
Actes de la 2
ème

 Conférence Internationale de Mécanique (ICM’15). Constantine, Algérie. 25-26 Novembre 2015 

 

890 

 

Existence of natural and anti-natural solution in thermosolutal 

convection in a tilted porous square cavity under cross temperature 

and concentration gradients 

Nabil Ouazaa
1
, Mahmoud Mamou

2
 and Smail Benissaad

1
 

1
Laboratoire d’Énergétique Appliquée et de Pollution Département de génie mécanique,  

Université de Mentouri, Constantine, Algérie 
2
Aerodynamics Laboratory, National Research Council Canada,  

Ottawa, Ontario, Canada 

Auteur correspondant, e-mail:nabil.ouazaa5@gmail.com  

 

Abstract— The  present study is focused on double-diffusive convection in a tilted square 

porous cavity under cross temperature and concentration gradients. The flow in the porous media 

is modeled using the Darcy law and the Boussinesq approximation. The situation, where the 

horizontal components of the thermal and solutal buoyancy forces are equal and opposing each 

other,  is  considered. The study is performed for a tilt angle of 45
o
 and in this case the buoyancy 

ratio is equal to unity (N=1). Results are presented in terms of the Nusselt, Sherwood numbers 

and the flow intensity as functions of the thermal Rayleigh number and the Lewis number. In this 

study, the existence of the onset of convection is demonstrated and both natural and anti-natural 

flows solutions are obtained. Also, when the Lewis number is bigger than unity, subcritical flows 

are found to exist for the anti-natural convective solutions.  
 

Keywords — Square tilted cavity, Multiple solutions, Thermosolutal convection, Cross 

gradients of temperature and concentration, Numerical study. 

 

Résumé— La présente étude se concentre sur la convection naturelle double diffusive dans 

une cavité carrée poreuse inclinée soumise à des gradients opposés de température et de 

concentration. L'écoulement est modélisé par la loi de Darcy et l'approximation de Boussinesq. 

La situation, où les composantes horizontales des forces de volume thermiques et solutales 

égales et opposées, est prise en considération. Dans le régime diffusif, une solution état de repos 

est possible, mais devient instable au-delà d'un seuil critique. L'étude est réalisée pour un angle 

d'inclinaison de 45° et dans ce cas le rapport des forces de volume est égal à l'unité (N = 1). Les 

résultats sont présentés en termes de nombres adimensionnels de Nusselt, et de Sherwood ainsi 

que l'intensité du flux en fonction du nombre de Rayleigh thermique et du nombre de Lewis. 

Dans cette étude, l'existence de la convection est démontrée et que les deux solutions naturelles 

et antinaturelles des écoulements sont obtenues. En outre, lorsque le nombre de Lewis est plus 

grand que l'unité, les écoulements de type souscritiques existent pour les solutions antinaturelles. 

 

Mots clefs — Cavité carrée inclinée, Solutions multiples, Convections thermosolutales, 

Gradients opposés de température et de concentration, Etude numérique
 

1. Introduction  

Natural thermosolutal convection in porous media is of a growing interest  owing to its 

presence in many and diverse engineering problems such as ground dispersion of chemical or 
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radio-active contaminants, the exploitation of continental geothermal reservoir, the migration of 

moisture through fibrous insulation, grains formation in metallurgy, electrochemistry batteries, 

geophysics, etc. A comprehensive review on the phenomena related to heat and mass transfer 

and convection in porous media could be found in the book by Nield and Bejan [1].  

 Concerning the present study, Mamou et al. [2] examined the flow in a square cavity 

subjected to horizontal fluxes of heat and mass. In case where the volume forces are in opposite 

direction and same order of magnitude, the existence of multiple solutions was demonstrated. 

The existence of multiple solutions depended on the thermal Rayleigh and Lewis numbers. 

Trevisan and Bejan [3] used a numerical method and scale analysis to study double diffusion 

convection in a porous square cavity, with vertical walls maintained at constant temperatures and 

concentrations. It was found that the fluid flow was possible beyond a certain number of the 

critical Rayleigh when Le≠1. However, the fluid motion disappeared completely for the Le = 1 

and N= -1. The results of this analysis were found in agreement with numerical study.  

Mansour et al. [4] studied numerically the Soret effect on multiple solutions in a square 

cavity. The authors concluded that the Soret parameter might have a strong effect on the 

convective flow. One, two or three solutions were possible. Khanafer et al. [5] presented a 

numerical study of mixed-convection heat and mass transport in a square enclosure filled with a 

non-Darcian fluid-saturated porous medium. The two vertical walls of the enclosure were 

insulated, while the horizontal walls were kept at constant but different temperatures and 

concentrations with the top surface moving at a constant speed. The results of this investigation 

indicated that the buoyancy ratio, Darcy, Lewis and Richardson numbers have profound effects 

on the double-diffusive phenomenon. Mohamad and Bennacer [6] obtained numerical results, on 

the basis of two- and three-dimensional flows, on heat and mass transfer in a horizontal 

enclosure with an aspect ratio of two filled with a saturated porous medium. The enclosure was 

heated differentially and a stably stratified species concentration was imposed vertically. It was 

found that the difference in the rates of heat and mass transfer predicted by the two models was 

not significant.  Bennacer et al. [7] studied both numerically and analytically the natural 

convection with Soret effect in a binary fluid saturating a shallow horizontal porous layer. The 

vertical walls of the enclosure are heated and cooled by uniform heat fluxes and a solutal 

gradient was imposed vertically The authors used the Darcy model. It was concluded that in the 

presence of a vertical destabilizing concentration gradient, the existence of both natural and anti-

natural flows was demonstrated. When the vertical concentration gradient was stabilizing, 

multiple solutions are possible, which depended on the Soret effect. 

Mansour et al. [8] studied numerically the Soret effect on fluid flow and heat and mass 

transfer induced by double diffusive natural convection in a square porous cavity submitted to 

cross gradients of temperature and concentration. They concluded that the Soret effect might 

affect considerably the heat and mass transfer as it led to an enhancement or to a reduction of the 

mass transfer, depending on the flow structure and the sign and magnitude of the Soret 

coefficient. Bourich et al. [9] studied analytically and numerically the Soret effect on thermal 

natural convection within a horizontal porous enclosure uniformly heated from below by a  

Nomenclature 

  

A cavity aspect ratio, L /H  Greek symbols 

D mass diffusivity of species   thermal diffusivity,  k /(ρC) f   

H  height of the layer 
S

concentration expansion coefficient 

 j  constant mass flux per unit area 
T

thermal expansion coefficient 

K permeability of the porous medium Θ angle of inclination of the cavity relative to the 

k thermal conductivity of the fluid saturated porous           horizontal plane  
 Medium   normalized porosity of the porous medium, 
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constant heat flux using the Brinkman extended Darcy model. It was found that the Soret 

separation parameter had a strong effect on the thresholds of instabilities and on the heat and 

mass transfer characteristics. 

Saied [10] studied the problem of natural convection in a two-dimensional square porous 

cavity with the temperature of the hot (left) wall oscillating in time. He finds that during the heat 

transfer process the hot wall temperature dropped which resulted, at some locations inside the 

cavity, with a temperature higher than the hot wall temperature. Also, it was observed that the 

average Nusselt number had a peak value at the non-dimensional frequency of 450 in the range 

considered (1–2000) for Rayleigh number 103, as the convection currents are stronger than those 

at other frequencies. 

The transient free convection in a two-dimensional square cavity filled with a porous medium 

was considered by Saeid and Pop [11]. The flow was driven by considering the case when one of 

the cavity vertical walls is suddenly heated and the other vertical one was suddenly cooled, while 

the horizontal walls were adiabatic. The results were obtained for the initial transient state up to 

the steady state, and for Rayleigh number values of 10
2
–10

4
. It was observed that the average 

Nusselt number showed an undershoot during the transient period and that the time required to 

reach the steady state is longer for low Rayleigh number and shorter for high Rayleigh number. 

Finally, Mansour, et al. [12] studied the transient MHD natural convection in an inclined 

cavity filled with a fluid saturated porous medium by including the effects of both of an inclined 

magnetic field and heat source in the solid phase. The flow was driven by considering the case 

where one of the cavity vertical walls was suddenly heated and the other one was suddenly 

cooled, while the horizontal walls were adiabatic. 

The authors found that in general, they could increase the temperature of the fluid by 

increasing both of the Magnetic field force and the inclination angle. 

In the present study, a numerical investigation was performed to examine the effect of cross 

fluxed of heat and solute on the heat and mass transfer rates within a tilted square porous cavity. 

L  thickness of the enclosure  / 

Le Lewis number,  / D   kinematic viscosity of the fluid 

N buoyancy ratio, S S/T T   dynamic viscosity of fluid 

  Nu Nusselt number   density of the fluid 

q  constant heat flux per unit area (C) f  heat capacity of fluid 

  RT thermal Darcy Rayleigh number, (C) p  heat capacity of saturated porous medium 

 gTKH T /    heat capacity ratio (C) p/(C) f   

   S dimensionless concentration, (S   S 0 ) / S    porosity of the porous medium 

Sh Sherwood number Ψ  dimensionless stream function,   /  

S 0 reference concentration at xy C  stream function value at center of the enclosure 

S characteristic concentration, j H  / D 

Superscript S dimensionless wall-to-wall concentration 

 difference       dimensional variable 

T dimensionless temperature, (T   T0) / T   sub      subcritical 

t dimensionless time, t  / H  
2

 
 sup      supercritical 

 reference temperature at x  0, y  0 

Subscripts T characteristic temperature, qH  / k 

T dimensionless wall-to-wall temperature difference C      critical value 

u dimensionless velocity in x-direction, u H  /  M      average value 

v dimensionless velocity in y-direction, vH  /  max      maximum value 

x dimensionless coordinate axis,  x / H  min      minimum value 

y dimensionless coordinate axis,  y / H        reference state 
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The case, where the horizontal components of the thermal and solutal buoyancy forces are equal 

and opposing each other, was considered. The Darcy model was used to simulate the convection 

flow inside the cavity. The existence of natural and anti-natural flows was demonstrated and the 

threshold of convective instability was obtained as function of the Lewis number.  

2. Mathematical Formulation 

The configuration considered in this work is an inclined porous square cavity. The origin of 

the coordinate system is located at the center of the cavity. As shown in Fig. 1, the solutal and 

thermal gradients were induced by imposing constant fluxes of heat, q’, and solute, j’, on the 

cavity walls. The fluid saturating the porous matrix was assumed to be Newtonian fluid and 

obeying the Boussinesq approximation, which state that the fluid is incompressible with constant 

properties except for the density which is supposed to vary linearly with the temperature, and the 

viscous dissipation and the pressure work are negligible. 

 

 

 

 

 

 

 

Figure 1: Flow configuration and coordinates system. 

The governing equations that describe the double-diffusive convection are expressed in terms 

of the stream-function, temperature and concentration, in dimensionless form: 

                                                                                       

 

    
  

  
 

     

  
 

     

  
                                                               

        
  

  
 

     

  
 

     

  
                                                    

Where F is an operator defined by: 

     
    

  
     

    

  
     

where   is the dimensionless stream function, T and S the dimensionless temperature and 

concentration, u and v the dimensionless velocity components, t the dimensionless time, x and y 

are the dimensionless coordinates axes, RT  is the thermal Rayleigh number, N the buoyancy 

ratio, θ the inclination, Le the Lewis number and ε is the normalized porosity of the porous 

medium. 

In the Darcy model, the inertial forces are negligible and the acceleration parameter is 

supposed to very weak (Nield and Bejan [1]), so they are omitted in the present study. 

The stream function   is defined as: 
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The dimensionless boundary conditions are given by: 
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3. Numerical Solution 

The numerical solution of the fully governing equations (1)-(3) with boundary conditions (5)-

(6) is obtained using a finite-difference scheme. The entire domain, as shown in Fig. 1, was 

discretized with a uniform mesh size (101 × 101). The solution consists of the stream function, 

temperature and concentration fields. Central-difference scheme with second-order accuracy is 

used to transform the governing equations into a set of finite difference equations. At the 

boundaries, forward or backward difference also with second-order accuracy is considered. The 

energy and concentration equations, after be written in conservative form, are solved using the 

alternating direction implicit (ADI) method, while the stream function field is obtained from the 

discretized momentum equation using the successive over-relaxation method (SOR). Finally, the 

integrals in the expressions of the Nusselt and Sherwood numbers were computed numerically 

by using the Simpson scheme. 

4. Results and Discussion 

The present investigation is limited to the equilibrium state where the horizontal components 

of the thermal and solutal buoyancy forces are equal and opposing each other. For any 

inclination angle, θ, of the cavity, the equilibrium state can be reached only when N=tang θ. In 

this study, the inclination angle is fixed to θ = 45°, thus the buoyancy ratio at equilibrium is N=1. 

At this condition, a rest state solution is possible, where the fluid density gradient is vertical 

(opposing the gravity). For this situation, convective flows are possible only when the Rayleigh 

number and there exists a threshold for the onset of convective flows. The effect of the Rayleigh 

and the Lewis numbers on the flow behavior and the heat and mass transfer rates are considered 

and the thresholds for convective flow instabilities are determined.  

Figures 2  show the stream function, the temperature and concentration contours obtained for 

both natural (clockwise circulation) and anti-natural (counterclockwise circulation) with the 

same values RT=100 and Le=2. As displayed in the figures, the two solutions are asymmetric, 

however, they become anti–symmetric when Le=1.    

The natural convection is usually the preferable solution when initiating the numerical code 

with the rest state solution. The anti-natural solution is obtained by imposing a likewise solution 

as initial condition. As the mass diffusivity is higher than the thermal one (Le=2), the mass 

transfer rate is bigger than the heat transfer rate. It can be noticed that the flow intensity of the 

natural-solution is stronger than that of the anti-natural solution. 
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Figure 2: Stream function, temperature and concentration contours obtained for RT=100 and Le=2: 

a) Ψmin=0.00, Ψmax= 3.68, Num= 3.21 and  Shm=4.16. b) Ψmin=-2.79, Ψmax= 0.00, Num= 2.19 and Shm=4.19. 

 

The effect of the Rayleigh number on the flow intensity, Ψ0,  and the heat and mass transfer 

rates, Nu and Sh, are presented in figures 3 for various values of Le. As expected, there exists a 

threshold for the onset of convection, which depends strongly on the Lewis number. Three 

values of the Lewis number are considered, namely Le=0.5, 1 and 2.  

 

             

       

a) 

   

b) 

 Ψ     T     S  
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Figure 3: Natural (left) and anti-natural (right) solution bifurcation diagrams: flow intensity, Ψ0, heat 

and mass transfer rates, Nu and Sh, as functions of the Rayleigh number, RT, for various Lewis number 

values, Le. 

The corresponding thresholds of the convection instability is obtained as RTC=21.57, 16.21 

and 10.78 for Le=0.5, 1 and 2, respectively. The computational technique to obtain the 

thresholds, where exchange of stability occurs, is discussed hereafter. The natural convective 

solution is discussed first.  Starting from the threshold (critical Rayleigh number), as displayed 

in Fig. 4-6, the heat and mass transfer rates and the flow intensity increase monotonically with 

RT. It is observed that, when RT is relatively small, the flow intensity increases with the Lewis 

number, however it looks decreasing for higher RT, as the curves are crossing each other (see, for 

instance, the curves obtained for Le=1 and 2). Same trend is observed for the Nusselt number. 

However, the Sherwood number is seen to increases monotonically with the Lewis number. 

Figures 3.  exemplifies similar results for the anti-natural solution at the same values of the 

governing parameters. For this situation the flow circulation is counterclockwise (Ψ0<0). As for 

the natural solution, the flow intensity, |Ψ0|, is seen to increase monotonically with RT. However, 

above criticality, the flow intensity is seen to increase with decreasing of the Lewis number. 

Same trend is observed with the Nusselt number. For the Sherwood number, a monotonic 

increase with both RT and Le is observed as displayed. 

This technique is novel as it uses the full governing equations rather the linear stability 

equations. The technique straight forward and it is valid only for the determination of the 

supercritical Rayleigh number, where exchange of stationary instability occurs. Another classical 

technique but tedious is used in parallel to determine the threshold of subcritical convection 
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when it does exist. To calculate the critical value of the Rayleigh we consider two values of Le (1 

and 2). 

 

     

 

 

 

 

 

 

 

 

As known, for infinitesimal amplitude convection, the time evolution of the flow intensity is 

exponential, according to the linear stability analysis, and could be correlated by: 

           
   

Where      is the convective flow amplitude and   . From the stability analysis point of 

view,    must be very small. In the present analysis, we considered        . To avoid any 

numerical contamination of the signal amplitude when it becomes very small, we consider only 

the data of    within a reasonable range of             . The parameter p represents the 

amplitude growth rate. When p<0 the flow is decaying and when p>0 the flow is amplified. 

Then, p<0 below the threshold of convection and p>0 above the threshold. By performing two 

quick simulations for two Rayleigh number numbers; one below and the other one above the 

threshold, the growth rate parameter can be computed numerically using a simple interpolation 

technique. It is well known that, usually, the growth rate parameter varies linearly with RT near 

the point of exchange of instability, thus a linear interpolation is far enough to obtain an accurate 

value. Using the two computed values for the growth rate, he threshold of convection can be 

determined by a linear interpolation for p=0. To be more practical let`s give two examples. 

From the previous numerical simulations, Fig. 3, the thresholds of instabilities can be 

localized easily. For example, for Le=1, we can estimate that the critical value for the onset of 

convection is between 15 and 18. Thus two flow simulations are required to determine the 

growth rate of the perturbation. Using the numerical code which solves the full governing 

equations, the parameter p is computed as follows. Starting from the rest state solution, a 

numerical simulation is performed for RT=18. For this situation, the flow is amplifying until it 

reaches a convective steady state solution. 

The flow intensity as a function of time is depicted in Fig. 4. For stability analysis purposes, 

we consider              . By performing a curve fitting exercise, an excellent 

exponential curve fit is obtained and the growth rate parameter is obtained as p=1.117. Now, for 

RT=15, using the converged solution as initial conditions, the flow simulation is performed again 

Figure 4: Flow intensity time histories 

below and above the threshold of 

supercritical convection for Le=1.  

Figure 5: Supercritical Rayleigh number 

as function of the Lewis number.  
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and as can be seen from Fig. 4 also, the flow decays towards the pure conductive state. Focusing 

only on the infinitesimal curve branch, 10
-8 

<      < 10
-2

, exponential curve fitting lead to a 

growth rate of p=-0.756. Considering the two couples of values (RT=15, p=-0.756) and (RT=18, 

p=1.117), the threshold of marginal stability is obtained by a linear interpolation as    
   

=16.21. 

A same exercise can be repeated for various Lewis number values as depicted in Table 1. A 

complete curve showing the effect of the Le on RTC is exemplified in Fig. 5. It can be noticed that 

   
   

 is decreasing monotonically with Le increase. Using a quick data analysis and curve fitting, 

it is found that RTC is a function of the Le number according to the following relationship: 

   
    

     

    
 

 TABLE 1: Critical values of  RTC   and  type  of  bifurcations. 

 

      

      Figure 6: Bifurcation diagrams in terms 

of Ψ0 Versus RT  for the natural solution with 

Le=1.   

      Figure 7: Bifurcation diagrams in terms 

of Ψ0 Versus RT  for the natural solution with 

Le=2. 

5. Conclusion 

In the presentation investigation, thermosolutal convection in a tilted porous square cavity 

subjected to cross-flow heat and mass is studied numerically. The cavity was inclined at an angle 

of 45°. The conditions where the horizontal components of the thermal and solutal buoyancies 

are equal (N=1) and opposing each other is considered. For this situation, the existence of two 

stable convective solutions for the same governing parameters values is demonstrated. For Le=1, 

the two solutions (natural and anti-natural), are anti-symmetric, however they become 

asymmetric when Le≠1.  The flow intensity increases monotonically with RT. Both the two 

solution displayed the similar trend with the Rayleigh number. The existence of exchange 

stability is demonstrated and the thresholds for onset of supercritical and subcritical convection 

are obtained. 
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