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ABSTRACT 

In this work, a higher-order theory including the stretching effect is developed for the static analysis 

of advanced composite plates such as functionally graded plates. The number of unknown functions 

involved in the present theory is only five as against six or more in case of other shear and normal 

deformation theories. The governing equations are derived by employing the principle of virtual 

work and the physical neutral surface concept. Navier-type analytical solution is obtained for 

functionally graded plate subjected to transverse load for simply supported boundary conditions. A 

comparison with the corresponding results is made to check the accuracy and efficiency of the 

present theory. 
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NOMENCLATURE 

Symbols :          The mass density  

CV      The volume-fraction of ceramic su
, sv

    Shear components 

C       The distance of neutral surface from the mid-

surface    

xz
, yz

 Shear stresses 

P        The material non-homogeneous properties of FG 

plate 

Indices / Exponents : 

E        The elasticity modules  k         The power law index 

N        The stress resultants  n          The material parameter 

        Poisson’s ratio  a/h           Thickness ratio 

 

1. INTRODUCTION 

In the past three decades, researches on functionally graded (FG) plates have received great 

attention, and a variety of plate theories has been introduced based on considering the transverse 

shear deformation effect. The classical plate theory (CPT), which neglects the transverse shear 

deformation effect, provides reasonable results for thin plate. To overcome the deficiency of the 

CPT, many shear deformation plate theories which account for the transverse shear deformation 
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effects have been developed. The Reissner [1] and Mindlin [2] theories are known as the first -order 

shear deformation plate theory (FSDT). Since the FSDT violates the equilibrium conditions on the 

top and bottom surfaces of the plate, a shear correction factor is required to compensate for the error 

due to a constant shear strain assumption through the thickness. Although the FSDT provides a 

sufficiently accurate description of response for thin to moderately thick plate, it is not convenient 

for use due to the difficulty in determination of the correct value of the shear correction factor [3]. 

To avoid the use of shear correction factors, many refined shear deformation plate theories have 

been developed such as the third-order shear deformation plate theory (TSDT) of Reddy [4], 

sinusoidal shear deformation plate theory (SSDT) [5,6], and hyperbolic shear deformation plate 

theory (HSDT) [7]. However, in most shear deformation theories, FG plates have been analysed 

neglecting the thickness stretching, being the transverse displacement considered independent by 

thickness coordinates. The effect of thickness stretching in FG plates has been investigated by 

Carrera et al. [8], using finite elements. Neves et al. [9] have presented an original hyperbolic sine 

shear deformation theory for the bending and free vibration analysis of FG plates.  

The purpose of this study is to develop a new shear deformation plate theory for FG plates by 

including the so-called ‘‘stretching effect’’. Just five unknown displacement functions are used in 

the present theory against six or more unknown displacement functions used in the corresponding 

ones. This is due to the fact that the stretching – bending coupling in the constitutive equations of an 

FG plate does not exist when the physical neutral surface is considered as a coordinate system. The 

theory does not require shear correction factors since the displacement components are expressed 

by trigonometric series representation through the plate thickness to develop a two-dimensional 

theory and gives rise to transverse shear stress variation such that the transverse shear stresses vary 

parabolically across the thickness satisfying shear stress free surface conditions. The effectiveness 

of the present theory is demonstrated and results are compared with the corresponding FGM 

solution. 

2. MATHEMATICAL FORMULATION 

The Having a rectangular plate made of FGMs of thickness h , length a , and width b , referred to 

the rectangular Cartesian coordinates ( x , y , z ). The x – y plane is taken to be the un-deformed 

mid-plane of the plate, and the z axis is perpendicular to the x – y plane. To specify the position of 

neutral surface of FG plates, two different planes are considered for the measurement of z , namely, 

msz  and nsz  measured from the middle surface and the neutral surface of the plate, respectively, 

The volume-fraction of ceramic CV  is expressed based on  msz  and nsz  coordinates as 

k

ns

k
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C
h
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h
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Where k  is the power law index which takes the value greater or equal to zero and C  is the 

distance of neutral surface from the mid-surface. Thus, using Eq. (1), the material non-

homogeneous properties of FG plate P , as a function of thickness coordinate, become  
k

ns

CMM
h

Cz
PPzP 











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2

1
)( ,  MCCM PPP   

Where MP  and CP  are the corresponding properties of the metal and ceramic. In the present work, 

we assume that the elasticity modules E  and the mass density   are described by Eq. (2),  

The bending components bu
 and bv

 are assumed to be similar to the displacements given by the 

classical plate theory. Therefore, the expression for bu
 and bv

 can be given as 

(1) 

(2) 
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the expression for su  and sv  can be given as  
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The component due to the stretching effect stw  can be given as 

),( )(),,( yxzgzyxw nsnsst   

The additional displacement   accounts for the effect of normal stress is included and )( nszg  is 

given as follows 
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Based on the assumptions made in the preceding section, the displacement field can be obtained 

using Eqs. (7) as                                          
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The kinematic relations can be obtained as follows: 
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The stress-strain relations for a linear elastic plate are written in the form: 

 

where ( x
, y

, z
, yz

, xz
, xy

) and ( x , y , z , yz
, xz

, xy
) are the stress and strain 

components, respectively.  

The computation of the elastic constants ijC
 depends on which assumption of z . 

The principle of virtual displacements is used herein to derive the governing equations. The principle can be 

stated in an analytical form as 
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where q  is the transverse load; and N , M , and Q  are the stress resultants defined by 
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By substituting the results of Eq. (5) into Eq. (11), the stress resultants are obtained as 
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where the stiffness coefficients ijA  and ijD ,… etc., are defined as 
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Integrating the expressions in Eq. (10) by parts and collecting the coefficients of 0 u , 0 v , bw  , 

sw   and   , one obtains the following governing equations 
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By substituting Eq. (12) into Eq. (15), the equations of motion can be expressed in terms of 

displacements ( 0 u , 0 v , bw  , sw  ,   ) as 
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Rectangular plates are generally classified according to the type of support used. Here, we are 

concerned with the exact solutions of Eqs. (16) for a simply supported FG plate. The following 

boundary conditions are imposed at the side edges: 
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Following the Navier solution procedure, we assume the following solution form for 0u
, 0v

, bw
, 

sw
 and   that satisfies the boundary conditions given in Eq. (17), 
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where mnU , mnV , bmnW , smnW  and mn  are arbitrary parameters to be determined, and am /   

and bn /  .  

The transverse load q  is also expanded in the double-Fourier sine series as 
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For the case of a sinusoidally distributed load, we have 1 nm  and 011 qq   where 0q  represents 

the intensity of the load at the plate centre. 

3. NUMERICAL RESULTS 

The results are presented for the simply supported plate under bi-sinusoidal transverse loads of 

intensity q . The static analysis was conducted using aluminium (bottom, Al) and alumina (top, 

Al2O3).  

Figure 1. presents the variation of non-dimensional parameter hC /  versus the material parameter 
n  of Al/Al2O3 functionally graded plate. It can be observed when the material parameter of FGM 

becomes zero (fully ceramic) or infinity (fully metallic); the neutral surface coincides on the middle 

surface, as expected. 

Table 1. contains dimensionless transverse displacement and normal stresses of FG plate for various 

values of thickness ratio ha / , and material parameter n . The present theory with 
0z  is 

compared with analytical solutions by Carrera et al. [10], the quasi-3D sinusoidal shear deformation 

theory of Neves et al. [9], the classical plate theory (CPT) [9], and the first-order shear deformation 

theory (FSDT) [9]. It can be seen that the dimensionless displacement and stresses predicted by the 

new trigonometric higher-order theory with the stretching effect are almost identical with those 

generated by the quasi-3D sinusoidal theories of Neves et al. [9]. It should be noted that the present 

theory involves five unknowns as against six or more in other quasi-3D shear deformation theory.  
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FIGURE 1. Variation of the neutral surface position versus the material     

parameter n . 
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FSDT k = 5/6 [16] 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625 

Neves et al [16]   0  0.5925 1.4945 14.969 0.6997 0.5845 0.5624 

Carrera et al [21] 0  0.6221 1.5064 14.969 0.7171 0.5875 0.5625 

Present 0  0.6021 1.5001 14.659 0.6919 0.5795 0.5562 

4 

CPT [16] 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281 

FSDT k = 5/6 [16] 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828 

Neves et al [16]   0  0.4404 1.1783 11.932 1.1178 0.8750 0.8286 

Carrera et al [21] 0  0.4877 1.1971 11.923 1.1585 0.8821 0.8286 

Present 0  0.4366 1.1335 11.409 1.0991 0.8562 0.8021 
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CPT [16] 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354 

FSDT k = 5/6 [16] 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360 

Neves et al [16]   0  0.3227 1.1783 11.932 1.3490 0.8750 0.8286 

Carrera et al [21] 0  0.1478 0.8965 8.9077 1.3745 1.0072 0.9361 

Present 0  0.3206 0.8511 8.6055 1.3369 0.9820 0.9142 

 

 

4. CONCLUSIONS 

A higher order shear and normal deformation theory based on neutral surface position for the bending 

analysis of advanced composite plates is presented. The theory accounts for the stretching and shear 

deformation effects without requiring a shear correction factor. By dividing the transverse displacement 

into bending, shear and stretching components, the number of unknowns and governing equations of the 

present theory is reduced to five as against six or more unknown in the corresponding ones. Based on the 

present plate theory and the neutral surface concept, the governing equations are derived from the 

principle of virtual work. The accuracy of the present model is ascertained by comparing it with existing 

solutions and excellent agreement was observed. It is relevant to notice the strong effect of considering 

the non-zero transverse normal strain.   
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