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Abstract

Accurate detection of maritime targets in all adverse weather conditions requires detailed
knowledge and a correct understanding of the signals reflected by the sea surface and its
environment. The first objective proposed in this thesis is to find a statistical model that
accurately describes the behavior of the intensive sea echo "Clutter", and provides a precise
long tail. Under this context, two approximate Weibull models with thermal noise are pro-
posed to describe high-resolution sea clutter. For the first model, we derive the expressions
of the PDF and CCDF for single and multiple pulses. For the second model, we also derive
the expression of the CCDF for single as well as multiple pulses. In addition, we provide the
formula of the moments. The parameters estimation for each model is conducted using the
PCFE method of the CCDF function based on the N-M algorithm. The simulations were car-
ried out on synthesized sea data as well as on real sea data collected by the McMaster IPIX
radar. All the results obtained from synthesized and real IPIX data with a different range
resolution (60, 30, 15, 9, and 3 meters) and different polarization modes (HH, VV, HV, and
VH) confirmed that the proposed models provide the best-fit performance for sea data, espe-
cially in the tail regions, outperforming the CG models with additive thermal noise in most
cases. The second work in this thesis is based on the mixture of a proposed Weibull models.
In all cases studied, the proposed model provides an accurate fit to the actual IPIX sea data
and shows a precise tail, outperforming the mixture of the CG models. Finally, in the context
of maritime radar detection, two novel CFAR detectors are suggested for Weibull and CG
models with the presence of thermal noise and interfering targets. The proposed detectors
have been studied on the basis of synthesized data and real IPIX data. All the results show a
high probability of detection as well as an excellent false alarm rate regulation, especially in
the case of the presence of spiky clutter.
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 ملخص 

  

يتطلب الاكتشاف الدقيق للأهداف البحرية في جميع الظروف الجوية السيئة معرفة مفصلة وفهمًا صحيحًا  

للإشارات المنعكسة من سطح البحر ومحيطه. الهدف الأول المقترح في هذه الأطروحة هو إيجاد نموذج  

تحت هذا السياق    ، ويوفر ذيلا طويلا دقيقا.(Clutter)إحصائي يصف بدقة سلوك فوضى البحر المكثف  

تقريبيين من نموذجين  اقتراح  البحرعالية     Weibull،تم  الحرارية لوصف فوضى  مع وجود الضوضاء 

للنبضة الأحادية والمتعددة. بالنسبة للنموذج    CCDFو   PDFالدقة. بالنسبة للنموذج الأو ل، نشتق تعبيرات 

لإضافة إلى ذلك، نقدم معادلة اللحظات. يتم  للنبضة الأحادية والمتعددة، با   CCDFالثاني، نشتق أيضا تعبير 

. N-Mبناءً على خوارزمية     CCDFلوظيفة    PCFEإجراء تقدير المعلمات لكل نموذج باستخدام طريقة   

تم إجراء عمليات المحاكاة على بيانات بحرية مركبة بالإضافة إلى بيانات بحرية حقيقية تم جمعها بواسطة  

جميMcMaster IPIXرادار   أكدت  ومن  .  المركبة  البيانات  من  عليها  الحصول  تم  التي  النتائج  ع 

 ووضع استقطاب  مختلف  )متر   3،  و9،   15،   30،   60  (الحقيقية مع دقة مختلفة المدى     IPIXالبيانات 

VV ) ، HV ، HH  و ،( VH    أن النماذج المقترحة توفر أفضل ملائمة للبيانات البحرية، خاصة في منطقة

نماذج متوفقة على  هذه المع     CGالذيل،  الثاني في  العمل  يعتمد  الحالات.  الحرارية في معظم  ضوضاء 

نماذج  دمج  على  النموذج     Weibullالأطروحة  يوفر  دراستها،  تمت  التي  الحالات  في جميع  المقترحة. 

المدمجة . في سياق     CGملائمة دقيقة للبيانات البحرية الحقيقية ويظهر ذيلا دقيقا متفوقا على نماذجالمقترح  

  CG و  Weibull جديدين لنماذج   CFARكشف الرادار البحري غير المتناسق، تم  اقتراح جهازي كشف

أساس البيانات    مع وجود الضوضاء الحرارية والأهداف المتداخلة. تمت دراسة الكواشف المقترحة على

الحقيقية.  تظهر جميع النتائج احتمالية عالية للكشف بالإضافة إلى تنظيم ممتاز     IPIXالمركبة وبيانا ت 

 لمعدل الإنذار الخاطئ خاصة في حالة وجود فوضى الشائكة.  

 



Résumé

La détection précise des cibles maritimes dans toutes les conditions météorologiques défa-
vorables nécessite des connaissances détaillées et une compréhension correcte des signaux
réfléchis par la surface de la mer et de son environnement. Le premier objectif proposé dans
cette thèse est de trouver un modèle statistique qui décrit avec précision le comportement de
l’écho marin intensif "Fouillis" et qui fournit une longue queue précise. Dans ce contexte,
deux modèles approximatifs de Weibull avec le bruit thermique sont proposés pour décrire le
fouillis maritime à haute résolution. Pour le premier modèle, nous obtenons les expressions
de la fonction de PDF et de la CCDF pour une impulsion et des impulsions multiples. Pour
le deuxième modèle, nous obtenons également l’expression du CCDF pour une impulsion et
des impulsions multiples. De plus, nous fournissons la formule des moments. L’estimation
des paramètres pour chaque modèle est réalisée à l’aide de la méthode PCFE de la fonc-
tion CCDF basée sur l’algorithme N-M. Les simulations ont été réalisées sur des données
maritime synthétiques ainsi que sur des données maritime réelles collectées par le radar Mc-
Master IPIX. Tous les résultats obtenus à partir de données synthétiques et de données IPIX
réelles avec différentes plages de résolution (60, 30, 15, 9 et 3 mètres) et différent mode de
polarisation (HH, VV, HV et VH) ont confirmé que les modèles proposées offrent le meilleur
ajustement pour les données maritimes, en particulier dans les régions de la queue, surpas-
sant les modèles CG avec un bruit thermique additif dans la plupart des cas. Le deuxième
travail de cette thèse est basé sur une combinaison des modèles de Weibull proposées. Dans
tous les cas étudiés, le modèle proposé fournit un ajustement précis aux données marines
réelles IPIX et montre une queue précise, surpassant la combinaison des modèles CG. Enfin,
dans le cadre de la détection radar maritime, deux nouveaux détecteurs CFAR non-cohérents
sont proposés pour les modèles Weibull et CG avec la présence du bruit thermique et des
cibles parasites. Les deux détecteurs proposés ont été étudiés sur la base de données syn-
thétisées et de données IPIX réelles. Tous les résultats montrent une forte probabilité de
détection ainsi qu’une excellente régulation du taux de fausses alarmes, en particulier dans
le cas de la présence de fouillis intense.
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Abstract

This chapter is introductory and informative, it includes a historical overview of the radar
system and its importance in maritime and coastal surveillance. This chapter also includes
the main motivations and problems addressed in this thesis. Finally, it provides a reading
plan for this manuscript.
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1.1 Introduction

We could start this thesis, like many studies and scientific research that preceded us and were
interested in research topics similar to ours. A RADAR (RAdio Detection And Ranging) op-
erates by radiating electromagnetic energy and detecting the echo returned from reflecting
objects. The earliest roots of radar can be associated with the theoretical work of the Scottish
physicist James Maxwell who developed equations describing the behavior of electromag-
netic wave propagation in 1864. The experimental work of German physicist Heinrich Hertz
confirmed Maxwell’s theory in 1886 and demonstrated that radio waves could be reflected
by physical objects called targets. This fundamental fact forms the basis by which radar can
perform the process of detection by sensing the presence of a reflected wave. In 1903, the
German engineer Christian Hulsmeyer used this effect to demonstrate the detection of ships
at sea and to avoid collisions. Also, in 1922 Marconi applied the same idea in Britain to avoid
ship collisions. The U.S. Navy, through the Naval Research Laboratory (NRL), began inves-
tigating the use of radio waves for ship detection in 1922 after noting signal interruptions
in ship-to-ship and ship-to-shore communications. However, there was not much official in-
terest in this topic and many years passed before systematic experiments in radio detection
began. Early work used Continuous Wave (CW) transmissions and was based on interference
between a transmitted wave and the Doppler-shifted signal received from a moving target.
The first detection of an aircraft by radar occurred accidentally in 1930 with an NRL CW-
bistatic system doing direction finding experiments and detecting an aircraft two miles away
on the ground, by 1932 NRL radar demonstrated the detection of flying aircraft to distances
of 50 miles. This radar can detect the presence of aircraft and can also indicate the direction
but cannot give a range. The practical development of pulse radar began in 1930 in the U.S
and Britain, but also in several other countries. Both the theory and the technology of radar
were developed with great urgency during the second World War [1]. Since 1945 the pace
has been slow but steady, radar has found wide-ranging civilian applications, including air
traffic control, meteorology, road monitoring, and measuring swarms of insects. The basic
principles of radar do not change, but there have been continuous improvements in hardware
and system design. There has also been a major increase in the use of digital techniques
and intelligent systems for radar signal processing [1]. Today, maritime and coastal surveil-
lance has become a strategic issue for almost all countries of the world in order to curb all
types of trafficking, such as smuggling, illegal immigration, and drug trafficking, as well as
combating piracy and organized terrorism, or carrying out rescue missions and monitoring
the safety and security of property and people. All these tasks require the authorities to de-
tect the presence of small vessels over long distances and certainly require the use of more
appropriate monitoring systems and more efficient to detect, locate and classify potential tar-
gets. This has increased the demand for radar echo modeling, the development of automatic
detectors and sensors based on advanced signal/image processing methods and/or artificial
intelligence techniques.
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1.2 Motivations and Contributions

The successful optimization of the detection performance of maritime surveillance radars
requires detailed knowledge and understanding of both forward and backscattering from the
sea surface. When the statistical model does not describe the evolution of the reflected echos
"Clutter", the performances obtained are far from those expected. This results in an increase
in the false alarm rate and/or a degradation in detection performance. The problem is to find
a statistical model which accurately describes the behavior of the clutter and offers better
performance in terms of detection. For this reason, many studies have been conducted and
are still ongoing to model the sea clutter as accurately as possible. Initially, the radar op-
erators chose the Gaussian model to describe the statistics of the sea clutter, but it quickly
became clear that this model did not correctly describe the clutter when operating the radar
at a small grazing angle and/or with high-resolution. Indeed, the high amplitude returns gen-
erally extend the tail of the sea clutter distribution and thus lead to a deviation from Gaussian
statistics. From 1960, several non-Gaussian distributions were proposed to treat this prob-
lem and to accurately describe the statistical differences of the reflected signals from the sea
surface (Weibull, Log-Normal, Pareto, K, etc...). One of the most common and simplest
models comes is the Spherically Invariant Random Vectors model (SIRV), this model has
been widely studied in the radar literature, as it contains an excellent synthesis of its proper-
ties created for the various models of probability. The appearance of non-Gaussian models
led to new theoretical problems that complicate the detection task and must be resolved.
Among them, the choice of the best model to describe the intensive sea clutter, especially in
the tail region. Also, the estimation of the parameters of non-Gaussian models is one of the
widely studied problems, especially when one wants to develop detection strategies based
on these models. On the basis of the motivations in terms of sea clutter modeling mentioned
above, the proposed contributions of this thesis are mainly based on the following points:

1.2.1 Clutter Modeling

The first contribution in this work concerns the modeling of sea radar clutter using two ap-
proximate models of Weibull plus additive thermal noise which are considered as compound
models with a speckle and a texture following a Weibull distribution. First, the overall Prob-
ability Density Function (PDF) and the Complementary Cumulative Distribution Function
(CCDF) are derived in the integral form as well as the expression of the moments. The pa-
rameters estimation for each model is conducted using the Parametric Curve Fitting Estima-
tion (PCFE) method of the CCDF function based on the Nelder-Mead (N-M) algorithm and
the moments matching method. The proposed Weibull models are evaluated using the syn-
thetic sea data and actual Intelligent PIxel processing X-band (IPIX) sea data. The modeling
experiments are worked out and showed that the proposed Weibull models can accurately
match the sea clutter, especially in the tail region, outperforming three of the Compound
Gaussian (CG) models. The second contribution is considered as a continuation of the first
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work, in which we studied the robustness of the mixture of the proposed Weibull approxima-
tions to model the sea clutter. In all cases, the proposed mixture model provides an accurate
fit to real IPIX data, outperforming the mixture of the CG models.

1.2.2 CFAR Detection in Maritime Environment

In the third contribution two Constant False Alarm Rate (CFAR) decision rules are suggested
for Weibull and two CG clutter models. The proposed decision rules are then modified to
deal with the presence of thermal noise and interfering targets. The obtained results exhibit
a high probability of detection as well as an excellent false alarm rate regulation especially
for spiky clutter.

1.3 Thesis Organization

Given the importance of the presentation of this thesis, we have structured this manuscript
around six chapters:

Chapter 2 presents some of the radar concepts, such as their operations, classifications,
and applications. This chapter also provides an overview of radar clutter modeling.

Chapter 3 is devoted to the modeling of high-resolution radar sea clutter using two ap-
proximate Weibull distributions plus thermal noise. This chapter also presents all the mathe-
matical derivations for each function, as well as, simulations and experimental results using
synthetic and real IPIX sea data.

Chapter 4 is an extension of Chapter 3, it presents the modeling of sea clutter using a
mixture of the proposed Weibull approximations. This chapter presents the mathematical
function of the mixture method for each model, simulations and experimental results using
real IPIX sea data.

Chapter 5 presents two novel radar detectors for spiky sea clutter with the presence of
thermal noise and interfering targets. The suggested detectors were found using the trial and
error method. This chapter also presents simulations and experimental results using synthetic
and real IPIX sea data.

Chapter 6 recalls the main work of this thesis, contributions and presents the main con-
clusions. Also, this chapter lists the possible views and suggestions that could serve as an
extension of the work proposed in this thesis.
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Radar Concept
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Abstract

This chapter is not intended to provide an in-depth description of the radar system, but to
provide the necessary information that helps to understand the proposed work in the follow-
ing chapters. For more details, the interested reader is invited to review the general literature
on radar systems such as [2, 3].
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2.1 Radar Basics

Radar is an electrical system that transmits radio frequency electromagnetic waves to an area
of interest and receives and detects these waves when reflected from objects in that area. Fig-
ure 2.1 illustrates the main components and steps involved in mono static radar, including the
process of sending radar signals, the propagation of these signals through the atmosphere,
reflection of the signals from the targets, and receiving the reflected signals. Although details
of the radar system are different, the main subsystems must include a transmitter, an antenna,
a receiver, and a signal processor. The system may be significantly simpler or more complex
than that shown in Figure 2.1. The subsystem that generates the electromagnetic waves is
the transmitter, the antenna is the subsystem that takes these waves from the transmitter and
introduces them into the atmosphere. The transmitter is connected to the antenna via a Trans-
mitter Receiver device (T/R) usually a switch, the function of this subsystem is to provide
a connection point so that the transmitter and receiver can be connected simultaneously to
the antenna and at the same time provide isolation between transmission and reception. The
transmitted waves propagate through the atmosphere towards the target so that it produces
currents on the surface, these currents are then reflected. The receiving antenna receives a
portion of the reflected waves from the target. The reception circuits amplify and convert
the radio frequency signal to an Intermediate Frequency (IF), then the signal is fed into the
detector to remove the carrier wave from the modulated signal, and then apply the signal
to an Analog to Digital converter (A/D), and to the signal processor to extract the required
information, such as the presence, absence, speed and range of the target [3].

Figure 2.1 – Principle of a radar system.
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2.2 Detection Process

The main task of the radar system is to automatically detect the presence of a target and dis-
tinguish the true target signal from other unwanted signals. In search mode, the radar system
is programmed to change the position of the antenna beam in a specific sequence to scan
every possible position in space in search of a target. The detection is a process by which
the echo signal of each potential target location is compared to an estimated threshold level
from its surroundings to determine whether the signal is sufficiently high to be considered
as a target of interest. The echo signal exists alongside interfering signals called "clutter"
which comes in many forms, such as electromagnetic waves reflected from uninteresting
objects (land, atmosphere, sea, clouds, rain, birds, insects...). Clutter can also come in the
form of unintentional external electromagnetic waves from other artificial sources, or waves
emitted by special systems to mask the targets that the radar can detect, and internal and
external thermal noise. Considering the fact that the clutter is statistically non-stationary and
has unknown powers due to the random fluctuation of electrical energy, crossing the detec-
tion threshold can be subject to errors and false alarms, which greatly affects the detection
performance, especially in conventional radars that use fixed detection thresholds. We de-
fine the Probability of False Alarm (PFA) the probability of crossing the threshold by clutter
or thermal noise alone. The Probability of Detection (PD) is defined as the probability of
crossing the threshold by the signal from the potential target alone or with clutter. To reduce
PFA caused by unwanted strong signals and improve PD performance, modern radars use
adaptive threshold strategies to maintain a CFAR, this process is performed just before the
detection decision is made. In adverse weather conditions, clutter becomes the dominant
source and its amplitude may be greater than the target signal, in this case, spectral signal
processing such as Moving Target Indication (MTI) is often used to reduce the noise level
below that of the target signal. In cases where the dominant interference is jamming and its
level exceeds that of the target, the angle of arrival processing can often be used. The systems
that undergo a significant clutter and jamming interference may use a combination of both
MTI and angle of arrival processing, called Space Time Adaptive Processing (STAP) [2].
In addition, optimal detection strategies, such as Bayes or Neyman Pearson (NP), must be
developed based on an accurate modeling of echo signals, capable of operating at all times
and in all conditions regardless of the environment in which the radar is operating.

2.3 Information Extracted From the Radar Echo

Although the name of the radar is derived from the radio detection and ranging, the radar is
able to provide more information about the target than that indicated by its name. The detec-
tion of a target means discovering its presence, detection can be considered independently of
the information extraction process, but it is rare that we are interested in knowing only that a
target is present without knowing anything about its location in space and its nature.
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Extracting useful information on the target is an important part of the operation of the
radar system. Information extraction generally requires appropriate filters for optimal pro-
cessing. The more information we already know about a target, the more effective the detec-
tion. For example, if the target location is known, the antenna can be pointed in the correct
direction, and there is no need to waste electrical power or time searching in empty space.
Or, if the relative velocity is known, the receiver can set the correct reception frequency,
eliminating the need to find the frequency range in which a Doppler shift can occur. The
rate of change in the target location can also be measured from the change in distance and
angle over time, by which the path can be established, in many radar applications the de-
tection does not occur until its path is determined. Radar of sufficient accuracy in one or
more coordinates can determine the size and shape of the target. Polarization mode allows a
measurement of the symmetry of a target. In practice, the radar can also measure the surface
roughness of a target and determine something from its properties [3].

2.3.1 Range

The ability to define a range by measuring the time for the radar signal to propagate to the
target and return is perhaps the most important distinguishing feature of conventional radar.
There is no other sensor that can measure the distance as accurately as the radar especially
under adverse weather conditions. Radar has shown its ability to measure distances between
planets with an accuracy limited to only the accuracy with which the velocity of propaga-
tion is known. In the case of modest distances, the measurements of range can be made
with a precision of a few centimeters. The usual radar waveform for determining range is
the short pulse, The shorter the pulse, the more accurate the measurement, a shorter pulse
has a wide spectral width (bandwidth). CW with frequency or phase modulation can also
provide accurate distance measurement. It is also possible to measure the range of a single
target by comparing the phase difference between two or more CW frequencies. Distance
measurement with CW waveform has been widely used, as is the case with radar altime-
ters and aircraft scanners. The range of target R is calculated by measuring the delay ∆t

required for a pulse to travel in the bidirectional path between the radar and the target, since
electromagnetic waves travel at the speed of light c = 3×108m/sec, then :

R =
c∆t
2

(2.1)

where, R is in meters and ∆t is in seconds.

2.3.2 Radial Velocity

From successive distance measurements, it is possible to obtain the rate of change of distance
or radial velocity. The Doppler frequency shift of the echo signal of a moving target also
provides a measure of radial velocity. However, the measurement of Doppler frequency in
many pulse radars is highly ambiguous, reducing its utility as a direct measurement of radial

8



Chapter 2

velocity. When it can be used, it is often better to use successive measurements because it
provides more accurate measurements in a shorter time. Any speed measurement, whether
by the rate of range change or by the Doppler frequency shift, takes time, the longer the
observation takes, the more precise the speed measurement can be. A longer observation time
can also increase the Signal to Noise Ratio (SNR), another factor that results in increased
accuracy. Although Doppler frequency shift is used in some applications to measure radial
speeds, such as police speedometer and satellite surveillance, it is widely used as the basis
for sorting out moving targets from unwanted echoes, as in MTI and AMTI (Airborne MTI)
and CW radars.

2.3.3 Angular Direction

The direction of the target is determined by detecting the angle at which the returning wave-
front arrives at the radar. This is achieved usually by using a directional antenna, with a
narrow beam. The angle of arrival is defined by comparing the reflected echo signal with
the transmitted signal. The direction in which the antenna points when the received signal
is a maximum indicates the direction of the target. This, as well as other methods for mea-
suring angle, assumes that the atmosphere does not perturb the straight-line propagation of
the electromagnetic waves. The direction of the incident waveform can also be determined
by measuring the phase difference between two separate receiving antennas. The angle of
arrival accuracy depends on the aperture range of the antenna, the wider the antenna, the
narrower the beamwidth, and the better the accuracy. The determination of the angle ba-
sically involves only the one-way path, however, angle measurement is an integral part of
most surveillance and tracking radars. Other important information can be extracted from
the echo signal, such as size, shape, and tangential velocity.

2.4 Radar Cross Section

The radar range equation expresses the range at which a target may be detected with a given
probability by a radar having a given set of parameters. This equation includes the Radar
Cross Section (RCS) of an equivalent isotropic radiator, an important parameter that defines
the scattering efficiency of a target, another term for RCS is echo area. The purpose of the
RCS is to characterize the target, knowledge of the RCS is essential in the calculations of
radar range and the SNR. The target’s RCS may be viewed as a comparison of the strength
of the reflected signal from a target to the reflected signal from a perfectly smooth sphere of
the cross sectional area of 1m2. In fact, the RCS is defined as an equivalent cross section of
the target producing the same amount of energy returned to the radar as would be produced
by an isotropic radiator . The RCS and the physical area of the target are not directly related
through some simple equations [4].
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The RCS of a target is a measure of its ability to reflect electromagnetic energy in the
direction of the radar receiver, and its value is expressed as an area. This reflected energy is
dependent on a multitude of parameters such as:

• The radar transmitters frequency

• The direction of the illuminating radar

• Target geometry

• The material of which the target is made

• The absolute size of the target

• The incident angle (angle at which the radar beam hits a particular portion of the target,
which depends upon the shape of the target and its orientation to the radar source)

• The polarization of the transmitted and the received radiation with respect to the ori-
entation of the target

The RCS, denoted by the symbol σ , is the area intercepting that amount of power which,
when scattered equally in all directions, produces an echo signal at the radar equal to that
from the target. In other terms:

σ =
power reflected back to receiver per unit solid angle
(incident power density intercepted by the target)/4π

= lim
R→+∞

4πR2
∣∣∣∣Er

Ei

∣∣∣∣2 (2.2)

where R is the distance between the radar and target, Er is the reflected electric field strength
at radar, and Ei is the incident electric field strength at target. For most common types of
radar targets such as aircraft, ships, and terrain, the RCS does not necessarily have a simple
relationship to the physical area, except that the larger the target, the greater the probability
that the cross section is larger. More information and details about RSC are available in [5].

2.5 Radar Equation Form

The radar equation relates the range of the radar to the characteristics of the transmitter,
receiver, antenna, target, propagation path, and environment [2, 3]. It is useful not just
as a means for determining the maximum distance from the radar to the target, but it can
serve both as a tool for understanding radar operation and as a basis for radar design. In this
section, the simple form of the radar equation is derived. If the power of the radar transmitter
is denoted by Pt and if an isotropic antenna is used, which radiates the electromagnetic energy
uniformly in all directions.
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The power density P̂′ at a distance R from the radar is equal to the transmitter power
divided by the surface area 4πR2 of an imaginary sphere of radius R, this expressed as:

Power density from isotropic antenna =
Pt

4πR2
(2.3)

Radars use directional antennas to channel the radiated power Pt into some particular direc-
tion. The gain G of an antenna is a measure of the increased power radiate in the direction
of the target as compared with the power that would have been radiated from an isotropic
antenna. It can be defined as the ratio of the maximum radiation intensity from the antenna
to the radiation intensity from a lossless isotropic antenna with the same power input. The
radiation intensity is the power radiated per unit solid angle in a given direction. The power
density at the target from an antenna with a transmitting gain G is given by:

Power density from directive antenna =
PtG

4πR2
(2.4)

The target intercepts a portion of the incident power and re-radiates it in various directions.
The measure of the amount of incident power intercepted by the target and re-radiated back
in the direction of the radar is denoted as the radar cross section RCS σ , as we mentioned
above, and is defined by the relation:

Power density of echo signal at radar =
PtG

4πR2
σ

4πR2
(2.5)

If all of the incident radar energy on the target were reflected equally in all directions, then
the RCS would be equal to the cross section of the target as seen by the transmitter. In
practice, some energy is absorbed and the reflected energy is not distributed equally in all
directions. Therefore, the RCS is quite difficult to estimate and is normally determined by
measurement. The radar antenna captures a portion of the echo power, if the effective area
of the receiving antenna is denoted Ae, the power Pr received by the radar is given by:

Pr =
PtG

4πR2
σ

4πR2 Ae =
PtGAeσ

(4π)2R4 (2.6)

The maximum radar range Rmax is the distance beyond which the target cannot be detected.
It occurs when the received echo signal power Pr just equals the minimum detectable signal
Smin. Therefore:

Rmax =

[
PtGAeσ

(4π)2Smin

]1/4
(2.7)

11



Chapter 2

The important antenna parameters are the transmitting gain and the receiving effective
area. Antenna theory gives the relationship between the transmitting gain and the receiving
effective area of an antenna as:

G =
4πAe

λ 2
(2.8)

Since radars generally use the same antenna for both transmission and reception, Eq (2.8)
can be substituted into Eq (2.7), first for Ae then for G, to give two other forms of the radar
equation:

Rmax =

[
PtG2λ 2σ

(4π)3Smin

]1/4
(2.9)

Rmax =

[
PtA2

eσ

4πλ 2Smin

]1/4
(2.10)

This is the basic form of some of the radar equations. More information is available in [2].

2.6 Types of Radar Systems

Since the fundamental radar functions are search, detection, tracking, and imaging, many
remote sensing applications can be satisfied by the use of radar technology. There are many
different types of radar systems. The method for classifying a particular radar depends on
the specific characteristics of the radar such as the radar mission, the type of antenna, the
frequency range, the specific measurements to be performed, the waveform it uses, and the
physical environment in which it should operate. The radar applications represented here are
some of the most common, but there are many more.

2.6.1 Classification by Frequency Band

Although radars usually use a radio frequency between 220 and 35 000 MHz, they can also
function in any spectral region. A few types of radar are found in the lower band, except
where particular propagation and target characteristics dictate their use. Early in the devel-
opment of radar, a letter code was employed to designate the radar frequency band. At the
upper frequency end of the spectrum, L-band, S-band, C-band, and X-band radars are used
where the size of the antenna constitutes a physical limitation. The other higher frequency
bands (Ku , K, and Ka ) suffer severe weather and atmospheric attenuation. Further informa-
tion on common use and applications of the radar frequency bands, as defined by IEEE, are
summarized in Table 2.1.
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Band Frequency (GHz) Usage

HF 0.003–0.03 OTH surveillance
VHF 0.03–0.3 Very long-range surveillance
UHF 0.3–1 Very long-range surveillance
L 1–2 Long-range military and air traffic control search
S 2–4 Medium range surveillance, and meteorological
C 4–8 Search and fire control radars, weather detection
X 8–12.5 Short-range tracking, missile guidance, marine radar
KuKuKu (under K band) 12.5–18 High-resolution mapping, satellite altimetry
KKK 18–26.5 Police speed-measuring, airport surface detection
KaKaKa (above K band) 26–40 Very high-resolution mapping, airport surveillance
MM-Wave 40–300 Laser range finders and optical targeting systems. Ex-

periments

Table 2.1 – Radar frequency bands and usages.

2.6.2 Classification by Waveform and Pulse Rate

One of the most important technical characteristics of a radar system is the type of transmis-
sion waveform it uses. Radars are classified according to two types of waveform that they
transmit. The first type comprises the radar pulse "pulsed radar" in which the radar emits a
pulse and waits for the return, in general, radar of this type using a pulse train as shown in
Figure 2.2.

Figure 2.2 – Train of transmitted and received pulses.

where, PRI is the Pulse Repetition Interval , and τ is the duration or width of the pulse. The
PRI is often referred to as the Inter Pulse Period (IPP). There are two types of pulses: short
pulses (from 1 to 60 µs) used for short range monitoring, and long pulses (100 to 500 µs)
used for long range surveillance, moreover, they can be classified, depending on the Pulse
Repetition Frequency (PRF) into low, medium, and high PRF radars. Low PRF radars are
mainly used to measure the distance of the target whose speed is not taken into account and
high PRF radars are used to measure the target speed. The second type of classification
includes CW radars, where the radar continuously emits electromagnetic energy from an an-
tenna and receives using a second antenna separate from the first, this type is used to track
and guide missiles. Unmodulated CW radars can accurately measure target radial velocity
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and angular position, utilizing some form of time variant modulation, the range information
can be extracted [4] .

2.6.3 Primary and Secondary Surveillance Radar

A Primary Surveillance Radar (PSR) is a conventional radar sensor that illuminates a large
portion of space with an electromagnetic wave and receives back the reflected waves from
targets within that space. The advantages of the primary radar are no onboard equipment
in the target to perform the detection process, and can be used to monitor the movement
of vehicles on the ground. The disadvantages are that the relationship between the echo
strength and the range presents a major problem for long range detection. It is also very
difficult to determine the altitude of an aircraft accurately using primary radars. Secondary
Surveillance Radar (SSR) is a lot more complex than the PSR, it does not rely on reflected
pulse technology and requires cooperation from the target, unlike the PSR. The target needs
to carry a special equipment as well, this equipment is called a transponder, it is called a
transponder because it responds to the interrogation from the secondary radar. The SSR
generates a beam of pulse in the horizontal direction for the interrogation, while the target or
the aircraft transmits back omnidirectionally. There are three main modes of interrogation,
mode A, mode C and mode S. The physical differences between the two types, the PSR is
that huge rotating parabolic plate, and the SSR is much smaller and can be seen hoisted at
times on top the primary radar, it looks like a horizontal metal sheet [4].

2.6.4 Monostatic, Bistatic, Multistatic and MIMO Radar

The physical configuration of the transmit and receive antennas also classify radars into
monostatic, bistatic, and multistatic radars. Those radars where the same antenna is used for
both transmission and reception or where the separate transmit and receive antennas are in
essentially the same location are monostatic. On the other hand, in bistatic and multistatic
radars the transmit and receive antennas are geographically placed in two or more different
locations where the distance of separation between them is/are significant. This type of
radar is useful in CW or Frequency Modulated Continuous Wave (FMCW) to achieve less
spillover interference. The functions of the elements in bistatic/multistatic radars are the
same as monostatic radars, with the major difference being in the absence of the duplexer. A
synchronization link between the transmitter and the receiver is necessary to maximize the
receiver knowledge of the transmitted signal, frequency and phase reference synchronization
can also be maintained. A Multiple Input Multiple Output (MIMO) radar system, a subset
of multistatic radar, is a system of multiple antennas in which each transmit antenna radiates
an arbitrary waveform independently of the other transmitting antennas and each receiving
antenna can receive these signals. Due to the different waveforms, the echo signals can be
reassigned to a single transmitter [4].
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2.6.5 Tracking and Acquisition Radar

Tracking radar system measures the coordinates of a target and provides data which my be
used to determine the target path and to predict the future position. All or only part of the
available radar data, range, elevation, azimuth angle, and Doppler frequency shift may be
used in predicting the future position. Almost any radar can be considered a tracking radar
provided its output information is processed properly. But, in general, it is the method by
which angle tracking is accomplished that distinguishes the tracking radar from any other
radar. It is customary to distinguish between a continuous tracking radar and a track while
scan radar. The continuous tracking radar provides continuous tracking data on a particular
target, while the track while scan radar provides sampled data on one or more targets to apply
in sophisticated smoothing and prediction filters, namely Kalman filters. The tracking radar
utilizes a very narrow beam to find its target before it can track. Some radars operate in
search mode to find the target before switching to a track mode. When a single radar is used
for both search and tracking functions, it usually results in certain operational limitations.
Obviously, when it uses the radar in tracking mode, it has no knowledge of other potential
targets. Also, if the antenna pattern is a narrow pencil beam and if the search volume is large,
a relatively long time might be required to find a target. Thus many radars of the tracking
system use a separate search radar to provide the information needed to place the tracker
on the target. The search radar, when used for this purpose, is called the acquisition radar.
The acquisition radar identifies targets for the tracking radar by providing the coordinates of
where to find the target. Target tracking finds important applications in military radars as
well as in most civilian radars, including in fire control, missile guidance, and airport traffic
control for incoming and departing airplanes [4].

2.6.6 Instrumentation Radar

It is a single pulse system that operates in the C range and has been designed to test rockets,
missiles, ammunition as well as to test aircraft performance. This radar can track incoherent
or transponder modes, the transponder is installed in the missile and receives the radar pulse
and re-transmits a single pulse or a double pulse on a different frequency, depending on the
transponder settings. A transponder is used when it is necessary to ensure that the radar is
tracking the correct object, and for more precise or longer range tracking. The input and
output specifications of the transponder depend on the specific test requirements.

15



Chapter 2

2.6.7 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is an earth observation technology that takes pictures of
both the land and the sea, without the need for sunlight or the need for a clear sky. Typically
SAR is implemented by mounting on a moving platform such as an aircraft or spacecraft. A
single-beam antenna through which the target scene is repeatedly illuminated with pulses of
microwaves at wavelengths anywhere from a meter down to millimeters. The various echo
waveform received successively at the different antenna positions are coherently detected and
stored and then post-processed together to resolve elements in an image of the target region.
SAR resolution is approximately equal to one-half the length of the actual antenna and does
not depend on platform altitude (distance). High range resolution is achieved through pulse
compression techniques. Signal processing uses the magnitude and phase of the received
signals over successive pulses from elements of a synthetic aperture to create an image. As
the line of sight direction changes along the radar platform trajectory, a synthetic aperture
is produced by signal processing that has the effect of lengthening the antenna. In general
the larger the antenna, the more unique information you can obtain about a particular viewed
object. With more information, you can create a better image of that object (improved reso-
lution). Placing very large radar antennas in space is prohibitively expensive, so researchers
found another way to obtain fine resolution data. They use spacecraft motion and advanced
signal processing techniques to simulate a larger antenna. The SAR’s ability to pass rela-
tively unaffected through clouds, illuminating the Earth’s surface with its own signals, and
accurately measuring distances makes it particularly useful for the following applications:
sea ice monitoring, cartography, forest cover mapping, urban planning, coastal surveillance,
and monitoring disasters such as forest fires, floods, volcanic eruptions, and oil spills. The
radio waves used in SAR typically range from approximately 3 cm up to a few meters in
wavelength, which is much longer than the wavelength of visible light, used in making op-
tical images. One of the most fundamental characteristics of a SAR system is its operating
frequency, with frequencies ranging from 3 MHz to 300 GHz [5].

2.6.8 Weather Radar

Weather radar is also known as Doppler weather radar and Weather Surveillance Radar
(WSR), the main distinction between weather radar and other types of radars is the nature of
the targets. Weather radars play a crucial role, the information they provide enables meteo-
rologists to issue warnings and early alerts of severe or extreme weather events, which save
countless lives and reduce damage. Weather radars can provide information on precipita-
tion intensities and wind speeds, providing a three-dimensional view of storms and allowing
detailed location and characterization of associated severe weather conditions. Information
from weather radars is used to predict the formation of typhoons, hurricanes, tornadoes, and
other severe weather events and to track their course. They also are used in predicting the
potential for flash floods, high winds and lightning potential. All meteorological radars op-
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erate by transmitting radio signals and measuring the returned signal. Only a tiny fraction of
emitted energy is reflected or back-scattered by atmospheric constituents such as raindrops,
therefore, weather radar receivers are very sensitive instruments. Any disturbance within the
same frequency band reduces or destroys the usability of their measurements. This radar uses
Doppler shifts to calculate wind speed and to observe the movement of dangerous weather
elements (tornadoes and severe thunderstorms). Also, they use dual-polarization to identify
the types of precipitation (rain, snow, hail, etc.). There are three frequency bands commonly
used for weather radars [6]:

• S-band: (2700–2900 MHz), deployed mostly in tropical and temperate climate areas,
for example, in areas where hurricanes, tornadoes, large hail, and monsoon or heavy
rain are common.

• C-band: (mainly 5600-5650 MHz band), used in climates where attenuation (weaken-
ing of radar return signal) by intervening in heavy rain or large hail is a very minor
issue.

• X-band: (9300-9500 MHz), used in meteorological applications such as short-range
urban.

2.6.9 Maritime Navigation Radar

The radar is one of the most important elements of marine electronics on any ship, it is
designed to detect and track sea targets at a great distance, it goes without saying that it is
of great practical value to mariners. Its main purpose is to help prevent a collision when
navigating in darkness, fog, or other situations with limited visibility. Radar is also useful
for monitoring the position and movement of ships when crossing narrow lanes or congested
waterways, regardless of visibility. The radar also helps determine the position of ships in
relation to landmasses or islands, even when you are out of sight with the naked eye. The two
fundamental characteristics of a marine radar are the transmitter power and beam angle. The
power can vary between 4 and 25 kilowatts, the power is an essential factor in determining
the performance of a radar in bad weather. The higher the power of a radar, the better the
transmitter can see through dense fog and rain, and the farther the signal can reach. The
beam angle is determined by the size of a radar antenna. A long antenna emits a narrow
beam which can better distinguish objects close to each other that a shorter antenna. On the
other hand, a short antenna produces a wider beam angle which allows the radar to scan a
larger area than a long antenna at a time. The specific environment for maritime surveillance
radars is sea clutter, the characterization of unwanted echoes reflected from the sea surface, is
an important step in the performance analysis of different remote sensing systems, for many
applications [7]:
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• Detection, recognition and identification of objects present on the sea surface (periscope,
low-flying plane or missile) to ensure coastal safety.

• Identification of small boats, buoys, icebergs or oil slicks.

• Surveillance and intervention on vessels operating in illegal fishing.

• The exploitation of signals reflected from the sea surface to obtain oceanographic char-
acteristics of seawater.

2.7 Radar Clutter

Radar clutter is defined as any unwanted radar echo that can disrupt radar output and make
it difficult to detect the desired target. The existence of clutter always degrades radar per-
formance because clutter returns compete with target returns in the radar detection process.
When clutter echoes are sufficiently intense and extensive, they can impose serious limita-
tions in the performance of radar operations, and in such circumstances, the optimum radar
waveform and receiver design can be quite different than when receiver noise alone is the
dominant effect. Radar echoes from land, sea, rain, birds, and other such objects are not
always undesired. Reflections from storms and clouds, for example, can be a nuisance to
radar searching for aircraft, but this is what a radar meteorologist wants to see in order to
measure precipitation rates over a larger area. The reflected signals from land can degrade
the performance of many radars, but it is the target of interest for a ground mapping radar.
Thus, the same object may be the desired target in one application and an unwanted echo
in another. Clutter may be divided into sources distributed over a surface, within a volume,
or concentrated at discrete points. Ground or sea returns are typical surface clutter. Returns
from geographical landmasses are generally stationary, however, the effect of wind on trees,
means that the target can introduce a Doppler shift to the radar return. In the air, the most
significant problem is weather clutter, which can be produced from rain or snow and can
have a significant Doppler content. Windmills and individual tall buildings are typical point
clutter and are not extended in nature. Birds and insects produce clutter, which can be very
difficult to remove because the characteristics are very much like aircraft. Clutter can be
fluctuating or non-fluctuating, ground clutter is generally non-fluctuating in nature because
the physical features are normally static. On the other hand, weather clutter is mobile under
the influence of wind and is generally considered fluctuating in nature. Clutter can be de-
fined as homogeneous if the density of all the returns is uniform. Most types of surface and
volume clutter are analyzed on this basis, however, in practice this simplification does not
hold true in all cases. Non-homogeneous clutter is non-uniform clutter where the amplitude
of the clutter varies significantly from cell to cell [4]. Figure 2.3 illustrates different types of
clutter radar sources.
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Figure 2.3 – Sea radar scan and various sources of clutter.

Due to the distributed nature of the clutter, the measurement of backscatter echo from such
clutter is generally given in terms of RCS density. For surface clutter, we define an RCS per
unit area:

σ =
σc

Ac
(2.11)

where σc is the RCS from the area Ac. The advantage of using this expression to describe
distributed surface clutter is that it is usually independent of area Ac. For volume distributed
clutter a cross section per unit volume, or reflectivity is defined as:

η =
σc

Vc
(2.12)

where σc in this case is the radar cross section from the volume Vc.

2.8 Sea Clutter

Sea clutter depends on wave height, wind speed, length of time, distance the wind blows,
wave direction, and tides. The sea clutter also depends on radar parameters such as fre-
quency, polarization, grazing angle, and to some extent the size of the area observed. Al-
though there is much that is known about the nature of sea clutter, the quantitative, and
sometimes even the qualitative, the effects of many of the factors mentioned above are not
known at the required level. There is a range of information regarding radar echoes from the
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sea, some of which will be briefly mentioned in this section. A number of features are used
to describe the sea clutter including [7]:

• The area reflectivity σ

• The amplitude distribution of the clutter or power

• The spectrum of the clutter returns

• The spatial variation of the clutter return

• The polarization scattering matrix

• The discrete clutter spikes

The amplitude statistics of sea clutter are described using families of PDFs, and their derived
functions. The manner in which these amplitude fluctuations vary with time is characterized
by the spectrum of the returns.

2.8.1 Sea Surface

Observations of sea clutter are generally associated with particular features of the sea surface
and the environment, such as sea waves, sea swell, and wind speed. Some of the basic terms
used to describe the sea surface are presented here [7]:

• Wind wave: a wave resulting from the action of the wind on a water surface.

• Gravity wave: a wave whose velocity of propagation is controlled primarily by gravity,
water waves of a length greater than 5 cm are considered gravity waves.

• Capillary wave also called ripple or capillary ripple: a wave whose speed of propaga-
tion is controlled primarily by the surface tension of the liquid in which the wave is
traveling, water waves of a length of less than 2.5 cm are considered capillary waves.

• Fetch also called generating area: an area of ocean, sea, or lake surface over which the
wind blows in an essentially constant direction, thus generating waves.

• Duration: the length of time the wind blows in essentially the same direction over the
fetch.

• Fully developed sea also called a fully arisen sea: the maximum height at which ocean
waves can be generated by a given wind force blowing a sufficient amount, regardless
of the duration.

• Sea state: a description of the properties of sea surface waves at a given time and place,
it is related to the Beaufort scale which describes the state of the sea.
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The description of sea state (wave height) is a common source of confusion in the specifi-
cation of radar performance. The Beaufort wind scale is often used to estimate wave heights,
but this method only gives a reliable estimate of wave height if the duration and the fetch are
known. Another measurement estimate for wave height is the Douglas sea scale invented by
the English Admiral H.P. Douglas in 1917, while he was head of the British Meteorological
Navy Service (BMNS). The Douglas sea scale is expressed in one of 10 degrees (Table 2.2).
Other descriptions of sea state are also used, such as the World Meteorological Organization
Sea State (WMOST).

Douglas Sea Scale Degrees Wave height (m) Wave height (ft) Description

0 No wave No wave Calm (Glassy)
1 0–0.10 0.00–0.33 Calm (Rippled)
2 0.1–0.5 0.33–1.64 Smooth
3 0.5–1.25 1.64–4.10 Slight
4 1.25–2.50 4.10–8.20 Moderate
5 2.5–4.0 8.20–13.10 Rough
6 4.0–6.0 13.10–19.70 Very rough
7 6.0–9.0 19.70–29.50 High
8 9.0–14.0 29.50-45.90 Very high
9 Over 14.00 Over 45.90+ Phenomenal

Table 2.2 – Douglas sea scale.

2.8.2 Sea Clutter Reflectivity

Sea clutter is derived from a complex interaction between incident electromagnetic waves
and the sea surface. The essential feature of radar sea clutter, and important for radar per-
formance evaluations, is its apparent reflectivity. Sea clutter reflectivity depends on many
factors, including sea state, wind velocity, grazing angle, polarization, radar frequency and
many other factors. Empirical models often present reflectivity as a function of the sea state.
However, this is not always a reliable indicator as it is dominated by the wave height of long
waves and sea swell. Local winds cause surface roughness of small scale, which quickly
responds to changes in wind speed and back scattering change. A strong swell without a
local wind gives low reflectivity, while a strong local wind gives a strong backscatter from
a relatively flat sea. Further deviation from a simple sea state trend may be caused by prop-
agation effects such as ducting, which can affect the illumination grazing angle. There are
many theoretical models for back-scatter based on different descriptions of the rough surface
and approximations to the scattering mechanism. Specific models for the reflectivity of sea
clutter are discussed in chapter 3. For more details on the characteristics of sea chaos, can
be found in [7].
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2.9 Sea Clutter Modeling

All maritime radars inevitably encounter sea clutter, whether the radar is used for long-range
surveillance, detection of aircraft, or very small targets such as periscopes of submarines.
Radars on board, whether used for navigation or for air and maritime surveillance, must deal
with and eliminate unwanted sea clutter. Modeling and simulation are essential parts of al-
most all aspects of the engineering design and development of complex systems, modern
radar is no exception. The main reason for radar clutter modeling is to provide informa-
tion for the development of radar systems that respond to the operational needs of their
users. Correct and precise modeling of sea clutter provides a solid and reliable basis for
the detection process. Initially, the classical statistical description of sea clutter based on a
representation of slopes and wave heights in terms of random Gaussian distribution on each
of the two channels in-phase and quadrature-phase of the radar receiver. This model can be
applied very efficiently in the low-resolution radar systems at low angles of incidence, where
the pulse width is greater than 0.5µs [7]. On the other hand, in some environments, the
clutter becomes impulsive or spiky echoes of high amplitudes, so the use of high-resolution
radar is essential, in this case, the statistics of the sea clutter deviate very quickly from the
Gaussian model [7]. In addition, the returns have a high amplitude and generally lead to
the appearance of the target of interest in the tail of the clutter distribution, where detec-
tors operating in Gaussian environments become ineffective. Therefore, modern radar needs
more fitted models with longer tails such as Log-Normal [8] and Weibull [9] distributions,
where these models provided a good description of the sea clutter statistics. Non-Gaussian
statistical models have been proposed, chosen mainly for their analytical convenience. Sea
clutter is determined by two components of amplitude, speckle and texture fluctuations, one
related to the intrinsic properties of the sea surface, which is a rapidly fluctuating component
associated with capillary waves, the other to its average inclination which is a component of
slow fluctuations, associated with gravity waves, respectively [7]. For seventy years, clas-
sical distributions have been supplanted by the compound Gaussian model and associated
models. This class of models was introduced, in the context of maritime radar clutter, by
Jakeman and Pusey [10], these authors relied on analogies between microwave scattering
and optical wavelengths. It has been shown that the K distribution shows a detailed analysis
of sea clutter in the work of Ward [7]. This approach highlights the usefulness of the com-
pound representation of the clutter process, this made it possible to systematically analyze
the effects of thermal noise and the spatio-temporal correlation properties displayed by the
clutter and their impact on the maritime surveillance radar [11]. Oliver has developed similar
ideas in the context of the SAR system, which contributed significantly to the interpretation
of two-dimensional imaging radar [12]. These developments in the application of the K
distribution in the microwave field have been supplemented by work at optical wavelengths
[13].
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Few years later, several non-Gaussian models were suggested to model sea clutter, such
as the Pareto [14, 15] distribution and its extended version with thermal noise [16]. Also,
the Compound Inverse Gaussian (CIG) and CIG plus noise distribution [17]. All of these
distributions were examined for modeling actual sea clutter, where it turns out that when the
resolution becomes finer and/or when the HH antenna polarization mode is used, in some
cases these models provide a poor fit in the tail region [18]. The Generalized Compound
(GC) model has been proposed to model sea clutter at high-resolution and is used to describe
the deviation of the speckle component from Rayleigh to Weibull or other models with a long
tail. The GC distribution can be used to accurately model sea clutter [19]. Also, Helstrom
et al proposed an approximate method for calculating the PDF of the amplitude of the sum
of Weibull clutter and thermal noise [20]. In the context of sea clutter modeling, a lot of
work has been done. Watts proposed the K distribution model with additive thermal noise,
which used the actual Cumulative Density Function (CDF) curves to estimate the shape
parameter, this model provides a good match with the actual data [21]. Using the Maximum
Likelihood Estimator (MLE), Weinberg analyzed the performance of the Pareto distribution
to fit high-resolution clutter by the INGARA database, it has been shown that this model is
superior in performance on the distributions K and KK [15]. Watts et al in [22] extended the
KA distribution proposed by Ward and Tough in [23] to include thermal noise, this model
provides a precise fit in the tail region of sea clutter outperforming the K model. Ollila et al

suggested a long-tailed CG model with an inverse Gaussian texture distribution, this model
showed a precise clutter fit, outperforming the K and t distributions [24]. For the high-
resolution sea clutter modeling, Greco et al compared the fit of LN PDF, Weibull, K, and
Generalized K (GK) to real sea data. The results show that for all polarization modes with
resolutions of 60, 30 and 15 meters, the GK PDF accurately adjusts the sea data. However,
for range resolutions of 3 and 9m, in all polarized data the compound model fails to provide
a good fit, only for 9m data and VH mode, the GK model shows precise fit in almost all cells.
They also showed using the cumulants method that for resolutions of 3 and 9 m, the speckle
deviates from the Gaussian distribution [25]. Farina et al performed a detailed analysis of
experimental sea data. The results showed that the VV data corresponds exactly to the K
model, while the HH data correspond well to a LN model and the cross-HV data by the
K model plus thermal noise, especially in the tail region [26]. Also, to this end, Carretero
et al presented a statistical analysis of sea noise data, collected with a high-resolution Ka-
band radar on the south coast of Spain. The results showed that the GK model with LN
texture (GK-LNT) provides a precise fit to the empirical PDF [27]. Farshchian and Posner
analyzed the sea clutter using a database collected on the coast of Kauai, Hawaii. The Pareto
distribution and the two mixture distributions WW and KK offer the best fit to the real sea
data than the LN, Weibull and K distributions [28]. For the K model plus thermal noise,
Mezache et al proposed a method for estimating parameters using the PCFE method based
on the N-M algorithm developed by Lagariass et al [29]. This method gives the best estimate
of the spiky clutter parameter [30].
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Also, Mezache et al used the PCFE method to model and estimate CIG parameters plus
thermal noise and showed that this model provides a good fit to real amplitude of sea clutter
[31]. Numerous works in this context demonstrate that there is agreement on the validity of
the CG model, and different results have been reported for the appropriate amplitude PDF
[18], [32, 33, 34, 35].
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Modeling of High-Resolution Radar Sea
Clutter Using Two Approximate Weibull
Distributions plus Thermal Noise
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Abstract

This chapter is considered as the main work proposed in this thesis. It proposes statistical
modeling of high-resolution sea clutter based on two approximate Weibull distribution plus
thermal noise. In the first part, we recall the statistical description of the Generalized Com-
pound distribution (GC) without and with thermal noise, and its derived models. Next, we
give the mathematical steps to derive the proposed models. Finally, we evaluate the fitting
performance of the proposed models to sea data using synthetic data as well as the IPIX
database collected by the McMaster university radar on the east coast of Canada.
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3.1 Introduction

Sea clutter modeling is characterized mainly at the tail of the distribution. When the maritime
radar operates at high-resolution and adverse weather conditions, it turns out that the Gaus-
sian model proposed previously can no longer correctly model the amplitude of sea clutter,
and the speckle deviates to longer tail distributions as mentioned in chapter 2. Among the
proposed models to solve this problem and model the sea clutter with precision is the GC
distribution. The GC model is a multi-parameter PDF which is built up using the General-
ized Gamma (GΓ) distribution. Both the speckle and texture component of the compound
clutter are described using the GΓ PDF. The model lacks a closed-form expression and con-
sequently only integral representation is provided. It turns out that all the statistical models
used in the radar literature are special cases of GC distribution, most of these models can
be obtained from specific values of its parameters. Table 3.1 illustrates the procedure for
obtaining each model, Also, a graphical demonstration of this procedure and the obtained
models is shown in Figure 3.1. The GC distribution can be used advantageously to model a
high-resolution radar clutter and to deal with the inefficiencies of existing compound models
[19].

Figure 3.1 – Special cases of GC PDF and existing clutter models.

Moreover, new distributions can be derived from the GC model, the case of our proposed
work. First, we start with a detailed description of the GC model without and with thermal
noise which will support much of our further analysis, then a statistical description of the
proposed models in this thesis.
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3.2 Generalized Compound Model without Thermal Noise

The distributions of the speckle and texture components are represented respectively by two
distributions of GΓ. The PDF of the GC model is given by [19]:

fGC(x) =
∫

∞

0
fGΓ(x|s) fGΓ(s)ds (3.1)

where fGΓ(x|s) is the PDF of the speckle, it is described by the GΓ distribution given by
[19]:

fGΓ(x|s) =
b1

aΓ(ν1)

(x
s

)b1ν1−1
exp
[
−
(x

s

)b1
]

(3.2)

where b1 is the power parameter, ν1 is the shape parameter, and s is the scale parameter.
The texture is a random variable that also follows the GΓ distribution given by the PDF:

fGΓ(s) =
b2

aΓ(ν2)

( s
a

)b2ν2−1
exp
[
−
( s

a

)b2
]

(3.3)

where b2 is the power parameter, ν2 is the shape parameter, and a is the scale parameter.
Substituting (3.2) and (3.3) into (3.1), we obtain the representation of the PDF-GΓ in an
integral form.

fGC(x) =
b1b2

Γ(ν1)Γ(ν2)

xb1ν1−1

ab2ν2

∫
∞

0
sb2ν2−b1ν1−1exp

[
−
(x

s

)b1
−
( s

a

)b2
]

ds (3.4)

where a is the scale parameter, b1,2 are the power parameters, ν1,2 are the shape parameters.
The CDF of the GC distribution is obtained as follows:

FGC(x) = 1−
∫

∞

T
fGC(x)dx (3.5)

FGC(x) = 1−
∫

∞

T

[∫
∞

0
fGΓ(x|s) fGΓ(s)ds

]
dx (3.6)

FGC(x) = 1−
∫

∞

0
fGΓ(s)

[∫
∞

T
fGΓ(x|s)dx

]
ds (3.7)

FGC(x) = 1−
∫

∞

0
fGΓ(s) [1−FGΓ(x|s)]ds (3.8)

FGΓ(x|s) is the CDF of the distribution GΓ given by:

FGΓ(x|s) =
γ
(
ν1,(

x
s )

b1
)

Γ(ν1)
(3.9)
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where
(
ν1,(

x
s )

b1
)

is the incomplete Gamma function.

Finally, the CDF of the GC model without thermal noise is given in integral form by:

FGC(x) = 1− b2

ab2ν2Γ(ν2)

∫
∞

0
sb2ν2−1

1−
γ

(
ν1,
(x

s

)b1
)

Γ(ν1)

exp
[
−
( s

a

)b2
]

ds (3.10)

The moments of order n of the GC distribution are obtained from:

〈xn〉=
∫

∞

0
xn fGC(x)dx (3.11)

After a few manipulations,〈xn〉 becomes:

〈xn〉= an
Γ

(
n
b1
+ν1

)
Γ

(
n
b2
+ν2

)
Γ(ν1)Γ(ν2)

(3.12)

Most of the distributions used to model radar clutter can be obtained from the GC model from
specific values of its parameters. The procedure for obtaining each distribution is illustrated
in table 3.1. The description of each distribution is described below.

Nature
Compound

Models Abbreviation Parameters Simple Speckle Texture
Generalized Compound GC a,ν1,ν2,b1,b2

Rayleigh
b1 = b2 = 4

R ν1 = 1 ?
ν2 = 0.5

Exponential
b1 = b2 = 2

E ν1 = 1 ?
ν2 = 0.5

K
b1 = b2 = 2

K ν1 = 1 R G
ν2 = ν

Generalized-K GK b1 = b2 = b GΓ GΓ

Gamma
b1 = b2 = 2

Γ ν1 = 1 ?
ν2 = 0.5

Generalized Gamma GΓ b1,b2 : Integer values ?

Weibull
b1 = b2 = b

W ν1 = 1 ?
ν2 = 0.5

Weibull-Gamma

b1 = b
b2 = 2

WG ν1 = 1 W G
ν2 = ν

Log-Normal
b1 = b2 = b→ 0

LN ν1 = ν → ∞ GΓ GΓ

ν2 = 0.5
Generalized Hyper-geometric. GH b1 = b2 = b ?

Table 3.1 – The GC model and its derived distributions.
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3.2.1 R Distribution

The R distribution is a special case of the GC distribution. It is obtained from the GC model
when b1 = b2 = 4, ν1 = 1, and ν2 = 0.5. The PDF of the R distribution is given by:

fR(x) =
8

aΓ(0.5)

(x
a

)2
K−0.5

(
2
(x

a

))2
(3.13)

It is also given by the equation:

fR(x) =
4x
a2 exp

(
2
(x

a

))2
(3.14)

The CDF of the R distribution is given by:

FR(x) = 1− exp
(

2
(x

a

))2
(3.15)

Finally, the moments of order n are obtained as:

〈xn
R〉=

(
a√
2

)n

Γ

(n
2
+1
)

(3.16)

3.2.2 E Distribution

The E distribution is a special case of the GC distribution. The E distribution is obtained
when b1 = b2 = 2, ν1 = 1, and ν2 = 0.5, its PDF is given by:

fE(x) =
4

aΓ(0.5)

√
x
a

K−0.5

(
2x
a

)
(3.17)

It is also given by the equation:

fE(x) =
2
a

exp
(
−2x

a

)
(3.18)

The CDF of the E distribution is given by:

FE(x) = 1− exp
(
−2x

a

)
(3.19)

The moments of order n are obtained as:

〈xn
E〉=

(a
2

)n
Γ(n+1) =

(a
n

)n
n! (3.20)
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3.2.3 K Distribution

This model is mainly presented for high-resolution sea clutter modeling. The K model is a
composite Gaussian distribution formed from two components speckle and texture, which
are represented respectively by a Rayleigh and Gamma distribution. This model can be
obtained from the GC distribution when b1 = b2 = 2, ν1 = 1, and ν2 = ν . Its PDF is given
by:

fK(x) =
4

aΓ(ν)

(x
a

)ν

Kν−1

(
2x
a

)
(3.21)

Its CDF is given by:

FK(x) = 1− 2
Γ(ν)

(x
a

)ν

Kν

(
2x
a

)
(3.22)

The moments of order n are obtained as:

〈xn
K〉= an Γ

(n
2 +1

)
Γ
(n

2 +ν
)

Γ(ν)
(3.23)

3.2.4 Γ Distribution

The Γ distribution is also a special case of the GC distribution. It is obtained from the GC
distribution when b1 = b2 = 2, ν1 = ν , and ν2 = 0.5, its PDF is given by:

fG(x) =
2

aΓ(ν)

(
2x
a

)ν−1

exp
(

2x
a

)
(3.24)

The CDF of distribution Γ is given by:

FG(x) =
γ
(
ν , 2x

a

)
Γ(ν)

(3.25)

The moments of order n are obtained from:

〈xn
G〉=

(a
2

)n Γ(n+ν)

Γ(ν)
n > ν (3.26)

3.2.5 GΓ Distribution

This distribution can be obtained from the GC model when b1 = b2 = b, ν1 = ν , and ν2 = 0.5,
its PDF is given by:

fG(x) =
b

2pΓ(ν)

(
x
p

) b
2 ν−1

exp
(
−x

a

) b
2 (3.27)
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where p = a2−
b
2

The function of the CDF is given by:

FGΓ(x) =
γ

(
ν ,
(

2x
p

) b
2
)

Γ(ν)
(3.28)

The moments of order n are obtained from:

〈xn
GΓ〉= pn Γ

(2n
b +ν

)
Γ(ν)

(3.29)

3.2.6 GK Distribution

For the GK model, the texture component is represented by a GΓ distribution. This model is
obtained from the GC distribution when b1 = b2 = b.
The PDF function is provided by:

fGK(x) =
2b

aΓ(ν1)Γ(ν2)

(x
a

) b
2 (ν1+ν2)−1

Kν2−ν1

(
2
(x

a

) b
2
)

(3.30)

where Kν(.) is the modified Bessel function of the second kind.
The CDF of the GK distribution is given by:

FGK(x) = 1− 2
Γ(ν2)

(x
a

) b
2 ν2

ν1−1

∑
q=0

1
q!

(x
a

) b
2 q

Kν2−q

(
2
(x

a

) b
2
)

(3.31)

The moments of order n are obtained as:

〈xn
K〉= an Γ

(n
2 +1

)
Γ
(n

2 +ν
)

Γ(ν1)Γ(ν2)
(3.32)

3.2.7 W Distribution

This distribution is due to the Swedish mathematician Waloddi Weibull. It is a law of prob-
ability which depends on two parameters, and also it is a special case of the GC distribution
when b1 = b2 = b, ν1 = 1, and ν2 = 0.5.
Its PDF is given by:

fW (x) =
2b

aΓ(0.5)

(x
a

) 3
4 b−1

K0.5

(
2
(x

a

) b
2
)

(3.33)

It is also given by the equation:

fW (x) =
b

2p

(
x
p

) b
2−1

exp
(
− x

p

) b
2

(3.34)
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where p = a2−
b
2 .

The function of the CDF is given by:

FW (x) = 1− exp
(
− x

p

) b
2

(3.35)

The moments of order n are obtained as:

〈xn
W 〉= an Γ

(n
b +1

)
Γ
(n

b +0.5
)

Γ(0.5)
(3.36)

It is also given by the equation:

〈xn
W 〉= pn

Γ

(
2n
p
+1
)

(3.37)

3.2.8 WG Distribution

The WG distribution is composed of a speckle distributed according to Weibull and a texture
distributed according to Gamma. It is more general than the K distribution with regard to the
speckle. The WG model is obtained from the GC distribution when b1 = b,b2 = 2, ν1 = 1,
and ν2 = ν , its PDF is given by:

fWG(x) =
2π

2Γ(ν)

(x
a

)b−1 ∞

∑
k=0

(−1)k

k!

( x
a

)bz1

Γ(z1 +1)sin [π(z1 +1)]

+
bπ

aΓ(ν)

(x
a

)2ν−1 ∞

∑
k=0

(−1)k

k!

( x
a

)bz2

Γ(z2 +1)sin [π(z2 +1)]

(3.38)

where z1 =
2ν−b+2k

b and z2 =
b−2ν+kb

2 .
The function of the CDF of the WG distribution is given by:

FWG(x) = 1−
(

2
a2νΓ(ν)

)∫
∞

0
s2ν−1

(
1− γ

(
1,
(x

s

)b
))

exp
(
−
( s

a

)2
)

ds (3.39)

The moments of order n are obtained from:

〈xn
WG〉= an Γ

(n
b +1

)
Γ
(n

2 +ν
)

Γ(ν)
(3.40)

3.2.9 LN Distribution

The LN distribution has been developed to be applied in a wide variety of real situations of
the sea and land clutter at a low angle and high-resolution radars. The LN distribution is
obtained from the GC distribution when: b1 = b2 = b→ 0, ν1 = ν → ∞, and ν2 = 0.5, its
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PDF is given by:

fLN(x) =
1

xσLN
√

2π
exp

[
−1

2

(
log(x)−µLN

σLN

)2
]

(3.41)

where µLN = log(a2−
2
b )+ 2

b log(ν) and σLN = 2
b
√

ν
.

The CDF of the LN distribution is given by:

FLN(x) =
1
2

[
1+ er f

(
log(x)−µLN

σLN
√

2

)]
(3.42)

The moments of order n are obtained from:

〈xn
LN〉= exp

(
nµLN +

(nσLN)
2

2

)
(3.43)

3.2.10 GH Distribution

Other special cases of GC model can be obtained when b1 et b2 take integer values by using
the Hyper-geometric Generalized functions. We present here two special cases, b1 = 1,
b2 = 2, and b1 = 2, b2 = 1. The same procedure can be followed for any pair [19]. In the
first case, we assume that b1 = 1, so the speckle is Gamma distributed, and b2 = 2. In this
case, we denote the distribution GH by GH1, its PDF is given by:

fGH1(x) = A1

(x
a

)2ν2−1
0F2

(
ν2−

ν1

2
+0.5;ν2−

ν1

2
+1;−

( x
2a

)2
)

+A2

(x
a

)ν1−1
0F2

(
0.5;−ν2 +

ν1

2
+1;−

( x
2a

)2
)

+A3

(x
a

)ν1

0F2

(
1.5;−ν2 +

ν1

2
+1.5;−

( x
2a

)2
) (3.44)

where the Ai are quantities depending on ν1,ν2, and a. pFq are the Generalized Hyper-
geometric functions.

A1 =
2π

aΓ(ν1)Γ(ν2)Γ(2ν2−ν1 +1)sin[π(2ν2−ν1 +1)]
(3.45)

A2 =
π1.5

aΓ(ν1)Γ(ν2)Γ(1
2)Γ(−ν2 +

ν1
2 +1)sin[π(−ν2 +

ν1
2 +1)]

(3.46)

A3 =
π1.5

2aΓ(ν1)Γ(ν2)Γ(3
2)Γ(−ν2 +

ν1
2 + 3

2)sin[π(−ν2 +
ν1
2 + 1

2)]
(3.47)
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The CDF of the GH1 distribution is given by:

FGH1(x) = 1− 2
a2ν2Γ(ν2)

∫
∞

0
s2ν2−1

(
1−

γ
(
ν1,

x
s

)
Γ(ν1)

)
exp
(
−
( s

a

)2
)

ds (3.48)

The moments of order n are obtained from:

〈xn
GH1
〉= an Γ(n+ν1)Γ

(n
2 +ν2

)
Γ(ν1)Γ(ν2)

(3.49)

In the second case, we assume that b1 = 2 and b2 = 1. In this case, we denote the distribution
GH by GH2, its PDF is given by:

fGH2(x) = B1

(x
a

)2ν2−1
0F2

(
ν1−

ν2

2
+0.5;ν1−

ν2

2
+1;−

( x
2a

)2
)

+B2

(x
a

)ν2−1
0F2

(
0.5;−ν1 +

ν2

2
+1;−

( x
2a

)2
)

+B3

(x
a

)ν2

0F2

(
1.5;−ν1 +

ν2

2
+1.5;−

( x
2a

)2
) (3.50)

where the Bi are quantities depending on ν1,ν2, and a.

B1 =
2π

aΓ(ν1)Γ(ν2)Γ(2ν1−ν2 +1)sin[π(2ν1−ν2 +1)]
(3.51)

B2 =
π1.5

aΓ(ν1)Γ(ν2)Γ(1
2)Γ(−ν1 +

ν2
2 +1)sin[π(−ν1 +

ν2
2 +1)]

(3.52)

B3 =
π1.5

2aΓ(ν1)Γ(ν2)Γ(3
2)Γ(−ν1 +

ν2
2 + 3

2)sin[π(−ν1 +
ν2
2 + 1

2)]
(3.53)

The CDF of the GH2 distribution is given by:

FGH2(x) = 1− 1
a2ν2Γ(ν2)

∫
∞

0
sν2−1

1−
γ

(
ν1,
(x

s

)2
)

Γ(ν1)

exp
(
−
( s

a

)2
)

ds (3.54)

The moments of order n are obtained from:

〈xn
GH2
〉= an Γ(n+ν2)Γ

(n
2 +ν1

)
Γ(ν1)Γ(ν2)

(3.55)
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3.3 Generalized Compound Model with Thermal Noise

In the case of the presence of thermal noise, the speckle and texture components of the GC
clutter are modeled by different PDFs. For this reason, the speckle distribution (3.2) has been
adjusted to include thermal noise, and noted GΓN.

fGΓN(x|s) =
b1

Γ(ν1)

xb1ν1−1

√
s2 +2σ2b1ν1

exp
[
−( x√

s2 +2σ2
)b1

]
(3.56)

Therefore, the PDF model GC plus thermal noise (GCN) is given by:

fGCN(x) =
b1b2

Γ(ν1)Γ(ν2)

xb1ν1−1

ab2ν2

∫
∞

0

sb2ν2−1

√
s2 +2σ2b1ν1

exp
[
−( x√

s2 +2σ2
)b1− (

s
a
)b2

]
ds

(3.57)
After some mathematical simplifications, the CDF function is given by:

FGCN(x) = 1− b2

ab2ν2Γ(ν2)

∫
∞

0
sb2ν2−1

1−
γ

(
ν1,(

0√
s2+2σ2 )

b1

)
Γ(ν1)

exp
[
−( s

a
)b2
]

ds (3.58)

The moments are given by:

〈xn
GCN〉=

b2Γ( n
b1
+ν1)

Γ(ν1)Γ(ν2)ab2ν2

∫
∞

0

√
s2 +2σ2

n
sb2ν2−1exp

[
−( s

a
)b2
]

ds (3.59)

As mentioned above, new distributions can be derived from the GC model. In our work,
we derive the CCDF of the Weibull model with additive thermal noise based on the GC
distribution, as detailed below.

3.4 First Weibull Model plus Thermal Noise

The first approximate Weibull plus noise model referred to as WN1 is based on the GCN.
It is obtained for b1 = b2 = b, ν1 = 1, and ν2 = 0.5 [19]. For this model, we derive the
expressions of the CCDF for single as well as multiple pulses.

3.4.1 The WN1 Model for a Single Pulse

The PDF of the WN1 for a single pulse is given by:

fWN1(x) =
b2
√

π

xb−1

a

∫
∞

0

( s
a

) b
2−1 1
√

s2 +2σ2b exp
[
−( x√

s2 +2σ2
)b− (

s
a
)b
]

ds (3.60)
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After some simplifications, the CCDF of the WN1 model for a single pulse is expressed
by:

CCDFWN1 = Prob(x > T ) =
b

a
b
2
√

π

∫
∞

0
s

b
2−1
[

1− γ

(
1,(

T√
s2 +2σ2

)b
)]

exp
[
−( s

a
)b
]

ds

(3.61)
Using a detection threshold T (T = α〈x〉), the probability that clutter returns exceed the
threshold is given as the CCDF, where α is a factor which is set to achieve the desired value
of (PFA).The shape and scale parameters are given respectively by:
c = 0.5b, and β = a2−2/b [19].
The expression of the moments of the WN1 distribution is called MoM-WN1 and is given
by [19]:

〈xn
WN1〉=

Γ(n
b +1)b

√
πa

b
2

∫
∞

0

(√
w2 +2σ2

)n
s

b
2−1exp

(
−( s

a
)b
)

ds (3.62)

3.4.2 The WN1 Model for Multiple Pulse

Based on the PDF approximation of the sum of N Weibull distribution mentioned in [36],
where the approximation is of GΓ type:

f (x) =
RbcN

Γ(N)
(Rx)Nb−1exp

(
−c(Rx)b

)
(3.63)

R =
Γ(N + 1

b)

NΓ(N)Γ(1+ 1
b)

(3.64)

We can write the formula of the sum of N PDF of the WN1 model:

N fWN1(x) =
Rb2(Rx)Nb−1

Γ(N)a
√

π

∫
∞

0

( s
a

) b
2−1 1
√

s2 +2σ2Nb exp
[
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s2 +2σ2
)b− (

s
a
)b
]

ds

(3.65)
After some simplifications, the sum of N CCDF of WN1 is expressed by:

NCCDFWN1 = Prob(x > T ) =
b

a
b
2
√

π

∫
∞

0
s

b
2−1

1−
γ

(
N,( RT√

s2+2σ2 )
b
)

Γ(N)

exp
[
−( s

a
)b
]

ds

(3.66)
Putting N = 1 leads to the WN1 model for a single pulse (3.60) and (3.61).

3.5 Second Weibull Model plus Thermal Noise

The second approximate Weibull plus noise model referred to as WN2 is based on the PDF
model provided in [20]. For the WN2 model, we derive the expression of the CCDF for
single as well as multiple pulses, and we provide the expression of the moments.
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3.5.1 The WN2 Model for Single Pulse

The PDF of the WN2 model is given by [20]:

fWN2(x) =
2b

x
√

π
εα

∫
∞

0

1

(w
4
b +1)

b
2

exp

[
− ε

(w
4
b +1)

b
2
− (α2w2)

]
dw (3.67)

where ε = (x2/2σ2)
b
2 and α = (2σ2/a2)

b
4 . The shape and scale parameters are given respec-

tively by:
c = 0.5b, β = a2−2/b.

The CCDF of the WN2 model is derived in the same manner as for the WN1 model. After
some mathematical manipulations, the CCDF for a single pulse is expressed in the integral
form as follows:

CCDFWN2 = Prob(x > T ) =
2α√

π

∫
∞

0
exp

[
− T b

(2σ2)(
b
2 )(w

4
b +1)

b
2
− (α2w2)

]
dw (3.68)

The expression of the moments of the WN2 model is referred to as MoM-WN2 can be
obtained, using the conventional definition and (3.67) as follows:

〈xn〉=
∫

∞

0
xn fWN2(x)dx (3.69)

Integrating with respect to x, we obtain after some manipulations the following expression
in the integral form:

〈xn〉= 2α
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2

dw (3.70)

3.5.2 The WN2 Model for Multiple Pulse

Based on the approximation (3.63), the formula of the sum of N PDF is given by:

N fWN2(x) =
2bα

Γ(N)x
√
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R2x2
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2
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(3.71)
After some mathematical manipulations, the expression of the sum of N CCDF is expressed
by:

NCCDFWN2 =

Prob(x > T ) =
2RNbα(2σ2)

b
2

Γ(N)
√

π(2σ2)
Nb
2

∫
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2
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dw

(3.72)
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Putting N = 1 leads to the WN2 model for a single pulse (3.67) and (3.68)

3.5.3 The Compound Gaussian plus Noise Models

To assess the performance of the proposed models to fit sea clutter amplitudes, three impor-
tant CG distributions plus noise are recalled here and used for comparison purposes and are
considered among the most suitable models to describe the sea clutter. The fitting perfor-
mance of these models has been studied and discussed by Mezache et al in [31]. The first
model is the K distribution plus noise (KN). The overall PDF and CCDF are given by:

fKN(x) =
∫

∞

0

x
σ2 +2y2/π

exp
[
− x2

2σ2 +4y2/π

]
2b2νy2ν−1

Γ(ν)
exp
(
−b2y2)dy (3.73)

CCDFKN = Prob(x > T ) =
∫

∞

0
exp
[
− T 2

2σ2 +4y2/π

]
2b2νy2ν−1

Γ(ν)
exp
(
−b2y2)dy (3.74)

where ν is the shape parameter, b is the scale parameter, 2σ2 is the power of thermal noise,
and T is the detection threshold as mentioned above. The second model is the GP distribution
plus thermal noise (GPN). Its PDF and CCDF are expressed respectively by:

fGPN(x) =
∫

∞

0

x
σ2 +2y2/π

exp
[
− x2

2σ2 +4y2/π

]
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[
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dy (3.75)

CCDFGPN = Prob(x > T ) =
∫

∞

0
exp
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2σ2 +4y2/π

]
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Γ(α)
exp
[
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y

]
dy (3.76)

where α is the shape parameter, b is the scale parameter, and 2σ2 is the power of thermal
noise. The last model is the CIG distribution plus thermal noise (CIGN). Its PDF and CCDF
are given respectively by:

fCIGN(x) =
∫

∞

0

x
σ2 +2y2/π

exp
[
− x2

2σ2 +4y2/π

]
λ

3
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√
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CCDFCIGN = Prob(x > T ) =
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√
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[
−λ

(y−µ)2

2µ2y

]
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(3.78)
where λ is the shape parameter, µ is mean, and 2σ2 is the power of thermal noise.

38



Chapter 3

3.6 Simulation Results and Discussions

As mentioned in chapter 2, the statistics of the sea clutter deviate from the Gaussian model
and the returns have a high amplitude which generally lead to the appearance of the target
of interest in the tail of the clutter distribution. Therefore, modern radars need more fitted
models with longer tails. In the field of radar clutter design and modeling, it is essential to
verify and validate new models using synthetic and real data. Without this step, there is no
guarantee that the results will have any value. Several real radar databases are used as part
of high-resolution sea clutter modeling, among them is the database collected by the IPIX
radar from McMaster University. This database offers a wide possibility to model, test and
analyze sea clutter in different resolution ranges and different conditions. In this section, For
a single pulse, we assess the performance of the proposed models to fit sea clutter. Two types
of sea clutter data are used, synthetic data and real IPIX data. The estimated parameters of
each model are obtained using the PCFE method based on the N-M simplex algorithm.

3.6.1 Parameter Estimation by the PCFE Method

The detection process is related to the parameters of the clutter model used in the radar sys-
tem. In reality, the true values of these parameters are unknown, they are only estimates
and should be calculated optimally or at least be close to their theoretical values, in order
to improve detection performance. Since the nature of the clutter can only provide partial
information about reality, the estimated values will inevitably encounter errors, where they
should be reduced as much as possible. Due to the complexity of parameter estimation ac-
cording to the proposed models, the PCFE method based on the N-M algorithm is used here
to reach the estimation parameters. The N-M algorithm is often referred to as the simplex
method, this algorithm was published in 1965 by John Nelder and Roger Mead, and since
then it has become one of the most common unconstrained nonlinear optimization methods.
The algorithm is quite simple to understand and very easy to use. For these reasons it is very
popular in many fields of science and technology. The algorithm tends to minimize a non-
linear scalar function of N parameters without the use of derivative, which makes it suitable
for problems with non-smooth functions. It is widely used to solve parameter estimation,
where the function values are unknown. It can also be used for problems with discontinuous
functions, which frequently arise in statistics and experimental mathematics. The main steps
of the PCFE method based on the N-M algorithm are summarized as follows [30]:

Step 1: Estimate the real CCDF (PFA) of the recorded IPIX data.

Step 2: Initialize the method.

Step 3: Compute the initial working N-M simplex.

Step 4: Evaluate the summed square of residuals at each vertex of the working N-M sim-
plex.
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Step 5: Repeat the following steps until the termination test is satisfied.

• Calculate the termination test information.

• If the termination test is satisfied then, accept the best vertex of the working N-M
simplex and go to next step, otherwise transform the working N-M simplex and
go to step 4.

Step 6: Return the best vertex of the working N-M simplex and the associated fitness func-
tion.

In addition, if the best fit curve is reached, we can accept the estimated parameters. Oth-
erwise, we may have to take more steps to improve the estimation quality, for instance, we
may look for an adequate region to improve curve fitting or repeat the data collection process
to get better results. It is clear that choosing the best model from a group of candidates for a
particular set of data is not an easy task. The most suitable model gives predicted values close
to the observed data values. Although often overlooked, the metric used to assess the effec-
tiveness of a model in predicting outcomes is very important and can influence conclusions.
Currently, there are several criteria in the literature to choose the model that best matches the
data. Among them are the Mean Squared Error (MSE) and the Chi-Square goodness-of-fit
(CS) test. The MSE criterion is used here to assess the goodness of fit of theoretical CCDFs
to actual CCDFs, and the CS criterion to assess the goodness of fit between theoretical and
actual PDFs.

3.6.1.1 The MSE Criterion

MSE is probably the most widely used quantitative criterion for comparing calculated and
observed values. For each observation we take the difference between the calculated value
and the observed value (this is the error of the model), we take the square, and finally we take
the average of the squares over all the observations. the MSE criterion is defined as follows:

MSE =
1
N

N

∑
i=1

(CCDFreali−CCDF i)
2 (3.79)

3.6.1.2 The CS Criterion

The CS adjustment test can be defined as:

CS =
N

∑
i=1

(PDFreali−PDF i)
2 /PDF i (3.80)

3.6.2 Fitting via Synthetic Data

In this subsection, we illustrate the results of clutter modeling when the distribution is se-
lected in advance. For that, we generate sea clutter distributed according to the Weibull
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model plus additive thermal noise which depends on the shape parameter and the CNR.

CNR =
β 2Γ(1+ 2

c )

pn
(3.81)

where β is the scale parameter, c is the shape parameter, and pn = 2σ2 is the power of
thermal noise.
In Figures 3.2 and 3.3, the Weibull distributed data were obtained assuming CNR = -5 dB, c =
1, and 60 000 samples (we chose this number as the same number of samples for each range
of cells of the IPIX database, as described in the next subsection). We clearly observe that the
proposed CCDFs of WN1 and WN2 models follow exactly the curve synthesized from the
simulated data and provide accurate tails. Moreover, the PDF curves offer a good fit to the
simulated PDF, but with less accurately than the proposed CCDFs. The same performance
is observed in Figures 3.4 and 3.5 with CNR = 10 dB, and c = 1. For MoM-WN1 and MoM-
WN2 curves, the estimated parameters are obtained using the moments matching method
given by expression (3.62) and the proposed expression (3.70) corresponding to WN1 and
WN2 models respectively. Three order moments are used 1, 0.5 and 0.1. The use of low order
moments allows reaching a better accuracy, the CCDF curves are very close to that obtained
from synthetic data especially in the tail region. According to the obtained results, we can
conclude that the two proposed CCDFs WN1 and WN2 provide a good approximation for
the Weibull plus thermal noise distribution and offer a better fit than the PDF models.
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Figure 3.2 – CCDF curves via synthetic data for CNR = -5 dB, c = 1, β = 0.3466 and
pn = 1.1543.
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Figure 3.3 – PDF curves via synthetic data for CNR = -5 dB and c = 1, β = 0.3466 and
pn = 1.1543.
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Figure 3.4 – CCDF curves via synthetic data for CNR = 10 dB and c = 1, β = 0.6742 and
pn = 0.0165.
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Figure 3.5 – PDF curves via synthetic data for CNR = 10 dB and c = 1, β = 0.6742 and
pn = 0.0165.

3.6.3 Modeling Using Real Sea IPIX Data

In this subsection, we assess the fitting performance of the proposed models WN1 and WN2
to real sea data, by comparing the real CCDFs and PDFs with the estimated CCDFs and
PDFs using the PCFE method. Also, we compare these results with those obtained by the
CG models KN, GPN and CIGN studied in [31]. The sea data processed in this work were
collected by the McMaster University IPIX radar on the east coast of Canada, Place Polon-
aise, Grimsby, Ontario (latitude 43.2114◦ N, longitude 79.5985◦ W) at a height of 20 meters
[37]. The data are stored in 222 files, there are like-polarization mode, VV and HH (Lpol),
and cross-polarization mode, VH and HV (Xpol), with coherent reception, offer four val-
ues of I (in-phase) and Q (quadrature) components for each range. In this work, we have
selected seven files at a different range of resolutions 60, 30, 15, 9 and 3 meters with four
polarization modes. The number of range cells is 27, 28 and 34 depending on the file with
60 000 pulses for each range. The amplitude of the sea clutter is calculated from I and Q
components x =

√
I2 +Q2. The data has already been processed to eliminate DC offset and

phase imbalance due to hardware defects [38]. We use the Kernel smoothing density esti-
mation method to calculate the real PDF [39]. The parameters of the radar system and the
characteristics of each file used in this work are available in Table 3.2 and 3.3, All details
on the parameters of the radar system are available in [37]. The IPIX radar files are stored
in Unidata’s NetCDF (Network Common Data Form) file format, this format is ideal for
efficient storage of multidimensional array data.
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NetCDF is a set of software libraries and machine independent data formats that support
the creation, access, and sharing of array oriented scientific data. The Unidata program cen-
ter supports and maintains NetCDF programming interfaces for C, C++, Java, and Fortran,
programming interfaces are also available for Python, IDL, MATLAB, R, Ruby, and Perl.
The IPIX data are easily imported into MATLAB using the SNCTOOLS (MexCDF toolbox).
Where the SNCTOOLS is a collection of MATLAB codes that were written to provide read,
write and access to NetCDF files. To combine SNCTOOLS with Matlab to open, read, and
extract IPIX data, must follow the steps mentioned in [37, 40].

Name of the data set 19980204_221307_ANTSTEP 19980204_194537_ANTSTEP 19980204_221700_ANTSTEP 19980204_221908_ANTSTEP

Data collection date 1998/02/04 22 : 13 : 071998/02/04 22 : 13 : 071998/02/04 22 : 13 : 07 1998/02/04 19 : 45 : 371998/02/04 19 : 45 : 371998/02/04 19 : 45 : 37 1998/02/04 22 : 17 : 001998/02/04 22 : 17 : 001998/02/04 22 : 17 : 00 1998/02/04 22 : 19 : 081998/02/04 22 : 19 : 081998/02/04 22 : 19 : 08

Range resolution 60m 30m 15m 9m

Numbre of range cells 28 28 28 28

Cell samples 60 000 60 000 60 000 60 000

PRF 1 KHz 1 KHz 1 KHz 1 KHz

Frequency PRF 9.39 GHz 9.39 GHz 9.39 GHz 9.39 GHz

Pulse length 400 ns 200 ns 100 ns 60 ns

Azimuth resolution 0.3571◦0.3571◦0.3571◦ 16.1499◦16.1499◦16.1499◦ 0.2966◦0.2966◦0.2966◦ 0.3241◦0.3241◦0.3241◦

Unambig velocity 7.9872 m/s 7.9872 m/s 7.9872 m/s 7.9872 m/s

Radar and wave geometry

Table 3.2 – Characteristics of the analyzed files.

Name of the data set 19980205_185111_ANTSTEP 19980223_190901_ANTSTEP 19980204_222110_ANTSTEP

Data collection date 1998/02/05 18 : 51 : 111998/02/05 18 : 51 : 111998/02/05 18 : 51 : 11 1998/02/23 19 : 09 : 011998/02/23 19 : 09 : 011998/02/23 19 : 09 : 01 1998/02/04 22 : 21 : 101998/02/04 22 : 21 : 101998/02/04 22 : 21 : 10

Range resolution 3m 3m 3m

Numbre of range cells 27 34 27

Cell samples 60 000 60 000 60 000

PRF 1 KHz 1 KHz 1 KHz

Frequency PRF 9.39 GHz 9.39 GHz 9.39 GHz

Pulse length 20 ns 20 ns 20 ns

Azimuth resolution 44.8956◦44.8956◦44.8956◦ 329.87◦329.87◦329.87◦ 0.31311◦0.31311◦0.31311◦

Unambig velocity 7.9872 m/s 7.9872 m/s 7.9872 m/s

Radar and wave geometry

Table 3.3 – Characteristics of the analyzed files.
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3.6.3.1 Range Resolutions 60, 30 and 15m

First, we perform the fitting performance when the radar operates at a low resolution of 60m,
using (19980204_221307_ANT ST EP) file, in which the azimuth resolution is set 0.3571◦.
For HH polarization mode and 4th range cells. Figures 3.6 and 3.7 show the real and the
estimated CCDFs and PDFs respectively. A very good fit was achieved by all models to
real IPIX data, especially in the tail region, where the CCDFs of the proposed WN1 and
WN2 models provide the best approximation with the smallest MSE values, (Table 3.4). On
the contrary, all the PDF models show less accurate performance than the CCDFs models.
Similar results are obtained for the same range cells and VV polarization mode, as shown in
Figures 3.8 and 3.9. Also in this case, the proposed CCDFs produce the best performance.
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Figure 3.6 – CCDF curves, 60m, HH polarization, 4th range cell, Azimuth resolution =
0.3571◦.
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Figure 3.7 – PDF curves, 60m, HH polarization, 4th range cell, Azimuth resolution =
0.3571◦.
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Figure 3.8 – CCDF curves, 60m, VV polarization, 4th range cell, Azimuth resolution =
0.3571◦.
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Figure 3.9 – PDF curves, 60m, VV polarization, 4th range cell, Azimuth resolution =
0.3571◦.

We repeat the fitting performance of the proposed models by increasing the radar resolution
to 30m. There are 163 files of 30m resolution in the IPIX Grimsby database, which offer us
a large number of analyzes. One of them is the (19980204_194537_ANT ST EP) file, 20th

range cells, HH polarization mode and azimuth resolution set to 16.1499◦. We observe in
Figure 3.10 that all models exhibit a good fit in the body and in the tail region of real IPIX
data, where the WN2 model produce the best results with the smallest MSE values, (Table
3.4). In this case, all PDF models show deviations from the real data, (Figure 3.11). To
avoid the similarity of results when conducting tests in the same range cells for the VV data,
we chose the 6th range cells. We observe in Figure 3.12 that the CG CCDFs exhibit very
long tails, where the GPN and KN models produce the worst results. Globally, the proposed
CCDFs of the WN1 and WN2 models are much closer to the IPIX sea data and provide the
best approximation in the tail region with the smallest MSE values, (Table 3.4). Also, in this
case, all PDF models exhibit very long tails, (Figure 3.13).
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Figure 3.10 – CCDF curves, 30m, HH polarization, 20th range cell, Azimuth resolution =
16.1499◦.
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Figure 3.11 – PDF curves, 30m, HH polarization, 20th range cell, Azimuth resolution =
16.1499◦.
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Figure 3.12 – CCDF curves, 30m, VV polarization, 6th range cell, Azimuth resolution =
16.1499◦.
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Figure 3.13 – PDF curves, 30m, VV polarization, 6th range cell, Azimuth resolution =
16.1499◦.
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Models Parameters and Metrics 60m HH 4th 60m VV 4th 30m HH 20th 30m VV 6th

WN1
ĉ 0.9779 1.9896 1.9778 0.6568
β̂ 0.2587 1.3984 1.4061 0.5053
σ̂ 1.1505 0.0427 2.6157e−04 0.2767

Log(MSE) -5.8092 -5.5088 -6.2696 -6.1233
Log(CS) -3.5350 -4.1158 -4.2617 -4.2608

WN2
ĉ 0.9687 0.9642 0.9506 0.6576
β̂ 0.2500 0.2408 0.2354 0.5026
σ̂ 0.9303 0.9316 0.9281 0.3823

Log(MSE) -5.8110 -5.7189 -6.7320 -6.0238
Log(CS) -3.5195 -3.9442 -4.1175 -4.1556

KN
ν̂ 1.3220 38.1319 0.8461 0.1728
b̂ 0.3190 9.6991 2.1853 0.3787
σ̂ 0.9893 0.8558 0.9390 0.4384

Log(MSE) -5.5857 -5.5092 -6.4879 -5.0042
Log(CS) -3.6136 -4.1155 -4.2283 -3.5782

GPN
α̂ 1.4773 84.6081 2.0707 2.7044
b̂ 0.2603 77.8829 0.1045 1.6812
σ̂ 0.9355 0.6614 0.9918 1.8155e−09

Log(MSE) -5.5880 -5.3439 -6.3646 -4.0127
Log(CS) -3.6124 -3.9343 -4.2425 -4.1363

CIGN
λ̂ 1.0011 4.1937 0.5579 0.7567
µ̂ 0.3955 0.3007 0.2745 0.8421
σ̂ 0.9364 0.9636 0.9619 0.3267

Log(MSE) -5.6047 -5.5052 -6.4566 -5.9862
Log(CS) -3.6130 -4.1181 -4.2309 -4.2072

Table 3.4 – The estimated parameters for each model for range resolutions 60 and 30m,
using PCFE method.

For range resolution of 15m where the echoes are a bit spiky, the first performance was con-
ducted for the 18th range cells of (19980204_221700_ANT ST EP) file, azimuth resolution
is 0.2966◦ and HH polarization mode. The WN1 and WN2 CCDFs consistently give a good
fit in the body and in the tail region of IPIX data. On the contrary, the CIGN and GPN
models show a deviation in the tail region, as shown in Figure 3.14, and offer the worst MSE
metrics, (Table 3.5). For PDF curves, CG models show the worst fit (Figure 3.15). The
second test was performed for the 2nd range cells, and VV data. Excellent performance is
produced by all the models, according to the MES metrics, the proposed CCDFs show the
best approximation to the IPIX data, (Figure 3.16). In this case, the CIGN PDF produces the
worst performance in the tail region, (Figure 3.17).
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Figure 3.14 – CCDF curves, 15m, HH polarization, 18th range cell, Azimuth resolution =
0.2966◦.
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Figure 3.15 – PDF curves, 15m, HH polarization, 18th range cell, Azimuth resolution =
0.2966◦.
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Figure 3.16 – CCDF curves, 15m, VV polarization, 2nd range cell, Azimuth resolution =
0.2966◦.
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Figure 3.17 – PDF curves, 15m, VV polarization, 2nd range cell, Azimuth resolution =
0.2966◦.
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Models Parameters and Metrics 15m HH 18th 15m VV 2nd 15m VH 3rd

WN1
ĉ 0.9439 2.0098 0.7087
β̂ 0.1483 1.4141 0.6015
σ̂ 0.8942 2.3231e−05 0.2025

Log(MSE) -7.0123 -6.1913 -6.8314
Log(CS) -3.9738 -4.1830 -4.3272

WN2
ĉ 0.9446 0.9598 0.7040
β̂ 0.1603 0.2183 0.5935
σ̂ 0.9324 0.9343 0.3267

Log(MSE) -7.0139 -6.0196 -6.9113
Log(CS) -3.9697 -4.0016 -4.3470

KN
ν̂ 3.55790 19.2946 0.1973
b̂ 10.2566 9.9768 0.3941
σ̂ 0.97390 0.9315 0.3865

Log(MSE) -6.1494 -6.1569 -5.5771
Log(CS) -4.2924 -4.1586 -3.9966

GPN
α̂ 2.3983 5.1031 2.4939
b̂ 0.5785 1.0417 1.4959
σ̂ 0.9590 0.9661 5.9237e−07

Log(MSE) -6.5598 -6.1325 -4.9644
Log(CS) -3.8982 -4.0829 -3.6083

CIGN
λ̂ 0.9768 4.4852 0.9654
µ̂ 1.2454 0.2881 0.9068
σ̂ 2.3924e−07 0.9666 0.1727

Log(MSE) -5.1047 -6.1619 -6.6351
Log(CS) -3.8611 -4.1583 -4.5874

Table 3.5 – The estimated parameters for each model for range resolution 15m, using PCFE
method.

The last test was carried out for the 3rd range cells with cross-polarized VH data. We observe
in Figure 3.18 that the CG CCDFs exhibit a large deviation in the tail region, where the GPN
and KN models produce the worst results. In general, the proposed WN1 and WN2 models
show an excellent fit to the tail region of IPIX data with the smallest MSE values. Also, in
this case, all PDF models show a less precise fit than CCDF models, (Figure 3.19). Based
on the obtained results from the three resolutions, the PDF models show long tails and fail
to provide a precise fit, where the proposed CCDFs WN1 and WN2 provide the best fit
compared to the KN, GPN and CIGN models, especially in the tail region.
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Figure 3.18 – CCDF curves, 15m, VH polarization, 3rd range cell, Azimuth resolution =
0.2966◦.
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Figure 3.19 – PDF curves, 15m, VH polarization, 3rd range cell, Azimuth resolution =
0.2966◦.
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3.6.3.2 Range Resolutions 9 and 3m

We examine the fitting performance of the proposed models when the radar operates at a
high-resolution of 9 and 3m, where the sea clutter becomes spikier and intensive. When
examining the 9m resolution (19980204_221908_ANT ST EP) file, we found that many cells
of like and cross-polarization data show accurate CCDF tails. One of these cells is 24th with
HH data, and azimuth resolution equal to 0.3241◦, the CIGN model shows the longer tail
and the worst fitting performance. In this case, the best results are obtained by the proposed
models WN1 and WN2, as shown in Figure 3.20. For the same range cells and VV data, we
observe in Figure 3.22 that all models yield a good-fit to the IPIX data. According to MSE
metrics, WN1 model shows the best fit performance, followed by WN2 and CIGN models,
(Table 3.6). In addition, at this resolution with the HV and VH cross-polarization data, the
proposed CCDFs provide precise tail regions, as shown in in Figures 3.24 and 3.26, only,
CIGN CCDF presents a deviation from the HV data. Depending on the MSE metrics, (Table
3.6), WN1 and WN2 models provide a better approximation of IPIX data.
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Figure 3.20 – CCDF curves, 9m, HH polarization, 24th range cell, Azimuth resolution =
0.3241◦.
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Figure 3.21 – PDF curves, 9m, HH polarization, 24th range cell, Azimuth resolution =
0.3241◦.
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Figure 3.22 – CCDF curves, 9m, VV polarization, 24th range cell, Azimuth resolution =
0.3241◦.
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Figure 3.23 – PDF curves, 9m, VV polarization, 24th range cell, Azimuth resolution =
0.3241◦.
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Figure 3.24 – CCDF curves, 9m, HV polarization, 2nd range cell, Azimuth resolution =
0.3241◦.
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Figure 3.25 – PDF curves, 9m, HV polarization, 2nd range cell, Azimuth resolution =
0.3241◦.
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Figure 3.26 – CCDF curves, 9m, VH polarization, 28th range cell, Azimuth resolution =
0.3241◦.
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Figure 3.27 – PDF curves, 9m, VH polarization, 28th range cell, Azimuth resolution =
0.3241◦.
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Figure 3.28 – CCDF curves, 3m, HH polarization, 3rd range cell, Azimuth resolution =
44.8956◦.
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Models Parameters and Metrics 9m HH 24th 9m VV 24th 9m HV 2nd 9m VH 28th

WN1
ĉ 2.0027 0.6059 0.9604 0.9791
β̂ 1.4135 0.3820 0.2289 0.2561
σ̂ 6.5939e−09 2.8574e−04 0.9524 0.8969

Log(MSE) -6.9721 -6.7910 -6.8650 -6.6436
Log(CS) -6.8801 -6.5715 -6.5588 -6.4128

WN2
ĉ 0.9636 0.9746 0.9543 0.9697
β̂ 0.2457 0.2397 0.2239 0.2473
σ̂ 0.9325 0.9368 0.9319 0.9342

Log(MSE) -6.9134 -6.7149 -6.7972 -6.6001
Log(CS) -6.8801 -6.5715 -6.5588 -6.4128

KN
ν̂ 1.2047 0.1292 2.1030 1.6363
b̂ 14.1249 1.8163 3.6864 0.4521
σ̂ 0.91180 0.9903 0.9480 0.8977

Log(MSE) -6.8928 -6.5780 -6.5300 -6.3445
Log(CS) -6.8801 -6.5715 -6.5588 -6.4128

GPN
α̂ 1.0091 1.6695 3.3425 4.2457
b̂ 11.9145 7.4684 0.4830 0.5580
σ̂ 0.9832 0.8458 0.9737 0.9800

Log(MSE) -6.8801 -6.5715 -6.5588 -6.4128
Log(CS) -6.8801 -6.5715 -6.5588 -6.4128

CIGN
λ̂ 0.9776 1.0717 1.0344 1.6179
µ̂ 1.2468 0.6178 1.0179 1.0574
σ̂ 2.7948e−06 0.8614 2.2214e−04 0.5333

Log(MSE) -5.0659 -6.6257 -4.9413 -5.2086
Log(CS) -6.8801 -6.5715 -6.5588 -6.4128

Table 3.6 – The estimated parameters for each model for range resolution 9m, using PCFE
method.

Finally, to verify if the proposed CCDFs are suitable for high-resolution 3m sea clutter data,
we applied eight tests on three files (19980205_185111_ANT ST EP),
(19980223_190901_ANT ST EP) and (19980204_222110_ANT ST EP), where the azimuth
resolution is 44.8956◦, 329.87◦ and 0.3131◦, respectively. The estimated parameters for each
test are illustrated in Tables 3.7 and 3.8. For the first file, the analysis was carried out on
the 3rd range cells and HH data. The proposed CCDFs show the best fitting results, whereas
the WN2 model provides the accurate tail followed by WN1. In contrast, the CG CCDFs are
slightly spaced and the CIGN model exhibits the worst performance, (Figure 3.28). Also,
for the VV data and the 17th range cells, the proposed models provide the best fit against the
CG models, (Figure 3.29).
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Figure 3.29 – CCDF curves, 3m, VV polarization, 17th range cell, Azimuth resolution =
44.8956◦.
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Figure 3.30 – CCDF curves, 3m, HV polarization, 12th range cell, Azimuth resolution =
44.8956◦.
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Figure 3.31 – CCDF curves, 3m, VH polarization, 23rd range cell, Azimuth resolution =
44.8956◦.
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Figure 3.32 – CCDF curves, 3m, HH polarization, 2nd range cell, Azimuth resolution =
329.87◦.
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Models Parameters and Metrics 3m HH 3rd 3m VV 17th 3m HV 12th 3m VH 23rd

WN1
ĉ 1.9380 1.0689 1.9879 2.0839
β̂ 1.3674 0.3785 1.4099 1.4341
σ̂ 0.1351 0.8894 1.6106e−07 7.3102e−04

Log(MSE) -6.4910 -5.0335 -6.5843 -5.6797

WN2
ĉ 0.9385 1.0452 0.9576 1.0015
β̂ 1.0609e−06 0.3466 0.2468 0.2609
σ̂ 0.9275 0.9432 0.9299 0.9455

Log(MSE) -7.1075 -5.0475 -6.9164 -5.7643

KN
ν̂ 2.0646 1.1002 3.0856 1.4039
b̂ 3.5411 0.4253 8.3125 0.4049
σ̂ 0.9443 0.8800 0.7138 0.9819

Log(MSE) -6.2868 -5.0099 -6.4392 -5.6767

GPN
α̂ 3.4124 1.4113 5.9924 1.1130
b̂ 0.4800 2.6806 0.4366 0.3418
σ̂ 0.9763 0.9673 0.9697 0.9819

Log(MSE) -6.4235 -5.0090 -6.5594 -5.6765

CIGN
λ̂ 1.0007 1.2596 3.1503 9.6392
µ̂ 0.3191 0.7418 1.2502 0.1405
σ̂ 0.9521 0.8102 3.8958e−04 0.9774

Log(MSE) -5.3598 -4.4974 -4.9707 -5.6764

Table 3.7 – The estimated parameters for each model for range resolution 3m, using PCFE
method.

Similar results are obtained for the cross-polarization HV data on the 12th range cells. The
WN2 model shows the best performance, where the CIGN CCDF exhibits the worst tail. As
for the VH data and 23rd range cells, all the CCDFs show a good fit and the WN2 is the
closest to the IPIX data, (Figure 3.30 and 3.31). For the second file, 2nd range cells and
HH data, the proposed models show precise tails, where the GPN model shows a deviation
in the tail region, (Figure 3.32). The last results do not show any significant differences,
the WN1 and WN2 CCDFs exhibit accurate tails and provide the best fit performance over
CG models, (Figures 3.32, 3.34 and 3.35). Based on the results obtained from the three
azimuth resolutions, we can conclude that the proposed WN1 and WN2 models are suitable
for high-resolution IPIX data.
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Figure 3.33 – CCDF curves, 3m, VV polarization, 2nd range cell, Azimuth resolution =
329.87◦.
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Figure 3.34 – CCDF curves, 3m, HV polarization, 26th range cell, Azimuth resolution =
0.3131◦.
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Figure 3.35 – CCDF curves, 3m, VH polarization, 26th range cell, Azimuth resolution =
0.3131◦.

Models Parameters and Metrics 3m HH 2nd 3m VV 2nd 3m HV 26th 3m VH 26th

WN1
ĉ 0.9668 0.9265 1.9846 1.1855
β̂ 0.3050 1.4080 1.4037 0.3377
σ̂ 0.9828 3.8270e−05 6.5766e−09 0.9003

Log(MSE) -7.4254 -6.2362 -5.4133 -6.5135

WN2
ĉ 0.9585 0.9776 0.9520 1.0596
β̂ 0.2886 0.2630 0.2346 0.3943
σ̂ 0.9161 0.9270 0.9260 0.9318

Log(MSE) -7.4049 -6.9731 -5.4128 -6.6882

KN
ν̂ 1.5365 0.7924 0.972 0.3855
b̂ 2.3122 1.9992 0.2293 2.1345
σ̂ 0.8971 6.0428e−08 0.8522 0.9418

Log(MSE) -6.9523 -5.3474 -5.4066 -5.6053

GPN
α̂ 1.8310 0.8107 11.5337 6.7741
b̂ 0.0980 0.7166 0.3563 0.9750
σ̂ 0.9826 0.9812 1.0002 0.9594

Log(MSE) -4.9651 -6.1981 -5.3200 -4.5534

CIGN
λ̂ 0.1246 9.0120 0.9292 1.2897
µ̂ 0.1932 0.7383 0.1959 0.1558
σ̂ 0.9646 0.7971 0.9851 0.9618

Log(MSE) -6.8053 -5.7352 -5.3200 -5.5378

Table 3.8 – The estimated parameters for each model for range resolution 3m, using PCFE
method.

65



Chapter 3

3.7 Conclusions

This chapter highlights high-resolution sea clutter modeling. Two approximate expressions
for the Weibull plus thermal noise distributions have been proposed as models to fit real sea
clutter data. First, the fitting using synthetic data have been used to validate these two mod-
els by means of the PCFE method and the method of moments matching. The experimental
results at low and medium resolution of 60, 30 and 15m resolution reveal that the proposed
models WN1 and WN2 provide a good fit to the sea data even if the presence of longer tailed
cells. Moreover, at high-resolution 9 and 3m the proposed models consistently yields a good
fit in most cells for like and cross-polarization data and outperform three widely used CG
plus thermal noise distributions in all the cases studied. The two proposed models should be
good candidates for modeling high-resolution sea clutter data.

66



Chapter 4

Sea Clutter Modeling Using Mixtures of
Two Approximate Weibull Distributions
plus Thermal Noise
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Abstract

Robust marine surveillance using high-resolution radar requires an accurate description of
the back-scatter from the sea and its environments. This chapter is considered as a contin-
uation of the previous chapter and consists of studying the robustness of the mixture of the
proposed Weibull approximations to model the sea clutter using the IPIX database.
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4.1 Introduction

From the previous chapter, it was discussed that when the sea is observed at low grazing
angle with high-resolution radar, the statistics of the clutter are mostly non-Gaussian, and
tend to fit better to the proposed Weibull approximations against the CG models especially
in the tail region. Another way to ensure the best fit for sea data is to use a mixture method
of two distributions. In this context, Dong suggested a mixture of two K and two Weibull
distributions to fit the sea clutter. It was found in this work that the KK distribution provides
overall the best fit [36]. Rosenberg proposed the KK distribution to analyze the real sea data
collected at medium to high grazing angles by the defense science technology organization
(DSTO) Ingara fully polarimetric X-band radar. This model provides a good fit to real sea
clutter data, as well as in the case of the presence of thermal noise. Also, the threshold
required to achieve the CFAR characteristic is studied and compared to the K distribution
[41]. Abraham et al suggested a mixture of Rayleigh and K models to represent active sonar
data, the K Rayleigh mixture model provides a good fit to clutter sonar data [42]. Zhou et al

proposed a statistical model consisting of a mixture of K and LN distributions for modeling
the SAR data. This mixture is able to model and fit the clutter data, the target data, or a
mixture of clutter and target data [42]. Also, Gouri et al used the sum and the mixture of
the CIG, K and GP plus thermal noise distributions to model high-resolution IPIX sea data.
All the results confirmed that the proposed method offers a good fit to sea clutter in most
cases, especially in the tail region [18]. In this context, this chapter analyzes the sum and the
mixture of the proposed Weibull models WN1 and WN2 to fit real sea data using the IPIX
database and compares it with the mixture of CG models studied by Gouri et al in [18].

4.2 Mixture Models

In this section, we propose a mixture model describing the statistical properties of sea clutter
data, the sum of two weighted PDFs is given by:

f (x) = k f1(x|θ1)+(1− k) f2(x|θ2) (4.1)

where θ = [k,θ1,θ2] is a vector of unknown parameters to be estimated at each estimation
task, the weighting parameter k ∈ [0,1]. The first model f1(x) or the second model f2(x) may
follow one of the two proposed Weibull models, WN1 and WN2, described in chapter 3.
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4.2.1 Mixture of WN1 and WN2 Model for Single Pulse

If the WN1 (3.60) and the WN2 (3.67) PDFs are described by f1(x) and f2(x) respectively,
the mixture PDF of single pulse model is given by:

f (x) = k
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In this case, the CCDF obtained from a mixture of the WN1 (3.61) and WN2 (3.68) models
is:

CCDF(x) = Prob(x > T ) =
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where ε = (x2/2σ2)

b
2 , α = (2σ2/a2)

b
4 , and T is the threshold detection as mentioned in

chapter 3. The shape and scale parameters are given respectively by: c = 0.5b, and β =

a2−2/b.

4.2.2 Mixture of WN1 and WN2 Model for Multiple Pulse

Based on the approximation (3.63), the mixture PDF of multiple pulse for WN1 (3.65) and
WN2 (3.71) models is given by:
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The mixture CCDF of multiple pulse for WN1 (3.66) and WN2 (3.72) models is given by:

NCCDF(x) = Prob(x > T ) =
kb
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4.2.3 Mixture of The Compound Gaussian plus Noise Models

To assess the performance of the proposed mixture Weibull models to fit high-resolution sea
clutter data, the mixture of CG are recalled here and used for comparison purposes. The
fitting performance of these models has been studied and discussed by Gourri et al in [18].
Several combinations between KN, GPN and CIGN models can be obtained in (4.1). When
the KN and the CIGN models are described by f1(x) and f2(x) respectively, the PDF and
CCDF are given by:
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When the CIGN and the GPN models are described by f1(x) and f2(x) respectively, the PDF
and CCDF are given by:
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When the GPN and the KN models are described by f1(x) and f2(x) respectively, the PDF
and CCDF are given by:
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4.3 Simulation Results and Discussions

In this section, we assess the fitting performance of the proposed mixture model for real sea
IPIX data, by comparing the real CCDFs and PDFs with the estimated CCDFs and PDFs us-
ing the PCFE method. Also, we compare our results with the results obtained by the mixture
of CG models studied by Gouri et all in [18]. The MSE values are calculated from the fitted
and empirical CCDFs curves. The CS values are calculated from the fitted and empirical
PDFs curves. In the following, several experimental studies are conducted to examine the
modeling assessments of the mixture models with different IPIX radar resolutions. All the
technical characteristics of each IPIX file used in this section are available in Table 3.2 and
3.3.

4.3.1 Range Resolutions 60, 30 and 15m

First, we perform the fitting performance when the radar operates at a low resolution of 60m,
using (19980204_221307_ANT ST EP) file, in which the azimuth resolution is set 0.3571◦.
For HH polarization mode, and 17th range cells. It can be seen in Figure 4.1 that the CCDF
of the GPN+KN model produces the worst performance fit to the IPIX data. According to
the MSE criterion, the WN1+WN2 model is the closest to the real sea data, (Table 4.1). We
note the same performance for the PDF curves, Figure 4.2. For the same range cells, and
cross VH polarization mode. A very good fit was achieved by all CCDF mixture models
to the actual IPIX data, especially in the tail region, as shown in Figure 4.3. The mixture
CCDF of the proposed WN1 and WN2 models provides the best tail approximation with the
smallest MSE values, (Table 4.1). On the other hand, the PDF curves show less accurate
performance than the CCDFs curves, (Figure 4.4).
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Figure 4.1 – CCDF curves, 60m, HH polarization, 17th range cell, Azimuth resolution =
0.3571◦.
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Figure 4.2 – PDF curves, 60m, HH polarization, 17th range cell, Azimuth resolution =
0.3571◦.
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Figure 4.3 – CCDF curves, 60m, VH polarization, 17th range cell, Azimuth resolution =
0.3571◦.
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Figure 4.4 – PDF curves, 60m, VH polarization, 17th range cell, Azimuth resolution =
0.3571◦.

We repeat the fitting performance of the proposed models by increasing the radar resolu-
tion to 30m. For the (19980204_194537_ANT ST EP) file, 20th range cells, VV polarization
mode, and azimuth resolution equal to 16.1499◦. We observe in Figure 4.5, all CG mixture
models show long tails, where the mixture CIGN+KN model provides the poorest fitting per-
formance. The WN1+WN2 model produces the best results with the smallest MSE values,
(Table 4.1). The same pattern observed for the PDFs curves, (Figure 4.6).
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Figure 4.5 – CCDF curves, 30m, VV polarization, 20th range cell, Azimuth resolution =
16.1499◦.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Amplitude (x)

10
-3

10
-2

10
-1

P
D

F

IPIX data

WN1+WN2

CIGN+KN

CIGN+GPN

GPN+KN

Figure 4.6 – PDF curves, 30m, VV polarization, 20th range cell, Azimuth resolution =
16.1499◦.
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For the same range resolution, HV mode, and 17th range cells, Figure 4.7 and 4.8 show
that all the mixture CCDFs and PDFs curves exhibit a good fit to real sea IPIX data. The
best performance was achieved using the WN1+WN2 mixture model with the smallest MSE
and CS metrics, (Table 4.1).
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Figure 4.7 – CCDF curves, 30m, HV polarization, 17th range cell, Azimuth resolution =
16.1499◦.
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Figure 4.8 – PDF curves, 30m, HV polarization, 17th range cell, Azimuth resolution =
16.1499◦.
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Models Parameters and Metrics 60m HH 17th 60m VH 17th 30m VV 20th 30m HV 17th

WN1+WN2

ĉ 0.9921 0.8695 1.1186 0.9523
β̂ 0.3680 1.1258 0.6055 1.2053
σ̂ 1.0012 0.1204 0.8170 6.2863e−07

k̂ 0.8963 0.4589 0.5720 0.5869

Log(MSE) -6.8010 -5.9958 -7.3633 -6.3198
Log(CS) -3.3650 -4.6963 -4.0167 -4.3670

CIGN+KN

ĉ 0.9836 0.8001 0.2822 1.0036
β̂ 0.3452 1.2200 0.3302 1.1959
σ̂ 0.9963 0.0998 3.5075e−11 5.9003e−06

k̂ 0.9201 0.5089 0.9675 0.6111

Log(MSE) -6.2117 -5.5583 -2.0028 -6.0015
Log(CS) -3.2014 -4.1709 -1.0251 -4.40175

CIGN+GPN

ν̂ 1.0121 0.7586 0.3029 1.2098
b̂ 0.3388 0.2985 0.6970 1.5950
σ̂ 0.9769 1.1232 0.7909 0.0120
k̂ 0.7201 0.6627 0.5720 0.3639

Log(MSE) -6.0007 -5.4211 -6.5801 -5.7157
Log(CS) -3.0130 -4.4580 -3.6300 -4.2010

GPN+KN

α̂ 1.5774 0.9922 0.4162 1.1591
b̂ 0.1251 0.2237 0.5970 1.0655
σ̂ 0.3359 1.3278 0.8309 6.5128e−08

k̂ 0.4583 0.8900 0.5133 0.5006

Log(MSE) -5.0253 -5.5539 -5.5848 -6.2101
Log(CS) -2.6258 -4.5348 -3.9474 -4.3669

Table 4.1 – The estimated parameters for each model for range resolutions 60 and 30m,
using PCFE method, and the metric tests.

At 15m radar resolution where the clutter is a bit spiky, the first performance was con-
ducted for the 11th range cells of (19980204_221700_ANT ST EP) file, azimuth resolution
is 0.2966◦ and HH polarization mode. The WN1+WN2 CCDF model consistently gives a
good fit in the body and in the tail region of the IPIX data. On the contrary, CG models
provide the worst fit performance, where the CIGN+GPN CCDF shows the largest deviation
in the tail region as shown in Figure 4.9, with the worst MSE metrics, (Table 4.2). The same
results are obtained for the PDFs of mixtures, (Figure 4.10).
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Figure 4.9 – CCDF curves, 15m, HH polarization, 11th range cell, Azimuth resolution =
0.2966◦.
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Figure 4.10 – PDF curves, 15m, HH polarization, 11th range cell, Azimuth resolution =
0.2966◦.

Finally, for the same range resolution, VV mode, and 22nd. We observe in Figure 4.11 and
4.12 respectively an excellent fitting performance for all the mixture models. The proposed
model WN1+WN2 provides the best MSE and CS results, (Table 4.2).
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Figure 4.11 – CCDF curves, 15m, VV polarization, 22nd range cell, Azimuth resolution =
0.2966◦.
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Figure 4.12 – PDF curves, 15m, VV polarization, 22nd range cell, Azimuth resolution =
0.2966◦.

4.3.2 Range Resolutions 9, and 3m

In this subsection, we examine the fitting performance when the radar operates at a high-
resolution of 9 and 3m, where the sea clutter becomes spikier and intensive. We start with
the 9m (19980204_221908_ANT ST EP) file, VV polarization mode, and 15th range cells.
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In Figure 4.13 it is clear that all the mixture CCDFs show accurate fit, especially in the
tail region. According to MSE measurement, the best approximation of the tail is achieved
by the WN1+WN2 CCDF, (Table 4.2). In addition, mixture PDFs show a good fit but with
less tail approximation than the CCDFs models, (Figure 4.14).
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Figure 4.13 – CCDF curves, 9m, VV polarization, 15th range cell, Azimuth resolution =
0.3241◦.
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Figure 4.14 – PDF curves, 9m, VV polarization, 15th range cell, Azimuth resolution =
0.3241◦.
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Figure 4.15 – CCDF curves, 9m, HV polarization, 3rd range cell, Azimuth resolution =
0.3241◦.
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Figure 4.16 – PDF curves, 9m, HV polarization, 3rd range cell, Azimuth resolution =
0.3241◦.

We repeat the same test for the same range resolution, HV polarization mode, and 3rd range
cells. In this case the GPN+KN CCDF produces the worst tail approximation, as shown
in Figure 4.15. According to the MSE metric, the best performance is achieved by the
WN1+WN2 model followed by the CIGN+GPN model, (Table 4.3). For the mixture PDFs,
All the models show a poor tail approximation, (Figure 4.16).

80



Chapter 4

Models Parameters and Metrics 15m HH 11th 15m VV 22nd 9m VV 15th 9m HV 3rd

WN1+WN2

ĉ 0.9330 1.4381 0.5702 0.1286
β̂ 0.2106 1.1901 0.3390 0.3610
σ̂ 1.3805 3.6879e−05 0.2369 4.4808e−08

k̂ 0.1548 0.9802 0.6696 0.4851

Log(MSE) -5.9657 -6.3966 -6.6369 -6.6790
Log(CS) -3.5751 -3.9650 -4.1680 -3.9601

CIGN+KN

ĉ 1.2125 1.3666 0.5859 0.1952
β̂ 0.3657 0.9196 0.2898 0.4088
σ̂ 1.0304 5.1861e−07 0.3691 0.0175
k̂ 0.4048 0.7028 0.5698 0.4118

Log(MSE) -4.3319 -6.5025 -6.5129 -6.6001
Log(CS) -3.0025 -3.9622 -4.0169 -3.8580

CIGN+GPN

ν̂ 1.9256 1.1285 0.7003 0.1696
b̂ 0.7926 1.3002 0.1927 0.4182
σ̂ 1.5902 6.3701e−04 0.2322 5.6729e−11

k̂ 0.8259 0.8075 0.7115 0.5009

Log(MSE) -2.6235 -6.5607 -6.4874 -6.1922
Log(CS) -2.9199 -3.3185 -3.8968 -3.3705

GPN+KN

α̂ 1.0696 0.9825 0.6981 1.3108
b̂ 0.3199 0.9758 0.2020 1.285
σ̂ 1.1302 0.0058 0.3900 1.0285
k̂ 0.3002 0.9336 0.7225 0.1852

Log(MSE) -4.5281 -6.3705 -6.3699 -5.0014
Log(CS) -3.1120 -3.7308 -4.3258 -2.1963

Table 4.2 – The estimated parameters for each model for range resolutions 15 and 9m, using
PCFE method.

Finally, to verify whether the proposed CCDF mixture is suitable for high-resolution 3m sea
data, we applied the test on (19980205_185111_ANT ST EP) file, HH polarization data, and
6th range cell. All results obtained with this resolution do not show any statistically sig-
nificant differences compared to the results obtained for the resolution of 9m. The mixture
WN1+WN2 model shows the best fit to real IPIX data and provides the best tails approx-
imation, as shown in Figure 4.17, and Figure 4.18, with the smallest metrics tests, (Table
4.3). Also, The same results obtained from the 17th range cell and VV polarization mode,
the WN1+WN2 model shows the best fit and provides the accurate tail region to ral IPIX
data, (Figures 4.19 and Figure 4.20).
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Figure 4.17 – CCDF curves, 3m, HH polarization, 6th range cell, Azimuth resolution =
44.8956◦.
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Figure 4.18 – PDF curves, 3m, HH polarization, 6th range cell, Azimuth resolution =
44.8956◦.
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Figure 4.19 – CCDF curves, 3m, VV polarization, 17th range cell, Azimuth resolution =
44.8956◦.
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Figure 4.20 – PDF curves, 3m, VV polarization, 17th range cell, Azimuth resolution =
44.8956◦.
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Models Parameters and Metrics 3m HH 6th 3m VV 17th

WN1+WN2

ĉ 0.5368 1.1125
β̂ 0.3006 0.0981
σ̂ 0.9820 5.8005e−07

k̂ 0.8379 0.9217

Log(MSE) -6.9625 -6.5081
Log(CS) -4.2514 -4.4175

CIGN+KN

ĉ 0.5772 1.0796
β̂ 0.3127 0.1101
σ̂ 0.8231 5.9045e−09

k̂ 0.8002 0.8901

Log(MSE) -6.5046 -6.3615
Log(CS) -4.1307 -3.9302

CIGN+GPN

ν̂ 0.6018 1.1896
b̂ 0.2968 0.2498
σ̂ 0.9110 6.8645e−11

k̂ 0.6963 0.9926

Log(MSE) -5.6613 -5.6916
Log(CS) -3.9920 -4.2793

GPN+KN

α̂ 0.9018 1.0065
b̂ 2.1045 0.4817
σ̂ 1.785 0.0125
k̂ 0.1336 0.8967

Log(MSE) -5.0117 -6.3011
Log(CS) -3.1258 -3.5528

Table 4.3 – The estimated parameters for each mixture model for range resolutions 3m, using
PCFE method.

4.4 Conclusions

Modeling sea clutter using real IPIX data is discussed in this section. All experimental results
confirmed that the statistical mixture model generated by the two approximations WN1 and
WN2 provides the best fit for the real data outperforming the CG models in most cases.
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Two Novel Radar Detectors for Spiky Sea
Clutter With the Presence of Thermal
Noise and Interfering Targets
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Abstract

In this chapter, new CFAR decision rules "detectors" are proposed for the Weibull, K, and
CIG clutter models. These models provide accurate modeling of sea clutter, especially in the
tail regions, as shown in chapters 3 and 4. The proposed decision rules are modified to deal
with the presence of interfering targets. The proposed detectors are investigated on the basis
of synthetic data as well as real IPIX data.
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5.1 Introduction

Detection decisions are based on measurements of reflected signals received at the radar and
thermal noise already present in the receiver. Samples or measurements may be collected
in one or more dimensions, including range, cross-range, angle, and Doppler. Typically,
the received signals are sampled at an interval spacing equal to the resolution of the radar
system in the dimension in which they are collected. The process of detecting a target be-
gins with comparing a radar measurements with a threshold, measurements exceeding the
threshold are associated with returns from a target, and measurements below the threshold
are associated with thermal noise or other interference sources including intentional interfer-
ence (jamming), unintentional interference (electromagnetic interference), clutter, and other
sources. The detector threshold is selected to achieve the highest possible PD for a given
SNR and PFA. A false alarm occurs when, in the absence of a target, a source of interference
produces a measured value that exceeds the detection threshold. A radar system is designed
to achieve and maintain a specified PFA. False alarms deplete radar resources by appearing
as valid targets requiring subsequent radar actions and thus degrade system performance. If
the interference statistics are known in advance, a threshold can be chosen to achieve a spe-
cific PFA. CFAR detectors are designed to track changes in the interference and to adjust the
detection threshold to maintain a constant PFA.

5.2 Radar Hypothesis Test and CFAR Detectors

A single echo sample of radar data is composed of either interference alone or interference
plus target echoes. For any radar measurement that must be tested for the presence of a
target, one of two hypotheses can be assumed true:

1. The measurement is the result of interference only.

2. The measurement is the combined result of interference and echoes from a target.

The first hypothesis is denoted as the null hypothesis, H0, and the second as H1. For a single
echo sample denoted Y . The two PDFs are:

1. pY |H0(y|H0): PDF of Y given that a target is not present.

2. pY |H1(y|H1): PDF of Y given that a target is present.

The design of the detection algorithm and analysis of the resulting radar performance is de-
pendent on developing models for these PDFs for the proposed system and scenario. More-
over, most of the design problems of the radar system are to manipulate these two PDFs to
achieve the most favorable detection performance. The detection logic should examine each
radar measurement to be tested and choose one of the hypotheses as to the best calculation
for that measurement. If H0 best accounts for the data, then the system declares that a target
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is not present at the range, angle, or Doppler coordinates of that measurement. If H1 best
accounts for the data, then the system declares that a target is present. The best procedure
to use depends on the definition of “optimal” and the details of the random process models
that describe the data. Radar detection algorithms are usually designed according to the NP
criterion, a particular optimization strategy. This rule fixes the PFA, that will be allowed by
the detection processor and then maximizes the PD, for a given SNR. Applying the NP crite-
rion to realistic radar detection problems leads to threshold detection using various detection
statistics determined by the particular statistics of the data [44]. Figure 5.1 illustrates the
threshold detection procedure. Whatever the source of the radar data, a threshold value T is
computed, and each data sample is compared with that threshold. If the sample is below the
threshold, it is assumed to represent interference only. If it is above the threshold, it is simi-
larly assumed to be too strong to represent interference only, in this case, it must correspond
to an interference plus a target of interest, so detection is declared at the range, velocity, or
image location represented by that sample.

Figure 5.1 – The concept of threshold detection.

It is important to realize that these decisions can be wrong. A strong interference peak can
cross the threshold, which leads to a false alarm. Given a good model of the interference, the
threshold can be selected to control the PFA. A weak target echo may not add enough power
to the interference to cause it to cross the threshold so that the target is not detected, this is
called a "miss", and its probability is 1−PD. The PD and PFA combinations are affected by
the quality of the radar system and the design of the signal processor.
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The designer of the radar system will generally decide what rate of false alarms can be
tolerated based on the implications of acting on a false alarm, this can include overloading an
operator monitoring a radar detector screen, using radar resources to start a trace on a non-
existent target, or in extreme cases even firing a weapon. Since radar can take tens or even
hundreds of detection decisions per second, values of PFA must be quite low to maintain a
tolerable false alarm rate. Values in the range of 10−4 to 10−8 are common, and yet may still
lead to false alarms every few seconds or minutes. A desirable property of a detector is an
ability to maintain a given PFA in the presence of heterogeneous or changing interference. A
detector with this property is called a CFAR detector. All the CFAR detectors proposed in the
literature each deal with a problem inherent in the particular conditions of use of the radar,
some of them are mentioned below. The first model of the CFAR class is the CA-CFAR
detector "Cell Averaging" proposed by Finn and Johnson [45]. This detector evaluates the
level of the clutter from the arithmetical mean of the reference cells. In other words, in order
to maintain a desired PFA, the estimation of the adaptive threshold is the result of multiplying
a constant by the average clutter level. The CA-CFAR exhibits optimum performance in a
homogeneous interference environment. However, in reality, due to the presence of a clutter
edge and/or interfering targets in the reference window, the clutter is often heterogeneous.
As a result, the performance and false alarm rate regulation capabilities of the CA-CFAR de-
tector are significantly affected. If a clutter edge is present, the Cell Under Test (CUT) may
be found submerged in an area where the clutter power is higher than where some reference
cells are located. In this case, in order to minimize the capture effect while maintaining an
almost PFA. Hansen and Sawyers proposed the GO-CFAR "Greatest-Of" detector [46]. In
this type, the estimate of the level of clutter is given by the maximum of the arithmetic means
obtained from the cells belonging to the two reference half-windows, located on either side
of the CUT. Weiss, showed that the GO-CFAR detector is very vulnerable to the presence
of one or more interfering targets in the reference window [47]. In the presence of interfer-
ing targets, cases of targets that are closely distant from each other may be encountered in
target-dense environments. In such situations, automatic detectors declare the presence of
a single target. To improve the resolution of close targets and therefore improve detection
performance, Trunk proposed the SO-CFAR "Smallest-Of" detector [48], the clutter level is
estimated as in the GO-CFAR but with the minimum averages of adjacent cells. Its detection
performance is significantly degraded if the interfering targets are located in the two half-
windows references. In addition, in the presence of a clutter edge, the SO-CFAR detector
has difficulty in maintaining a CFAR. Some of the more common CFARs detectors include
Trimmed Mean (TM) [49] or Censored (CS) CFAR [50], Order Statistics (OS) CFAR [51]
and more, each dealing with a problem inherent to the specific conditions of use of the radar.
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5.3 Proposed Detectors: The Var-Max-Min Detector and
The Max-Min Detector

The two proposed detectors shown in Figure 5.2 are designed to be CFAR and able to provide
a high PD in the case of the presence of thermal noise and interfering targets. The content of
each cell is obtained by sampling the signal received at the output of the square law envelope
detector. The obtained samples are stored in a shift register and the detection test in each
cell uses a reference window of N cells adjacent to the CUT which provide a local estimate
of the clutter level. The sliding of this window along the register of cells makes it possible
to cover the entire radar range. Since it is mathematically difficult to prove the CFARness
of the proposed thresholds, the latter were found using the trial and error method, and the
choice of the number of reference cells for both detectors were found after intensive testing
for several values from 2 to 32 cells. The best performances in terms of false alarm regulation
of the suggested detectors are obtained for a number equal to 2, which is useful regarding
the calculation time and the stationarity of clutter.

Figure 5.2 – Block diagram of the two proposed detectors.

The principle of our detectors is based on binary decision-making to choose between the
presence or the absence of the target of interest, as explained above. Monte Carlo simula-
tions are performed to investigate the suggested decision rules for the Weibull, K, and CIG
sea clutter models with the consideration of the presence of thermal noise. The decision
rules corresponding to the Var-Max-Min detector and the Max-Min detector are based on
miscellaneous statistics, the variance, the maximum and the minimum value of the reference
cells.
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The threshold of the Var-Max-Min detector is given by:

Th1 = 0.5∗
(
(var(x)+max(x))

1
τ

)
+(max(x)−min(x))∗ τ. (5.1)

The threshold of the Max-Min detector is given by:

Th2 =
((max(x)−min(x))∗ τ)∗max(x)

1
τ

2
. (5.2)

5.4 Simulation Results and Discussions

First, we analyze the PFA performance of the two decision rules using synthetic data plus
thermal noise. Then, we study the robustness of PFA regulation in the case of the presence
of thermal noise and two interfering targets "Swerling I" in the reference cells. Next, we
show the PD for each clutter model. Finally, we investigate the performance of the proposed
detectors using a real IPIX sea data.

5.4.1 False Alarm Regulation

In this subsection, we show the variations of PFA versus the threshold factor τ for each model.
To undertake these simulations, we use the MATLAB tool and the following assumptions:
Non-coherent detector, the variations of PFA from 0 to 10−4 with representation in loga-
rithmic base 10, different values of shape and scale parameters, the number of independent
Monte Carlo runs is set to 107 and the thermal noise power pn = 2σ2 is set to 2 dB. For the
Max-Min detector, Figure 5.3 shows the variation of PFA from values close to 0 to –4 versus
the threshold factor τ for the Weibull distribution clutter with different values of shape and
scale parameters. We observe that all curves overlap with each other without any deviations
even when the clutter becomes spiky c ≥ 0.5. The same pattern is observed in Figure 5.4
for K with ν ≥ 0.01 and CIG distribution with λ ≥ 0.1 in Figure 5.5. The three tests prove
that the Max-Min detector attain the CFAR property independently of the shape and scale
parameters. We also note from the three experiments that the presence of thermal noise does
not affect the robustness of the proposed first detector.
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Figure 5.3 – Variation of PFA of the Max-Min detector versus the threshold factor τ using
the Weibull distribution.
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Figure 5.4 – Variation of PFA of the Max-Min detector versus the threshold factor τ using
the K distribution.
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Figure 5.5 – Variation of PFA of the Max-Min detector versus the threshold factor τ using
the CIG distribution.

On the other hand, we repeated the same tests with the same parameters for the Var-Max-Min
detector. We show the variations of PFA against the threshold factor τ for the three clutter
models in Figures 5.6, 5.7, and 5.8. It is clear from the three experiments that all the curves
almost coincide with each other. This mean that the Var-Max-Min detector keeps the CFAR
property for the three models with c≥ 0.5, ν ≥ 1 and λ ≥ 0.1. Also, the thermal noise does
not affect the false alarm regulation.
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Figure 5.6 – Variation of PFA of the Var-Max-Min detector versus the threshold factor τ

using the Weibull distribution.
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Figure 5.7 – Variation of PFA of the Var-Max-Min detector versus the threshold factor τ

using the K distribution.
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Figure 5.8 – Variation of PFA of the Var-Max-Min detector versus the threshold factor τ

using the CIG distribution.
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5.4.2 False Alarm Regulation in the Presence of Two Interfering Tar-
gets

In this subsection, we study the effect of the presence of two interfering targets in the refer-
ence window on the proposed detectors performance. To test the robustness of the proposed
detectors in the case of the presence of one or more interfering targets in the reference win-
dow, we modified the first version of the suggested detectors to deal with the presence of
interfering targets. Each detector uses four reference cells instead of two, then these cells are
arranged in an ascending order to acquire X(1):(4), then the two largest samples are censored,
which means that these detectors can handle up to two interfering targets. Each threshold is
calculated using the other two samples in the same manner as in (5.1) and (5.2). To perform
this work, we use the same assumptions mentioned above, considering that the interfering
targets are supposed to fluctuate according to the Swerling I model and the Interference-to-
Clutter Ratio (ICR) is assumed to be equal to 20 dB. For the Weibull distribution Figure
5.9 shows the changes of PFA against the threshold factor τ , it is clear that almost all curves
overlap, which means that the CFAR property is preserved. For K and CIG distributions, the
detector also keeps the CFAR characteristic as shown Figures 5.10 and 5.11 respectively.
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Figure 5.9 – Variation of PFA of the Max-Min detector versus the threshold factor τ using
the Weibull distribution plus two interfering targets.
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Figure 5.10 – Variation of PFA of the Max-Min detector versus the threshold factor τ using
the K distribution plus two interfering targets.
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Figure 5.11 – Variation of PFA of the Max-Min detector versus the threshold factor τ using
the CIG distribution plus two interfering targets.
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We repeat the same simulations with the same parameters for the Var-Max-Min detector. The
same patterns are observed for the three distributions where all the curves almost match each
other. From the obtained results, the proposed detectors regulate the PFA in an acceptable
manner which means that the presence of interference targets in the reference window does
not affect the robustness of the proposed detectors.
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Figure 5.12 – Variation of PFA of the Var-Max-Min detector versus the threshold factor τ

using the Weibull distribution plus two interfering targets.
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Figure 5.13 – Variation of PFA of the the Var-Max-Min detector versus the threshold factor
τ using the K distribution plus two interfering targets.
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Figure 5.14 – Variation of PFA of the Var-Max-Min detector versus the threshold factor τ

using the CIG distribution plus two interfering.

5.4.3 Probability of Detection

In this subsection, we illustrate the probability of detection of the proposed detectors for
the three clutter models mentioned above. Figure 5.15 shows PD versus the SCR for the
Weibull clutter model, which starts from small values of the shape parameter, c ≥ 0.5. We
observe that the detection curves are superimposed and indicate that increasing the shape
parameter leads to an increase in detection. According to the design of the proposed detector,
which is based only on two reference cells when estimating the level of clutter, the Max-Min
detector provides a high detection performance. In Figures 5.16 and 5.17, we repeat the same
simulations for the K and CIG clutter models, the same performance of detection is observed
even for the case of spiky clutter.
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Figure 5.15 – PD of the Max-Min detector versus the SCR using the Weibull distribution.
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Figure 5.16 – PD of the Max-Min detector versus the SCR using the K distribution.
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Figure 5.17 – PD of the Max-Min detector versus the SCR using the CIG distribution.

We repeat the same simulations with the same parameters for the Var-Max-Min detector.
Figures 5.18, 5.19, and 5.20 show the variations of PD versus SCR for the three clutter
models with different shape parameter values. From the obtained curves, it is clear that the
Var-Max-Min detector also provides a high probability of detection.
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Figure 5.18 – PD of the Var-Max-Min detector versus the SCR using the Weibull distribution.
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Figure 5.19 – PD of the Var-Max-Min detector versus the SCR using the K distribution.
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Figure 5.20 – PD of the Var-Max-Min detector versus the SCR using the CIG distribution.

To show which detector offers the highest probability of detection performance in the case
of the presence of spiky clutter, we compare PD for the three clutter models mentioned above
with different small values of the shape parameters. For the Weibull clutter model, we ob-
serve in Figure 5.21 that the Max-Min detector performs better than the Var-Max-Min de-
tector for the three values of the shape parameter, which provides the highest probability of
detection, in particular between values 10 and 40 dB.

100



Chapter 5

The same results were obtained for the K and CIG clutter models, where the Max-Min
detector offers the highest PD than the Var-Max-Min detector, as shown in Figures 5.22 and
5.23, respectively.
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Figure 5.21 – Comparison of PD between the two detectors using the Weibull distribution.
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Figure 5.22 – Comparison of PD between the two detectors using the K distribution.
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Figure 5.23 – Comparison of PD between the two detectors using the CIG distribution.

5.4.4 Experimental Results Using Real Sea IPIX Data

To evaluate the performance of the proposed detectors with real IPIX sea data, we used three
files mentioned in chapter 3, (19980204_194537_ANT ST EP),
(19980204_221700_ANT ST EP), and (19980205_185111_ANT ST EP) for 30, 15, and 3m
respectively, with different types of polarization modes. Figures 5.24 and 5.25 depict The
variations of PFA from 0 to 10−3 for the three resolutions with four polarization modes HH,
VV, HV, and VH. We note that almost all curves overlap without any deviations. The ex-
perimental variations of PFA of the actual IPIX data are similar to the theoretical variations
obtained from the Weibull and the CG clutter models in the case of the presence of ther-
mal noise and interfering targets, with almost the same threshold factor to obtain the desired
PFA. This means that both detectors maintain the CFAR property successfully. Finally, for
PD, Figures 5.26 and 5.27 show the detection curves for each resolution. As expected, all
detection curves attain 1 for an SCR around 45 dB. This means that the proposed detectors
maintain the same detection performance for experimental data successfully.
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Figure 5.24 – Variation of PFA of the Max-Min detector versus the threshold factor τ using
the actual sea data IPIX.
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Figure 5.25 – Variation of PFA of the Var-Max-Min detector versus the threshold factor τ

using the actual sea data IPIX.
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Figure 5.26 – PD of the Max-Min detector versus the SCR using the actual sea data IPIX.
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Figure 5.27 – PD of the Var-Max-Min detector versus the SCR using the actual sea data
IPIX.
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5.5 Conclusions

In this chapter, we have proposed two new CFAR detectors operating in sea clutter mod-
eled by Weibull, K, and CIG distributions. We have assumed the presence of thermal noise
and interfering targets. The two detectors employ two reference cells to set up the detection
threshold. The robustness of the proposed detectors is illustrated through numerical simu-
lations performed on the Weibull and the CG models as well on actual IPIX radar data. In
the case of the presence of the thermal noise, both detectors maintain a good performance in
terms of false alarm regulation. We have also tested these detectors in the case where two
interfering targets are present by modifying the detection algorithm and the they proved to be
robust. To validate these two detectors, we applied real data from the IPIX database and the
results are similar to those obtained by synthetic data. Finally, it is worth pointing out that
since the decision operation uses only two reference cells, these detectors are appropriate for
real time applications.
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General Conclusions
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Abstract

In this final chapter, we first briefly recall the main work of this thesis, then we discuss
our contributions including the main results. Finally, we list the possible perspectives and
suggestions that can serve as extensions to this research work.
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6.1 Summary and Main Results

Sea clutter modeling is the critical step to design or develop a maritime radar so that it can
detect with high accuracy the small targets and adjust the false alarm rates at any time and
under all adverse weather conditions. This thesis is in the same context.

• Firstly, Two approximate models of Weibull plus additive thermal noise have been
proposed for high-resolution sea clutter consisting of a compound distribution with
speckle and a texture following a Weibull distribution. For the first Weibull model,
we derived the expressions of the PDF and CCDF for single and multiple pulses. For
the second model, we also derived the expression of the CCDF for single as well
as multiple pulses and we provided the expression of the moments. In order to be
able to estimate the parameters of the proposed models, we used the N-M algorithm.
The simulations were carried out on the bases of synthesized sea data as well as on
real sea data collected by the McMaster IPIX radar for multiple operating scenarios,
different resolution range (60, 30, 15, 9, and 3m) and different polarization mode (HH,
VV, HV, and VH mode). By plotting their PDFs and CCDFs, the proposed models
showed an accurate fit to synthesized data as well as to real sea IPIX data with the best
approximation in the tail region, outperforming CG models in most cases. According
to all the cases studied and all the results obtained, the two proposed Weibull models
are good candidates for modeling high-resolution sea clutter data.

• Then, high-resolution sea clutter modeling using a mixture of two approximate Weibull
models was studied and discussed. Also, all the results showed that the mixture of
Weibull plus noise models provides the best fit to real sea data, outperforming the
mixture of CG plus noise models in all the cases studied.

• Finally, in the context of non-coherent detection, two new CFAR detectors are sug-
gested for Weibull, K and CIG models with thermal noise and interfering targets. The
two detectors use two reference cells to set up the detection threshold. The proposed
detectors are investigated on the basis of synthetic sea data as well as real sea data of
the IPIX radar database. All the obtained results exhibit a high probability of detection
as well as an excellent false alarm rate regulation especially for spiky clutter.
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6.2 Perspectives and Future Work

In light of the various results obtained during this thesis, different research perspectives can
be considered. The axes that should be considered as perspectives for future work can be
summarized as follows:

• Use the proposed Weibull models to detect targets with a constant false alarm rate
(CFAR) in homogeneous and heterogeneous environments.

• Derivation of the mathematical functions of proposed Weibull models to obtain a
closed-form without integration.

• It is important to find the best estimator for the proposed Weibull models such as the
MLE estimator and the zlogz estimator.

Finally, as the current trend for modern radars is much more like generalized clutter models,
we hope that this work has given an added value in the field of high-resolution sea clutter
radar modeling.
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