Mining and Knowledge Discovery in
Databases is concerned with very large databases available in streams which do not �t
in main memory and has spawned new interest in incremental methods. incremental
learning algorithms have received less attention. There exists, as far as we know, the
work of Buntine (1991), Lam and Bacchus (1994) and �nally Friedman et. al (1997).
More recently Hulten et al. (2002) have developed a general method for mining large
databases which can also be used as an incremental method for mining data streams.

2.5.1 Purpose and de�nition

There are real-world environments with very strong constraints and requirements that
may a�ect the learning process. We could summarize such constraints and require-
ments under three main categories:

• Resource limitation: in real-world applications there may be computing time
and memory space limitations. Additionally, when databases are so huge that
they must be stored in secondary memory, multiple inspection of such amount of
data is unfeasible. Similarly, it may be unreasonable to keep in memory several
alternative knowledge bases.

• Any-time availability: sometimes, given the nature of the real-world application,
an intelligent agent needs to use a domain model in order to carry out its perfor-
mance task even if the whole dataset is not available. Incremental methods can
deal with such situations because they keep a domain model during the whole
learning process.

• Changing worlds: when intelligent agents must survive in a changing world they
should be able to make their model of the world evolve. Incremental algorithms
are a natural solution to cope with such situations because they are able to
incorporate into the model new samples from the changing world. In such en-
vironments, learning algorithms should also be provided with some mechanisms
in order to forget old experiences (i.e. data instances) that do not represent
the current state of the world. Incremental algorithms are a response to these
requirements as we can see in the de�nitions found in the literature. Maybe
the most widely accepted de�nition of the main properties of An incremental
algorithm was stated by Langley.
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Definition 1 An Incremental algorithm, a learner L is incremental if L inputs
one training experience at a time, does not reprocess any previous experiences, and
retains only one knowledge structure in memory.

This de�nition is rather strong, because it imposes three heavy constraints on an
algorithm in order to be incremental. The �rst two constraints require learning algo-
rithms to be able to use their knowledge at any time during the learning process. The
second one rules out those systems that process new data together with old data in
order to come up with a new model. The important idea of this constraint is main-
taining reasonably low and constant the time required to process each data instance
over the whole dataset. The third constraint aims at learning algorithms not making
unreasonable memory demands. However, these three strong constraints can be low-
ered in di�erent degrees. Incremental algorithms can be allowed to process a chunk
of k data items at a time, to process at most k previous instances after encountering
a new training instance, or to keep k alternative knowledge bases in memory. In this
way we can relax each of these three constraints in a degree that can be speci�ed with
a parameter.

Definition 2 An incremental algorithm should meet the following constraints:

• It must require small constant time per record.

• It must be able to build a model using at most one scan of the data.

• It must use only a �xed amount of main memory, irrespective of the total number
of records it has seen.

• It must make a usable model available at any point in time, as opposed to only
when it is done with processing the data.

• It should produce a model that is equivalent (or nearly identical) to the one that
would be obtained by the corresponding batch algorithm.[2,15]

This second de�nition is also concerned with the time and memory space that
incremental algorithms spend when they process new data instances. It also makes
explicit that the learned model must be available at any time, which actually is a
consequence of keeping low the time required to process an incoming data instance.
De�nition 2 explicitly wants the models learned with incremental algorithms to be of
similar quality than the ones that batch algorithms would obtain. As we will see in
the next section, incremental algorithms spend less computing time an memory space,
but may produce models of lower quality than batch approaches.

The main reason for the importance of incremental learning is that we
may gather new data every day and that it would be interesting to revise the current
model in the light of this new data without spending an unreasonable amount of time
and memory. And this is desirable even it may happen that the data gathered in one
single day were enough to obtain a model of very high quality, and hence, there would
be no need for incremental algorithms.

We believe that this situation is very unlikely to happen because of two reasons.
Firstly, we may not be sure that the data already available are really representative

21



Chapter 2 : Incremental learning

of the whole domain. Namely, the data may not be a fair sampling of the underlying
probability distribution and thus, it cannot be accurately estimated from the currently
available dataset. And secondly, in order to obtain complex models, where lots of vari-
ables are related to each other, it is needed large datasets. It is widely reported in the
statistical pattern recognition literature (read Jain et al.) that the performance of a
classi�er depends on the interrelationship between sample sizes, number of features,
and classi�er complexity. It has been often observed in practice that adding variables
to a classi�er may actually degrade its performance if the number of data instances
that are used to learn the classi�er is small relative to the number of variables. This is
known as the peaking phenomenon which is a consequence of the curse of dimension-
ality, usually stated as follows: in order to estimate a joint probability, the number of
required data instances grows exponentially with the number of variables. This is due
to the fact that the required number of parameters in order to estimate a joint prob-
ability distribution grows exponentially with the number of variables, i.e the number
of counters of a contingency table.

This is also illustrated by T. Hastie et al. [], when they state that the sampling den-
sity is proportional to N1 = p, where p is the number of variables and N is the sample
size. Thus, if N1 = 100 represents a dense sample for a single input problem, then
N10 = 10010 is the sample size required for the same sampling density with 10 inputs.
Thus in high dimensions all feasible training samples sparsely populate the input space.

We also want to note that some authors label as incremental, algorithms that
do not learn samples one by one but they learn variables incrementally as they become
available . If we see a database as a matrix where rows are samples and columns
are variables describing samples, an algorithm could incrementally learn variables
(columns) instead of samples (rows). In this way, an incremental algorithm grows
a domain model incorporating variables to it as they are available.

2.6 Some incremental learning algorithms

The following is a small sample of incremental learning algorithms[2,8,12]:

2.6.1 CANDIDATE-ELIMINATION

This algorithm induces binary classi�cations. Given representation languages for ex-
amples and generalizations, both the set S of maximally speci�c generalizations and
the set G of maximally general generalizations consistent with the training data eare
stored.Gis initialized to the most general concept in the space and S to the �rst pos-
itive training instance. S keeps generalizing to cover new positive training instances
and G keeps specializing to avoid covering negative training instances. Changes to S
and G are e�ected as training instances are presented one at a time.

2.6.2 COBWEB

This algorithm induces taxonomies or categorisations. The number of clusters, depth
of the hierarchy and category memberships are determined by a global probabilistic
metric, called category utility. Any time a new training instance is presented, the
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algorithm considers the overall quality of either placing it in an existing category or
modifying the current hierarchy to accommodate it (e.g., create a new category, merge
categories). Only probabilities are stored and updated.

2.6.3 ID5

This algorithm induces decision trees. It is an incremental version of ID3. Instead
of building a tree from a batch of training examples, it incrementally updates a tree
after each training instance is presented. All transformations are performed by simply
maintaining appropriate counters at each node.

2.6.4 ILA

This algorithm induces classi�cations.Note that, if one relaxes slightly the above de�-
nition to allow the next hypothesis to depend on the previous one and a small subset
of new training examples (rather than a single one), then an iterative implementa-
tion of the bayesian framework, where the previous iteration's posterior is the current
iteration's prior, would also be suited to incremental learning. In contrast with the
above, most well-known learning algorithms, such as ID3, CN2 and backpropagation ,
are not incremental. Essentially, they assume that the training set can be constructed
a priori, that examples may be processed more than once and that learning stops once
the training set has been duly processed.

2.7 Design Issues

[2] This section highlights some of the main issues raised in the design of incremental
learners.

2.7.1 Ordering E�ects

Chronology, or the order in which knowledge is acquired, is an inherent aspect of in-
crementality. Thus, it is possible to integrate time implicitly as a factor and another
source of bias in learning. For example, the system could choose to give precedence
to newly acquired knowledge, recognising the possibility that early guesses may be
incorrect .Alternatively, a learning system's experience with the world could be appro-
priately ordered (e.g., general rules before exceptions) so as to increase its e�ciency .
Although chronology may be used as a bias, it presupposes that the ordering of the
data carries some meaning that should be implicitly captured by the learning system.
Such is not always the case. Techniques have been proposed to deal with ordering
e�ects in incremental systems , but the question of whether order independence can
be achieved (if desired) remains largely open. One can argue that for large (and rich)
enough training sets, the e�ects of ordering become more limited, as the current rep-
resentation of the system eventually matches reality. In other words, global statistical
patterns ultimately override errors or misrepresentation due to local patterns of noise,
lack of information, or plain errors. Indeed, incremental learning presupposes redun-
dancy in the data, as is true in human learning. Similar situations have a tendency
to reproduce themselves so that general rules (or analogies) can ultimately be drawn
from them.
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2.7.2 Learning Curve

An incremental system may start from scratch and gain knowledge from examples given
one at a time over time. As a result, the system experiences a sort of learning curve,
where the quality of its predictions improves (possibly slowly) over time. Inherent in
this is the fact that the system is not very trustworthy early on. Hence, although the
system can make predictions at any time, one must be cautious with how much value
is placed on them. Furthermore, it is di�cult to determine the point at which the
system has learned enough to be trusted.

2.7.3 Open-world Assumption

Informally, non-incremental learning assumes that the world is closed. That is, the
system essentially works under the premise that its experience of the world, i.e., its
training set, is the world. Although this can be theoretically convenient, it certainly
does not hold in everyday life, where information, however much of it is available, is
generally uncertain and incomplete. Consider, for example, the complementary situ-
ations of having to accommodate exceptions and recovering from them, as illustrated
in the case of learning whether birds �y.

Accommodating Exceptions. Suppose that the training sample is made out of com-
mon European birds. Then, birds will be predicted to �y and, if the world is assumed
closed, this will apply to all birds, even the penguins and ostriches the system may
later encounter.

Recovering from Exceptions. Suppose that the training sample is rather atypi-
cal, consisting of birds from Australia and the South Pole (i.e., mostly ostriches and
penguins). Then, birds will be predicted not to �y and, if the world is assumed closed,
this will apply again to all birds. In both situations, further experience must be al-
lowed to alter the the truth of previously accepted facts, if a solution consistent with
the real world is to be found.

Humans use commonsense reasoning to deal with their partial representation of
the open world The need for an open-world assumption is clearly a consequence of
incrementality. If all the data relevant to the problem at hand is indeed available a
priori, then the world may be assumed closed. Otherwise, there is a need for special
learning mechanisms that invalidate portions of knowledge, while not a�ecting the rest
of it. In order to deal with ordering e�ects and the openworld assumption incremental
learners often need to store more information than their non-incremental counterparts.

2.7.4 Incremental learning from examples

[41] Hunt, Martin, and Stone (1966) were among the �rst to study machine concept
learning from examples. Their Concept Learning System (CLS) nonincrementally
builds decision trees that discriminate observations of di�erent classes. CLS �rst di-
vides the observations by their values along the best descriptive attribute; it uses a
primitive frequency measure to determine the attribute whose values are most uniquely
associated with di�erent classes. The values of this divisive attribute are used to label
arcs from the decision tree root and segregate observations into disjoint subsets. Each
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subset is treated as a child of the root, and CLS recursively builds a subtree for each.
Decision tree expansion terminates when all observations at a (sub)node are members
of the same class.

A new observation is classi�ed by following the labeled arcs that correspond to
the observation's values. When a leaf is reached, the class of the observations resid-
ing there is asserted as the class of the new observation. If this prediction is correct,
the new observation is saved (along with the original set). If erroneous, the tree is
reconstructed using previous observations and the misclassi�ed one. This exempli�es
a revolutionary approach to learning - a revolution occurs with each misclassi�cation.

There is a sense in which the revolutionary procedure appears to be incremen-
tal, since observations are processed serially. However, each misclassi�cation incurs
subsequently larger amounts of processing. Hunt et al. explored variants of CLS that
restricted the memory of past observations to a constant by randomly replacing prior
observations with new ones. Limiting the number of saved observations also limits tree
reconstruction costs, but experiments showed that it slowed learning rates as well; that
is, more observations were required to form a decision tree that perfectly discriminated
the observations.

In a similar vein, Michalski and Larson (1978) investigated the utility of restricting
the observations used during learning. The basis of their strategy is AQ (Michalski,
1973), a nonincremental learning from examples system that does not build decision
trees, but a �at set of logical (i.e., DNF) concept descriptions. Michalski and Larson
adapt AQ to behave incrementally by limiting the number of observations used to re-
construct a faulty knowledge base. Unlike CLS, retained observations are not selected
randomly, but on the basis of a Euclidean distance-like measure that identi�es good
concept representatives. In addition, incremental AQ limits reconstruction to those
portions of the knowledge base (i.e., individual concept descriptions) that led to a mis-
classi�cation. This locality constraint reduces computational costs and sets it further
apart from CLS, which constructs the entire knowledge base (i.e., decision tree) after
each incorrect prediction.

Reinke and Michalski (1986) carried the locality constraint a step further. Instead
of recomputing a complete concept with each misclassi�cation, their GEM system
rederives only a small part of the concept. As in AQ, concepts are in DNF; if new
observations are inconsistent with a concept, the faults are traced to individual con-
junctive terms within the concept's description. Each faulty term is submitted to a
generalization procedure along with the observations it currently covers and those that
triggered inconsistency. However, unlike AQ, GEM saves and may reuse all previous
observations.

Reinke and Michalski empirically compared their method with a nonincremental
version of AQ in three domains. Each experiment measured concept description com-
plexity, classi�cation performance, and computational expense. The results tentatively
indicate that: (a) the incremental method yields more complex concept descriptions
than the nonincremental method, (b) the incrementally formed concept descriptions
classify novel observations almost as well as the nonincremental ones, and (c) knowl-
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edge base update is less expensive using the incremental method than with the non-
incremental method.

CLS, incremental AQ, and GEM di�er in the extent to which they repair a faulty
knowledge base: the entire knowledge base, entire concept descriptions, or partial
concept descriptions, respectively. By reducing the scope of repair, these systems gain
computational advantages over their nonincremental counterparts. In addition, each of
these systems forms logical concept descriptions (CLS decision trees are tree-structured
DNF concepts), and not coincidentally they insist on perfect consistency between the
knowledge base and the environment. To maintain �exibility during incremental learn-
ing, they retain observations so that inconsistent portions of the knowledge base can be
recomputed following each misclassi�cation. Similarly, a system by Michalski (1985)
retains observations that are misclassi�ed by a knowledge base of production rules. In
contrast, Winston's (1975) well-known system incrementally learns conjunctive con-
cepts without retaining observations. However, Mitchell (1982) and Vere (1980) point
out that Winston's system cannot insure consistency between a learned concept and
observations.

Schlimmer's (1987a) STAGGER system (also Schlimmer and Granger, 1986a, b) is
a recent addition to the line of incremental learning from examples systems. Like these
previous systems (except CLS), STAGGER builds a knowledge base of �at concept
descriptions and makes local knowledge base repairs. However, STAGGER departs in
signi�cant ways from these earlier systems. In part, these di�erences are motivated
by the fact that real-world systems must be resistant to noise (i.e., incorrectly de-
scribed observations due to faulty perception). As such, the system does not insist
on perfect consistency between the knowledge base and the environment, nor does it
make abrupt repairs following each misclassi�cation. Rather, repair is triggered by a
variable amount of inconsistency. To implement this strategy, STAGGER represents
concepts as a probabilistic summary of important concept subcomponents. Like GEM,
it is these components that are subject to repair, but repairs are made conservatively -
only after a number of misclassi�cations indicate that revision is appropriate. Repairs
are made by chunking primitive components, an ability that adds new terms to the
concept language and improves learning (Schlimmer, 1987b). Even after making a re-
pair though, the revised knowledge competes with the previous representation and is
retracted if new observations prove the repair unwarranted. STAGGER does not reuse
observations to e�ect repairs as do earlier systems. Rather, probabilistic information
summarizes the training set and guides repair.

Computer experiments demonstrate that probabilistic representations and a conser-
vative revision strategy enables STAGGER to deal e�ectively with noise. Furthermore,
these characteristics enable the system to discern and respond to long-term environ-
mental changes. STAGGER is relatively novel in addressing the problem of track-
ing environmental drift. Not coincidentally, other systems that address this problem
(Hampson Kibler, 1983; Holland, 1975; Langley, 1987a) also rely on the �exibility af-
forded by probabilistic representations.

A system that appears quite di�erent than STAGGER at a cursory level, but
that draws important principles from it, is Schlimmer and Fisher's (1986) ID4. ID4
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descends from CLS by way of Quinlan's (1986) ID3, and like CLS, ID4 constructs
decision trees. Its control structure is similar to CLS's, but it uses a more sophisti-
cated evaluation measure for selecting the best divisive attribute: the best attribute
maximizes the expected information gained from the attribute's values. Intuitively,
this re�ects how con�dently one can predict an observation's class by knowing an at-
tribute's value.

ID4 is incremental and updates a decision tree with each new observation. At
the core of this incremental ability is the observation that the information-theoretic
evaluation measure need not be computed directly from the set of observations, but
a probabilistic summary of the observations is su�cient (i.e., co-occurrence counts for
all attribute-value/class membership combinations). As with STAGGER, the use of a
probabilistic representation frees ID4 from saving observations. For initial division at
the root, the values of each new observation are used to update the counts necessary
for computing the information measure. When a statistically signi�cant comparison
between the attributes can be made (based on the chi-square measure), a root attribute
is chosen. The new subtrees are not constructed immediately because no observations
have been saved. Instead, after each subsequent observation has updated counts at the
root, it is routed to the appropriate subtree to update the counts there before being
discarded. Subtrees are gradually grown in this manner. Over time a new attribute
may come to be preferred at the root of a subtree. In this case the current root is
supplanted by the attribute with the superior information gain, and the nodes under
the original subtree are discarded and regrown. Subtree repair (versus full-tree recon-
struction as in CLS) illustrates the same locality principles as GEM and STAGGER
do for �at representations.

Schlimmer and Fisher used formal and empirical methods to characterize ID4 in
terms of learning quality and cost. Their general �ndings are that ID4 converges on
decision trees equivalent in quality to ID3's. The cost of updating a decision tree in
ID4 is at worst logarithmic in the number of previous observations, while revolution-
ary application of ID3 (similar to full-memory CLS) requires polynomial time. Finally,
ID4 may require more observations to converge on the same decision tree as the rev-
olutionary application of ID3, but the total work (number of observations cost per
observation) required to reach equivalent trees is considerably less for ID4.

Incremental learning systems exhibit great variety in the strategies they use for
balancing the cost/quality tradeo�. CLS is a nonincremental system forced into fre-
quently rebuilding a decision tree from scratch. Update costs are controlled by limiting
the number of retained observations, but only at the expense of slowing learning speed.
Incremental AQ and GEM lessen costs further by localizing knowledge base repairs,
again based on saved observations. Work with AQ is novel in its use of good concept
representatives in knowledge base update. Schlimmer's STAGGER localizes knowledge
base revision as well, but drops the assumption that perfect consistency is desired or
even possible. As a result, repairs are not triggered after each classi�cation. ID4 is a
descendant of CLS, but shares STAGGER's assumptions and strategies: probabilistic
evidence and conservative knowledge base repair are the main sources of learning ro-
bustness.
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Now we turn to conceptual clustering, which drops the requirement of a teacher
that preclassi�es observations. Instead, the system must identify useful classes. This
new speci�cation has some important implications for performance, knowledge base
structure, and learning strategy.

2.7.5 Incremental conceptual clustering

[42] Michalski (1980) proposed conceptual clustering as a means of discovering under-
standable patterns in data. However, this de�nition does not specify a performance
task that improves with learning . Fisher (1987b, c) proposes that one such task is
the prediction of unobserved properties. As such, Fisher's COBWEB system forms
classi�cation trees that are intended to yield good prediction along many attributes,
rather than optimal prediction along a single teacher -de�ned attribute as in learning
from examples. Despite COBWEB's reduced expectations, Fisher (1987a, b) shows
that in many cases prediction with a single COBWEB classi�cation tree approximates
the accuracy obtained from multiple, special-purpose ID3 decision trees.

An important di�erence between COBWEB and earlier conceptual clustering sys-
tems is that it is incremental - COBWEB integrates an observation into an existing
classi�cation tree by classifying the observation along a path of best matching nodes.
Like ID4, probabilistic summaries of previous observations are stored at each node, but
the matching functions and the criteria used for subtree revision di�er considerably.
COBWEB uses the category utility function (Gluck Corter, 1985) to guide classi�ca-
tion and tree formation. Category utility bases its evaluation on all of the observation's
attribute-values rather than a single one, making COBWEB a polythetic classi�er as
opposed to a monothetic classi�er (e.g., CLS and ID4). Similarly, COBWEB's subtree
revisions are triggered by considering prediction ability over all attributes, but con-
cern for multiple attributes complicates subtree revision. In ID4 a subtree is simply
deleted, but in COBWEB a deletion that bene�ts one attribute may be inappropriate
for others. In response, the system identi�es points in the tree for cost-e�ective predic-
tion of individual attributes. These points are marked by normative (Kolodner, 1983)
or default values that COBWEB dynamically maintains during incremental clustering.

COBWEB's main contribution to the present discussion is that it maintains a
knowledge base that coordinates many prediction tasks, one for each attribute. This
is in sharp contrast to learning from examples systems where a knowledge base need
only support one task. However, despite COBWEB's greater knowledge base complex-
ity, Fisher (1987c) argues that its tree structure is still too restrictive; more general
structures like directed acyclic graphs (DAGs) would yield better prediction. These
structures are used by COBWEB's main precursors, UNIMEM (Lebowitz, 1982) and
CYRUS (Kolodner, 1983). Regrettably, neither UNIMEM and CYRUS is character-
ized in terms of prediction accuracy, the increased costs that maintaining a DAG is
likely to incur, or the fundamental tradeo� that must exist between these dimensions.

2.8 Conclusion

The idea of incremental learning arose from the observation that most part of human
learning can be viewed as a gradual process of concept formation or as the human
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ability for incorporating knowledge from new experiences into already learned concept
structures .The incremental learning approach was �rstly motivated as a human capa-
bility worth being incorporated into arti�cial agents. However, nowadays there exist
other practical (i.e. industrial) reasons which increase the interest in incremental al-
gorithms. Everyday, �rms and companies store millions of new records. For example,
banks store millions of transaction records, internet search engines store millions of
searches, ... and so on. Batch algorithms are not easily able to process and incorpo-
rate to a knowledge base this great amount of continuously incoming instances in a
reasonable amount of time and memory space.
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Neural Networks

3.1 Introduction

TRADITIONALLY, the term Neural Network has been used to refer to a network
of biological neurons. In modern usage, the term is often used to refer Arti�cial

Neural Networks (also known as 'connectionist models' or 'parallel distributed process-
ing') are made up of interconnecting arti�cial neurons designed to model (or mimic)
some properties of biological neural networks.

The purpose of this chapter Is to give an Overview of Arti�cial Neural Network as
one of successful approaches in machine learning.

3.2 Biologically, How Human Brain Learns?

In the human brain, a typical neuron collects signals from others through a host of �ne
structures called dendrites. The neuron sends out spikes of electrical activity through a
long, thin stand known as an axon, which splits into thousands of branches. At the end
of each branch, a structure called a synapse converts the activity from the axon into
electrical e�ects that inhibit or excite activity from the axon into electrical e�ects that
inhibit or excite activity in the connected neurons. When a neuron receives excitatory
input that is su�ciently large compared with its inhibitory input, it sends a spike of
electrical activity down its axon. Learning occurs by changing the e�ectiveness of the
synapses so that the in�uence of one neuron on another changes.[39] Figure[3.1] shows
the biological Neourn.

30



Chapter 3 : Neural Networks

Figure 3.1: Biological Neuron illustration

3.3 From Human Neuron to Arti�cial Neuron

Many de�nition have proposed to Neural Netowrk in the literature some of them:

Definition 3 According to Haykin, S. (1994), Neural Networks: A Comprehensive
Foundation, A neural network is a massively parallel distributed processor that has a
natural propensity for storing experiential knowledge and making it available for use.
It resembles the brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store the
knowledge.

Definition 4 According to the DARPA Neural Network Study (1988, AFCEA In-
ternational Press, p. 60): A Neural Network is a system composed of many sim-
ple processing elements operating in parallel whose function is determined by network
structure, connection strengths, and the processing performed at computing elements
or nodes.

3.4 A simple Arti�cial neuron

An arti�cial neuron is a device with many inputs and one output. The neuron has
two modes of operation; the training mode and the using mode. In the training mode,
the neuron can be trained to �re (or not), for particular input patterns. In the using
mode, when a taught input pattern is detected at the input, its associated output
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becomes the current output. If the input pattern does not belong in the taught list of
input patterns, the �ring rule is used to determine whether to �re or not. Fllowes by
Figure[3.2].[36]

Figure 3.2: Arti�cial Neuron Model

3.5 Why we use Neural Networks

Neural network simulations appear to be a recent development. However, this �eld
was established before the advent of computers, and has survived at least one major
setback and several eras. the neural network �eld enjoys a resurgence of interest and
a corresponding increase in funding. [8]

3.5.1 Motivations

Initial motivation: Recognition of di�erence in how computation is done in current
technology and in biology.

Current motivations:

• Very e�ective way to solve certain problems.

• Solve problems in a more human-like way.

• Understand high-level aspects of computation in real neural networks.
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• A novel architecture for computers.

3.5.2 Arti�cial Neural networks versus conventional computers

Neural networks take a di�erent approach to problem solving than that of conventional
computers. Conventional computers use an algorithmic approach i.e. the computer
follows a set of instructions in order to solve a problem. Unless the speci�c steps that
the computer needs to follow are known the computer cannot solve the problem. That
restricts the problem solving capability of conventional computers to problems that
we already understand and know how to solve. [6,8]

Neural networks process information in a similar way the human brain does. The
network is composed of a large number of highly interconnected processing elements(neurones)
working in parallel to solve a speci�c problem. Neural networks learn by example.
They cannot be programmed to perform a speci�c task. The examples must be se-
lected carefully otherwise useful time is wasted or even worse the network might be
functioning incorrectly. The disadvantage is that because the network �nds out how
to solve the problem by itself, its operation can be unpredictable. Table[3.1] describe
the di�erence between the conventional computers and Neural Networks.

CHARACTERISTICS TRADITIONAL COM-
PUTING(including
Expert Systems)

ARTIFICIAL NEURAL
NETWORKS

Processing style Func-
tions

Sequential Logically (left
brained) via Rules Con-
cepts Calculations

Parallel Gestault (right
brained) via Images Pic-
tures Controls

Learning Method Ap-
plications

by rules (didactically) Ac-
counting word process-
ing math inventory digital
communications

by example (Socratically)
Sensor processing speech
recognition pattern recog-
nition text recognition

Table 3.1: NN vs. conventional computers.

We conclude that Arti�cial neural networks, parallel distributed processing (PDP) or
connectionist architectures developed to solve Classical problems.[7]

N.B: Neural networks cannot do anything that cannot be done using traditional
computing techniques, BUT they can do some things which would otherwise be very
di�cult. [8]

3.5.3 The Ability of ANNs

Neural networks are a form of multiprocessor computer system, ANNs have been ap-
plied to an increasing number of real-world problems of considerable complexity. Their
most important advantage is in solving problems that are too complex for conventional
technologies problems that do not have an algorithmic solution or for which an algo-
rithmic solution is too complex to be found. Ann can also help where we can get lots
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of examples of the behavior we require or where we need to pick out the structure from
existing data In general, because of their abstraction from the biological brain, ANNs
are well suited to problems that people are good at solving, but for which computers
are not. These problems include pattern recognition and forecasting (which requires
the recognition of trends in data). [14]

Neural networks, with their remarkable ability to derive meaning from compli-
cated or imprecise data, can be used to extract patterns and detect trends that are
too complex to be noticed by either humans or other computer techniques. A trained
neural network can be thought of as an "expert" in the category of information it has
been given to analyse. This expert can then be used to provide projections given new
situations of interest and answer what if questions. Other advantages include:

• Adaptive learning: "generalization ability" An ability to learn how to do tasks
based on the data given for training or initial experience.

• Self-Organisation(distributed representation and computation): An ANN can
create its own organisation or representation of the information it receives during
learning time.

• Real Time Operation(massive parallelism) ANN computations may be carried
out in parallel, and special hardware devices are being designed and manufac-
tured which take advantage of this capability.

• Fault Tolerance via Redundant Information Coding: Partial destruction of a
network leads to the corresponding degradation of performance. However, some
network capabilities may be retained even with major network damage. [23]

3.6 Representing 'knowledge' in a Neural Network :

A major task for a neural network is to learn a model of the world or the environment in
which it is embedded. Knowledge of any domain can be divided into two groups:prior
information, facts and what has been known, and observations (measurements) of the
world, usually in a noisy environment. These observations, usually form a observa-
tions, referred sometimes to training data set. Each example is an input-output pair,
an input signal and the corresponding desired response for the neural network.Training
a neural network: this involves the execution of a two phased strategy, the learning
phase and the generalisation phase. During the learning phase an appropriate architec-
tures (learning algorithm) for the network such that the input, (hidden), and output
layers have some synergy with its environment. A subset of examples, both positive
and negative, is then used to train the network.

The second phase is an evaluation of a trained neural networks by exposing them
to data the networks have seen before. The network is expected to pick regularities in
the observations. Thus, unlike classical information processing paradigms, where in a
mathematical model environmental observations is formulated and validated with the
help of real-world data, and then building the design on the basis of the model.
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The design of a neural network is based on real data: The neural network not
only provides an implicit model of the environment in which it is embedded, but also
performs some information-processing function of interest.

Neural Networks 'learn' by adapting in accordance with a training regimen: The
network is subjected to particular information environments on a particular schedule
to achieve the desired end-result [39]

3.7 ANN Components

[6,33,39] Arti�cial Neural Network is characterized by:

• network architecture (topology);

• network node properties;

• connections between the neurons (weights);

• updating (learning) rules for the weights and the states of the neurons.

Figure[3.3] illustrates ANN components.

Figure 3.3: Neural Network Components

3.7.1 Input Layer

Introduces input values into the network. No activation function or other processing.
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3.7.2 Hidden Layer (s)

Traduction phase..Two hidden layers are su�cient to solve any problem.

3.7.3 Output layer

Functionally just like the hidden layers. Outputs are passed on to the world outside
the neural network.

3.7.4 Connections /Arcs

The connections (arcs) are from input nodes to hidden layer nodes and from hidden
layer nodes to output nodes. No speci�c topology.

3.7.5 Weights

Each arc is assigned an initial random weight, usually between [-0.5...0.5], used in
training and may be modi�ed in the learning process. An initial weight (bias) is
assigned to nodes in hidden and output layer.

3.7.6 Summation Function

The �rst step in a processing element's operation is to compute the weighted sum of all
of the inputs. Mathematically, the inputs and the corresponding weights are vectors
which can be represented as (i1, i2...in) and (w1, w2...wn). The total input signal is
the dot, or inner, product of these two vectors. This simplistic summation function is
found by muliplying each component of the i vector by the corresponding component
of the w vector and then adding up all the products. Input1 = i1∗w1, input2 = i2∗w2,
etc., are added as input1 + input2 + ... + inputn. The result is a single number, not a
multi-element vector .

3.7.7 Activation (transfer) functions

: Transforms neuron's input into output. The result of the summation function was
mentioned above, almost always the weighted sum, is transformed to a working output
through an algorithmic process known as the transfer function. Features of activation
functions: A squashing e�ect is required Prevents accelerating growth of activation
levels through the network. Some activation functions:

• The hard-limiting threshold function (step function), Corresponds to the biolog-
ical paradigm, either �res or not

• Sigmoid functions ('S'-shaped curves), The logistic function, The hyperbolic tan-
gent (symmetrical).show Figure[3.4].
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Figure 3.4: Sample Activiation functions

3.7.8 Bias, o�set, threshold

These terms all refer to a constant (i.e., independent of the network input but adapted
by the learning rule) term which is input to a unit. They may be used interchangeably,
although the latter two terms are often envisaged as a property of the activation
function. Furthermore, this external input is usually implemented (and can be written)
as a weight from a unit with activation value 1.

3.8 Learning Process

One of the most important aspects of Neural Network is the learning process. Learning
can be done in supervised or unsupervised manner.

In supervised training, both the inputs and the outputs are provided. The
network then processes the inputs and compares its resulting outputs against the de-
sired outputs. Errors are then calculated, causing the system to adjust the weights
which control the network. This process occurs over and over as the weights are con-
tinually tweaked.

In unsupervised training, the network is provided with inputs but not with
desired outputs. The system itself must then decide what features it will use to group
the input data. This is often referred to as self-organization or adaption.[36]

3.8.1 Connectionist Learning Algorithms

[13]Learning involves improvement in performance. ANNs ability to learn from exam-
ples makes them attractive and exciting.
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In order to understand the learning process, we need a model of the computa-
tion according to which the network operates and we must know what information is
available to the network. The model of the computation is inductive learning from
available data examples.

Connectionist learning typically involves the manipulation of connection weights
in a single network of units.

The aim of the learning is to reach a point where the network produces certain
types of input/output behaviour. This normally involves systematically updating the
weights on possible connections between units.

The network weights are updated by learning rules, which learning rules govern
the learning process. A learning algorithm refers to the procedure in which learning
rules are used for adjusting the network weights.

In the connectionist learning scenario, the learner is the weight updating procedure
and the target representation is the network with a certain con�guration of weights.

If the architecture of the network is �xed the hypothesis space is the space of
possible weight con�gurations and a single hypothesis is a particular con�guration of
weights. If the architecture is not �xed, the hypothesis space is made up of all possible
architecture/weight con�guration combinations. Figure[3.5]. There are two learning
approches:

• Batch learning- when a large set of examples are processed at once.

• Incremental learning- when the examples are processed one at a time;

Di�erent network architectures require appropriate learning algorithms. There are
four basic types of learning algorithms depending on the rules:

• Error-correction rules

• Boltzmann rule

• Hebbian rule

• Competitive rule
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Figure 3.5: Processing Element.This �gure is adapted from NeuralWare's simulation
model used in NeuralWorks Profession II/Plus

3.8.2 Learning Rules

Many learning laws are in common use. Most of these laws are some sort of variation
of the best known and oldest learning law, Hebb's Rule. Some researchers have the
modeling of biological learning as their main objective. A few of the major laws are
presented as examples. [6]

3.8.2.1 Hebb's Rule

The �rst, and undoubtedly the best known, learning rule was introduced by Donald
Hebbm. basic rule is: If a neuron receives an input from another neuron, and if both
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are highly active (mathematically have the same sign), the weight between the neurons
should be strengthened.

3.8.2.2 Hop�eld Law

It is similar to Hebb's rule with the exception that it speci�es the magnitude of the
strengthening or weakening. It states, "if the desired output and the input are both
active or both inactive, increment the connection weight by the learning rate, otherwise
decrement the weight by the learning rate."

3.8.2.3 The Delta Rule

This rule is a further variation of Hebb's Rule. It is one of the most commonly used.
This rule is based on the simple idea of continuously modifying the strengths of the
input connections to reduce the di�erence (the delta) between the desired output value
and the actual output of a processing element. This rule changes the synaptic weights
in the way that minimizes the mean squared error of the network. This rule is also
referred to as the Widrow-Ho� Learning Rule and the Least Mean Square (LMS)
Learning Rule.

The way that the Delta Rule works is that the delta error in the output layer is
transformed by the derivative of the transfer function and is then used in the previous
neural layer to adjust input connection weights. In other words, this error is back-
propagated into previous layers one layer at a time. The process of back-propagating
the network errors continues until the �rst layer is reached. The network type called
Feedforward, Back-propagation derives its name from this method of computing the
error term.

When using the delta rule, it is important to ensure that the input data set is
well randomized. Well ordered or structured presentation of the training set can lead
to a network which can not converge to the desired accuracy. If that happens, then
the network is incapable of learning the problem.

3.8.2.4 The Gradient Descent Rule

This rule is similar to the Delta Rule in that the derivative of the transfer function is
still used to modify the delta error before it is applied to the connection weights. Here,
however, an additional proportional constant tied to the learning rate is appended to
the �nal modifying factor acting upon the weight. This rule is commonly used, even
though it converges to a point of stability very slowly.

It has been shown that di�erent learning rates for di�erent layers of a network
help the learning process converge faster. In these tests, the learning rates for those
layers close to the output were set lower than those layers near the input. This is
especially important for applications where the input data is not derived from a strong
underlying model.
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3.8.2.5 Kohonen's Learning Law

This procedure, developed by Teuvo Kohonen, was inspired by learning in biological
systems. In this procedure, the processing elements compete for the opportunity to
learn, or update their weights. The processing element with the largest output is de-
clared the winner and has the capability of inhibiting its competitors as well as exciting
its neighbors. Only the winner is permitted an output, and only the winner plus its
neighbors are allowed to adjust their connection weights.

Further, the size of the neighborhood can vary during the training period. The
usual paradigm is to start with a larger de�nition of the neighborhood, and narrow
in as the training process proceeds. Because the winning element is de�ned as the
one that has the closest match to the input pattern, Kohonen networks model the
distribution of the inputs. This is good for statistical or topological modeling of the
data and is sometimes referred to as self-organizing maps or self-organizing topologies.

3.9 Types of connectionist Models

[3,34] Arti�cial Neural Network types can be classi�ed based on following attributes:

• Input and output (Topology)

� Matrix-memory models (Single layer): all units participate potentially in
input and output

� Others (Multilayer): separate input, output, and sometimes hidden units

• Representations

� Localist

� Distributed: input, output, hidden

� Multiple units participate in the representation of each concept.

� Multiple concepts are represented by each unit.

• Continuous and discrete time

• Static and sequential networks

• Learning

� Supervised

� Reinforcement

� Unsupervised

• Connectivity

� Feedforward

� Partially recurrent

� Completely recurrent; constraint satisfaction
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• Applications

� Classi�cation

� Clustering

� Function approximation

� Prediction

3.10 ANN Architectures

[13,39,Wekipidia.com] Based on the connection pattern (architecture) ANNs can be
grouped into two categories

3.10.1 Feed-forward networks

In which graphs have no loops. Gnerally speaking feed-forward networks are static
because they produce only one set of output values rather than a sequence of values
from a given input; Taxonomy of Feed-forward:

• Single-layer perceptron

• Multilayer perceptron

• Radial-basis function networks

• Higher-order networks

• Polynomial learning networks

3.10.1.1 Single-layer perceptron

The earliest kind of neural network is a single-layer perceptron network, which consists
of a single layer of output nodes; the inputs are fed directly to the outputs via a series
of weights. In this way it can be considered the simplest kind of feed-forward network.
The sum of the products of the weights and the inputs is calculated in each node,
and if the value is above some threshold (typically 0) the neuron �res and takes the
activated value (typically 1); otherwise it takes the deactivated value (typically -1).
Neurons with this kind of activation function are also called McCulloch-Pitts neurons
or threshold neurons. In the literature the term perceptron often refers to networks
consisting of just one of these units. Follows,Figure[3.6].
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Figure 3.6: perceptron

Perceptrons can be trained by a simple learning algorithm that is usually called the
delta rule. It calculates the errors between calculated output and sample output data,
and uses this to create an adjustment to the weights, thus implementing a form of gra-
dient descent. Single-unit perceptrons are only capable of learning linearly separable
patterns, for that Multi-layer perceptrons have arisen , table () illustrates Di�erent
Non-Linearly Separable Problems. Follows,Figure[3.7].

Figure 3.7: (a) Linearly separable (b) Non-Linearly separable

3.10.1.2 Multi-layer perceptrons

MLPs: Feed-forward neural network with multiple layers of processing neurons.This
class of networks consists of multiple layers of computational units, usually intercon-
nected in a feed-forward way. Each neuron in one layer has directed connections to
the neurons of the subsequent layer. In many applications the units of these networks
apply a sigmoid function as an activation function. Follows by,Figure[3.8][3.9].
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Figure 3.8: Multi-layer perceptrons

Figure 3.9: Di�erent Non-Linearly Separable Problems
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3.10.1.3 ADALINE

ADAptive LInear NEuron or later called Adapter Linear Element. It was developed
by Widrow and Ho� from Standford university in 1960. It's based on McCulloch-Pitts
model. It consists of a weight, a bias and a summation function.

While the Adaline is through this capable of simple linear regression, it has limited
practical use.

There is an extension of the Adaline, called the Multiple Adaline (MADALINE)that
consists of two or more adalines serially connected.Figure[3.10]

Figure 3.10: ADLINE

3.10.1.4 Radial basis function (RBF)

Radial Basis Functions are powerful techniques for interpolation in multidimensional
space. A RBF is a function which has built into a distance criterion with respect to a
centre. Radial basis functions have been applied in the area of neural networks where
they may be used as a replacement for the sigmoidal hidden layer transfer function
in multilayer perceptrons. RBF networks have 2 layers of processing: In the �rst,
input is mapped onto each RBF in the 'hidden' layer. The RBF chosen is usually
a Gaussian. In regression problems the output layer is then a linear combination of
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hidden layer values representing mean predicted output. The interpretation of this
output layer value is the same as a regression model in statistics. In classi�cation
problems the output layer is typically a sigmoid function of a linear combination of
hidden layer values, representing a posterior probability. Performance in both cases is
often improved by shrinkage techniques, known as ridge regression in classical statistics
and known to correspond to a prior belief in small parameter values (and therefore
smooth output functions) in a Bayesian framework.

Figure 3.11: Two unnormalized Gaussian radial basis functions in one input dimension.
The basis function centers are located at c1=0.75 and c2=3.25.

RBF types : Commonly used types of radial basis functions include

• Gaussian.

• Multiquadric.

• Thin plate spline .

3.10.2 Recurrent (feedback) networks

In which loops occur because of feedback connections. Recurrent networks are dy-
namic. Taxonomy of Recurrent network architectures:

• Competitive networks

• Self-organizing maps

• Hop�eld networks

• Adaptive-resonance theory models (ART)
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3.10.2.1 Simple recurrent network

A simple recurrent network (SRN) is a variation on the multi-layer perceptron, some-
times called an "Elman network" due to its invention by Je� Elman. A three-layer
network is used, with the addition of a set of "context units" in the input layer. There
are connections from the middle (hidden) layer to these context units �xed with a
weight of one. At each time step, the input is propagated in a standard feed-forward
fashion, and then a learning rule (usually back-propagation) is applied. The �xed back
connections result in the context units always maintaining a copy of the previous val-
ues of the hidden units (since they propagate over the connections before the learning
rule is applied). Thus the network can maintain a sort of state, allowing it to perform
such tasks as sequence-prediction that are beyond the power of a standard multi-layer
perceptron.

In a fully recurrent network, every neuron receives inputs from every other neuron
in the network. These networks are not arranged in layers. Usually only a subset
of the neurons receive external inputs in addition to the inputs from all the other
neurons, and another disjunct subset of neurons report their output externally as well
as sending it to all the neurons. These distinctive inputs and outputs perform the
function of the input and output layers of a feed-forward or simple recurrent network,
and also join all the other neurons in the recurrent processing.

3.10.2.2 Hop�eld network

The Hop�eld network is a recurrent neural network in which all connections are sym-
metric. Invented by John Hop�eld in 1982, this network guarantees that its dynamics
will converge. If the connections are trained using Hebbian learning then the Hop-
�eld network can perform robust content-addressable memory, robust to connection
alteration.Figure[3.12]

Figure 3.12: Hop�eld Network
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3.10.2.3 Kohonen self-organizing network

The self-organizing map (SOM) invented by Teuvo Kohonen uses a form of unsuper-
vised learning. A set of arti�cial neurons learn to map points in an input space to
coordinates in an output space. The input space can have di�erent dimensions and
topology from the output space, and the SOM will attempt to preserve these.

3.10.3 Stochastic neural networks

A stochastic neural network di�ers from a regular neural network in the fact that
it introduces random variations into the network. In a probabilistic view of neural
networks, such random variations can be viewed as a form of statistical sampling, such
as Monte Carlo sampling.

3.10.4 Probabilistic neural networks(PNN)

In 1990, Donald F. Specht [5] proposed a method to formulate the weighted-neighbor
method in the form of a neural network. He called this a Probabilistic Neural Network,
Chapter 5 discusses PNN in more detailes . Figure[5.8] demonstrates a diagram of a
PNN network:

Figure 3.13: PNN Architicture

3.10.5 Backpropagation Algorithm

One of the most popular training algorithms is used to train neural network . the
output values are compared with the correct answer to compute the value of some
prede�ned error-function. By various techniques the error is then fed back through
the network. Using this information, the algorithm adjusts the weights of each con-
nection in order to reduce the value of the error function by some small amount. After
repeating this process for a su�ciently large number of training cycles the network
will usually converge to some state where the error of the calculations is small. In this
case one says that the network has learned a certain target function.
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Initialize each wi to some small random value Until the termination condition
is met, Do For each training example < (x1, .., xn), t > Do

1. Input the instance (x1, .., xn) to the network and compute the network outputs
ok

2. For each output unit k δk = ok(1− ok)(tk − ok)

3. For each hidden unit h δh = oh(1− oh)kwh,kδk

4. For each network weight wi,j Do wi,j = wi,j + ∆wi,j where ∆wi,j = η δjxi,j

3.10.6 The Gradient Descent Algorithm

Initialize all weights to small random values. REPEAT until done ∆wi,j := 0
For each weight wi,j set
For each data point (x, t)p

set input units to x
compute value of output units ∆wi,j := ∆wi,j + (ti − yi)yi

For each weight wij set
For each weight wij set wi,j := wi,j + u∆wi,j

The algorithm terminates once we are at, or su�ciently near to, the minimum of the
error function, where G = 0. We say then that the algorithm has converged.

3.11 Overtraining , how can we avoid it !

The critical issue in developing a neural network is generalization: how well will the
network make predictions for cases that are not in the training set? NNs, like other
�exible nonlinear estimation methods such as kernel regression and smoothing splines,
can su�er from either under�tting or over�tting. A network that is not su�ciently
complex can fail to detect fully the signal in a complicated data set, leading to under-
�tting. A network that is too complex may �t the noise, not just the signal, leading
to over�tting. Figure[3.14], Over�tting is especially dangerous because it can easily
lead to predictions that are far beyond the range of the training data with many of
the common types of NNs. Over�tting can also produce wild predictions in multilayer
perceptrons even with noise-free data.

The best way to avoid over�tting is to use lots of training data. If you have
at least 30 times as many training cases as there are weights in the network, you are
unlikely to su�er from much over�tting, although you may get some slight over�tting
no matter how large the training set is. For noise-free data, 5 times as many training
cases as weights may be su�cient. But you can't arbitrarily reduce the number of
weights for fear of under�tting. [33]

Given a �xed amount of training data, there are at least six approaches to avoiding
under�tting and over�tting, and hence getting good generalization:

• Model selection

• Jittering
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• Early stopping

• Weight decay

• Bayesian learning

• Combining networks

Figure 3.14: Over�tting/Overtraining in supervised learning;Training error is shown
in blue, validation error in red. If the validation error increases while the training error
steadily decreases then a situation of over�tting may have occurred

3.12 Strengths and Weaknesses of Neural Network

Models

Philosophers are interested in neural networks because they may provide a new frame-
work for understanding the nature of the mind and its relation to the brain (Rumel-
hart and McClelland, 1986, Chapter 1). Connectionist models seem particularly well
matched to what we know about neurology. The brain is indeed a neural net, formed
from massively many units (neurons) and their connections (synapses). Furthermore,
several properties of neural network models suggest that connectionism may o�er an es-
pecially faithful picture of the nature of cognitive processing. Neural networks exhibit
robust �exibility in the face of the challenges posed by the real world. Noisy input or
destruction of units causes graceful degradation of function. The net's response is still
appropriate, though somewhat less accurate. In contrast, noise and loss of circuitry in
classical computers typically result in catastrophic failure. Neural networks are also
particularly well adapted for problems that require the resolution of many con�icting
constraints in parallel. There is ample evidence from research in arti�cial intelligence
that cognitive tasks such as object recognition, planning, and even coordinated mo-
tion present problems of this kind. Although classical systems are capable of multiple
constraint satisfaction, connectionists argue that neural network models provide much
more natural mechanisms for dealing with such problems.

Over the centuries, philosophers have struggled to understand how our concepts
are de�ned. It is now widely acknowledged that trying to characterize ordinary notions
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with necessary and su�cient conditions is doomed to failure. Exceptions to almost any
proposed de�nition are always waiting in the wings. For example, one might propose
that a tiger is a large black and orange feline. But then what about albino tigers?
Philosophers and cognitive psychologists have argued that categories are delimited in
more �exible ways, for example via a notion of family resemblance or similarity to a
prototype. Connectionist models seem especially well suited to accommodating graded
notions of category membership of this kind. Nets can learn to appreciate subtle statis-
tical patterns that would be very hard to express as hard and fast rules. Connectionism
promises to explain �exibility and insight found in human intelligence using methods
that cannot be easily expressed in the form of exception free principles (Horgan and
Tienson, 1989, 1990), thus avoiding the brittleness that arises from standard forms of
symbolic representation.

Despite these intriguing features, there are some weaknesses in connectionist mod-
els that bear mentioning. First, most neural network research abstracts away from
many interesting and possibly important features of the brain. For example, connec-
tionists usually do not attempt to explicitly model the variety of di�erent kinds of
brain neurons, nor the e�ects of neurotransmitters and hormones. Furthermore, it is
far from clear that the brain contains the kind of reverse connections that would be
needed if the brain were to learn by a process like backpropagation, and the immense
number of repetitions needed for such training methods seems far from realistic. At-
tention to these matters will probably be necessary if convincing connectionist models
of human cognitive processing are to be constructed. A more serious objection must
also be met. It is widely felt, especially among classicists, that neural networks are
not particularly good at the kind of rule based processing that is thought to undergird
language, reasoning, and higher forms of thought. [3]

3.13 Applications

Neural Network Applications can be grouped in following categories [13]:

3.13.1 Clustering

A clustering algorithm explores the similarity between patterns and places similar
patterns in a cluster. Best known applications include data compression and data
mining.

3.13.2 Classi�cation/Pattern recognition

The task of pattern recognition is to assign an input pattern (like handwritten symbol)
to one of many classes. This category includes algorithmic implementations such as
associative memory.

3.13.3 Function approximation

The tasks of function approximation is to �nd an estimate of the unknown function
f() subject to noise. Various engineering and scienti�c disciplines require function
approximation.
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3.13.4 Prediction/Dynamical Systems

The task is to forecast some future values of a time-sequenced data. Prediction has a
signi�cant impact on decision support systems. Prediction di�ers from Function ap-
proximation by considering time factor. Here the system is dynamic and may produce
di�erent results for the same input data based on system state (time).

3.14 Conclusion

Arti�cial Neural Networks have contribute in many e�ecient ways to solve classical
approaches problems. This chapter introduced the importance of ANN , di�ernt ar-
chitectures , this chapter also deeply discussed components of ANN and how ANN
are learneing and training . some successful applications with ANN also are presented
.Finally we recognize to weakness an strength in ANN architecture.
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Incremental Learning Based On

Neural Networks

4.1 Introduction

MOST neural network learning algorithms (Bishop, 1995) involve the network be-
ing trained with all the available data during a single training session, learning

all the data concurrently. Once that training is �nished, the network acquires no fur-
ther information. Such concurrent training can make it di�cult to update the network
if additional information becomes available later, and needs to be incorporated into
the neural network's performance.

An incremental learning algorithm gives a system the ability to learn from new
information as it becomes available. Incremental learning is particularly important
and relevant since in many real world applications the complete set of data is not all
available at once, and learning really does need to be an ongoing process (Giraud-
Carrier, 2000). A neural network should be able to use any new training data to
improve its performance, without requiring access to the previous data. This could
involve the network having to accommodate new classes of data that are introduced
with the new data[14].

Many Neural learning algorithms are not incremental. One of the greatest im-
pediments in building large, scalable learning systems based on neural networks is
that when a network trained to solve task A is subsequently trained to solve task B,
it "forgets" the solution to task A.[3]

4.2 Assessing The quality of a Neural Network solu-

tion

There are three factors that a�ect the quality of a neural network solution:

Success achieved on test data indicates how well the network generalizes to
data unseen during training which one wants to maximize. This generally is taken as
the only performance criterion.
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Network complexity by itself can be very di�cult to assess but two important
factors are network size and processing complexity of each unit. Network size gives the
memory required which is the product of the number of connections and the number of
bits required to store each connection weight. Processing complexity depends on how
costly it is to implement processing occurring in each unit, e.g., sigmoid vs. threshold
nonlinearity, fanin, fanout properties, precision in storage and computation, etc. This
has a negative e�ect on the quality as one prefers smaller and cheaper networks.

Learning time is the time required to learn the given training data till one gets
a reasonable amount of performance. This is to be minimized also. [7]

4.3 Batch vs. Incremental Learning

Batch learning proceeds as follows: [32]

• Initialize the weights.

• Repeat the following steps:

• Process all the training data.

• Update the weights.

Incremental learning proceeds as follows:

• Initialize the weights.

• Repeat the following steps:

• Process one training case.

• Update the weights.

4.4 learning algorithm criteria

• It should be able to learn additional information from new data.

• It should not require access to the original data, used to train the existing clas-
si�er.

• It should preserve previously acquired knowledge (that is, it should not su�er
from catastrophic forgetting).

• It should be able to accommodate new classes that may be introduced with new
data.[27]
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4.5 Incremental Neural learning framework

In general , we can adopt Figure[4.1] as a kind of processing incremental learning.[13]

Figure 4.1: INL: an Incremental Neural Learning framework

4.6 Catastrophic Interference

Disruption in neural networks, called "forgetting" or "catastrophic interference", of-
ten occurs during incremental learning. It is caused by the excessive adaptation of
connection weights to new data. One way of overcomingthis problem is that only rep-
resentative training data are kept in memory and some of them are trained with newly
given training data.

The problem of catastrophic interference in connectionist networks has been known
and studied since the early 1990's. The problem is of particular importance because
sequential learning of the kind done by humans cannot be achieved unless a solution is
found to this problem. In other words, network models of cognition must, as Grossberg
has stressed, be sensitive to new input but not so sensitive that the new input destroys
previously learned information. Certain types of patterns, such as those found in highly
structured domains, are less susceptible to catastrophic interference than patterns from
less well structured domains. Nature seems to have evolved a way of keeping new learn-
ing (hippocampal learning) at arms' length from previously learned information stored
in the neo-cortex (neo-cortical consolidation), thus physically preventing new learning
from interfering with previously learned information. Connectionist models have been
developed that simulate this cerebral separation. This may not be - in fact, is certainly
not - the only way to route to solving the problem of catastrophic interference, but its
close relationship with the way in which the brain may have solved the problem, makes
further exploration of these dual-memory models of particular interest. Catastrophic
interference is the "stability-plasticity dilemma [S. Grossberg, "Nonlinear neural net-
works: principles, mechanisms and architectures," Neural Netw., vol. 1, no. 1, pp.
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17-61, 1988]" problem in spades. It occurs when a network has learned to recognize
a particular set of patterns and then is called upon to learn a new set of patterns.
The learning of the new patterns modi�es the weights of the network in such a way
that the originally learned set of patterns is forgotten. In other words, The dilemma
points out the fact that a completely stable classi�er will preserve existing knowledge,
but will not accommodate any new information, whereas a completely plastic classi-
�er will learn new information but will not conserve prior knowledge , that's mean
the newly learned patterns suddenly and completely - "catastrophically" - erase the
network's memory of the previously learned patterns. To avoid the catastrophic in-
terference, several approaches have been proposed so far will be mention later on this
chapter.[26,36]

4.7 Incremental Learning and Neural Network:

The phrase "incremental learning" has been used to refer in the literature to as di-
verse concepts as incremental network growing and pruning of classi�er architectures
demonstrated in �g [4.2] , on-line learning to selection of most informative training
samples , In other cases, some form of controlled modi�cation of classi�er weights has
been suggested, typically by retraining with misclassi�ed signals . These algorithms
are capable of learning new information. however, they do not simultaneously sat-
isfy all of the above-mentioned criteria for incremental learning: they either require
access to old data, forget prior knowledge along the way, or unable to accommodate
new classes . various other terms, such as constructive learning, lifelong learning, and
evolutionary learning have also been used to imply learning new information.[28]

Researchers have presented various incremental learning methods for neural net-
works to overcome Catastrophic interference . These methods can be divided into two
groups according to the way the old memories are kept in the neural network. One
group makes the neural network relearn previously input patterns, while the second
group makes the network restrict the modi�cation of predetermined parameters.From
other viewpoint , They are roughly categorized into three approaches. In the �rst ap-
proach, the connection weights trained formerly are not modi�ed with a new training
sample as much as possible; that is, the connection weights adapted for a new sam-
ple are separated from those adapted for previous samples . In the second approach,
neural networks with spatially localized basis functions are adopted. As such a ba-
sis function, tile-like receptive �elds and radial-basis functions are often used. In the
third approach, some past training samples as well as a new sample are simultaneously
trained to suppress the interference. That is to say, all (or a part) of training samples
are accumulated in memory, and they are utilized for learning at every step. This
approach is called memory-based learning, and Locally Weighted Regression is one of
the successful examples. Although this approach is very useful, the problem is that
large memory capacity is often needed to store past training samples. To alleviate
this problem, another approach has been proposed in which representative samples
are selected to keep and some of them are trained with a current training sample [17]

Int the context of selection of most informative training samples The other dif-
�culty in classi�cation problems lies in the uncertainty of data distribution; that is, we
cannot infer what training samples will appear in future. Hence, it is almost impossible
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to select essential features only from an initial training dataset. To solve this problem,
we can select appropriate features on-line based on the property of data streams. In
this context, there have been proposed several learning algorithms for on-line feature
selection such as Incremental Principal Component Analysis (IPCA) and Incremental
Linear Discriminant Analysis (ILDA). As for IPCA, the approaches are divided into
two large groups: covariance-free approach and an approach to updating eigenvalue
decomposition problems In the �rst approach, several principal components are esti-
mated without keeping a covariance matrix through iterative computations. Although
this approach is very e�cient in the memory costs, they often su�er from conver-
gence problems especially when high-dimensional inputs are given. To alleviate this
problem, Weng et al. have proposed a new covariance-free IPCA method which has
good convergence properties based on an e�cient estimate .[22,7] In the �rst approach,
however, we can obtain principal components one by one; hence, the approximation
error for high-order components could be large depending on initial conditions. On the
other hand, in the second approach, we can obtain eigenvectors and eigenvalues more
correctly because an eigenvalue problem to be solved is successively updated, and then
it is exactly solved every time a new sample is given[Fast incremental learning]

The idea of incremental learning implies starting from the simplest possible network
and adding units and/or connections whenever necessary to decrease error (Alpaydin,
1990a). To be able to decrease network size and increase generalization ability, one
also wants to be able to get rid of units/connections whose absence will not degrade
signi�cantly system's performance. In both cases, as opposed to a static network struc-
ture, small modi�cations to a dynamic network structure during learning is envisaged.
Determination of the network structure and computation of connection weights are not
done separately but together, both by the learning algorithm. Approaches given in the
connectionist literature leading to network structure modi�cation can be divided into
two classes. There are those that start with a big network and eliminate the unneces-
sary and there are others that start from small and add whatever is necessary . Note
that there are also incremental unsupervised learning algorithms like ART (Carpenter
Grossberg, 1987) and GAR (Alpaydin, 1990a) . In unsupervised incremental learning,
one adds a new cluster index whenever the current input is not similar to any of the
existing clusters. The similarity measure is thus done in the input space regardless of
the class to which the input patterns belong. [8]
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Figure 4.2: Taxnomy of Incremental Neural Learning framework

4.8 Start big and remove

In the context of polynomial curve �tting the �start big and remove� approach implies
starting from a high order polynomial and eliminating those high order terms which
do not contribute signi�cantly to success. Such methods are also called pruning or
destructive. If one starts with a large network and if the problem in fact requires a
simpler network, one likes to have the weights of all unnecessary connections and the
output of all unnecessary units equal to zero. There are two approaches in achieving
this:

[1] One may explicitly try to compute how important is the existence of a con-
nection/unit in keeping the error low after the network has been trained and a number
of the least important may then be deleted. The remaining network needs to continue
to be trained. In the ideal case, understanding the importance of a connection/unit
requires training two networks one with the connection/unit and one without. As this
is not practical for large networks, heuristical approaches have been proposed with the
backpropagation algorithm where the sensitivity of the error function to the elimina-
tion of a connection/unit is estimated.

[2] Instead of approximating how much the error will change if the unit/connection
is eliminated, one may also modify the learning algorithm so that after training, the
unnecessary connections/units will have zero weight/output.

58



Chapter 4 : Incremental Learning Based On Neural Networks

4.9 Start small and add

The other approach in dynamic modi�cation of network structure during learning,
which can be named �start small and add,� implies starting from a simple network
and adding units and/or connections to decrease error. These methods are also called
growth or constructive. In the context of curve �tting, it implies starting with a low
order polynomial and adding higher order terms whenever the polynomial of current
order cannot give a good �t for any set of coe�cients. Note that this cannot be done
in a straightforward manner especially in networks where associations are distributed
over a number of shared connections; the whole training should be redone in such a
case. One needs a certain mechanism whereby addition of a new unit improves suc-
cess instead of corrupting the harmony as one would normally expect. There are two
possibilities:

[1] If one can make sure that when the new unit gets activated, none of the ancient
units get activated, there will be no problem. The units should thus somehow be able
to suppress other units when they get control. This implies a competitive strategy and
a local representation.

[2] Another possibility is to divide the network into separately trained subnet-
works where such subnetworks can be added in an incremental manner. One approach
is to have subnets that have competition between subnets, another is to have each
subnet as another hidden layer, it is repeated in a recursive manner to lead to a binary
tree which can then be �squashed� into one hidden layer. In the �cascade correlation�
algorithm (Fahlman Lebiere, 1990), if the required mapping cannot be learned by one
layer, a hidden unit is added and trained while the previously trained

4.10 Overview of Incremental Neural Network Algo-

rithms :

" The �rst incremental neural learning algorithm is the Restricted Coulomb Energy
(RCE) model (Reilly et al., 1982) which is an incremental version of Parzen windows.
Associated with each unit is a number of prototypes where a prototype gets activated
only if the input falls into its domination region, determined by a distance computa-
tion followed by a thresholding. If an input does not activate any prototype, a new
prototype unit is created at that position with an initially large domination region.
Prototypes that get activated for inputs that belong to di�erent classes are penalized
by having their regions decreased which is done by modifying the threshold. The input
space is thus divided into zones dominated by prototype units. A number of sweeps is
necessary to �netune the thresholds where units closer to class boundaries have small
zones and units interior have larger domination zones.

Recruitment learning (Diederich, 1988) is used in the case of structured connec-
tionist networks where a previously free unit is committed to represent a new concept
and required connections built up dynamically (Feldman, 1982). This is a oneshot
learning algorithm, i.e., one iteration is su�cient to learn a new concept.

59



Chapter 4 : Incremental Learning Based On Neural Networks

In the �rst version of GrowandLearn (Alpaydin, 1988), weights in a single layer
were learned by Hebbian learning at one shot. However if an association could not
be learned or if addition of this association corrupted the previously learned associ-
ations, a new hidden unit was added with input weights equal to the input vector.
The output weight was computed in such a manner to compensate for the e�ect of the
input layer and thus impose any output. The problem was that as Hebbian learning
was used, orthogonality of input patterns were necessary and as this is rarely the case,
many units were allocated. However Hebbian learning made the algorithm a oneshot
learning one. GrowandLearn (GAL) algorithm (Alpaydin, 1990a, 1990b), uses also a
local representation by having a number of exemplars associated with each class. It
learns at oneshot but orthogonality of patterns is no longer required.

The �generation� method proposed by Honavar and Uhr (1988) enables a �recog-
nition cone� to modify its own topology by growing links and recruiting units when-
ever performance ceases to improve during learning by weight adjustment using back-
propagation.

The �stepwise procedure� uses subnets of di�erent conceptual interpretations (Kn-
err et al., 1989). In this method, one �rst trains a one layer network with the Perceptron
learning al gorithm assuming that classes are linearly separable. For a class where this
is not satis�ed, one adds a subnet to separate classes in a pairwise manner. For cases
where this does not work either, one performs a piecewise approximation of boundaries
using logical functions by additional subnets. As linear separability is rarely the case,
one generally is obliged to separate classes in a pairwise manner two by two. The
major drawback of this is that the number of hidden units increase exponentially with
the number of class units.

Another approach named the �tiling� algorithm adds a new hidden layer when-
ever the required mapping cannot be done with the existing network (M'ezard Nadal,
1989; explained also in Hertz et al., 1991). There is a �master� unit which is trained
to be the output unit by the pocket algorithm�a variant of the Perceptron learning
algorithm. If this unit cannot learn all the required associations, additional �ancillary�
units are added to learn the rest and another layer is created with a master unit and
learning proceeds till the master unit can learn to behave like the output unit.

The �dynamic node creation� method (Ash, 1989; explained also in M�uller Rein-
hardt, 1990) trains networks with one hidden layer only. Given a certain net that is
being trained, if the rate of decrease of error falls down a certain value, a new hidden
unit is added and training is resumed when all connections are continued to be modi-
�ed.

The �upstart� algorithm (Frean, 1990) uses binary units. Like the �tiling� algo-
rithm, �rst one unit is trained to learn the required associations using the pocket
algorithm. If this is not successful, �daughter� units are created to correct the out-
put of this �parent� unit, for �wrongly on� and �wrongly o�� cases. This weights are
�frozen.� If this does not work either, another hidden unit is added as another hidden
layer and so on. A hidden layer has only one hidden unit but connections skip layers,
i.e., a unit has connections to all the following layers.
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Method proposed by (Hirose et al., 1991) is quite similar to that proposed by
Ash (1989), namely, using a network with only one hidden layer, if the rate of decrease
for error becomes small, additional hidden units are added. Their contribution is that,
once the network converges, the most recently added hidden unit is removed and the
network is checked to determine whether the same function can be achieved by fewer
hidden units. If the network cannot converge when a hidden unit is removed, the last
network that converged is chosen as the �nal network.[7,26,23]

4.10.1 Evolving Neural Networks:

The idea of applying the basic principles and ideas of natural evolution to optimize
the performance of neural network systems is now widely used (e.g. Yao, 1999;Bulli-
naria, 2003). A distinctive feature of evolving neural networks is their adaptability to
a dynamic environment, their ability to change their architecture and learning rules
appropriately with limited or no human intervention. Results obtained from evolving
neural networks have been reported to be signi�cantly better than traditional hand
built neural networks (Yao 1999, Bullinaria 2003).

The standard approach is to start the evolutionary process with an initial pop-
ulation of randomly created arti�cial genotypes, each encoding some or all of the free
parameters of a neural network, or the initial values of an adaptable parameters (such
as connection weights). Each network is then trained and evaluated to determine its
performance on the task at hand, and the �ttest networksare allowed to reproduce
by generating copies of their genotypes, with changes introduced by genetic operators
such as crossover and mutations. This process is repeated for a number of generations
until a network, or group ofnetworks, that best satisfy the performance criteria is ob-
tained. The major di�culties are to determine: which innate parameters to include in
the genotype and how to represent them, how exactly to specify the �tness and choose
the parents, and what are the most appropriate cross-over and mutation operator.[31]

4.10.2 Resource Allocating Network with Long-Term Memory:

The learning algorithm of RAN-LTM based on the linear method is divided into two
phases: the dynamic allocation of hidden units (i.e., the selection of RBF centers in
an incremental fashion) and the calculation of connection weighs between hidden and
output units. The procedure in the former phase is almost the same as that in the
original RAN [5], except that hidden units can be added after the update of connection
weights (see Step 5 in the learning algorithm) and that memory items are generated
at the same time. Once hidden units are allocated, the centers are �xed afterwards.
Therefore, the connection weights are only parameters that are updated based on the
output errors. To minimize the errors based on the least squares method. [14]

4.10.3 Evolving connectionist systems

Evolving connectionist system (ECoSare systems that evolve their structure and func-
tionality over time through interaction with the environment .

Evolving Growing Cluster Classi�er (EGCC): The EGCC is a knowledge-based
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neural network model for classi�cation and is modi�cation of the Radial Basis Func-
tion (RBF) type networks. EGCC is similar to the Evolving Classi�er Function (ECF)
network . The implementation of the concept of "growing" in EGCC is di�erent �om
that of other growing neural networks, such as growing neural gas (GNG) and growing
cell structures (GCS). EGCC has simple training and test procedures that require only
two pass training (no further iterations are needed). There is no need for a parame-
ter setting. A cluster center (CC) grows gradually (according to a prede�ned growth
speed) till its in�uence �eld reaches the maximum in�uence �eld or the in�uence �eld
of cluster center from a di�erent class. The main factor that a�ects the speed of the
training process of EGCC is the growing speed of the CCs that can be set by users. A
CC is learned by a neuron.[21]

4.10.4 Sleep and Awake methods

In [16] presented two types of incremental learning method designed to achieve quick
adaptation with low resources. One approach is to use a sleep phase to provide time for
learning. The other one involves a "meta-learning module" that acquires learning skills
through experience. The system carries out "reactive modi�cation" of parameters not
only to memorize new instances, but also to avoid forgetting old memories using a
meta-learning module.

4.10.5 The ART (adaptive resonance theory) net

If the current instance does not match the associated weight vector of any stored
category neuron to a prede�ned degree, then a new category neuron is allocated for
that instance (neuron generation).[10]

4.10.6 The PNN (probilistic neural network)

A new hidden unit is added for each new instance (neuron generation). [5]

4.10.7 The cascade correlation net

A new hidden unit is added to the net if its output error exceeds a prede�ned level
(neuron generation). The new hidden unit receives trainable input connections from
all the input units and from all preexisting hidden units, and is connected to the output
units. For each new hidden unit, the magnitude.[22]

4.10.8 Incremental backpropagation network

In [17] presented an incremental learning method for pattern recognition, called the
"incremental backpropagation learning network," which employs bounded weight mod-
i�cation and structural adaptation learning rules and applies initial knowledge to con-
strain the learning process. A hidden unit should be added if the neural network cannot
accommodate the current instance through weight adaptation (neuron generation). A
previously added hidden unit should be deleted if its output weight is decayed to a
prede�ned threshold value (neuron elimination).
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4.10.9 Learn++

Learn++, an algorithm for incremental training of neural network (NN) pattern classi-
�ers, Learn++ utilizes ensemble of classi�ers by generating multiple hypotheses using
training data sampled according to carefully tailored distributions.

Learn++ is basedon the following intuition: Each new classi�er added to the en-
semble is trained using a set of examples drawn according to a distribution, which
ensures that examples that are misclassi�ed by the current ensemble have a high prob-
ability of being sampled. In an incremental learning setting, the examples that have
a high probability of error are precisely those that are unknown or that have not yet
been used to train the classi�er.[27]

4.11 Conclusion

An incremental learning algorithm gives a system the ability to learn from new infor-
mation as it becomes available.

Incremental learning aims to improve network capacity by consuming Spatial And
Time components .

The phrase "incremental learning" has been used to refer in the literature to as
diverse concepts as incremental network growing and pruning of classi�er architec-
tures, to selection of most informative training samples , In other cases, some form of
controlled modi�cation of classi�er weights has been suggested, typically by retraining
with misclassi�ed signals .
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Chapter 5

An Incremental Learning Model

Using probabilistic Neural

Network For Face Recogniton

5.1 Facial recognition system

5.1.1 Introduction

IDENTIFYING an individual from his or her face is one of the most nonintrusive
modalities in biometrics. However, it is also one of the most challenging ones.A facial

recognition system is a computer application for automatically identifying or verifying
a person from a digital image or a video frame from a video source. One of the ways to
do this is by comparing selected facial features from the image and a facial database.
It is typically used in security systems and can be compared to other biometrics such
as �ngerprint or eye iris recognition systems. Popular recognition algorithms include
eigenface, �sherface, the Hidden Markov model, and the neuronal motivated dynamic
link matching. A newly emerging trend, claimed to achieve previously unseen accu-
racies, is three-dimensional face recognition. Another emerging trend uses the visual
details of the skin, as captured in standard digital or scanned images. Tests on the
FERET database, the widely used industry benchmark, showed that this approach is
substantially more reliable than previous algorithms.[11]

5.1.2 Notable users and deployments

The London Borough of Newham, in the UK, has a facial recognition system built into
their borough-wide CCTV system. The German Federal Police use a facial recogni-
tion system to allow voluntary subscribers to pass fully automated border controls at
Frankfurt Rhein-Main international airport. Subscribers need to be European Union
or Swiss citizens.Gri�n Investigations is famous for its recognition system used by casi-
nos to catch card counters and other blacklisted individuals. The Australian Customs
Service has an automated border processing system called SmartGate that uses facial
recognition. The system compares the face of the individual with the image in the
e-passport microchip, certifying that the holder of the passport is the rightful owner.
Pennsylvania Justice Network searches crime scene photographs and CCTV footage in
the mugshot database of previous arrests. A number of cold cases have been resolved
since the system became operational in 2005. Other law enforcement agencies in the
USA and abroad use arrest mugshot databases in their forensic investigative work.
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U.S. Department of State operates one of the largest face recognition systems in the
world with over 75 million photographs that is actively used for visa processing.[11]

5.1.3 Early development

Pioneers of Automated Facial Recognition include: Woody Bledsoe, Helen Chan Wolf,
and Charles Bisson.

During 1964 and 1965, Bledsoe, along with Helen Chan and Charles Bisson, worked
on using the computer to recognize human faces (Bledsoe 1966a, 1966b; Bledsoe and
Chan 1965). He was proud of this work, but because the funding was provided by an
unnamed intelligence agency that did not allow much publicity, little of the work was
published. Given a large database of images (in e�ect, a book of mug shots) and a
photograph, the problem was to select from the database a small set of records such
that one of the image records matched the photograph. The success of the method
could be measured in terms of the ratio of the answer list to the number of records in
the database. Bledsoe (1966a) described the following di�culties:

This recognition problem is made di�cult by the great variability in head rota-
tion and tilt, lighting intensity and angle, facial expression, aging, etc. Some other
attempts at facial recognition by machine have allowed for little or no variability in
these quantities. Yet the method of correlation (or pattern matching) of unprocessed
optical data, which is often used by some researchers, is certain to fail in cases where
the variability is great. In particular, the correlation is very low between two pictures
of the same person with two di�erent head rotations. -Woody Bledsoe, 1966

This project was labeled man-machine because the human extracted the coordi-
nates of a set of features from the photographs, which were then used by the computer
for recognition. Using a graphics tablet (GRAFACON or RAND TABLET), the oper-
ator would extract the coordinates of features such as the center of pupils, the inside
corner of eyes, the outside corner of eyes, point of widows peak, and so on. From
these coordinates, a list of 20 distances, such as width of mouth and width of eyes,
pupil to pupil, were computed. These operators could process about 40 pictures an
hour. When building the database, the name of the person in the photograph was
associated with the list of computed distances and stored in the computer. In the
recognition phase, the set of distances was compared with the corresponding distance
for each photograph, yielding a distance between the photograph and the database
record. The closest records are returned.

This brief description is an oversimpli�cation that fails in general because it is
unlikely that any two pictures would match in head rotation, lean, tilt, and scale (dis-
tance from the camera). Thus, each set of distances is normalized to represent the face
in a frontal orientation. To accomplish this normalization, the program �rst tries to
determine the tilt, the lean, and the rotation. Then, using these angles, the computer
undoes the e�ect of these transformations on the computed distances. To compute
these angles, the computer must know the three-dimensional geometry of the head.
Because the actual heads were unavailable, Bledsoe (1964) used a standard head de-
rived from measurements on seven heads.
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After Bledsoe left PRI in 1966, this work was continued at the Stanford Research
Institute, primarily by Peter Hart. In experiments performed on a database of over
2000 photographs, the computer consistently outperformed humans when presented
with the same recognition tasks (Bledsoe 1968). Peter Hart (1996) enthusiastically
recalled the project with the exclamation, It really worked!

By about 1997, the system developed by Christoph von der Malsburg and graduate
students of the University of Bochum in Germany and the University of Southern Cal-
ifornia in the United States outperformed most systems with those of Massachusetts
Institute of Technology and the University of Maryland rated next. The Bochum
system was developed through funding by the United States Army Research Labo-
ratory. The software was sold as ZN-Face and used by customers such as Deutsche
Bank and operators of airports and other busy locations. The software was robust
enough to make identi�cations from less-than-perfect face views. It can also often see
through such impediments to identi�cation as mustaches, beards, changed hair styles
and glasses-even sunglasses.[10]

In about January of 2007, image searches were based on the text surrounding
a photo, for example, if text nearby mentions the image content. Polar Rose technol-
ogy can guess from a photograph, in about 1.5 seconds, what any individual may look
like in three dimensions, and thought they will ask users to input the names of people
they recognize in photos online to help build a database.

5.1.4 General Framework

In most cases, a face recognition algorithm can be divided into the following functional
modules: a face image detector �nds the locations of human faces from a normal picture
against simple or complex background, and a face recognizer determines who this
person is. Both the face detector and the face recognizer follow the same framework;
they both have a feature extractor that transforms the pixels of the facial image into
a useful vector representation, and a pattern recognizer that searches the database to
�nd the best match to the incoming face image. The di�erence between the two is the
following; in the face detection scenario, the pattern recognizer categorizes he incoming
feature vector to one of the two image classes: face images and non-face images. In
the face recognition scenario, on the other hand, the recognizer classi�es the feature
vector (assuming it is from a face image) as Smith's face, Jane's face, or some other
person's face that is already registered in the database. [13]

5.1.5 Variations in Facial Images

Face recognition is one of the most di�cult problems in the research area of image
recognition. A human face is not only a 3-D object, it is also a non-rigid body. More-
over, facial images are often taken under natural environment. That is, the image
background could be very complex and the illumination condition could be drastic.
Figure 2 is an example of an image with a complex background.

The variations in facial images could be categorized as follows:
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• Camera distortion and noise

• Complex background

• Illumination

• Translation, rotation, scaling, and occlusion

• Facial expression

• Makeup and hair style

Camera distortion and noise are standard variations in image recognition problems.
Previous researchers have developed numerous tools to increase the signal-to-noise
ratio. To deal with complex image background, the recognizer requires a good face
detector to isolate the real faces from other parts of the image. Illumination is often a
major factor in the obstruction of the recognition process. To alleviate the in�uence of
the illumination e�ect, people may take conventional image enhancement techniques
(dynamic thresholding, histogram equalization), or train a neural network for feature
extraction (Brunelli, 1993)(Lin, 1997).

Translation, scaling, and rotational variations should also be dealt with in the
face detection phase. Among the three variations, translation is the easiest one to
solve. A simple windowing approach can do the job. Scaling problem (di�erent face
sizes) is also easy to solve if we create an image pyramid to represent the input image
(image pyramid is a collection of the same image with di�erent resolutions). Rotation
along the Z axis (the axis that is perpendicular to the image plane) is harder. A brute
force solution is time-consuming.

Another way to deal with facial expression changes is, instead of using the whole
facial area to perform recognition task, using only the signi�cant facial region. The
signi�cant facial region is a square area close to the center of the human face. It con-
tains both eyes and the nose, but excludes the mouth and ears. Study shows that facial
expressions and hair style changes have less in�uence on the signi�cant facial region,
and yet the face is still recognizable by viewing only the signi�cant facial region.[13]

5.1.6 Comparative study

Among the di�erent biometric techniques facial recognition may not be the most re-
liable and e�cient but its great advantage is that it does not require aid from the
test subject. Properly designed systems installed in airports, multiplexes, and other
public places can detect presence of criminals among the crowd. Other biometrics like
�ngerprints, iris, and speech recognition cannot perform this kind of mass scanning.
However, questions have been raised on the e�ectiveness of facial recognition software
in cases of railway and airport security.
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5.1.7 Incremental Learning vs. Batch Learning in the context
of Face recognition:

Learning methods fall into two categories,batch and incremental. A batch learning
method requires that all the training face images are available at a �xed training time.
It is di�cult to determine a priori how many and what kinds of training images are
needed in order to reach a required performance level. Thus, a batch learning method
requires multiple cycles of collecting data, training, and testing. The limited space
available to store training images and the need for more images for better performance
are two con�icting factors. Therefore, if a batch learning method is used, the task of
collecting a su�ciently good set of training samples is very tedious in practice. Fur-
ther, each batch training session takes a signi�cant amount of time to learn the entire
batch of the training data.

With an incremental learning method, training samples are available only one (or
a small set) at a time. Each training sample is discarded as soon as it has been incor-
porated into the system. If the output result from the current system is not correct (or
with a large error), the current sample is used to update the system [54]. Otherwise,
the current training image is rejected. This selective learning mechanism e�ectively
prevents redundant learning in order to keep the size of the face-image database rela-
tively small. Using this incremental learning mode, updating the system is convenient.
We do not need to load all the old images to re-learn when new images are added. All
we need to do is to run an update algorithm using only the new images.[11]

5.2 Probabilistic models in Machine Learning :

Unlike other methods probabilistic machine learning is based on one consistent prin-
ciple which is used throughout the entire inference procedure. Probabilistic methods
approach inference of latent variables, model coe�cients, nuisance paramaters and
model order esentially by applying Bayesian Theory. Hence we may treat all unkown
variables identically which is mathematically nice. For computational reasons a fully
probabilistic model might not be feasible. In such situations we have to use approxima-
tions. Obviously for an emprirical methodology, a mathematical consistency argument
is not too convincing.

Advantages of using probabilistic models:

Fully probabilistic models avoid "black box" characteristics. We may instanti-
ate arbitrary sets of variables and for diagnosis purpouses infer the distributions over
(or expectations of) other variables of interst and thus obtain some insight how we
obtain a particular decision. Using a probabilistic model is relatively easy. Inference (if
properly implemented) should be insensitive to the setting of all "�ddle parameters"
and will thus provide results that are close to optimal. Probabilistic models provide
means for intelligent sensor fusion which allows e.g. to combine information that is
known with di�erent certainty. [26]

Go Ahead ! with some principles of Statistics:
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Definition 5 A Population is the set of all possible states of a random variable.
The size of the population may be either in�nite or �nite.

Definition 6 A Sample is a subset of the population; its size is always �nite.

Definition 7 A parameter is a numerical quantity measuring some aspect of a
population of scores. For example, the mean is a measure of central tendency.

Definition 8 A probability distribution describes the values and probabilities that
a random event can take place. The values must cover all of the possible outcomes of
the event, while the total probabilities must sum to exactly 1, or 100%.

Definition 9 A probability distribution is called discrete if its cumulative distrib-
ution function only increases in jumps. The set of all values that a discrete random
variable can assume with non-zero probability is either �nite or countable in�nite be-
cause the sum of uncountable many positive real numbers (which is the smallest upper
bound of the set of all �nite partial sums) always diverges to in�nity. Typically, the
set of possible values is topologically discrete in the sense that all its points are isolated
points. But, there are discrete random variables for which this countable set is dense
on the real line.Discrete distributions are characterized by a probability mass function,
p such that:

F (x) = Pr[X ≤ x] =
∑
xi≤x

p(xi)

Definition 10 By one convention, a probability distribution is called continuous

if its cumulative distribution function is continuous, which means that it belongs to
a random variable X for which Pr[X = x] = 0 for all x in R. Another convention
reserves the term continuous probability distribution for absolutely continuous distri-
butions. These distributions can be characterized by a probability density function: a
non-negative Lebesgue integrable function f de�ned on the real numbers such that:

F (x) = Pr[X ≤ x] =

x∫
−∞

p(xi)

Definition 11 A statistical parameter is a parameter that indexes a family of
probability distributions.

5.3 statistical parameters Measurments

This section introduces a description for Univariate data that describes individual
variables [18,34]
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5.3.1 Measures of Location (central tendency)

When describing data with a few parameters, one can specify characteristic properties
of the data distribution. Let us, for example, study a data set obtained from the
measurement of the body weight of newly born babies. We could observe that:

• the average weight is 3.4 kg, or that

• 50% of the babies weigh less than 3.3 kg, or that

• 95% of the babies have a weight between 2.8 and 4.3 kg.

5.3.1.1 Mean

The mean is commonly called the average. It is calculated by adding all the values and
dividing the sum by the number of values. Let xi represent the values of a variable X,
with i = 1, 2, ..., n. The mean is then de�ned as:

x =
1

n

n∑
i=1

xi

5.3.1.2 Median

When considering the distribution curve (or the histogram) of a sample, the median
is the location which divides the area under the curve (or the area of the histogram)
into two equal halves. The relative position of the mode, the median, and the mean
provides an indication of the skewness of a distribution. The median is calculated as
follows:

• Sort all values in ascending order.

• If the number of values is odd, take the middle number.

• If the number of values is even, take the average of the middle two numbers.

Example: Calculate the median of the following values: 4.4, 5.1, 4.1, 6.2, 5.7, 5.6, 7.0

1. Sort the seven values : 4.1, 4.4, 5.1, 5.6, 5.7, 6.2, 7.0

2. Pick the middle value (since the number of values is odd) as the median: 5.6

5.3.1.3 Mode

The mode is the value which is most frequent in the data set. The mode is only of
interest for large data sets, since the mode may be meaningless for a small sample.
The relative position of the mode, the median, and the mean provides an indication
of the skewness of a distribution.
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Figure 5.1: Mode.

Figure 5.2: Mean, Median, Mode

5.3.1.4 Quartile (Fractiles)

Quartiles partition - as the name suggests - the corresponding distribution into four
quarters each containing 25% of the data. A particular quartile is therefore the border
between two neighboring quarters of the distribution. The calculation of the quartiles
is sometimes not quite clear (especially if the number of observations of a sample is
not divisible by four). We therefore provide exact instructions how to calculate the
quartiles. Assuming a sample of N observations the quartiles are de�ned as follows
(round stands for the rounding to the nearest integer):

1. quartile: the value of the sorted series of observations having the position x =
round(0.25 ∗ (N + 1))

2. quartile (median): if N is even, Q2 is the mean of the two values at the positions
N
2
and N

2
+ 1; if N is odd, Q2 is the value at the position N

2
+ 1.

3. quartile: the value of the sorted series having the position x = round(0.75∗ (N +
1))
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Figure 5.3: Fractiles

Figure 5.4: Quartile

Example : Assume that we have obtained the following 20 observations:

2, 4, 7, -20, 22, -1, 0, -1, 7, 15, 8, 4, -4, 11, 11, 12, 3, 12, 18, 1

In order to calculate the quartiles we �rst have to sort the observations:

-20, -4, -1, -1, 0, 1, 2, 3, 4, 4, 7, 7, 8, 11, 11, 12, 12, 15, 18, 22

The position of the �rst quartile is x = round(0.25 ∗ (20 + 1)) = round(5.25) = 5,
which means that Q1 is the 5th value of the sorted series, namely Q1 = 0. The other
quartiles are calculated in the same way resulting in Q2 = 5.5 and Q3 = 12.

5.3.2 Measures of Variation

If you are collecting data on a process, it is important to determine not only the
location of the mean, but also to look at the variation within the data. If you are,
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for example, interpreting the results of a chemical analysis, you may put much more
emphasis on the obtained average value if you know that the individual samples vary
only very little in comparison to the mean.

5.3.2.1 Range

Range is the di�erence between the highest and lowest data element.

5.3.2.2 Variance

In addition to the measures of location for describing the position of the distribution
of a variable, one has to know the spread of the distribution (and, of course, about
its form). The spread of a distribution may be described using various parameters, of
which variance is the most common one. Mathematically speaking, the variance v is
the sum of the squared deviations from the mean divided by the number of samples
less 1:

v = σ2 =
1

n− 1

n∑
i=1

(xi − x)2

Examination of this formula should lead to at least three questions:

1. Why take the sum of squares and not, for example, the sum of absolute deviations
from the mean? The answer to this is quite simple: the mathematical analysis
is simpler, if the sum of squares is used.

2. Why is the sum divided by n − 1; wouldn't it be more logical to take just n?
Here again, the answer is simple: the concept of the degree of freedom.

3. What about the σ2 in the formula? The parameter σ which is apparently the
square root of the variance is called the standard deviation.

5.3.2.3 Standard Deviation

The standard deviation is the positive square root of the variance, and is depicted by
s for samples, or by σ for populations. The standard deviation is a useful measure
of variability because of its mathematical tractability. There is often some confusion
about the standard deviation and its interpretation. One should carefully distinguish
between the formal de�nition of the standard deviation and the interpretation of it.
The standard deviation as a numerical value can always be calculated provided that
there are enough samples available. In contrast to this, the interpretation of the
standard deviation as a measure of spread can be fully utilized only if the type of the
distribution is known.

5.3.2.4 Interquartile Range

As with the mean and the standard deviation, distributions can also be described by
the median and a range of fractiles around the median. The interquartile range (IQR)
in particular is used to describe the dispersion of the data.
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Figure 5.5: Interquartile Range

The interquartile range (IQR) is de�ned as the range between the �rst and the
third quartile. Please note that the IQR contains exactly 50% of the data within the
distribution.

5.3.3 Moments of a Distribution

Moments can be used to describe several properties of a distribution. There are two
di�erent methods to de�ne moments; one kind of moment is called moments about
zero and is calculated according the following equation:

1

n

n∑
i=1

(xi)
r

Another kind of moment is called "moments about the mean"; it is calculated according
to:

1

n

n∑
i=1

(xi − x)r

The exponent r de�nes the rth moment. As you can easily see, the �rst moment about
zero is equal to the mean value, the second moment about the mean is the variance.
The third moment is related to the skewness, and the forth moment is related to the
kurtosis of a distribution.

5.3.3.1 Skewness

A distribution is said to skewed to the right (left) if it shows a tailing o� at the
right (left). The amount of skewing can be determined by the third moment of the
distribution, which is usually called skewness:

1

n ∗ σ

n∑
i=1

(xi − x)3

Note that the skewness is occasionally de�ned by a somewhat di�erent formula, leading
to di�erent values.
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Figure 5.6: Skewness

5.3.3.2 Kurtosis

The kurtosis (or excess) measures the relative �atness of a distribution (as compared to
the normal distribution, which shows a kurtosis of zero). A positive kurtosis indicates a
tapering distribution (also called leptokurtic distribution), whereas a negative kurtosis
indicates a �at distribution (platykurtic distribution). The kurtosis is de�ned by the
following formula: (

1

n ∗ σ

n∑
i=1

(xi − x)4

)
− 3

Below you �nd two examples of distributions with di�erent kurtosis.

Figure 5.7: Kurtosis

Note that the kurtosis is sometimes de�ned by another formula, omitting the term
"-3" in the formula above. In this case a normal distribution would yield a kurtosis of
3.

5.4 Incrementality notion and statistical parameters

we note that we can show the principles of incrementality notion inside statistical pa-
rameters itself like ( average, variance, momentum , etc..). Let us take this Example
to understand how statistical parameters can be an e�cient incremental way to esti-
mate the problem.. for example : Average . If we have a class compose of 5 students
and the teacher wants to make an evaluation of the class level using a statistical way
depending on their marks to calculate the class mean .. Let xi denotes to the student
marks:{15, 20, 10, 6, 16}, and n the number of students, and start calculating the mean
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equation as following :

x1 =

n∑
i=1

xi

n
(5.1)

x1 =
15 + 20 + 10 + 6 + 16

5
= 13 (5.2)

Assume that I forgot to calculate a student's mark. It's not logical to start over and
calculate overall data.In this case we will add this student's mark to the average in
incremental way as following :

x2 =
x1 ∗ n

n + 1
(5.3)

Assuming that new mark = 16. That's mean :

x2 =
13 ∗ 5 + 16

5 + 1
= 13.5 (5.4)

This is the same if we start over :

x1 =
15 + 20 + 10 + 6 + 16 + 16

6
= 13.5 (5.5)

In the same way we can calculate the rest of statistical parameters , For this reason
we conclude that all statistical parameters are incremental in their funtion .Due to
that we can conclude that every method that uses statistical parameters can be eaisly
worked incrementally .

We noted that there is some neural networks methods utilize probabilities and
statstic like PNN,GNN and APPN.

In the next section we will introduce the PNN and APNN concepts and we will
explain later how to use APNN to bulid a robust incremental learning NN model .

5.5 Architecture of PNN Network

In 1990, Donald F. Specht proposed a method to formulate the weighted-neighbor
method in the form of a neural network. He called this a Probabilistic Neural Network.
PNN has gained interest because it o�ers a way to interpret the network's structure
in the form of a probability density function and it is easy to implement. An accepted
norm for decision rules or strategies used to classify patterns is that they do so in a
way that minimizes the expected risk. Such strategies are called Bayes strategies and
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can be applied to problems containing any number of classes. Figure[5.8] is a diagram
of a PNN network.[5]

Figure 5.8: Diagram of a PNN network

All PNN networks have four layers:

1. Input layer There is one neuron in the input layer for each predictor variable.
The input neurons (or processing before the input layer) standardize the range
of the values by subtracting the median and dividing by the interquartile range.
The input neurons then feed the values to each of the neurons in the hidden
layer.

2. Hidden layer This layer has one neuron for each case in the training data set.
The neuron stores the values of the predictor variables for the case along with
the target value. When presented with the x vector of input values from the
input layer, a hidden neuron computes the Euclidean distance of the test case
from the neuron's center point and then applies the RBF kernel function using
the sigma value(s). The resulting value is passed to the neurons in the pattern
layer.

3. Pattern layer / Summation layer The next layer in the network there is
one pattern neuron for each category of the target variable. The actual target
category of each training case is stored with each hidden neuron; the weighted
value coming out of a hidden neuron is fed only to the pattern neuron that
corresponds to the hidden neuron's category. The pattern neurons add the values
for the class they represent (hence, it is a weighted vote for that category).

4. Decision layer The decision layer is di�erent for PNN, the decision layer com-
pares the weighted votes for each target category accumulated in the pattern
layer and uses the largest vote to predict the target category.
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5.6 Advanced PNN

[4] Figure[5.9] shows the neural network organization for classi�cation of input pat-
terns X into two categories. In this �gure, the input layer is the merely distribution
units that supply the same input values to all of the pattern units. The second layer
Advanced Probabilistic Neural Network [31] consists of a number of pattern units. In
PNN, each pattern unit (shown in more detail in �gure[5.10]) forms a dot product of
the input pattern vector X with a weight vector Wi, Zi = X ∗Wi, and then performs
a nonlinear operation on Zi before outputting its activation level to the summation
unit. Instead of the sigmoid activation function commonly used for back-propagation
neural network, the nonlinear operation used here is exp[(Zi − 1)/σ2]. Assuming that
both X and Wi are normalized to unit length, this is equivalent to using:

exp

[
−(X −Wi)

T (X −Wi)

2σ2

]
(5.6)

Figure 5.9: Structur of a PNN

However, the probability density function did not consider the individual proba-
bilistic property of variables in PNN because only one global smoothing parameter was
used. Therefore, in [31] paper, the advanced probabilistic neural network (APNN) was
proposed to re�ect the global probability density function by summing the heteroge-
neous local probability density function automatically determined to use the individual
standard deviation of variables. The basic idea is to individually use the heterogeneous
local probability density function in a variable because the probabilistic property of
variables is not homogenous but heterogeneous. The individual probability density
function was derived from the standard deviation of variables. The probability den-
sity function for ith sample is determined to sum di�erent standard deviations of the
training vector with jth variables (�gure[5.11]). Therefore, the nonlinear operation of
APNN can be expressed as

exp

[
−

p∑
j=1

(X −Wi,j)
2

2σ2

]
(5.7)
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Figure 5.10: Pattern layer of PNN

Where i and j are indices for the ith training pattern and jth variable; p is the
number of variables; Xj is the jth variable of input data; Wi,j is the jth variable of the
ith training vector.

Figure 5.11: Pattern layer of APNN

5.7 Incremental APNN

Our architecture of Incremental Neural network for face recognition depended on :

1. The architecture based on Probablstic Neural network [5].

2. The transfer function in hidden layer based on APNN [4].

3. The architecture based on constructive learning (start small and add)

4. The incrementality notion is not limited only in adding neurons, but also in
updating weights using the incremental principle in statistical parameters.
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5.7.1 Representation of Incremental APNN

The Architecture of PNN is depending on a constructive networks principles (start
small and add) .The network start with neither hidden neurons nor pattern neurons
, when input data come to the network learns incrementally and start Add one by one .

N.B . : No training set is preserved . just some information about every training set
(images) is preserved in the weights of hidden layer and they used to learn new images.

To understand the representation of our neural network architecture we introduce
here some concepts which can be used .

5.7.1.1 Input data representation

As we know that input data to our architecture are images of faces in gray scale , but
for simplifying of description here we will use images of handwritten characters which
assume size 16*16 pixels . In this case the number of pixels in each image = 256 .

Figure 5.12: Input data representation

Let us Assume that we have a set of images represent the characters handwritten
of numbers 1 and 8 , as following :

• U = {C1, C2}.
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• C1 = a set of images that represents number 1 .

• C2 = a set of images that represents number 8 .

Figure 5.13: U = {C1, C2}

That means :

• C1 = {I4, I5, I6, I7, I8, I9}.

• C2 = {I1, I2, I3}.

In �gure[5.13]we notice there are many handwritten ways to write a character for
example : we can write character one in di�erent ways.
Some people write number one just like this :

Others may write with this way :

Someone else can write like :

And all those represent number one ,Therefore , we can classify more speci�c subsets
by collecting the most similar images in shape in one subset as following :

C1 = {I4, I5, I6, I7, I8, I9}
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H2 = {I4, I5, I6, I7}

H3 = {I8, I9}

H2, H3 are subsets of C1.
Note : H2 ∩H3 = φ.
Then we conclude that Hi = a group of Characters images belongs to the same char-
acter set Cj (the Characters images have convergence in their features).
By the same way for number 8 but in our case we have one subset for number 8 because
all of them are resembled and have the same features :

C2 = {I1, I2, I3}

H1={I1, I2, I3}

H1 is a subset of C2.
Then , each set has one or more subset which contains set of images which are most
correspondence in their features.
Notion of classes and subclasses in our architecture:

• Class= set (C)

• subclass= subset (H)

5.7.2 Representation of input layer

Figure 5.14: Input layer

Each neuron in this layer represents a value of some statistical parameter calculated
upon the input image. In input layer for the input image we can calculate one or
more statistical parameters as we need in our work, For example in this case we will
calculate four statistical parameters to the population as follow:

• Population size = Number of pixels in one image .
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• S = {0, 8, 220, 51, 69, ..., 198, 68, 75, 179, 116}. Population Set .

• Each neuron will apply the function of statistical parameters instead of simple
summation function upon the Population set.

• N1 calculates the Mean upon S denoted by M.

• M = 0+8+220+51+69+...+198+68+75+179+116
16∗16

.

• N2 calculates V ariance upon S Denoted by V .

• N3 calculates Kurtosis upon S denoted by Ku.

• N4 calculates Skewness upon S denoted by Sk. .

• Nb : The number of neurons in the input layer equals the number of statistical
parameters calculated upon the image, in this case Number of neurons = 4 .

• Then the representation of the input layer will appear as following :

Figure 5.15: Input layer

Then each neuron will �re its value to all neurons in the next layer (hidden layer) as
shown in the �gure.

5.7.3 Represenation of hidden layer

Neourn in this layer = subclass.
Each neuron in this layer represents a subclass, refering to the characters images
example, we have three subclasses tow subclasses represent character one and one
subclass represents character 8 as shown in �gure[5.16].
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Figure 5.16: Hidden layer

In this layer each weight represents one kind of statistical parameters of union of
all images in the subclass. These parameters (weights) how they are calculated for all
images in the subclass !

Lets take the simple example of a statistical parameters (Mean) and we take neu-
ron H1 to exemplify to answer this question. Referring to �gure[5.17], the subclass
H1 = {I1, I2, I3}

Figure 5.17: H1 = {I1, I2, I3}

As we know that the image sizes 16*16 then the representation of each image above
will be as follow :
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Figure 5.18: H1 = {I1, I2, I3}

When we want to calculate the mean for all images in the subset we will use as
follow:
Population = H1 = the union of pixels of all images in a subset. H1 = {I1, I2, I3}.

3 images and Each image has 16*16 pixels then total Number of pixels = 3*16*16
= 2028. Population size = Number of pixels in subset = 18.
H1 = {0, 8, 220, .., 75, 179, 116, 77, 197, 101, .., 187, 182, 111, 49, 203, 31, ..86, 155, 167}.

Mean(H1) = (0+8+220+..+75+179+116)+(77+197+101+..+187+182+111)+(49+203+31+..86+155+167)
2028

=
77.6.
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NB : we have to emphasis that the general mean of a subclass is not the mean of
the mean of all images separately.

Ex : Mean(H1) = Mean(I1)+Mean(I2)+Mean(I3)
3

this is not the general mean .

By the same way can calculate the other statistical parameters for this subclass .
As we discussed in previous section of representation of input layer , each neourn in
input layer �res to the all neourns in next layer (hidden layer), then each neourn in
hidden layer has weights equals to the number of neurns in input layers in our case we
have 4 weight for each neourn in the hidden layer .
The number of neorns in hidden layer depends on how many subclasses we have for
each class in our set .

5.7.3.1 The notion of inctrumentality of statistical parameters in a neourn
in hidden layer

In real, our approach uses the incremental way to add any new image to the subclass in
the hidden layer using the statistical parameters manipulation . by referring to above
example of students, if we want to add a new image of number 8 to the subclass H1

as follow :

Figure 5.19: Add Another 8.

We have already information saved in H1 that the preserved value of pixels number
was = 2028 because we have 3 images in this subclass , and weights values were se
respectively as W1 = 77.6 , W2 = .. , W3 = .. , W4 = ... Then we start add the new
information of the new image to the subset H1 as follow :

New W1 = 77.6∗2028+(96+231+134+..228+121+35)
2028+16∗16

= 130.2.

And we do the same thing for the rest of weights of subclass H1. By this way we
added new image to H1 in incremental way that is grace of the incremental statistical
parameters way to add a new information without need to start manipulation over the
whole set.
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Now : H1 = {I1, I2, I3, I10} and the new Number of pixels = 24 , W1 = M = 130.2 ,
W2 = .. , W3 = .. , W4 = ...

5.7.3.2 Summation and Activation Function (Transfert Function)

The activation function returns the distance value between weights and the coming
values from input layer. Each subclass(Hi) in hidden layer belongs to a main class
(Ci) in next layer (pattern layer), in our example means :

C1 = {H1} C2 = {H2, H3}

Figure 5.20: Class of 8.

Figure 5.21: Class of 1.
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Then each neuron in hidden layer (subclass ) �res just to its main class in pattern
layer as it demonstrated in �gure[5.22].

Figure 5.22: Neuron in hidden layer �res just to its main class in pattern layer.

N.B. : The notion of subclasses in the hidden layer helps to consume the space
memory by decrease the size of the network.

The idea of subclasses arose to decrease the number of hidden layer neurons that
leads to decrease consuming of memory , that is accomplished by grouping the most
convergent Characters samples belong to one character in one subclass , insted of
representing each character sample by a single neuorn.

5.7.4 Pattern layer (Summation layer)

Neourn in this layer = class. Each neuron in this layer represents a Class as shown in
�gure[5.23]. Summation and activation function, for each neuron in this layer return
the minimum value of the incoming values from the hidden layer . (The minimum
value represents the nearest subclass to the input image ) .

Each neuron �res the minimum value to the next layer (output layer).

NB: Number of neurons in this layer depends on how much we have classes.
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Figure 5.23: Pattern layer.

5.7.5 Output layer (Decision Layer )

This layer contains one neuron that the summation Activation function returns the
minimum value of the incoming values from the pattern layer(The minimum value
represents the class which the input image is belonging to) .

Figure 5.24: Output layer.

5.7.6 Learning phase (How does it work ! )

As noticed in the learning algorithm above, our NN uses Non supervised learning, that
means, when we introduce a new image to the NN to learn it , at �rst we have to know
this image for any class and subclass is belonging to .

Then the learning phase will start by recognition phase to determine the class
and the subclass that the input image is belonged to.

5.7.7 Demonstration Example For our Network

Assuming that we have already a constructive NN with two classes in the pattern layer
and three subclasses in the hidden layer . the example of the characters we mentioned
above :
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Figure 5.25: Demonstration Example For our Network.

5.7.8 Recognition phase

The usual recognition method will follow in to recognize which class and subclass the
input image is belonged to . That means , the question posed here : Is there any class
corresponded with the new image !! , in other words Is there any class converge to the
input image in their features , if yes , then �nd the nearest subclass to this image with
the same principle of convergence.

Input layer will compute the statistical parameters of the input image and �re
to the hidden layer , then the hidden layer calculate the Euclidian distance between
weights and coming value from the input layer using the transfer function of APNN
In [] as follows :

Next, the hidden layer �res these values of distance to the next layer (pattern
layer) which selects some values (representative distances) to come out to the next
layer. Output layer select the minimum value of the representative distances. The
output layer returns the nearest class and subclass to the input image.

5.7.9 Learning phase

There are three levels of learning in our architecture, Remember that we have not train-
ing step because we add the information sequentially without need to repeat learning
all training set to learn the new information.

N.B : it is important to know that the neural network does not preserved the
images themselves in the hidden layer ,but it preserves the information about the
training set and just it updates the structure .

5.7.9.1 Level One: Add new image to existening subclass

Description: Just updating weights!

Input image = I.
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After Recognition process we realize that the input image is belonging to class
C2 and the nearest subclass is H2 and the distance between the H2 and H2 U I is
small. Then we don't need to add a new subclass for this image because as we have
mentioned the features of this image are resembled to those features of the images in
that subclass and when I add this new information of this image will not a�ect upon
the learning process.

Figure 5.26: Add new image to existence subclass.

Figure 5.27: Add new image to existence subclass.

5.7.9.2 Level two: Add new image as a new subclass to existening class

Description: Create a new neuron in the hidden layer and match with the correspon-
dence neuron in the pattern layer.

After recognition process we realize that the input image is belonging to class
C2 and the nearest subclass is H2 but the distance between the H2 and (H2UI) is
large .Then if we add the information of I to the existence information of H2 may
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a�ect upon learning and it may lead to over�tting. Therefore, we have to add a new
subclass H4 for this image in the hidden layer and link it to C2 in the pattern layer.

Figure 5.28: Add new image as a new subclass to existence class.

5.7.9.3 Level Three: Add new image as a new class and a new subclass as
well

Description: Create a new neuron (class) into the pattern layer and add new neuron
(subclass) to the hidden layer, then match a subclass to the class.

This image is completely new to the network and the network cant match any
class resemble to the new image, that's mean we have to add a new class C3 in the
pattern layer for the input image and new subclass H4 for the hidden layer.

Figure 5.29: Add new image as a new class and a new subclass as well.
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5.8 Incremental Learning scheme

Assume,

D new data .

C = {C1, C2, C3, .., Ck}, classes set.

H = {H1, H2, H3, .., Hp}, subclasses set.

ε small value is used as a threshold.

Add New data D:

1. Compare and Find the nearest class Ci to D.

2. if Ci is far from D , the distance between D and Ci greater than ε then.

• Add new class Ck+1, Add neourn into pattern layer

• Add new sub class Hp+1, Add neourn into hidden layer

• Link Hp+1 to Ck+1 .

else: Ci is near to D , the distance between D and Ci less than ε then Add D
to Ci :

(a) Compare and Find in subclasses set of Ci the nearest subclass Hj to D.

(b) if the distance between Hj and (Hj ∪ D) greater than ε then :

• Add a new subclass Hp+1 which represente only D, Add neourn into
hidden layer

• Link Hp+1 to Ci .

else: the distance between Hj and (Hj ∪ D) less than ε then add D to Hj,
update the weights of the neourn that represent Hj in hidden layer.

Follows by schem[5.30].
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Figure 5.30: Diagram of Incremental Learning scheme

N.B: This Algorithm is considered as unsupervised learning, Because it researches

�rstly about the nearst class and subclass to the input data . This model also could

be a supervised learning with determine from the begning to which class this input

data belongs to , and this is a special case of the scheme described above.
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5.9 Feature extraction

The goal of feature extraction is to �nd preferably small number of features that are
particularly distinguishing or informative for the classi�cation process,and that are
invariant to irrelevant transformations of the data. our feature extracion works based
on divid the image into Blocks and make up some calculation using any statistical
parameter on every block , 'mean' in the simplest sense.

5.9.1 Block extraction

The image Blocks are extracted by sliding a rectungular window from left to right and
from top to bottom across the image. The blocks would be overlapped , i.e , each
block will overlap the others blocks by some way * more details in next section. The
blocks have the same height Tv , width Th ,horizantal and vertical overlap Pv,Ph.
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Figure 5.31: Block extraction

Assuming that

• T0 = number of vertical blocks , T1 = number of horizontal blocks

• Tv = Hight of vertical blocks , Th = width of horizontal blocks

• Pv = vertical overlap , Ph = horizontal overlap

• H = Hight of the image , W = width of the image then and following by the
equation :

T0 = (H − Tv)/(Tv − Pv) + 1 (5.8)

T1 = (W − Th)/(Th − Ph) + 1 (5.9)
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Follows by ,Figure[5.31]. The Advantage of dividing the image into blocks :

Let assume that we have an image sizes 100x100 dimentions that leads to have
10000 pixels for the whole image. in the simple case each pixel would represent a node
to come into input layer , in this case it would be 10000 nodes are going to enter to the
input layer which will cause to have a big neural network that it will drive reserving
more space in the memory . in contrast, if we divded the image into blocks the number
of nodes would be less because each block will represent number of pixels , i.e, if we
divide the image sizes 100x100 into 100 blocks of 10x10 . the second Advantage of
using blocks concept is the importance of taking the considerartion of the global view
in data representation ,i.e , one pixel may not give a useful represntation to the image
and make a local view.

The Advantage of overlapping Blocks:

Depending on the same example have mentioned above , assuming that we di-
vide the image into 100 blocks every block has 10x10 dimention , i.e , each block has
100 pixels , this way of dividing is not wrong and we will get less number of nodes ,
but in the other hand it would be less globalitization for data representation , due to
this reality we can take a medium case and make overlapping when we divid the image
, take an overlap of 5x5 dimentions it would be have 400 blocks .

5.10 Testes

In all �elds and in all disciplines, each new product must To be tried and tested to
know the advantages and disadvantages if any, but also and especially for a position
in relation to its competitors. Our system is no exception. The goal is to obtenirles
best parameters to guarantee a rate of recognition up to a minimum, this is to �nd a
compromise between rates recognition and time of recognition. We present �rst base
faces on which were test, then we will see what are the relevant parameters and their
in�uences on system. Finally, we will give the results of experiments and we draw
conclusions.

5.10.1 The database of faces ORL

The database of faces ORL (Olivetti Research Laboratory) is the basis of base line data
for the system of automatic recognition of faces. Indeed, all systems face recognition
found in the literature were tested on this basis which was conducted by ATandT
Laboratories of the University Cambridge in England. This database contains 400
images of faces corresponding to 40 individuals, therefore, 10 di�erent images of each
individual. The images for a single person were taken at intervals of time di�erent up
to three months.
The extraction of faces from the images was done manually, all possible changes and
predictable face were taken into account. There is change due to the conditions of
accession change of illumination , change scale because of the distance between the
acquisition and the individual. Also, the base ORL takes into account changes in
facial expressions of a individual , and changes in the orientation of the face . The
database also includes individuals Di�rent ages, races and sexes . An individual may
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wear glasses , have a beard or moustache and change hairdressing. Cases such are
represented in the database.

Figure 5.32: Example of a change of lighting

Figure 5.33: Example of a change of scale

Figure 5.34: Example of a change of facial expressions
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Figure 5.35: Example shift face

Figure 5.36: Example of individuals carrying or without glasses

Figure 5.37: Example change hair and beard presence
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Figure 5.38: Example of individuals of di�erent ages, gender and skin color
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5.11 Result

5.11.1 Rate

Apprche Recognation Rate
Auto Association and Classi�cation NN
[7]

20%

Dynamic Link Matching [8] 80%
Eigenface [9] 80%
HMM [2] 85%
VFR Model [10] 92.5%
Convolutional NN [12] 96.2%
Our APNN 96.5%

EHMM [2] 98.5%

Table 5.1: Approachs comparison

5.11.2 Number of blocks

Figure 5.39: Whenever size of extract blocks increases , Number of extracted blocks
decreases
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5.11.3 Size of NN

Figure 5.40: Whenever the extracted block size increases, the NN size decreases.

5.11.4 Time of learning (ms) of one image

Figure 5.41: Whenever the extracted block size increases, Time of learning decreases.
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5.11.5 Time of recognition (ms) of one image

Figure 5.42: Whenever the extracted block size increases, Time of recognition de-
creases.

5.11.6 Rate with the Size of block

Figure 5.43: Whenever the extracted block size increases too much ex.(40x40), The
rate of recognition starts decrease. Due to the extream general viewpoint . Likewise,
Whenever the extracted block size decreases too much ex.(2x2) , The rate of recognition
starts decreases as well . Due to the extream local viewpoint

103



Chapter 5 : A Face Recognition based Incremental Neural Network Application

5.11.7 Time of learning/Time of recognition

Figure 5.44: Whenever the extracted block size increases, The time of learning con-
verges to the time of recognition.

5.11.8 Number of training image

Figure 5.45: Whenever Number of training set of the image increases, NN recognition
rate increases. and this is similar to the human learning
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5.11.9 Rate with Sp

Figure 5.46: Whenever number of using of SP increases (ex. mean , median,... are
calculated togother upon the image), Rate recognition increases.

5.11.10 Number of blocks

Figure 5.47: Whenever number of SP increases ,Size of NN increases

5.12 Conclusion

This chapter focused on two main points , the �rst one is giving a general view of
facial recognition system , with a peek of probabilistic models in machine learning ,
then it gives an overview of importance of using of Statistical Parameters and their
di�erent measurments. The second point is focused on our Incremental Probabilstic
Neural Network model, it discussed the architecture, how the data is represented in
each layer, How does it work and learn. it also explains when we are using APNN
in our architecture , how statistical parameters help strongly the network to learn
incrementally,in addition to the constructive learning (adding neourns).
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Conclusion

MACHINE Learning is concerned with the development of algorithms and tech-
niques that allow computers to learn, in the sense of things learn when they

change their behavior in a way that makes them perform better in the future.
In machine learning we say An algorithm is nonincremental if it reprocesses all

earlier training instances in order to learn from each new instance. It is incremental if
it can build and re�ne a concept gradually as new training instances come in, without
reexamining all instances seen in the past.

Arti�cial Neural network is one of the successful approaches in machine learning.
Neural networks process information in a similar way the human brain does. Neural
Networks learn by acquiring and representing the knowledge of their environment au-
tonomously with the help of learning algorithms.

Incremental learning aims to improve network capacity by consuming Spatial And
Time components.

In this thesis, We produced a model of incremental learning depending on Prob-
abilistic Neural Networks [5], which uses statistical parameters, it also depends on
constructive learning (starts small and increases) . We have applied the idea for face
recognition and we succeeded in obtaining 96 % as a rate of recognition on ORL data-
base . The power of our approach is represented in three points the �rst one that is
fully incremental function by adding images simply as a new neuron (new subclass
in hidden layer to existing class in the pattern layer or new subclass in hidden layer
and new class in the pattern layer ) . The second one is the Incrementality is not
only limited in adding neourns , it aslo appears strongly in updating weights in hidden
layer grace of incremental statistical parameters processing . The third advantage is
the notion of subclasses that helps to consume more space in the memory in addition
to the incremental learning advantage in regard to spacacial and temporal consuming .

Future work : We hope to apply the notion of destructive learning (start big and
delete) to cluster most informative features and put it in one neourn (subclass) ,and
delete neourens (subclasses) that are not needed. and we hope to apply this approach
for image indexing.
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Glossary

OCR Optical Charactere Reconignition
ORL Olivetti Research Laboratory
ML Machine Learning
SP Statistical Parameters
PNN Probabilistic Neural Network
APNN Advanced Probabilistic Neural Network
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