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ABSTRACT

In this work, a higher-order theory including the stretching effect is developed for the static analysis
of advanced composite plates such as functionally graded plates. The number of unknown functions
involved in the present theory is only five as against six or more in case of other shear and normal
deformation theories. The governing equations are derived by employing the principle of virtual
work and the physical neutral surface concept. Navier-type analytical solution is obtained for
functionally graded plate subjected to transverse load for simply supported boundary conditions. A
comparison with the corresponding results is made to check the accuracy and efficiency of the
present theory.
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NOMENCLATURE
Symbols : P The mass density
V.  The volume-fraction of ceramic Us Vs Shear components
C  Thedistance of neutral surface from the mid- T T\t Shear stresses
P The material non-homogeneous properties of FG Indices / Exponents :
E The elasticity modules k The power law index
N The stress resultants n The material parameter
v Poisson’s ratio a/h Thickness ratio

1. INTRODUCTION

In the past three decades, researches on functionally graded (FG) plates have received great
attention, and a variety of plate theories has been introduced based on considering the transverse
shear deformation effect. The classical plate theory (CPT), which neglects the transverse shear
deformation effect, provides reasonable results for thin plate. To overcome the deficiency of the
CPT, many shear deformation plate theories which account for the transverse shear deformation
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effects have been developed. The Reissner [1] and Mindlin [2] theories are known as the first -order
shear deformation plate theory (FSDT). Since the FSDT violates the equilibrium conditions on the
top and bottom surfaces of the plate, a shear correction factor is required to compensate for the error
due to a constant shear strain assumption through the thickness. Although the FSDT provides a
sufficiently accurate description of response for thin to moderately thick plate, it is not convenient
for use due to the difficulty in determination of the correct value of the shear correction factor [3].
To avoid the use of shear correction factors, many refined shear deformation plate theories have
been developed such as the third-order shear deformation plate theory (TSDT) of Reddy [4],
sinusoidal shear deformation plate theory (SSDT) [5,6], and hyperbolic shear deformation plate
theory (HSDT) [7]. However, in most shear deformation theories, FG plates have been analysed
neglecting the thickness stretching, being the transverse displacement considered independent by
thickness coordinates. The effect of thickness stretching in FG plates has been investigated by
Carrera et al. [8], using finite elements. Neves et al. [9] have presented an original hyperbolic sine
shear deformation theory for the bending and free vibration analysis of FG plates.

The purpose of this study is to develop a new shear deformation plate theory for FG plates by
including the so-called ‘‘stretching effect’’. Just five unknown displacement functions are used in
the present theory against six or more unknown displacement functions used in the corresponding
ones. This is due to the fact that the stretching — bending coupling in the constitutive equations of an
FG plate does not exist when the physical neutral surface is considered as a coordinate system. The
theory does not require shear correction factors since the displacement components are expressed
by trigonometric series representation through the plate thickness to develop a two-dimensional
theory and gives rise to transverse shear stress variation such that the transverse shear stresses vary
parabolically across the thickness satisfying shear stress free surface conditions. The effectiveness
of the present theory is demonstrated and results are compared with the corresponding FGM
solution.

2. MATHEMATICAL FORMULATION

The Having a rectangular plate made of FGMs of thickness h, length a, and width b, referred to
the rectangular Cartesian coordinates (X, y, Z). The x — y plane is taken to be the un-deformed
mid-plane of the plate, and the z axis is perpendicular to the x —y plane. To specify the position of
neutral surface of FG plates, two different planes are considered for the measurement of z , namely,
Z.. and z . measured from the middle surface and the neutral surface of the plate, respectively,

S

The volume-fraction of ceramic V. is expressed based on z,, and z  coordinates as

Z,s 1 ‘ z,+C 1 ‘
Ve = +—| = +—
h 2 h 2

Where Kk is the power law index which takes the value greater or equal to zero and C is the
distance of neutral surface from the mid-surface. Thus, using Eq. (1), the material non-
homogeneous properties of FG plate P, as a function of thickness coordinate, become

2z +C 1)
P(Z):PM +PCM(HST+EJ , PCM :PC_PM

Where P,, and P. are the corresponding properties of the metal and ceramic. In the present work,
we assume that the elasticity modules E and the mass density o are described by Eq. (2),

The bending components Yv and Vb are assumed to be similar to the displacements given by the
classical plate theory. Therefore, the expression for Yb and Vo can be given as
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oW ow
U, =—2, 6Xb ’ Vb :_Zns ayb (3)
the expression for Ys and Vs can be given as
ow ow
=— s v, =—T(z
ug =-f(zy) x () oy (4)
where
. (z 1
f(zns)=z- hsmh(ﬂ +2 coshbj (5)

The component due to the stretching effect /st can be given as
Wy (X, Y,2) = 9(Z ) @(X, Y)

The additional displacement % accounts for the effect of normal stress is included and 9(zw) js

given as follows
z 1
9(z,. )= cosh(ﬁj - COSh(Ej @)

Based on the assumptions made in the preceding section, the displacement field can be obtained (8a)
ow, ow

—f(z S
ox (2) OX

é“b f E“S ( )
) ‘ZnS — Vo 1 _Zns - er
V(X y ) \ (X y) 5 ( ) 5

(6)

U(X, Y5 Zgs ) = Uo (X, Y) = 2

using Egs. (7) as

WX, ¥, 200 ) = Wy (X, Y)W, (X, ) + (2,0 ) (X, ¥) (8c)

The kinematic relations can be obtained as follows:
£ N k; kS
g, =18y p+2 k) t+ F(z2)3 kS Yy S,
0 kb ks = g(zrrs) 0 0
£ Yy xy xy Y x £,=00)¢,
The stress-strain relations for a linear elastic plate are written in the form:

Xz

(o2 T & .
where (Ox, ©Y, %z "V Ta Tx)and (6x, °V, &2, Vv Va yxy)arethestress and strain
components, respectively.

The computation of the elastic constants Ci depends on which assumption of €.
The principle of virtual displacements is used herein to derive the governing equations. The principle can be
stated in an analytical form as

h

2c
2

O:‘[ ,J[ax6€X +0,88,+0,58,+7,, 8y, +7,5¥,, v, 57, ] dznsdA—J/;q.«j‘(wb +w, +w, dA
2 c
2

—[[NE22+ N S&)+NE0+ NS ys + MESKE + MES K] + M5 S K, (10)
A

+MISKS +MISKS + M5 SKS, +S587,, +S5L8 ¥, —as (W, +w, +w, )|dA
where q is the transverse load; and N, M, and Q are the stress resultants defined by
N,, N,, N,| 3= 1
MZ My, My = .[ <o'x’°'y’r><y Zre (UZn, (11)
M, M;, M5 | B f(z,)
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By substituting the results of Eq. (5) into Eq. (11), the stress resultants are obtained as

N A 0 B? & L
MPi=| 0 D D°UKk®l+|L2 g0 S=ATY, (12a)
M ® B* D? F°?||lk® R
N, =R%p+ L(sﬁ +.93)+ L""(kg +k5)+ R(kj +kj), (12b)
where
b b b b
N =N NG E ME = (Mg my g M = (Mg v (13)
where the stiffness coefficients A; and Dy ,... etc., are defined as
s s s h _l—V
A, Dy Bj Dy Hp; 2 ¢ v
A, Dy, Bj D Hj;= J.j'(zns)(llzﬁsi F(20), 20 F(20) F2(2) 1_1 N dz, (14)
A12 Dee Bée Dge ng —2-0 2y

Integrating the expressions in Eq. (10) by parts and collecting the coefficients of Su,, dv,, & w,,
s w, and & ¢, one obtains the following governing equations

OoN
Suy: Ny, Ty _g
OX oy
ON ON
Sv,: —2X+—XL=0
OX oy
2 b 62Mb aZMb
Swy: 6!\/2IX+2 Y+ —24+q=0
[o)8 oxoy oy (15)

?*M:  _*My,  *M;  8S:  8S),
: X+ 2 + +—2 4+ +
ox? oxoy  oy? ox oy
ﬁiz + & — N ;= 0
Ox oy
By substituting Eq. (12) into Eg. (15), the equations of motion can be expressed in terms of
displacements (S u,, &v,, dw,, Sw,, S@) as
Al Ug + Agsdy,Ug + (A12 + Ag )dlzvo _(BlSZ +2Bg W, —B;dy,w, +Ldp=0 (16a)
Azzdzzvo + AGGdllVO +(A12 + Aee )dlz Uo _(8152 + 28656 12Ws — BZSZdZZZWs + Ld2¢ =0
- D11d1111Wb - 2(D12 + 2D66 )dllZZWb - D22d2222Wb - D151d1111Ws - Z(Dlsz + ZDSG 1122Ws
— D300, W, + La(dnq"" dzz?’)"‘ q=0
Bridy Uy + (BISZ +2Bgs iUy + (BZLSZ +2Bg, }jmvo + B35,V — Diyyy; Wy — 2(DZI.SZ +2Dg; di1zo W, (16d)
= D3, 550 Wy, — Hyy gy W, — 2(H152 +2Hg )juzzws = H 050w, + A dy W, + Agd,,w,

+ R(dn(o + d22¢’)+ ALdu+ ALd,p+q=0

q=0

So:

(16b)
(16¢)

a s s a s s sfone . s 16e
L(dluo + dzvo)_ L (dlle + dzzwb)"' (R - AM)jlle + (R - Ass)jzzws +Rip—-ALdL,0 - Ayd,e=J; (Wb +Ws)+ K9 (16¢)
Rectangular plates are generally classified according to the type of support used. Here, we are
concerned with the exact solutions of Egs. (16) for a simply supported FG plate. The following
boundary conditions are imposed at the side edges:
aV\IS S
V0=Wb=Ws= =¢=NX=MS=MX=O (173.)
oy at X=0 a
_ _ _ a\NS _ _ _ b _ s _
Uy =Wy, =W = ox —(D—Ny—My—My_Oat y=0, b (17b)

Following the Navier solution procedure, we assume the following solution form for Yo, Yo Wb,
Ws and ? that satisfies the boundary conditions given in Eq. (17),
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U, U, cos(d x)sin(u y)

Vv, o w | Vi sin(4 x)cos(u y)

W, b= DD Wi, sin(A x)sin(u y)

wo| "W, sin(A x)sin(u y)

@ @ ., sin(4 x)sin(x y)
where Yrmn : an, Wbmn, Wsmn and Pm are arbitrary parameters to be determined, and 4 =mz/a
and #=n7/b.

The transverse load 9 is also expanded in the double-Fourier sine series as

406 Y) = DD Ay SIN(A X)sin(42 y)

m=1 n=1
For the case of a sinusoidally distributed load, we have M=n=1 and %1 =% \where Yo represents
the intensity of the load at the plate centre.

3. NUMERICAL RESULTS

The results are presented for the simply supported plate under bi-sinusoidal transverse loads of
intensity 9. The static analysis was conducted using aluminium (bottom, Al) and alumina (top,
Al03).

Figure 1. presents the variation of non-dimensional parameter C /N versus the material parameter
n of Al/AI,O; functionally graded plate. It can be observed when the material parameter of FGM
becomes zero (fully ceramic) or infinity (fully metallic); the neutral surface coincides on the middle
surface, as expected.

Table 1. contains dimensionless transverse displacement and normal stresses of FG plate for various

values of thickness ratio @/h  and material parameter N. The present theory with ¢: #0 s
compared with analytical solutions by Carrera et al. [10], the quasi-3D sinusoidal shear deformation
theory of Neves et al. [9], the classical plate theory (CPT) [9], and the first-order shear deformation
theory (FSDT) [9]. It can be seen that the dimensionless displacement and stresses predicted by the
new trigonometric higher-order theory with the stretching effect are almost identical with those
generated by the quasi-3D sinusoidal theories of Neves et al. [9]. It should be noted that the present
theory involves five unknowns as against six or more in other quasi-3D shear deformation theory.
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FIGURE 1. Variation of the neutral surface position versus the material
parameter n.

¢, | ox(a/2,b/2,h/3) w(a/2,b/2,0)
n Theory
a/h=4 | a/h=10 | a/h=100 | a/h=4 | a/h=10 | a/h=100
1 CPT [16] 0 0.8060 2.0150 20.150 0.5623 | 0.5623 0.5623
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FSDT k=5/6[16] | O 0.8060 | 2.0150 20.150 0.7291 | 0.5889 0.5625
Neves et al [16] =0 | 05925 | 1.4945 14.969 0.6997 | 0.5845 0.5624
Carrera et al [21] #0 | 0.6221 | 1.5064 14.969 0.7171 | 0.5875 0.5625
Present =0 | 0.6021 | 1.5001 14.659 0.6919 | 0.5795 0.5562
CPT [16] 0 0.6420 | 1.6049 16.049 0.8281 | 0.8281 0.8281
FSDT k=5/6[16] | O 0.6420 | 1.6049 16.049 1.1125 | 0.8736 0.828

4 Neves et al [16] =0 | 04404 | 1.1783 11.932 1.1178 | 0.8750 0.8286
Carrera et al [21] #0 | 04877 | 1.1971 11.923 1.1585 | 0.8821 0.8286
Present #0 | 04366 | 1.1335 11.409 1.0991 | 0.8562 0.8021
CPT [16] 0 0.4796 | 1.1990 11.990 0.9354 | 0.9354 0.9354
FSDT k=5/6[16] | O 0.4796 | 1.1990 11.990 1.3178 | 0.9966 0.9360
10 | Nevesetal [16] =0 | 0.3227 1.1783 11.932 1.3490 | 0.8750 0.8286
Carrera et al [21] #0 | 0.1478 | 0.8965 8.9077 1.3745 | 1.0072 0.9361
Present #0 | 0.3206 | 0.8511 8.6055 1.3369 | 0.9820 0.9142

TABLE 1. Effect of normal strain &, on the dimensionless in-plane longitudinal stress o« and
displacement w for FG square plate.
4. CONCLUSIONS

A higher order shear and normal deformation theory based on neutral surface position for the bending
analysis of advanced composite plates is presented. The theory accounts for the stretching and shear
deformation effects without requiring a shear correction factor. By dividing the transverse displacement
into bending, shear and stretching components, the number of unknowns and governing equations of the
present theory is reduced to five as against six or more unknown in the corresponding ones. Based on the
present plate theory and the neutral surface concept, the governing equations are derived from the
principle of virtual work. The accuracy of the present model is ascertained by comparing it with existing
solutions and excellent agreement was observed. It is relevant to notice the strong effect of considering
the non-zero transverse normal strain.
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