République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique.

Université Mentouri de Constantine

Faculté des Sciences de l'Ingénieur

Département d'Electronique

THESE

Présentée par

Kebaili Farida

Pour obtenir

Le grade de : Docteur en sciences

Spécialité : semi-conducteurs et systèmes électroniques

Modélisation physique numérique des

structures MESFETs et CNTFET

Soutenue le (06/06/10) devant

Membres du Jury:

A. BEN GHALIA M. MARIR- BENABBAS C.AZIZI S.LASSOUED M.ZAABAT professeur professeur professeur professeur professeur

Président rapporteur Examinatrice Examinatrice Examinateur Constantine Constantine Oum EL Bouaghi Constantine Oum EL Bouaghi

Ama mère, à ma famille

Ames amis

Atous ceux qui me sont chers...

. À teus ceux qui m'ent porté et supporté

Avec la plus prefende des gratitudes

<u>Remerciements</u>

Ce travail a été effectué au laboratoire d'étude de matériaux et de composants électroniques, faculté des sciences de l'ingénieur de l'université Mentouri de Constantine.

Je tiens a remercier tout particulièrement monsieur BE. Marir, directeur de ma thèse pour son enthousiasme et son écoute. Il a su répondre a mes nombreuses questions, en prenant le temps de tout m'expliquer depuis le début sans jamais perdre patience. Ses grandes qualités scientifiques et humaines m'ont beaucoup apporté durant ces années. je tient a saluer son soutient et son appui permanent qui ont contribuer énormément a ce travail ,..... nous ne vous oublierons jamais, merci pour tout.

Je remercie chaleureusement Madame M.MARIR, professeur au département d'électronique, pour sa disponibilité et la qualité de son encadrement ainsi que pour le soutien et la patience dont elle a fait preuve tout au long de ces années, son aide et son soutient m'ont été tout aussi utile pour achever cette thèse malgré sa charge croissante de responsabilités.

A Monsieur A.Benghalia, professeur au département d'électronique, j'exprime toute ma reconnaissance pour l'honneur qu'il me fait en acceptant de présider ce jury.

A Madame C.Azizi , professeur au département de physique, à Université de Oum EL Bouaghi j'exprime Ma profonde gratitude pour m'avoir honorée en acceptant d'être membre du jury.

Mes remerciements vont également à Madame S.Lassoued professeur au département d'électronique, pour m'avoir fait la gentillesse d'accepter d'être membre du jury. Je saisie cette opportunité pour saluer en elle, mon professeur durant plusieurs année.

J'adresse mes très sincères remerciements à Monsieur M. ZAABAT, professeur au département d'électronique à l'université de Oum EL Bouaghi pour avoir lui aussi accepté d'examiner ce mémoire et de participer à ce jury de thèse.

Je ne saurais oublier toutes les personnes du laboratoire aux quelles j'adresse mes s'incères remerciements pour les services échangés ainsi que pour l'ambiance chaleureuse de travail.

Table des Matières

Table des matières

Introduction Générale	1
Chapitre I: transistors à effet de champs	
I-1. Introduction	4
I-2. Description et principe de fonctionnement du MESFET en GaAs	4
2.1. La structure	4
2.2. Le fonctionnement du MESFET	5
I-3 Structure de bande d'énergie	9
I-4. Relation entre la vitesse des électrons et le champ électrique	
I-5 Diode Schottky	
I-5.1 Introduction	13
I-5.2 La privile de la diode Schollky	13
I-O Schemas equivalent du MESFET en regime de petits signadx	10
I-7 MOULE PHS (PULLI- HOUSS-SIGIZ)	10
I-7.1 Infolduction	10 18
17.2 Déscription des éléments de base du circuit équivalent du transistor	10 r nar lo
modèle DHS	22 pai
Inducie FITS	23
CHAPITRE II : Modélisation numérique du MESFET	
II-1. Introduction	
II-2 Modèles physiques de simulation	
a. Modèles de simulation 2D	
b. Modèles Q2D	
	20
II-3. Modelisation physique numerique par operateurs speciaux des structures MESFET's	
II-3.1 Introduction	
II-3.2 Les considerations theoriques	
II-3.3 Calcul du potentiel electrostatique	
II-4. Etude de l'effet de la temperature sur le comportement du MESFET	
II-4.1 queiques elements de base du circuit equivalent du transistor	
II-4.2 Influence de la température	
Variation de tension de seuil en fonction de la temperature	
Variation de la concentration intrinsèque en fonction de la température	40 л1
II-5 Conclusion	41 42
CHADITRE III · Les Transisters à Nanotubes de Carbono	

III-1. Introduction	45
III-2. Définitions et structures	46
III-3. Fabrication, propriétés et applications	49
a .Les méthodes de synthèse	49
b. Les propriétés	52
b.1. Les propriétés physiques	52
b.2. Les Propriétés électriques	52
b.3. Propriétés d'émission de champ	53

b.4. Propriétés mécaniques	53
b.5. Propriétés thermiques	54
b.6. Les propriétés chimiques	54
III-4. Les principales applications actuelles et potentielles	55
III-5. Le nanotube dans une configuration de transistor	56
III-6. Paramètres physiques du CNTFET	58
III-7. Modélisation physique du CNT	59
III-7.1. Equation de transport	
7.1.1. Cas Maxwell- Boltzmann	
7.1.2. Cas unidimensionnel avec la statistique de Fermi Dirac	61
7.1.3. Cas 2D avec la statistique de Fermi Dirac	64
III-8. Conclusion.	69

CHAPITRE IV : Résultats et discussions

IV .1. Introduction.	70
IV.2 Logiciel de simulation	70
IV.3 Paramètres introduits	70
IV.3.1. Les paramètres géométriques	71
IV.3.2 . Les paramètres physiques	71
IV.4 Les caractéristiques statiques du MESFET(PHS)	72
IV.4.1. Caractéristiques courant tension $I - V$	72
IV.4.2 Transconductance gm	74
IV.4.3 Conductance $oldsymbol{g}_{ds}$	75
IV.4.4 Capacité entre grille et source Cgs	76
IV.5. Interprétation des courbes	77
IV.6. Comparaison entre les résultats théoriques et des résultats expérimentaux	79
IV.7. Limites de validité du modèle	80
IV.8. Effet de la température sur les caractéristique du MESFET	80
IV.9. Simulation du CNTFET.	84
IV.9.1 Caractéristique I_D en fonction de (V_{DS}, V_{GS})	84
IV.9. 2 Effet du diamètre du CNT	85
IV.10. Conclusion.	88
Conclusion Générale	89
Publications	91
Bibliographies.	93
Table de figures	100
Liste des Tableaux.	102

INTRODUCTION GENERALE

Le développement des télécommunications nécessite l'utilisation de composants pouvant fonctionner à des fréquences de plus en plus élevées et présentant des dimensions géométriques de plus en plus réduites . Dans ce domaine, les transistors à effet de champ constitue une solution de choix pour un grand nombre d'application .Or, d'après les travaux théoriques et expérimentaux, la montée en fréquence des composants discrets et l'amélioration de la rapidité des circuits intégrés semblent passer par la réalisation de transistors à effet de champ à grille beaucoup plus courte, c'est à dire de longueur très inférieure au micron. Pour des composants classiques (de longueur de grille supérieure au micron), le meilleur matériau est l'arséniure de gallium .

Le premier essai de modélisation de TEC est présenté par Shockley. Ce modèle est basé sur la résolution analytique des équations fondamentales des porteurs dans le semiconducteur.

En s'inspirant du modèle Shockley, plusieurs chercheurs ont mené de nombreux travaux pour tenter de modéliser les MESFET's, à fin de simuler leur performances électriques à partir des caractéristiques physiques.

Ces travaux ont permis de clarifier dans certaines mesures, les phénomènes intervenant dans le fonctionnement du transistor.

En général ces modélisations sont regroupées selon les méthodes avec lesquelles elles sont obtenues.

Le développement ou l'amélioration des nouvelles filières de transistor à effet de champ ne peut s'envisager sans l'appui de la modélisation physique qui permet la prédétermination des caractéristiques et l'optimisation des structures.

Ce travail rentre dans le cadre de la modélisation et de la simulation des transistors à effet de champ à barrière Schottky sur l'arséniure de gallium dit MESFET GaAs dont le but est l'amélioration des performances du transistors à effet de champ.

Pour décrire le fonctionnement du transistor à effet de champ en Arséniure de gallium, nous avons développé un modèle analytique, dont la mise en œuvre est efficace, pour la compréhension des problèmes délicats du MESFET, nous avons également étudié la variation du Gap, la tension de seuil, et la concentration intrinsèque en fonction de la température pour montré l'effet de la température sur le comportement statique du transistor.

Ce modèle permet de calculer les éléments intrinsèques du schéma équivalent. cette étude nous a permis de faire une étude critique du modèle.

Après cette étude primitive du composant, notre travail est axé sur la modélisation du MESFET GaAs.

la première une modélisation physique numérique, et l'introduction d'opérateurs spéciaux, la seconde consiste à introduire un nanotube de carbone entre source et drain(CNTFET), ce ci est l'objet essentielle de cette thèse.

Le nanotube de carbone est à ce jour l'un des candidats les plus prometteurs pour faire passer le transistor à effet de champ (FET) à l'échelle du nanomètre. Des recherches intensives sont en cours afin de développer les technologies adaptées et d'évaluer les caractéristiques statiques et dynamiques des transistors à nanotube de carbone (CNTFET).

Depuis quelques années, les transistors à base de nanotubes de carbone (CNT) ont suscité beaucoup d'intérêt en raison du haut niveau de performance atteint, rendant ce matériau très prometteur pour les composants électroniques de demain . Parmi les nombreuses propriétés remarquables des nanotubes, on peut tout d'abord citer leur caractère 1D qui permet un bon confinement des charges et donc un bon contrôle électrostatique, ce qui est essentiel dans une application type transistor. Enfin l'existence de CNT métalliques et semi conducteurs permet d'envisager une électronique tout nanotube .

Dans ce cadre, la synthèse de ce travail de thèse est présentée dans quatre chapitres :

Dans le premier chapitre, nous nous sommes attachés à décrire le MESFET GaAs : structure générale et principe de fonctionnement.

Le deuxième est basé sur la présentation de notre nouvelle approche de résolution qui est basée sur la modélisation numérique des structures MESFET. L'influence de la température sur les caractéristiques est précisemment étudiée.

Dans Le troisième chapitre, nous avons présenté les principes fondamentaux de la nanoélectronique basé sur les nanotubes de carbone, et nous avons établi l'état de l'art des différentes structure des transistors à nanotube de carbone . ensuite nous avons élaboré un modèle dans le but de calculer la résistance du nanotube de carbone et de tracer les caractéristiques I - V.

Le quatrième chapitre présente, à travers des organigrammes, le programme de modélisation élaboré à partir des équations établies aux chapitres précédents. Les résultats sont présentés et comparés avec les résultats expérimentaux de la littérature.

Enfin, nous conclurons par les perspectives qu'ouvre ce travail sur la modélisation des composants à effet de champ de type CNTFET.

Chapitre. I : Transistor à Effet de Champs

I-1. Introduction

Le transistor à effet de champ est un des composants majeurs utilisés dans les dispositifs électroniques. Le principe de fonctionnement à été décrit pour la première fois par W.Shockley en 1952 [1]. Il repose sur la modulation du courant passant entre les électrodes de drain et de source. Cette modulation est commandée par la tension appliquée sur l'électrode latérale de grille.

Il a été initialement appelé transistor unipolaire par opposition au transistor bipolaire car un seul type de porteur participe à la conduction du courant [2,3,4,5].

Les premiers transistors à effet de champ ont été réalisés au silicium. Ce semiconducteur présente de nombreux avantages pour la réalisation de composants électronique [6,7]: structure cristalline simple, peu onéreux, facile à réaliser, existence d'un oxyde de silicium, isolant. Cependant le silicium permet des fréquences d'utilisation maximales de l'ordre de quelque *GHZ*. Afin de disposer de composant pouvant fonctionner à des fréquences plus élevées, le silicium a été remplacé par l'arséniure de Gallium (As Ga)[8, 9], car la filière Ga As est la seule filière hyperfréquence la plus utilisé. Il possède une mobilité électronique six fois plus élevée que le silicium [10,11]. Si : $\mu_n = 1350cm^2v^{-1}s^{-1}$, GaAs : $\mu_n = 8000cm^2v^{-1}s^{-2}$ [12].

Différentes structures de transistors sont utilisées, on retiendra le MOSFET pour des fréquences ne dépassant pas quelques *GHZ* et le MESFET pour des applications comprises dans le domaine des fréquences micro ondes, c'est le dispositif qu'on va étudier dans ce chapitre.

I-2. Description et principe de fonctionnement du MESFET en GaAs

2.1. La structure

La structure générale d'un composant MESFET est représentée sur la (figure I-1).

Figure I-1 : Vue en coupe de la structure d'un MESFET

Un substrat mono cristallin de GaAs semi isolant de résistivité élevée $(\rho \ge 10^8 \Omega \cdot cm)$ sert de support à une couche mince $(\approx 0.2 \mu m)$ de GaAs dopé N. A la surface de la couche N, se trouvent les deux contacts ohmiques, source et drain, entre lesquels une diode Schottky réalise le contact de grille de longueur L, qui a pour effet de créer une zone désertée dont l'épaisseur dépend surtout du dopage et peu du métal. Les espaces source grille et drain grille, de longueur respectives L_s et L_D , permettent d'éviter les courts circuits entre les différents contacts. Sous la grille, dans la direction du courant drain source, circule un courant dont la valeur dépend des propriétés physiques de la couche N et de la forme géométrique du canal conducteur. La région située sous la grille constitue le transistor intrinsèque, par opposition au transistor réel, dit transistor extrinsèque. L'application de tension entre le drain et la source, V_{DS} et entre la grille et la source, V_{GS} modifie la géométrie du canal, en particulier son épaisseur (figure 1), et donc la valeur du courant I_D traversant le transistor [13,14].

2.2. Le fonctionnement du MESFET

Le principe de fonctionnement du MESFET repose essentiellement sur la jonction métal semi-conducteur entre l'électrode de grille et le canal [15]. Cette jonction forme

une diode de type Schottky. En effet, le métal de l'électrode de grille est mis en contact avec un semi-conducteur de type N. les électrons libres du semi-conducteur au voisinage de la jonction migrent vers le métal laissant les atomes donneurs ionisés. Ces atomes forment la zone de charge d'espace (ZCE) positive et champ électrique E_i s'établit. A l'équilibre thermodynamique, le courant de diffusion des électrons s'équilibre avec le courant de conduction engendré par E_i Figure (I-2) [5].

Figure I-2 : Jonction SCHOTTKY

Si on applique une tension extérieure négative Ve sur l'électrode métallique, celle ci va engendrer une augmentation du champ E_i . La zone de charge d'espace s'étend dans le semi-conducteur : la jonction est bloquée.

Par contre, si une tension positive est appliquée, le champ électrique E_i et l'épaisseur de la charge d'espace d diminuent. Le courant de diffusion devient alors prépondérant : la jonction est passante [1,4].

Lors du fonctionnement normal du MESFET, la grille est polarisée négativement par rapport à l'électrode de source (Figure I-3) [2]. Une tension positive est appliquée

entre les électrodes de drain et la source. Le courant I_{ds} circulant alors dans le canal peut s'écrire [16,17].:

$$I_{ds} = q \cdot n(x) \cdot v(x) \cdot s(x) \tag{I-1}$$

n(x) densité des porteurs en m⁻³

- v(x)vitesse des porteurs en m.s⁻¹
- s(x) la section du canal en m²

Une diminution de la valeur de la commande Vgs entraîne une augmentation de l'épaisseur d(x) de la zone de charge d'espace de la jonction. Cette variation engendre une diminution de la section s(x) du canal et donc du courant I_{ds} .

Lorsque la zone de charge d'espace atteint le substrat semi isolant, le canal est dit pincé [9,10]. Le courant I_{ds} est alors nul. En traçant le courant I_{ds} en fonction de commandes V_{ds} et Vgs, deux zones de fonctionnement peuvent être mises en évidence : la zone de fonctionnement linéaire et la zone saturée (Figure I-4).

Figure I-3 : Vue en coupe d'un MESFET polarisé

Figure I-4 : Réseau typique de sortie d'un MESFET

La zone linéaire est aussi appelée zone ohmique. Pour une valeur de Vgs fixée, supérieure à la tension de pincement, le courant I_{ds} est proportionnel à la tension V_{ds} . La section du canal est pratiquement uniforme. Le canal se comporte alors comme une conductance contrôlée par la tension Vgs. Des applications telles que les mélangeurs nécessitent souvent ce régime de fonctionnement linéaire [18, 19,20].

La zone saturée existe pour des V_{ds} assez forts, entraînant une extension de la zone de charge d'espace coté drain. La section du canal est alors resserrée et limite donc le courant I_{ds} . Le canal peut être alors schématiquement divisé en deux zones : une zone ohmique et une zone saturée.

Dans la zone ohmique, la composante du champ électrique E est faible et la vitesse moyenne des électrons est proportionnelle au champ électrique.

En zone saturée, la zone de charge d'espace occupe toute la section du canal. L'impédance présentée par le canal est importante. Le champ électrique est supérieur au champ critique Es et les électrons atteignent leurs vitesse de saturation

 V_s (Figure I .2). Les porteurs sont injectés dans la zone de charge d'espace ou ils sont soumis à un champ favorable qui les propulsent vers l'électrode de drain [4,21].

I-3 Structure de bande d'énergie

En réseau de loi de la mécanique quantique, les électrons des atomes isolés peuvent avoir seulement certaines valeurs discrètes d'énergie. Ces atomes isolés sont rassemblées pour former un cristal. Le spectre d'énergie des électrons qui déterminent les propriétés électroniques des semi-conducteur sont formées par des bandes d'énergie permises, où les bandes sont appelées les bandes de valence et de conduction, *(figure I-5)*. Ces deux bandes sont séparées par une bande d'énergie interdite, qui est un paramètre très important du matériau de semi-conducteur[3,4].

A la température absolue zéro Kelvin, tous les électrons sont confinés dans la bande de valence et le matériau est un isolant parfait, lors que la température augmente, quelques électrons ont l'énergie thermique suffisante pour passer dans la bande de conduction. La probabilité qu'un électron ayant assez d'énergie pour faire une transition est donné par la forme de la distribution de Fermi-Dirac ; le niveau de Fermi montré sur la *(figure I-5)* délimite la population d'électrons[1,22].

Pour les semi-conducteurs intrinsèques, le niveau de fermi est approximativement au centre de la bande. La quantité d'énergie requise pour un électron pour ce déplacé de la bande de valence à la bande de conduction dépend de la température, du matériau de semi-conducteur, et du dopage. [4,20,23].

Pour le matériau GaAs, l'énergie de la bande interdite à la température ambiante est 1.42 eV (Tableau I.1). Le diagramme des bandes d'énergie a une référence qui est le potentiel du vide. L'affinité électronique $q\chi$, est l'énergie nécessaire pour arracher un électron du fond de la bande de la conduction si le potentiel du vide pour le GaAs , $q\chi$ est approximativement de 4.07 eV. Le GaAs est un semi-conducteur de bande interdite directe, qui signifie que le minimum de la bande de la conduction est directement au-dessus du maximum de la bande de valence, *(figure 1-6)*. Les transitions entre la bande de valence et de la bande de la conduction exigent seulement un changement d'énergie, et aucun changement des moments, à la

⁹

différence des semi-conducteurs de bande interdite indirecte comme le silicium [1,3,24,25].

Cette propriété fait du GaAs un matériau très utile pour la fabrication des diodes luminescentes et des lasers à semi-conducteur.

Propriété	Paramètre
Structure du cristal	Zinc blende
Constante du réseau	5.65 Å
Densité	5.32 g/cm ³
Densité atomique	$4.56.10^{22}atoms/cm^3$
Poids moléculaire	144.64
Coefficient de dilatation thermique	$5.81.10^{-6}K^{-1}$
La chaleur spécifique	0.327 J/q.K
Conductivité thermique	0.55 <i>W/cm</i> . °C
Constante diélectrique	12.85
Bonde d'énergie interdite	1.42 <i>eV</i>
Mobilité des électrons	8500 cm ² /V.S
Mobilité des trous	400 cm ² /V.S

TABLEAU I.1 : propriétés du GaAs à température ambiante[4].

Figure I-5: diagramme de bande d'énergie pour GaAs .

Figure I-6 : structure de bande d'énergie du silicium et du GaAs[4]

(I-3)

I-4. Relation entre la vitesse des électrons et le champ électrique

La figure I.7 représente la courbe v(E)du GaAs. A faible champ électrique, la vitesse des électrons est proportionnelle à l'amplitude du champ, puis elle augmente pour atteindre un maximum de l'ordre de $2 \times 10^7 \, cm \cdot s^{-1}$. On trouve ensuite une région, dite de résistance différentielle négative (effet Gunn), dans laquelle la vitesse décroît avant d'atteindre la vitesse dite de saturation vs à laquelle correspond le champ dit de saturation E_s [2].

Pour obtenir un modèle analytique simple, plusieurs approximations de la courbe v(E) ont été utilisées [25, 26].

La courbe v(E) est représentée par deux droites.

La première a pour équation :

$$v = \mu \cdot E \operatorname{Si} \mathsf{E} < E_s. \tag{I-2}$$

La deuxième droite a pour équation : $v(E) = cons \tan te \text{ Si } E > E_s.$

Figure I-7: Vitesse en fonction du champ électrique [4]

I-5. Diode Schottky

I-5.1. Introduction

La diode SCHOTTKY [6, 8, 9] est un élément de base pour les composants à l'état solide en hyperfréquences dans la mesure où :

Elle peut être utilisée seule pour ses caractéristiques non-linéaires en détecteur, mélangeur ou multiplieur avec, selon sa dimension de zone active, des fréquences de coupure supérieures au Téra hertz ;

Le contact Schottky est l'élément de commande en tension des transistors à effet de champ (grille). Nous la retrouverons ainsi pour le MESFET.

L'hétérojonction métal-semi-conducteur est aussi à la base du fonctionnement de nombre de dispositifs (contact ohmique).

I -5. 2. La physique de la diode Schottky

Pour étudier la jonction métal-semi-conducteur, il faut connaître :

le travail de sortie du métal : qφ_m (donnée structurale)

l'affinité électronique du SC : qx (donnée structurale)

En première approximation, la barrière qui se forme à la jonction est :

$E = q\varphi_m - q\chi$

Sur la figure I – 8 sont représentés les niveaux d'énergie du métal et celle du semi-conducteur est du type N. Dans le semi-conducteur le niveau d'énergie E_{Fs} est proche de E_c .

Figure I – 8: Les niveaux d'énergie avant le contact ;a) du métal ; b) du semi-conducteur.

Pour un semi-conducteur de type N deux cas sont possibles :

- soit $\phi_m \ge \phi_s$
- soit $\phi_m < \phi_s$

a) Cas ou $\varphi_m \ge \varphi_s$

Lorsque l'on accole les deux matériaux et que, à l'équilibre thermodynamique, les niveaux de Fermi s'alignent, les états d'énergie peuplés les plus hauts en énergie sont dans le semi-conducteur. Il y a donc des états d'énergie plus faibles vides dans le métal. Un certain nombre d'électrons vont donc transférer vers le métal

(accumulation) et déserter le semi-conducteur. Un champ électrique interne va se créer pour lutter contre cette diffusion, un équilibre va se créer et le phénomène s'arrêter. On aboutit alors à l'équilibre suivant :

Figure I – 9 : Les niveaux d'énergie de la jonction métal-semi-conducteur $\varphi m \ge \varphi s$. Où VB : tension de diffusion

On voit dans ce cas, que la barrière à l'interface va commander le passage du courant du métal vers le semi-conducteur et semi-conducteur vers le métal on se trouve dans le cas d'un contact redresseur ou SCHOTTKY

b) cas ou $\varphi_m < \varphi_s$

Lors de la création de l'hétérojonction, c'est l'inverse qui va se produire avec une accumulation d'électrons dans le SC.

Figure I – 10 : Niveau d'énergie lorsque $\phi_{m} < \phi_{s}.$

Il n'y a plus de barrière à l'interface, les électrons vont s'échanger très facilement entre le SC et le Métal, on se trouve dans le cas d'un contact ohmique.

I-6 Schémas équivalent du MESFET en régime de petits signaux

Une analyse de la structure du transistor au premier ordre fait apparaître un schéma équivalent petit signal à éléments localisés correspondant au fonctionnement dans la zone saturée. Chaque élément représente un comportement physique ou une propriété électrique du transistor à effet de champ (Figure I-11).[5].

Figure I-11 : Origine physique du schéma équivalent du FET

La topologie du modèle complet contenant les éléments du MESFET fonctionnant en régime petits signaux, est reportée sur la figure I-12 [1,13].

Figure I.12.Modèle simple π , petit signal des TECs

La transconductance g_m est l'élément principal du transistor [26]. Elle traduit le contrôle du courant de canal (I_D) par la tension V_{GS} , pour une tension V_{DS} constante.

$$g_m = \frac{dI_D}{dV_{GS}}\Big|_{V_{DS=constante}}$$
(I-4)

La conductance g_{ds} , représente la résistance du drain ou la variation du courant I_D en fonction de la tension V_{DS} [19, 22]

$$g_{ds} = \frac{dI_D}{dV_{DS}}\Big|_{V_{GS=constante}}$$
(I-5)

Les capacités C_{gs} et C_{gd} , représentent les variations de la charge accumulée sous la grille, dans la zone de charge d'espace et le couplage électrostatique entre les électrodes du composant. Ces capacités peuvent être définies par les relations suivantes [23,25] :

$$C_{gs} = \left. \frac{dQ_{grille}}{dV_{GS}} \right|_{V_{DS=constante}} = -\frac{dQ_{SC}}{dV_{GS}} \right|_{V_{DS=constante}}$$
(I-6)

$$C_{gd} = \frac{dQ_{grille}}{dV_{DS}}\Big|_{V_{GS=constante}} = -\frac{dQ_{SC}}{dV_{DS}}\Big|_{V_{GS=constante}}$$
(I-7)

Ou :

 Q_{grille} , Q_{SC} sont la charge totale stockée sous l'électrode de grille et dans la région de charge d'espace respectivement.

Les résistances d'accès R_s et R_d sont entièrement définies par les caractéristiques de la couche active et des contacts de source et de drain.

 R_d : La résistance de métallisations de grille. Elle ne dépend que de la structure de la grille.

I-7 Modèle PHS (Pucel- Hauss-Statz)

I-7.1. Introduction

Récemment, beaucoup de modèles analytiques du MESFET GaAs, ont été proposés et publiés. Pucel – Hauss- Statz (PHS) ont fait des études intéressantes sur le composant MESFET GaAs. Ils ont proposé un modèle de calcul des caractéristiques I-V du transistor que nous avons développé, qui associe la description des phénomènes physiques aux équations mathématiques adéquates.

I-7.2.Description du modèle

Ce modèle a utilisé un certain nombre d'hypothèses et un ensemble d'approximations [1,9] :

La zone de charge d'espace sous la grille est entièrement désertée.

La densité des électrons au niveau du canal est égale à la concentration du dopage.

Le champ électrique a une composante longitudinale entre le drain et la source et une transversale dont la direction est perpendiculaire au canal (la composante transversale est négligeable).

Approximation du canal graduel.

La mobilité ne dépend pas du champs et pour des champs faibles la mobilité est égale à μ_0 .

Le courant de drain traversant le transistor est un courant de dérive, et le phénomène génération / recombinaison est négligeable.

D'après ce modèle, le canal est divisé en deux régions principales. Cette structure est schématisée sur la (figure I.13)

Figure I-13 : structure du MESFET d'après le modèle PHS

région 1 : est une région à faible champs, dont laquelle le champ électrique longitudinal est inférieur au champ critique E_s .

La vitesse des porteurs dans cette région est donnée par la relation suivante :

$$v = -\mu_0 \cdot E \tag{I-8}$$

Le point entre les deux régions 1 et 2, où le champ électrique atteint la valeur critique E_s , la vitesse des électrons atteint le régime de survitesse v_s (vitesse de saturation).

$$v_s = \mu_0 \cdot E_s \tag{I-9}$$

Dans la deuxième région, les électrons circulent par leur vitesse de saturation.

 $L_{\rm l}$, $L_{\rm 2}$: Les longueurs des deus régions.

La relation du courant de drain I_D pour chaque point x du canal à dopage homogène est donnée à partir de l'expression suivante :

$$I_{D} = qN_{D}v(x)Wb(x) = qN_{D}v(x)W[a - d_{SC}(x)]$$
(I-10)

Où :

v(x) est la vitesse des électrons en fonction du champ électrique.

 d_{sc} est la hauteur de la zone de charge d'espace, donnée par la relation suivante :

$$d_{SC} = \sqrt{\frac{2\varepsilon(-V_{GS} + V(x) + V_{bi})}{qN_D}}$$
(I-11)

 V_{bi} : Tension de barrière de la jonction Schottky.

 V_{GS} : Tension source - grille.

q : Charge électronique.

V(x): tension entre chaque point x du canal et la source.

 N_D : Dopage.

On fait apparaître la tension de pincement V_{P0} , c'est la tension nécessaire pour que la largeur de la zone de charge d'espace soit égale à l'épaisseur de la zone active définie par :

$$V_{P0} = \frac{qN_D a^2}{2\varepsilon} \tag{I-12}$$

On introduit également la tension normalisée suivante :

$$\chi = \sqrt{\frac{-V_{GS} + V_{bi} + V(x)}{V_{P0}}}$$
(I-13)

Ce qui implique, d'après l'équation (I-11) :

$$d_{sc} = a\chi \tag{I-14}$$

En Combinons les équations (I-10) et (I-14), nous obtenons l'équation de base du courant de drain :

$$I_D = qN_D v(x)Wa[1 - \chi(x)]$$
 (I-15)

En régime linéaire, l'équation (I-15) devient :

$$I_D = -qN_D W a \mu_0 E(x) [1 - \chi(x)]$$
 (I-16)

En utilisant l'équation (I-13), l'expression du champ dans le canal est

$$E = -\frac{dV(x)}{dx} = -2\chi(x)\frac{d\chi(x)}{dx}V_{p0}$$
 (I-17)

En Insérant l'équation (I-17) dans l'équation (I-16), nous obtenons une équation différentielle à variable séparée :

$$I_D dx = q N_D W a \mu_0 V_{P0} 2(\chi - \chi^2) d\chi$$
 (I-18)

Cette équation sera intégrée dans la région 1 du transistor entre x=0 et x= L_1 pour χ variant de χ =s jusqu'à χ =P.

Avec s et p ; le potentiel au niveau de la source et le point séparant les deux régions respectivement.

De l'équation (I-13), on peut obtenir :

$$s = \sqrt{\frac{-V_{GS} + V_{bi}}{V_{P0}}}$$

$$p = \sqrt{\frac{-V_{GS} + V(L_1) + V_{bi}}{V_{P0}}}$$
(I-19)

Le résultat de l'intégration est alors:

$$I_D = \frac{qN_D W a \mu_0 V_{P0}}{L_1} \left[p^2 - s^2 - \frac{2}{3} (p^3 - s^3) \right] = \frac{qN_D W a \mu_0 V_{P0}}{L_1} f_1$$
(I-20)

21

Les électrons se déplacent vers le drain à leur vitesse de saturation, par l'utilisation de l'équation (I-15) le courant de drain devient donc

$$I_D = qN_D v(x)Wa(1-p) \tag{I-21}$$

Du fait que le courant de drain soit constant le long du canal, les équations (l-20) et (l-21) deviennent égales. De cette égalité nous déduisons l'expression de L_1 :

$$L_1 = \frac{\mu_0 V_{P0}}{\nu_s} \frac{f_1}{1 - P} \tag{I-22}$$

La tension V_{DS} : entre le drain et la source est la somme des chutes de tensions entre les deux régions 1 et 2.

Par le biais des deux équations (I-19), on trouve la chute de tension dans la région 1 :

$$V_1 = V_{P0}(p^2 - s^2) \tag{I-23}$$

Du fait que dans la région 2, les porteurs circulent à la vitesse de saturation. $V_2 = \frac{2av_s}{\Pi\mu_0} sh \frac{\Pi L_2}{2a}$ (I-24)

Il vient donc :

$$V_{DS} = V_1 + V_2 = V_{p0}(p^2 - s^2) + \frac{2av_s}{\Pi\mu_0} sh\frac{\Pi L_2}{2a}$$
(I-25)

Telle que : L_2 égale à $L - L_1$.

Les caractéristiques que nous avons présentées sont celles des grandeurs internes ou intrinsèques (I_D , V_{DS} , V_{GS}). Pour obtenir les caractéristiques externes ou

extrinsèques du composant ($I_{D,ext}$, $V_{DS,ext}$, $V_{GS,ext}$), il suffit de prendre en considération l'effet des résistances parasites d'accès de source R_s et de drain R_d (figure l-14)[13].

Pour obtenir les expressions réelles des caractéristiques, il suffit de remplacer les termes intrinsèques par les termes extrinsèques dans toutes les relations précédentes :

$$\begin{cases} V_{DS,ext} = V_{DS} + I_D (R_S + R_d) \\ V_{GS,ext} = V_{GS} + R_S I_D \end{cases}$$
(I-26)

Figure I-14 : structure intrinsèque du MESFET avec les résistances parasites RS et RD

I-7.3. Détermination des éléments de base du circuit équivalent du transistor par le modèle PHS

a. conductance et transconductance

L'expression du courant intrinsèque de drain I_D permet de déterminer deux paramètres fondamentaux du transistor, qui sont la transconductance ou pente g_m et la conductance de drain g_{ds} .

$$g_m = \frac{dI_D}{dp} \times \frac{dp}{ds} \times \frac{ds}{dV_{GS}} \bigg|_{VDSS=cst}$$
(I-27)

Le premier terme $\frac{dI_D}{dp}$ est obtenu d'après l'équation (I-21)

$$\frac{dI_D}{dp} = -qN_D Wa v_S \tag{I-28}$$

Le deuxième terme $\frac{dp}{ds}$ est calculé en dérivant l'équation (I-25), de la façon suivante :

on réalise $\left(\frac{dV_{DS}}{ds}=0\right)$, sachant que $L_2 = L - L_1$ et par l'utilisation de l'expression (I-

22) donnant L_1 , il vient.

$$\frac{dp}{ds} = \frac{\left(ch\frac{\Pi L_2}{2a}\right)2s(1-s) - 2s(1-p)}{\left(ch\frac{\Pi L}{2a}\right)\left(2p(1-p) + \frac{f_1}{1-p}\right) - 2p(1-p)}$$
(I-29)

De l'équation (I-19) on peut déduire le troisième terme :

$$\frac{ds}{dV_{GS}} = \frac{-1}{2sV_{P0}}$$
(I-30)

En regroupant ces résultats(équation I-27 - I-30), nous arrivons enfin à l'expression de la transconductance :

$$g_m = \frac{qN_D Wav_S}{V_{P0}} f_g \tag{I-31}$$

Avec :

$$f_{g} = \frac{\left(ch\frac{\Pi L_{2}}{2a}\right)(1-s) - (1-p)}{\left(ch\frac{\Pi L_{2}}{2a}\right)\left(2p(1-p) + \frac{f_{1}}{1-p}\right) - 2p(1-p)}$$
(I-32)

De la même façon $r_{ds} = \frac{1}{g_{ds}}$ peut être calculée , nous aboutissons alors à

$$r_{ds} = \frac{V_{P0}}{qN_D Wa v_s} \left[\left(ch \frac{\Pi L_2}{2a} \right) \left(2p + \frac{f_1}{\left(1 - p\right)^2} \right) - 2p \right]$$
(I-33)

b. capacités inter électrodes

Pour le calcul des capacités C_{gs} et C_{gd} , il faut tout d'abord trouver l'expression de la charge stockée sous la grille dans la région 1 et dans la région 2

• Dans la région 1 :

$$Q_{SC1} = -Q_{grille,1} = qN_D W \int_0^{L_1} d_{SC}(x) dx = qN_D W a \int_0^{L_1} \chi(x) dx$$
(I-34)

Combinons l'équation (I-18) et (I-20), on trouve :

$$Q_{SC,1} = q N_D W a L_1 \frac{f_2}{f_1}$$
(I-35)

Avec :

$$f_2 = \left[\frac{2}{3}(p^3 - s^3) - \frac{1}{2}(p^4 - s^4)\right]$$
(I-36)

• Dans la région 2 :

La charge stockée est :

$$Q_{SC,2} = -Q_{grille,2} = qN_DWaL_2P$$
(I-37)

Une troisième charge $Q_{grille,3}$ qui existe dans la deuxième région sous la forme :

$$Q_{grille,3} = -qN_D Wa \frac{a^2 v_S}{\Pi \mu_0 V_{P0}} \left[ch \left(\frac{\Pi L_2}{2a} \right) - 1 \right]$$
(I-38)

La dernière quantité de charge qui existe appelée Q_{Bord} située tout prés de la zone entre la zone de charge d'espace et la grille, est donnée par :

$$Q_{Bord} = \frac{2 \times 0.5 \times \Pi \times a^2 \times s^2}{4} \times q N_D W \tag{I-39}$$

La capacité C_{gs} est la somme des quatre composantes :

$$C_{gs} = C_{gs1} + C_{gs2} + C_{gs3} + C_{Bord}$$
(I-40)

Avec :

$$C_{gs1} = \frac{qN_D W a\mu_0}{v_s} \left[f_g \; \frac{2p^2 (1-p)^2 + f_2}{(1-p)^2} - \frac{s(1-s)}{(1-p)} \right]$$
(40-a)

$$C_{gs2} = \frac{qN_D Wa}{V_{P0}} \left[L_2 f_g + V_{P0} / \frac{v_s}{\mu_0} ch \left(\frac{\Pi L_2}{2a} \right) p(1 - 2pf_g) \right]$$
(40-b)

$$C_{gs3} = 2 \cdot \varepsilon \cdot W \left(\frac{1}{2} - pf_g \right) th \left(\frac{\Pi L_2}{2a} \right)$$
(40-c)

$$C_{Bord} = \frac{\Pi}{2} \varepsilon \cdot W \tag{40-d}$$

De la même manière, on peut déduire l'expression de la capacité C_{gd} :

$$C_{gd} = \varepsilon W \frac{2}{af_3} \left[\frac{V_{P0}\mu_0}{v_s} \frac{f_2 - f_1 p}{(1 - p)^2} + L_2 + \frac{a(f_3 - 2p)}{2} th(\frac{\Pi L_2}{2a}) \right]$$
(I-41)

Avec :

$$f_{3} = 2p - \left[2p + \frac{f_{1}}{(1-p)^{2}}\right]ch\left(\frac{\Pi L_{2}}{2a}\right).$$
 (I-42)

I-8. Conclusion

De nombreux laboratoires de recherche ont montré l'intérêt d'utiliser les transistors à effet de champ à grille Schottky sur l'arséniure de Galium pour la réalisation des circuits intégrés. Une tels percée des réalisations technologiques ne peut se faire sans une connaissance approfondie de la physique du composant et de tous les phénomènes intrinsèque et extrinsèque qui peuvent en limiter les performances, donc la nécessité de métriser ce composant et qui est l'objectif de ce chapitre

Dans un premier temps, la structure avec les parties essentielles du dispositif sont schématisées et brièvement commentées.

Le fonctionnement du MESFET avec les modes de polarisation des différentes électrodes est présenté.

Développer un modèle dit PHS pour permettre par la suite de décrire les caractéristiques principales du transistor : « la transconductance, la conductance, les capacités inter électrodes ».

Après cette étude bibliographique, nous allons présenté plus en détail dans le chapitre suivant, les différents type de modélisation concernant le MESFET GaAs car c'est le composant de base du point de vue modélisation physique numérique.
Chapitre. II : Modélisation Numérique du MESFET

II.1 Introduction

Nous présenterons dans ce chapitre une nouvelle approche de résolution basée dans un premier temps sur la modélisation numérique des structures MESFETs à l'aide de fonctions spéciales : fonction de Green trigonométrique dans un domaine fermé rectangulaire. La numérisation est effectuée à l'aide de méthode projectives : la méthode des moments est plus précisément Galerkin , en vue de la détermination du champ de potentiel. L'influence de la température est précisément étudiée.

II.2. Modèles physiques de simulation

Un modèle physique de simulation de composant est défini par[26, 27, 28] :

- Une équation de transport qui décrit le mouvement des charges dans le matériau semi-conducteur,
- L'équation de Poisson qui décrit la variation du potentiel électrostatique dans le semi-conducteur à partir de la charge d'espace,
- La structure des couches qui est l'une des données essentielles
- Les conditions aux limites du composant tel que l'existence des contacts métalliques.

La détermination des caractéristiques du composant passe par la résolution de ce système d'équations couplées. Selon l'approche utilisée pour résoudre ces équations, les modèles de simulation peuvent se classer en quatre grandes catégories. On distingue essentiellement des modèles 1D, 2D, 3D, et Q2D (quasibidimensionnels). Les modèles 1D sont peu adaptés à ces topologies de composants multicouches. Le développement de modèles 3D n'est pas indispensable dans la mesure où les dimensions transverses des transistors sont grandes par rapport à la longueur de grille.

a. Modèles de simulation 2D

Les modèles bidimensionnels sont basés sur la résolution couplée de l'équation de Poison à deux dimensions, et selon les cas, de l'équation de transport de Boltzmann par une description particulaire de type Monte Carlo [29-30] ou par une approche hydrodynamique [31-32].

La méthode Monte Carlo consiste à suivre dans le temps un ensemble de porteurs dans l'espace réel et dans l'espace réciproque, en tenant compte des différentes interactions dans le matériau ainsi que leurs probabilités respectives[26]. . Cette approche permet de déterminer de manière exacte la solution de l'équation de Boltzmann. L'application de cette méthode au matériau en volume permet l'étude physique des phénomènes de transport dans la structure.

Dans l'approche hydrodynamique, l'équation de transport de Boltzmann est transformée par intégration en un système d'équations de conservation, moyennant des hypothèses impliquant des conditions aux frontières libres par analogie aux couches limites dans l'écoulement d'un fluide. La résolution bidimensionnelle de ces équations, couplée à l'équation de Poisson permet de calculer les caractéristiques électriques du composant[33].

b. Modèles Q2D

Les modèles Q2D [12-17] se caractérisent par le fait que les performances du composant se déterminent à partir de la résolution de l'équation intégrale de Gauss, associée à des expressions simplifiées des équations de conservations (moment, énergie, courant). Les phénomènes bidimensionnels de grille y sont introduits de manière phénoménologique.

Les modèles Q2D sont simples à mettre en œuvre et rapides. Dans cette approche, il est possible de prendre en compte, et de manière simple, un nombre élevé de phénomènes physiques pour améliorer la précision du modèle, sans pénaliser les temps de calcul. On peut ainsi estimer l'influence des paramètres technologiques sur les performances électriques du composant.

Le choix du type de modélisation dépend essentiellement des grandeurs auxquelles on veut accéder (grandeurs physiques, grandeurs électriques), et de l'utilisation effective du modèle en terme de temps de calcul et de facilité d'exploitation[34].

Par sa conception le modèle développé peut être utilisé comme :

Un outil d'aide à la conception des structures de couches de composants

Un outil d'aide à l'optimisation de la structure du transistor et de sa réalisation (par exemple l'étude de l'influence des éléments extrinsèques sur les performances du composant)

Un outil d'aide à la caractérisation des composants (compréhension des phénomènes observés),

Un outil d'aide à la conception de circuits intégrés par le biais de la détermination du schéma équivalent électrique du composant ainsi que les performances de bruit associées,

Le modèle peut être utilisé pour illustrer l'influence des différents paramètres sur les performances du composant, et illustrer également l'évolution des grandeurs physiques internes.

II.3 Modélisation physique numérique par opérateurs spéciaux des structures MESFET's

II.3.1. Introduction

Le problème de la modélisation des dispositifs à haute fréquence nécessite une attention particulière. Au cours des dernières années, la modélisation physique des dispositifs semi-conducteurs s'est nettement améliorée. En fait, la conception et la caractérisation de dispositifs a eu un décalage constant entre les méthodes traditionnelles empiriques et circuit équivalent. Avec l'informatique puissante d'aujourd'hui, la simulation numérique basée sur la modélisation physique peut être utilisé pour prévoir et assurer une meilleure compréhension du comportement. Cette approche devient plus souhaitable pour comprendre les phénomènes physiques résultant de la diminution dimensions du dispositif [35]. des La résolution classique de l'équation de Poisson à deux dimensions, par la méthode des différences finies ou méthode des éléments finis [28], avec la définition des domaines rectangulaires qui impliquent une matrice de dimensions importantes, qui nécessite une technique particulière pour le traitement numérique. Une solution numérique pour la distribution potentielle de l'équation de Poisson à deux dimensions est proposé en utilisant une fonction d'analyse qui est greens obéissant aux condition aux limites qui sont Dirichlet et Newman's [36, 37].

II.3.2. Les considérations théoriques

Dans cette partie, nous avons supposé que notre composant est un domaine rectangulaire limitée par les droites y = 0, y = b, x = 0 et x = L, comme indiqué sur la (Figure II.1), dont le but est de calculer le potentiel électrostatique V (x, y) dans chaque partie du composant.

Fig.II. 1. La structure proposée

Les conditions aux limites sont une combinaison de Newman et Dirichlet

$$V = V_S = 0$$
 (source)
 $V = V_D$ (drain)
 $\frac{\partial V}{\partial n} = 0$ (inter électrodes, interface canal-substrat, sur la limite de la ZCE)
 $\frac{dG}{\partial n} = 0$ (source, grille, inter électrodes, interface canal-substrat)

La région de déplétion est régie par l'équation de poisson

$$\Delta V = \frac{-\rho}{\varepsilon}$$
(II-1)

Et la région du canal est régie par l'équation de Laplace

$$\Delta V = 0 \tag{II-2}$$

Où V est un potentiel électrique, ρ est une densité de charge électrique et ε une constante diélectrique. Le facteur de charge d'espace $\frac{\rho}{\varepsilon}$ est déterminée par la densité de dopage de la teneur en impureté dans les semi-conducteurs et il est supposé que le dopage est uniforme. Il est également supposé que le courant d'électrons domine et le courant des trous est généralement négligeable dans la plupart des conditions, les phénomènes de génération et de recombinaison sont négligés. la fonction de Green qui satisfaite les conditions au limites nécessaires est une fonction trigonométrique définit comme suit :

$$G(x/x_{0}, y/y_{0}) = \frac{V_{D}x}{L} + \sum_{mn} \frac{A_{mn}^{2}}{\lambda_{mn}} \cos\left(\frac{n\pi y}{b}\right) \cdot \sin\left(\frac{n\pi x}{L}\right) \cdot \cos\left(\frac{n\pi y_{0}}{b}\right) \cdot \sin\left(\frac{n\pi x_{0}}{L}\right)$$
(II-3)
$$\lambda_{mn} = \left(\frac{m\pi}{b}\right)^{2} + \left(\frac{n\pi}{L}\right)^{2}, A_{mn} = \sqrt{\frac{2 \cdot \tau_{m}}{L \cdot b}} \quad avec \ \tau_{m} = \begin{cases} 2 \ si \ m \neq 0 \\ 1 \ si \ m = 0 \end{cases}$$

$$A_{mn} : \qquad \text{constante} \qquad \text{de} \qquad \text{normalisation} \qquad , \qquad n = 1, 2, 3, \dots$$

II.3.3.Calcul du potentiel électrostatique

Afin de déterminer le potentiel électrostatique en chaque point du dispositif, l'équation de Poisson devrait être résolue en tout point M(x, y). L'opérateur Laplacien est inversée à l'aide de la technique de la fonction de Green, le potentiel électrostatique est dû à l'effet général des charges électriques localisées dans $M_0(x_0, y_0)$.

Alors que la tension en chaque point du semi-conducteur est donnée par l'équation suivante:

Etant donné par définition :

$$V = \oint G \frac{\partial V}{\partial n} dl - \oint V \frac{\partial G}{\partial n} dl \tag{II-4}$$

$$V = \underbrace{\int G \frac{\partial V_{or}}{\partial n} dl}_{drain} dl + \underbrace{\int G \frac{\partial V_{or}}{\partial n} dl}_{L} + \underbrace{G \frac{\partial V_{or}}{\partial n} dl}_{grille} + \underbrace{G \frac{\partial V_{or}}{\partial n} dl}_{interélectrodes} + \underbrace{G \frac{\partial V_{or}}{\partial n} dl}_{source} + \underbrace{G \frac{\partial V_{or}}{\partial n} dl}_{ZCE} - \begin{bmatrix} \int V \frac{\partial G}{\partial n} dl + \underbrace{V \frac{\partial G}{\partial n} dl}_{grille} + \underbrace{V \frac{\partial G}{\partial n} dl}_{source} + \underbrace{V \frac{\partial G}{\partial n} dl}_{L} + \underbrace{V \frac{\partial G}{\partial n} dl}_{interelectrodes} + \underbrace{V \frac{\partial G}{\partial n} dl}_{ZCE} \end{bmatrix}$$
(II-5)

ou *V_{or}, V* sont respectivement, le potentiel au point charge et la tension appliquée sur l'électrode considéré.

En utilisant les conditions aux limites la répartition potentielle peut être évaluée comme :

$$V(x,y) = \underbrace{\int G \frac{\partial V_{or}}{\partial n} dl}_{drain} + \underbrace{\int G \frac{\partial V_{or}}{\partial n}}_{grille} dl + \underbrace{\int G \frac{\partial V_{or}}{\partial n} dl}_{source} - \underbrace{\int V \frac{\partial G}{\partial n} dl}_{drain} - \underbrace{\int V \frac{\partial G}{\partial n} dl}_{ZCE}$$
(II-6)

Sur le drain $V_D = V(L, y)$ alors:

$$V_{\rm D} = \int_{0}^{\rm b} G(L/L, y/y_0) \frac{\rho_{\rm D}(y_0)}{\epsilon} dy_0 + \int_{\rm c}^{\rm d} G(L/x_0, y/b) \frac{\rho_{\rm G}(x_0)}{\epsilon} dx_0 + \int_{0}^{\rm b} G(L/0, y/y_0) \frac{\rho_{\rm S}(y_0)}{\epsilon} dy_0 - \int_{0}^{\rm b} V_{\rm D} \frac{\partial}{\partial y_0} G(L/L, y/y_0) dy_0 - \iint_{00}^{\rm Lb} V_{\rm ZCE} \frac{\partial}{\partial x_0 \partial y_0} G(L/x_0, y/y_0) dx_0 dy_0$$
(II-7)

Sur la grille $V_G = V(x,b)$ alors:

$$V_{G} = \int_{0}^{b} G(x/L, b/y_{0}) \frac{\rho_{D}(y_{0})}{\epsilon} dy_{0} + \int_{c}^{d} G(x/x_{0}, b/b) \frac{\rho_{G}(x_{0})}{\epsilon} dx_{0} + \int_{0}^{b} G(x/0, b/y_{0}) \frac{\rho_{S}(y_{0})}{\epsilon} dy_{0} - \int_{0}^{b} V_{G} \frac{\partial}{\partial x_{0}} G(x/x_{0}, b/b) dx_{0} - \iint_{00}^{Lb} V_{ZCE} \frac{\partial}{\partial x_{0} \partial y_{0}} G(x/x_{0}, b/y_{0}) dx_{0} dy_{0}$$
(II-8)

Sur la source
$$V_{s} = V(0, y) = 0$$
 alors:
 $V_{s} = \int_{0}^{b} G(0/L, y/y_{0}) \frac{\rho_{D}(y_{0})}{\epsilon} dy_{0} + \int_{c}^{d} G(0/x_{0}, y/b) \frac{\rho_{G}(x_{0})}{\epsilon} dx_{0} + \int_{0}^{b} G(0/0, y/y_{0}) \frac{\rho_{S}(y_{0})}{\epsilon} dy_{0} - \int_{0}^{b} V_{S} \frac{\partial}{\partial y_{0}} G(0/0, y/y_{0}) dy_{0} - \iint_{0}^{Lb} V_{ZCE} \frac{\partial}{\partial x_{0} \partial y_{0}} G(0/x_{0}, b/y_{0}) dx_{0} dy_{0}$ (II-9)

Sur la limite de la zone de charge d'espace $V_{ZCE} = V(x, y)$ alors: $V(x, y) = \int_{0}^{b} G(x/x_{0}, y/0) \frac{\rho_{S}(x_{0})}{\epsilon} dx_{0} + \int_{c}^{d} G(x/x_{0}, y/0) \frac{\rho_{G}(x_{0})}{\epsilon} dx_{0} + \int_{0}^{b} G(x/x_{0}, y/0) \frac{\rho_{D}(x_{0})}{\epsilon} dx_{0} + \iint_{0}^{Lb} \frac{qN_{D}}{\epsilon} G(x/x_{0}, y/y_{0}) dx_{0} dy_{0}$ (II-10)

Pour déterminer les inconnues de notre problème, qui sont les distributions de charges sur les électrodes, nous appliquons la méthode des moments.

Les distributions de charges sur les électrodes sont écrites en utilisant des fonctions de base f_n avec des facteurs de pondération à déterminer, alors:

$$\rho_{G}(\mathbf{x}) = \sum_{n} \rho_{Gn} f_{n}(\mathbf{x}) = \sum_{n} \rho_{Gn} \cos\left(\frac{n \pi (\mathbf{x} - \mathbf{c})}{W_{G}}\right)$$

$$\rho_{D}(\mathbf{y}) = \sum_{n} \rho_{Dn} f_{n}(\mathbf{y}) = \sum_{n} \rho_{Dn} \cos\left(\frac{n \pi \mathbf{y}}{W_{D}}\right)$$

$$\rho_{S}(\mathbf{y}) = \sum_{n} \rho_{Sn} f_{n}(\mathbf{y}) = \sum_{n} \rho_{Sn} \cos\left(\frac{n \pi \mathbf{y}}{W_{S}}\right)$$
(II-11)

Ou W_G , W_D , W_S sont respectivement, longueurs de grille, drain et source.

En substituant l'équation (II-11) à (II-7),(II-8),(II-9) et (II-10) on obtient:

$$V_{D}\left\{1+\int_{0}^{b}\left[\frac{\partial}{\partial x_{0}}G(L/L,y/y_{0})dy_{0}\right]\right\}=$$

$$\frac{1}{\varepsilon}\sum_{n}\left\{\rho_{Dn}\int_{0}^{b}G(L/L,y/y_{0})\cdot\cos\left(\frac{n\pi y_{0}}{W_{D}}\right)dy_{0}+\rho_{Gn}\int_{c}^{d}G(L/x_{0},y/b)\cdot\cos\left(\frac{n\pi (x_{0}-c)}{W_{G}}\right)dx_{0}+\rho_{Sn}\partial bGx_{0}by_{0}\cdot\cos n\pi y_{0}WSdy_{0}-o_{0}LbVx,y_{0}GLx_{0}yy_{0}\partial x_{0}\partial y_{0}dx_{0}dy_{0}$$
(II-12)

$$V_{G}\left\{1+\int_{0}^{b}\frac{\partial}{\partial x_{0}}G(x/x_{0},b/b)dx_{0}\right\}=\frac{1}{\varepsilon}\sum_{n}\left\{\rho_{Dn}\int_{0}^{b}G(x/L,b/y_{0})\cdot\cos\left(\frac{n\pi y_{0}}{W_{D}}\right)dy_{0}+\rho GncdGxx0,bb\cdot\cos n\pi x0-cWGdx0+\rho Sn0bGx0,by0\cos n\pi y0WSdy0-00LbVx,y\partial Gxx0,by0\partial x0\partial y$$
$$0dx0dy0$$
(II-13)

$$V(x,y) = \frac{1}{\varepsilon} \sum_{n} \left\{ \rho_{Sn} \int_{0}^{b} G(x/x_{0}, y/y_{0}) \cdot \cos\left(\frac{n\pi y_{0}}{W_{S}}\right) dx_{0} + \rho_{Gn} \int_{c}^{d} G(x/x_{0}, y/0) \cdot \cos\left(\frac{n\pi (x_{0}-c)}{W_{G}}\right) dx_{0} + \rho Dn0bGxx0, y0 \cdot \cos n\pi y0WSdy0 + 1\varepsilon qND00LbGxx0, yy0dx0dy0 \qquad (II-14)$$

Appliquons la méthode de Galerkin en vue de déterminer les poids ρ_{Dn} , ρ_{Gn} , ρ_{Sn} .

Donc, on peut dire que, les résultats qui peuvent être calculées à partir de cette théorie sont la répartition de charge sur les électrodes et le potentiel.

II.4. Etude de l'effet de la température sur le comportement du MESFET

Les caractéristiques en courant sont fortement liées à la température. Cependant la majorité des simulations qui existe dans la littérature suppose que la température du composant est constante, généralement, la dépendance de la température de courant de drain de MESFET est fortement influencée par différents mécanismes tel que la variation de la mobilité des électrons, de la vitesse de saturation et de la tension de seuil [38,39], la variation de cette valeur est due à la variation du Gap et la concentration intrinsèque en fonction de la température.

Nous avons simulé un modèle pour étudier l'influence de la température sur les caractéristiques I(V) ainsi que sur quelques paramètres du schéma équivalent petit signal. Car les performances et la fiabilité d'un transistor sont fortement influencées par ce paramètre[40, 41].

Chapitre II

La relation du courant de drain est donnée par[41].

$$I_{d} = I_{dss} \left[1 - \frac{V_{eff}}{V_{T} + \Delta V_{T} + \gamma V_{ds}} \right] \tanh\left(\alpha V_{ds}\right) (1 + \lambda V_{ds})$$

$$V_{eff} = \frac{V_{gs}}{1 + \eta \exp\left(V_{gs}\right)}$$
(II-15)
Avec

Avec

II-4.1. quelques éléments de base du circuit équivalent du transistor

L'expression du courant intrinsèque de drain I_D permet de déterminer deux paramètres fondamentaux du transistor, qui sont la transconductance ou pente g_m et la conductance de drain g_{ds} .

a. transconductance

$$g_{m} = \frac{dI_{d}}{dV_{GS}} \bigg|_{V_{DS} = cst}$$
(II-16)

Posons :

$$\begin{array}{l} y = I_D \\ x = V_{GS} \end{array} \} \ g_m \ = \frac{\partial \, y}{\partial \, x} \end{array} \label{eq:gm}$$

Avec

$$\Rightarrow I_D = y = I_{DSS} \left[1 - \frac{\frac{x}{1 + n \exp(x)}}{V_T + \Delta V_T + \gamma \cdot V_{DS}} \right]^2 \tanh(\alpha V_{DS}) (1 + \alpha V_{DS})$$

Et $V_{eff} = \frac{x}{1 + n \exp(x)}$

 $I_{DSS} = C_1$, constante par rapport à x; soit

$$1 - \frac{\frac{x}{1 + n \exp(x)}}{V_T + \Delta V_T + \gamma \cdot V_{DS}} = f(x)$$

 $tanh(\alpha V_{DS}) (1 + \alpha V_{DS}) = C_2$, constante par rapport à x ;

Donc;

$$y = C_1 \times (f(x))^2 C_2$$

$$\frac{\partial y}{\partial x} = C_1 C_2 \left(2 \times f(x) \times f(x) \right);$$

$$f(x) = \frac{\partial}{\partial x} \left[1 - \frac{x}{(1 + \eta \exp(x))(V_T + \Delta V_T + \gamma \cdot V_{DS})} \right]$$

 $(V_T + \Delta V_T + \gamma V_{DS}) = C_3$, constante par rapport à x Alors :

$$\begin{split} \hat{f}(x) &= -\frac{1}{C_3} \times \frac{\partial}{\partial x} \left[\frac{x}{1+\eta \exp(x)} \right] = -\frac{1}{C_3} \left(\frac{(1+\eta \exp(x)) - (\eta \exp(x))}{(1+\eta \exp(x))^2} \right) \\ f(x) &= -\frac{1}{C_3} \times \frac{1+\eta \times (1-x) \exp(x)}{(1+\eta \times \exp(x))^2} \\ \Rightarrow g_m &= -2 \times \frac{C_1 C_2}{C_3} \left(\frac{1+\eta (1-x) \exp(x)}{(1+\eta \exp(x))^2} \right) \left(1 - \frac{x}{C_3 (1+\eta \exp(x))} \right) \end{split}$$
(II-17)

Puis on remplace C_1 , C_2 , C_3 et x par leurs valeurs respectives

b. conductance

$$g_{d} = \frac{dI_{D}}{dV_{DS}} \bigg|_{V_{GS} = cst}$$
(II-18)

De la même manière, on pose

$$\begin{array}{l} X = V_{DS} \\ Y = I_D \end{array} \right\}, \ r_d = \frac{\partial X}{\partial Y} \quad \text{et } V_{eff} \quad \text{est constante par rapport à } X \\ \frac{1}{r_d} = \frac{\partial Y}{\partial X} \end{array}$$

$$\Rightarrow I_D = Y = I_{DSS} \left(1 - \frac{V_{eff}}{V_T + \Delta V_T + \gamma X} \right)^2 \tanh(\alpha X) \left(1 + \lambda X \right)$$

$$I_{DSS} constants nor rannor a X \left(1 - \frac{V_{eff}}{V_T + \Delta Y} \right) = f(X) \left(1 + \lambda X \right) = g(X)$$

 $I_{DSS} \text{ constante par rapport } \dot{a} X, \left(1 - \frac{V_{eff}}{V_T + \Delta V_T + \gamma \cdot X}\right) = f(X), (1 + \lambda X) = g(X)$

Alors,

$$\frac{1}{r_d} = \frac{\partial Y}{\partial X} = \frac{\partial}{\partial X} \left(I_{DSS} f(X)^2 g(X) \right) = I_{DSS} \left[2 \times (f(X)f(X)g(X) + f(X)^2 \dot{g}(X) \right]$$
$$f(X) = \frac{\partial}{\partial X} \left[1 - \frac{V_{eff}}{V_T + \Delta V_T + \gamma \cdot X} \right] = -\left(-\frac{V_{eff} \cdot \gamma}{(V_T + \Delta V_T + \gamma \cdot X)^2} \right) = \frac{\gamma \cdot V_{eff}}{(V_T + \Delta V_T + \gamma \cdot X)^2}$$
$$g(X) = \frac{\partial}{\partial X} \tanh(\alpha X) \left(1 + \lambda X \right) = \frac{\partial}{\partial X} \tanh(\alpha X + \alpha \lambda X^2)$$

On pose :

$$u(X) = \alpha X + \alpha \lambda X^{2}, \text{ alors}$$

$$\tanh u = \frac{\sinh u}{\cosh u}, \text{ avec } \sinh u = \frac{e^{u} - e^{-u}}{2}, \cosh u = \frac{e^{u} + e^{-u}}{2} \text{ et } (\tanh u) = \frac{\dot{u}}{\cosh^{2}}$$

$$\Rightarrow g' = \frac{\alpha + 2\alpha\lambda X}{\cosh^{2}(\alpha X)(1 + \lambda X)} = \frac{1}{I_{DSS}(2ffg + f^{2}\dot{g})}$$
(II-19)

Puis en remplace f, f', g, g' par leurs valeurs on trouve :

$$f'(v_{DS}) = \frac{\gamma v_{EFF}}{(v_T + \Delta v_T + \gamma v_{DS})^2}$$

$$f(v_{DS}) = 1 - \frac{v_{EFF}}{v_T + \Delta v_T + \gamma v_{DS}}$$

$$g(v_{DS}) = \tanh(\alpha v_{DS})(1 + \lambda v_{DS})$$

$$g'(v_{DS}) = \frac{\alpha + 2 \alpha \lambda v_{DS}}{ch^2 (\alpha v_{DS})(1 + \lambda v_{DS})}$$
(II-20)

II.4.2 Influence de la température

Les modélisations qui existent concernant le MESFET présentent des limitations à partir de la partie bleu (figure II.2)

Figure. II.2. Caractéristiques courant-tension $I_{ds} = f(V_{ds})$ d'un MESFET GaAs

La courbe courant-tension à partir du point 'A', n'est pas modélisé dans la littérature, il existe des approches par paramètres d'ajustement.

Donc, connaissant l'effet de la température sur I_{ds} , on pourrait prévoir l'allure du courant dans cette zone.

Nous présentons alors, une simulation empirique de concentration intrinsèque, que l'on a couplé avec l'effet de la température sur la largeur de la bande interdite, qui se traduit directement sur la relation du courant de drain (équation II-15) d'une structure MESFET par des résultats présenté au chapitre 4.

a-Variation de la tension de seuil en fonction de la température

La tension de seuil est donnée par [43] .

$$V_T = V_{bi} - V_p \tag{II-11}$$

où V_{bi} est la tension de barrière Schottky, la variation de cette valeur due à la variation du gap et la concentration intrinsèque en fonction de la température calculée à partir [44].

$$V_{bi}(T) = \frac{-kT}{q} ln\left(\frac{N_D}{n_i(T)}\right) + \frac{E_G(T)}{2}$$
(II-12)

Où k:est la constante Boltzmann

- T :est la température
- q :est la charge d'électron
- L :est la longueur de grille
- z :Largeur de grille
- V_{z} : Tension de Pincement

b- Variation du gap en fonction de la température

L'énergie de bande interdite est la mesure de la quantité d'énergie nécessaire à un électron pour passer de la bande de valence à la bande de conduction lorsque celui-ci est soumis à une excitation [45].

Le matériau sera appelé semi-conducteur si le gap (notée *Eg*, unité :eV), ou la distance énergétique entre le bas de la bande de conduction et le sommet de la bande de valence, est inférieur à 2eV (Figure II-3).

La taille de la bande interdite donne des caractéristiques électriques importantes à chaque semi-conducteur. En effet, la largeur de bande interdite fixe la limite en température au-dessous de laquelle le dispositif peut fonctionner sans détérioration, ainsi que l'aptitude du semi-conducteur à résister aux radiations.

La largeur de la bande interdite décroît avec la température (Figure. IV-11), et ces variations de la largeur de la bande interdite peuvent être décrites approximativement par la formule empirique [45] suivante pour des température supérieures à 300 K :

$$E_{G}(T) = E_{G}(T = 0k) - \frac{cT^{2}}{b+T}$$
(II-13)

Les valeurs des paramètres c et b sont données dans le Tableau 1.

Figure II-3 : *diagrammes de bandes d'énergie des différents types d'éléments*[1]

c- Variation de La concentration intrinsèque en fonction de la température

Un semi-conducteur intrinsèque est un semi-conducteur pur, c'est-à-dire sans défaut ni chimique ni structural susceptible de modifier les densités de porteurs de charge. A la température de 0°K, la bande de valence est saturée et la bande de conduction est vide : il n'y a pas de porteurs de charge. A T=0°K, chaque fois qu'un électron part de la bande de valence, et passe dans la bande de conduction, un trou apparaît dans la bande de valence. La quantité d'électrons est ainsi rigoureusement égale à la quantité de trous ; leur concentration commune est appelée concentration ou densité de porteurs intrinsèques (notée *ni*, unité :cm-3)[46] :

 $n = p = n_i$ où *ni* est la densité de porteurs intrinsèques

La densité en porteurs intrinsèques est donc un paramètre important à prendre en compte pour des applications à haute température (Figure IV-12)

Nous avons utilisé La concentration des porteurs intrinsèque donnée par[46, 47] :

$$n_i(T) = \sqrt{N_C(T)N_V(T)}exp\left(\frac{-E_C(T)}{2kT}\right)$$

41

(II-14)

 $N_{C}(T)$, $N_{V}(T)$ Sont respectivement la densité efficace des états dans la bande de conduction et de valence[6].

$$N_{C}(T) = N_{C0}T^{\frac{5}{2}}$$

$$N_{V}(T) = N_{V0}T^{\frac{5}{2}}$$
(II-15)

Là où N_{C0} , N_{V0} sont les constantes empiriques. (tableau II-1)

Pour valider notre modèle nous avons effectué une comparaison entre des résultats expérimentaux et simuler de la variation du courant de drain I_{ds} avec la tension drain-source v_{ds} pour différents valeurs de températures (figure . IV.13).

Où les constants précédents sont trouvés dans le tableau II-1 suivant [1,40,48,49]:

Paramètres	Valeur
С	5.405.10 ⁻⁴ eV/K
В	204K
$E_G(T=0)$	1.519 <i>eV</i>
k	8.620.10 ⁻⁵ eV/K
<i>q</i>	1.6. 10 ⁻¹⁹ As
N _D	$1.5.10^{17} Cm^{-3}$
V _P	0,8 <i>eV</i>
L	Ο.75 μm
Z	600µm
a	0.153μm
$N_{\sigma 0}$	$1.323.10^{15}m^{-3}K^{\frac{-3}{2}}$
N _{w0}	$3.133.10^{16}m^{-3}K^{\frac{-3}{2}}$

II-4. Conclusion

Nous avons présenté dans un premier temps une méthode itérative pour la détermination du potentiel électrique en chaque point du dispositif. L'équation de Poisson est résolu à l'aide des technique de la fonction de Green. La Méthode de Galerkin permet en outre de décrire la distribution des charges électriques sur les électrodes du composant.

Ensuite l'étude de l'effet de la température sur : la tension de seuil, la mobilité, la vitesse de saturation, le Gap et la concentration intrinsèque, dont le but est d'étudier l'effet de la température sur les caractéristiques I(V).

Le MESFET combine entre l'avantage de la bonne dynamique des électrons dans GaAs et la facilité de réaliser de bonne barriére de Schottky sur GaAs avec des grilles submicroniques ce qui réduit le temps le temps de transit des électrons. Son principe de fonctionnement est très simple : comme tous les transistors à effet de champ, lorsqu'on applique une certaine tension à la grille, la zone de déplétion dans le canal s'élargit en fonction de cette tension et s'est ainsi que l'on contrôle le nombre d'électrons susceptibles de conduire le courant de la source vers le drain. Ainsi, la vitesse de fonctionnement n'est limitée que par le temps de transit mis par les électrons pour passer de la source vers le drain.

Donc, pour améliorer les performances du MESFET, il faut réduire ce temps de transit des électrons sous la grille, d'où la nécessité d'accroître la vitesse des électrons et/ ou réduire la distance entre source et drain. Ceci nécessite un fort dopage du Canal afin de réduire sa largeur tout en ayant une intensité de courant élevée.

Cependant, la grande concentration en impuretés due au dopage très élevé augmente les effets de collisions entre les porteurs de charges et ces impuretés. Ce qui implique une détérioration des propriétés du transport du semi conducteur par une réduction de la mobilité et de la vitesse moyenne des électrons.

C'est pour quoi les performances du MESFET GaAs sont limitées à une fréquence $f_t = 50$ Ghz pour une distance entre source et drain de 0.25 microns.

Parmi les différentes solutions envisagées, le HEMT, son principe de base consiste à séparer spatialement les porteurs de charge libres des impuretés de donneurs ionisées dont il proviennent en intercalant dans un MESFET GaAs une couche mince de GaAlAs dopée n⁺ entre l'électrode métallique et la couche active de GaAs non dopée. En effet les électrons qui cherchent toujours à occuper les états énergétique les plus bas possibles vont passer vers le matériau non dopé à gap étroit(GaAs). Ils vont se trouver spatialement séparés des atomes donneurs par un puits quantiques ce qui diminue considérablement les collisions des électrons avec les atomes d'impuretés. Les propriétés du transport se trouvent alors nettement améliorées.

Une autre solution consiste a shunter la source et le drain par un nanotube de carbone CNTFET, car les nanotubes de carbone (CNT) semblent être bien adaptés pour de nombreuses applications en nanoélectronique. Pour cela, il nous a semblé intéressant d'étudier et de modéliser plus précisément ce composant dans le troisième chapitre.

Chapitre.III : Les Transistors à Nanotube de Carbone

III-1. Introduction:

Depuis quelques années, les transistors à base de nanotubes de carbone (CNT) ont suscité beaucoup d'intérêt en raison du haut niveau de performances atteint, rendant ce matériau très prometteur pour les composants électronique de demain.

La modélisation numérique du CNTFET est tout a fait nouvelle dans la littérature et toute initiative apporte des informations de taille.

Les nanotubes de carbone suscitent un intérêt considérable dans le monde de la recherche, comme dans celui de l'industrie, compte tenu de leur propriétés intrinsèques exceptionnelles et de leurs caractéristiques dimensionnelles [50].

A l'état naturel, le carbone existe sous deux formes cristallines, le graphite et le diamant. En 1985, R. Smalley, R.Curl et H. Kroto ont découvert une nouvelle forme d'organisation du carbone, la molécule C60, qui comprend 60 atomes de carbones disposés aux sommets d'un polyèdre régulier dont les facettes sont des hexagones et des pentagones a l'image d'un ballon de football. Cette molécule, en forme de cage fermée, est la plus étudiée de la famille des fullerènes qui peuvent contenir de 28 a plus de 100 atomes de carbones.

En 1991, S. lijima a observé en microscopie électronique un sou produit de la synthèse des fullerène qui se présentait comme un dépôt noirâtre[51], dur et filamenteux. Ce dépôt s'est avéré être constitué de tube creux, fermés a leurs extrémités et composés de carbone cristallisé. Ces structures particulières, de diamètre nanométrique et de longueur micrométrique, seront nommés par la suite nanotubes de carbone. Ils constitueront, avec les fullerènes, la troisième variété allotropique du carbone comme représenté sur la *figure.III.1[52]*

Figure III-1 : les différents variétés allotropiques du carbone[50]

III-2. Définitions et structures :

Un nanotube de carbone est composé d'un ou plusieurs feuillets de graphéne (i.e plan graphitique dans lequel les atomes de carbone sont organisés selon un réseau hexagonal a l'image d'un nid d'abeilles) enroulés, suivant un rayon de courbure nanométrique, de façon a former une structure cylindrique. L'angle d'enroulement du feuillet de graphéne, appelé hélicité (θ), fixe la structure du nanotube. Cet angle varie de 0 a 30° compte tenu de la symétrie du réseau hexagonal et permet de classer toutes les configurations possibles en trois catégories appelées' chaise", "zig zag" et "chirale" (*Figure III-2*)[53].

Les Transistors à Nanotube de Carbone

Figure III-2 : les différents modes d'enroulement des nanotubes de carbone[50]

Il existe deux types de nanotubes de carbone[54] :

Les nanotubes de carbone mono feuillet nommées également mono paroi ou mono couche(*single Wall carbon nanotube SWNT*) sont constitués d'un feuillet de graphéne enroulé sur lui-même et qui peut être fermé ces deux extrémités par une demi molécules de fullerène(extrémités conique, polygonales ou sphériques). Les nanotubes de carbone mono feuillet se regroupent lors de leur synthèse sous forme de fagots, aussi appelés faisceaux, a la manière des cordes. Dans chaque faisceau, les tubes s'empilent de façon compacte et constituent un arrangement périodique de symétrie triangulaire comme schématisé sur la *figure III-3.* leur nombre peut atteindre plusieurs dizaines dans un faisceau ;

CHAPITRE III

Les nanotubes de carbone multi feuillets également appelés multi parois ou multi couches(*multi Wall carbon nanotubes MWNT*) sont constitués de plusieurs feuillets de graphéne(de 2 a 50) enroulés les uns autour des autres. Deux configurations différentes, basées soit sur un emboitement de feuillets de graphéne arrangés en cylindres concentriques dit en "poupées russes", soit sur l'enroulement d'un unique feuillet de graphéne en spirale dit en "parchemin", peuvent être rencontrées(*cf. Figure III-4*)[55,56].

Dans les deux modes d'assemblage, la distance entre deux tubes adjacents est a peu prés égale a la distance entre deux plans de graphite, signifiant ainsi que l'assemblage ne modifie pas la nature des liaisons chimiques qui restent identiques a ce qu'elles sont dans le graphite. Les deux types d'assemblage des nanotubes de carbone sont exclusifs et s'obtiennent par des conditions de synthèse radicalement différentes.

Figure III- 3 : De la feuille d'atomes de carbone organisés suivant un maillage hexagonal aux nanotubes mono feuillet et multi feuillet[51]

a. "parchemin

b. poupées russe

CHAPITRE III

La figure III- 5 représente le schéma de bandes d'une feuille de graphite. Les bandes de conduction (π^*) et de valence (π) sont concourantes en six points K au niveau de Fermi. Le graphite est en fait un semi-conducteur. Le caractère semiconducteur ou métallique d'un nanotube provient du confinement des électrons autour de la circonférence du nanotube. Un tel confinement provoque une quantification des énergies. En effet, la composante circonférentielle **k**c du vecteur d'onde **k** ne peut prendre que des valeurs particulières correspondant à la condition **k**c.**C** = $2\pi j$ où **C** est le vecteur de chiralité et j un entier. Par conséquent, chaque bande du graphite est discrétisée en niveaux d'énergie paramétrés en j. Si :

un de ces niveaux d'énergie passe par un point K, le nanotube aura un comportement métallique,

aucun niveau d'énergie ne passe par un point K, le nanotube est semiconducteur.

Figure III- 5 : Schéma de bandes d'énergie d'une feuille de graphite et de la première zone de Brillouin associée

III-3. Fabrication, propriétés et applications

a. Les méthodes de synthèse

Il existe deux grandes familles de méthodes pour l'élaboration des nanotubes de carbone[57] :

La première voie, nommée voie de synthèse a haute température, consiste a sublimer le carbone graphite et a le condenser dans une enceinte mise sous atmosphère inerte (sous hélium ou argon) et dans laquelle règne une température élevée (le graphite se sublime a une température de 3200 C . Les différentes méthodes utilisant ce principe se distinguent par le procédé de sublimation du graphite mis en œuvre[58] :

Arc électrique :

Dans le procédé de Kratschmer et Huffmann, historiquement utilisé par S.lijima, un arc électrique est établi entre deux électrodes de graphite. L'anode se consume pour former un plasma dont la température peut atteindre 6000 C . Ce plasma se condense sur l'autre électrode, la cathode, en un dépôt caoutchouteux et filamenteux, évoquant une toile d'araignée très dense et contenant les nanotubes. Ce procédé est simple et peu couteux mais les processus qui se déroulent lors de la synthèse sont complexes, ce qui rend délicat leur contrôle et leur étude *in situ[59].*

Ablation laser :

Cette technique, développée initialement par le groupe de R. Smalley a l'université de Houston (USA), consiste a bombarder une cible de graphite avec un rayonnement laser de forte énergie. Les conditions de synthèse et la nature des nanotubes varient selon que le laser est continu ou pulsé. Le graphite est ainsi soit sublimé soit expulsé en petits agrégats de quelques atomes. Contrairement au précédent, ce procédé est couteux mais présente un rendement de synthèse plus important et un nombre restreint de paramètres de contrôle, ce qui rend possible l'étude des conditions de synthèse et leur modélisation[60].

Réacteur solaire :

Cette méthode consiste, pour sublimer le graphite, a utiliser l'énergie solaire. Le rayonnement solaire est ainsi concentré sur une cible de façon a atteindre la température de sublimation du graphite. Le mode de fonctionnement du four solaire est voisin de celui de la sublimation par laser continu et il est donc, comme ce dernier, adapté a des études in situ.

Tous ces procédés permettent la synthèse de produit très purs que ce soit des nanotubes de carbone mono feuillet ou multi feuillets . Cependant, la présence d'un catalyseur métallique mélange a hauteur de quelques pour cents a la poudre de graphite est indispensable pour la formation de nanotubes mono feuillet. Ce catalyseur peut être un métal de transition(fer, cobalt, nickel, etc.), un métal appartenant a la famille des terres rares(yttrium, lanthane, etc.) ou un mélange de ces métaux. Une expérience peut conduire a l'élaboration de quelques centaines de milligrammes a un gramme de nanotubes bruts(c'est-à-dire purifiés) en laboratoire.

Bien qu'il soit difficile d'extrapoler ces méthodes a un niveau industriel, des unités de production a une échelle dépassant celle du laboratoire se développent[61,62].

Le second type de voie de synthèse fonctionne a moyenne température. Il s'agit d'une adaptation des méthodes catalytiques ou pyrolytique traditionnellement utilisées pour la synthèse des fibres de carbone classique.

Le principe de ces techniques consiste a décomposer un gaz carboné a la surface de particules d'un catalyseur métallique dans un four porté a une température comprise entre 500 C et 1100 C , selon la nature du gaz. Le carbone libéré par la décomposition du gaz précipite a la surface de la particule et cette condensation aboutit a la croissance de tubes cristallisés. Le gaz carboné peut être le monoxyde de carbone ou un hydrocarbure tel que l'acétylène ou le méthane. Le catalyseur métallique est un métal de transition tel que le fer ou le cobalt. L'aspect délicat de ces méthodes est la préparation et le contrôle de la taille des particules de catalyseur, leur taille devant être de l'ordre de quelques nanomètres pour la synthèse des nanotubes de carbone. Pour former les nanotubes de carbone mono feuillet, les particules de catalyseur sont obtenues par réduction d'un composé organométallique(tel que le ferrocène) et sont déposées sur un support en matériau céramique(silice, alumine, etc.)ou ventilées dans la chambre ou la réaction avec le gaz carboné a lieu[63,64].

Suivant les conditions opératoires (pression et débit de gaz, température du four, taille des particules de catalyseur, etc.), la synthèse conduit a des nanotubes de carbone mono ou multi feuillets. Les nanotubes multi feuillets obtenus par ces méthodes présentent souvent une qualité de graphitisation nettement moins bonne que ceux obtenus par arc électrique ou par ablation laser. En revanche, ils présentent des caractéristiques géométriques (longueur, diamètre) beaucoup plus uniformes. Il est, de plus, possible d'orienter la croissance des tubes en les synthétisant sur des plots de catalyseurs disposés sur un support selon une géométrie définie. Par ailleurs, ces procédés peuvent être utilisés pour produire des nanotubes de carbone a grande échelle a l'instar des fibres de carbone, ce qui est plus difficilement envisageable avec les voies de synthèse a haute température.

Quelle que soit la voie de synthèse utilisée (à haute ou moyenne température), un mélange de nanotubes de carbone aux propriétés diverses, de coques de carbone et de résidus catalytiques(généralement des métaux : fer, cobalt, nickel)est obtenue

à l'issue de chaque réaction. La teneur en impuretés dans le produit final varie en fonction des méthodes et des conditions de synthèse ainsi que de la mise en œuvre éventuelle d'un processus de purification. Ce processus peut être physique par filtration et / ou chimique par attaque acide combinée à un traitement thermique oxydant[65,66].

b. Les propriétés :

Les propriétés uniques des nanotubes de carbone résultent directement de leur filiation structurale avec le graphite, de leur forme tubulaire et de leur diamètre nanométrique. Le procédé de synthèse et la méthode de purification utilisé influent également très fortement sur les propriétés physico chimiques des nanotubes de carbone.

b.1. Les propriétés physiques :

Le diamètre des nanotubes de carbone dépend naturellement du nombre de feuillet de graphene comme indiqué dans le *tableaux III.1.*

Les nanotubes de carbone mono feuillet se regroupent sous forme de fagots dans le diamètre peut varier de 10 à 30 nm[67].

Un diamètre de 1nm est de l'ordre de la taille de la double hélice de la molécule d'ADN indiquant le caractère moléculaire d'un nanotube de carbone. Par ailleurs, du fait de leurs dimensions (nanométrique pour la longueur), les nanotubes de carbone doivent être considérés comme des molécules unidimensionnelles.

b.2. Propriétés électriques :

En fonction de son angle d'enroulement et de son diamètre, un nanotube de carbone(mono ou multi feuillet) pourra être soit isolant, soit métallique ou soit semiconducteur avec un gap équivalant à celui du silicium ou du germanium. les nanotubes de carbone' chaise'' représentent ainsi un caractère métallique, ce qui peut également être le cas sous certaines conditions, des nanotubes ''zig zag'' et ''chiraux''. A basse température, les nanotubes mono feuillet métalliques, individuelles ou regroupés en petit fagots, se comportent comme des fils quantiques, c'est-à-dire que la conduction a lieu au travers de niveaux électroniques discrets bien séparés quantiquement et cohérents sur plusieurs centaines de nanomètres[68,69]. Les nanotubes de carbone peuvent également transporter des densités de courant

CHAPITRE III

remarquables, voisines de 10¹⁰ A/cm² soit au moins deux ordres de grandeur de plus que les métaux. Enfin, les nanotubes multi feuillet peuvent être supraconducteurs à très basse température[70,71].

La résistivité électrique des nanotubes de carbone est de[72,73,74] :

- § 10^{-3} à $10^{-4} \Omega$. *cm*(un record pour une molécule unique) pour les nanotubes de carbone mono feuillet métalliques,
- \le 10 Ω . cm pour les nanotubes de carbone mono feuillet semi-conducteurs,
- \Im 10⁴ Ω . cm pour les nanotubes de carbone multi feuillets.

Les nanotubes de carbone mono feuillet possèdent de meilleur caractéristiques électriques que les multi feuillet en raison notamment des interactions électriques, de type van der waals, qui surviennent entre les différents feuillets de graphéne.

b.3. Propriétés d'émission de champ :

Les nanotubes de carbone sont capables d'émettre des électrons par effet tunnel via leur pointe lorsqu'ils sont placés parallèlement aux lignes d'un champ électrique. Avec des tensions relativement faibles, il est possible de générer à leurs extrémités des champs électriques énormes, capable d'arracher les électrons de la matière et de les émettre vers l'extérieur[75]. cette émission est extrêmement localisée(à l'extrémité du tube) et peut servir à envoyer des électrons sur un endroit bien précis . L'émission électronique des nanotubes de carbone (assemblés sous forme de films)est de :

- § 10⁷ A/cm² pour les nanotubes de carbone mono feuillet,
- S De 10⁶ à 10⁸ A/cm² pour les nanotubes de carbone multi feuillets.

b.4. Propriétés mécaniques :

Le nanotube de carbone bénéficie d'une tenue mécanique supérieure à celle du graphite : le module de Young d'un nanotube multi feuillet a été calculé comme étant jusqu'à 1,6 fois plus important que celui d'une fibre monocristalline de graphite(*tableau III.2*). De plus. Le nanotube de carbone est 100 à 200 fois plus résistant que l'acier pour un poids 6 moindre(à section équivalente). Il allie à cette exceptionnelle résistance à la déformation une très grande flexibilité. Ainsi, malgré sa rigidité élevée, le nanotube de carbone a une facilité à se courber jusqu'à des angles

très importants, à se déformer et à se tordre selon son axe. la courbure semble entièrement réversible jusqu'à un angle critique qui atteint 110 pour un nanotube mono feuillet. Certain nanotubes de carbone présentent également une dureté supérieure à celle du diamant.

b.5. Propriétés thermiques :

Les nanotubes de carbone ont une conductivité thermique supérieure à celle de l'argent, du cuivre et du diamant(entre 1000 et 2600 W/mk) et constituent les meilleurs conducteurs thermiques connus(*tableau III.3*)[76,77].

b.6. Les propriétés chimiques :

Les nanotubes de carbone possèdent des propriétés chimiques très attrayantes. il est en effet possible :

De fonctionnaliser leur surface par greffage moléculaire afin, par exemple, de procéder au tri des nanotubes selon leurs caractéristiques électroniques ;

D'intercaler des atomes ou des molécules(dopage) entre les nanotubes mono feuillet d'un faisceau(intercalation inter tubulaire) ainsi qu'entre les différentes parois d'un nanotube multi feuillet(interaction inter planaire) afin par exemple de contrôler les propriétés électroniques des nanotubes semi-conducteurs ;

De remplir par capillarité le canal central des nanotubes de carbones mono et multi feuillets par des atomes ou des composés cristallins de façon à obtenir des nano fils encapsulés.

La surface spécifique des nanotubes de carbone est de surcroit élevée, ce qui leur confère une très bonne capacité d'absorption. Elle est voisine de 2700 m²/g pour les nanotubes mono feuillet et est généralement inférieure à 1300 m² /g pour les nanotubes multi feuillets. Par ailleurs, les nanotubes de carbone présentent une excellente inertie chimique et une bonne stabilité à haute température sous atmosphère inerte. Ils sont ainsi insolubles dans les solvants organiques et dans l'eau.

Nanotube de carbone	Mono-feuillet	Multi-feuillets
Diamètre externe	0,4à3nm	2à25nm
Longueur	1 à plusieurs μ m	M m à 1 cm

Tableau III.1 Les caractéristiques dimensionnelles des nanotubes de carbone [54]

Tableau III.2 Quelques propriétés mécaniques des nanotubes de carbone[54]

Nanotube de carbone propriétés	Mono-feuillet	Multi-feuillets
Imite d'élasticité	45 gp a	150 gp a
Module d'Young	1à 1,4 TP a	1,4 à 1,6 TP a
Module de cisaillement	0,27 TP a	0,44à0,47 TP a
Module de flexion	0,2 à 1,2 TP a	3à 30 GP a

Tableau III.3 Quelques caractéristiques thermiques des nanotubes de carbone[54]

Nanotube de carbone propriétés	Mono-feuillet	Mono-feuillet
Stabilité thermique (K)	< 2 100	>3 200
Conductivité thermique (W/mK)	6 000	<2 000

III-4. Les principales applications actuelles et potentielles :

Du fait de leurs propriétés exceptionnelles, les nanotubes de carbone recèlent de potentialités très diverses et leurs utilisations ouvrent de nombreuses perspectives.

L'application la plus directe envisagée consiste à les utiliser comme additif pour polymères (thermoplastiques, thermodurcissable et élastomères)[78]. Les propriétés spécifiques des nanotubes de carbone peuvent ainsi être transposées dans des matrices, à condition d'assurer une bonne dispersion de l'additif dans le composite[79]. Il est alors possible de choisir d'apporter une propriété bien précise des nanotubes (conductivité thermique ou électrique, renforcement mécanique, etc.) ou, au contraire, une multifonctionnalité. Des matériaux composites hautes performance ou des polymères conducteurs peuvent ainsi être élaborés trouvant leurs applications dans l'automobile(peintures conductrices évitant l'emploi de solvant polaire), l'aéronautique(ailes d'avion, train d'atterrissage des hélicoptères, etc.), les composants électroniques(diodes, transistors, etc.), la défense, les

équipements sportifs (raquettes de tennis, vélos, etc), la médecine, les textiles techniques(vêtement plus résistants), etc.

Leurs propriétés électriques semblent en faire un matériau de choix pour l'électronique[80], la recherche de la miniaturisation étant dans ce domaine un souci primordial. Les nanotubes de carbone conducteurs peuvent être considérés comme un modèle de ce que seront les fils conducteurs utilisés notamment en connectique dans les années 2010-2015 [81]. Les nanotubes de carbone semi-conducteurs devrait permettre, quant à eux , d'élaborer des composants électroniques fonctionnels et logique tel que des transistors ou des diodes avec des performances supérieures à celle du silicium.

III- 5. Le nanotube dans une configuration de transistor

Avec les dimensions décrites précédemment, le nanotube est utilisé comme canal dans un transistor à effet de champ. On parle de CNTFETs pour Carbon Nanotube Field Effect Transistors. A chaque extrémité du tube, on dépose les électrodes de source et de drain figure III.6[82].

Figure III.6 : Schéma d'un CNTFET

La conduction dans le canal d'un CNTFET est de type balistique, c'est-à-dire que la dispersion des porteurs est quasiment supprimé dans le canal intrinsèque.

Lorsque l'on dépose les électrodes de source et drain sur le nanotube intrinsèque , on obtient un transistor avec deux barrières Schottky : une côté source et une côté drain [83].

Les CNTFETs à modulation de hauteur de barrière ont pour avantage par rapport aux nanotubes à barrière Schottky d'avoir des caractéristiques unipolaires, un plus faible courant de fuite, un courant à l'état passant plus important [84] et une pente sous le seuil inverse plus faible. Les transistors à nanotube avec modulation de hauteur de barrière sont donc plus prometteurs par rapport aux CNTFETs à barrière Schottky. Pour cette raison, nous allons modéliser le nanotube utilisé dans une configuration de transistor à effet de champ à modulation de hauteur de barrière. pour le CNTFET type N dopé à la source et au drain les régions du drain et de la source sont fortement dopées n+ ; une barrière potentiel électrostatique, empêchant

l'écoulement du canal, se produit dans le canal une tension positive de grille abaisse la barrière et permet au courant de s'écouler.

Lorsque la tension V_{GS} augmente, elle augmente le potentiel de contrôle du canal V_{CNT}, et permet d'accumuler la charge Q_{CNT} dans le canal. Cette charge provoque une différence de potentiel entre V_{GS} et V_{CNT} à travers la capacité d'oxyde de grille figure III.7.

figure III.7 La tension de grille VGS module la tension de contrôle du nanotube VCNT à travers la capacité d'oxyde de grille COX

III.6.Paramètres physiques du CNTFET

Les paramètres physiques principaux d'un transistor CNTFET [85] :

- les dimensions du canal du transistor CNTFET: en fait, ce sont les dimensions du nanotube (diamètre, longueur).
- la capacité de la grille (CG) : cette capacité MIC (Métal Isolateur CNT)
 dépend de deux géométries différentes planaire ou coaxiale, comme illustré en figure III.8.

Le CNTFET avec la grille planaire constitue la majorité des transistors à base de nanotube fabriqués jusqu'à aujourd'hui, en raison de leur simplicité et de leur compatibilité avec les technologies existantes [86,87,88]. Dans le cas de la capacité MIC planaire (figure III. 8 a), le C_G est calculé ainsi :

$$C_G = \frac{2\pi\varepsilon_0\varepsilon_r}{\cosh^{-1}(t_{ins}/r)}$$

où r est le rayon du nanotube, *tins* est l'épaisseur d'oxyde, ϵr est la constante diélectrique.

Le CNTFET avec la grille coaxiale est une forme idéale ; il est spécialement intéressant parce que sa géométrie permet une électrostatique meilleure que son homologue planaire [89]. Dans le cas de la capacité MIC coaxiale (figure III.8 b), le C_G est calculé comme suit :

$$C_G = \frac{2\pi\varepsilon_0\varepsilon_r L}{ln[2(t_{ins} + r)/r]}$$

où r est le rayon du nanotube, t_{ins} est l'épaisseur d'oxyde, ϵ r est la constante diélectrique, L est la longueur de la grille.

Figure III.8 : Deux géométries définissant la capacité de grille MIC (Métal – Isolateur – CNT) (a) capacité MIC planaire ; (b) capacité MIC coaxiale

III.7. Modélisation physique du CNT

7.1. Equation de transport

7.1.1. Cas Maxwell- Boltzmann

La statistique de Maxwell Boltzmann est une loi de probabilité ou distribution utilisée en physique statique pour déterminer la répartition des particules entre différents niveaux d'énergie. Elle est notamment à la base de la théorie cinétique des gaz.

Courant de diffusion

On fait comme si la vitesse des porteurs était de $\pm v_T$ (vitesse thermique) ou v_F , vitesse de fermi.

On compte les particules traversant *S* entre deux collisions(une collision peut se faire dans un sens ou dans l'autre, les effets s'annulent). Elles sont alors un cylindre de hauteur

CHAPITRE III

 $\delta x = v_T \cdot \tau$,

 τ : est le temps moyen séparant deux collisions .

Le courant total(sens positif pour ρ_- , et sens négatif pour ρ_+) s'écrit :

$$\delta J = (\rho_- - \rho_+) \cdot \delta x = (\rho_- - \rho_+) v \tau \tag{III.1}$$

 δJ est le courant sens des x(+) correspondant à la charge traversant S pendant la durée τ .

Donc pendant une seconde, on a une densité de courant :

$$J = \frac{Q}{\tau} = -v_T \frac{\partial \rho}{\partial x} v_T \tau = -v_T^2 \tau \frac{\partial \rho}{\partial x}$$
(III.2)

C'est le courant de diffusion :

On a :
$$mv_T^2 = kT$$
, d'où $J_D = -\frac{\tau kT}{m} \frac{\partial \rho}{\partial x}$

a. Etude d'un système en équilibre

On a alors :
$$\rho = \rho_0 e^{\frac{-qV}{kT}}$$

D'où

$$\frac{d\rho}{dx} = \rho_0 \, e^{\frac{-qV}{kT}} \left(\frac{-q}{kT} \, \frac{dV}{dx}\right) = \rho \, E \, \frac{q}{kT} \tag{III.3}$$

E : étant le champ électrique. Par suite,

$$J_D = -\frac{\tau kT}{m} \frac{\rho q}{kT} E = -\frac{\rho q\tau}{m} E$$
(III.4)

Sachant que $\mu = \frac{q\tau}{m}$, $\sigma = \frac{\rho q\tau}{m}$

Alors : $J_D = -\sigma E$, σE est le courant de conduction J_C ,

On a donc

 $J_C + J_D = 0$

b. Système hors équilibre

Il existe dans un système hors équilibre une vitesse moyenne d'entrainement v, donc un courant $J_E = \rho v$. Le total $J_C + J_D$ n'est plus nul. on a maintenant :

$$J_E = J_C + J_D$$

C'est-à-dire

$$\rho v = \frac{\rho q \tau}{m} E - \frac{\tau q T}{m} \frac{\partial \rho}{\partial x}$$
(III.5)

En multipliant (III.5)

par $\frac{m}{\rho v}$ les deux membres, on a l'équation des forces :

$$\frac{mv}{\tau} = qE - kT \frac{\partial}{\partial x} \log \rho$$

= $-q \frac{\partial V}{\partial x} - kT \frac{\partial}{\partial x} \log \rho$ (III.6)

 $Ou - \frac{mv}{\tau}$ est le gradient d'une fonction appelle le quasi niveau de fermi Ø

$$\frac{\partial \phi}{\partial x} = q \frac{\partial V}{\partial x} + kT \frac{\partial}{\partial x} \log \rho$$
(III.7)

En intégrant : $\log \rho = -\frac{qV}{kT} + \frac{\phi}{kT}$

$$\Rightarrow \rho = \rho_0 e^{-\left(\frac{qV}{kT} - \phi\right)} \tag{III.8}$$

ø s'ajoute donc au niveau de Fermi

$$\rho_0 = \frac{\varepsilon \, kT}{q \lambda_D^2}$$

Avec λ_D la longueur de Debye

7.1.2. Cas unidimensionnel avec la statistique de Fermi Dirac

La formule qui donne le courant de diffusion de la statistique de Fermi Dirac, est la même à la différence de v_F (vitesse de Fermi) qui remplace v_T :
Les Transistors à Nanotube de Carbone

$$J_D = -v_F^2 \tau \frac{\partial \rho}{\partial x} \tag{III.9}$$

La statistique de Fermi Dirac à une dimension est donné par :

$$dx = \frac{2L}{h} \frac{dp}{1 + exp\left(\frac{E - E_F}{kT}\right)}$$

L : longueur de la structure

Avec :
$$E = \frac{p^2}{2m} + qV \tag{III.10}$$

Pour avoir la densité linéique de charge, on divise ρ par L

ďoù :

$$\rho = \frac{2q}{h} \int_{-\infty}^{+\infty} \frac{dp}{1 + exp \frac{E - E_F}{kT}}$$

$$\frac{d\rho}{dx} = \frac{2q}{h} \int_{-\infty}^{+\infty} \frac{d}{dV} \frac{1}{1 + exp\left(\frac{p^2}{2m} + qV - E_F\right)} \frac{dV}{dx} dp$$

Posons : $X = \frac{\frac{p^2}{2m} + qV - E_F}{\frac{kT}{kT}},$ $\frac{d\rho}{dx} = \frac{2q}{h} \int_{-\infty}^{+\infty} \left(\frac{d}{dX} \left[\frac{1}{1 + expX}\right]\right) \frac{q}{kT} \frac{dV}{dX} dp$

La fonction à intégrer n'a que des valeurs autour de mv_F :

$$\frac{d}{dX}\left[\frac{1}{1+e^X}\right] = \frac{-e^X}{(1+e^X)^2}$$

Si: 3,7²

A X=1 correspond $\frac{p^2}{2m} - E_F - qV \sim \cong kT$ Comme $kT + qV \ll E_F$, $\frac{p^2}{2m}$ est voisin de $\frac{1}{2}mv_F^2$ ($v_T \cong 10^4$, $v_F \cong 10^6$).

X=1, la fonction vaut
$$\frac{-2.7}{2.7^2}$$

CHAPITRE III

Au de la, les valeurs de la fonction diminuent rapidement en e^{-x} . on peut donc faire l'intégrale en prenant un développement linéaire en p:

$$dX = \frac{pdp}{mkT} \cong \frac{v_F}{kT} dp \qquad \text{D'où}: dp = \frac{kT}{v_F} dX$$

$$J_D = -v_F^2 \tau \frac{2q}{h} \frac{q}{kT} \frac{dV}{dX} \int_{-\infty}^{+\infty} \frac{d}{dX} \left[\frac{1}{1+e^X}\right] dX \qquad (III.11)$$

$$\text{Avec}: \int_{-\infty}^{+\infty} \frac{d}{dX} \left[\frac{1}{1+e^X}\right] dX = -1$$

$$\text{D'où}:$$

$$J_D = \tau v_F \frac{2q^2}{h} \frac{dV}{dX} = -\tau v_F \frac{2q^2}{h} E$$

On pose donc : $\sigma = \tau v_F \frac{2q^2}{h}$

On a comme dans la statistique de Maxwell-Boltzmann,

$$J_C + J_D = 0$$

En présence d'une vitesse d'entrainement on a :

$$\rho v = \tau v \frac{2q^2}{h} E - \tau v_F^2 \frac{\partial \rho}{\partial x}$$
(III.12)

On peut retrouver l'équation des forces en multipliant(12) par $\frac{m}{\rho\tau}$

Donc :

$$\rho \cong \frac{2q}{h} m v_F \tag{III.13}$$

On obtient :

$$\frac{mv_F}{\tau} = \tau v_F \frac{2q^2}{h} \frac{m}{\tau \frac{2q}{h} mv_F} E - \frac{\tau v_F^2 m}{\frac{2q}{h} mv_F \tau} \frac{\partial \rho}{\partial x}$$
$$\frac{mv}{\tau} = qE - \frac{h}{2q} v_F \frac{\partial \rho}{\partial x}$$

On peut aussi écrire la force de diffusion :

$$-(mv_F^2)\frac{1}{\rho}\frac{\partial\rho}{\partial x}$$

Par rapport à Boltzmann, la seule différence est que au lieu de mv_T^2 on a mv_F^2 Donc la résistance du nanotube par unité de longueur s'écrit :

$$R_{CNT} = \frac{h}{2q^2} \frac{1}{\tau v_F} = \frac{\pi \hbar \vartheta_{col}}{4q^2 v_F} , \tau = \frac{1}{\vartheta}$$

Ce qui est la résistance adoptée en générale. Le coefficient multiplicateur qui est souvent présent décrit les méandres de la trajectoire électronique.

Cependant, on a considéré une statistique unidimensionnelle. Il faut considérer une multiplication par le nombre d'électrons sur tout le pourtour du tube. Ce nombre est égale au *nombre d'état / h*. Ce nombre est relativement faible, en effet la longueur d'onde associée à la vitesse de Fermi est de l'ordre de 0.5nm, et le diamétre du nanotube est *de* 1 à 10nm. Donc la résistance R_{CNT} est en fait à diviser par le nombre de particules réparties sur le pourtour.

7.1.3. Equation de transport, cas 2D Fermi Dirac

Comme dans le cas unidimensionnel, on a :

$$J_D = -v_F^2 \tau \overrightarrow{grad} \rho$$

Puis, successivement :

$$dx = \frac{2Ll}{h^2} \times \frac{2\pi p dp}{1 + exp\left(\frac{E - E_F}{kT}\right)} \tag{III.14}$$

L : longueur

l : périmètre du CNT

Avec

$$E = \frac{P^2}{2m} + qV \tag{III.15}$$

D'où

$$\rho = \frac{2q}{h^2} \int_0^\infty \frac{2\pi \, p \, dp}{1 + exp\left(\frac{\frac{P^2}{2m} + qV - E_F}{kT}\right)} \tag{III.16}$$

Εt

$$pdp = mkTd\left(\frac{P^2}{2mkT}\right) \tag{III.17}$$

Ce qui permet d'intégrer ρ

On peut intégrer cette expression, posons :

$$X = \frac{P^2}{2mkT} \ et \ A = e^{\frac{qV - E_F}{kT}}$$
(III.18)

Alors,

$$\rho = \frac{2q}{h^2} \int_0^\infty 2\pi m \, k \, T \, \frac{dX}{1 + Ae^X} = \frac{2q}{h^2} \, 2\pi \, m \, kTI \qquad (III.19)$$

$$I = \int_0^\infty \frac{dX}{1 + Ae^X} = \int_0^\infty \left(1 - \frac{Ae^X}{1 + Ae^X}\right) dX$$

$$= \int_0^B dX - \frac{Ae^X dX}{1 + Ae^X} = B - \int_0^{\mu_0} \frac{d\mu}{1 + \mu} , \quad avec \, (\mu_0 = Ae^B)$$

$$= \overbrace{B - \log(1 + Ae^B)}^{I(B)} + \overbrace{\log(1 + A)}^{I(0)}$$

$$B \to \infty$$

$$I = -\log A + \log(1 + A) = \log(1 + A^{-1})$$

= $\log\left(1 + e^{\frac{E_F - qV}{kT}}\right)$ (III.20)

$$\frac{\partial \rho}{\partial X} = \frac{2}{h^2} 2\pi \ m \ k \ T \left(\frac{-q}{k \ T} \ \frac{\partial V}{\partial X}\right) \frac{e^{\frac{E_F - qV}{k \ T}}}{1 + e^{\frac{E_F - qV}{k \ T}}} \tag{III.21}$$

Ce qui s'écrit

$$\frac{\partial \rho}{\partial X} = -\frac{2q^2}{h^2} 2\pi \ m \ \frac{e^{\frac{E_F - qV}{kT}}}{1 + e^{\frac{E_F - qV}{kT}}} \frac{\partial V}{\partial X}$$

D'où

$$\overrightarrow{J_D} = +v_F^2 \tau \frac{2q^2}{h^2} 2\pi m \frac{e^{\frac{E_F - qV}{kT}}}{1 + e^{\frac{E_F - qV}{kT}}} \overline{grad V}$$
(III.22)

Dans l'expression précédente, les ordres de grandeur sont $E_F \cong 1 ev$, $k T \cong 0,025 ev$

CHAPITRE III

La tension appliquée est de l'ordre de 25mv également(qui donne une zone dépeuplée de l'ordre de la longueur de debye)

Par hypothèse on posera , $e^{\frac{E_F-qV}{kT}}\gg 1$

D'où :

$$\overrightarrow{J_D} = \tau \ v_F^2 \ \frac{2 \ q^2}{h^2} \ 2\pi \ m \ \overrightarrow{grad} \ V \tag{III.23}$$

=

$$-\tau v_F^2 2\pi m \frac{2q^2}{h^2} \vec{E}$$
(III.24)

D'où :

$$\sigma = \tau \, v_F \frac{2q^2}{h} \times \frac{2 \pi \, m v_F}{h} \tag{III.25}$$

 $\frac{2 \pi m v_F}{h} \times l$, représente le nombre d'état perpendiculairement à l'axe du cylindre puisque v_F et la vitesse maximale des porteurs.

Cependant, ces états ne sont pas tous occupés, donc σ sera égale à $\tau v_F \frac{2q^2}{h}$ avec un coefficient multiplicatif dépendant du nanotube.

Le calcul du courant se fait comme suit :

On suppose un conducteur balistique connecté à deux électrodes (réservoir infini) de potentiels chimique μ_1 et μ_2 . M est le nombre de canal pour les électrons se propageant de 1 vers 2 (supposé indépendant de l'énergie).

On néglige l'effet de réflexion, les électrons ayant une énergie $\mu_2 < E < \mu_1$.

La distribution en énergie des électrons suit une loi de Fermi, et le courant circule suite à la différence de population calculé a partir de la formule de Landauer[90].

$$I = \frac{2q}{h} \int_{E_C}^{\infty} [f(E - \mu_1) - f(E - \mu_2)] M(E) dE$$
(III.26)

 $f(E - \mu_1) et f(E - \mu_2)$ la distribution de fermi des deux niveaux 1 et 2, dans notre cas source et drain respectivement

$$f(E-\mu) = \frac{1}{1 + exp\left(\frac{E-\mu}{k_B T}\right)} \tag{III.27}$$

En développant la fonction de Fermi :

$$I = \frac{2qM}{h} \left[\int_{E_C}^{\infty} \frac{dE}{1 + exp\frac{E - \mu_S}{k_B T}} - \int_{E_C}^{\infty} \frac{dE}{1 + exp\frac{E - \mu_D}{k_B T}} \right]$$
(III.28)

Pour intégrer de zéro à l'infini, on effectue le changement de variable $x = \frac{E - E_C}{k_B T}$ et donc $dE = k_B T dx$:

$$I = \frac{2qMk_BT}{h} \left[\int_0^\infty \frac{dx}{1 + exp\frac{E_C - \mu_S}{k_BT} \exp x} - \int_0^\infty \frac{dx}{1 + exp\frac{E_C - \mu_D}{k_BT} \exp x} \right]$$
(III.29)

Or on sait que $\int_0^\infty \frac{dx}{1+a \exp x} = ln(1+a^{-1})$, d'où

$$I = \frac{2qMk_BT}{h} \left[ln \left(1 + exp \frac{\mu_S - E_C}{k_BT} \right) - ln \left(1 + exp \frac{\mu_D - E_C}{k_BT} \right) \right]$$
(III.30)

La principale différence entre le schéma de bande d'énergie du graphite et du nanotube est la discrétisation des bandes de valence et de conduction due au confinement axial des électrons, il en résulte que la bande de conduction est constituée de multiples sous bandes figure III.9

Nommons E_i le bas de i^{léme} sous bande. IL nous faut remplacer E_c par

$$E_{Ci} = E_i - V_{CNT} \tag{III.31}$$

Pour des faibles énergies, c'est-à-dire inférieures à 1ev du niveau de fermi, le minimum de la i ^{iéme} sous bande E_i est donné par

$$E_i = E_0 \frac{6i - 3 - (-1)^i}{4} \tag{III.32}$$

 $E_0 = \frac{0.45}{d}$ avec d: le diamètre du nanotube, E_0 : le minimum de la bande de conduction pour la première sous bande .

Figure III.9: schéma de principe montrant les 3premiers sous bandes

Le courant total est :

$$I = \frac{2qMk_BT}{h} \sum_{i=1}^{\infty} \left[ln \left(1 + exp \frac{\mu_S - E_i + V_{CNT}}{k_BT} \right) - ln \left(1 + exp \frac{\mu_D - E_i + V_{CNT}}{k_BT} \right) \right]$$
(III.33)

Le nombre de modes transverses qui peuvent se propager est de "2" par sous bande.

En posant μ_S comme référence de potentiel ($\mu_S = 0$), on peut écrire $\mu_S - \mu_D = qV_{DS}$, soit $\mu_D = -qV_{DS}$ figure III.10.

Figure III.10 : schéma du vecteur d'onde (E-k) du nanotube : μ s et μ s sont les niveaux de Fermi de la source et du drain

Avec cette simplification, l'équation du courant est donc :

$$I = \frac{4qk_BT}{h} \sum_{i=1}^{\infty} \left[ln \left(1 + exp \frac{-E_i + V_{CNT}}{k_BT} \right) - ln \left(1 + exp \frac{\mu_D - E_i + V_{CNT}}{k_BT} \right) \right]$$
(III.34)

La relation liant la différence de potentiel et la charge de la capacité d'oxyde de grille :

$$V_{CNT} = V_{GS} - \frac{Q_{CNT}}{C_{OX}}$$
(III.35)

Avec

Cox la capacité de grille

 Q_{CNT} la charge dans le nanotube qui dépend de la densité de porteurs :

$$Q_{CNT} = q\rho_{CNT}L \tag{III.36}$$

L la longueur de grille

 ρ_{CNT} densité totale de charge dans le nanotube donné par la relation III.13.

III-8. Conclusion :

Dans ce chapitre, nous avons présenté les principes fondamentaux de la nanoélectronique liée aux nanotubes de carbone.

L'application au CNTFET a été réalisé. Nous avons développé un modèle basé sur la résolution unidimensionnelle puis bidimensionnelle utilisant la statistique de Fermi Dirac, en vue de déterminer la densité de charge et par conséquent la résistance du nanotube de carbone, nous déduisons ainsi la caractéristique (I-V)

Chapitre. IV : Résultats et Discussion

IV-1. Introduction

Dans ce chapitre, nous présentons :

En premier lieu la mise en œuvre du modèle 'PHS' que nous avons décrit au chapitre l pour accéder à la caractérisation complète du MESFET.

Ensuite, une étude thermique du dispositif est présentée. nous présentons les réseaux de caractéristique d'un transistor à nanotube de carbone.

IV-2.Logiciel de simulation

Notre logiciel de simulation est établi en MATLAB 7.4, basé sur les différentes équations établies au chapitres précédents.

Cette simulation nous a permis de présenter les tracés des caractéristiques principales du transistor 'MESFET' comme suit :

- Caractéristique de sortie : $I_{DS}(V_{DS})$.
- Effet des résistances parasites de source et de drain.
- Transconductance : $g_m(V_{GS})$.
- Conductance : $g_{ds}(V_{DS})$.
- Capacité grille source : $C_{gs}(V_{GS})$.
- Effet de la température sur :
 - 1. La tension de seuil
 - 2. Le Gap
 - 3. La densité intrinsèque des électrons
 - 4. Et donc, les caractéristiques I(V)
- Caractéristique I_D en fonction de V_{DS} d'un CNTFET.
- Caractéristique *I_D* en fonction de *V_{GS}* d'un CNTFET
- Effet du diamètre du CNT sur les caractéristiques d'un CNTFET

IV-3. Paramètres introduits

Les paramètres à introduire peuvent être regroupés selon deux catégories :

3.1. Les paramètres géométriques

- L : longueur de la grille [cm].
- W : largeur de la grille [cm].
- A : épaisseur de la couche active [cm].

3.2. Les paramètres physiques

- ε_r : Permittivité du GaAs.
- N_D : densité de donneur dans la zone dépeuplée [cm^{-3}].
- V_{bi} : la hauteur de la barrière Schottky [v].
- V_{GS} : ddp grille source [v].
- V_{DS} : ddp grille drain [v].
- V_{p0} : tension de pincement [v].
- V_T : tension de seuil [v].
- μ_0 : Mobilité à champ nul [$cm^2 / V \cdot s$].
- v_s : vitesse de saturation des électrons [cm/s].

 E_s : champ de saturation de la vitesse des électrons [v/cm].

L'étude a été réalisée sur un transistor selon les paramètres géométriques et physiques suivant :

L (µm)	а (<i>µ</i> m)	w(μm)	$\binom{N_D}{(at \ / \ cm^3)}$	$\mu_0(cm^2/V\cdot s)$	Vbi(V)	vs(cm / s)
1	0.15	200	$1.9 \cdot 10^{17}$	4500	0.8	$5.6 \cdot 10^{6}$

Tableau IV.1 : paramètres technologiques du transistor.

IV-4. Les caractéristiques statiques du MESFET(PHS)

4.1. Caractéristiques courant tension I-V

Le calcul du courant de drain en fonction des tensions de polarisation fait appel aux expressions établies dans le premier chapitre. Qui utilisent une valeur de L₁(longueur de la première région ($v = -\mu_0 E$))implicite, ce qui rend la résolution lourde et imprécise et implique un énorme de facteur d'erreur important, ce qui peut porter préjudice à la converge et implique des limitations dans le modèle proposé PHS.

Aussi nous proposons une résolution basé sur une discrétisation du canal et établir un test définissant le pincement du canal, ce qui permet de rendre L₁ explicite.

Connaissant les paramètres géométriques, nous déterminons les paramètres physiques comme la tension de pincement (I-12) et la tension de saturation.

Pour différentes tensions drain V_{DS} et V_{GS} , nous pouvons calculer le potentiel au niveau de la source (*s*) (I-19) ainsi au niveau du point séparant les deux régions (*p*), puis nous déterminons le potentiel V_{DS} à chaque abscisse (I-25). Enfin, nous calculons le courant de drain grâce à l'équation (I-20), (I-21).

La figure IV-1. Donne l'organigramme de la procédure permettant d'obtenir les caractéristiques $I_{DS}(V_{DS}, V_{GS})$ en fonction de la tension V_{GS} est ceci pour différentes tensions V_{DS} .

Figure IV.1 : organigramme de calcul du courant de drain

4.2. Transconductance gm

La transconductance traduite le contrôle du courant de drain par la tension de grille. Cette quantité est obtenue à partir de l'expression (I-31) et (I-32), sur la base de ces équations nous avons établie un programme de simulation dont l'organigramme est représenté sur la figure IV-2.

Figure IV.2 : organigramme de calcul de la transconductance.

4.3. Conductance g_{ds}

Pour la conductance également d'après la formule (I-33), nous avons élaboré un programme de simulation dont l'organigramme de calcul est représenté sur la figure IV.3.

Figure IV.3 : organigramme de calcul de la conductance de drain

4.4. Capacité entre grille et source Cgs

Notre modèle permet d'obtenir en calculant les quantités de charges emmagasinées dans la zone désertée, puis les capacités C_{gs1} (40-a), C_{gs2} (40-b), C_{gs3} (40-c), la capacité C_{gs} (II-35).

La détermination précise de ces capacités passe par la connaissance exacte de la géométrie de la structure.

L'organigramme de cette méthode de calcul est représenté sur la figure IV-4

Figure IV.4 : organigramme de calcul de la capacité entre grille et source

Chapitre IV

L'exécution des programmes selon la théorie du modèle PHS, nous a permis d'avoir des courbes désignant les caractéristiques fonctionnelles du MESFET.

IV.5. Interprétation des courbes

La figure IV.5 présente la variation du courant de drain en fonction de la tension de drain V_{DS} pour différentes valeurs de V_{GS} .

Figure. IV.5 : caractéristique courant tension $I_{DS}(V_{DS}, V_{GS})$.

Nous remarquons que le courant de drain varie linéairement avec V_{DS} jusqu'à une valeur de V_{DS} dite tension de saturation V_{DSAT} ou il devient constant. Il se crée Donc, deux régions correspondant aux deux régimes de fonctionnement (l'une linéaire, l'autre saturée).

Le courant de saturation I_{Dsat} atteint sa valeur maximale pour une tension V_{GS} nulle.

Il est intéressant de noter que le courant de drain diminue avec V_{GS} jusqu'à son annulation pour la valeur de la tension de grille V_{GS} dite tension de seuil.

Nous avons également étudié l'allure de l'évolution de la transconductance en fonction de la tension de grille V_{GS} , représenté sur la figure IV-6, qui montre clairement que la transconductance augmente au fur à mesure que la valeur absolue de la tension de grille diminue.

Figure IV.6 : variation de la transconductance en fonction de la tension de grille.

La variation de la conductance en fonction de la tension de drain est montrée sur la figure IV.7.

Nous remarquons que la conductance de drain diminue d'une part au fur à mesure que la tension de drain augmente. Elle prend sa valeur maximale pour $V_{DS}=0v$.

Figure IV.7 : variation de la conductance en fonction de la tension de drain.

Chapitre IV

La figure IV-8.représente La variation de la capacité entre grille et source en fonction de la tension de grille. Nous remarquons que la valeur du capacité est de l'ordre de' fF '. Elle devient presque constante lorsque la valeur absolue de la tension Vgs est importante.

Figure IV.8 : variation de la capacité entre grille et source en fonction de la tension de grille.

Du point de vue allure, les caractéristiques obtenues par le modèle PHS sont conformes à la théorie générale des MESFET.

IV-6. Comparaison entre les résultats théoriques et des résultats expérimentaux

Sur la figure IV.9 nous effectuons une comparaison entre les courbes I(v) obtenues par le modèle développé et des mesures expérimentales[23].

Bien que les allures soient comparables, nous remarquons un écart significatif entre les deux résultats, ceci est certainement dû aux différentes approximations faites dans notre modèle, ainsi qu'a l'existence des effets dispersifs que le modèle n'a pas pris en considération.

Figure IV.9 :comparaison théorie-expérience

Continue : simulées , non continue : expérimentaux

IV-7. Limites de validité du modèle

Pour obtenir un modèle analytique exploitable, certaines hypothèses physiques simplificatrices ont été faites qui concernent en particulier le dopage et la mobilité.

Dans la réalité, ces grandeurs ne sont pas constantes dans toute l'épaisseur de la couche active, mais présentent des profils qui dépendent de la méthode de croissance [32]. A ces simplifications physiques, il existe une mathématique, qui consiste à ne prendre que le premier terme d'un développement pour exprimer le potentiel dans la région a vitesse saturée (relation I-24).

L'étude est faite sur l'espace sous la grille et ne tiennent pas compte de l'extension de la zone de charge de chaque coté de la grille, effet de Bords

IV.8. Effet de la température sur les caractéristique du MESFET

a) <u>Tension de seuil en fonction de la température</u>

En terme de tension de seuil, quand la température augmente, la création du canal du conduction entre le drain et la source du MESFET GaAs se fait sous une tension de grille V_{GS} plus petite. C'est pourquoi la tension de seuil du composant diminue quand la température augmente.

Figure IV-10 : variation de la tension de seuil en fonction de la température

b) variation de la bande interdite de l'AsGa en fonction de la température

la figure IV.11 montre bien que la bande interdite diminue avec l'augmentation de la température. Qui dit Gap, dit champ de claquage, car il ya une proportionnalité entre ces deux paramètres.

Le champ de claquage est élevé lorsque le Gap est important, le champ diminue lorsque la température augmente.

Donc, le Gap fixe la limite en température au dessous de laquelle le dispositif peut fonctionner sans détérioration.

Figure IV-11 : variation de la bande interdite de l'AsGa en fonction de la température

c) <u>variation de la concentration intrinsèque des porteurs en fonction de la</u> <u>Température</u>

On remarque que la concentration intrinsèque augmente avec l'augmentation de la température .

Figure IV-12 : variation de la concentration intrinsèque des porteurs en fonction de la Température

d) <u>comparaison entre des résultats expérimentaux et analytique des</u> <u>caractéristiques I_{ds} V_{ds} d'un MESFET GaAs</u>

Fig. IV.13. comparaison entre des résultats expérimentaux et analytique des caractéristiques $I_{ds}V_{ds}$ d'un MESFET GaAs 0.75 µm à T=0, 50 and 100 °C pour Vgs =-2v (lignes continues: résultats simulés, non continue: résultats expérimentaux).

On Remarque que t_d diminue avec l'augmentation de la température, cette diminution est due peut être Si la température croit, l'agitation thermique des porteurs croit, le nombre des porteurs croit également et par conséquent la mobilité des porteurs majoritaires du canal diminue, ce qui provoque une diminution du courant lds. De même la hauteur de barrière de potentiel diminue quand la température augmente, donc la zone désertée se rétrécit, par contre la largeur du canal augmente et par conséquent le courant drain décroît. Bien que les allures soient comparables, nous remarquons un écart significatif entre les deux résultats, ceci est certainement dû aux différentes approximations faites dans notre modèle, ainsi qu'a l'existence des effets dispersifs que le modèle n'a pas pris en considération

La figure IV.14 montre la variation de la transconductance en fonction de la température, La mobilité tend à augmenter lorsque la température diminue, ainsi la transconductance du transistor décroît en fonction de la température.

Fig. IV.14. la variation de la Transconductance en fonction de la température pour vgs=-2v,vds=4

IV.9 Simulation du CNTFET

Les courbes présentées dans cette partie sont les caractéristiques calculées d'un transistor à nanotube de carbone

Connaissant le jeu de paramétres associés à la géométrie du transistor à nanotube utilisé, la courant de drain peut alors etre calculé comme suit :

IV.9.1 Caractéristique I_D en fonction de (V_{DS}, V_{GS})

La figure IV.5 présente la caractéristique I_D en fonction de V_{DS} paramétrées en V_{GS.} En remarque deux régions, la premiére linéaire et une deuxième dit de saturation lorsque la tension V_{DS} est sufisemment grande(supérieure à V_{D sat})

La figure IV.6 montre bien que le courant augmente avec l'augmentation de V_{gs} . Plus V_{gs} augmente, plus le niveau d'énergie de l'ensemble des sous bande est diminué. Il y a alors plus de porteurs dans la bande de conduction donc le courant augmente.

Figure IV 15 :variation du courant de drain en fonction de V_{DS} pour differents valeur

 $De V_G$

Figure IV.16 : variation du courant de drain en fonction de V_{GS}pour différent valeur de V_{DS}

IV.9.2. Effet du diamètre du CNT

Les caractéristiques de transfert pour différentes valeurs du diamètre du CNT sont relevées dans la figure IV.17 et IV.18, montrent bien l'effet significatif du diamètre. Chaque fois le diamètre augmente, le composant s'approche de la zone de saturation moins rapidement, on remarque aussi que le courant augmente avec l'augmentation du diamètre.car,

La tension de seuil(threshold voltage en anglais) est définit comme étant la tension de création du canal de conduction entre la source et le drain, la figure IV.17 montre que la tension diminue lorsque le diamètre du nanotube de carbone augmente, car la structure de bande est dépendante du diamètre de celui-ci.

Comme le band gap du nanotube est d'environ 0,9/d(d :le diamètre du nanotube), quand le diamètre augmente, le band gap diminue donc le courant augmente (figure IV.18)

Figure IV.17. Variation du courant de drain en fonction de V_{GS} pour différentes valeur du diamètre du CNT, vds=0.7v

Figure IV.18. Variation du courant de drain en fonction de V_{DS} pour différentes valeur du diamètre du CNT, vgs=0.3v

Chapitre IV

Les figures IV.19, IV.20, présentent les caractéristiques $I_D(V_{DS})$, $I_D(V_{GS})$ d'un transistor à base de nanotube de carbone à grille cylindrique obtenues par la méthode de Monte Carlo, dont le but d'une comparaison avec nos résultats. Nous pouvons dire qu'il y a un bon accord globale entre les résultats issue de notre modèle, et celles obtenues par la simulation type Monte Carlo.

Figure IV.19. Caractéristique $I_D(V_{DS})$ pour différents valeurs de V_{GS} par la méthode Monte Carlo [91]

Figure IV.20. Caractéristique I_D(V_{GS}) pour Vds=0.7V pour 5 épaisseurs d'oxyde par la méthode Monte Carlo [91]

IV-10. Conclusion

Dans ce chapitre, la mise en œuvre laborieuse du modèle (PHS)est réalisée, par les équations discutées précédemment, les organigrammes de résolution sont clairement exposés.

Les résultats du modèle sont comparés avec ceux obtenus par des résultats expérimentaux donnée par la littérature, par le biais des courbes résultantes de la simulation effectuée en MATLAB 7.4.

Ces résultats nous ont permis de faire un bilan critique du modèle PHS, ses points forts et ses limitations.

Pour étudier l'effet thermique sur le comportement du transistor, nous avons présenté une simulation numérique empirique d'un modèle.

La modélisation d'une structure CNTFET a été réalisée et des résultats obtenus ont été comparés à ceux de la littérature.

CONCLUSION GENERALE

Pour résumer le bilan de travail, nous citons les principales étapes de notre contribution.

Dans le premier chapitre, nous avons d'abord développé un modèle analytique en précisant les différentes hypothèses de départ, qui permet de décrire convenablement les évolutions de la majorité des paramètres du schéma équivalent petit signal en fonction des polarisations de grille et de drain.

Avant d'étendre cette modélisation, une étude descriptive à été effectuée concernant le MESFET GaAs: la structure, le fonctionnement suivant les différents régimes. Cette étude nous a permis de maîtriser le comportement d'un tel composant.

Dans le second chapitre, nous avons présenté les différents modèles qui existent dans la littérature pour l'étude de ce composant.

Après, Une étude plus rigoureuse de ce composant a été envisagée, par une modélisation physique numérique, et l'introduction d'opérateurs spéciaux en vu d'une modélisation dynamique de ce type de composants.

Nous avons effectué une analyse détaillée des effet de la température sur le fonctionnement du transistor MESFET GaAs, ce qui a permis de montrer que l'élévation de la température avait des répercussions sur le courant de sortie, donc sur la puissance de sortie, mais aussi sur les performances.

Le troisième chapitre présente une description du nanotube, d'abord en tant que matériau semiconducteur puis dans une configuration de transistor à effet de champ. Nous avons présenté ensuite les différentes étapes de la mise en place des équations de notre modèle, dont le but de trouver la résistance de contact du CNT et ensuite de pouvoir tracer les caractéristiques électriques du CNTFET.

En fin, une simulation mathématique est effectuée en se basant sur les expressions des équations fournies précédemment. Les résultats obtenus sont présentés et interprétés dans le quatrième chapitre.

En fin les perspectives qu'ouvre ce travail :

- Relancer le PHS tenant compte des effets de bords en utilisant les précédents travaux basé sur la fonction de Green, avec des conditions aux frontières mobiles.
- 2. Comparaison MESFET/ CNTFET.
- 3. Développer le CNT HEMT.

Liste des Publications

A. Revues internationals:

1. <u>KEBAILI.F</u>, EL MANSOURI.O, MARIR.B.E, MARIR.M, «Modeling and characterisation of GaAs MESFET », publication on line African journal, ISSN 1970-4097, vol. 2., 2008

2. EL MANSOURI.O, <u>KEBAILI.F</u>, MARIR.B.E, MARIR.M, «Quasi one dimensional simulation of heterojunction FET», *publication on line in African journal, ISSN 1970-4097, vol. 2., 2008.*

3. <u>F. KEBAILI</u>, O. EL MANSOURI, B. MARIR, M. BENABBAS, «Temperature Dependent on Submicron Gallium Arsenide Metal Semiconductor field effect transistor Characteristics», *Publication in International Review of Physics (IREPHY)*, *ISSN 1971-680X, vol. 3 N.5, October 2009.*

B. Publication nationales :

EL MANSOURI.O, <u>KEBAILI.F</u>, **MARIR.B.E**, **MARIR.M**, «Etude de modélisation Quasi bidimensionnelle du HEMT», Publication dans agence Nationale pour le développement de la recherché universitaires, éditée par l'ANDRU-N^o, AOUT 2006.

C. Conferences internationals:

1. <u>KEBAILI.F</u>, MARIR.B.E, MARIR.M, « Novel modeling of MESFETs using the PHS model », International Conference on Modeling and Simulation (MS'05), ROUEN (France), 6-8JULY 2005.

2. <u>KEBAILI.F</u>, MARIR.B.E, MARIR.M, «Physical properties in MESFETs by using the PHS model », The International Conference on Modeling and Simulation (ICMS'2005), Marrakech (Morocco), 22-24 November 2005.

3. <u>KEBAILI.F</u>, MARIR.B.E, MARIR.M, « study modeling in MESFETs using the PHS model », 1'ère Conférence Internationnale Sur les Systèmes Electroniques (CISE05), Batna (Algerie), 13-14 DECEMBRE 2005.

4. <u>KEBAILI.F</u>, MARIR.B.E, MARIR.M, « study modeling in MESFETs using the model Pucel, Huss , statz», the 6th Jordanian International Electrical and Electronics Engineering Conference , (Amman-Jordan) 15-17November, 2005.

5. <u>KEBAILI.F</u>, EL MANSOURI.O, MARIR.B.E, MARIR.M, «Modeling and characterisation of GaAs MESFET », International Conference on micro and Nanotechnologies (ICMNT2006), Tizi ouzou (Algeria), 19-23 November 2006

6. EL MANSOURI.O, <u>KEBAILI.F</u>, MARIR.B.E, MARIR.M, «Quasi one dimensional simulation of heterojunction FET», International Conference on micro and Nanotechnologies (ICMNT2006), Tizi ouzou (Algeria), 19-23 November 2006.

7. B.E. Marir, M.Benabbas-Marir, <u>F. Kebaili</u>, H.Righi, «Free boundary method for the determining layer in the MESFET», International Conference on Modeling and Simulation (MS'07), (Algiers), 2-4 July 2007.

8. <u>KEBAILI.F</u>, EL MANSOURI.O, MARIR.B.E, MARIR.M, «effect of the temperature on submicron GaAs MESFET's characteristics», 42nd International Symposium on Microelectronics(IMAPS), San Jose McEnery Convention Center San Jose, California (USA), 1-5 November 2009. Bibliographie

- [1]: W. Shokley ."A Unipolar Field Effect Transistor". Proc. Of the IRE 40, (1952). 1365 1376.
- [2]: B.E. Marir: Résolution Itérative de Problème à Frontière Mobile; application à la modélisation bidimensionnelle des transistors à effet de champ cas du MESFET". Thèse de Doctorat, Université de Constantine (1993).
- [3]: F. Ducastelle, C. Barreteau :"Introduction à la Physique du Solide". (2006).
- [4]: H. Matiew : "Physique des Semi-conducteurs et des Composants Électronique". 5^{eme} édition, Dunod (2001).
- [5]: A. Laloue :" Modélisation non Linéaire Distribuée des Transistors à Effet de Champ : application à l'analyse de la stabilité des transistors et des caractéristiques en bruit dans les circuits MMIC". Thèse de Doctorat, Université de Limoges (2001).
- [6]: F. Schwierz, J. Juin Lion: "Modern Microwave Transistors : theory, design and performances". Edition, Jhon Wiley, New York, (2003).
- [7]: A. Cappy:"Sur un Nouveau Modèle de Transistor à Effet de Champ à Grille Submicronique". Thèse 3^{éme} cycle, Université de Lille (1981).
- [8]: M. Shur:" Analytical Model of GaAs MESFET's". IEEE.ONED, vol ED-25, Nº 6, (1978). 612.
- [9]: A. Pucel, H.A. Hauss, H. Statz :" Signal and Noise Properties of Gallium Arséniure Field Effect Transistors". Advan Electron Physic 38, (1975). 195- 265.
- [10]: J. Graffeuil." Le Transistor Hyperfréquence à Effet de Champ à Grille Métallique sur Arséniure de Gallium: propriétés statiques et dynamique, petits signaux, analyse des phénomènes de bruit de fond". Thèse d'état, Université de Toulouse (1977).
- [11]: K. Leovec, R. Zuleeg:" Voltage- Current Characteristics of GaAs JFET's in the Hot electron Range". Solid State Electron 13, (1970). 1415 1426.
- [12]: B. Carnez, A. Capy, G. Salmer, E. Constant:" Modélisation de Transistor à Effet de Champ à Grille Ultra Courte". ACTA Electronica 23, (1980). 2.
- [13]: B. Gibod: "Modèle Analytique et Schéma équivalant du Transistor à Effet de Champ en Arséniure de Gallium". ACTA Electronica 23, (1980). 2.
- [14]: S. Kabra, H. Kaur, R. Gupta, S. Haldar, M. Gupta, R.S. Gupta: "A Semi empirical Approach for Submicron GaN MESFET using an Accurate Velocity Field Relationship for High Power Application". Microelectronics Journal 37, (2006). 620- 626.
- [15]: M. Balucani, V.N. Dobrovolsky, A.V. Osipov, A. Ferari : Model of the Drain Current Saturation in Long Gate JFETs and MESFETs'. Solid State Electronics 49, (2005). 1251- 1254.
- [16]: S. Bose, M. Gupta, R.S. Gupta: "Id- Vds Characteristics of Optically Biased Short Chanel GaAs MESFET". Microelectronics Journal 32, (2001). 241-247.
- [17]: K. Kunihiro, Y. Takahashi, Y.Ohno :"Physical Modeling of off State Breakdown in Power GaAs MESFETs". Solid State Electronics 47, (2003). 621- 631.
- [18]: G. Meneghesso, G. Massari, D. Buttari, A.Borteletto, M.Maretto, E. Zanoni: "DC and Pulsed Measurements of on State Breakdown Voltage in GaAs MESFETs and InP Based HEMTs". Microelectronics Reliability 39, (1999). 1759 -1763.
- [19]: P.J. Mc Nally, B. Daniels: "Compact DC Model for Submicron GaAs MESFETs Including Gate Source Modulation Effects". Microelectronics Journal 32, (2001). 249 -251.
- [20]: Ch. Charbonniaud : Caractérisation et Modélisation Electrothermique non Linéaire de Transistor à Effet de Champ GaN pour L'amplification de Puissance Microonde". Thése de Doctorat, Université de Limoges (2005).
- [21]: C. Lagarde : "Modélisation de Transistor de Puissance en Technologie GaN Conception d'un Amplificateur de Type Doherty pour les Emetteurs a Puissance Adaptative". Thése de Doctorat, Université de Limoges (2006).
- [22]: N.B. De Carvalho, J. Carlos Pedro : "Modeling MESFET's for non Linear Analog Circuits". Analog Integrated Circuits and Signal Processing 33, (2002). 95-106.
- [23]: M. Kaddour, A. Gharsallah, A. Gharbi, H. Baudrand: "Analysis and Design Criteria for Traveling Wave MESFET". Solid State Electronics 48, (2004). 253 257.
- [24]: A. Wakejima, K. Ota, K.Matsunaga ." Study of Surface Trap Induced Gate Depletion Region of Field Modulating Plate GaAs FET's". Solid State Electronics 50, (2006). 372 – 377.
- [25]: J. Branlard, S. Aboud, S. GoodNick, M. Saraniti: "Frequency Analysis of 3D GaAs MESFET Structures Using Full Band Particle Based Simulations". Journal of Computational Electronics 2, (2003). 213 – 217.
- [26]: R.A. Warriner : "Computer Simulation of Gallium Arsenide Field Effect Transistor Using Monte Carlo Methods". Solid State Electron Devices 17, (1977). 104 – 110.
- [27]: K. Bertilson, H.E. Nilson :"The Power of Using Automatic Device Optimization, based on Iterative Device Simulations, in Design of High Performance Devices". Solid State Electronics 48, (2004). 1721 –1725.
- [28]: A.J. Carnillo, M.I. Gamba, A. Majorana, C.W. Shu:" 2D Semiconductor Device Simulations by Weno- Boltzmann Schemes: efficiency, boundary conditions and comparison to Monte Carlo methods". Journal of Computational Physics 214, (2006). 55- 80.

- [29]: M. Galler, F.Schurrer:" A Direct Multigroup- Weno Solver for the 2D non Stationary Boltzmann Poisson System for GaAs Devices: GaAs MESFET". Journal of Computational Physics 212. (2006). 778 – 797.
- [30]: B.Guo, U.Ravaioli, D.Song:" Properties of Wurtzite GaN MESFET's Studied by Two Dimentionnal Full Band Monte Carlo Approach". Microelectronics Journal 35, (2004). 117 123.
- [31]: T.A. Shawki, G.Salmer, O.El Sayed:" ModFET 2D Hydrodynamic Energy Modeling: optimization of sub quarter micron gate structures". IEEE Trans. Electron Devices 37, N^o 1, (1990). 21 30.
- [32]: V. Romano." 2D Simulation of Silicon MESFET With a Nonparabolic Hydro dynamical Model Based on The Maximum Entropy Principle". Journal of Computational Physics 176, (2002). 70 – 92.
- [33]: BE. Marir, M.Benabbas, D.Bajon, H.Baudrand: "New two Dimensional Approach for Determining Depletion Layer Profile in Field Effect Transistors". IEE Electronics Letters vol. 27, N°19,(1991).1762-1764.
- [34]: Y.Liu, C.W. Shu:" Local Discontinuous Galerkin Method for Moment Models in Device Simulations: performance assessment and two dimensional result". Applied Numerical Mathematics 57. (2007). 629 – 645.
- [35]: J.L.Menaldi, L. Tubaro ." Green and Poisson Function With Wentzell Boundary Conditions". Journal of Differential Equations 237, (2007). 77- 115.
- [36]: K. Al Khaled Ches:" Theory and Computation in Singular Boundary Value Problems". Silitons and Fractals 33, (2007). 678 684.
- [37]: B.E.Marir, M.Benabbas-Marir, D.Bajon, H.Baudrand:"Determination of the Distribution of Charges on MESFETs Electrodes by Moving Boundary Method".Proceeding of MMAR'96, Third International Symposium on method and models in automatic and robotics, Medzyzdroje, Poland (10-13 September <u>1996)</u>
- [38]: N.M. Memon, M.M. Ahmed, F.Rehman: "A Comprehensive Four Parameter (I-V) Model For GaAs MESFET's Out Put Characteristics". Solid State Electronics 51, (2007). 511- 516.
- [39]: P.J. Mac Nally, B. Daniels : "Compact DC Model For Submicron GaAs MESFETs Including Gate Source Modulation Effects". Microelectronics Journal 32, (2001). 249 251.
- [40]: H. Ye.M. Kasu, K.Ueda, Y. Yamauchi, N. Maeda, S.Sasaki, T. Makimoto: "Temperature Dependent DC and RF Performance of Diamond MESFET". Diamond and Related Materials 15, (2006). 787-791.

- [41]: S. Kabra, H. Kaur, S.Hauldar, M. Gupta, R.S. Gupta:" Temperature Dependent Analytical Model of Submicron GaN MESFET's For Microwave Frequency Applications". Solid State Electronics 52, (2008). 25- 30.
- [42]: M.S.Islam, M.M. Zaman: " A seven Parameter Non Linear (I-V) Characteristics Model For Sub μm Range GaAs MESFET's". Solid State Electronics 48, (2004). 1111-1117.
- [43]: S. Kabra, H.Kaur, S.Haldar, M.Gupta, R.S. Gupta:" Two Dimensional Sub threshold Analysis of Sub Micron GaN MESFET". Microelectronics Journal 38, (2007).
- [44]: P. Hachemi, A.Behnam, E.Fathi, A. Afzali, Kusha, M.Elnokali:" 2D Modeling of Potentiel Distribution and Threshold Voltage of Short Channel Fully Depleted Dual Material Gate SOI MESFET ". Solid State Electronics 49, (2005). 1341- 1346.
- [45]: N. Ghalichichian:" Silicon Carbide Overview of Physical Properties and Thin Film Deposition". ENEE 793, Solid State Electronics Fall (2002).
- [46]: H. Ding, J.J. Liou, K. Green, C.R. Cirba: "Anew Model for Four Therminal Junction Field Effect Transistors". Solid State Electronics 50, (2006). 422 – 428.
- [47]: B.L. Ooi, Y.J. Ma, M.S. Leong:" A Novel Drain Current I-V Model For MESFET". IEEE Transaction on Microwave Theory and Techniques 50, (2002). 1118 1192.
- [48]: M. Kameche:" Drain Temperature Determination in Dual Gate GaAs MESFET's". Springer J Comput Electron, (2007). 421 – 424.
- [49]: R. Walter Curtice :" The Performance of Sub micrometer Gate Length GaAs MESFT's" . IEEE Transaction on Electron Devices, ED 30, N^o 12, (1983).
- [50]: L. Castro:" Modeling of Carbon Nanotube Field Effect Transistors". Thèse de Doctorat, University of British Columbia, (2006).
- [51]:S. Lijima: "Helical Microtubes of Graphitic Carbon".Nature354,(1991). 56
- [52]: J.P. Salvetat, Ph. Poulin:" Renfort Mécanique des Composants Par les Nanotubes de Carbone".
 Dix Moins Noeuf 5, (2007). 41 56.
- [53]: P. Costa :" Nanomatériaux Structure et Elaboration [M4026]". Base Documentaire :"étude et propriétés des métaux". (2001).
- [54]: J.M. Gloaguen, J.M. Lefebre :" Nano composite Polymères/ Silicates en Feuillets [AM5205]". Base Documentaire :"plastique et composite". (2007).
- *[55]:* "Les Nanotubes de Carbone: quels risques, quelle prévention ? ".INRS- Hygiène et Sécurité du Travail, Cahier de Notes Documentaires, 1^e Trimestre <u>(2008).</u> 210/43 210/57.

- [56]: S. Badaire :" Etude de Suspensions et de Fibre de Nanotubes de Carbone". Thèse de Doctorat, Université de Bordeaux I, (2005).
- [57]: J.P. Salvetat, G. Desarnot, C. Gauthier, P. Poulin:" Mechanical Properties of Individual Nanotubes and Composite". Springer, <u>(2006).</u>439.
- [58]: P. Houdy, C.Bréchignac, M.Lahmani:" Les Nanosciences. 2- Nanomatériaux et Nanochimie". La Collection Echelle, Edition Bellin, (2006), 687.
- [59]: Z.L.Wang, P.Poncharal, W.A.Deheer ." Measuring Physical and Mechanical Properties of Individual Carbon Nanotubes by In Situ TEM". Journal of Physics and Chemistry of Solids 61, (2000). 1025 – 30.
- [60]: P.Houdy, Dupax, Lahmanim:" Les Nanosciences. 1- Nanotechnologies et Nanophysique". La Collection Echelle, Edition Bellin, (2006), 737.
- [61]: B. Vigolo:" Rubans de V₂ O₅ et Nanotubes de Carbone de L'étude des Suspensions à Leur Mise en Forme". Thèse de Doctorat, Université de Bordeaux,(2002).
- [62]: Y. Breton: Synthèse et Fonctionnalisation de Nanotubes de Carbone Multiparois, Propriétés Mécanique de Composites Nanotubes/ Résine Epoxyde". Thèse de Doctorat, Université d'Orléans. (2002).
- [63]: A. Chimmalgi, C.P.Grigoropoulous, K. Komvopoulos ." Surface Nanostructuring by Nano/femtosecond Laser Assisted Scanning Force Microscopy". J.Appl.Phys.97, (2005). 104319.
- [64]: J.P. Salvetat, S.Bhattacharyya, R.B. Pipes :"Progress on Mechanics of Carbon Nanotubes and Derived Materials". J.Nanosci- Nanotechnology 6, Nº 7, (2006). 1857 – 82.
- [65]: C.Zhou, J.Kong, H.Daia :" Electrical Measurements of Individual Semiconducting Single Walled Carbon Nanotubes of Various Diameters". App.Phys.Lett, vol 76, Nº 12, (2000). 1597 – 1599.
- [66]: J.J.Greffet, S. Volz." Transferts de Chaleur à L'échelle du Nanomètre". Dix Moins Noeuf 5, (2007). 58 – 67.
- [67]: T. Yamada .''Modeling of Carbon Nanotube Schottky Barrier Reduction For Holes in Air''. Nanotechnology 1, (2003). 244 – 247.
- [68]: R. V.Tasubramanian, E.Silvola, T.Colpitts, B.O'quinn:" Thin Film Thermoelectric Devices With High Room Temperature Figures of Merit". Nature 413, (2001). 597.
- [69]: C. Voisin, N.N. Fatti, D.Christofilos, F.Vallé:" Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles". J.Phys.Chem 105, (2001). 2264 2280.
- [70]: P. Chantrenne, S. Volz: "Thermique à L'échelle Submicronique . Introduction à la Dynamique Moléculaire [BE8290]". Base Documentaire:" génie énergétique". (2002).

- [71]: P. Keblinski, S.R.Philpot, S.U.S. Choi, J.A. Eastman." Mechanisms of Heat Flow in Suspensions of Nanosized Particles(Nanofluide)". International Journal of Heat and Mass Transfer 45, (2002). 855 - 863.
- [72]: S. Volz, G. Chen:" Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires". Appl. Phys. Lett. 57, (1999). 2056.
- [73]: D.Li, Y. Wu, P.Kim, L.Shi, P.Yang, A.Majundar." Thermal Conductivity of Individual Silicon Nanowires". Appl.Phys.Lett. 83, (2003). 2934
- [74]: G.Chen:" Thermal Conductivity and Ballistic Phonon Transport in Cross Plane Direction of Super lattices". Physical Review B 57, (1998). 14958 14973.
- [75]: J.A. Eastman, S.U.S. Choi, S. Li, W.Yu, L.J. Thompson:" Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluides Containing Cooper Nanoparticales". Appl.Phys.Lett. 78, (2001).718 – 720.
- [76]: P.Kim, L.Shi, A.Majundar, P.L.M. Euen:" Thermal Transport Measurements of Individual Multiwalled Nanotubes". Phys. Rev. Lett. 87, (2001). 215502
- [77]: R.Karnik, K.Castellino, A.Majumdar:" Field Effect Control of Protein Transport in Nanofluidic Transistor". Appl.Phys.Lett.88, (2006). 123 114.
- [78]: C.Klink, J.B.Hannon, A.Afzali, P.Avouris:" Field Effect Transistors Assembled From Functionalized Carbon Nanotubes". Nanoletters 6, Iss 5, (2006).906 910.
- [79]: K. Tarik, D.Vasileska, T.J. Tornton:" Quantum Mechanical Tunneling Phenomena in Metal Semiconductor Junctions". Superlattices and Microstructures 34, (2003). 335 3339.
- [80]: J.Apenzeller, J.Knock, M.Radosavljevic, P.Avouris." Multimode Transport in Schottky Barrier Carbon Nanotube Field Effect Transistors". Phys.Rev.Lett.92, (2004).1 – 4.
- [81]: Y.Li, H.M.Chou, J.W.Lee, B.S.Lee:" A Three Dimensional Simulation of Electrostatic Characteristis For Carbon Nanotube Array Field Effect Transistors". Microelectronic Engineering 81, (2005). 434 – 440.
- [82]: J.Appenzeller, J.M. Lin, J.Knock, P.Avouris." Band to Band Tunneling in Carbon Nanotube Field Effect Transistors". Phys.Rev.Lett.93, (2004).1 – 4.
- [83]: D.T.Trinh." Portes Logiques à Base de CNTFETs Dispersion des Caractéristiques et Tolérance aux Défauts". Thèse de Doctorat, Université Polytechnique de Grenoble, (2008).
- [84]: M.Kociak, A.Y.Kasumov, S.Guéron, B.Reulet, I.I.Khodos, Y.B.Gorbatov, L.Vaccarini, H.Bouchiat:' Superconductivity in Ropes of Single Walled Carbon Nanotubes''. Phys.Rev.Lett.86,11,(2001).2416.

Bibliographie

- [85]: A.Y.Kasumov, R.Deblock, M.Kociak, B.Reulet, H.Bouchiat,I.I.Khodes, Y.B.Gorbatov, C.Journet, M.Burghard:" Super Currents Through Walled Carbon Nanotube". Science, (1999).284 1508.
- [86]: I. O'conor, J.Liu, F.Gaffiot, F.Pregaldiny, C.Lallement, C.Maneux :" CNTFET Modeling and Reconfigurable Logic Circuit Design". IEEE Trans. On Circuits and System I 54, N° 11, (2007). 2365 – 237.
- [87]: A. Bachtold, al: "Logic Circuits with Carbon Nanotube Transistors", Science, Vol.294, (2001). 1317-1320.
- [88] : S.J., Wind, al: "Vertical Scaling of Carbon Nanotube Ffield-Effect Transistors using Top Gate Electrodes", Appl. Phys. Lett., Vol.80, No.20, (2002). pp.3817-3819.
- [89]: R.T.Weitz, U.Zchieschang, A.F.Aliaga, D.Kalblein, M.Burghard, K.Kern, H.Klauk: "Highly Reliable Carbon Nanotube Transistors with Paterned Gates and Molecular Gate Dielectric", Nano Letters, vol.9,N⁰4, (2009).1335-1340.
- [90]:G.Johnny :"La Modélisation Compact du Transistor à Nanotube '' :Sujet de Stage , Master EEA 2^e Année Microélectronique, Université Bordeaux 1(2005)
- [91]: H.Cazin, S.G.Retailleau, A.Bournel, P.Dollfus, J.P.Bourgoin :'Monte Carlo Study of Coaxially Gated CNTFET's : Capacitive Effects and Dynamic Performance', App.Phys.Lett.87,(2008).

Table des Figures

I-1.vue en coupe de la structure d'un MESFET	5
I-2. Jonction Schottky	6
I-3. Vue en coupe d'un MESFET polarisé	7
I-4. réseau typique de sortie d'un MESFET	8
I-5. diagramme de bande d'énergie pour GaAs	11
I-6. structure de bande d'energie du silicium et du GaAs	11
I-7. Vitesse en fonction du champ électrique	12
I – 8. Les niveaux d'énergie avant le contact ;a) du métal ; b) du semi-conducteur	14
I − 9. Les niveaux d'énergie de la jonction métal-semi-conducteur $φm ≥ φs$ I − 10.Niveau d'énergie lorsque $φ_m < φ_s$ I-11 . Origine physique du schéma équivalent du FFT	15 15 16
$I-12$ modèle simple π petit signal des TECs.	16
I-13. structure du MESFET d'après le modèle PHS	19
I-14. structure intrinsèaue du MESFET avec les résistances parasites RS et RD	23
II-1. model device in consideration	31
II-2. Caractéristiques courant-tension $I_{ds} = f(V_{ds})$ d'un MESFET GaAs II-3.diagrammes de bandes d'énergie des différents types d'éléments III-1. les différents variétés allotropiques du carbone	39 41 46
III-2. les différents modes d'enroulement des nanotubes de carbone	47
III-3. De la feuille d'atomes de carbone organisés suivant un maillage hexagonal aux nanotubes ma feuillet et multi feuillet	ono 48
III-4. Nanotube de carbone multi feuillets	48
III-5. Schéma de bandes d'énergie d'une feuille de graphite et de la première zone de Brillouin associée III-6. Schéma d'un CNTFET	49 56
III-7. La tension de grille VGS module la tension de contrôle du nanotube VCNT à travers la capacit d'oxyde de grille COX	é 57
III-8 Deux géométries définissant la capacité de grille MIC (Métal – Isolateur – CNT	59
III-9. schema de principe montrant les 3premiers sous bandes	68
III-10. schéma du vecteur d'onde (E-k) du nanotube : μS et μD sont les niveaux de Fermi de la sourc et du drain	:е 68
IV-1 . organigramme de calcul du courant de drain	73
IV-2 . organigramme de calcul de la transconductance	74

Table des figures

IV-3.organigramme de calcul de la conductance de drain 75 IV-4. organiaramme de calcul de la capacité entre arille et source 76
IV-5 . caractéristique courant tension $I_{DS}(V_{DS}, V_{GS})$ 77
IV-6 . variation de la transconductance en fonction de la tension de grille 78
IV-7 . variation de la conductance en fonction de la tension de drain
IV-8 . variation de la capacité entre grille et source en fonction de la tension de grille
IV-9 . comparaison théorie-expérience
IV-10 . variation de la tension de seuil en fonction de la température
IV-11. variation de la bande interdite de l'AsGa en fonction de la température
IV-12 : variation de la concentration intrinsèque des porteurs en fonction de la Température
IV-13. comparison entre des résultats expérimentaux et analytical des caractéristiques Ids_Vds d'un MESFET GaAs 0.75 μm à T=0, 50 and 100 °C pour Vgs=-2v 82
IV-14. la variation de la Transconductance en fonction de la température pour vgs=-2v,vds=4
IV-15. variation du courant de drain en fonction de V_{DS} pour differents valeur de V_{GS}
IV.17. variation du courant de drain en fonction de VGS pour différentes valeur du diamètre du CNT 86
IV. 18 . variation du courant de drain en fonction de VDS pour différentes valeur du diamètre du CNT
IV. 19 . caractéristique $I_D(V_{DS})$ pour différents valeurs de V_{GS} par la méthode Monte Carlo
IV. 20 . caractéristique $I_D(V_{GS})$ pour Vds=0.7V pour 5 épaisseurs d'oxyde par la méthode Monte Carlo 87

Liste des Tableaux

Liste des Tableaux

I-1. propriétés du GaAs à température ambiante	10
II-1. les constantes empiriques	42
III-1. Les caractéristiques dimensionnelles des nanotubes de carbone	55
III-2. Quelques propriétés mécaniques des nanotubes de carbone	55
III-3. Quelques caractéristiques thermiques des nanotubes de carbone	55
IV-1. paramètres technologiques d'un transistor MESFET	71

<u> Résumé :</u>

Le développement ou l'amélioration des nouvelles filières de transistor à effet de champ ne peut s'envisager sans l'appui de la modélisation physique qui permet la prédétermination des caractéristiques et l'optimisation des structures. Aussi nous nous somme intéressés dans le cadre de notre étude à la modélisation des transistors à effet de champ type MESFET GaAs et CNTFET.

Après une étude descriptive du composant MESFET GaAs à l'aide d'un modèle analytique que nous avons développé, une étude plus rigoureuse de ce composant à été envisagée, par une modélisation physique numérique et l'introduction d'opérateur spéciaux en vue de la détermination du champ de potentiel, le comportement du transistor sous l'effet de la température est étudié.

Ensuite, nous avons présenté les différentes étapes de la mise en place des équations de notre modèle basé sur la résolution unidimensionnel puis bidimensionnel utilisant la statistique de Fermi Dirac, en vue de déterminer la densité de charge et par conséquent la résistance du nanotube, nous déduisons ainsi la caractéristique I - V du CNTFET.

Une simulation est effectuée en se basant sur les expressions des équations fournies précédemment. Les résultats obtenus sont présentés et interprétés.

<u>Mots clés :</u> MESFET, CNTFET, Barrière Schottky, Arséniure de Gallium, Transistor, Modélisation .

<u>Abstract :</u>

The development or improvement of new channels of field effect transistor can't be considered without the support of physical modeling that allows the predetermination of characteristics and structural optimization. Therefore we were interested in the sum of our study to the modeling of field effect transistors: GaAs MESFET and CNTFET.

After a descriptive study of the GaAs MESFET component using an analytical model that we have developed, a rigorous study of this component has been proposed by a physical model and the introduction of special operators for determining potential field. We have presented the behavior of the transistor under the effect of the temperature.

Then, we presented the different steps of implementation of the equations of our model based on solving one dimensional and two dimensional using Fermi Dirac statistics, to determine the charge density and thus the resistance of the carbon nanotube, and we deduce the characteristic of CNTFET.

A simulation is carried out based on the expressions of the equations provided previously. The results obtained are presented and interpreted.

Key words: MESFET, CNTFET, Schottky Barrier, Gallium Arsenide, Transistor, Modeling.

<u>ملخص:</u>

إن تطوير و تحسين المركبات ذات تأثير الحقل الكهربائي ، لا يتم دون اللجوء و التركيز على النموذجة الفيزيائية للمركبات الالكترونية.

و لهذا في إطار عملنا المقدم ، ركزنا على النموذجة الفيزيائية لصمام العبور ذو الحقل و الحاجز شوتكي لزرنيخ الغاليوم MESFET GaAs و كذلك على مركب ذو تأثير الحقل الكهربائي المبني على نانو أنبوب الكربون CNTFET

بعد الدراسة التحليلية لصمام العبور ذو الحقل و الحاجز شوتكي لزريخ الغاليوم عن طريق نموذج، أجرينا دراسة أكثر تعمقا لهذا المركب بإنشاء نموذج فيزيائي بهدف تعيين التوتر في كل نقطة من المركب، و بينا كذلك تأثير الحرارة على خصائصه.

المعادلات الخاصة بنموذجنا في البعدين الثنائي و الأحادي باستعمال إحصائيات فار مي دير اك ، تم عر ضها و ذلك لحساب كثافة الشحنة، مما يسمح لنا بحساب مقاومة أنبوب الكربون و استخر اج خصائص المركب CNTFET

لتحقيق الهدف، تم وضع بر نامج مبنى على المعادلات المقدمة سابقا. النتائج قدمت و نوقشت.

الكلمات المفاتيح

CNFET, MESFET رابطـة شوتكي ،رنيـخز الغــــاليوم ،مقحل،نموذجـــة