INVESTIGATION OF SILICON NITRIDE COATING DEPOSITED BY PECVD FOR SOLAR CELL FRONT SIDE PASSIVATION

S. MEZIANI 1*, A. MOUSSI1, A. EL AMRANI1, R. OUTEMZABET2, M. MAHIOU1

1Centre de Recherche en Technologie des Semi-Conducteurs pour l'Energétique (CRSTE), 02 Bd Frantz Fanon, BP 140, 7 Merveilles, Alger. Algérie.

2Laboratoire des semi-conducteurs et oxydes métalliques, Université des Sciences et de la Technologie Houari Boumediene. BP 32 El Alia, Bab Ezzouar. Alger. Algérie.

ABSTRACT. Plasma Enhanced Chemical Vapor Deposition (PECVD) silicon nitride (SiN_x :H, simply called SiN_x) has been widely used in photovoltaic silicon solar cells as dielectric, because of low deposited temperature and compatibility with other process. SiN_x gradually becomes the first choice in industry silicon solar cells production. Nowadays, in photovoltaic silicon solar cells, the excellent antireflection and passivation quality of PECVD SiN_x have obvious effect on efficiency of solar cells. In this paper, we analysis several critical parameters for PECVD SiN_x deposition, such as temperature of substrate, plasma power, ratio of NH_3/SiH_4 and deposition time, and to investigate optical properties such as weighted reflectance (R_w), ellipsometry measurement for SiN_x thin film refractive indices and thickness, then we investigate the correlation between the ratio $R=[NH_3/SiH_4]$ and plasma power with refractive indices and deposition rate. At last, we propose a set of optimized parameters for PECVD- SiN_x deposition in silicon solar cells application.

KEYWORDS: SiNx, PECVD, passivation, antireflection coating.